WorldWideScience

Sample records for high resolution spectrograph

  1. 4MOST: the high-resolution spectrograph

    Science.gov (United States)

    Seifert, W.; Xu, W.; Buschkamp, P.; Feiz, C.; Saviauk, A.; Barden, S.; Quirrenbach, A.; Mandel, H.

    2016-08-01

    4MOST (4-meter Multi-Object Spectroscopic Telescope) is a wide-field, fiber-feed, high-multiplex spectroscopic survey facility to be installed on the 4-meter ESO telescope VISTA in Chile. It consists of two identical low resolution spectrographs and one high resolution spectrograph. The instrument is presently in the preliminary design phase and expected to get operational end of 2022. The high resolution spectrograph will afford simultaneous observations of up to 812 targets - over a hexagonal field of view of 4.1 sq.degrees on sky - with a spectral resolution R>18,000 covering a wavelength range from 393 to 679nm in three channels. In this paper we present the optical and mechanical design of the high resolution spectrograph (HRS) as prepared for the review at ESO, Garching. The expected performance including the highly multiplexed fiber slit concept is simulated and its impact on the optical performance given. We show the thermal and finite element analyses and the resulting stability of the spectrograph under operational conditions.

  2. Mauna Kea Spectrographic Explorer (MSE): a conceptual design for multi-object high resolution spectrograph

    Science.gov (United States)

    Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.

  3. High resolution spectrograph for the 4MOST facility

    Science.gov (United States)

    Mignot, Shan; Amans, Jean-Philippe; Cohen, Mathieu; Horville, David; Jagourel, Pascal

    2012-09-01

    4MOST (4-metre Multi-Object Spectrograph Telescope) is a wide field and high multiplex fibre-fed spectroscopic facility continuously running a public survey on one of ESO's 4-metre telescopes (NTT or VISTA). It is currently undergoing a concept study and comprises a multi-object (300) high resolution (20 000) spectrograph whose purpose is to provide detailed chemical information in two wavelength ranges (395-456.5 nm and 587-673 nm). It will complement the data produced by ESA's space mission Gaia to form an unprecedented galactic-archaeology picture of the Milky Way as the result of the public survey. Building on the developments carried out for the GYES1 instrument on the Canada- France-Hawaii Telescope in 2010, the spectrograph is intended as being athermal and not featuring any motorised parts for high reliability and minimum maintenance, thereby allowing it to operate every night for five years. In addition to the fixed configuration which allows fine-tuning the spectrograph to a precise need, it features a dual-arm architecture with volume-phase holographic gratings to achieve the required dispersion at a maximum efficiency in each channel. By combining high yield time-wise and photon-wise, the spectrograph is expected to deliver more than a million spectra and make the most out of the selected 4-metre telescope.

  4. Modelling high resolution Echelle spectrographs for calibrations: Hanle Echelle spectrograph, a case study

    CERN Document Server

    Chanumolu, Anantha; Thirupathi, Sivarani

    2015-01-01

    We present a modelling scheme that predicts the centroids of spectral line features for a high resolution Echelle spectrograph to a high accuracy. Towards this, a computing scheme is used, whereby any astronomical spectrograph can be modelled and controlled without recourse to a ray tracing program. The computations are based on paraxial ray trace and exact corrections added for certain surface types and Buchdahl aberration coefficients for complex modules. The resultant chain of paraxial ray traces and corrections for all relevant components is used to calculate the location of any spectral line on the detector under all normal operating conditions with a high degree of certainty. This will allow a semi-autonomous control using simple in-house, programming modules. The scheme is simple enough to be implemented even in a spreadsheet or in any scripting language. Such a model along with an optimization routine can represent the real time behaviour of the instrument. We present here a case study for Hanle Echel...

  5. The Goddard High Resolution Spectrograph Scientific Support Contract

    Science.gov (United States)

    1997-01-01

    In 1988, Computer Sciences Corporation (CSC) was selected as the Goddard High Resolution Spectrograph (GHRS) Scientific Support Contractor (SSC). This was to have been a few months before the launch of NASA's first Great Observatory, the Hubble Space Telescope (HST). As one of five scientific instruments on HST, the GHRS was designed to obtain spectra in the 1050-3300 A ultraviolet wavelength region with a resolving power, lambda/Delta(lambda) , of up to 100,000 and relative photometric accuracy to 1%. It was built by Ball AeroSpace Systems Group under the guidance of the GHRS Investigation Definition Team (IDT), comprised of 16 scientists from the US and Canada. After launch, the IDT was to perform the initial instrument calibration and execute a broad scientific program during a five-year Guaranteed Time Observation (GTO) period. After a year's delay, the launch of HST occurred in April 1990, and CSC participated in the in-orbit calibration and first four years of GTO observations with the IDT. The HST primary mirror suffered from spherical aberration, which reduced the spatial and spectral resolution of Large Science Aperture (LSA) observations and decreased the throughput of the Small Science Aperture (SSA) by a factor of two. Periodic problems with the Side 1 carrousel electronics and anomalies with the low-voltage power supply finally resulted in a suspension of the use of Side 1 less than two years after launch. At the outset, the GHRS SSC task involved work in four areas: 1) to manage and operate the GHRS Data Analysis Facility (DAF); 2) to support the second Servicing Mission Observatory Verification (SMOV) program, as well as perform system engineering analysis of the GHRS as nesessary; 3) to assist the GHRS IDT with their scientific research programs, particularly the GSFC members of the team, and 4) to provide administrative and logistic support for GHRS public information and educational activities.

  6. Successful "First Light" for VLT High-Resolution Spectrograph

    Science.gov (United States)

    1999-10-01

    Great Research Prospects with UVES at KUEYEN A major new astronomical instrument for the ESO Very Large Telescope at Paranal (Chile), the UVES high-resolution spectrograph, has just made its first observations of astronomical objects. The astronomers are delighted with the quality of the spectra obtained at this moment of "First Light". Although much fine-tuning still has to be done, this early success promises well for new and exciting science projects with this large European research facility. Astronomical instruments at VLT KUEYEN The second VLT 8.2-m Unit Telescope, KUEYEN ("The Moon" in the Mapuche language), is in the process of being tuned to perfection before it will be "handed" over to the astronomers on April 1, 2000. The testing of the new giant telescope has been successfully completed. The latest pointing tests were very positive and, from real performance measurements covering the entire operating range of the telescope, the overall accuracy on the sky was found to be 0.85 arcsec (the RMS-value). This is an excellent result for any telescope and implies that KUEYEN (as is already the case for ANTU) will be able to acquire its future target objects securely and efficiently, thus saving precious observing time. This work has paved the way for the installation of large astronomical instruments at its three focal positions, all prototype facilities that are capable of catching the light from even very faint and distant celestial objects. The three instruments at KUEYEN are referred to by their acronyms UVES , FORS2 and FLAMES. They are all dedicated to the investigation of the spectroscopic properties of faint stars and galaxies in the Universe. The UVES instrument The first to be installed is the Ultraviolet Visual Echelle Spectrograph (UVES) that was built by ESO, with the collaboration of the Trieste Observatory (Italy) for the control software. Complete tests of its optical and mechanical components, as well as of its CCD detectors and of the complex

  7. HERMES: a high-resolution fibre-fed spectrograph for the Mercator telescope

    CERN Document Server

    Raskin, Gert; Hensberge, Herman; Jorissen, Alain; Lehmann, Holger; Waelkens, Christoffel; Avila, Gerardo; De Cuyper, Jean-Pierre; Degroote, Pieter; Dubosson, Rene; Dumortier, Louis; Fremat, Yves; Laux, Uwe; Michaud, Bernard; Morren, Johan; Padilla, Jesus Perez; Pessemier, Wim; Prins, Saskia; Smolders, Kristof; Van Eck, Sophie; Winkler, Johannes

    2010-01-01

    The HERMES high-resolution spectrograph project aims at exploiting the specific potential of small but flexible telescopes in observational astrophysics. The optimised optical design of the spectrograph is based on the well-proven concept of white-pupil beam folding for high-resolution spectroscopy. In this contribution we present the complete project, including the spectrograph design and procurement details, the telescope adaptor and calibration unit, the detector system, as well as the optimised data-reduction pipeline. We present a detailed performance analysis to show that the spectrograph performs as specified both in optical quality and in total efficiency. With a spectral resolution of 85000 (63000 for the low-resolution fibre), a spectral coverage from 377 to 900nm in a single exposure and a peak efficiency of 28%, HERMES proves to be an ideal instrument for building up time series of high-quality data of variable (stellar) phenomena.

  8. Adaptive optics for high resolution spectroscopy: A direct application with the future NIRPS spectrograph

    CERN Document Server

    Conod, Uriel; Wildi, François; Pepe, Francesco

    2016-01-01

    Radial velocity instruments require high spectral resolution and extreme thermo-mecanical stability, even more difficult to achieve in near-infra red (NIR) where the spectrograph has to be cooled down. For a seeing-limited spectrograph, the price of high spectral resolution is an increased instrument volume, proportional to the diameter of the primary mirror. A way to control the size, cost, and stability of radial velocity spectrographs is to reduce the beam optical etendue thanks to an Adaptive Optics (AO) system. While AO has revolutionized the field of high angular resolution and high contrast imaging during the last 20 years, it has not yet been (successfully) used as a way to control spectrographs size, especially in the field of radial velocities. In this work we present the AO module of the future NIRPS spectrograph for the ESO 3.6 m telescope, that will be feed with multi-mode fibers. We converge to an AO system using a Shack-Hartmann wavefront sensor with 14x14 subapertures, able to feed 50% of the ...

  9. BESO: first light at the high-resolution spectrograph for the Hexapod-Telescope

    Science.gov (United States)

    Steiner, Ingo; Stahl, Otmar; Seifert, Walter; Chini, Rolf; Quirrenbach, Andreas

    2008-07-01

    BESO (Bochum Echelle Spectrograph for OCA)is a high-resolution echelle spectrograph which has been built by Ruhr-Universitaet, Bochum and Landessternwarte Heidelberg. It is fiber-coupled to the 1.5m Hexapod-Telescope at the Observatario Cerro Armazones (OCA), Chile. The first light spectra show that the resolution of 48.000 over a spectral range from 370 nm to 840 nm has been achieved. An alignment by design approach has been followed to assemble the fiber-head optics at the telescope side of fiber coupled instrument.

  10. CHISL: The Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor

    CERN Document Server

    France, Kevin; Hoadley, Keri

    2016-01-01

    NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) Surveyor mission (primary diameter 12 m, 1000 Ang - 2 micron spectroscopic bandpass) can carry out the largest number of NASA's exoplanet and astrophysics science goals over the coming decades. There are technical challenges for several aspects of the LUVOIR Surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR Surveyor mission concept, the Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor (CHISL). CHISL includes a high-resolution (R 120,000; 1000 - 1700 Ang) point-source spectroscopy channel and a ...

  11. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    Science.gov (United States)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  12. BESO: a high-resolution spectrograph for the Hexapod-Telescope

    Science.gov (United States)

    Steiner, Ingo; Seifert, Walter; Stahl, Otmar; Lemke, Roland; Chini, Rolf; Appenzeller, Immo

    2006-06-01

    BESO (Bochum Echelle Spectrograph for OCA) is a high-resolution echelle spectrograph which is built by the Ruhr-Universitaet, Bochum and the Landessternwarte Heidelberg. It will be operated with the 1.5m Hexapod-Telescope at the Observatorio Cerro Armazones (OCA), Chile - the new observatory of the Ruhr-Universitaet and the Universidad Catolica del Norte in Antofagasta. The site at 2800m altitude is located 30 km east of Paranal and provides superb observing conditions. BESO is fiber-coupled to the Hexapod-Telescope, covers a spectral range of 370 to 840nm with a resolution of 48,000. Instrument controls are embedded in the ALMA Common Software environment. The spectrograph is part of a monitoring project that studies the variability of young stars and AGN.

  13. The Diffuse Interstellar Cloud Experiment: a high-resolution far-ultraviolet spectrograph.

    Science.gov (United States)

    Schindhelm, Eric; Beasley, Matthew; Burgh, Eric B; Green, James C

    2012-03-01

    We have designed, assembled, and launched a sounding rocket payload to perform high-resolution far-ultraviolet spectroscopy. The instrument is functionally a Cassegrain telescope followed by a modified Rowland spectrograph. The spectrograph was designed to achieve a resolving power (R=λ/δλ) of 60,000 in a compact package by adding a magnifying secondary optic. This is enabled by using a holographically ruled grating to minimize aberrations induced by the second optic. We designed the instrument to observe two stars on opposing sides of a nearby hot/cold gas interface. Obtaining spectra of the O VI doublet in absorption toward these stars can provide new insight into the processes governing hot gas in the local interstellar medium. Here we present the optical design and alignment of the telescope and spectrograph, as well as flight results.

  14. CODEX: An Ultra-stable High Resolution Spectrograph for the E-ELT

    Science.gov (United States)

    Pasquini, L.; Cristiani, S.; Garcia-Lopez, R.; Haehnelt, M.; Mayor, M.

    2010-06-01

    CODEX is the proposed optical high resolution spectrograph for the E-ELT. Designed to make the most of the unique light-gathering power of the E-ELT and to obtain superb stability, CODEX will open up a new parameter space in astrophysical spectroscopy. The wide-ranging science case has a large discovery potential in stellar, Galactic and extra-galactic astronomy as well as in fundamental physics.

  15. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    CERN Document Server

    Robertson, J Gordon

    2012-01-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably ...

  16. PEPSI, the High-Resolution Optical-IR Spectrograph for the LBT

    Science.gov (United States)

    Andersen, Michael; Strassmeier, Klaus; Hoffman, Axel; Woche, Manfred; Spano, Paolo

    PEPSI is a high resolution fibre feed optical-IR polarimetric echelle spectrograph for the Large Binocular Telescope (LBT). PEPSI utilizes the two 8.4m LBT apertures to simultaneously record four polarization states at a resolution of 120.000. The extension of the coverage towards the IR is mainly motivated by the larger Zeeman splitting of IR lines, which would allow to study weaker/fainter magnetic structures on stars. The two optical arms, which also have an integral light mode with R up to 300.000, are under construction, while the IR arm is being designed.

  17. The PRL Stabilized High Resolution Echelle Fiber-fed Spectrograph: Instrument Description & First Radial Velocity Results

    CERN Document Server

    Chakraborty, Abhijit; Roy, Arpita; Dixit, Vaibhav; Richardson, Eric Harvey; Dongre, Varun; Pathan, F M; Chaturvedi, Priyanka; Shah, Vishal; Ubale, Girish P; Anandarao, B G

    2013-01-01

    We present spectrograph design details and initial radial velocity results from the PRL optical fiber-fed high-resolution cross-dispersed echelle spectrograph (PARAS), which has recently been commissioned at the Mt Abu 1.2 m telescope, in India. Data obtained as part of the post-commissioning tests with PARAS show velocity precision better than 2m/s over a period of several months on bright RV standard stars. For observations of sigma-Dra we report 1.7m/s precision for a period of seven months and 2.1m/s for HD 9407 over a period of 2 months. PARAS is capable of a single-shot spectral coverage of 3800A - 9500A at a resolution of about 67,000. The RV results were obtained between 3800A and 6900A using simultaneous wavelength calibration with a Thorium-Argon (ThAr) hollow cathode lamp. The spectrograph is maintained under stable conditions of temperature with a precision of 0.01 - 0.02C (rms) at 25.55C, and enclosed in a vacuum vessel at pressure of 0.1 +/-0.03 mbar. The blaze peak efficiency of the spectrograp...

  18. Optimal non-circular fiber geometries for image scrambling in high-resolution spectrographs

    CERN Document Server

    Stürmer, Julian; Grimm, Stephan; Kalide, Andre; Sutherland, Adam P; Seifahrt, Andreas; Schuster, Kay; Bean, Jacob L; Quirrenbach, Andreas

    2016-01-01

    Optical fibers are a key component for high-resolution spectrographs to attain high precision in radial velocity measurements. We present a custom fiber with a novel core geometry - a 'D'-shape. From a theoretical standpoint, such a fiber should provide superior scrambling and modal noise mitigation, since unlike the commonly used circular and polygonal fiber cross sections, it shows chaotic scrambling. We report on the fabrication process of a test fiber and compare the optical properties, scrambling performance, and modal noise behavior of the D-fiber with those of common polygonal fibers.

  19. A Warm Near-Infrared High-Resolution Spectrograph with Very High Throughput (WINERED)

    CERN Document Server

    Kondo, Sohei; Kobayashi, Naoto; Yasui, Chikako; Mito, Hiroyuki; Fukue, Kei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Otsubo, Shogo; Kinoshita, Masaomi; Kitano, Ayaka; Hamano, Satoshi; Mizumoto, Misaki; Yamamoto, Ryo; Izumi, Natsuko; Matsunaga, Noriyuki; Kawakita, Hideyo

    2015-01-01

    WINERED is a newly built high-efficiency (throughput$ > 25-30\\%$) and high-resolution spectrograph customized for short NIR bands at 0.9-1.35 ${\\rm \\mu}$m. WINERED is equipped with ambient temperature optics and a cryogenic camera using a 1.7 ${\\rm \\mu}$m cut-off HgCdTe HAWAII-2RG array detector. WINERED has two grating modes: one with a conventional reflective echelle grating (R$\\sim$28,300), which covers 0.9-1.35 $\\mu$m simultaneously, the other with ZnSe or ZnS immersion grating (R$\\sim$100,000). We have completed the development of WINERED except for the immersion grating, and started engineering and science observations at the Nasmyth platform of the 1.3 m Araki Telescope at Koyama Astronomical Observatory of Kyoto-Sangyo University in Japan. We confirmed that the spectral resolution ($R\\sim$ 28,300) and the throughput ($>$ 40\\% w/o telescope/atmosphere/array QE) meet our specifications. We measured ambient thermal backgrounds (e.g., 0.06 ${\\rm [e^{-}/sec/pixel]}$ at 287 K), which are roughly consistent ...

  20. High sensitivity, wide coverage, and high-resolution NIR non-cryogenic spectrograph, WINERED

    Science.gov (United States)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Otsubo, Shogo; Hamano, Satoshi; Sameshima, Hiroaki; Yoshikawa, Tomoshiro; Fukue, Kei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Kinoshita, Masaomi; Kitano, Ayaka; Asano, Akira; Takenaka, Keiichi; Watase, Ayaka; Mito, Hiroyuki; Yasui, Chikako; Minami, Atsushi; Izumu, Natsuko; Yamamoto, Ryo; Mizumoto, Misaki; Arasaki, Takayuki; Arai, Akira; Matsunaga, Noriyuki; Kawakita, Hideyo

    2016-08-01

    Near-infrared (NIR) high-resolution spectroscopy is a fundamental observational method in astronomy. It provides significant information on the kinematics, the magnetic fields, and the chemical abundances, of astronomical objects embedded in or behind the highly extinctive clouds or at the cosmological distances. Scientific requirements have accelerated the development of the technology required for NIR high resolution spectrographs using 10 m telescopes. WINERED is a near-infrared (NIR) high-resolution spectrograph that is currently mounted on the 1.3 m Araki telescope of the Koyama Astronomical Observatory in Kyoto-Sangyo University, Japan, and has been successfully operated for three years. It covers a wide wavelength range from 0.90 to 1.35 μm (the z-, Y-, and J-bands) with a spectral resolution of R = 28,000 (Wide-mode) and R = 80,000 (Hires-Y and Hires-J modes). WINERED has three distinctive features: (i) optics with no cold stop, (ii) wide spectral coverage, and (iii) high sensitivity. The first feature, originating from the Joyce proposal, was first achieved by WINERED, with a short cutoff infrared array, cold baffles, and custom-made thermal blocking filters, and resulted in reducing the time for development, alignment, and maintenance, as well as the total cost. The second feature is realized with the spectral coverage of Δλ/λ 1/6 in a single exposure. This wide coverage is realized by a combination of a decent optical design with a cross-dispersed echelle and a large format array (2k x 2k HAWAII- 2RG). The Third feature, high sensitivity, is achieved via the high-throughput optics (>60 %) and the very low noise of the system. The major factors affecting the high throughput are the echelle grating and the VPH cross-disperser with high diffraction efficiencies of 83 % and 86 %, respectively, and the high QE of HAWAII-2RG (83 % at 1.23 μm). The readout noise of the electronics and the ambient thermal background radiation at longer wavelengths could be

  1. A High Resolution Spectrograph for the 72 cm Waltz Telescope at Landessternwarte, Heidelberg

    CERN Document Server

    Tala, M; Grill, M; Harris, R J; Stürmer, J; Schwab, C; Gutcke, T; Reffert, S; Quirrenbach, A; Seifert, W; Mandel, H; Geuer, L; Schäffner, L; Thimm, G; Seemann, U; Tietz, J; Wagner, K

    2016-01-01

    The Waltz Spectrograph is a fiber-fed high-resolution \\'echelle spectrograph for the 72 cm Waltz Telescope at the Landessternwarte, Heidelberg. It uses a 31.6 lines/mm 63.5$^{\\circ}$ blaze angle \\'echelle grating in white-pupil configuration, providing a spectral resolving power of $R\\sim$65,000 covering the spectral range between 450$-$800\\,nm in one CCD exposure. A prism is used for cross-dispersion of \\'echelle orders. The spectrum is focused by a commercial apochromat onto a 2k$\\times$2k CCD detector with 13.5$\\mu$m per pixel. An exposure meter will be used to obtain precise photon-weighted midpoints of observations, which will be used in the computation of the barycentric corrections of measured radial velocities. A stabilized, newly designed iodine cell is employed for measuring radial velocities with high precision. Our goal is to reach a radial velocity precision of better than 5 m/s, providing an instrument with sufficient precision and sensitivity for the discovery of giant exoplanets. Here we descr...

  2. CHISL: the combined high-resolution and imaging spectrograph for the LUVOIR surveyor

    Science.gov (United States)

    France, Kevin; Fleming, Brian; Hoadley, Keri

    2016-07-01

    NASA is currently carrying out science and technical studies to identify its next astronomy flagship mission, slated to begin development in the 2020s. It has become clear that a Large Ultraviolet/Optical/IR (LUVOIR) Surveyor mission (dprimary ≍ 12 m, Δλ ≍ 1000 Å - 2 μm spectroscopic bandpass) can carry out the largest number of NASA's exoplanet and astrophysics science goals over the coming decades. The science grasp of a LUVOIR Surveyor is broad, ranging from the direct detection of potential biomarkers on rocky planets to the flow of matter into and out of galaxies and the history of star-formation across cosmic time. There are technical challenges for several aspects of the LUVOIR Surveyor concept, including component level technology readiness maturation and science instrument concepts for a broadly capable ultraviolet spectrograph. We present the scientific motivation for, and a preliminary design of, a multiplexed ultraviolet spectrograph to support both the exoplanet and astrophysics goals of the LUVOIR Surveyor mission concept, the Combined High-resolution and Imaging Spectrograph for the LUVOIR Surveyor (CHISL). CHISL includes a highresolution (R ≍ 120,000; 1000 - 1700Å) point-source spectroscopy channel and a medium resolution (R >= 14,000 from 1000 - 2000 Å in a single observation and R 24,000 - 35,000 in multiple grating settings) imaging spectroscopy channel. CHISL addresses topics ranging from characterizing the composition and structure of planet-forming disks to the feedback of matter between galaxies and the intergalactic medium. We present the CHISL concept, a small sample of representative science cases, and the primary technological hurdles. Technical challenges include high-efficiency ultraviolet coatings and high-quantum efficiency, large-format, photon counting detectors. We are actively engaged in laboratory and flight characterization efforts for all of these enabling technologies as components on sounding rocket payloads under

  3. EELT-HIRES the high-resolution spectrograph for the E-ELT

    CERN Document Server

    Marconi, A; D'Odorico, V; Cristiani, S; Maiolino, R; Oliva, E; Origlia, L; Riva, M; Valenziano, L; Zerbi, F M; Abreu, M; Adibekyan, V; Prieto, C Allende; Amado, P J; Benz, W; Boisse, I; Bonfils, X; Bouchy, F; Buchhave, L; Buscher, D; Cabral, A; Martins, B L Canto; Chiavassa, A; Coelho, J; Christensen, L B; Delgado-Mena, E; De Medeiros, J R; Di Varano, I; Figueira, P; Fisher, M; Fynbo, J P U; Glasse, A C H; Haehnelt, M; Haniff, C; Hansen, C J; Hatzes, A; Huke, P; Korn, A J; Leao, I C; Liske, J; Lovis, C; Maslowski, P; Matute, I; McCracken, R A; Martins, C J A P; Monteiro, M J P F G; Morris, S; Morris, T; Nicklas, H; Niedzielski, A; Nunes, N J; Palle, E; Parr-Burman, P; Parro, V; Parry, I; Pepe, F; Piskunov, N; Queloz, D; Quirrenbach, A; Lopez, R Rebolo; Reiners, A; Reid, D T; Santos, N; Seifert, W; Sousa, S; Stempels, H C; Strassmeier, K; Sun, X; Udry, S; Vanzi, L; Vestergaard, M; Weber, M; Zackrisson, E

    2016-01-01

    The first generation of E-ELT instruments will include an optical-infrared High Resolution Spectrograph, conventionally indicated as EELT-HIRES, which will be capable of providing unique breakthroughs in the fields of exoplanets, star and planet formation, physics and evolution of stars and galaxies, cosmology and fundamental physics. A 2-year long phase A study for EELT-HIRES has just started and will be performed by a consortium composed of institutes and organisations from Brazil, Chile, Denmark, France, Germany, Italy, Poland, Portugal, Spain, Sweden, Switzerland and United Kingdom. In this paper we describe the science goals and the preliminary technical concept for EELT-HIRES which will be developed during the phase A, as well as its planned development and consortium organisation during the study.

  4. Optical design of the PEPSI high-resolution spectrograph at LBT

    Science.gov (United States)

    Andersen, Michael I.; Spano, Paolo; Woche, Manfred; Strassmeier, Klaus G.; Beckert, Erik

    2004-09-01

    PEPSI is a high-resolution, fiber fed echelle spectrograph with polarimetric capabilities for the LBT. In order to reach a maximum resolution R=120.000 in polarimetric mode and 300.000 in integral light mode with high efficiency in the spectral range 390-1050~nm, we designed a white-pupil configuration with Maksutov collimators. Light is dispersed by an R4 31.6 lines/mm monolithic echelle grating mosaic and split into two arms through dichroics. The two arms, optimized for the spectral range 390-550~nm and 550-1050~nm, respectively, consist of Maksutov transfer collimators, VPH-grism cross dispersers, optimized dioptric cameras and 7.5K x 7.5K 8~μ CCDs. Fibers of different core sizes coupled to different image-slicers allow a high throughput, comparable to that of direct feed instruments. The optical configuration with only spherical and cylindrical surfaces, except for one aspherical surface in each camera, reduces costs and guarantees high optical quality. PEPSI is under construction at AIP with first light expected in 2006.

  5. Design and development of the high-resolution spectrograph HERMES and the unique volume phase holographic gratings

    Science.gov (United States)

    Heijmans, J. A. C.; Gers, L.; Faught, B.

    2011-10-01

    We report on the grating development for the High Efficiency and Resolution Multi Element Spectrograph (HERMES). This paper discusses the challenges of designing, optimizing, and tolerancing large aperture volume phase holographic (VPH) gratings for HERMES. The high spectral resolution requirements require steep angles of incidence, of 67.2 degrees, and high line densities, ranging between 2400 and 3800 lines per mm, resulting in VPH gratings that are highly s-polarized that push the fabrication process to its limits.

  6. CRIRES+ : A Cross-dispersed High-resolution Infrared Spectrograph for ESO's VLT

    Science.gov (United States)

    Hatzes, Artie; CRIRES+ Team

    2017-06-01

    CRIRES+ is a major upgrade to the former CRyogenic high resolution Infra-Red Echelle Spectrograph of ESO's 8.2m Very Large Telescope. The major science drivers for this upgrade are the confirmation and characterization (e.g. determination of the mass) of rocky planets in the so-called habitable zone of M-dwarf stars via radial velocity measurements, the characterization of exoplanet atmospheres, and the study of magnetic fields in low mass stars and brown dwarfs. CRIRES+ will maintain the high resolving power (R = 100,000) of its predecessor in the Y, J, H, K, L and M bands, but it will include the following improvements: 1) CRIRES+ will be cross-dispersed recording 8-9 diffraction orders at a time, increasing the observing efficiency approximately by an order of magnitude. 2) New detectors with better sensitivity and cosmetics over the old devices. 3) A new gas absorption cell for improved wavelength calibration. This along with the increased wavelength coverage should yield a radial velocity measurement precision to better than 2-5 m/s in K-band. In addition, in Y to K bands, a new Fabry-Perot etalon device will ensure a precision of 100 m/s. 4) A polarimetric unit which will measure both circular and linear polarization. We present the current status and schedule of the project. The instrument is currently scheduled to be installed at the telescope beginning 2018.

  7. HIRDES - The High-Resolution Double-Echelle Spectrograph for the World Space Observatory Ultraviolet (WSO/UV)

    CERN Document Server

    Werner, K; Gringel, W; Kappelmann, N; Becker-Ross, H; Florek, S; Graue, R; Kampf, D; Reutlinger, A; Neumann, C; Shustov, B; Moisheev, A; Skripunov, E

    2007-01-01

    The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102-310nm spectral band is split to feed two echelle spectrographs covering the UV range 174-310nm and the vacuum-UV range 102-176nm with high spectral resolution (R>50,000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering performance aspects, design drivers, related trade-offs (mechanical concepts, material selection etc.) and a critical functional and environmental test verification approach. T...

  8. CODEX: the high-resolution visual spectrograph for the E-ELT

    Science.gov (United States)

    Pasquini, Luca; Avila, G.; Dekker, H.; Delabre, B.; D'Odorico, S.; Manescau, A.; Haehnelt, M.; Carswell, B.; Garcia-Lopez, R.; Lopez, R.; Osorio, M. T.; Rebolo, R.; Cristiani, S.; Bonifacio, P.; D'Odorico, V.; Molaro, P.; Spanò, P.; Zerbi, F.; Mayor, M.; Dessauges, M.; Megevand, D.; Pepe, F.; Queloz, D.; Udry, S.

    2008-07-01

    A number of outstanding scientific problems require a high resolution, visual spectrograph at the E-ELT. Measuring the dynamics of the universe, finding earth-like planets with radial velocity techniques, determining the chemical evolution of the intergalactic medium and if physical constants varied in the past, all require a superior capability of measuring exceedingly small Doppler shifts. We have started a Phase A study for CODEX at the E-ELT. We present here the scientific cases, the requirements, the basic technical choices and trade offs, as well as a couple of design under evaluation. We aim at a super stable instrument, capable of obtaining a radial velocity precision of 2 cm/sec over several decades. It will be located at the coude focus. The design will make use of anamorphosis, pupil slicing, slanted VPH gratings and a novel calibration system based on laser frequency combs. Several CODEX-related R&D activities are running, and, in addition, a Call for Proposal for a precursor at the VLT has been issued.

  9. The precision radial velocity error budget for the Gemini High-resolution Optical SpecTrograph (GHOST)

    Science.gov (United States)

    Ireland, Michael J.; Artigau, Étienne; Burley, Greg; Edgar, Michael; Margheim, Steve; Robertson, Gordon; Pazder, John; McDermid, Richard; Zhelem, Ross

    2016-08-01

    The Gemini High-resolution Optical SpecTrograph (GHOST) is a fiber fed spectrograph primarily designed for high efficiency and broad wavelength coverage (363 -1000nm), with an anticipated commissioning early in 2018. The primary scientific goal of the Precision Radial Velocity (PRV) mode will be follow-up of relatively faint (R>12) transiting exoplanet targets, especially from the TESS mission. In the PRV mode, the 1.2 arcsec diameter stellar image will be split 19 ways, combined in a single slit with a simultaneous Th/Xe reference source, dispersed at a resolving power of 80,000 and imaged onto two detectors. The spectrograph will be thermally stabilized in the Gemini pier laboratory, and modal noise will be reduced below other sources through the use of a fiber agitator. Unlike other precision high resolution spectrographs, GHOST will not be pressure controlled (although pressure will be monitored precisely), and there will be no double scrambler or shaped (e.g. octagonal) fibers. Instead, GHOST will have to rely on simultaneous two-color imaging of the slit and the simultaneous Th/Xe fiber to correct for variable fiber illumination and focal-ratio degradation. This configuration presents unique challenges in estimating a PRV error budget.

  10. The science case of the PEPSI high-resolution echelle spectrograph and polarimeter for the LBT

    Science.gov (United States)

    Strassmeier, K. G.; Pallavicini, R.; Rice, J. B.; Andersen, M. I.

    2004-05-01

    We lay out the scientific rationale for and present the instrumental requirements of a high-resolution adaptive-optics Echelle spectrograph with two full-Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solar-stellar connection. Late-type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T-Tauri stars as well as in the acceleration and collimation of jet-like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X-ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma-ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields.

  11. A conceptual design for a Cassegrain-mounted high-resolution optical spectrograph for large-aperture telescopes

    Science.gov (United States)

    Froning, Cynthia S.; Osterman, Steven; Burgh, Eric; Beasley, Matthew; Scowen, Paul; Veach, Todd; Jordan, Steven; Ebbets, Dennis; Lieber, Michael; deCino, James; Castilho, Bruno Vaz; Gneiding, Clemens; César de Oliveira, Antonio

    2013-09-01

    We present a conceptual design for a high-resolution optical spectrograph appropriate for mounting at Cassegrain on a large aperture telescope. The design is based on our work for the Gemini High Resolution Optical Spectrograph (CUGHOS) project. Our design places the spectrograph at Cassegrain focus to maximize throughput and blue wavelength coverage, delivering R=40,000 resolving power over a continuous 320-1050 nm waveband with throughputs twice those of current instruments. The optical design uses a two-arm, cross-dispersed echelle format with each arm optimized to maximize efficiency. A fixed image slicer is used to minimize optics sizes. The principal challenge for the instrument design is to minimize flexure and degradation of the optical image. To ensure image stability, our opto-mechanical design combines a cost-effective, passively stable bench employing a honeycomb aluminum structure with active flexure control. The active flexure compensation consists of hexapod mounts for each focal plane with full 6-axis range of motion capability to correct for focus and beam displacement. We verified instrument performance using an integrated model that couples the optical and mechanical design to image performance. The full end-to-end modeling of the system under gravitational, thermal, and vibrational perturbations shows that deflections of the optical beam at the focal plane are active control to meet the stability requirement. The design elements and high fidelity modeling process are generally applicable to instruments requiring high stability under a varying gravity vector.

  12. PEPSI: The high-resolution echelle spectrograph and polarimeter for the Large Binocular Telescope

    CERN Document Server

    Strassmeier, K G; Järvinen, A; Weber, M; Woche, M; Barnes, S I; Bauer, S -M; Beckert, E; Bittner, W; Bredthauer, R; Carroll, T A; Denker, C; Dionies, F; DiVarano, I; Döscher, D; Fechner, T; Feuerstein, D; Granzer, T; Hahn, T; Harnisch, G; Hofmann, A; Lesser, M; Paschke, J; Pankratow, S; Plank, V; Plüschke, D; Popow, E; Sablowski, D; Storm, J

    2015-01-01

    PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2x8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3kx10.3k CCDs with 9-{\\mu}m pixels and peak quantum efficiencies of 96 % record a total of 92 echelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15% at 650 nm, and still 11% and 10% at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of 20th mag in V in the low-resolution mode. The R=...

  13. Fiber scrambling for high-resolution spectrographs. II. A double fiber scrambler for Keck Observatory

    CERN Document Server

    Spronck, Julien F P; Kaplan, Zachary; Jurgenson, Colby; Valenti, Jeff; Moriarty, John; Szymkowiak, Andrew E

    2015-01-01

    We have designed a fiber scrambler as a prototype for the Keck HIRES spectrograph, using double scrambling to stabilize illumination of the spectrometer and a pupil slicer to increase spectral resolution to R = 70,000 with minimal slit losses. We find that the spectral line spread function (SLSF) for the double scrambler observations is 18 times more stable than the SLSF for comparable slit observations and 9 times more stable than the SLSF for a single fiber scrambler that we tested in 2010. For the double scrambler test data, we further reduced the radial velocity scatter from an average of 2.1 m/s to 1.5 m/s after adopting a median description of the stabilized SLSF in our Doppler model. This demonstrates that inaccuracies in modeling the SLSF contribute to the velocity RMS. Imperfect knowledge of the SLSF, rather than stellar jitter, sets the precision floor for chromospherically quiet stars analyzed with the iodine technique using Keck HIRES and other slit-fed spectrometers. It is increasingly common pra...

  14. PEPSI: The high-resolution échelle spectrograph and polarimeter for the Large Binocular Telescope

    Science.gov (United States)

    Strassmeier, K. G.; Ilyin, I.; Järvinen, A.; Weber, M.; Woche, M.; Barnes, S. I.; Bauer, S.-M.; Beckert, E.; Bittner, W.; Bredthauer, R.; Carroll, T. A.; Denker, C.; Dionies, F.; DiVarano, I.; Döscher, D.; Fechner, T.; Feuerstein, D.; Granzer, T.; Hahn, T.; Harnisch, G.; Hofmann, A.; Lesser, M.; Paschke, J.; Pankratow, S.; Plank, V.; Plüschke, D.; Popow, E.; Sablowski, D.

    2015-05-01

    PEPSI is the bench-mounted, two-arm, fibre-fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2×8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3k×10.3k CCDs with 9-μm pixels and peak quantum efficiencies of 94-96 % record a total of 92 échelle orders. We introduce a new variant of a wave-guide image slicer with 3, 5, and 7 slices and peak efficiencies between 92-96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH-grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15 % at 650 nm, and still 11 % and 10 % at 390 nm and 900 nm, respectively. In combination with the 110 m2 light-collecting capability of the LBT, we expect a limiting magnitude of ≈ 20th mag in V in the low-resolution mode. The R = 120 000 mode can also be used with two, dual-beam Stokes IQUV polarimeters. The 270 000-mode is made possible with the 7-slice image slicer and a 100-μm fibre through a projected sky aperture of 0.74 arcsec, comparable to the median seeing of the LBT site. The 43 000-mode with 12-pixel sampling per resolution element is our bad seeing or faint-object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry-Pérot étalon for ultra-precise radial velocities. CCD-image processing is performed with the dedicated data-reduction and analysis package PEPSI-S4S. Its full error propagation through all image-processing steps allows an adaptive selection of parameters by using statistical inferences and robust estimators. A solar feed makes use of PEPSI during day time and a 500-m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we

  15. High-resolution Observations of a Flux Rope with the Interface Region Imaging Spectrograph

    OpenAIRE

    Li, Ting; ZHANG, JUN

    2015-01-01

    We report the observations of a flux rope at transition region temperatures with the \\emph{Interface Region Imaging Spectrograph} (IRIS) on 30 August 2014. Initially, magnetic flux cancellation constantly took place and a filament was activated. Then the bright material from the filament moved southward and tracked out several fine structures. These fine structures were twisted and tangled with each other, and appeared as a small flux rope at 1330 {\\AA}, with a total twist of about 4$\\pi$. Af...

  16. E-ELT HIRES the high resolution spectrograph for the E-ELT: integrated data flow system

    Science.gov (United States)

    Cupani, Guido; Cristiani, Stefano; D'Odorico, Valentina; Pomante, Emanuele; Calderone, Giorgio; Di Marcantonio, Paolo; Marconi, Alessandro

    2016-07-01

    The current E-ELT instrumentation plan foresees a High Resolution Spectrograph conventionally indicated as HIRES whose Phase A study has started in 2016. An international consortium (stemmed from the existing "HIRES initiative") is conducting a preliminary study of a modular E-ELT instrument able to provide highresolution spectroscopy (R 100; 000) in a wide wavelength range (0.37-2.5 μm). For the aims of data treatment (which encompasses both the reduction and the analysis procedures) an end-to-end approach has been adopted, to directly extract scientific information from the observations with a coherent set of interactive, properly validated software modules. This approach is favoured by the specific science objectives of the instrument, which pose unprecedented requirements in terms of measurement precision and accuracy. In this paper we present the architecture envisioned for the HIRES science software, building on the lessons learned in the development of the data analysis software for the ESPRESSO ultra-stable spectrograph for the VLT.

  17. Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550 to 890 nm.

    Science.gov (United States)

    McCracken, Richard A; Depagne, Éric; Kuhn, Rudolf B; Erasmus, Nicolas; Crause, Lisa A; Reid, Derryck T

    2017-03-20

    A visible astrocomb spanning 555-890 nm has been implemented on the 10-m Southern African Large Telescope, delivering complete calibration of one channel of its high-resolution spectrograph and an accurate determination of its resolving power. A novel co-coupling method allowed simultaneous observation of on-sky, Th-Ar lamp and astrocomb channels, reducing the wavelength calibration uncertainty by a factor of two compared to that obtained using only Th-Ar lines. The excellent passive stability of the master frequency comb laser enabled broadband astrocomb generation without the need for carrier-envelope offset frequency locking, and an atomically referenced narrow linewidth diode laser provided an absolute fiducial marker for wavelength calibration. The simple astrocomb architecture enabled routine operation by non-specialists in an actual telescope environment. On-sky spectroscopy results are presented with direct calibration achieved entirely using the astrocomb.

  18. On-sky Doppler performance of TOU optical very high-resolution spectrograph for detecting low-mass planets

    Science.gov (United States)

    Ge, Jian; Ma, Bo; Sithajan, Sirinrat; Singer, Michael A.; Powell, Scott; Varosi, Frank; Zhao, Bo; Schofield, Sidney; Liu, Jian; Grieves, Nolan; Cassette, Anthony; Avner, Louis; Jakeman, Hali; Muterspaugh, Matthew; Williamson, Michael; Barnes, Rory

    2016-08-01

    The TOU robotic, compact very high resolution optical spectrograph (R=100,000, 0.38-0.9 microns) has been fully characterized at the 2 meter Automatic Spectroscopy Telescope (AST) at Fairborn Observatory in Arizona during its pilot survey of 12 bright FGK dwarfs in 2015. This instrument has delivered sub m/s Doppler precision for bright reference stars (e.g., 0.7 m/s for Tau Ceti over 60 days) with 5-30 min exposures and 0.7 m/s long-term instrument stability, which is the best performance among all of the known Doppler spectrographs to our knowledge. This performance was achieved by maintaining the instrument in a very high vacuum of 1 micron torr and about 0.5 mK (RMS) long-term temperature stability through an innovative close-loop instrument bench temperature control. It has discovered a 21 Earth-mass planet (P=43days) around a bright K dwarf and confirmed three super-Earth planetary systems, HD 1461, 190360 and HD 219314. This instrument will be used to conduct the Dharma Planet Survey (DPS) in 2016-2019 to monitor 100 nearby very bright FGK dwarfs (most of them brighter than V=8) at the dedicated 50-inch Robotic Telescope on Mt. Lemmon. With very high RV precision and high cadence ( 100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The survey also provides the largest single homogenous high precision RV sample of nearby stars for studying low mass planet populations and constraining various planet formation models. Instrument on-sky performance is summarized.

  19. High resolution telescope and spectrograph observations of solar fine structure in the 1600 A region

    Science.gov (United States)

    Cook, J. W.; Brueckner, G. E.; Bartoe, J.-D. F.

    1983-01-01

    High spatial resolution spectroheliograms of the 1600 A region obtained during the HRTS rocket flight of 1978 February 13 are presented. The morphology, fine structure, and temporal behavior of emission bright points (BPs) in active and quiet regions are illustrated. In quiet regions, network elements persist as morphological units, although individual BPs may vary in intensity while usually lasting the flight duration. In cell centers, the BPs are highly variable on a 1 minute time scale. BPs in plages remain more constant in brightness over the observing sequence. BPs cover less than 4 percent of the quiet surface. The lifetime and degree of packing of BPs vary with the local strength of the magnetic field.

  20. Commissioning FEROS, the new high-resolution spectrograph at La-Silla.

    Science.gov (United States)

    Kaufer, A.; Stahl, O.; Tubbesing, S.; Nørregaard, P.; Avila, G.; Francois, P.; Pasquini, L.; Pizzella, A.

    1999-03-01

    On November 30, 1998, the second commissioning phase of the new Fiberfed Extended Range Optical Spectrograph (FEROS) was completed at the ESO 1.52-m telescope at La Silla. The instrument had been installed by a small team from the Heidelberg, Copenhagen and La Silla observatories starting in mid-September - just two years after the contract signature between the FEROS consortium and ESO. FEROS saw its first stellar light at the end of the installation phase on October 6th. An overview of the design and of the expected capabilities of the FEROS instrument has been presented in a previous paper [Kaufer et al., 1997, The Messenger 89, 1]; a more detailed description of the opto-mechanical design is found in [Kaufer & Pasquini, 1998, Proc, SPIE Vol. 3355, p. 844]. In the present article, the major technical results from the two commissioning phases which followed the first light event are reported.

  1. CHIRON TOOLS: Integrated Target Submission, Scheduling and Observing Systems for a High Resolution Fiber Fed Spectrograph

    CERN Document Server

    Brewer, John M; Fischer, Debra A

    2013-01-01

    The CHIRON spectrometer is a new high-resolution, fiber-fed instrument on the 1.5 meter telescope at Cerro Tololo Inter-America Observatory (CTIO). To optimize use of the instrument and limited human resources, we have designed an integrated set of web applications allowing target submission, observing script planning, nightly script execution and logging, and access to reduced data by multiple users. The unified and easy to use interface has dramatically reduced the time needed to submit and schedule observations and improved the efficiency and accuracy of nightly operations. We present our experience to help astronomers and project managers who need to plan for the scope of effort required to commission a queue-scheduled facility instrument.

  2. High-Resolution Observations of a Flux Rope with the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Li, Ting; Zhang, Jun

    2015-10-01

    We report the observations of a flux rope at transition region temperatures with the Interface Region Imaging Spectrograph (IRIS) on 30 August 2014. Initially, magnetic flux cancellation continually took place and a filament was activated. Then the bright material from the filament moved southward and tracked out several fine structures. These fine structures were twisted and tangled with each other, and appeared as a small flux rope at 1330 Å, with a total twist of about 4π. Afterwards, the flux rope underwent a counterclockwise (viewed top-down) unwinding motion around its axis. Spectral observations of C ii 1335.71 Å at the southern leg of the flux rope revealed Doppler redshifts of 6 - 24 km s^{-1} at the western side of the axis, which is consistent with the counterclockwise rotation motion. We suggest that the magnetic flux cancellation initiates reconnection and activation of the flux rope. The stored twist and magnetic helicity of the flux rope are transported into the upper atmosphere by the unwinding motion in the late stage. The small-scale flux rope (width of 8.3^'') had a cylindrical shape with helical field lines, similar to the morphology of the large-scale CME core (width of 1.54 {R}_{⊙}) on 2 June 1998. This similarity shows the presence of flux ropes of different scales on the Sun.

  3. High-resolution Observations of a Flux Rope with the Interface Region Imaging Spectrograph

    CERN Document Server

    Li, Ting

    2015-01-01

    We report the observations of a flux rope at transition region temperatures with the \\emph{Interface Region Imaging Spectrograph} (IRIS) on 30 August 2014. Initially, magnetic flux cancellation constantly took place and a filament was activated. Then the bright material from the filament moved southward and tracked out several fine structures. These fine structures were twisted and tangled with each other, and appeared as a small flux rope at 1330 {\\AA}, with a total twist of about 4$\\pi$. Afterwards, the flux rope underwent a counter-clockwise (viewed top-down) unwinding motion around its axis. Spectral observations of C {\\sc ii} 1335.71 {\\AA} at the southern leg of the flux rope showed that Doppler redshifts of 6$-$24 km s$^{-1}$ appeared at the western side of the axis, which is consistent with the counter-clockwise rotation motion. We suggest that the magnetic flux cancellation initiates reconnection and some activation of the flux rope. The stored twist and magnetic helicity of the flux rope are transpor...

  4. CARMENES: Calar Alto high-resolution search for M dwarfs with exo-earths with a near-infrared Echelle spectrograph

    Science.gov (United States)

    Quirrenbach, A.; Amado, P. J.; Mandel, H.; Caballero, J. A.; Mundt, R.; Ribas, I.; Reiners, A.; Abril, M.; Aceituno, J.; Afonso, C.; Barrado y Navascues, D.; Bean, J. L.; Béjar, V. J. S.; Becerril, S.; Böhm, A.; Cárdenas, M. C.; Claret, A.; Colomé, J.; Costillo, L. P.; Dreizler, S.; Fernández, M.; Francisco, X.; Galadí, D.; Garrido, R.; González Hernández, J. I.; Guàrdia, J.; Guenther, E. W.; Gutiérrez-Soto, F.; Joergens, V.; Hatzes, A. P.; Helmling, J.; Henning, T.; Herrero, E.; Kürster, M.; Laun, W.; Lenzen, R.; Mall, U.; Martin, E. L.; Martín-Ruiz, S.; Mirabet, E.; Montes, D.; Morales, J. C.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Rabaza, O.; Ramón, A.; Rebolo, R.; Reffert, S.; Rodler, F.; Rodríguez, E.; Rodríguez Trinidad, A.; Rohloff, R. R.; Sánchez Carrasco, M. A.; Schmidt, C.; Seifert, W.; Setiawan, J.; Solano, E.; Stahl, O.; Storz, C.; Suárez, J. C.; Thiele, U.; Wagner, K.; Wiedemann, G.; Zapatero Osorio, M. R.; del Burgo, C.; Sánchez-Blanco, E.; Xu, W.

    2010-07-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument to be built for the 3.5m telescope at the Calar Alto Observatory by a consortium of Spanish and German institutions. Conducting a five-year exoplanet survey targeting ~ 300 M stars with the completed instrument is an integral part of the project. The CARMENES instrument consists of two separate spectrographs covering the wavelength range from 0.52 to 1.7 μm at a spectral resolution of R = 85, 000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in a temperature-stabilized environment in vacuum tanks, to enable a 1m/s radial velocity precision employing a simultaneous ThAr calibration.

  5. New high spectral resolution spectrograph and mid-IR camera for the NASA Infrared Telescope Facility

    Science.gov (United States)

    Tokunaga, Alan T.; Bus, Schelte J.; Connelley, Michael; Rayner, John

    2016-10-01

    The NASA Infrared Telescope Facility (IRTF) is a 3.0 m infrared telescope located at an altitude of 4.2 km near the summit of Mauna Kea on the island of Hawaii. The IRTF was established by NASA to support planetary science missions. We show new observational capabilities resulting from the completion of iSHELL, a 1-5 μm echelle spectrograph with resolving power of 70,000 using a 0.375 arcsec slit. This instrument will be commissioned starting in August 2016. The spectral grasp of iSHELL is enormous due to the cross-dispersed design and use of a 2Kx2K HgCdTe array. Raw fits files will be publicly archived, allowing for more effective use of the large amount of spectral data that will be collected. The preliminary observing manual for iSHELL, containing the instrument description, observing procedures and estimates of sensitivity can be downloaded at http://irtfweb.ifa.hawaii.edu/~ishell/iSHELL_observing_manual.pdf. This manual and instrument description papers can be downloaded at http://bit.ly/28NFiMj. We are also working to restore to service our 8-25 μm camera, MIRSI. It will be upgraded with a closed cycle cooler that will eliminate the need for liquid helium and allow continuous use of MIRSI on the telescope. This will enable a wider range of Solar System studies at mid-IR wavelengths, with particular focus on thermal observations of NEOs. The MIRSI upgrade includes plans to integrate a visible CCD camera that will provide simultaneous imaging and guiding capabilities. This visible imager will utilize similar hardware and software as the MORIS system on SpeX. The MIRSI upgrade is being done in collaboration with David Trilling (NAU) and Joseph Hora (CfA). For further information on the IRTF and its instruments including visitor instruments, see: http:// irtfweb.ifa.hawaii.edu/. We gratefully acknowledge the support of NASA contract NNH14CK55B, NASA Science Mission Directorate, and NASA grant NNX15AF81G (Trilling, Hora) for the upgrade of MIRSI.

  6. 4MOST low-resolution spectrograph: design and performances

    Science.gov (United States)

    Laurent, F.; Kosmalski, Johan; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Migniau, Jean-Emmanuel; Pécontal, Arlette; Richard, Johan; Barden, Samuel C.; Bellido-Tirado, Olga; Frey, Steffen; Saviauk, Allar

    2016-08-01

    4MOST, the 4m Multi Object Spectroscopic Telescope, is an upcoming optical, fibre-fed, MOS facility for the VISTA telescope at ESO's Paranal Observatory in Chile. Its main science drivers are in the fields of galactic archeology, highenergy physics, galaxy evolution and cosmology. The preliminary design of 4MOST features 2436 fibres split into lowresolution (1624 fibres, 370-950 nm, R > 4000) and high-resolution spectrographs (812 fibres, three arms, 44-69 nm coverage each, R >18000) with a fibre positioner and covering an hexagonal field of view of 4.1 deg2. The 4MOST consortium consists of several institutes in Europe and Australia under leadership of the Leibniz-Institut für Astrophysik, Potsdam (AIP). 4MOST is currently in its Preliminary Design Phase with an expected start of science operations in 2021. Two third of fibres go to two Low Resolution Spectrographs with three channels per spectrograph. Each low resolution spectrograph is composed of 812 scientific and 10 calibration fibres using 85μm core fibres at f/3, a 200mm beam for an off-axis collimator associated to its Schmidt corrector, 3 arms with f/1.73 cameras and standard 6k x 6k 15μm pixel detectors. CRAL has the responsibility of the Low Resolution Spectrographs. In this paper, the optical design and performances of 4MOST Low Resolution Spectrograph designed for 4MOST PDR in June, 2016 will be presented. Special emphasis will be put on the Low Resolution Spectrograph system budget and performance analysis.

  7. A robotic, compact, and extremely high resolution optical spectrograph for a close-in super-Earth survey

    Science.gov (United States)

    Ge, Jian; Powell, Scott; Zhao, Bo; Varosi, Frank; Ma, Bo; Sithajan, Sirinrat; Liu, Jian; Li, Rui; Grieves, Nolan; Schofield, Sidney; Avner, Louis; Jakeman, Hali; Yoder, William A.; Gittelmacher, Jakob A.; Singer, Michael A.; Muterspaugh, Matthew; Williamson, Michael; Maxwell, J. E.

    2014-08-01

    One of the most astonishing results from the HARPS and Kepler planet surveys is the recent discovery of close-in super-Earths orbiting more than half of FGKM dwarfs. This new population of exoplanets represents the most dominant class of planetary systems known to date, is totally unpredicted by the classical core-accretion disk planet formation model. High cadence and high precision Doppler spectroscopy is the key to characterize properties of this new population and constrain planet formation models. A new robotic, compact high resolution optical spectrograph, called TOU (formerly called EXPERT-III), was commissioned at the Automatic Spectroscopic Telescope (AST) at Fairborn Observatory in Arizona in July 2013 and has produced a spectral resolution of about 100,000 and simultaneous wavelength coverage of 0.38-0.9 μm with a 4kx4k back-illuminated Fairchild CCD detector. The instrument holds a very high vacuum of 1 micro torr and about 2 mK temperature stability over a month. The early on-sky RV measurements show that this instrument is approaching a Doppler precision of 1 m/s (rms) for bright reference stars (such as Tau Ceti) with 5 min exposures and better than 3 m/s (P-V, RMS~1 m/s) daily RV stability before calibration exposures are applied. A pilot survey of 20 Vsuper-Earth systems and known RV stable stars, is being launched and every star will be observed ~100 times over ~300 days time window between this summer and next spring, following up with a full survey of ~150 V< 10 FGKM dwarfs in 2015-2017.

  8. Development of illumination optics in optical scheme of high-resolution fiber-fed echelle-spectrograph for the Big Telescope Alt-azimuth (BTA)

    Science.gov (United States)

    Kukushkin, D. E.; Sazonenko, D. A.; Bakholdin, A. V.; Valyavin, G. G.

    2016-08-01

    The report describes the development and optimization of optical scheme of the illumination optics of the entrance slit for the high-resolution fiber-fed echelle-spectrograph. The optical system of the illuminator provides the necessary agreement of the numerical apertures of the fiber and spectrograph, as well as it allows to install the necessary equipment to obtain the required structure of the image. As a result of the designing two components illumination system was obtained, which has a good transmission in a specified spectral range and low cost. This research provides a good instrument for performing modern researches for the astronomy.

  9. A high spectral resolution spectrograph with fiber input for the Big Azimuthal Telescope of SAO RAS. Improvement of the spectral module

    Science.gov (United States)

    Vasilyev, V. N.; Sazonenko, D. A.; Kukushkin, D. E.; Bakholdin, A. V.; Valyavin, G. G.; Bychkov, V. D.; Galazutdinov, G. A.; Valeev, A. F.; Yushkin, M. V.

    2016-09-01

    The paper presents a critical analysis and modernization of separate elements of the optical layout of a high-resolution spectrograph with fiber input for the Big Azimuthal Telescope of the Special Astrophysical Observatory. The modernization is directed mainly at enhancing the light efficiency and making it possible to produce the spectrograph using domestic manufacturers. Renovated versions of the cross-dispersion grism, the projection camera, and the overall characteristics of the system are presented. The resulting efficiency of the whole instrument is given.

  10. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph

    Science.gov (United States)

    Wilson, John C.; Hearty, Fred; Skrutskie, Michael F.; Majewski, Steven; Schiavon, Ricardo; Eisenstein, Daniel; Gunn, Jim; Blank, Basil; Henderson, Chuck; Smee, Stephen; Barkhouser, Robert; Harding, Al; Fitzgerald, Greg; Stolberg, Todd; Arns, Jim; Nelson, Matt; Brunner, Sophia; Burton, Adam; Walker, Eric; Lam, Charles; Maseman, Paul; Barr, Jim; Leger, French; Carey, Larry; MacDonald, Nick; Horne, Todd; Young, Erick; Rieke, George; Rieke, Marcia; O'Brien, Tom; Hope, Steve; Krakula, John; Crane, Jeff; Zhao, Bo; Carr, Mike; Harrison, Craig; Stoll, Robert; Vernieri, Mary A.; Holtzman, Jon; Shetrone, Matt; Allende-Prieto, Carlos; Johnson, Jennifer; Frinchaboy, Peter; Zasowski, Gail; Bizyaev, Dmitry; Gillespie, Bruce; Weinberg, David

    2010-07-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) will use a dedicated 300-fiber, narrow-band (1.5-1.7 micron), high resolution (R~30,000), near-infrared spectrograph to survey approximately 100,000 giant stars across the Milky Way. This survey, conducted as part of the Sloan Digital Sky Survey III (SDSS III), will revolutionize our understanding of kinematical and chemical enrichment histories of all Galactic stellar populations. The instrument, currently in fabrication, will be housed in a separate building adjacent to the 2.5 m SDSS telescope and fed light via approximately 45-meter fiber runs from the telescope. The instrument design includes numerous technological challenges and innovations including a gang connector that allows simultaneous connection of all fibers with a single plug to a telescope cartridge that positions the fibers on the sky, numerous places in the fiber train in which focal ratio degradation must be minimized, a large (290 mm x 475 mm elliptically-shaped recorded area) mosaic-VPH, an f/1.4 sixelement refractive camera featuring silicon and fused silica elements with diameters as large as 393 mm, three near-within a custom, LN2-cooled, stainless steel vacuum cryostat with dimensions 1.4 m x 2.3 m x 1.3 m.

  11. The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results

    CERN Document Server

    Hoadley, Keri; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob

    2016-01-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado High-resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power $>$ 100,000 over the band pass 1000 $-$ 1600 {\\AA}. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, ...

  12. Background and Scattered-Light Subtraction in the High-Resolution Echelle Modes of the Space Telescope Imaging Spectrograph

    Science.gov (United States)

    Howk, J. Christopher; Sembach, Kenneth R.

    2000-05-01

    We present a simple, effective approach for estimating the on-order backgrounds of spectra taken with the highest resolution modes of the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope. Our scheme for determining the on-order background spectrum for STIS E140H and E230H observations uses moderate-order polynomial fits to the interorder scattered light visible in the two-dimensional STIS MAMA images. We present a suite of high-resolution STIS spectra to demonstrate that our background-subtraction routine produces the correct overall zero point as judged by the small residual flux levels in the centers of strongly saturated interstellar absorption lines. Although there are multiple sources of background light in STIS echelle mode data, this simple approach works very well for wavelengths longward of Lyα (λ>~1215 Å). At shorter wavelengths, the smaller order separation and generally lower signal-to-noise ratios of the data can reduce the effectiveness of our background estimation procedure. Slight artifacts in the background-subtracted spectrum can be seen in some cases, particularly at wavelengths of B2B and the GHRS first-order G160M observations of the early-type star HD 218915. We find no significant differences between the GHRS data and the STIS data reduced with our method in either case. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  13. Development of Fiber Fabry-Perot Interferometers as Stable Near-infrared Calibration Sources for High Resolution Spectrographs

    CERN Document Server

    Halverson, Samuel; Ramsey, Lawrence; Hearty, Fred; Wilson, John; Holtzman, Jon; Redman, Stephen; Nave, Gillian; Nidever, David; Nelson, Matt; Venditti, Nick; Bizyaev, Dmitry; Fleming, Scott

    2014-01-01

    We discuss the ongoing development of single-mode fiber Fabry-Perot (FFP) Interferometers as precise astro-photonic calibration sources for high precision radial velocity (RV) spectrographs. FFPs are simple, inexpensive, monolithic units that can yield a stable and repeatable output spectrum. An FFP is a unique alternative to a traditional etalon, as the interferometric cavity is made of single-mode fiber rather than an air-gap spacer. This design allows for excellent collimation, high spectral finesse, rigid mechanical stability, insensitivity to vibrations, and no need for vacuum operation. The device we have tested is a commercially available product from Micron Optics. Our development path is targeted towards a calibration source for the Habitable-Zone Planet Finder (HPF), a near-infrared spectrograph designed to detect terrestrial-mass planets around low-mass stars, but this reference could also be used in many existing and planned fiber-fed spectrographs as we illustrate using the Apache Point Observato...

  14. CARMENES: Calar Alto high-Resolution search for M dwarfs with Exo-earths with a Near-infrared Echelle Spectrograph

    CERN Document Server

    Quirrenbach, A; Mandel, H; Caballero, J A; Ribas, I; Reiners, A; Mundt, R; Abril, M; Afonso, C; Bean, J L; Bejar, V J S; Becerril, S; Boehm, A; Cardenas, C; Claret, A; Colome, J; Costillo, L P; Dreizler, S; Fernandez, M; Francisco, X; Garrido, R; Hernandez, J I Gonzalez; Guenther, E W; Gutierrez-Soto, J; Joergens, V; Hatzes, A P; Henning, T; Herrero, E; Kurster, M; Laun, W; Lenzen, R; Mall, U; Martin, E L; Martin-Ruiz, S; Montes, D; Morales, J C; Munoz, R Morales; Moya, A; Naranjo, V; Rabaza, O; Ramon, A; Rebolo, R; Reffert, S; Rodler, F; Rodriguez, E; Trinidad, A Rodriguez; Rohloff, R -R; Carrasco, M A Sanchez; Schmidt, C; Seifert, W; Setiawan, J; Stahl, O; Suarez, J C; Wiedemann, G; del Burgo, C; Galadi, D; Sanchez-Blanco, E; Xu, W

    2009-01-01

    CARMENES, Calar Alto high-Resolution search for M dwarfs with Exo-earths with a Near-infrared Echelle Spectrograph, is a study for a next-generation instrument for the 3.5m Calar Alto Telescope to be designed, built, integrated, and operated by a consortium of nine German and Spanish institutions. Our main objective is finding habitable exoplanets around M dwarfs, which will be achieved by radial velocity measurements on the m/s level in the near-infrared, where low-mass stars emit the bulk of their radiation.

  15. The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results

    Science.gov (United States)

    Hoadley, Keri; France, Kevin; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob

    2016-07-01

    In this proceeding, we describe the scientific motivation and technical development of the Colorado High- resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power > 100,000 over the band pass 1000 - 1600 Å. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, "low" line density, powered optic with a toroidal surface curvature. Both gratings were coated with aluminum and lithium fluoride (Al+LiF) at Goddard Space Flight Center (GSFC). Results from final efficiency and reflectivity measurements for the optical components of CHESS-2 are presented. CHESS-2 utilizes a 40mm-diameter cross-strip anode readout microchannel plate (MCP) detector fabricated by Sensor Sciences, Inc., to achieve high spatial resolution with high count rate capabilities (global rates 1 MHz). We present pre-flight laboratory spectra and calibration results. CHESS-2 launched on 21 February 2016 aboard NASA/CU sounding rocket mission 36.297 UG. We observed the intervening ISM material along the sightline to epsilon Per and present initial characterization of the column densities, temperature, and kinematics of atomic and molecular species in the observation.

  16. KIDSpec: an MKID based medium resolution integral field spectrograph

    Science.gov (United States)

    O'Brien, Kieran; Thatte, Niranjan; Mazin, Benjamin

    2014-07-01

    We present a novel concept for a highly sensitive, medium spectral resolution optical through near-IR spectrograph. KIDSpec, the Kinetic Inductance Detector Spectrograph, uses the intrinsic energy resolving capability of an array of optical/IR-sensitive MKIDs to distinguish multiple orders from a low line-density (echelle) grating. MKID arrays have a wide bandpass (0.1-2.5um) and good quantum efficiency, making them strong candidates for replacing CCDs in many astronomical instruments. By acting as an `order resolver', the MKID array replaces the cross-disperser in an echelle spectrograph. This greatly simplifies the optical layout of the spectrograph and enables longer slits than are possible with cross-dispersed instruments. KIDSpec would have similar capabilities to ESO's X-shooter instrument. It would provide an R=4000-10,000 spectrum covering the entire optical and near-IR spectral range. In addition to a `long-slit' mode, the IFU would provide a small (~50 spaxel) field-of-view for spatially resolved sources. In addition, the photon-counting operation of MKIDs and their photon-energy resolving ability enable a read-noise free spectrum with perfect cosmic ray removal. The spectral resolution would be sufficient to remove the bright night-sky lines without the additional pixel noise, making the instrument more sensitive than an equivalent semiconductor-based instrument. KIDSpec would enhance many existing high-profile science cases, including transient (GRB, SNe, etc.) follow-up, redshift determination of faint objects and transit spectroscopy of exoplanets. In addition it will enable unique science cases, such as dynamical mass estimates of the compact objects in ultra-compact binaries.

  17. High-resolution, flat-field, plane-grating, f/10 spectrograph with off-axis parabolic mirrors.

    Science.gov (United States)

    Schieffer, Stephanie L; Rimington, Nathan W; Nayyar, Ved P; Schroeder, W Andreas; Longworth, James W

    2007-06-01

    A high-resolution, flat-field, plane-grating, f/10 spectrometer based on the novel design proposed by Gil and Simon [Appl. Opt. 22, 152 (1983)] is demonstrated. The spectrometer design employs off-axis parabolic collimation and camera mirrors in a configuration that eliminates spherical aberrations and minimizes astigmatism, coma, and field curvature in the image plane. In accordance with theoretical analysis, the performance of this spectrometer achieves a high spatial resolution over the large detection area, which is shown to be limited only by the quality of its optics and their proper alignment within the spatial resolution of a 13 microm x 13 microm pixelated CCD detector. With a 1500 lines/mm grating in first order, the measured spectral resolving power of lambda/Dlambda = 2.5(+/-0.5) x 10(4) allows the clear resolution of the violet Ar(I) doublet at 419.07 and 419.10 nm.

  18. X-shooter: UV-to-IR intermediate-resolution high-efficiency spectrograph for the ESO VLT

    NARCIS (Netherlands)

    D'Odorico, S.; Andersen, M.I.; Conconi, P.; De Caprio, V.; Delabre, B.; Di Marcantonio, P.; Dekker, H.; Downing, M.D.; Finger, G.; Groot, P.; Hanenburg, H.H.; Hammer, F.; Horville, D.; Hjorth, J.; Kaper, L.; Klougart, J.; Kjaergaard-Rasmussen, P.; Lizon, J.-L.; Marteaud, M.; Mazzoleni, R.; Michaelsen, N.; Pallavicini, R.; Rigal, F.; Santin, P.; Norup Soerensen, A.; Spano, P.; Venema, L.; Vola, P.; Zerbi, F.M.; Hasinger, G.; Turner, M.J.L.

    2004-01-01

    X-shooter is a single target spectrograph for the Cassegrain focus of one of the VLT UTs. It covers in a single exposure the spectral range from the UV to the H band with a possible extension into part of the K band. It is designed to maximize the sensitivity in this spectral range through the

  19. Optical design of a multi-resolution, single shot spectrograph

    CERN Document Server

    Henault, Francois

    2016-01-01

    Multi-object or integral field spectrographs are recognized techniques for achieving simultaneous spectroscopic observations of different or extended sky objects with a high multiplex factor. In this communication is described a complementary approach for realizing similar measurements under different spectral resolutions at the same time. We describe the basic principle of this new type of spectrometer, that is based on the utilization of an optical pupil slicer. An optical design inspired from an already studied instrument is then presented and commented for the sake of illustration. Technical issues about the pupil slicer and diffractive components are also discussed. We finally conclude on the potential advantages and drawbacks of the proposed system.

  20. CHIRON TOOLS: Integrated Target Submission, Scheduling and Observing Systems for a High-Resolution Fiber-Fed Spectrograph

    Science.gov (United States)

    Brewer, John M.; Giguere, Matthew; Fischer, Debra A.

    2014-01-01

    The CHIRON spectrometer is a new high-resolution, fiber-fed instrument on the 1.5 m telescope at Cerro Tololo Inter-America Observatory (CTIO). To optimize use of the instrument and limited human resources, we have designed an integrated set of Web applications allowing target submission, observing script planning, nightly script execution and logging, and access to reduced data by multiple users. The unified and easy-to-use interface has dramatically reduced the time needed to submit and schedule observations and improved the efficiency and accuracy of nightly operations. We present our experience to help astronomers and project managers who need to plan for the scope of effort required to commission a queue-scheduled facility instrument.

  1. High-resolution Observations of the Shock Wave Behavior for Sunspot Oscillations with the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Tian, H.; DeLuca, E.; Reeves, K. K.; McKillop, S.; De Pontieu, B.; Martínez-Sykora, J.; Carlsson, M.; Hansteen, V.; Kleint, L.; Cheung, M.; Golub, L.; Saar, S.; Testa, P.; Weber, M.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Tarbell, T. D.; Wuelser, J. P.; Kankelborg, C.; Jaeggli, S.; McIntosh, S. W.

    2014-05-01

    We present the first results of sunspot oscillations from observations by the Interface Region Imaging Spectrograph. The strongly nonlinear oscillation is identified in both the slit-jaw images and the spectra of several emission lines formed in the transition region and chromosphere. We first apply a single Gaussian fit to the profiles of the Mg II 2796.35 Å, C II 1335.71 Å, and Si IV 1393.76 Å lines in the sunspot. The intensity change is ~30%. The Doppler shift oscillation reveals a sawtooth pattern with an amplitude of ~10 km s-1 in Si IV. The Si IV oscillation lags those of C II and Mg II by ~3 and ~12 s, respectively. The line width suddenly increases as the Doppler shift changes from redshift to blueshift. However, we demonstrate that this increase is caused by the superposition of two emission components. We then perform detailed analysis of the line profiles at a few selected locations on the slit. The temporal evolution of the line core is dominated by the following behavior: a rapid excursion to the blue side, accompanied by an intensity increase, followed by a linear decrease of the velocity to the red side. The maximum intensity slightly lags the maximum blueshift in Si IV, whereas the intensity enhancement slightly precedes the maximum blueshift in Mg II. We find a positive correlation between the maximum velocity and deceleration, a result that is consistent with numerical simulations of upward propagating magnetoacoustic shock waves.

  2. Probing seismic solar analogues through observations with the NASA Kepler space telescope and HERMES high-resolution spectrograph

    CERN Document Server

    Beck, P G; García, R A; Nascimento,, J do; Duarte, T S S; Mathis, S; Regulo, C; Ballot, J; Egeland, R; Castro, M; Pérez-Herńandez, F; Creevey, O; Tkachenko, A; van Reeth, T; Bigot, L; Corsaro, E; Metcalfe, T; Mathur, S; Palle, P L; Prieto, C Allende; Montes, D; Johnston, C; Andersen, M F; van Winckel, H

    2016-01-01

    Stars similar to the Sun, known as solar analogues, provide an excellent opportunity to study the preceding and following evolutionary phases of our host star. The unprecedented quality of photometric data collected by the \\Kepler NASA mission allows us to characterise solar-like stars through asteroseismology and study diagnostics of stellar evolution, such as variation of magnetic activity, rotation and the surface lithium abundance. In this project, presented in a series of papers by Salabert et al. (2016a,b) and Beck et al (2016a,b), we investigate the link between stellar activity, rotation, lithium abundance and oscillations in a group of 18 solar-analogue stars through space photometry, obtained with the NASA Kepler space telescope and from currently 50+ hours of ground-based, high-resolution spectroscopy with the Hermes instrument. In these proceedings, we first discuss the selection of the stars in the sample, observations and calibrations and then summarise the main results of the project. By invest...

  3. High-resolution observations of the shock wave behavior for sunspot oscillations with the interface region imaging spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Tian, H.; DeLuca, E.; Reeves, K. K.; McKillop, S.; Golub, L.; Saar, S.; Testa, P.; Weber, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); De Pontieu, B.; Martínez-Sykora, J.; Kleint, L.; Cheung, M.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Tarbell, T. D.; Wuelser, J. P. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. ADBS, Bldg. 252, Palo Alto, CA 94304 (United States); Carlsson, M.; Hansteen, V., E-mail: hui.tian@cfa.harvard.edu [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); and others

    2014-05-10

    We present the first results of sunspot oscillations from observations by the Interface Region Imaging Spectrograph. The strongly nonlinear oscillation is identified in both the slit-jaw images and the spectra of several emission lines formed in the transition region and chromosphere. We first apply a single Gaussian fit to the profiles of the Mg II 2796.35 Å, C II 1335.71 Å, and Si IV 1393.76 Å lines in the sunspot. The intensity change is ∼30%. The Doppler shift oscillation reveals a sawtooth pattern with an amplitude of ∼10 km s{sup –1} in Si IV. The Si IV oscillation lags those of C II and Mg II by ∼6 and ∼25 s, respectively. The line width suddenly increases as the Doppler shift changes from redshift to blueshift. However, we demonstrate that this increase is caused by the superposition of two emission components. We then perform detailed analysis of the line profiles at a few selected locations on the slit. The temporal evolution of the line core is dominated by the following behavior: a rapid excursion to the blue side, accompanied by an intensity increase, followed by a linear decrease of the velocity to the red side. The maximum intensity slightly lags the maximum blueshift in Si IV, whereas the intensity enhancement slightly precedes the maximum blueshift in Mg II. We find a positive correlation between the maximum velocity and deceleration, a result that is consistent with numerical simulations of upward propagating magnetoacoustic shock waves.

  4. Probing Seismic Solar Analogues Through Observations With The NASA Kepler Space Telescope and Hermes High-Resolution Spectrograph

    Science.gov (United States)

    Beck, P. G.; Salabert, D.; Garcia, R. A.; do Nascimento, J., Jr.; Duarte, T. S. S.; Mathis, S.; Regulo, C.; Ballot, J.; Egeland, R.; Castro, M.; Pérez-Herńandez, F.,; Creevey, O.; Tkachenko, A.; van Reeth, T.; Bigot, L.; Corsaro, E.; Metcalfe, T.; Mathur, S.; Palle, P. L.; Allende Prieto, C.; Montes, D.; Johnston, C.; Andersen, M. F.; van Winckel, H.

    2016-11-01

    Stars similar to the Sun, known as solar analogues, provide an excellent opportunity to study the preceding and following evolutionary phases of our host star. The unprecedented quality of photometric data collected by the Kepler NASA mission allows us to characterise solar-like stars through asteroseismology and study diagnostics of stellar evolution, such as variation of magnetic activity, rotation and the surface lithium abundance. In this project, presented in a series of papers by Salabert et al (2016ab) and Beck et al. (2016ab), we investigate the link between stellar activity, rotation, lithium abundance and oscillations in a group of 18 solar-analogue stars through space photometry, obtained with the NASA Kepler space telescope and from currently 50+ hours of ground-based, high-resolution spectroscopy with the Hermes instrument. In these proceedings, we first discuss the selection of the stars in the sample, observations and calibrations and then summarise the main results of the project. By investigating the chromospheric and photospheric activity of the solar analogues in this sample, it was shown that for a large fraction of these stars the measured activity levels are compatible to levels of the 11-year solar activity cycle 23. A clear correlation between the lithium abundance and surface rotation was found for rotation periods shorter than the solar value. Comparing the lithium abundance measured in the solar analogues to evolutionary models with the Toulouse-Geneva Evolutionary Code (TGEC), we found that the solar models calibrated to the Sun also correctly describe the set of solar/stellar analogs showing that they share the same internal mixing physics. Finally, the star KIC3241581 and KIC10644353 are discussed in more detail.

  5. 高光谱分辨率紫外平场光谱仪的研制%Development of a High Spectral Resolution UV Flat-Field Spectrograph

    Institute of Scientific and Technical Information of China (English)

    杜亮亮; 杜学维; 李朝阳; 安宁; 王秋平

    2015-01-01

    .Moreover ,the mounting parameters are optimized within the whole using wavelength range of the grating .However ,in most circumstances only part of the wavelength range is used .Therefore ,the mounting parameters are not optimized for the needed wavelength range .Under this condition ,in this article we developed a method based on the focusing theory of the flat‐field grating and the mounting parameters the manufacture provided to deduce the line spacing parameters of the grating .With these parameters ,we can optimize the detector position according to the wavelength range we need and ray tracing can be done to test the optical system .In this article we developed a high spectral resolution ultraviolet spectrograph , covering a wavelength range of 230~280 nm .The grating used in this spectrograph has a central groove density of 1 200 lines・mm-1 and a designed wavelength range of 170~500 nm .We deduced the line spacing parameters of the grating and optimized the detector mounting parameters .Hollow cathode lamps of different elements were used to calibrate the spectrograph and test the spectral resolution of it .Wavelength calibration of the spectrograph has been done with the parameter fitting method ,and the calibration accuracy is better than 0.01 nm .Results show the spectral resolution of the spectral graph is about 0.08 nm at 280. 20 nm .

  6. Compact low resolution spectrograph, an imaging and long slit spectrograph for robotic telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Rabaza, O., E-mail: ovidio@ugr.es [Department of Civil Engineering, University of Granada, Severo Ochoa Str. s/n, 18071 Granada (Spain); Institute of Astrophysics of Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008 Granada (Spain); Jelinek, M.; Cunniffe, R.; Ruedas-Sánchez, J. [Institute of Astrophysics of Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008 Granada (Spain); Castro-Tirado, A. J. [Institute of Astrophysics of Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008 Granada (Spain); Department of Systems and Automatic Engineering, University of Málaga, 29071 Málaga (Spain); Zeman, J. [Astronomical Institute of the Academic of Sciences, Fricova 298, 25165 Ondrejov (Czech Republic); Hudec, R. [Astronomical Institute of the Academic of Sciences, Fricova 298, 25165 Ondrejov (Czech Republic); Faculty of Electrical Engineering, Czech Technical University, Technicka 2, Praha 6 (Czech Republic); Sabau-Graziati, L. [National Institute of Aerospace Technology, Carretera de Ajalvir, 28850 Madrid (Spain)

    2013-11-15

    The COmpact LOw REsolution Spectrograph (COLORES) is a compact and lightweight (13 kg) f/8 imaging spectrograph designed for robotic telescopes, now installed and operating on the TELMA, a rapid-slewing 60 cm telescope of the BOOTES-2 observatory in Málaga (Spain). COLORES is a multi-mode instrument that enables the observer to seamlessly switch between low-dispersion spectroscopy and direct imaging modes during an observation. In this paper, we describe the instrument and its development, from the initial scientific requirements through the optical design process to final configuration with theoretical performance calculations. The mechanical and electronic design is described, methods of calibration are discussed and early laboratory and scientific results are shown.

  7. High-resolution X-ray focusing concave (elliptical) curved crystal spectrograph for laser-produced plasma

    Institute of Scientific and Technical Information of China (English)

    Shali xiao(肖沙里); Yingjun Pan(潘英俊); Xianxin Zhong(钟先信); Xiancai Xiong(熊先才); Guohong Yang(杨国洪); Zongli Liu(刘宗礼); Yongkun Ding(丁永坤)

    2004-01-01

    The X-ray spectrum emitted from laser-produced plasma contains plentiful information.X-ray spectrometer is a powerful tool for plasma diagnosis and studying the information and evolution of the plasma.X-ray concave(elliptical)curved crystals analyzer was designed and manufactured to investigate the properties of laser-produced plasma.The experiment was carried out on Mianyang Xingguang-ⅡFacility and aimed at investigating the characteristics of a high density iron plasma.Experimental results using KAP,LIF,PET,and MICA curved crystal analyzers are described,and the spectra of Au,Ti laser-produced plasma are shown.The focusing crystal analyzer clearly gave an increase in sensitivity over a flat crystal.

  8. Performance of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph

    Science.gov (United States)

    Wilson, John C.; Hearty, F.; Skrutskie, M. F.; Majewski, S. R.; Schiavon, R.; Eisenstein, D.; Gunn, J.; Holtzman, J.; Nidever, D.; Gillespie, B.; Weinberg, D.; Blank, B.; Henderson, C.; Smee, S.; Barkhouser, R.; Harding, A.; Hope, S.; Fitzgerald, G.; Stolberg, T.; Arns, J.; Nelson, M.; Brunner, S.; Burton, A.; Walker, E.; Lam, C.; Maseman, P.; Barr, J.; Leger, F.; Carey, L.; MacDonald, N.; Ebelke, G.; Beland, S.; Horne, T.; Young, E.; Rieke, G.; Rieke, M.; O'Brien, T.; Crane, J.; Carr, M.; Harrison, C.; Stoll, R.; Vernieri, M.; Shetrone, M.; Allende-Prieto, C.; Johnson, J.; Frinchaboy, P.; Zasowski, G.; Garcia Perez, A.; Bizyaev, D.; Cunha, K.; Smith, V. V.; Meszaros, Sz.; Zhao, B.; Hayden, M.; Chojnowski, S. D.; Andrews, B.; Loomis, C.; Owen, R.; Klaene, M.; Brinkmann, J.; Stauffer, F.; Long, D.; Jordan, W.; Holder, D.; Cope, F.; Naugle, T.; Pfaffenberger, B.; Schlegel, D.; Blanton, M.; Muna, D.; Weaver, B.; Snedden, S.; Pan, K.; Brewington, H.; Malanushenko, E.; Malanushenko, V.; Simmons, A.; Oravetz, D.; Mahadevan, S.; Halverson, S.

    2012-09-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) uses a dedicated 300-fiber, narrow-band near-infrared (1.51-1.7 μm), high resolution (R~22,500) spectrograph to survey approximately 100,000 giant stars across the Milky Way. This three-year survey, in operation since late-summer 2011 as part of the Sloan Digital Sky Survey III (SDSS III), will revolutionize our understanding of the kinematical and chemical enrichment histories of all Galactic stellar populations. We present the performance of the instrument from its first year in operation. The instrument is housed in a separate building adjacent to the 2.5-m SDSS telescope and fed light via approximately 45-meter fiber runs from the telescope. The instrument design includes numerous innovations including a gang connector that allows simultaneous connection of all fibers with a single plug to a telescope cartridge that positions the fibers on the sky, numerous places in the fiber train in which focal ratio degradation had to be minimized, a large mosaic-VPH (290 mm x 475 mm elliptically-shaped recorded area), an f/1.4 six-element refractive camera featuring silicon and fused silica elements with diameters as large as 393 mm, three near-infrared detectors mounted in a 1 x 3 mosaic with sub-pixel translation capability, and all of these components housed within a custom, LN2-cooled, stainless steel vacuum cryostat with dimensions 1.4-m x 2.3-m x 1.3-m.

  9. Hard X-ray Spectrographs with Resolution Beyond 100 micro-eV

    CERN Document Server

    Shvyd'ko, Yuri; Mundboth, Kiran; Kim, Jungho

    2013-01-01

    Spectrographs take snapshots of photon spectra with array detectors by dispersing photons of different energies into distinct directions and spacial locations. Spectrographs require optics with a large angular dispersion rate as the key component. In visible light optics diffraction gratings are used for this purpose. In the hard x-ray regime, achieving large dispersion rates is a challenge. Here we show that multi-crystal, multi-Bragg-reflection arrangements feature cumulative angular dispersion rates almost two orders of magnitude larger than those attainable with a single Bragg reflection. As a result, the multi-crystal arrangements become potential dispersing elements of hard x-ray spectrographs. The hard x-ray spectrograph principles are demonstrated by imaging a spectrum of photons with a record high resolution of $\\Delta E \\simeq 90 \\mu$eV in hard x-ray regime, using multi-crystal optics as dispersing element. The spectrographs can boost research using inelastic ultra-high-resolution x-ray spectroscopi...

  10. PRAXIS: low thermal emission high efficiency OH suppressed fibre spectrograph

    CERN Document Server

    Content, Robert; Ellis, Simon; Gers, Luke; Haynes, Roger; Horton, Anthony; Lawrence, Jon; Leon-Saval, Sergio; Lindley, Emma; Min, Seong-Sik; Shortridge, Keith; Staszac, Nick; Xavier, Pascal; Zhelen, Ross

    2014-01-01

    PRAXIS is a second generation instrument that follows on from GNOSIS, which was the first instrument using fibre Bragg gratings for OH background suppression. The Bragg gratings reflect the NIR OH lines while being transparent to light between the lines. This gives a much higher signal-noise ratio at low resolution but also at higher resolutions by removing the scattered wings of the OH lines. The specifications call for high throughput and very low thermal and detector noise so that PRAXIS will remain sky noise limited. The optical train is made of fore-optics, an IFU, a fibre bundle, the Bragg grating unit, a second fibre bundle and a spectrograph. GNOSIS used the pre-existing IRIS2 spectrograph while PRAXIS will use a new spectrograph specifically designed for the fibre Bragg grating OH suppression and optimised for 1470 nm to 1700 nm (it can also be used in the 1090 nm to 1260 nm band by changing the grating and refocussing). This results in a significantly higher transmission due to high efficiency coati...

  11. NEO Characterization Science Case For a Low Resolution Spectrograph

    CERN Document Server

    Trueblood, Mark; Crawford, Robert

    2010-01-01

    Near Earth Asteroids (NEAs) and dead comets comprise the vast majority of the population of Near Earth Objects (NEOs) detected to date. Less is known of their physical properties than of the much larger population of main-belt asteroids. Due to the faintness and short duration of visibility of NEOs, many characterization studies use broadband filters in 3 to 8 colors for taxonomic classification and to study surface chemical composition. A spectrograph with low spectral resolution R~30 used in a campaign or a continuing program on a small telescope (1-2m class) would vastly improve the quantity and quality of data on NEOs. The proposed baseline instrument would work in the visible using a CCD detector, with a possible upgrade to include a second, near-IR (NIR) channel extending coverage to 2.5 \\mum or beyond. The optical design needs to optimize overall optical throughput to permit observation of the faintest possible objects on small telescopes at acceptable signal-to-noise (S/N) ratios. An imaging mode to o...

  12. HIRES the high-resolution spectrograph for the E-ELT: dynamics and control of the repositioning mechanism for the E-ELT HIRES polarimeter

    Science.gov (United States)

    Di Varano, I.; Strassmeier, K. G.; Woche, M.

    2016-08-01

    A full Stokes dual channel polarimeter for the E-ELT HIRES spectrograph has been envisioned for the intermediate focus f/4.4, operating within a spectral range of 0.4-1.6 μ. It will feed the EELT- HIRES instrument located on the Nasmyth platform via two pairs of dedicated fibers: one fibre pair optimized for the BVRI, the other one optimized for the JH band or any other feasible combination. The instrument must be retractable within a workspace in fulfillment with the ESO requirements on the allocated volume and the dynamic response of the AO tower. For such purpose a swinging arm has been designed with a rotation provided by 5 revolute joints and a jackscrew. Moreover repeatability in repositioning has to be guaranteed by a parallel manipulator, performing an alignment procedure mainly along 5 axes. Dynamics and control criteria with a feed forward chain to compensate for vibration forces and feedback chain for tracking procedure are hereafter presented.

  13. First High-resolution Spectroscopic Observations of an Erupting Prominence Within a Coronal Mass Ejection by the Interface Region Imaging Spectrograph (IRIS)

    CERN Document Server

    Liu, Wei; Vial, Jean-Claude; Title, Alan M; Carlsson, Mats; Uitenbroek, Han; Okamoto, Takenori J; Berger, Thomas E; Antolin, Patrick

    2015-01-01

    Spectroscopic observations of prominence eruptions associated with coronal mass ejections (CMEs), although relatively rare, can provide valuable plasma and 3D geometry diagnostics. We report the first observations by the Interface Region Imaging Spectrograph (IRIS) mission of a spectacular fast CME/prominence eruption associated with an equivalent X1.6 flare on 2014 May 9. The maximum plane-of-sky and Doppler velocities of the eruption are 1200 and 460 km/s, respectively. There are two eruption components separated by ~200 km/s in Doppler velocity: a primary, bright component and a secondary, faint component, suggesting a hollow, rather than solid, cone-shaped distribution of material. The eruption involves a left-handed helical structure undergoing counter-clockwise (viewed top-down) unwinding motion. There is a temporal evolution from upward eruption to downward fallback with less-than-free-fall speeds and decreasing nonthermal line widths. We find a wide range of Mg II k/h line intensity ratios (less than ...

  14. Technique challenges in coupling of high resolution spectrograph with extremely large telescope%高分辨率光谱仪与极大望远镜耦合问题分析

    Institute of Scientific and Technical Information of China (English)

    张弛; 朱永田; 张凯

    2014-01-01

    We reviewed the designing of several international ground-based extremely large opti-cal/infrared telescopes and introduced the problems faced in the coupling of high resolution spectrograph with telescopes of extremely large aperture .It is proposed that large area of ech-elle and ultrafast focal ratio camera can serve as a solution .According to the coupling rule of the spectrogragh and the telescope ,the diameter of collimated beam for a 30 m telescope would be over 70 cm ,and the size of the main dispersion echelle grating would be larger than 2 m2 . To build such huge and costly equipment would be difficult with current techniques .And large aperture camera with focal ratio F/0 .5 is also hard to design and manufacture .Image slicer , mosaic gratings and w hite pupil optic become major solutions in designing the high resolution spectrograph for an extremely large aperture telescope .%介绍国际上地面极大光学/红外望远镜的研制概况,分析高分辨率光谱仪与极大口径望远镜耦合中的难题,结果表明极大口径望远镜需要超大面积阶梯光栅和超快焦比相机。根据光谱仪与望远镜的匹配关系,30 m级极大口径望远镜的高分辨率光谱仪的准直光束将大于70 cm ,主色散阶梯光栅的面积大于2m2,照相机的焦比 F/0.5,按照目前的制造技术无法提供上述光栅和相机,因此,提出高分辨率光谱仪与极大望远镜进行耦合的技术。针对耦合问题给出了相应解决方案,即采用像切分器、拼接光栅以及白瞳设计等技术将是极大口径望远镜与高分辨率光谱仪耦合的主要解决方案。

  15. The Habitable Zone Planet Finder: A Proposed High Resolution NIR Spectrograph for the Hobby Eberly Telescope to Discover Low Mass Exoplanets around M Dwarfs

    CERN Document Server

    Mahadevan, Suvrath; Wright, Jason; Endl, Michael; Redman, Stephen; Bender, Chad; Roy, Arpita; Zonak, Stephanie; Troupe, Nathaniel; Engel, Leland; Sigurdsson, Steinn; Wolszczan, Alex; Zhao, Bo

    2010-01-01

    The Habitable Zone Planet Finder (HZPF) is a proposed instrument for the 10m class Hobby Eberly telescope that will be capable of discovering low mass planets around M dwarfs. HZPF will be fiber-fed, provide a spectral resolution R~ 50,000 and cover the wavelength range 0.9-1.65{\\mu}m, the Y, J and H NIR bands where most of the flux is emitted by mid-late type M stars, and where most of the radial velocity information is concentrated. Enclosed in a chilled vacuum vessel with active temperature control, fiber scrambling and mechanical agitation, HZPF is designed to achieve a radial velocity precision < 3m/s, with a desire to obtain <1m/s for the brightest targets. This instrument will enable a study of the properties of low mass planets around M dwarfs; discover planets in the habitable zones around these stars, as well serve as an essential radial velocity confirmation tool for astrometric and transit detections around late M dwarfs. Radial velocity observation in the near-infrared (NIR) will also enabl...

  16. The image slicer for the Subaru Telescope High Dispersion Spectrograph

    CERN Document Server

    Tajitsu, Akito; Yamamuro, Tomoyasu

    2012-01-01

    We report on the design, manufacturing, and performance of the image slicer for the High Dispersion Spectrograph (HDS) on the Subaru Telescope. This instrument is a Bowen-Walraven type image slicer providing five 0.3 arcsec x 1.5 arcsec images with a resolving power of R= 110,000. The resulting resolving power and line profiles are investigated in detail, including estimates of the defocusing effect on the resolving power. The throughput in the wavelength range from 400 to 700 nm is higher than 80%, thereby improving the efficiency of the spectrograph by a factor of 1.8 for 0.7 arcsec seeing.

  17. A solar radio dynamic spectrograph with flexible temporal-spectral resolution

    Science.gov (United States)

    Du, Qing-Fu; Chen, Lei; Zhao, Yue-Chang; Li, Xin; Zhou, Yan; Zhang, Jun-Rui; Yan, Fa-Bao; Feng, Shi-Wei; Li, Chuan-Yang; Chen, Yao

    2017-09-01

    Observation and research on solar radio emission have unique scientific values in solar and space physics and related space weather forecasting applications, since the observed spectral structures may carry important information about energetic electrons and underlying physical mechanisms. In this study, we present the design of a novel dynamic spectrograph that has been installed at the Chashan Solar Radio Observatory operated by the Laboratory for Radio Technologies, Institute of Space Sciences at Shandong University. The spectrograph is characterized by real-time storage of digitized radio intensity data in the time domain and its capability to perform off-line spectral analysis of the radio spectra. The analog signals received via antennas and amplified with a low-noise amplifier are converted into digital data at a speed reaching up to 32 k data points per millisecond. The digital data are then saved into a high-speed electronic disk for further off-line spectral analysis. Using different word lengths (1–32 k) and time cadences (5 ms–10 s) for off-line fast Fourier transform analysis, we can obtain the dynamic spectrum of a radio burst with different (user-defined) temporal (5 ms–10 s) and spectral (3 kHz∼320 kHz) resolutions. This enables great flexibility and convenience in data analysis of solar radio bursts, especially when some specific fine spectral structures are under study.

  18. Design and modeling of a moderate-resolution astronomic spectrograph with volume-phase holographic gratings

    CERN Document Server

    Muslimov, Eduard R; Fabrika, Sergey N; Pavlycheva, Nadezhda K

    2016-01-01

    We present an optical design of astronomic spectrograph based on a cascade of volume-phase holographic gratings. The cascade consists of three gratings. Each of them provides moderately high spectral resolution in a narrow range of 83 nm. Thus the spectrum image represents three lines covering region 430-680 nm. Two versions of the scheme are described: a full-scale one with estimated resolving power of 5300-7900 and a small-sized one intended for creation of a lab prototype, which provides the resolving power of 1500-3000. Diffraction efficiency modeling confirms that the system throughput can reach 75 %, while stray light caused by the gratings crosstalk is negligible. We also propose a design of image slicer and focal reducer allowing to couple the instrument with the 6-m telescope. Finally, we present concept of the opto-mechanical design.

  19. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope

    DEFF Research Database (Denmark)

    Vernet, J.; Dekker, H.; D'Odorico, S.

    2011-01-01

    X-shooter is the first 2nd generation instrument of the ESO Very Large Telescope (VLT). It is a very efficient, single-target, intermediate-resolution spectrograph that was installed at the Cassegrain focus of UT2 in 2009. The instrument covers, in a single exposure, the spectral range from 300 t...

  20. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope

    NARCIS (Netherlands)

    Vernet, J.; Dekker, H.; D'Odorico, S.; Kaper, L.; Kjaergaard, P.; Hammer, F.; Randich, S.; Zerbi, F.; Groot, P.J.; Hjorth, J.; Guinouard, I.; Navarro, R.; Adolfse, T.; Albers, P.W.; Amans, J.-P.; Andersen, J.J.; Andersen, M.I.; Binetruy, P.; Bristow, P.; Castillo, R.; Chemla, F.; Christensen, L.; Conconi, P.; Conzelmann, R.; Dam, J.; De Caprio, V.; de Ugarte Postigo, A.; Delabre, B.; Di Marcantonio, P.; Downing, M.; Elswijk, E.; Finger, G.; Fischer, G.; Flores, H.; François, P.; Goldoni, P.; Guglielmi, L.; Haigron, R.; Hanenburg, H.; Hendriks, I.; Horrobin, M.; Horville, D.; Jessen, N.C.; Kerber, F.; Kern, L.; Kiekebusch, M.; Kleszcz, P.; Klougart, J.; Kragt, J.; Larsen, H.H.; Lizon, J.-L.; Lucuix, C.; Mainieri, V.; Manuputy, R.; Martayan, C.; Mason, E.; Mazzoleni, R.; Michaelsen, N.; Modigliani, A.; Moehler, S.; Møller, P.; Norup Sørensen, A.; Nørregaard, P.; Péroux, C.; Patat, F.; Pena, E.; Pragt, J.; Reinero, C.; Rigal, F.; Riva, M.; Roelfsema, R.; Royer, F.; Sacco, G.; Santin, P.; Schoenmaker, T.; Spano, P.; Sweers, E.; ter Horst, R.; Tintori, M.; Tromp, N.; van Dael, P.; van Vliet, H.; Venema, L.; Vidali, M.; Vinther, J.; Vola, P.; Winters, R.; Wistisen, D.; Wulterkens, G.; Zacchei, A.

    2011-01-01

    X-shooter is the first 2nd generation instrument of the ESO Very Large Telescope (VLT). It is a very efficient, single-target, intermediate-resolution spectrograph that was installed at the Cassegrain focus of UT2 in 2009. The instrument covers, in a single exposure, the spectral range from 300 to

  1. The Leiden EXoplanet Instrument (LEXI): a high-contrast high-dispersion spectrograph

    Science.gov (United States)

    Haffert, S. Y.; Wilby, M. J.; Keller, C. U.; Snellen, I. A. G.

    2016-08-01

    The Leiden EXoplanet Instrument (LEXI) will be the first instrument designed for high-contrast, high-dispersion integral field spectroscopy at optical wavelengths. High-contrast imaging (HCI) and high-dispersion spectroscopy (HDS) techniques are used to reach contrasts of 10-7. LEXI will be a bench-mounted, high dispersion integral field spectrograph that will record spectra in a small area around the star with high spatial resolution and high dynamic range. A prototype is being setup to The Leiden EXoplanet Instrument (LEXI) will be the first instrument designed for high-contrast, high-dispersion integral field spectroscopy at optical wavelengths. High-contrast imaging (HCI) and high-dispersion spectroscopy (HDS) techniques are used to reach contrasts of 10-7. LEXI will be a bench-mounted, high dispersion integral field spectrograph that will record spectra in a small area around the star with high spatial resolution and high dynamic range. A prototype is being setup to test the combination of HCI+HDS and its first light is expected in 2016.

  2. ADAM low- and medium-resolution spectrograph for 1.6-m AZT-33IK telescope

    CERN Document Server

    Afanasiev, V L; Amirkhanyan, V R; Moiseev, A V

    2016-01-01

    We describe the design of a low- and medium-resolution spectrograph ( R=300-1300) developed at the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) for the 1.6-m AZT-33IK telescope of Sayan Observatory of the Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences. We report the results of laboratory measurements of the parameters of the instrument and tests performed on the SAO RAS 1-m Zeiss-1000 telescope. We measured the total quantum efficiency of the "spectrograph + telescope + detector" system on AZT-33IK telescope, which at its maximum reaches 56%. Such a hight transparency of the spectrograph allows it to be used with the 1.6-m telescope to determine the types and redshifts of objects with magnitudes m_AB~20-21, that was confirmed by actual observations.

  3. LRS2: the new facility low resolution integral field spectrograph for the Hobby-Eberly Telescope

    CERN Document Server

    Chonis, Taylor S; Lee, Hanshin; Tuttle, Sarah E; Vattiat, Brian L

    2014-01-01

    The second generation Low Resolution Spectrograph (LRS2) is a new facility instrument for the Hobby-Eberly Telescope (HET). Based on the design of the Visible Integral-field Replicable Unit Spectrograph (VIRUS), which is the new flagship instrument for carrying out the HET Dark Energy Experiment (HETDEX), LRS2 provides integral field spectroscopy for a seeing-limited field of 12 x 6 arcseconds. For LRS2, the replicable design of VIRUS has been leveraged to gain broad wavelength coverage from 370 nm to 1 micron, spread between two fiber-fed dual-channel spectrographs, each of which can operate as an independent instrument. The blue spectrograph, LRS2-B, covers 370-470 nm and 460-700 nm at fixed resolving powers of ~1900 and ~1100, respectively, while the red spectrograph, LRS2-R, covers 650-842 nm and 818-1050 nm with both of its channels having a resolving power of ~1800. In this paper, we present a detailed description of the instrument's design in which we focus on the departures from the basic VIRUS framew...

  4. High Dispersion Spectroscopy with Ond\\v{r}ejov Echelle Spectrograph

    CERN Document Server

    Grossová, Romana

    2016-01-01

    Echelle spectrographs with their high resolution plays important role in determination of characteristics of stellar lines. Wide field of applications is focused mainly on the measurements of precise radial velocity applied in exoplanetary research. In my diploma thesis I am concentrated on the calibration of the Ond\\v{r}ejov Echelle Spectrograph at Astronomical Institute of the Czech Academy of Sciences. My role was to investigate the wide field of opportunities how to process the data with the best possible results. Successful reduction was performed by both Image Reduction and Analysis Facility (IRAF) and for Open source Pipeline for ESPaDOnS Reduction and Analysis. This thesis includes the comparison of both pipelines.

  5. Scientific Design of a High Contrast Integral Field Spectrograph for the Subaru Telescope

    Science.gov (United States)

    McElwain, Michael W.

    2012-01-01

    Ground based telescopes equipped with adaptive optics systems and specialized science cameras are now capable of directly detecting extrasolar planets. We present the scientific design for a high contrast integral field spectrograph for the Subaru Telescope. This lenslet based integral field spectrograph will be implemented into the new extreme adaptive optics system at Subaru, called SCExAO.

  6. 基于有限元法的高分辨透射光栅谱仪关键件结构优化设计%Structural optimization design of key part of high resolution transmission grating spectrograph based on finite element method

    Institute of Scientific and Technical Information of China (English)

    谢志江; 靳志辉; 宋代平; 刘慎业; 韦敏习

    2011-01-01

    光栅室作为高分辨透射光栅谱仪的关键件,对谱仪整体稳定性起决定性作用.文中运用Pro/E对光栅室进行三维建模,以结构质量最轻为优化目标,截面尺寸为设计变量,建立优化模型,求得最优截面参数.运用ANSYS进行动静态分析,分析结果表明,优化后的光栅室刚度、强度均满足设计要求,结构前4阶固有频率均大于耙球基频40 Hz,不会发生共振.%The grating box, which is the key part of high resolution transmission grating spectrograph, plays a decisive role to the overall stability of grating spectrograph.In this paper, the there-dimensional model of grating spectrograph was established by applying the Pro/E software, and an optimization model was established and optimization sectional parameter was solved by taking the minimum structural weight as optimization object and taking the sectional dimensions as design variables.A static and dynamic analysis was carried out by applying the ANSYS software, the analysis result indicates that both the rigidity and strength of optimized grating box can meet the design requirements, and the preceding 4 ordered inherent frequency were all greater than 40 Hz without occurring the resonance.

  7. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  8. Using commercial amateur astronomical spectrographs

    CERN Document Server

    Hopkins, Jeffrey L

    2014-01-01

    Amateur astronomers interested in learning more about astronomical spectroscopy now have the guide they need. It provides detailed information about how to get started inexpensively with low-resolution spectroscopy, and then how to move on to more advanced  high-resolution spectroscopy. Uniquely, the instructions concentrate very much on the practical aspects of using commercially-available spectroscopes, rather than simply explaining how spectroscopes work. The book includes a clear explanation of the laboratory theory behind astronomical spectrographs, and goes on to extensively cover the practical application of astronomical spectroscopy in detail. Four popular and reasonably-priced commercially available diffraction grating spectrographs are used as examples. The first is a low-resolution transmission diffraction grating, the Star Analyser spectrograph. The second is an inexpensive fiber optic coupled bench spectrograph that can be used to learn more about spectroscopy. The third is a newcomer, the ALPY ...

  9. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope

    CERN Document Server

    Vernet, Joel; D'Odorico, S; Kaper, L; Kjaergaard, P; Hammer, F; Randich, S; Zerbi, F; Groot, P M; Hjorth, J; Guinouard, I; Navarro, R; Adolfse, T; Albers, P W; Amans, J -P; Andersen, J J; Andersen, M I; Binetruy, P; Bristow, P; Castillo, R; Chemla, F; Christensen, L; Conconi, P; Conzelmann, R; Dam, J; De Caprio, V; Postigo, A De Ugarte; Delabre, B; Di Marcantonio, P; Downing, M; Elswijk, E; Finger, G; Fischer, G; Flores, H; Francois, P; Goldoni, P; Guglielmi, L; Haigron, R; Hanenburg, H; Hendriks, I; Horrobin, M; Horville, D; Jessen, N C; Kerber, F; Kern, L; Kiekebusch, M; Kleszcz, P; Klougart, J; Kragt, J; Larsen, H H; Lizon, J -L; Lucuix, C; Mainieri, V; Manuputy, R; Martayan, C; Mason, E; Mazzoleni, R; Michaelsen, N; Modigliani, A; Moehler, S; Møller, P; Sørensen, A Norup; Nørregaard, P; Peroux, C; Patat, F; Pena, E; Pragt, J; Reinero, C; Riga, F; Riva, M; Roelfsema, R; Royer, F; Sacco, G; Santin, P; Schoenmaker, T; Spano, P; Sweers, E; Ter Horst, R; Tintori, M; Tromp, N; van Dael, P; van der Vliet, H; Venema, L; Vidali, M; Vinther, J; Vola, P; Winters, R; Wistisen, D; Wulterkens, G; Zacchei, A

    2011-01-01

    X-shooter is the first 2nd generation instrument of the ESO Very Large Telescope(VLT). It is a very efficient, single-target, intermediate-resolution spectrograph that was installed at the Cassegrain focus of UT2 in 2009. The instrument covers, in a single exposure, the spectral range from 300 to 2500 nm. It is designed to maximize the sensitivity in this spectral range through dichroic splitting in three arms with optimized optics, coatings, dispersive elements and detectors. It operates at intermediate spectral resolution (R~4,000 - 17,000, depending on wavelength and slit width) with fixed echelle spectral format (prism cross-dispersers) in the three arms. It includes a 1.8"x4" Integral Field Unit as an alternative to the 11" long slits. A dedicated data reduction package delivers fully calibrated two-dimensional and extracted spectra over the full wavelength range. We describe the main characteristics of the instrument and present its performance as measured during commissioning, science verification and ...

  10. Moderate Resolution Spitzer Infrared Spectrograph (IRS) Observations of M, L, and T Dwarfs

    CERN Document Server

    Mainzer, A K; Saumon, D; Marley, M S; Cushing, M C; Sloan, G C; Kirkpatrick, J D; Leggett, S K; Wilson, J C; Roellig, Thomas L.; Marley, Mark S.; Cushing, Michael C.; Wilson, John C.

    2007-01-01

    We present 10 - 19 um moderate resolution spectra of ten M dwarfs, one L dwarf, and two T dwarf systems obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope. The IRS allows us to examine molecular spectroscopic features/lines at moderate spectral resolution in a heretofore untapped wavelength regime. These R~600 spectra allow for a more detailed examination of clouds, non-equilibrium chemistry, as well as the molecular features of H2O, NH3, and other trace molecular species that are the hallmarks of these objects. A cloud-free model best fits our mid-infrared spectrum of the T1 dwarf epsilon Indi Ba, and we find that the NH3 feature in epsilon Indi Bb is best explained by a non-equilibrium abundance due to vertical transport in its atmosphere. We examined a set of objects (mostly M dwarfs) in multiple systems to look for evidence of emission features, which might indicate an atmospheric temperature inversion, as well as trace molecular species; however, we found no evidence of eit...

  11. Very fast transmissive spectrograph designs for highly multiplexed fiber spectroscopy

    CERN Document Server

    Saunders, Will

    2016-01-01

    Very fast (f/1.2 and f/1.35) transmissive spectrograph designs are presented for Hector and MSE. The designs have 61mm x 61mm detectors, 4 or 5 camera lenses of aperture less than 228mm, with just 6 air/glass surfaces, and rely on extreme aspheres for their imaging performance. The throughput is excellent, because of the i-line glasses used, the small number of air/glass surfaces.

  12. Immersion echelle spectrograph

    Science.gov (United States)

    Stevens, Charles G.; Thomas, Norman L.

    2000-01-01

    A small spectrograph containing no moving components and capable of providing high resolution spectra of the mid-infrared region from 2 microns to 4 microns in wavelength. The resolving power of the spectrograph exceeds 20,000 throughout this region and at an optical throughput of about 10.sup.-5 cm.sup.2 sr. The spectrograph incorporates a silicon immersion echelle grating operating in high spectral order combined with a first order transmission grating in a cross-dispersing configuration to provide a two-dimensional (2-D) spectral format that is focused onto a two-dimensional infrared detector array. The spectrometer incorporates a common collimating and condensing lens assembly in a near aberration-free axially symmetric design. The spectrometer has wide use potential in addition to general research, such as monitoring atmospheric constituents for air quality, climate change, global warming, as well as monitoring exhaust fumes for smog sources or exhaust plumes for evidence of illicit drug manufacture.

  13. Flexible, High Performance Microlens Array Technologies for Integral Field Spectrographs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For the purposes of advancing integral field spectrograph (IFS) microlens capabilities, a new class of high-quality optics-grade nanostructured organic-inorganic...

  14. Hard X-ray Spectrographs with Resolution Beyond 100 micro-eV

    OpenAIRE

    Shvyd'ko, Yuri; Stoupin, Stanislav; Mundboth, Kiran; Kim, Jungho

    2012-01-01

    Spectrographs take snapshots of photon spectra with array detectors by dispersing photons of different energies into distinct directions and spacial locations. Spectrographs require optics with a large angular dispersion rate as the key component. In visible light optics diffraction gratings are used for this purpose. In the hard x-ray regime, achieving large dispersion rates is a challenge. Here we show that multi-crystal, multi-Bragg-reflection arrangements feature cumulative angular disper...

  15. Spitzer/infrared spectrograph investigation of mipsgal 24 μm compact bubbles: low-resolution observations

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, M. [Département de Physique, École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan (France); Flagey, N. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Noriega-Crespo, A.; Carey, S. J.; Van Dyk, S. D. [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, MC 314-6, Pasadena, CA 91125 (United States); Billot, N. [Instituto de Radio Astronomía Milimétrica, Avenida Divina Pastora, 7, Local 20, E-18012 Granada (Spain); Paladini, R., E-mail: mathias.nowak@ens-cachan.fr [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-12-01

    We present Spitzer/InfraRed Spectrograph (IRS) low-resolution observations of 11 compact circumstellar bubbles from the MIPSGAL 24 μm Galactic plane survey. We find that this set of MIPSGAL bubbles (MBs) is divided into two categories and that this distinction correlates with the morphologies of the MBs in the mid-infrared (IR). The four MBs with central sources in the mid-IR exhibit dust-rich, low-excitation spectra, and their 24 μm emission is accounted for by the dust continuum. The seven MBs without central sources in the mid-IR have spectra dominated by high-excitation gas lines (e.g., [O IV] 26.0 μm, [Ne V] 14.3 and 24.3 μm, and [Ne III] 15.5 μm), and the [O IV] line accounts for 50% to almost 100% of the 24 μm emission in five of them. In the dust-poor MBs, the [Ne V] and [Ne III] line ratios correspond to high-excitation conditions. Based on comparisons with published IRS spectra, we suggest that the dust-poor MBs are highly excited planetary nebulae (PNs) with peculiar white dwarfs (e.g., Wolf-Rayet [WR] and novae) at their centers. The central stars of the four dust-rich MBs are all massive star candidates. Dust temperatures range from 40 to 100 K in the outer shells. We constrain the extinction along the lines of sight from the IRS spectra. We then derive distance, dust masses, and dust production rate estimates for these objects. These estimates are all consistent with the nature of the central stars. We summarize the identifications of MBs made to date and discuss the correlation between their mid-IR morphologies and natures. Candidate Be/B[e]/luminous blue variable and WR stars are mainly 'rings' with mid-IR central sources, whereas PNs are mostly 'disks' without mid-IR central sources. Therefore we expect that most of the 300 remaining unidentified MBs will be classified as PNs.

  16. [A Time-Spatial Resolvable High Speed Spectrograph and Its Application on Spectrum Measurement of a Nanosecond Pulsed Underwater Spark Discharge].

    Science.gov (United States)

    Niu, Zhi-wen; Yan, Xian-feng; Li, Shu-han; Wen, Xiao-qiong; Liu, Jin-yuan

    2015-10-01

    Recently, the diagnosis of the characteristic of pulsed underwater electrical discharges plasma have received significant attention. The measurement of a time-spatial resolved spectrum emitted from a single discharge pulse is important for understanding the time-spatial evolution characteristics of plasma generated by a pulsed high-voltage discharge in water. In this paper, a high speed time-spatial resolvable spectrograph for measuring the emission spectrum of a single electrical discharge pulse was reported. The high speed time-spatial resolvable spectrograph has been constructed by combining an ultrahigh-speed frame camera system with monochromator. Software for the spectral analyzing was also developed. The performance of the spectrograph was tested by using a 632.8 nm He-Ne laser beam at a 1 200 g x mm(-1) grating. The pixel resolution for 632.8 nm spectra is 0.013 nm. The instrument broadening for 632.8 nm spectra is (0.150 ± 0.009)nm when the exposure.time of the camera is 20 ns and the width of entrance slit is 0.2 mm, and increases with increasing the slit width. The change of exposure time of the camera has no influence on the instrument broadening, ensuring the spectrograph in a steady performance while adjusting the exposure time of the camera. With the spectrograph, time-spatial resolved spectra emitted from a single discharge pulse of an underwater nanoseconds spark discharge were obtained. It provides good data for investigating the time-spatial evolution characteristics of the discharge plasma during a single discharge pulse. The spectrograph developed in this work provides a technical approach for studying the time-spatial evolution characteristic of, plasma generated by a single electrical discharge pulse.

  17. Spitzer/infrared spectrograph investigation of MIPSGAL 24 {\\mu}m compact bubbles : Low resolution observations

    CERN Document Server

    Nowak, M; Noriega-Crespo, A; Billot, N; Carey, S J; Paladini, R; Van Dyk, S D

    2014-01-01

    We present Spitzer/IRS low resolution observations of 11 compact circumstellar bubbles from the MIPSGAL 24 {\\mu}m Galactic Plane Survey. We find that this set of MIPSGAL bubbles (MBs) is divided into two categories, and that this distinction correlates with the morphologies of the MBs in the mid- IR. The four MBs with central sources in the mid-IR exhibit dust-rich, low excitation spectra, and their 24 {\\mu}m emission is accounted for by the dust continuum. The seven MBs without central sources in the mid-IR have spectra dominated by high excitation gas lines (e.g., [O IV] 26.0 {\\mu}m, [Ne V] 14.3 and 24.3 {\\mu}m, [Ne III] 15.5 {\\mu}m), and the [O IV] line accounts for 50 to almost 100% of the 24 {\\mu}m emission in five of them. In the dust-poor MBs, the [Ne V] and [Ne III] line ratios correspond to high excitation conditions. Based on comparisons with published IRS spectra, we suggest that the dust-poor MBs are highly excited planetary nebulae with peculiar white dwarfs (e.g., [WR], novae) at their centers. ...

  18. PISCES High Contrast Integral Field Spectrograph Simulations and Data Reduction Pipeline

    Science.gov (United States)

    Llop Sayson, Jorge Domingo; Memarsadeghi, Nargess; McElwain, Michael W.; Gong, Qian; Perrin, Marshall; Brandt, Timothy; Grammer, Bryan; Greeley, Bradford; Hilton, George; Marx, Catherine

    2015-01-01

    The PISCES (Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies) is a lenslet array based integral field spectrograph (IFS) designed to advance the technology readiness of the WFIRST (Wide Field Infrared Survey Telescope)-AFTA (Astrophysics Focused Telescope Assets) high contrast Coronagraph Instrument. We present the end to end optical simulator and plans for the data reduction pipeline (DRP). The optical simulator was created with a combination of the IDL (Interactive Data Language)-based PROPER (optical propagation) library and Zemax (a MatLab script), while the data reduction pipeline is a modified version of the Gemini Planet Imager's (GPI) IDL pipeline. The simulations of the propagation of light through the instrument are based on Fourier transform algorithms. The DRP enables transformation of the PISCES IFS data to calibrated spectral data cubes.

  19. PISCES High Contrast Integral Field Spectrograph Simulations and Data Reduction Pipeline

    Science.gov (United States)

    Llop Sayson, Jorge Domingo; Memarsadeghi, Nargess; McElwain, Michael W.; Gong, Qian; Perrin, Marshall; Brandt, Timothy; Grammer, Bryan; Greeley, Bradford; Hilton, George; Marx, Catherine

    2015-01-01

    The PISCES (Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies) is a lenslet array based integral field spectrograph (IFS) designed to advance the technology readiness of the WFIRST (Wide Field Infrared Survey Telescope)-AFTA (Astrophysics Focused Telescope Assets) high contrast Coronagraph Instrument. We present the end to end optical simulator and plans for the data reduction pipeline (DRP). The optical simulator was created with a combination of the IDL (Interactive Data Language)-based PROPER (optical propagation) library and Zemax (a MatLab script), while the data reduction pipeline is a modified version of the Gemini Planet Imager's (GPI) IDL pipeline. The simulations of the propagation of light through the instrument are based on Fourier transform algorithms. The DRP enables transformation of the PISCES IFS data to calibrated spectral data cubes.

  20. First light results from the Hermes spectrograph at the AAT

    NARCIS (Netherlands)

    Sheinis, A.; Barden, S.; Birchall, M.; Carollo, D.; Bland-Hawthorn, J.; Brzeski, J.; Case, S.; Cannon, R.; Churilov, V.; Couch, W.; Dean, R.; De Silva, G.; D'Orazi, V.; Farrell, T.; Fiegert, K.; Freeman, K.; Frost, G.; Gers, L.; Goodwin, M.; Gray, D.; Heald, R.; Heijmans, J.A.C.; Jones, D.; Keller, S.; Klauser, U.; Kondrat, Y.; Lawrence, J.; Lee, S.; Mali, S.; Martell, S.; Mathews, D.; Mayfield, D.; Miziarski, S.; Muller, R.; Pai, N.; Patterson, R.; Penny, E.; Orr, D.; Shortridge, K.; Simpson, J.; Smedley, S.; Smith, G.; Stafford, D.; Staszak, N.; Vuong, M.; Waller, L.; Wylie de Boer, E.; Xavier, P.; Zheng, J.; Zhelem, R.; Zucker, D.

    2014-01-01

    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of

  1. First light results from the Hermes spectrograph at the AAT

    NARCIS (Netherlands)

    Sheinis, A.; Barden, S.; Birchall, M.; Carollo, D.; Bland-Hawthorn, J.; Brzeski, J.; Case, S.; Cannon, R.; Churilov, V.; Couch, W.; Dean, R.; De Silva, G.; D'Orazi, V.; Farrell, T.; Fiegert, K.; Freeman, K.; Frost, G.; Gers, L.; Goodwin, M.; Gray, D.; Heald, R.; Heijmans, J.A.C.; Jones, D.; Keller, S.; Klauser, U.; Kondrat, Y.; Lawrence, J.; Lee, S.; Mali, S.; Martell, S.; Mathews, D.; Mayfield, D.; Miziarski, S.; Muller, R.; Pai, N.; Patterson, R.; Penny, E.; Orr, D.; Shortridge, K.; Simpson, J.; Smedley, S.; Smith, G.; Stafford, D.; Staszak, N.; Vuong, M.; Waller, L.; Wylie de Boer, E.; Xavier, P.; Zheng, J.; Zhelem, R.; Zucker, D.

    2014-01-01

    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of

  2. OPTIMOS-EVE optical design of a very efficient, high-multiplex, large spectral coverage, fiber-fed spectrograph at EELT

    Science.gov (United States)

    Spanò, P.; Tosh, I.; Chemla, F.

    2010-07-01

    OPTIMOS-EVE is a fiber-fed, high-multiplex, high-efficiency, large spectral coverage spectrograph for EELT covering visible and near-infrared simultaneously. More than 200 seeing-limited objects will be observed at the same time over the full 7 arcmin field of view of the telescope, feeding the spectrograph, asking for very large multiplexing at the spectrograph side. The spectrograph consists of two identical units. Each unit will have two optimized channels to observe both visible and near-infrared wavelengths at the same time, covering from 0.37 to 1.7 micron. To maximize the scientific return, a large simultaneous spectral coverage per exposure was required, up to 1/3 of the central wavelength. Moreover, different spectral resolution modes, spanning from 5'000 to 30'000, were defined to match very different sky targets. Many different optical solutions were generated during the initial study phase in order to select that one that will maximize performances within given constraints (mass, space, cost). Here we present the results of this study, with special attention to the baseline design. Efforts were done to keep size of the optical components well within present state-of-the-art technologies. For example, large glass blank sizes were limited to ~35 cm maximum diameter. VPH gratings were selected as dispersers, to improve efficiency, following their superblaze curve. This led to scanning gratings and cameras. Optical design will be described, together with expected performances.

  3. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  4. THE COSMIC ORIGINS SPECTROGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Green, James C.; Michael Shull, J.; Snow, Theodore P.; Stocke, John [Department of Astrophysical and Planetary Sciences, University of Colorado, 391-UCB, Boulder, CO 80309 (United States); Froning, Cynthia S.; Osterman, Steve; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin [Center for Astrophysics and Space Astronomy, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Ebbets, Dennis [Ball Aerospace and Technologies Corp., 1600 Commerce Street, Boulder, CO 80301 (United States); Heap, Sara H. [NASA Goddard Space Flight Center, Code 681, Greenbelt, MD 20771 (United States); Leitherer, Claus; Sembach, Kenneth [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, Boulder, CO 80309-0440 (United States); Savage, Blair D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Siegmund, Oswald H. W. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Spencer, John; Alan Stern, S. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Welsh, Barry [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720 (United States); and others

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F{sub {lambda}} Almost-Equal-To 1.0 Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1} A{sup -1}, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Ly{alpha} absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  5. Progress toward high resolution EUV spectroscopy

    Science.gov (United States)

    Korendyke, C.; Doschek, G. A.; Warren, H.; Young, P. R.; Chua, D.; Hassler, D. M.; Landi, E.; Davila, J. M.; Klimchuck, J.; Tun, S.; DeForest, C.; Mariska, J. T.; Solar C Spectroscopy Working Group; LEMUR; EUVST Development Team

    2013-07-01

    HIgh resolution EUV spectroscopy is a critical instrumental technique to understand fundamental physical processes in the high temperature solar atmosphere. Spectroscopic observations are used to measure differential emission measure, line of sight and turbulent flows, plasma densities and emission measures. Spatially resolved, spectra of these emission lines with adequate cadence will provide the necessary clues linking small scale structures with large scale, energetic solar phenomena. The necessary observations to determine underlying physical processes and to provide comprehensive temperature coverage of the solar atmosphere above the chromosphere will be obtained by the proposed EUVST instrument for Solar C. This instrument and its design will be discussed in this paper. Progress on the VEry high Resolution Imaging Spectrograph (VERIS) sounding rocket instrument presently under development at the Naval Research Laboratory will also be discussed.

  6. Performance estimates for spectrographs using photonic reformatters

    CERN Document Server

    Harris, Robert J; Lemke, Ulrike; MacLachlan, David G; Thomson, Robert R; Reffert, Sabine; Quirrenbach, Andreas

    2016-01-01

    Using a photonic reformatter to eliminate the effects of conventional modal noise could greatly improve the stability of a high resolution spectrograph. However the regimes where this advantage becomes clear are not yet defined. Here we will look at where modal noise becomes a problem in conventional high resolution spectroscopy and what impact photonic spectrographs could have. We will theoretically derive achievable radial velocity measurements to compare photonic instruments and conventional ones. We will discuss the theoretical and experimental investigations that will need to be undertaken to optimize and prove the photonic reformatting concept.

  7. Performance estimates for spectrographs using photonic reformatters

    Science.gov (United States)

    Harris, Robert J.; Labadie, Lucas; Lemke, Ulrike; MacLachlan, David G.; Thomson, Robert R.; Reffert, Sabine; Quirrenbach, Andreas

    2016-07-01

    Using a photonic reformatter to eliminate the effects of conventional modal noise could greatly improve the stability of a high resolution spectrograph. However the regimes where this advantage becomes clear are not yet defined. Here we will look at where modal noise becomes a problem in conventional high resolution spectroscopy and what impact photonic spectrographs could have. We will theoretically derive achievable radial velocity measurements to compare photonic instruments and conventional ones. We will discuss the theoretical and experimental investigations that will need to be undertaken to optimize and prove the photonic reformatting concept.

  8. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  9. The effects of spatial resolution on Integral Field Spectrograph surveys at different redshifts. The CALIFA perspective

    CERN Document Server

    Mast, D; Sanchez, S F; Vílchez, J M; Iglesias-Paramo, J; Walcher, C J; Husemann, B; Marquez, I; Marino, R A; Kennicutt, R C; Monreal-Ibero, A; Galbany, L; de Lorenzo-Caceres, A; Mendez-Abreu, J; Kehrig, C; del Olmo, A; Relano, M; Wisotzki, L; Marmol-Queralto, E; Bekeraite, S; Papaderos, P; Wild, V; Aguerri, J A L; Falcon-Barroso, J; Bomans, D J; Ziegler, B; García-Lorenzo, B; Bland-Hawthorn, J; Lopez-Sanchez, A R; van de Ven, G

    2013-01-01

    Over the past decade, 3D optical spectroscopy has become the preferred tool for understanding the properties of galaxies and is now increasingly used to carry out galaxy surveys. Low redshift surveys include SAURON, DiskMass, ATLAS3D, PINGS and VENGA. At redshifts above 0.7, surveys such as MASSIV, SINS, GLACE, and IMAGES have targeted the most luminous galaxies to study mainly their kinematic properties. The on-going CALIFA survey ($z\\sim0.02$) is the first of a series of upcoming Integral Field Spectroscopy (IFS) surveys with large samples representative of the entire population of galaxies. Others include SAMI and MaNGA at lower redshift and the upcoming KMOS surveys at higher redshift. Given the importance of spatial scales in IFS surveys, the study of the effects of spatial resolution on the recovered parameters becomes important. We explore the capability of the CALIFA survey and a hypothetical higher redshift survey to reproduce the properties of a sample of objects observed with better spatial resolut...

  10. Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph

    CERN Document Server

    Lovis, C; Mouillet, D; Pepe, F; Wildi, F; Astudillo-Defru, N; Beuzit, J -L; Bonfils, X; Cheetham, A; Conod, U; Delfosse, X; Ehrenreich, D; Figueira, P; Forveille, T; Martins, J H C; Quanz, S; Santos, N C; Schmid, H -M; Ségransan, D; Udry, S

    2016-01-01

    Context. The temperate Earth-mass planet Proxima b is the closest exoplanet to Earth and represents what may be our best ever opportunity to search for life outside the Solar System. Aims. We aim at directly detecting Proxima b and characterizing its atmosphere by spatially resolving the planet and obtaining high-resolution reflected-light spectra. Methods. We propose to develop a coupling interface between the SPHERE high-contrast imager and the new ESPRESSO spectrograph, both installed at ESO VLT. The angular separation of 37 mas between Proxima b and its host star requires the use of visible wavelengths to spatially resolve the planet on a 8.2-m telescope. At an estimated planet-to-star contrast of ~10^-7 in reflected light, Proxima b is extremely challenging to detect with SPHERE alone. The use of the high-contrast/high-resolution technique can overcome present limitations by combining a ~10^3-10^4 contrast enhancement from SPHERE to a ~10^4 gain from ESPRESSO. Results. We find that significant but realis...

  11. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  12. Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph

    Science.gov (United States)

    Lovis, C.; Snellen, I.; Mouillet, D.; Pepe, F.; Wildi, F.; Astudillo-Defru, N.; Beuzit, J.-L.; Bonfils, X.; Cheetham, A.; Conod, U.; Delfosse, X.; Ehrenreich, D.; Figueira, P.; Forveille, T.; Martins, J. H. C.; Quanz, S. P.; Santos, N. C.; Schmid, H.-M.; Ségransan, D.; Udry, S.

    2017-02-01

    Context. The temperate Earth-mass planet Proxima b is the closest exoplanet to Earth and represents what may be our best ever opportunity to search for life outside the Solar System. Aims: We aim at directly detecting Proxima b and characterizing its atmosphere by spatially resolving the planet and obtaining high-resolution reflected-light spectra. Methods: We propose to develop a coupling interface between the SPHERE high-contrast imager and the new ESPRESSO spectrograph, both installed at ESO VLT. The angular separation of 37 mas between Proxima b and its host star requires the use of visible wavelengths to spatially resolve the planet on a 8.2-m telescope. At an estimated planet-to-star contrast of 10-7 in reflected light, Proxima b is extremely challenging to detect with SPHERE alone. However, the combination of a 103-104 contrast enhancement from SPHERE to the high spectral resolution of ESPRESSO can reveal the planetary spectral features and disentangle them from the stellar ones. Results: We find that significant but realistic upgrades to SPHERE and ESPRESSO would enable a 5σ detection of the planet and yield a measurement of its true mass and albedo in 20-40 nights of telescope time, assuming an Earth-like atmospheric composition. Moreover, it will be possible to probe the O2 bands at 627, 686 and 760 nm, the water vapour band at 717 nm, and the methane band at 715 nm. In particular, a 3.6σ detection of O2 could be made in about 60 nights of telescope time. Those would need to be spread over three years considering optimal observability conditions for the planet. Conclusions: The very existence of Proxima b and the SPHERE-ESPRESSO synergy represent a unique opportunity to detect biosignatures on an exoplanet in the near future. It is also a crucial pathfinder experiment for the development of extremely large telescopes and their instruments, in particular the E-ELT and its high-resolution visible and near-IR spectrograph.

  13. High-resolution headlamp

    Science.gov (United States)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  14. REM Optical Slitless Spectrograph (ROSS) an instrument for prompt low resolution spectroscopy of Gamma Ray Bursts

    CERN Document Server

    Palazzi, E; Palazzi, Eliana; Pian, Elena

    2001-01-01

    Since the discovery of Gamma-Ray Bursts (GRBs), attempts have been made to detect correlated optical transient emission from these objects. In January 1999, the ROTSE I robotic telescope detected a bright optical flash simultaneous with a GRB, thanks to the prompt dissemination to the ground of the high energy event coordinates. To date, that single observation remains unique as no other prompt flashes have been seen for other bursts observed with comparably short response times. This suggests that in general GRB prompt optical emission may be considerably dimmer than observed for the GRB990123 event. To exploit the better angular localization accuracy of the flying (HETE-2) or soon to fly (INTEGRAL, AGILE, SWIFT, GLAST) missions for high energy astrophysics, a new generation of robotic telescopes is being developed. These will have response times as short as a few seconds and will be sensitive to signals as faint as m_v ~ 20, thus increasing the chance of detecting even weak prompt emission. Results from the...

  15. High Resolution Acoustical Imaging

    Science.gov (United States)

    1989-05-01

    1028 (September 1982). 26 G. Arfken , Mathematical Methods for Physicists (Academic Press, New York, 1971), 2nd printing, pp.662-666. 27 W. R. Hahn...difference in the approach used by the two methods , as noted in the previous paragraph, forming a direct mathematical com- parison may be impossible...examines high resolution methods which use a linear array to locate stationary objects which have scattered the fressure waves. Several;- new methods

  16. High resolution differential thermometer

    Directory of Open Access Journals (Sweden)

    Gotra Z. Yu.

    2009-11-01

    Full Text Available Main schematic solutions of differential thermometers with measurement resolution about 0.001°C are considered. Differential temperature primary transducer realized on a transistor differential circuit in microampere mode. Analytic calculation and schematic mathematic simulation of primary transducer are fulfilled. Signal transducer is realized on a high precision Zero-Drift Single-Supply Rail-to-Rail operation amplifier AD8552 and 24-Bit S-D microconverter ADuC834.

  17. A High-Fidelity Solar System Model and High-Contrast Integral Field Spectrograph Prototype for Exoplanet Observations

    Science.gov (United States)

    Wilkins, A. N.; McElwain, M. W.; Roberge, A.; Nesvold, E.; Stark, C. C.; Kuchner, M. J.; Robinson, T.; Meadows, V. S.; Straughn, A. N.; Turnbull, M. C.; Gong, Q.; Woodgate, B.; Brandt, T.; Staplefelt, K.; Heap, S.; Hilton, G.

    2014-03-01

    and spectral capabilities. To that end, we have begun fabrication of the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES), a lenslet-based integral field spectrograph (IFS) that will have a resolution of R~70, a wavelength span of 0.65 µm to 0.9 µm, and used as a prototype IFS for mission concepts such as the AFTA-Coronagraph, the Probe Science and Technology (STDT) teams, and ATLAST. Upon completion in 2015, PISCES will be integrated into the High-Contrast Imaging Testbed (HCIT) at NASA JPL, where it will undergo simulations with the Haystacks models and also be available to the community for testing. We present the design of PISCES, its current status, and preliminary simulations specific to the PISCES parameters of how exoplanetary systems formulated with Haystacks would look to PISCES and what those results mean for detectability of exoEarths and potential biomarkers.

  18. Saturn's rings - high resolution

    Science.gov (United States)

    1981-01-01

    Voyager 2 obtained this high-resolution picture of Saturn's rings Aug. 22, when the spacecraft was 4 million kilometers (2.5 million miles) away. Evident here are the numerous 'spoke' features, in the B-ring; their very sharp, narrow appearance suggests short formation times. Scientists think electromagnetic forces are responsible in some way for these features, but no detailed theory has been worked out. Pictures such as this and analyses of Voyager 2's spoke movies may reveal more clues about the origins of these complex structures. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  19. High Resolution Laboratory Spectroscopy

    CERN Document Server

    Brünken, Sandra

    2016-01-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limita...

  20. Design and Construction of VUES: the Vilnius University Echelle Spectrograph

    CERN Document Server

    Jurgenson, Colby; McCracken, Tyler; Sawyer, David; Szymkowiak, Andrew; Giguere, Matt; Santoro, Fernando; Muller, Gary

    2016-01-01

    In February of 2014 the Yale Exoplanet Laboratory was commissioned to design, build, and deliver a high resolution (R = 60,000) spectrograph for the 1.65-meter telescope at the Moletai Astronomical Observatory. The observatory is operated by the Institute of Theoretical Physics and Astronomy at Vilnius University. The Vilnius University Echelle Spectrograph (VUES) is a white-pupil design that is fed via an octagonal fiber from the telescope and has an operational bandpass from 400 to 880 nm. VUES incorporates a novel modular optomechanical design that allows for quick assembly and alignment on commercial optical tables. This approach allowed the spectrograph to be assembled and commissioned at Yale using lab optical tables and then reassembled at the observatory on a different optical table with excellent repeatability. The assembly and alignment process for the spectrograph was reduced to a few days, allowing the spectrograph to be completely disassembled for shipment to Lithuania, and then installed at the ...

  1. The Cosmic Origins Spectrograph

    Science.gov (United States)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; Siegmund, Oswald H. W.; Snow, Theodore P.; Spencer, John; Stern, S. Alan; Stocke, John; Welsh, Barry; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Keeney, Brian; McPhate, Jason; Penton, Steven V; Andrews, John; Morse, Jon

    2010-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F(sub lambda) approximates 1.0 X 10(exp -14) ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  2. Developments in high-density Cobra fiber positioners for the Subaru Telescope's Prime Focus Spectrograph

    CERN Document Server

    Fisher, Charles D; Kaluzny, Joel V; Seiffert, Michael D; Dekany, Richard G; Ellis, Richard S; Smith, Roger M

    2012-01-01

    The Prime Focus Spectrograph (PFS) is a fiber fed multi-object spectrometer for the Subaru Telescope that will conduct a variety of targeted surveys for studies of dark energy, galaxy evolution, and galactic archaeology. The key to the instrument is a high density array of fiber positioners placed at the prime focus of the Subaru Telescope. The system, nicknamed "Cobra", will be capable of rapidly reconfiguring the array of 2394 optical fibers to the image positions of astronomical targets in the focal plane with high accuracy. The system uses 2394 individual "SCARA robot" mechanisms that are 7.7mm in diameter and use 2 piezo-electric rotary motors to individually position each of the optical fibers within its patrol region. Testing demonstrates that the Cobra positioner can be moved to within 5{\\mu}m of an astronomical target in 6 move iterations with a success rate of 95 per cent. The Cobra system is a key aspect of PFS that will enable its unprecedented combination of high-multiplex factor and observing ef...

  3. Construction and commissioning of LAMOST low resolution spectrographs%LAMOST多目标光纤光谱仪的研制及试运行

    Institute of Scientific and Technical Information of China (English)

    朱永田; 胡中文; 王磊; 王家宁; 侯永辉; 汤振; 戴松新; 吴桢; 陈忆

    2011-01-01

    There are 16 low resolution multi-objects fiber-fed spectrographs (LRS) for the LAMOST project. The spectrographs are of double-beam full Schmidt design by using volume phase holographic gratings. Each spectrograph will be accommodating 250 fibers of 320 micron in diameter which corresponds 3.3 arcsec. The 200 mm diameter collimated beam is split into two separate channels by a clichroic filter. The blue channel is optimized for 370-590 nm, and the red channel for 570-900 nm. Spectra are focused onto 4 K×4 K CCD using fast camera with focal ratio of 1.25. The spectrum resolution is 1000 for low resolution mode. Resolution of 5000 is available by automatic switching to different gratings and by changing camera working angles. The resolution could be doubled by restricting the width of a slit to half the size of fiber diameter. These spectrographs are installed under focal plane of LAMOST at Xinglong observatory. Some of the results obtained during commissioning period are reported.%LAMOST望远镜(郭守敬望远镜)配置了16台低分辨率多目标光纤光谱仪,一次曝光可同时获得4000个天体的光谱信息.LAMOST低分辨率光谱仪采用新型体位相全息光栅,双通道大视场施密特光学系统,准直光束口径200 mm.每台光谱仪分红、蓝区两个通道,红蓝区各配置按工作波段优化的4 Kx4 K科学级CCD芯片,CCD采用液氮制冷.光谱仪波长覆盖范围370~900 nm,光谱分辨率R=1000~10000.研制完成后的16台光谱仪安装于国家天文台兴隆观测站LAMOST焦面楼光谱房内,这些光谱仪已经用于科学试观测并取得了一批科研成果.

  4. The Photonic TIGER: a multicore fiber-fed spectrograph

    CERN Document Server

    Leon-Saval, Sergio G; Bland-Hawthorn, Joss

    2012-01-01

    We present a proof of concept compact diffraction limited high-resolution fiber-fed spectrograph by using a 2D multicore array input. This high resolution spectrograph is fed by a 2D pseudo-slit, the Photonic TIGER, a hexagonal array of near-diffraction limited single-mode cores. We study the feasibility of this new platform related to the core array separation and rotation with respect to the dispersion axis. A 7 core compact Photonic TIGER fiber-fed spectrograph with a resolving power of around R~31000 and 8 nm bandwidth in the IR centered on 1550 nm is demonstrated. We also describe possible architectures based on this concept for building small scale compact diffraction limited Integral Field Spectrographs (IFS).

  5. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  6. Simulated stellar kinematics studies of high-redshift galaxies with the HARMONI Integral Field Spectrograph

    CERN Document Server

    Kendrew, S; Houghton, R C W; Thatte, N; Devriendt, J; Tecza, M; Clarke, F; O'Brien, K; Häussler, B

    2016-01-01

    We present a study into the capabilities of integrated and spatially resolved integral field spectroscopy of galaxies at z=2-4 with the future HARMONI spectrograph for the European Extremely Large Telescope (E-ELT) using the simulation pipeline, HSIM. We focus particularly on the instrument's capabilities in stellar absorption line integral field spectroscopy, which will allow us to study the stellar kinematics and stellar population characteristics. Such measurements for star-forming and passive galaxies around the peak star formation era will provide a critical insight into the star formation, quenching and mass assembly history of high-z, and thus present-day galaxies. First, we perform a signal-to-noise study for passive galaxies at a range of stellar masses for z=2-4, assuming different light profiles; for this population we estimate integrated stellar absorption line spectroscopy with HARMONI will be limited to galaxies with M_star > 10^10.7 solar masses. Second, we use HSIM to perform a mock observatio...

  7. Implementation of a high throughput spectrograph for Thomson scattering measurements on the Compact Toriodal Hybrid

    Science.gov (United States)

    Goforth, Matthew; Traverso, Peter; Maurer, David

    2013-10-01

    To better understand the equilibrium and stability of Compact Toroidal Hybrid (CTH) plasmas, a multipoint Thomson scattering system is under development at Auburn University. Thomson scattering will be performed at 532 nm using a frequency doubled Continuum PL DLS Nd:YAG laser. The Thomson scattered light will be measured using a high throughput HoloSpec f/1.8i imaging spectrograph with in-line interference filter for spectral discrimination of stray laser light. An image intensified charge coupled device (ICCD) camera employing a Gen III photocathode with quantum efficiency of approximately 50% near the frequency doubled laser line is planned as the detection element for the scattered light. Bench and CTH impurity line emission measurements will be presented quantifying spectrometer and ICCD performance and suitability for scattering measurements over the visible spectral region near 532 nm. This work has been supported by US Department of Energy Grant No. DE-FG02-00ER54610 and the Auburn University Undergraduate Research Fellowship Program.

  8. Extreme Multiplex Spectrograph: An efficient mechanical design for high-demanding requirements

    CERN Document Server

    Becerril, S; Dubbeldam, C M; Content, R; Rohloff, R R; Prada, F; Shanks, T; Sharples, R

    2010-01-01

    XMS is a multi-channel wide-field spectrograph designed for the prime focus of the 3.5m Calar-Alto telescope. The instrument is composed by four quadrants, each of which contains a spectrograph channel. An innovative mechanical design -at concept/preliminary stage- has been implemented to: 1) Minimize the separation between the channels to achieve maximal filling factor; 2) Cope with the very constraining space and mass overall requirements; 3) Achieve very tight alignment tolerances; 4) Provide lens self-centering under large temperature excursions; 5) Provide masks including 4000 slits (edges thinner than 100\\mu). An overview of this extremely challenging mechanical design is here presented.

  9. eXtreme multiplex spectrograph: a high-demanding mechanical design

    Science.gov (United States)

    Becerril, S.; Meisenheimer, K.; Dubbeldam, C. M.; Content, R.; Rohloff, R. R.; Prada, F.; Shanks, T.; Sharples, R.

    2010-07-01

    XMS is a multi-channel wide-field spectrograph designed for the prime focus of the 3.5m Calar-Alto telescope. The instrument is composed by four quadrants, each of which contains a spectrograph channel. An innovative mechanical design -at concept/preliminary stage- has been implemented to: 1) Minimize the separation between the channels to achieve maximal filling factor; 2) Cope with the very constraining space and mass overall requirements; 3) Achieve very tight alignment tolerances; 4) Provide lens self-centering under large temperature excursions; 5) Provide masks including 4000 slits (edges thinner than 100μ). An overview of this very challenging mechanical design is here presented.

  10. HARMONI: a single-field wide-band integral-field spectrograph for the European ELT

    NARCIS (Netherlands)

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Davies, Roger L.; Remillieux, Alban; Bacon, Roland; Lunney, David; Arribas, Santiago; Mediavilla, Evencio; Gago, Fernando; Bezawada, Naidu; Ferruit, Pierre; Fragoso, Ana; Freeman, David; Fuentes, Javier; Fusco, Thierry; Gallie, Angus; Garcia, Adolfo; Goodsall, Timothy; Gracia, Felix; Jarno, Aurelien; Kosmalski, Johan; Lynn, James; McLay, Stuart; Montgomery, David; Pecontal, Arlette; Schnetler, Hermine; Smith, Harry; Sosa, Dario; Battaglia, Giuseppina; Bowles, Neil; Colina, Luis; Emsellem, Eric; Garcia-Perez, Ana; Gladysz, Szymon; Hook, Isobel; Irwin, Patrick; Jarvis, Matt; Kennicutt, Robert; Levan, Andrew; Longmore, Andy; Magorrian, John; McCaughrean, Mark; Origlia, Livia; Rebolo, Rafael; Rigopoulou, Dimitra; Ryan, Sean; Swinbank, Mark; Tanvir, Nial; Tolstoy, Eline; Verma, Aprajita

    2010-01-01

    We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared Integral field spectrograph, provides the E-ELT's core spectr

  11. HARMONI : A single-field wide-band integral-field spectrograph for the European ELT

    NARCIS (Netherlands)

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Davies, Roger L.; Remillieux, Alban; Bacon, Roland; Lunney, David; Arribas, Santiago; Mediavilla, Evencio; Gago, Fernando; Bezawada, Naidu; Ferruit, Pierre; Fragoso, Ana; Freeman, David; Fuentes, Javier; Fusco, Thierry; Gallie, Angus; Garcia, Adolfo; Goodsall, Timothy; Gracia, Felix; Jarno, Aurelien; Kosmalski, Johan; Lynn, James; McLay, Stuart; Montgomery, David; Pecontal, Arlette; Schnetler, Hermine; Smith, Harry; Sosa, Dario; Battaglia, Giuseppina; Bowles, Neil; Colina, Luis; Emsellem, Eric; Garcia-Perez, Ana; Gladysz, Szymon; Hook, Isobel; Irwin, Patrick; Jarvis, Matt; Kennicutt, Robert; Levan, Andrew; Longmore, Andy; Magorrian, John; McCaughrean, Mark; Origlia, Livia; Rebolo, Rafael; Rigopoulou, Dimitra; Ryan, Sean; Swinbank, Mark; Tanvir, Nial; Tolstoy, Eline; Verma, Aprajita

    2010-01-01

    We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared Integral field spectrograph, provides the E-ELT's core spectr

  12. High Resolution Formaldehyde Photochemistry

    Science.gov (United States)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  13. Tomographic extreme-ultraviolet spectrographs: TESS.

    Science.gov (United States)

    Cotton, D M; Stephan, A; Cook, T; Vickers, J; Taylor, V; Chakrabarti, S

    2000-08-01

    We describe the system of Tomographic Extreme Ultraviolet (EUV) SpectrographS (TESS) that are the primary instruments for the Tomographic Experiment using Radiative Recombinative Ionospheric EUV and Radio Sources (TERRIERS) satellite. The spectrographs were designed to make high-sensitivity {80 counts/s)/Rayleigh [one Rayleigh is equivalent to 10(6) photons/(4pi str cm(2)s)}, line-of-sight measurements of the oi 135.6- and 91.1-nm emissions suitable for tomographic inversion. The system consists of five spectrographs, four identical nightglow instruments (for redundancy and added sensitivity), and one instrument with a smaller aperture to reduce sensitivity and increase spectral resolution for daytime operation. Each instrument has a bandpass of 80-140 nm with approximately 2- and 1-nm resolution for the night and day instruments, respectively. They utilize microchannel-plate-based two-dimensional imaging detectors with wedge-and-strip anode readouts. The instruments were designed, fabricated, and calibrated at Boston University, and the TERRIERS satellite was launched on 18 May 1999 from Vandenberg Air Force Base, California.

  14. Single Mode, Extreme Precision Doppler Spectrographs

    Science.gov (United States)

    Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2014-04-01

    The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.

  15. Single mode, extreme precision Doppler spectrographs

    CERN Document Server

    Schwab, Christian; Betters, Christopher H; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2012-01-01

    The 'holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a...

  16. High resolution digital delay timer

    Science.gov (United States)

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  17. On the Instrument Profile of Slit Spectrographs

    OpenAIRE

    Casini, R.; de Wijn, A.G.

    2014-01-01

    We derive an analytic expression for the instrument profile of a slit spectrograph, also known as the line spread function. While this problem is not new, our treatment relies on the operatorial approach to the description of diffractive optical systems, which provides a general framework for the analysis of the performance of slit spectrographs under different illumination conditions. Based on our results, we propose an approximation to the spectral resolution of slit spectrographs, taking i...

  18. Photometric Calibrations for the SIRTF Infrared Spectrograph

    CERN Document Server

    Morris, P W; Herter, T L; Armus, L; Houck, J; Sloan, G

    2002-01-01

    The SIRTF InfraRed Spectrograph (IRS) is faced with many of the same calibration challenges that were experienced in the ISO SWS calibration program, owing to similar wavelength coverage and overlapping spectral resolutions of the two instruments. Although the IRS is up to ~300 times more sensitive and without moving parts, imposing unique calibration challenges on their own, an overlap in photometric sensitivities of the high-resolution modules with the SWS grating sections allows lessons, resources, and certain techniques from the SWS calibration programs to be exploited. We explain where these apply in an overview of the IRS photometric calibration planning.

  19. The AVES adaptive optics spectrograph for the VLT: status report

    Science.gov (United States)

    Pallavicini, Roberto; Delabre, Bernard; Pasquini, Luca; Zerbi, Filippo M.; Bonanno, Giovanni; Comari, Maurizio; Conconi, Paolo; Mazzoleni, Ruben; Santin, Paolo; Damiani, Francesco; Di Marcantonio, Paolo; Franchini, Mariagrazia; Spano, Paolo; Bonifacio, P.; Catalano, Santo; Molaro, Paolo P.; Randich, S.; Rodono, Marcello

    2003-03-01

    We report on the status of AVES, the Adaptive-optics Visual Echelle Spectrograph proposed for the secondary port of the Nasmyth Adaptive Optics System (NAOS) recently installed at the VLT. AVES is an intermediate resolution (R ≍ 16,000) high-efficiency fixed- format echelle spectrograph which operates in the spectral band 500 - 1,000 nm. In addition to a high intrinsic efficiency, comparable to that of ESI at Keck II, it takes advantage of the adaptive optics correction provided by NAOS to reduce the sky and detector contribution in background-limited observations of weak sources, thus allowing a further magnitude gain with respect to comparable non-adaptive optics spectrographs. Simulations show that the instrument will be capable of reaching a magnitude V = 22.5 at S/N > 10 in two hours, two magnitudes weaker than GIRAFFE at the same resolution and 3 magnitudes weaker than the higher resolution UVES spectrograph. Imaging and coronographic functions have also been implemented in the design. We present the results of the final design study and we dicuss the technical and operational issues related to its implementation at the VLT as a visitor instrument. We also discuss the possibility of using a scaled-up non-adaptive optics version of the same design as an element of a double- or triple-arm intermediate-resolution spectrograph for the VLT. Such an option looks attractive in the context of a high-efficiency large-bandwidth (320 - 1,500 nm) spectrograph ("fast-shooter") being considered by ESO as a 2nd-generation VLT instrument.

  20. Precise Stellar Radial Velocities of an M Dwarf with a Michelson Interferometer and a Medium-resolution Near-infrared Spectrograph

    CERN Document Server

    Muirhead, Philip S; Erskine, David J; Wright, Jason T; Muterspaugh, Matthew W; Covey, Kevin R; Wishnow, Edward H; Hamren, Katherine; Andelson, Phillip; Kimber, David; Mercer, Tony; Halverson, Sam; Vanderburg, Andrew; Mondo, Danny; Czeszumska, Agnieszka; Lloyd, James P

    2011-01-01

    Precise infrared radial velocimetry enables the detection and transit verification of low mass extrasolar planets orbiting mid-to-late M dwarf hosts, which are too faint for V-band radial velocity surveys. The TripleSpec Exoplanet Discovery Instrument, or TEDI, is the combination of a variable-delay Michelson interferometer and a medium-resolution (R=2700) near-infrared spectrograph on the Palomar 200" Hale Telescope. We used TEDI to monitor GJ 699, a nearby mid-M dwarf, over 11 nights spread across 3 months. Analysis of 106 independent observations reveals a root-mean-square precision of less than 37 m/s for 5 minutes of integration time. This performance is within a factor of 2 of our expected photon-limited precision. We further decompose the residuals into a 33 m/s white noise component, and a 15 m/s systematic noise component, which we identify as likely due to contamination by telluric absorption lines. With further development this technique holds promise for broad implementation on medium-resolution n...

  1. Million object spectrograph

    Science.gov (United States)

    Ditto, Thomas D.; Ritter, Joseph M.

    2008-07-01

    A new class of astronomical telescope with a primary objective grating (POG) has been studied as an alternative to mirrors. Nineteenth century POG telescopes suffered from low resolution and ambiguity of overlapping spectra as well as background noise. The present design uses a conventional secondary spectrograph to disambiguate all objects while enjoying a very wide instantaneous field-of-view, up to 40°. The POG competes with mirrors, in part, because diffraction gratings provide the very chromatic dispersion that mirrors defeat. The resulting telescope deals effectively with long-standing restrictions on multiple object spectrographs (MOS). The combination of a POG operating in the first-order, coupled to a spectrographic astronomical telescope, isolates spectra from all objects in the free spectral range of the primary. First disclosed as a concept in year 2002, a physical proof-of-principle is now reported. The miniature laboratory model used a 50 mm plane grating primary and was able to disambiguate between objects appearing at angular resolutions of 55 arcseconds and spectral spacings of 0.15 nm. Astronomical performance is a matter of increasing instrument size. A POG configured according to our specifications has no moving parts during observations and is extensible to any length that can be held flat to tolerances approaching float glass. The resulting telescope could record over one million spectra per night of objects in a line of right ascension. The novel MOS does not require pre-imaging to start acquisition of uncharted star fields. Problems are anticipated in calibration and integration time. We propose means to ameliorate them.

  2. CARMENES: the VIS channel spectrograph in operation

    Science.gov (United States)

    Seifert, W.; Xu, W.; Stahl, O.; Hagen, H. J.; Sánchez Carrasco, M. A.; Veredas, G.; Caballero, J. A.; Guardia, J.; Helmling, J.; Hernandez, L.; Pérez-Calpena, A.; Tulloch, S.; Kaminski, A.; Zechmeister, M.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Mandel, H.

    2016-08-01

    CARMENES is a fiber-fed high-resolution Echelle spectrograph for the Calar Alto 3.5m telescope. The instrument is built by a German-Spanish consortium under the lead of the Landessternwarte Heidelberg. The search for planets around M dwarfs with a radial velocity of 1 m/s is the main focus of the planned science. Two channels, one for the visible, another for the near-infrared, will allow observations in the complete wavelength range from 550 to 1700 nm. To ensure the stability, the instrument is working in vacuum in a thermally controlled environment. The VIS channel spectrograph is covering the visible wavelength range from 0.55 to 0.95 μm with a spectral resolution of R=93,400 in a thermally and pressure-wise very stable environment. The VIS channel spectrograph started science operation in January 2016. Here we present the opto-mechanical and system design of the channel with the focus on the (re-)integration phase at the observatory and the measured performance during the testing and commissioning periods, including the lessons learned.

  3. WES - Weihai Echelle Spectrograph

    CERN Document Server

    Gao, Dong-Yang; Cao, Chen; Hu, Shao-Ming; Wittenmyer, Robert A; Hu, Zhong-Wen; Grupp, Frank; Kellermann, Hanna; Li, Kai; Guo, Di-Fu

    2016-01-01

    The Weihai Echelle Spectrograph (WES) is the first fiber-fed echelle spectrograph for astronomical observation in China. It is primarily used for chemical abundance and asteroseismology studies of nearby bright stars, as well as radial velocity detections for exoplanets. The optical design of WES is based on the widely demonstrated and well-established white-pupil concept. We describe the WES in detail and present some examples of its performance. A single exposure echelle image covers the spectral region 371-1,100 nm in 107 spectral orders over the rectangular CCD. The spectral resolution $R=\\lambda/\\Delta\\lambda$ changes from 40,600 to 57,000 through adjusting the entrance slit width from full to 2.2 pixels sampling at the fiber-exit. The limiting magnitude scales to $V=8$ with a signal-to-noise ratio (SNR) of more than 100 in $V$ for an hour exposure, at the spectral resolution R$\\approx$40,000 in the median seeing of 1.7$^{\\prime\\prime}$ at Weihai Observatory (WHO) for the 1-meter telescope. The radial ve...

  4. The Cosmic Origins Spectrograph

    CERN Document Server

    Green, James C; Osterman, Steve; Ebbets, Dennis; Heap, Sara H; Linsky, Claus Leitherer Jeffrey L; Savage, Blair D; Sembach, Kenneth; Shull, J Michael; Siegmund, Oswald H W; Snow, Theodore P; Spencer, John; Stern, S Alan; Stocke, John; Welsh, Barry; Beland, Stephane; Burgh, Eric B; Danforth, Charles; France, Kevin; Keeney, Brian; McPhate, Jason; Penton, Steven V; Andrews, John; Brownsberger, Kenneth; Morse, Jon; Wilkinson, Erik

    2011-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F_lambda ~ 1.0E10-14 ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011....

  5. The infrared imaging spectrograph (IRIS) for TMT: spectrograph design

    CERN Document Server

    Moore, Anna M; Barton, Elizabeth J; Crampton, David; Delacroix, Alex; Larkin, James E; Simard, Luc; Suzuki, Ryuji; Wright, Shelley A

    2010-01-01

    The Infra-Red Imaging Spectrograph (IRIS) is one of the three first light instruments for the Thirty Meter Telescope (TMT) and is the only one to directly sample the diffraction limit. The instrument consists of a parallel imager and off-axis Integral Field Spectrograph (IFS) for optimum use of the near infrared (0.84um-2.4um) Adaptive Optics corrected focal surface. We present an overview of the IRIS spectrograph that is designed to probe a range of scientific targets from the dynamics and morphology of high-z galaxies to studying the atmospheres and surfaces of solar system objects, the latter requiring a narrow field and high Strehl performance. The IRIS spectrograph is a hybrid system consisting of two state of the art IFS technologies providing four plate scales (4mas, 9mas, 25mas, 50mas spaxel sizes). We present the design of the unique hybrid system that combines the power of a lenslet spectrograph and image slicer spectrograph in a configuration where major hardware is shared. The result is a powerful...

  6. An introduction to the World Space Observatory-Ultraviolet spectrographs

    Science.gov (United States)

    Hermanutz, S.; Barnstedt, J.; Diebold, S.; Elsener, H. R.; Ganz, P. R.; Kalkuhl, C.; Kappelmann, N.; Pfeifer, M.; Tanirah, O.; Sachkov, M.; Schaadt, D. M.; Schanz, T.; Shustov, B. M.; Werner, K.

    2012-09-01

    The World Space Observatory Ultraviolet (WSO-UV) is a multinational mission under the leadership of Russia with contributions of Spain and Germany. The mission is part of the Spektrum series and launch is currently scheduled for 2016. It consists of a 1.7m mirror focusing on spectrographs in the range of 102-310 nm withh a resolution of R >= 55,000 for high resolution spectral observations, a long-slit-spectrograph for spatially resolved observations and an imager. According to the Phase-B-Study all spectrographs will use the same detectors built by the IAAT. These spectrographs are designed to observe cosmic plasma with temperatures of several ten thousands Kelvin and atomic transition lines of all important atoms and molecuules like H2, CO, OH eetc. In knowledge about the formation of galaxies and analyze the atmospheres of extrasolar planets and protoplanetary discs. To achieve these goals the IAAT designed in cooperation with the Leibniz-Institute for Analytical Sciences (ISAS Berlin) the spectrographs. In addition Tubingen develops and builds a new type of michrchannel plate detector based on gallim nitride cathods and a cross-strip-anode.

  7. High Resolution Orientation Imaging Microscopy

    Science.gov (United States)

    2012-05-02

    carbon distribution as it relates to the presence of Bainite phase (with small tetragonality) interspersed among the cubic ferrite. An example of the...preferentially segregate. The view offered by these high resolution methods differs from what has been considered before: grains thought to be Bainite

  8. High-Resolution Instrumentation Radar.

    Science.gov (United States)

    1986-09-30

    30 September 1986 Los Angeles Air Force Station 13. NUMBER OF PAGES Los Angeles, Calif. 90009-2960 36 74. MONITORING AGENCY NAME & ADDRESS(If...TREE PLMUT ",-20 -CUTLIASS DumpER SED AN... TREE TRUNK, -0 - MERC BUMPER f - 40 H!-I -50 iI Fig. 7. High-Resolution Instrumentation Radar View of

  9. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  10. An integral field spectrograph for SNAP supernova studies

    Energy Technology Data Exchange (ETDEWEB)

    Ealet, Anne; Prieto, E.; Bonissent, A.; Malina, R.; Basa, S.; LeFevre, O.; Mazure, A.; Tarle, G.; Akerlof, C.W.; Aldering, G.; Amidei, D.E.; Astier, P.; Baden, A.R.; Bebek, C.; Bergstrom, L.; Bernstein, G.M.; Bower, C.R.; Campbell, M.; Carithers Jr., W.C.; Commins, E.D.; Curtis, D.W.; Deustua, S.E.; Edwards, W.R.; Ellis, R.S.; Fruchter, A.; Frye, B.L.; Genat, J.; Goldhaber, G.; Goobar, A.; Goodman, J.A.; Graham, J.R.; Hardin, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Honeycutt, R.; Holland, S.E.; Hook, I.; Huterer, D.; Kasen, D.N.; Kim, A.G.; Knop, R.A.; Lafever, R.; Lampton, M.L.; Levi, M.E.; Levin, D.S.; Levy, J.M.; Lidman, C.; Lin, R.P.; Linder, E.V.; Loken, S.C.; McKay, T.; McKee, S.P.; Metzger, M.R.; Miquel, R.; Mourao, A.; Mufson, S.; Musser, J.A.; Nugent, P.E.; Pain, R.; Pankow, D.H.; Pennypacker, C.R.; Perlmutter, S.; Refregier, A.; Rich, J.; Robinson, K.E.; Schahmaneche, K.; Schubnell, M.S.; Spadafora, A.; Smoot, G.F.; Sullivan, G.W.; Tomasch, A.D.; SNAP Collaboration

    2002-07-29

    A well-adapted spectrograph concept has been developed for the SNAP (SuperNova/Acceleration Probe) experiment. The goal is to ensure proper identification of Type Ia supernovae and to standardize the magnitude of each candidate by determining explosion parameters. An instrument based on an integral field method with the powerful concept of imager slicing has been designed and is presented in this paper. The spectrograph concept is optimized to have very high efficiency and low spectral resolution (R {approx} 100), constant through the wavelength range (0.35-1.7{micro}m), adapted to the scientific goals of the mission.

  11. The Cosmic Origins Spectrograph: On-Orbit Instrument Performance

    CERN Document Server

    Osterman, S; Froning, C; Béland, S; Burgh, E; France, K; Penton, S; Delker, T; Ebbets, D; Sahnow, D; Bacinski, J; Kimble, R; Andrews, J; Wilkinson, E; McPhate, J; Siegmund, O; Ake, T; Aloisi, A; Biagetti, C; Diaz, R; Dixon, W; Friedman, S; Ghavamian, P; Goudfrooij, P; Hartig, G; Keyes, C; Lennon, D; Massa, D; Niemi, S; Oliveira, C; Osten, R; Proffitt, C; Smith, T; Soderblom, D

    2010-01-01

    The Cosmic Origins Spectrograph (COS) was installed in the Hubble Space Telescope in May, 2009 as part of Servicing Mission 4 to provide high sensitivity, medium and low resolution spectroscopy at far- and near-ultraviolet wavelengths (FUV, NUV). COS is the most sensitive FUV/NUV spectrograph flown to date, spanning the wavelength range from 900{\\AA} to 3200{\\AA} with peak effective area approaching 3000 cm^2. This paper describes instrument design, the results of the Servicing Mission Orbital Verification (SMOV), and the ongoing performance monitoring program.

  12. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  13. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  14. HRSC: High resolution stereo camera

    Science.gov (United States)

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  15. Mathematical model of orbital and ground-based cross-dispersion spectrographs

    Science.gov (United States)

    Yushkin, M. V.; Fatkhullin, T. A.; Panchuk, V. E.

    2016-07-01

    We present the technique and algorithm of numerical modeling of high-resolution spectroscopic equipment. The software is implemented in C++ using nVidia CUDA technology. We report the results of currently developedmodeling of new-generation echelle spectrographs. To validate the algorithms used to construct the mathematical model, we present the results of modeling of NES spectrograph of the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. A comparison of simulated and real images of the spectra acquired with NES spectrograph demonstrates good agreement between the model constructed and experimental data.

  16. High-resolution setup for measuring wavelength sensitivity of photoyellowing of translucent materials

    Energy Technology Data Exchange (ETDEWEB)

    Vaskuri, Anna, E-mail: anna.vaskuri@aalto.fi; Kärhä, Petri [Metrology Research Institute, Aalto University, P.O. Box 13000, FI-00076 Aalto (Finland); Heikkilä, Anu [R& D/Climate Research, Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki (Finland); Ikonen, Erkki [Metrology Research Institute, Aalto University, P.O. Box 13000, FI-00076 Aalto (Finland); MIKES Metrology, VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT (Finland)

    2015-10-15

    Polystyrene and many other materials turn yellow when exposed to ultraviolet (UV) radiation. All photodegradation mechanisms including photoyellowing are functions of the exposure wavelength, which can be described with an action spectrum. In this work, a new high-resolution transmittance measurement setup based on lasers has been developed for measuring color changes, such as the photoyellowing of translucent materials aged with a spectrograph. The measurement setup includes 14 power-stabilized laser lines between 325 nm and 933 nm wavelengths, of which one at a time is directed on to the aged sample. The power transmitted through the sample is measured with a silicon detector utilizing an integrating sphere. The sample is mounted on a high-resolution XY translation stage. Measurement at various locations aged with different wavelengths of exposure radiation gives the transmittance data required for acquiring the action spectrum. The combination of a UV spectrograph and the new high-resolution transmittance measurement setup enables a novel method for studying the UV-induced ageing of translucent materials with a spectral resolution of 3–8 nm, limited by the adjustable spectral bandwidth range of the spectrograph. These achievements form a significant improvement over earlier methods.

  17. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  18. The voltage optimization of a four-element lens used on a hemispherical spectrograph with virtual entry for highest energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sise, O., E-mail: omersise@sdu.edu.tr [Department of Science Education, Faculty of Education, Suleyman Demirel University, 32260 Isparta (Turkey); Martínez, G. [Departamento de Física Aplicada III, Facultad de Física, UCM, 28040 Madrid (Spain); Madesis, I. [Department of Physics, University of Crete, P.O. Box 2208, GR, 71003 Heraklion (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece); Laoutaris, A. [Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece); Department of Applied Physics, National Technical University of Athens, GR, 15780 Athens (Greece); Dimitriou, A. [Department of Physics, University of Crete, P.O. Box 2208, GR, 71003 Heraklion (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece); Fernández-Martín, M. [Departamento de Física Aplicada III, Facultad de Física, UCM, 28040 Madrid (Spain); Zouros, T.J.M. [Department of Physics, University of Crete, P.O. Box 2208, GR, 71003 Heraklion (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece)

    2016-08-15

    Highlights: • We investigate the voltage settings for the four-element injection lens of an HDA. • The two well-known approaches, BEM and FDM, in charged particle optics were used. • We tested optimal lens voltages from simulation on the actual experimental setup. • The measured FWHM were well modeled using realistic source parameters. • The results are helpful to experimenters. - Abstract: The methodology and results of a detailed four-element lens optimization analysis based on electron trajectory numerical simulations are presented for a hemispherical deflector analyzer (HDA), whose entry aperture size is determined by the injection lens itself and is therefore virtual. Trajectory calculations were performed using both the boundary-element method (BEM) and the finite-difference method (FDM) and results from these two different approaches were benchmarked against each other, to probe and confirm the accuracy of our results. Since the first and last electrode are held at fixed potentials, the two intermediate adjustable lens electrode voltages were varied over the entire available voltage space in a direct, systematic, brute-force approach, while minima in beam spot size on the 2-D position sensitive detector (PSD) at the exit of the HDA were investigated using a beam shaping approach. Lens voltages demonstrating improved energy resolution for the combined lens/HDA/PSD spectrograph system were sought with and without pre-retardation. The optimal voltages were then tested experimentally on the modeled HDA system using a hot-wire electron gun. The measured energy resolution was found to be in good overall agreement with our simulations, particularly at the highest resolution (∼0.05%) working conditions. These simulations also provide a detailed insight to the distinctive trajectory optics and positions of the first and second image planes, when the PSD has to be placed some distance away from the HDA exit plane, and is therefore not at the ideal optics

  19. GYES, a multifibre spectrograph for the CFHT

    CERN Document Server

    Bonifacio, P; Dournaux, J -L; François, P; Caffau, E; Royer, F; Babusiaux, C; Arenou, F; Balkowski, C; Bienaymé, O; Briot, D; Carlberg, R; Cohen, M; Dalton, G B; Famaey, B; Fasola, G; Frémat, Y; Gómez, A; Haywood, M; Hill, V; Huet, J -M; Katz, D; Horville, D; Kudritzky, R; Lallement, R; Laporte, Ph; de Laverny, P; Lemasle, B; Lewis, I J; Martayan, C; Monier, R; Mourard, D; Nardetto, N; Blanco, A Recio; Robichon, N; Robin, A C; Rodrigues, M; Soubiran, C; Turon, C; Venn, K; Viala, Y

    2010-01-01

    We have chosen the name of GYES, one of the mythological giants with one hundred arms, offspring of Gaia and Uranus, for our instrument study of a multifibre spectrograph for the prime focus of the Canada-France-Hawaii Telescope. Such an instrument could provide an excellent ground-based complement for the Gaia mission and a northern complement to the HERMES project on the AAT. The CFHT is well known for providing a stable prime focus environment, with a large field of view, which has hosted several imaging instruments, but has never hosted a multifibre spectrograph. Building upon the experience gained at GEPI with FLAMES-Giraffe and X-Shooter, we are investigating the feasibility of a high multiplex spectrograph (about 500 fibres) over a field of view 1 degree in diameter. We are investigating an instrument with resolution in the range 15000 to 30000, which should provide accurate chemical abundances for stars down to 16th magnitude and radial velocities, accurate to 1 km/s for fainter stars. The study is le...

  20. Design and Construction of VUES: The Vilnius University Echelle Spectrograph

    Science.gov (United States)

    Jurgenson, Colby; Fischer, Debra; McCracken, Tyler; Sawyer, David; Giguere, Matt; Szymkowiak, Andrew; Santoro, Fernando; Muller, Gary

    2016-03-01

    In February 2014, the Yale Exoplanet Laboratory was commissioned to design, build, and deliver a high resolution (R=60,000) spectrograph for the 1.65m telescope at the Molėtai Astronomical Observatory. The observatory is operated by the Institute of Theoretical Physics and Astronomy at Vilnius University. The Vilnius University Echelle Spectrograph (VUES) is a white-pupil design that is fed via an octagonal fiber from the telescope and has an operational bandpass from 400nm to 880nm. VUES incorporates a novel modular optomechanical design that allows for quick assembly and alignment on commercial optical tables. This approach allowed the spectrograph to be assembled and commissioned at Yale using lab optical tables and then reassembled at the observatory on a different optical table with excellent repeatability. The assembly and alignment process for the spectrograph was reduced to a few days, allowing the spectrograph to be completely disassembled for shipment to Lithuania, and then installed at the observatory during a 10-day period in June of 2015.

  1. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  2. High-resolution image analysis.

    Science.gov (United States)

    Preston, K

    1986-01-01

    In many departments of cytology, cytogenetics, hematology, and pathology, research projects using high-resolution computerized microscopy are now being mounted for computation of morphometric measurements on various structural components, as well as for determination of cellular DNA content. The majority of these measurements are made in a partially automated, computer-assisted mode, wherein there is strong interaction between the user and the computerized microscope. At the same time, full automation has been accomplished for both sample preparation and sample examination for clinical determination of the white blood cell differential count. At the time of writing, approximately 1,000 robot differential counting microscopes are in the field, analyzing images of human white blood cells, red blood cells, and platelets at the overall rate of about 100,000 slides per day. This mammoth through-put represents a major accomplishment in the application of machine vision to automated microscopy for hematology. In other areas of automated high-resolution microscopy, such as cytology and cytogenetics, no commercial instruments are available (although a few metaphase-finding machines are available and other new machines have been announced during the past year). This is a disappointing product, considering the nearly half century of research effort in these areas. This paper provides examples of the state of the art in automation of cell analysis for blood smears, cervical smears, and chromosome preparations. Also treated are new developments in multi-resolution automated microscopy, where images are now being generated and analyzed by a single machine over a range of 64:1 magnification and from 10,000 X 20,000 to 500 X 500 in total picture elements (pixels). Examples of images of human lymph node and liver tissue are presented. Semi-automated systems are not treated, although there is mention of recent research in the automation of tissue analysis.

  3. HERMES at Mercator, competitive high-resolution spectroscopy with a small telescope

    CERN Document Server

    Raskin, Gert

    2013-01-01

    HERMES, a fibre-fed high-resolution (R=85000) echelle spectrograph with good stability and excellent throughput, is the work-horse instrument of the 1.2-m Mercator telescope on La Palma. HERMES targets building up time series of high-quality data of variable stellar phenomena, mainly for asteroseismology and binary-evolution research. In this paper we present the HERMES project and discuss the instrument design, performance, and a future upgrade. We also present some results of the first four years of HERMES observations. We illustrate the value of small telescopes, equipped with efficient instrumentation, for high-resolution spectroscopy.

  4. GNOMOS: The Gemini NIR-Optical Multi Object Spectrograph

    CERN Document Server

    Schiavon, Ricardo P; Chiboucas, Kristin; Diaz, Ruben; Geballe, Tom; Gimeno, German; Gomez, Percy; Hibon, Pascale; Hirst, Paul; Jorgensen, Inger; Labrie, Kathleen; Leggett, Sandy; Lemoine-Busserolle, Marie; Levenson, Nancy; Mason, Rachel; McDermid, Richard; Miller, Bryan; Nitta, Atsuko; Pessev, Peter; Rodgers, Bernadette; Schirmer, Mischa; Trujillo, Chad; Turner, James

    2012-01-01

    This paper is a response to a call for white papers solicited by Gemini Observatory and its Science and Technology Advisory Committee, to help define the science case and requirements for a new Gemini instrument, envisaged to consist of a single-object spectrograph at medium resolution simultaneously covering optical and near-infrared wavelengths. In this white paper we discuss the science case for an alternative new instrument, consisting instead of a multi-object, medium-resolution, high-throughput spectrograph, covering simultaneously the optical and near-infrared slices of the electromagnetic spectrum. We argue that combination of wide wavelength coverage at medium resolution with moderate multiplexing power is an innovative path that will enable the pursuit of fundamental science questions in a variety of astrophysical topics, without compromise of the science goals achievable by single-object spectroscopy on a wide baseline. We present a brief qualitative discussion of the main features of a notional ha...

  5. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  6. High-resolution spectroscopy of a giant solar filament

    CERN Document Server

    Kuckein, C; Verma, M

    2013-01-01

    High-resolution spectra of a giant solar quiescent filament were taken with the Echelle spectrograph at the Vacuum Tower Telescope (VTT; Tenerife, Spain). A mosaic of various spectroheliograms (H\\alpha, H\\alpha\\ +/- 0.5\\AA\\ and Na D2) were chosen to examine the filament at different heights in the solar atmosphere. In addition, full-disk images (He I 10830\\AA\\ and Ca II K) of the Chromspheric Telescope and full-disk magnetograms of the Helioseismic and Magnetic Imager were used to complement the spectra. Preliminary results are shown of this filament, which had extremely large linear dimensions (~ 740'') and was observed in November 2011 while it traversed the northern solar hemisphere.

  7. First Light Results from the Hermes Spectrograph at the AAT

    CERN Document Server

    Sheinis, Andrew; Asplund, Martin; Bacigalupo, Carlos; Barden, Sam; Birchall, Michael; Bland-Hawthorn, Joss; Brzeski, Jurek; Cannon, Russell; Carollo, Daniela; Case, Scott; Casey, Andrew; Churilov, Vladimir; Warrick, Couch; Dean, Robert; De Silva, Gayandhi; D'Orazi, Valentina; Duong, Ly; Farrell, Tony; Fiegert, Kristin; Freeman, Kenneth; Gabriella, Frost; Gers, Luke; Goodwin, Michael; Gray, Doug; Green, Andrew; Heald, Ron; Heijmans, Jeroen; Ireland, Michael; Jones, Damien; Kafle, Prajwal; Keller, Stefan; Klauser, Urs; Kondrat, Yuriy; Kos, Janez; Lawrence, Jon; Lee, Steve; Mali, Slavko; Martell, Sarah; Mathews, Darren; Mayfield, Don; Miziarski, Stan; Muller, Rolf; Pai, Naveen; Patterson, Robert; Penny, Ed; Orr, David; Schlesinger, Katharine; Sharma, Sanjib; Shortridge, Keith; Simpson, Jeffrey; Smedley, Scott; Smith, Greg; Stafford, Darren; Staszak, Nicholas; Vuong, Minh; Waller, Lewis; de Boer, Elizabeth Wylie; Xavier, Pascal; Zheng, Jessica; Zhelem, Ross; Zucker, Daniel; Zwitter, Tomaz

    2015-01-01

    The High Efficiency and Resolution Multi Element Spectrograph, HERMES, is a facility-class optical spectrograph for the Anglo-Australian Telescope (AAT). It is designed primarily for Galactic Archaeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the Milky Way through a detailed chemical abundance study of one million stars. The spectrograph is based at the AAT and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses volume phase holographic gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 and 50,000 using a slit mask. The GALAH survey requires an SNR greater than 100 for a star brightness of V ?= 14 in an exposure time of one hour. The total spectral coverage of the four channels is about 100 nm between 370 an...

  8. First light results from the HERMES spectrograph at the AAT

    Science.gov (United States)

    Sheinis, Andrew I.

    2016-08-01

    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is a facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the Galactic Archeology with Hermes (GALAH) survey is to reconstruct the mass assembly history of the Milky Way, through a detailed spatially tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2- degree field of view. Hermes was commissioned in late 2013, with the GALAH Pilot starting in parallel with the commissioning. The GALAH survey started in early 2014 is currently about 33% complete. We present a description of the motivating science; an overview the instrument; and a status report on GALAH Survey.

  9. Ultra-high resolution AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  10. High-resolution slug testing.

    Science.gov (United States)

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases.

  11. On the Instrument Profile of Slit Spectrographs

    CERN Document Server

    Casini, R

    2014-01-01

    We derive an analytic expression for the instrument profile of a slit spectrograph, also known as the line spread function. While this problem is not new, our treatment relies on the operatorial approach to the description of diffractive optical systems, which provides a general framework for the analysis of the performance of slit spectrographs under different illumination conditions. Based on our results, we propose an approximation to the spectral resolution of slit spectrographs, taking into account diffraction effects and sampling by the detector, which improves upon the often adopted approximation based on the root-sumsquare of the individual contributions from the slit, the grating, and the detector pixel.

  12. High-resolution land topography

    Science.gov (United States)

    Massonnet, Didier; Elachi, Charles

    2006-11-01

    After a description of the background, methods of production and some scientific uses of high-resolution land topography, we present the current status and the prospect of radar interferometry, regarded as one of the best techniques for obtaining the most global and the most accurate topographic maps. After introducing briefly the theoretical aspects of radar interferometry - principles, limits of operation and various capabilities -, we will focus on the topographic applications that resulted in an almost global topographic map of the earth: the SRTM map. After introducing the Interferometric Cartwheel system, we will build on its expected performances to discuss the scientific prospects of refining a global topographic map to sub-metric accuracy. We also show how other fields of sciences such as hydrology may benefit from the products generated by interferometric radar systems. To cite this article: D. Massonnet, C. Elachi, C. R. Geoscience 338 (2006).

  13. Novel diffraction gratings for next generation spectrographs with high spectral dispersion

    Science.gov (United States)

    Ebizuka, N.; Okamoto, T.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.

    2016-07-01

    As a transmission grating, a surface-relief (SR) grating with sawtooth shaped ridges and volume phase holographic (VPH) grating are widely used for instruments of astronomical observations. However the SR grating is difficult to achieve high diffraction efficiency at high angular dispersion, and the VPH grating has low diffraction efficiency in high diffraction orders. We propose novel gratings that solve these problems. We introduce the hybrid grism which combines a high refractive index prism with a replicated transmission grating, which has sawtooth shaped ridges of an acute apex angle. The birefringence VPH (B-VPH) grating which contains an anisotropic medium, such as a liquid crystal, achieves diffraction efficiency up to 100% at the first diffraction order for natural polarization and for circular polarization. The quasi-Bragg (QB) grating which consists of long rectangular mirrors aligned in parallel precisely, like a window blind, achieves diffraction efficiency of 60% or more in higher than the 4th diffraction order. The volume binary (VB) grating with narrow grooves also achieves diffraction efficiency of 60% or more in higher than the 6th diffraction order. The reflector facet transmission (RFT) grating which is a SR grating with sawtooth shaped ridges of an acute apex angle achieves diffraction efficiency up to 80% in higher than the 4th diffraction order.

  14. Space Telescope Imaging Spectrograph Observations of High-Velocity Interstellar Absorption-Line Profiles in the Carina Nebula

    Science.gov (United States)

    Walborn, Nolan R.; Danks, Anthony C.; Vieira, Gladys; Landsman, Wayne B.

    2002-06-01

    An atlas of ultraviolet interstellar absorption-line profiles toward four stars in the Carina Nebula is presented. The observations have been made with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, with a resolving power of 114,000. Low-ionization, high-ionization, and excited-state lines from a wide array of chemical species are included. Extensive measurements of radial velocities, velocity dispersions, and column densities of individual components in these profiles are also given. The unprecedented capabilities of STIS reveal many more velocity components than previously known; most of the high-velocity components in previous observations with the International Ultraviolet Explorer are now resolved into multiple subcomponents, and even higher velocities are seen. The great range of line strengths available permits the detection of the low-velocity components in the weakest lines, and progressively higher velocities in stronger lines (in which the low-velocity components become completely blended). The weak and high-ionization lines trace global structure in the H II region, while the strong low-ionization lines show intricate high-velocity structure that likely originates relatively near to the O stars observed. The extreme velocities found in the low-ionization lines toward these four stars are -388 and +127 km s-1, with 23-26 resolved components in each. Some components in different stars may be related, but many are different in each line of sight. A remarkably well-defined Routly-Spitzer effect is found in this region. Temporal variations toward one star observed twice have already been reported. These measurements will be used in subsequent astrophysical analyses to further constrain the origins of the phenomena. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract

  15. Single-reference high-precision mass measurement with a multi-reflection time-of-flight mass spectrograph

    CERN Document Server

    Ito, Y; Wada, M; Naimi, S; Sonoda, T; Mita, H; Arai, F; Takamine, A; Okada, K; Ozawa, A; Wollnik, H

    2013-01-01

    A multi-reflection time-of-flight mass spectrograph, competitive with Penning trap mass spectrometers, has been built at RIKEN. We have performed a first online mass measurement, using 8Li+ (T1/2 = 838 ms). A new analysis method has been realized, with which, using only 12C+ references, the mass excess of 8Li was accurately determined to be 20947.6(15)(34) keV (dm/m = 6.6 x 10-7). The speed, precision and accuracy of this first online measurement exemplifies the potential for using this new type of mass spectrograph for precision measurements of short-lived nuclei.

  16. High resolution emission tomography; Tomographie d`emission haute resolution

    Energy Technology Data Exchange (ETDEWEB)

    Charon, Y.; Laniece, P.; Mastrippolito, R.; Pinot, L.; Ploux, L.; Valda Ochoa, A.; Valentin, L. [Groupe I.P.B., Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    We have developed an original high resolution tomograph for in-vivo small animal imaging. A first prototype is under evaluation. Initial results of its characterisation are presented. (authors) 3 figs.

  17. VT Hydrography Dataset - High Resolution NHD

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Vermont Hydrography Dataset (VHD) is compliant with the local resolution (also known as High Resolution) National Hydrography Dataset (NHD)...

  18. High-resolution infrared imaging

    Science.gov (United States)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  19. Performing simulations for the WSO-UV Spectrographs

    Science.gov (United States)

    Marcos-Arenal, P.; Gómez de Castro, A. I.; Perea Abarca, B.; Sachkov, M.

    2017-03-01

    The World Space Observatory - Ultraviolet (WSO-UV) is a space telescope, equipped with a high resolution spectrograph (WUVS - WSO UltraViolet Spectrograph) that provides high resolution spectroscopy (R˜55,000) in two channels VUVES and UVES. VUVES is a far UV echelle spectrograph designed to observe point sources in the range 1020-1800 Å. UVES is the near UV echelle spectrograph, working in the range 1740-3100 Å. These instruments can be evaluated, in terms of performance, from an appropriate overall instrument model through simulations of the expected observations. Since it is not feasible to build and test a prototype of a space-based instrument, numerical simulations performed by an end-to-end simulator are used to model the noise level expected to be present in the observations. The performance of the instrument can be evaluated in terms of noise source response, data quality, and fine-tuning of the instrument design for different types of configurations and observing strategies. The WUVS Simulator has been implemented as a further development of the PLATO Simulator, adapting it to an echelle spectrograph and the WUVS instrument specific characteristics. It has been designed to generate synthetic time series of CCD images by including models of the CCD and its electronics, the telescope optics, the jitter movements of the spacecraft and all important natural noise sources. We provide a detailed description of several noise sources and discuss their properties, in connection with the optical design, the quantum efficiency of the detectors, etc. The expected overall noise budget of the output spectra is evaluated as a function of different sets of input parameters describing the instrument properties.

  20. AVES: an adaptive optics visual echelle spectrograph for the VLT

    Science.gov (United States)

    Pasquini, Luca; Delabre, Bernard; Avila, Gerardo; Bonaccini, Domenico

    1998-07-01

    We present the preliminary study of a low cost, high performance spectrograph for the VLT, for observations in the V, R and I bands. This spectrograph is meant for intermediate (R equals 16,000) resolution spectroscopy of faint (sky and/or detector limited) sources, with particular emphasis on the study of solar-type (F-G) stars belonging to the nearest galaxies and to distant (or highly reddened) galactic clusters. The spectrograph is designed to use the adaptive optics (AO) systems at the VLT Telescope. Even if these AO systems will not provide diffraction limited images in the V, R and I bands, the photon concentration will still be above approximately 60% of the flux in an 0.3 arcsecond aperture for typical Paranal conditions. This makes the construction of a compact, cheap and efficient echelle spectrograph possible. AVES will outperform comparable non adaptive optic instruments by more than one magnitude for sky- and/or detector-limited observations, and it will be very suitable for observations in crowded fields.

  1. High-resolution neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mikerov, V.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Zhitnik, I.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Ignat`ev, A.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Isakov, A.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Korneev, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Krutov, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Kuzin, S.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Oparin, S.N. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Pertsov, A.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Podolyak, E.R. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Sobel`man, I.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tindo, I.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tukarev, B.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation)

    1995-12-31

    A neutron tomography technique with a coordinate resolution of several tens of micrometers has been developed. Our results indicate that the technique resolves details with dimensions less than 100 {mu}m and measures a linear attenuation of less than {approx} 0.1 cm{sup -1}. Tomograms can be reconstructed using incomplete data. Limits on the resolution of the restored pattern are analyzed, and ways to improve the sensitivity of the technique are discussed. (orig.).

  2. Probing Our Heliospheric History I: High-Resolution Observations of Na I and Ca II Along the Solar Historical Trajectory

    CERN Document Server

    Wyman, Katherine

    2013-01-01

    Over the course of its motion through the Galaxy, our solar system has encountered many interstellar environments of varying characteristics. Interstellar medium (ISM) density variations spanning seven orders of magnitude are commonly seen throughout the general Galactic environment, and a sufficiently dense cloud within this range has the potential to dramatically alter the structure of the heliosphere. We present observations of the ISM environments the Sun has most recently encountered based on high-resolution optical spectra toward nearby stars in the direction of the historical solar trajectory. The data were obtained with the highest-resolution spectrographs available, including the Tull Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory and the Ultra-High-Resolution Facility on the Anglo-Australian Telescope at the Anglo-Australian Observatory. Observations were made of interstellar Na I and Ca II doublet absorption toward 43 bright stars within about 500 pc. No absorption is seen ou...

  3. Spectroscopic characterisation of CARMENES target candidates from FEROS, CAFE and HRS high-resolution spectra

    CERN Document Server

    Passegger, V M; Jeffers, S V; Wende, S; Schöfer, P; Amado, P J; Caballero, J A; Montes, D; Mundt, R; Ribas, I; Quirrenbach, A

    2016-01-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) started a new planet survey on M-dwarfs in January this year. The new high-resolution spectrographs are operating in the visible and near-infrared at Calar Alto Observatory. They will perform high-accuracy radial-velocity measurements (goal 1 m s-1) of about 300 M-dwarfs with the aim to detect low-mass planets within habitable zones. We characterised the candidate sample for CARMENES and provide fundamental parameters for these stars in order to constrain planetary properties and understand star-planet systems. Using state-of-the-art model atmospheres (PHOENIX-ACES) and chi2-minimization with a downhill-simplex method we determine effective temperature, surface gravity and metallicity [Fe/H] for high-resolution spectra of around 480 stars of spectral types M0.0-6.5V taken with FEROS, CAFE and HRS. We find good agreement between the models and our observed high-resolution spectra. We sh...

  4. Spectroscopic Characterisation of CARMENES Target Candidates from FEROS, CAFE and HRS High-Resolution Spectra

    Science.gov (United States)

    Passegger, Vera Maria; Reiners, Ansgar; Jeffers, Sandra V.; Wende, Sebastian; Schöfer, Patrick; Amado, Pedro J.; Caballero, Jose A.; Montes, David; Mundt, Reinhard; Ribas, Ignasi; Quirrenbach, Andreas

    2016-07-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs) started a new planet survey on M-dwarfs in January this year. The new high-resolution spectrographs are operating in the visible and near-infrared at Calar Alto Observatory. They will perform high-accuracy radial-velocity measurements (goal 1 m s-1) of about 300 M-dwarfs with the aim to detect low-mass planets within habitable zones. We characterised the candidate sample for CARMENES and provide fundamental parameters for these stars in order to constrain planetary properties and understand star-planet systems. Using state-of-the-art model atmospheres (PHOENIX-ACES) and χ2-minimization with a downhill-simplex method we determine effective temperature, surface gravity and metallicity [Fe/H] for high-resolution spectra of around 480 stars of spectral types M0.0-6.5V taken with FEROS, CAFE and HRS. We find good agreement between the models and our observed high-resolution spectra. We show the performance of the algorithm, as well as results, parameter and spectral type distributions for the CARMENES candidate sample, which is used to define the CARMENES target sample. We also present first preliminary results obtained from CARMENES spectra.

  5. HIGH RESOLUTION OPTICAL AND NIR SPECTRA OF HBC 722

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Eun; Park, Sunkyung [School of Space Research, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Green, Joel D.; Cochran, William D. [Department of Astronomy, University of Texas at Austin, TX (United States); Kang, Wonseok; Lee, Sang-Gak [National Youth Space Center, 200 Deokheungyangjjok-gil, Dongil-myeon, Goheung-gun, Jeollanam-do 548-951 (Korea, Republic of); Sung, Hyun-Il, E-mail: jeongeun.lee@khu.ac.kr, E-mail: sunkyung@khu.ac.kr, E-mail: joel@astro.as.utexas.edu, E-mail: wdc@astro.as.utexas.edu, E-mail: wskang@kywa.or.kr, E-mail: sanggak@kywa.or.kr, E-mail: hisung@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-01

    We present the results of high resolution (R ≥ 30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in the optical/near-IR with the Bohyunsan Optical Echelle Spectrograph, Hobby–Eberly Telescope-HRS, and Immersion Grating Infrared Spectrograph, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first 2 years. The half-width at half-depth of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitted by a G5 template stellar spectrum convolved with a rotation velocity of 70 km s{sup −1} while the near-IR disk features are fitted by a K5 template stellar spectrum convolved with a rotation velocity of 50 km s{sup −1}. Therefore, the optical and near-IR spectra seem to trace the disk at 39 and 76 R{sub ⊙}, respectively. We fit a power-law temperature distribution in the disk, finding an index of 0.8, comparable to optically thick accretion disk models.

  6. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  7. DESIR high resolution separator at GANIL, France

    Directory of Open Access Journals (Sweden)

    Toprek Dragan

    2012-01-01

    Full Text Available A high-resolution separator for the SPIRAL2/DESIR project at GANIL has been designed. The extracted isotopes from SPIRAL2 will be transported to and cooled in a RFQ cooler yielding beams with very low transverse emittance and energy spread. These beams will then be accelerated to 60 keV and sent to a high-resolution mass separator where a specific isotope will be selected. The good beam properties extracted from the RFQ cooler will allow one to obtain a mass resolution of č26000 with the high-resolution mass separator.

  8. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  9. Externally Dispersed Interferometry for Resolution Boosting and Doppler Velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J

    2003-12-01

    Externally dispersed interferometry (EDI) is a rapidly advancing technique for wide bandwidth spectroscopy and radial velocimetry. By placing a small angle-independent interferometer near the slit of an existing spectrograph system, periodic fiducials are embedded on the recorded spectrum. The multiplication of the stellar spectrum times the sinusoidal fiducial net creates a moire pattern, which manifests high detailed spectral information heterodyned down to low spatial frequencies. The latter can more accurately survive the blurring, distortions and CCD Nyquist limitations of the spectrograph. Hence lower resolution spectrographs can be used to perform high resolution spectroscopy and radial velocimetry (under a Doppler shift the entire moir{acute e} pattern shifts in phase). A demonstration of {approx}2x resolution boosting (100,000 from 50,000) on the Lick Obs. echelle spectrograph is shown. Preliminary data indicating {approx}8x resolution boost (170,000 from 20,000) using multiple delays has been taken on a linear grating spectrograph.

  10. 2D analytical modeling of distortion and sky background in multi-fiber spectrographs the case of the Norris spectrograph at Palomar Mountain

    CERN Document Server

    Viton, M; Viton, Maurice; Milliard, Bruno

    2002-01-01

    A method for optimal reduction of data taken with multi-fiber spectrographs is described, based on global correction of their geometrical distortion. Though it was specifically developed for reducing observations performed at Palomar Mountain using the Norris fiber spectrograph, this method can be adapted to other types of multi-object spectrographs such as the multi-slit ones. Combined with a 2D analytical interpolation of sky-background that accounts for non-uniform spectral resolution, the Norris software package achieves very high accuracy in airglow subtraction, even in the near infrared (7000-9000A) where molecular band-emissions commonly induce strong artefacts that preclude clean sky subtraction whenever standard image processing techniques are used. Correlatively, an improvement by a factor of 2 on the precision of radial velocities is achievable. Throughout the paper possible improvements to the method are suggested for those devising similar packages for other instruments.

  11. Gemini Planet Imager Observational Calibrations III: Empirical Measurement Methods and Applications of High-Resolution Microlens PSFs

    OpenAIRE

    Ingraham, Patrick; Ruffio, Jean-Baptiste; Perrin, Marshall D.; Wolff, Schuyler G.; Draper, Zachary H.; Maire, Jerome; Marchis, Franck; Fesquet, Vincent

    2014-01-01

    The newly commissioned Gemini Planet Imager (GPI) combines extreme adaptive optics, an advanced coronagraph, precision wavefront control and a lenslet-based integral field spectrograph (IFS) to measure the spectra of young extrasolar giant planets between 0.9-2.5 um. Each GPI detector image, when in spectral model, consists of ~37,000 microspectra which are under or critically sampled in the spatial direction. This paper demonstrates how to obtain high-resolution microlens PSFs and discusses ...

  12. High Resolution Studies of Mass Loss from Massive Binary Stars

    Science.gov (United States)

    Corcoran, Michael F.; Gull, Theodore R.; Hamaguchi, Kenji; Richardson, Noel; Madura, Thomas; Post Russell, Christopher Michael; Teodoro, Mairan; Nichols, Joy S.; Moffat, Anthony F. J.; Shenar, Tomer; Pablo, Herbert

    2017-01-01

    Mass loss from hot luminous single and binary stars has a significant, perhaps decisive, effect on their evolution. The combination of X-ray observations of hot shocked gas embedded in the stellar winds and high-resolution optical/UV spectra of the cooler mass in the outflow provides unique ways to study the unstable process by which massive stars lose mass both through continuous stellar winds and rare, impulsive, large-scale mass ejections. The ability to obtain coordinated observations with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and other X-ray observatories has allowed, for the first time, studies of resolved line emisssion over the temperature range of 104- 108K, and has provided observations to confront numerical dynamical models in three dimensions. Such observations advance our knowledge of mass-loss asymmetries, spatial and temporal variabilities, and the fundamental underlying physics of the hot shocked outflow, providing more realistic constraints on the amount of mass lost by different luminous stars in a variety of evolutionary stages. We discuss the impact that these joint observational studies have had on our understanding of dynamical mass outflows from massive stars, with particular emphasis on two important massive binaries, Delta Ori Aa, a linchpin of the mass luminosity relation for upper HRD main sequence stars, and the supermassive colliding wind binary Eta Carinae.

  13. High-Resolution Data for a Low-Resolution World

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Brendan Williams [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-10

    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated by a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.

  14. Replicated Spectrographs in Astronomy

    CERN Document Server

    Hill, Gary J

    2014-01-01

    As telescope apertures increase, the challenge of scaling spectrographic astronomical instruments becomes acute. The next generation of extremely large telescopes (ELTs) strain the availability of glass blanks for optics and engineering to provide sufficient mechanical stability. While breaking the relationship between telescope diameter and instrument pupil size by adaptive optics is a clear path for small fields of view, survey instruments exploiting multiplex advantages will be pressed to find cost-effective solutions. In this review we argue that exploiting the full potential of ELTs will require the barrier of the cost and engineering difficulty of monolithic instruments to be broken by the use of large-scale replication of spectrographs. The first steps in this direction have already been taken with the soon to be commissioned MUSE and VIRUS instruments for the Very Large Telescope and the Hobby-Eberly Telescope, respectively. MUSE employs 24 spectrograph channels, while VIRUS has 150 channels. We compa...

  15. High resolution studies of massive primordial haloes

    CERN Document Server

    Latif, M A; Schmidt, W; Niemeyer, J

    2012-01-01

    Atomic cooling haloes with T_vir > 10^4 K are the most plausible sites for the formation of the first galaxies. In this article, we aim to study the implications of gravity driven turbulence in protogalactic haloes. By varying the resolution per Jeans length, we explore whether the turbulent cascade is resolved well enough to obtain converged results. We have performed high resolution cosmological simulations using the adaptive mesh refinement code Enzo including a subgrid-scale turbulence model to study the role of unresolved turbulence. We compared the results of three different Jeans resolutions from 16 to 64 cells. While radially averaged profiles roughly agree at different resolutions, differences in the morphology reveal that even the highest resolution employed provides no convergence. Moreover, taking into account unresolved turbulence significantly influences the morphology of a halo. We have quantified the properties of the high-density clumps in the halo. These clumps are gravitationally unbound wi...

  16. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  17. High range resolution micro-Doppler analysis

    Science.gov (United States)

    Cammenga, Zachary A.; Smith, Graeme E.; Baker, Christopher J.

    2015-05-01

    This paper addresses use of the micro-Doppler effect and the use of high range-resolution profiles to observe complex targets in complex target scenes. The combination of micro-Doppler and high range-resolution provides the ability to separate the motion of complex targets from one another. This ability leads to the differentiation of targets based on their micro-Doppler signatures. Without the high-range resolution, this would not be possible because the individual signatures would not be separable. This paper also addresses the use of the micro-Doppler information and high range-resolution profiles to generate an approximation of the scattering properties of a complex target. This approximation gives insight into the structure of the complex target and, critically, is created without using a pre-determined target model.

  18. High-resolution spectroscopic view of planet formation sites

    CERN Document Server

    Regaly, Zs; Sandor, Zs; Dullemond, C P

    2010-01-01

    Theories of planet formation predict the birth of giant planets in the inner, dense, and gas-rich regions of the circumstellar disks around young stars. These are the regions from which strong CO emission is expected. Observations have so far been unable to confirm the presence of planets caught in formation. We have developed a novel method to detect a giant planet still embedded in a circumstellar disk by the distortions of the CO molecular line profiles emerging from the protoplanetary disk's surface. The method is based on the fact that a giant planet significantly perturbs the gas velocity flow in addition to distorting the disk surface density. We have calculated the emerging molecular line profiles by combining hydrodynamical models with semianalytic radiative transfer calculations. Our results have shown that a giant Jupiter-like planet can be detected using contemporary or future high-resolution near-IR spectrographs such as VLT/CRIRES or ELT/METIS. We have also studied the effects of binarity on dis...

  19. Metallicity determination of M dwarfs - High-resolution IR spectroscopy

    CERN Document Server

    Lindgren, Sara; Seifahrt, Andreas

    2015-01-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims. In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high- resolution infrared spectra. The reliability was confirmed though analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods. The metallicity determination was based on spectra taken in the J band (1.1-1.4 {\\mu}m) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placemen...

  20. High Resolution Optical and NIR Spectra of HBC 722

    CERN Document Server

    Lee, Jeong-Eun; Green, Joel D; Cochran, William D; Kang, Wonseok; Lee, Sang-Gak; Sung, Hyun-Il

    2015-01-01

    We present the results of high resolution (R$\\ge$30,000) optical and near-IR spectroscopic monitoring observations of HBC 722, a recent FU Orionis object that underwent an accretion burst in 2010. We observed HBC 722 in optical/near-IR with the BOES, HET-HRS, and IGRINS spectrographs, at various points in the outburst. We found atomic lines with strongly blueshifted absorption features or P Cygni profiles, both evidence of a wind driven by the accretion. Some lines show a broad double-peaked absorption feature, evidence of disk rotation. However, the wind-driven and disk-driven spectroscopic features are anti-correlated in time; the disk features became strong as the wind features disappeared. This anti-correlation might indicate that the rebuilding of the inner disk was interrupted by the wind pressure during the first two years. The Half-Width at Half-Depth (HWHD) of the double-peaked profiles decreases with wavelength, indicative of the Keplerian rotation; the optical spectra with the disk feature are fitt...

  1. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  2. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  3. NRES: The Network of Robotic Echelle Spectrographs

    Science.gov (United States)

    Siverd, Robert; Brown, Timothy M.; Henderson, Todd; Hygelund, John; Barnes, Stuart; Bowman, Mark; De Vera, Jon; Eastman, Jason D.; Kirby, Annie; Norbury, Martin; Smith, Cary; Taylor, Brook; Tufts, Joseph; Van Eyken, Julian C.

    2017-06-01

    Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four to six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12. Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. Barring serious complications, we expect regular scheduled science observing to begin in mid-2017. Three additional units are in building or testing phases and slated for deployment in late 2017. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities. We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first unit, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of science cases.

  4. High resolution SAR applications and instrument design

    Science.gov (United States)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  5. The optical design of the G-CLEF Spectrograph: the first light instrument for the GMT

    Science.gov (United States)

    Ben-Ami, Sagi; Epps, Harland; Evans, Ian; Mueller, Mark; Podgorski, William; Szentgyorgyi, Andrew

    2016-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF), the first major light instrument for the GMT, is a fiber-fed, high-resolution echelle spectrograph. In the following paper, we present the optical design of G-CLEF. We emphasize the unique solutions derived for the spectrograph fiber-feed: the Mangin mirror that corrects the cylindrical field curvature, the implementation of VPH grisms as cross dispersers, and our novel solution for a multi-colored exposure meter. We describe the spectrograph blue and red cameras comprised of 7 and 8 elements respectively, with one aspheric surface in each camera, and present the expected echellogram imaged on the instrument focal planes. Finally, we present ghost analysis and mitigation strategy that takes into account both single reflection and double reflection back scattering from various elements in the optical train.

  6. First High-Contrast Science with an Integral Field Spectrograph: the Sub-Stellar Companion to GQ Lup

    CERN Document Server

    McElwain, M W; Larkin, J E; Barczys, M; Iserlohe, C; Krabbe, A; Quierrenbach, A; Weiss, J; Wright, S; Elwain, Michael W. Mc; Metchev, Stanimir A.; Larkin, James E.; Barczys, Matthew; Iserlohe, Christof; Krabbe, Alfred; Quierrenbach, Andreas; Weiss, Jason; Wright, Shelley

    2006-01-01

    We present commissioning data from the OSIRIS integral field spectrograph (IFS) on the Keck II 10 m telescope that demonstrate the utility of adaptive optics IFS spectroscopy in studying faint close-in sub-stellar companions in the haloes of bright stars. Our R~2000 J- and H-band spectra of the sub-stellar companion to the 1-10 Myr-old GQ Lup complement existing K-band spectra and photometry, and improve on the original estimate of its spectral type. We find that GQ Lup B is somewhat hotter (M6-L0) than reported in the discovery paper by Neuhauser and collaborators (M9-L4), mainly due to the surface-gravity sensitivity of the K-band spectral classification indices used by the discoverers. Spectroscopic features characteristic of low surface gravity objects, such as lack of alkali absorption and a triangular H-band continuum, are indeed prominent in our spectrum of GQ Lup B. The peculiar shape of the H-band continuum and the difference between the two spectral type estimates is well explained in the context of...

  7. Cosmic evolution of the CIV in high-resolution hydrodynamic simulations

    CERN Document Server

    Tescari, E; D'Odorico, V; Cristiani, S; Calura, F; Borgani, S; Tornatore, L

    2010-01-01

    We investigate the properties of triply ionized Carbon (CIV) in the Intergalactic Medium using a set of high-resolution and large box-size cosmological hydrodynamic simulations of a $\\Lambda$CDM model. We rely on a modification of the GADGET-2 code that self-consistently follows the metal enrichment mechanism by means of a detailed chemical evolution model. We focus on several numerical implementations of galactic feedback: galactic winds in the energy driven and momentum driven prescriptions and Active Galactic Nuclei (AGN) powered by gas accretion onto massive black holes. We extract mock IGM transmission spectra in neutral hydrogen (HI) and CIV and perform Voigt profile fitting. The results are then compared with high-resolution quasar (QSO) spectra obtained with the UVES spectrograph at the VLT and the HIRES spectrograph at Keck. We find that feedback has little impact on statistics related to the neutral hydrogen, while CIV is more affected by galactic winds and/or AGN feedback. When the same analysis is...

  8. High-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges

    Directory of Open Access Journals (Sweden)

    Andreas Stoll

    2017-04-01

    Full Text Available A comprehensive design of a folded-architecture arrayed-waveguide-grating (AWG-device, targeted at applications as integrated photonic spectrographs (IPS in near-infrared astronomy, is presented. The AWG structure is designed for the astronomical H-band (1500 nm–1800 nm with a theoretical maximum resolving power R = 60,000 at 1630 nm. The geometry of the device is optimized for a compact structure with a footprint of 5.5 cm × 3.93 cm on SiO 2 platform. To evaluate the fabrication challenges of such high-resolution AWGs, effects of random perturbations of the effective refractive index (RI distribution in the free propagation region (FPR, as well as small variations of the array waveguide optical lengths are numerically investigated. The results of the investigation show a dramatic degradation of the point spread function (PSF for a random effective RI distribution with variance values above ∼ 10 - 4 for both the FPR and the waveguide array. Based on the results, requirements on the fabrication technology for high-resolution AWG-based spectrographs are given in the end.

  9. A GIANO-TNG high resolution IR spectrum of the airglow emission

    CERN Document Server

    Oliva, E; Maiolino, R; Baffa, C; Biliotti, V; Bruno, P; Falcini, G; Gavriousev, V; Ghinassi, F; Giani, E; Gonzalez, M; Leone, F; Lodi, M; Massi, F; Montegriffo, P; Mochi, I; Pedani, M; Rossetti, E; Scuderi, S; Sozzi, M; Tozzi, A; Valenti, E

    2013-01-01

    A flux-calibrated high resolution spectrum of the airglow emission is a practical lambda-calibration reference for astronomical spectral observations. It is also useful for constraining the molecular parameters of the OH molecule and the physical conditions in the upper mesosphere. methods: We use the data collected during the first technical commissioning of the GIANO spectrograph at the Telescopio Nazionale Galileo (TNG). The high resolution (R~50,000) spectrum simultaneously covers the 0.95-2.4 micron wavelength range. Relative flux calibration is achieved by the simultaneous observation of spectrophotometric standard star. results: We derive a list of improved positions and intensities of OH infrared lines. The list includes Lambda-split doublets many of which are spectrally resolved. Compared to previous works, the new results correct errors in the wavelengths of the Q-branch transitions. The relative fluxes of OH lines from different vibrational bands show remarkable deviations from theoretical predicti...

  10. High-Resolution PET Detector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  11. First Light results from PARAS: The PRL Echelle Spectrograph

    CERN Document Server

    Chakraborty, Abhijit; Roy, Arpita; Pathan, Fazalahmed M; Shah, Vishal; Richardson, Eric H; Ubale, Girish; Shah, Rajesh

    2010-01-01

    We present the first light commissioning results from the Physical Research Laboratory (PRL) optical fiber-fed high resolution cross-dispersed Echelle Spectrograph. It is capable of a single- shot spectral coverage of 3700A to 8600A at R ~ 63,000 and is under very stable conditions of temperature (0.04{\\deg}C at 23{\\deg}C). In the very near future pressure control will also be achieved by enclosing the entire spectrograph in a low-pressure vacuum chamber (~0.01mbar). It is attached to a 1.2m telescope using two 50micron core optical fibers (one for the star and another for simultaneous Th-Ar spectral calibration). The 1.2m telescope is located at Mt. Abu, India, and we are guaranteed about 80 to 100 nights a year for observations with the spectrograph. The instrument will be ultimately used for radial-velocity searches of exoplanets around 1000 dwarf stars, brighter than 10th magnitude, for the next 5 years with a precision of 3 to 5m/s using the simultaneous Th-Ar spectral lamp reference technique. The spect...

  12. CAFE: Calar Alto Fiber-fed Echelle spectrograph

    CERN Document Server

    Aceituno, J; Grupp, F; Lillo, J; Hernan-Obispo, M; Benitez, D; Montoya, L M; Thiele, U; Pedraz, S; Barrado, D; Dreizler, S; Bean, J

    2013-01-01

    We present here CAFE, the Calar Alto Fiber-fed Echelle spectrograph, a new instrument built at the Centro Astronomico Hispano Alem\\'an (CAHA). CAFE is a single fiber, high-resolution ($R\\sim$70000) spectrograph, covering the wavelength range between 3650-9800\\AA. It was built on the basis of the common design for Echelle spectrographs. Its main aim is to measure radial velocities of stellar objects up to $V\\sim$13-14 mag with a precision as good as a few tens of $m s^{-1}$. To achieve this goal the design was simplified at maximum, removing all possible movable components, the central wavelength is fixed, so the wavelentgth coverage; no filter wheel, one slit and so on, with a particular care taken in the thermal and mechanical stability. The instrument is fully operational and publically accessible at the 2.2m telescope of the Calar Alto Observatory. In this article we describe (i) the design, summarizing its manufacturing phase; (ii) characterize the main properties of the instrument; (iii) describe the red...

  13. High Resolution Infrared Spectroscopy in Astronomy Proceedings of an ESO Workshop Held at Garching, Germany, 18-21 November 2003

    CERN Document Server

    Käufl, Hans Ulrich; Moorwood, Alan F. M

    2005-01-01

    Two specialized new instruments for ESO's VLT, VISIR and CRIRES, spawned the idea for this workshop. CRIRES is a dedicated very high resolution infrared spectrograph; VISIR features a high resolution spectroscopic mode. Together, the instruments combine the sensitivity of an 8m-telescope with the now well-established reliability of VLT-facility instruments. High resolution here means that lines in cool stellar atmospheres and HII-regions can be resolved. The astrophysical topics discussed in this rather specialized workshop range from the inner solar system to active galactic nuclei. There are many possibilities for new discoveries with these instruments, but the unique capability, which becomes available through high-resolution infrared spectroscopy, is the observation of molecular rotational-vibrational transitions in many astrophysical environments. Particularly interesting and surprising in this context, many papers on modeling and laboratory spectroscopy at the workshop appear to indicate that astronomic...

  14. A High Resolution Scale-of-four

    Science.gov (United States)

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  15. Single shot high resolution digital holography.

    Science.gov (United States)

    Khare, Kedar; Ali, P T Samsheer; Joseph, Joby

    2013-02-11

    We demonstrate a novel computational method for high resolution image recovery from a single digital hologram frame. The complex object field is obtained from the recorded hologram by solving a constrained optimization problem. This approach which is unlike the physical hologram replay process is shown to provide high quality image recovery even when the dc and the cross terms in the hologram overlap in the Fourier domain. Experimental results are shown for a Fresnel zone hologram of a resolution chart, intentionally recorded with a small off-axis reference beam angle. Excellent image recovery is observed without the presence of dc or twin image terms and with minimal speckle noise.

  16. Customized MFM probes with high lateral resolution

    Directory of Open Access Journals (Sweden)

    Óscar Iglesias-Freire

    2016-07-01

    Full Text Available Magnetic force microscopy (MFM is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm topographic (magnetic lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media by choosing tips mounted on hard (or soft cantilevers, a technology that is currently not available on the market.

  17. High-resolution electrohydrodynamic jet printing

    Science.gov (United States)

    Park, Jang-Ung; Hardy, Matt; Kang, Seong Jun; Barton, Kira; Adair, Kurt; Mukhopadhyay, Deep Kishore; Lee, Chang Young; Strano, Michael S.; Alleyne, Andrew G.; Georgiadis, John G.; Ferreira, Placid M.; Rogers, John A.

    2007-10-01

    Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspects of the physics of this approach, which has some features in common with related but comparatively low-resolution techniques for graphic arts, are revealed through direct high-speed imaging of the droplet formation processes. Printing of complex patterns of inks, ranging from insulating and conducting polymers, to solution suspensions of silicon nanoparticles and rods, to single-walled carbon nanotubes, using integrated computer-controlled printer systems illustrates some of the capabilities. High-resolution printed metal interconnects, electrodes and probing pads for representative circuit patterns and functional transistors with critical dimensions as small as 1μm demonstrate potential applications in printed electronics.

  18. Smartphone microendoscopy for high resolution fluorescence imaging

    CERN Document Server

    Hong, Xiangqian; Mugler, Dale H; Yu, Bing

    2016-01-01

    High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the gastrointestinal tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this letter we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 {\\mu}m. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle income countries.

  19. The future of high resolution electron microscopy

    Institute of Scientific and Technical Information of China (English)

    D Van Dyck

    2000-01-01

    The state of the art and the future in quantitative high resolution electron microscopy are discussed in the framework of parameter estimation. Reconstruction methods are then to be considered as direct methods to yield a starting structure for further refinement. With the increasing flexibility of the instruments, computer aided experimental strategy will become important.

  20. High resolution spectroscopy of planet bearing stars

    Directory of Open Access Journals (Sweden)

    M. C. Gálvez

    2007-01-01

    Full Text Available We present here the first steps of an extended spectroscopic survey in order to characterize the stellar hosts of extra-solar planets. We have selected several known stars with plan- ets and using high resolution spectroscopy, we have studied their properties.

  1. High-resolution seismic profiling on water

    OpenAIRE

    McGee, T.M.

    2000-01-01

    Herein is presented an overview of high-resolution seismic profiling on water. Included are basic concepts and terminology as well as discussions of types of sources and receivers, field practice, data recording and data processing. Emphasis is on digital single-channel profiling for engineering and environmental purposes.

  2. Compact high-resolution spectral phase shaper

    NARCIS (Netherlands)

    Postma, S.; Walle, van der P.; Offerhaus, H.L.; Hulst, van N.F.

    2005-01-01

    The design and operation of a high-resolution spectral phase shaper with a footprint of only 7×10 cm2 is presented. The liquid-crystal modulator has 4096 elements. More than 600 independent degrees of freedom can be positioned with a relative accuracy of 1 pixel. The spectral shaping of pulses fro

  3. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  4. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling th

  5. The Interface Region Imaging Spectrograph (IRIS)

    Science.gov (United States)

    De Pontieu, B.; Title, A. M.; Lemen, J. R.; Kushner, G. D.; Akin, D. J.; Allard, B.; Berger, T.; Boerner, P.; Cheung, M.; Chou, C.; Drake, J. F.; Duncan, D. W.; Freeland, S.; Heyman, G. F.; Hoffman, C.; Hurlburt, N. E.; Lindgren, R. W.; Mathur, D.; Rehse, R.; Sabolish, D.; Seguin, R.; Schrijver, C. J.; Tarbell, T. D.; Wülser, J.-P.; Wolfson, C. J.; Yanari, C.; Mudge, J.; Nguyen-Phuc, N.; Timmons, R.; van Bezooijen, R.; Weingrod, I.; Brookner, R.; Butcher, G.; Dougherty, B.; Eder, J.; Knagenhjelm, V.; Larsen, S.; Mansir, D.; Phan, L.; Boyle, P.; Cheimets, P. N.; DeLuca, E. E.; Golub, L.; Gates, R.; Hertz, E.; McKillop, S.; Park, S.; Perry, T.; Podgorski, W. A.; Reeves, K.; Saar, S.; Testa, P.; Tian, H.; Weber, M.; Dunn, C.; Eccles, S.; Jaeggli, S. A.; Kankelborg, C. C.; Mashburn, K.; Pust, N.; Springer, L.; Carvalho, R.; Kleint, L.; Marmie, J.; Mazmanian, E.; Pereira, T. M. D.; Sawyer, S.; Strong, J.; Worden, S. P.; Carlsson, M.; Hansteen, V. H.; Leenaarts, J.; Wiesmann, M.; Aloise, J.; Chu, K.-C.; Bush, R. I.; Scherrer, P. H.; Brekke, P.; Martinez-Sykora, J.; Lites, B. W.; McIntosh, S. W.; Uitenbroek, H.; Okamoto, T. J.; Gummin, M. A.; Auker, G.; Jerram, P.; Pool, P.; Waltham, N.

    2014-07-01

    The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33 - 0.4 arcsec spatial resolution, two-second temporal resolution, and 1 km s-1 velocity resolution over a field-of-view of up to 175 arcsec × 175 arcsec. IRIS was launched into a Sun-synchronous orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains spectra in passbands from 1332 - 1358 Å, 1389 - 1407 Å, and 2783 - 2834 Å, including bright spectral lines formed in the chromosphere (Mg ii h 2803 Å and Mg ii k 2796 Å) and transition region (C ii 1334/1335 Å and Si iv 1394/1403 Å). Slit-jaw images in four different passbands (C ii 1330, Si iv 1400, Mg ii k 2796, and Mg ii wing 2830 Å) can be taken simultaneously with spectral rasters that sample regions up to 130 arcsec × 175 arcsec at a variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to emission from plasma at temperatures between 5000 K and 10 MK and will advance our understanding of the flow of mass and energy through an interface region, formed by the chromosphere and transition region, between the photosphere and corona. This highly structured and dynamic region not only acts as the conduit of all mass and energy feeding into the corona and solar wind, it also requires an order of magnitude more energy to heat than the corona and solar wind combined. The IRIS investigation includes a strong numerical modeling component based on advanced radiative-MHD codes to facilitate interpretation of observations of this complex region. Approximately eight Gbytes of data (after compression) are acquired by IRIS each day and made available for unrestricted use within a few days of the observation.

  6. UV emissions of Jupiter: exploration of the high-latitude regions through the UV spectrograph on NASA's Juno mission

    Science.gov (United States)

    Hue, Vincent; Gladstone, Randy; Versteeg, Maarten; Greathouse, Thomas K.; Davis, Michael; Gerard, Jean-Claude; Grodent, Denis; Bonfond, Bertrand

    2016-10-01

    The Juno mission offers the opportunity to study Jupiter, from its inner structure to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) planned for July 4th 2016, will place Juno in a 53.5 days capture orbit. A period reduction maneuver will be performed two orbits later to place Juno into 14-days elliptical orbits for the duration of the nominal mission, which includes 36 orbits. Juno-UVS is a UV spectrograph with a bandpass of 70 ≤ λ ≤ 205 nm, designed to characterize Jupiter UV emissions. One of the main additions of UVS compared to its predecessors is a 2.54 mm tantalum shielding, to protect it from the harsh radiation environment at Jupiter, and a scan mirror, to allow for targeting specific auroral regions during perijove passes. The scan mirror is located at the front end of the instrument and will be used to look at +/- 30° perpendicular to the Juno spin plane. The entrance slit of UVS has a dog-bone shape composed by three sections with field of views of 0.2°x2.5°, 0.025°x2.0° and 0.2°x2.5°, as projected onto the sky. It will provide new constraints on Jupiter's auroral nightside morphology and spectral features as well as the vertical structure of these emissions. It will bring remote-sensing constraints for the onboard waves and particle instruments (JADE, JEDI, Waves and MAG). The ability to change the pointing will allow relating the observed UV brightness of the regions magnetically connected to where Juno flies with the particles and waves measurements. We will discuss the planned observations and scientific targets for the nominal mission orbital sequence, which will consist of three UV datasets per orbit. We will present the results from the first orbit. As Juno orbit evolves during the mission, we will also present how these objectives evolve over time.

  7. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  8. High-resolution traction force microscopy.

    Science.gov (United States)

    Plotnikov, Sergey V; Sabass, Benedikt; Schwarz, Ulrich S; Waterman, Clare M

    2014-01-01

    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. © 2014 Elsevier Inc. All rights reserved.

  9. 小型宽光谱低分辨率光谱仪器光学设计%Optical Design of a Small-size, Long-spectrum Range and Low-resolution Spectrograph

    Institute of Scientific and Technical Information of China (English)

    吴从均; 颜昌翔

    2011-01-01

    Diffraction grating is the core part of spectrum instruments. To get a good performance of the instruments, different structure should be designed with different type of the grating. A spectrograph, which works in the spectrum range from 340 nm to 800 nm, was designed, whose the resolution is higher than 15nm, and the dispersion size is 28.71 mm on the focal plane. According to comparison of structure of the common spectrographs, the flat field holographic concave grating structure with many advantages was chosen. The long pass filter was used to constrain the secondary spectrum, and the optical source was also considered. As a result, the resolution of the whole system is better than 10 nm, and the size is only 190 mm× 15 mm×60 mm. The flat concave-grating can be got from the market, which greatly decreases the cost of the product. Besides, only a grating can act as the spectrometer system, which can make the system easily assembly and very convenient for mass production.%光栅作为小型光谱仪器分光系统的核心,采用不同种类的光栅制作分光仪器时其结构形式也不尽相同.文中为设计一个工作波段在340-800 nm,分辨率优于15nm,谱面长度28.71 mm的比色仪光学系统,通过对比常见光谱仪结构的优缺点,选择平场凹面光栅作为最终的结构形式,采用长波通滤光片实现对二级光谱重叠的消除,并对比色仪光源系统进行设计,平场凹面光栅光学系统分辨率优于10nm,全系统大小约为190 mm×15 mm×60 mm的光学装置,平场凹面光栅采用市场现有的光栅.不仅满足设计要求,而且元件较少,有利于装调和批量化生产.

  10. Development of a high resolution and high dispersion Thomson parabola.

    Science.gov (United States)

    Jung, D; Hörlein, R; Kiefer, D; Letzring, S; Gautier, D C; Schramm, U; Hübsch, C; Öhm, R; Albright, B J; Fernandez, J C; Habs, D; Hegelich, B M

    2011-01-01

    Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E parabola for ion energies of more than 30 MeV/nucleon.

  11. An integral field spectrograph utilizing mirrorlet arrays

    Science.gov (United States)

    Chamberlin, Phillip C.; Gong, Qian

    2016-09-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 mÅ) across a 15 Å spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  12. An Integral Field Spectrograph Utilizing Mirrorlet Arrays

    Science.gov (United States)

    Chamberlin, Phillip C.; Gong, Qian

    2016-01-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 m) across a 15 spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  13. High resolution 3D nonlinear integrated inversion

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xuben; Li Zhirong; Li Qiong; Li Zhengwen

    2009-01-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  14. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  15. High-Resolution US of Rheumatologic Diseases.

    Science.gov (United States)

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis.

  16. Curved VPH gratings for novel spectrographs

    Science.gov (United States)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  17. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M.

    2005-05-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  18. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  19. High-resolution TOF with RPCs

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, P. E-mail: fonte@lipc.fis.uc.pt; Peskov, V

    2002-01-21

    In this work, we describe some recent results concerning the application of Resistive Plate Chambers operated in avalanche mode at atmospheric pressure for high-resolution time-of-flight measurements. A combination of multiple, mechanically accurate, thin gas gaps and state-of-the-art electronics yielded an overall (detector plus electronics) timing accuracy better than 50 ps {sigma} with a detection efficiency up to 99% for MIPs. Single gap chambers were also tested in order to clarify experimentally several aspects of the mode of operation of these detectors. These results open perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and time resolution comparable to the existing scintillator-based TOF technology but with a significantly, up to an order of magnitude, lower price per channel.

  20. The Infrared Imaging Spectrograph (IRIS) for TMT: Instrument Overview

    CERN Document Server

    Larkin, James E; Barton, Elizabeth J; Bauman, Brian; Bui, Khanh; Canfield, John; Crampton, David; Delacroix, Alex; Fletcher, Murray; Hale, David; Loop, David; Niehaus, Cyndie; Phillips, Andrew C; Reshetov, Vladimir; Simard, Luc; Smith, Roger; Suzuki, Ryuji; Usuda, Tomonori; Wright, Shelley A

    2010-01-01

    We present an overview of the design of IRIS, an infrared (0.85 - 2.5 micron) integral field spectrograph and imaging camera for the Thirty Meter Telescope (TMT). With extremely low wavefront error (<30 nm) and on-board wavefront sensors, IRIS will take advantage of the high angular resolution of the narrow field infrared adaptive optics system (NFIRAOS) to dissect the sky at the diffraction limit of the 30-meter aperture. With a primary spectral resolution of 4000 and spatial sampling starting at 4 milliarcseconds, the instrument will create an unparalleled ability to explore high redshift galaxies, the Galactic center, star forming regions and virtually any astrophysical object. This paper summarizes the entire design and basic capabilities. Among the design innovations is the combination of lenslet and slicer integral field units, new 4Kx4k detectors, extremely precise atmospheric dispersion correction, infrared wavefront sensors, and a very large vacuum cryogenic system.

  1. The Infrared Imaging Spectrograph (IRIS) for TMT: Instrument Overview

    CERN Document Server

    Moore, Anna M; Wright, Shelley A; Bauman, Brian; Dunn, Jennifer; Ellerbroek, Brent; Phillips, Andrew C; Simard, Luc; Suzuki, Ryuji; Zhang, Kai; Aliado, Ted; Brims, George; Canfield, John; Chen, Shaojie; Dekany, Richard; Delacroix, Alex; Do, Tuan; Herriot, Glen; Ikenoue, Bungo; Johnson, Chris; Meyer, Elliot; Obuchi, Yoshiyuki; Pazder, John; Reshetov, Vladimir; Riddle, Reed; Saito, Sakae; Smith, Roger; Sohn, Ji Man; Uraguchi, Fumihiro; Usuda, Tomonori; Wang, Eric; Wang, Lianqi; Weiss, Jason; Wooff, Robert

    2014-01-01

    We present an overview of the design of IRIS, an infrared (0.84 - 2.4 micron) integral field spectrograph and imaging camera for the Thirty Meter Telescope (TMT). With extremely low wavefront error (<30 nm) and on-board wavefront sensors, IRIS will take advantage of the high angular resolution of the narrow field infrared adaptive optics system (NFIRAOS) to dissect the sky at the diffraction limit of the 30-meter aperture. With a primary spectral resolution of 4000 and spatial sampling starting at 4 milliarcseconds, the instrument will create an unparalleled ability to explore high redshift galaxies, the Galactic center, star forming regions and virtually any astrophysical object. This paper summarizes the entire design and basic capabilities. Among the design innovations is the combination of lenslet and slicer integral field units, new 4Kx4k detectors, extremely precise atmospheric dispersion correction, infrared wavefront sensors, and a very large vacuum cryogenic system.

  2. Structural High-resolution Satellite Image Indexing

    OpenAIRE

    Xia, Gui-Song; YANG, WEN; Delon, Julie; Gousseau, Yann; Sun, Hong; Maître, Henri

    2010-01-01

    International audience; Satellite images with high spatial resolution raise many challenging issues in image understanding and pattern recognition. First, they allow measurement of small objects maybe up to 0.5 m, and both texture and geometrical structures emerge simultaneously. Second, objects in the same type of scenes might appear at different scales and orientations. Consequently, image indexing methods should combine the structure and texture information of images and comply with some i...

  3. Stellar Tools for High Resolution Population Synthesis

    Science.gov (United States)

    Chávez, M.; Bertone, E.; Rodríguez-Merino, L.; Buzzoni, A.

    2005-12-01

    We present preliminary results of the application of a new stellar library of high-resolution synthetic spectra (based upon ATLAS9 and SYNTHE codes developed by R. L. Kurucz) in the calculation of the ultraviolet-optical spectral energy distribution of simple stellar populations (SSPs). For this purpose, the library has been coupled with Buzzoni's population synthesis code. Part of this paper is also devoted to illustrate quantitatively the extent to which synthetic stellar libraries represent real stars.

  4. Petrous apex mucocele: high resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Memis, A. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Memis, A. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Alper, H. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Calli, C. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Ozer, H. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Ozdamar, N. [Dept. of Neurosurgery, Hospital of Ege Univ., Bornova, Izmir (Turkey)

    1994-11-01

    Mucocele of the petrous apex is very rare, only three cases having been reported. Since this area is inaccessible to direct examination, imaging, preferably high resolution computed tomography (HR CT) is essential. We report a case showing an eroding, non enhancing mass with sharp, lobulated contours, within the petrous apex. The presence of a large air cell on the opposite side suggested a mucocele. (orig.)

  5. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  6. High Speed and High Resolution Table-Top Nanoscale Imaging

    CERN Document Server

    Tadesse, G K; Demmler, S; HÄdrich, S; Wahyutama, I; Steinert, M; Spielmann, C; ZÜrch, M; TÜnnermann, A; Limpert, J; Rothhardt, J

    2016-01-01

    We present a table-top coherent diffraction imaging (CDI) experiment based on high-order harmonics generated at 18 nm by a high average power femtosecond fiber laser system. The high photon flux, narrow spectral bandwidth and high degree of spatial coherence allow for ultra-high sub-wavelength resolution imaging at a high numerical aperture. Our experiments demonstrate a half-pitch resolution of 13.6 nm, very close to the actual Abbe-limit of 12.4 nm, which is the highest resolution achieved from any table-top XUV or X-ray microscope. In addition, 20.5 nm resolution was achieved with only 3 sec of integration time bringing live diffraction imaging and 3D tomography on the nanoscale one step closer to reality. The current resolution is solely limited by the wavelength and the detector size. Thus, table-top nanoscopes with only a few-nm resolutions are in reach and will find applications in many areas of science and technology.

  7. High Sensitivity, High Frequency and High Time Resolution Decimetric Spectroscope

    Science.gov (United States)

    Sawant, H. S.; Rosa, R. R.

    1990-11-01

    RESUMEN. Se ha desarrollado el primer espectroscopio decimetrico latino americano operando en una banda de 100 MHz con alta resoluci6n de fre- cuencia (100 KHz) y tiempo (10 ms), alrededor de cualquier centro de frecuencia en el intervalo de 2000-200 MHz. El prop6sito de esta nota es describir investigaciones solares y no solares que se planean, progra ma de investigaci6n y la situaci6n actual de desarrollo de este espectroscopio. ABSTRACT. First Latin American Decimetric Spectroscope operating over a band of 100 MHz with high resolution in frequency (100 KHz) and time (10 ms), around any center frequency in the range of 2000-200 MHz is being developed. The purpose of this note is to describe planned solar, and non-solar, research programmes and present status of development of this spectroscope. Keq wo : INSTRUMENTS - SPECTROSCOPY

  8. High Resolution Measurement of the Glycolytic Rate

    Science.gov (United States)

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  9. High resolution measurement of the glycolytic rate

    Directory of Open Access Journals (Sweden)

    Carla X Bittner

    2010-09-01

    Full Text Available The glycolytic rate is sensitive to physiological activity, hormones, stress, aging and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently-developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

  10. SPIRAL2/DESIR high resolution mass separator

    Energy Technology Data Exchange (ETDEWEB)

    Kurtukian-Nieto, T., E-mail: kurtukia@cenbg.in2p3.fr [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver B.C., V6T 2A3 (Canada); Blank, B.; Chiron, T. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Davids, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Delalee, F. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Duval, M. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); El Abbeir, S.; Fournier, A. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Lunney, D. [CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay (France); Méot, F. [BNL, Upton, Long Island, New York (United States); Serani, L. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Stodel, M.-H.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); and others

    2013-12-15

    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/Δm of 31,000 for a 1 π-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given.

  11. Moderate resolution spectrophotometry of high redshift quasars

    Science.gov (United States)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  12. Radiation length imaging with high resolution telescopes

    CERN Document Server

    Stolzenberg, U; Schwenker, B; Wieduwilt, P; Marinas, C; Lütticke, F

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the $X$/$X_0$ imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of $X$/$X_0$ imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of ...

  13. High Resolution Bathymetry Estimation Improvement with Single ImageSuper Resolution Algorithm Super Resolution Forests

    Science.gov (United States)

    2017-01-26

    process of the SRF algorithm, we were able to further increase the mean PSNR score of the high resolution estimated data from previously used bicubic...This meant that implementing the edited variance before the bicubic estimates were created caused the mean PSNR to increase the most, and all...interpolation (by about 1 dB). Figure 7: PSNR comparison (with mean scores) between Bicubic Interpolation and SRF Figure 7 shows the comparison between

  14. High-time Resolution Astrophysics and Pulsars

    CERN Document Server

    Shearer, Andy

    2008-01-01

    The discovery of pulsars in 1968 heralded an era where the temporal characteristics of detectors had to be reassessed. Up to this point detector integration times would normally be measured in minutes rather seconds and definitely not on sub-second time scales. At the start of the 21st century pulsar observations are still pushing the limits of detector telescope capabilities. Flux variations on times scales less than 1 nsec have been observed during giant radio pulses. Pulsar studies over the next 10 to 20 years will require instruments with time resolutions down to microseconds and below, high-quantum quantum efficiency, reasonable energy resolution and sensitive to circular and linear polarisation of stochastic signals. This chapter is review of temporally resolved optical observations of pulsars. It concludes with estimates of the observability of pulsars with both existing telescopes and into the ELT era.

  15. Novel high-resolution VGA QWIP detector

    Science.gov (United States)

    Kataria, H.; Asplund, C.; Lindberg, A.; Smuk, S.; Alverbro, J.; Evans, D.; Sehlin, S.; Becanovic, S.; Tinghag, P.; Höglund, L.; Sjöström, F.; Costard, E.

    2017-02-01

    Continuing with its legacy of producing high performance infrared detectors, IRnova introduces its high resolution LWIR IDDCA (Integrated Detector Dewar Cooler assembly) based on QWIP (quantum well infrared photodetector) technology. The Focal Plane Array (FPA) has 640×512 pixels, with small (15μm) pixel pitch, and is based on the FLIRIndigo ISC0403 Readout Integrated Circuit (ROIC). The QWIP epitaxial structures are grown by metal-organic vapor phase epitaxy (MOVPE) at IRnova. Detector stability and response uniformity inherent to III/V based material will be demonstrated in terms of high performing detectors. Results showing low NETD at high frame rate will be presented. This makes it one of the first 15μm pitch QWIP based LWIR IDDCA commercially available on the market. High operability and stability of our other QWIP based products will also be shared.

  16. High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF.

    Science.gov (United States)

    Men, Zhirong; Wang, Pengbo; Li, Chunsheng; Chen, Jie; Liu, Wei; Fang, Yue

    2017-07-25

    Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technique for acquiring high-spatial-resolution images of the Earth's surface. With the development of beam steering techniques, sliding spotlight and staring spotlight modes have been employed to support high-spatial-resolution applications. In addition to this strengthened high-spatial-resolution and wide-swath capability, high-temporal-resolution (short repeat-observation interval) represents a key capability for numerous applications. However, conventional SAR systems are limited in that the same patch can only be illuminated for several seconds within a single pass. This paper considers a novel high-squint-angle system intended to acquire high-spatial-resolution spaceborne SAR images with repeat-observation intervals varying from tens of seconds to several minutes within a single pass. However, an exponentially increased range cell migration would arise and lead to a conflict between the receive window and 'blind ranges'. An efficient data acquisition technique for high-temporal-resolution, high-spatial-resolution and high-squint-angle spaceborne SAR, in which the pulse repetition frequency (PRF) is continuously varied according to the changing slant range, is presented in this paper. This technique allows echo data to remain in the receive window instead of conflicting with the transmitted pulse or nadir echo. Considering the precision of hardware, a compromise and practical strategy is also proposed. Furthermore, a detailed performance analysis of range ambiguities is provided with respect to parameters of TerraSAR-X. For strong point-like targets, the range ambiguity of this technique would be better than that of uniform PRF technique. For this innovative technique, a resampling strategy and modified imaging algorithm have been developed to handle the non-uniformly sampled echo data. Simulations are performed to validate the efficiency of the proposed technique and the associated

  17. The high resolution vacuum ultraviolet absorption spectra of the group VI dihydrides and deuterides Rydberg series

    CERN Document Server

    Mayhew, C A

    1984-01-01

    The high resolution absorption spectra of the important group VI dihydrides and deuterides in the vacuum ultraviolet below, and up to, their first ionisation potentials are presented. These spectra were recorded using synchrotron radiation as the background light source in conjunction with a 3m normal incidence vacuum spectrograph, equipped with holographic gratings. Due to the nature of the originating orbital for the majority of optical transitions in the VUV well developed Rydberg series are observed. One particular series can be followed up to fairly high n, so that accurate values of the first ionisation potential are determined. The identifications of the Rydberg series are made from arguments relating to their oscillator strengths, quantum defects, symmetries and from comparisons with the spectra of the corresponding united atoms i.e. the inert gases. Examples of the symmetry assignments for Rydberg series from rotational band contour analyses of the lower Rydberg members for the H sub 2 S, H sub 2 Se ...

  18. The Potsdam MRS Spectrograph - heritage of MUSE and the impact of cross-innovation in the process of technology transfer

    CERN Document Server

    Moralejo, Benito; Godefroy, Philippe; Fechner, Thomas; Bauer, Svend M; Schmälzlin, Elmar; Kelz, Andreas; Haynes, Roger

    2016-01-01

    After having demonstrated that an IFU, attached to a microscope rather than to a telescope, is capable of differentiating complex organic tissue with spatially resolved Raman spectroscopy, we have launched a clinical validation program that utilizes a novel optimized fiber-coupled multi-channel spectrograph whose layout is based on the modular MUSE spectrograph concept. The new design features a telecentric input and has an extended blue performance, but otherwise maintains the properties of high throughput and excellent image quality over an octave of wavelength coverage with modest spectral resolution. We present the opto-mechanical layout and details of its optical performance.

  19. The Potsdam MRS spectrograph: heritage of MUSE and the impact of cross-innovation in the process of technology transfer

    Science.gov (United States)

    Moralejo, B.; Roth, M. M.; Godefroy, P.; Fechner, T.; Bauer, S. M.; Schmälzlin, E.; Kelz, A.; Haynes, R.

    2016-07-01

    After having demonstrated that an IFU, attached to a microscope rather than to a telescope, is capable of differentiating complex organic tissue with spatially resolved Raman spectroscopy, we have launched a clinical validation program that utilizes a novel optimized fiber-coupled multi-channel spectrograph whose layout is based on the modular MUSE spectrograph concept. The new design features a telecentric input and has an extended blue performance, but otherwise maintains the properties of high throughput and excellent image quality over an octave of wavelength coverage with modest spectral resolution. We present the opto-mechanical layout and details of its optical performance.

  20. TAIPAN fibre feed and spectrograph: engineering overview

    Science.gov (United States)

    Staszak, Nicholas F.; Lawrence, Jon; Zhelem, Ross; Content, Robert; Churilov, Vladimir; Case, Scott; Brown, Rebecca; Hopkins, Andrew M.; Kuehn, Kyler; Pai, Naveen; Klauser, Urs; Nichani, Vijay; Waller, Lew

    2016-07-01

    TAIPAN will conduct a stellar and galaxy survey of the Southern sky. The TAIPAN positioner is being developed as a prototype for the MANIFEST instrument on the GMT. The TAIPAN Spectrograph is an AAO designed all-refractive 2-arm design that delivers a spectral resolution of R>2000 over the wavelength range 370-870 nm. It is fed by a custom fibre cable from the TAIPAN Starbugs positioner. The design for TAIPAN incorporates 150 optical fibres (with an upgrade path to 300). Presented is an engineering overview of the UKST Fibre Cable design used to support Starbugs, the custom slit design, and the overall design and build plan for the TAIPAN Spectrograph.

  1. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  2. Interstellar Medium Absorption Profile Spectrograph (IMAPS)

    Science.gov (United States)

    Jenkins, E. B.

    1985-08-01

    The design and fabrication of an objective-grating echelle spectrograph to fly on sounding rockets and record spectra of stars from approximately 920 to 1120A with a resolving power lambda/delta lambda = 200,000 is discussed. The scientific purpose of the program is to observe, with ten times better velocity resolution than before, the plentiful absorption lines in this spectral region produced by atoms, ions and molecules in the interstellar medium. In addition, an important technical goal is to develop and flight-quality a new ultraviolet, photon-counting image sensor which has a windowless, opaque photocathode and a CCD bombarded directly by the accelerated photoelectrons. Except for some initial difficulties with the performance of CCDs, the development of the payload instrument is relatively straightforward and our overall design goals are satisfied. The first flight occurred in late 1984, but no data were obtained because of an inrush of air degraded the instrument's vacuum and caused the detector's high voltage to arc. A second flight in early 1985 was a complete success and obtained a spectrum of pi Sco. Data from this mission are currently being reduced; quick-look versions of the spectra indicate that excellent results will be obtained. Currently, the payload is being reconfigured to fly on a Spartan mission in 1988.

  3. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  4. CRIRES-POP: A library of high resolution spectra in the near-infrared

    CERN Document Server

    Lebzelter, T; Uttenthaler, S; Ramsay, S; Hartman, H; Nieva, M -F; Przybilla, N; Smette, A; Wahlgren, G M; Wolff, B; Hussain, G A J; Kaeufl, H U; Seemann, U

    2012-01-01

    New instrumental capabilities and the wealth of astrophysical information extractable from the near-infrared wavelength region have led to a growing interest in the field of high resolution spectroscopy at 1-5 mu. We aim to provide a library of observed high-resolution and high signal-to-noise-ratio near-infrared spectra of stars of various types throughout the Hertzsprung-Russell diagram. This is needed for the exploration of spectral features in this wavelength range and for comparison of reference targets with observations and models. High quality spectra were obtained using the CRIRES near-infrared spectrograph at ESO's VLT covering the range from 0.97 to 5.3 mu at high spectral resolution. Accurate wavelength calibration and correction for of telluric lines were performed by fitting synthetic transmission spectra for the Earth's atmosphere to each spectrum individually. We describe the observational strategy and the current status and content of the library which includes 13 objects. The first examples o...

  5. Novel high resolution tactile robotic fingertips

    DEFF Research Database (Denmark)

    Drimus, Alin; Jankovics, Vince; Gorsic, Matija

    2014-01-01

    This paper describes a novel robotic fingertip based on piezoresistive rubber that can sense pressure tactile stimuli with a high spatial resolution over curved surfaces. The working principle is based on a three-layer sandwich structure (conductive electrodes on top and bottom and piezoresistive...... with specialized data acquisition electronics that acquire 500 frames per second provides rich information regarding contact force, shape and angle for bio- inspired robotic fingertips. Furthermore, a model of estimating the force of contact based on values of the cells is proposed....

  6. Fast Backprojection Techniques for High Resolution Tomography

    CERN Document Server

    Koshev, Nikolay; Miqueles, Eduardo X

    2016-01-01

    Fast image reconstruction techniques are becoming important with the increasing number of scientific cases in high resolution micro and nano tomography. The processing of the large scale three-dimensional data demands new mathematical tools for the tomographic reconstruction task because of the big computational complexity of most current algorithms as the sizes of tomographic data grow with the development of more powerful acquisition hardware and more refined scientific needs. In the present paper we propose a new fast back-projection operator for the processing of tomographic data and compare it against other fast reconstruction techniques.

  7. Operating mode of high pressure straws with high spatial resolution

    CERN Document Server

    Davkov, K I; Peshekhonov, V D; Cholakov, V D

    2013-01-01

    The article presents results of studying the operating mode of thin-walled drift tubes (straws) at flushing it with a high-pressure gas mixture, which allowed obtaining extremely high spatial resolution for straw detectors. The results of studying the radiation ageing of straws operating in this mode are also described.

  8. Digital interface for high-resolution displays

    Science.gov (United States)

    Hermann, David J.; Gorenflo, Ronald L.

    1999-08-01

    Commercial display interfaces are currently transitioning from analog to digital. Although this transition is in the very early stages, the military needs to begin planning their own transition to digital. There are many problems with the analog interface in high-resolution display systems that are solved by changing to a digital interface. Also, display system cost can be lower with a digital interface to a high resolution display. Battelle is under contract with DARPA to develop an advanced Display Interface (ADI) to replace the analog RGB interfaces currently used in high definition workstation displays. The goal is to create a standard digital display interface for military applications that is based on emerging commercial standards. Support for military application- specific functionality is addressed, including display test and control. The main challenges to implementing a digital display interface are described, along with approaches to address the problems. Conceptual ADI architectures are described and contrasted. The current and emerging commercial standards for digital display interfaces are reviewed in detail. Finally, the tasks required to complete the ADI effort are outlined and described.

  9. Crusta: Visualizing High-resolution Global Data

    Science.gov (United States)

    Bernardin, T. S.; Kreylos, O.; Bowles, C. J.; Cowgill, E.; Hamann, B.; Kellogg, L. H.

    2009-12-01

    Virtual globes have become indispensable tools for visualizing, understanding and presenting data from Earth and other planetary bodies. The scientific community has invested much effort into exploiting existing globes to their fullest potential by refining and adapting their capabilities to better satisfy specific needs. For example, Google Earth provides users with the ability to view hillshade images derived from airborne LiDAR data such as the 2007 Northern California GeoEarthScope data. However, because most available globes were not designed with the specific needs of geoscientists in mind, shortcomings are becoming increasingly evident in geoscience applications such as terrain visualization. In particular, earth scientists struggle to visualize digital elevation models with both high spatial resolution (0.5 - 1 square meters per sample) and large extent (>2000 square kilometers), such as those obtained with airborne LiDAR. To address the specific earth science need of real-time terrain visualization of LiDAR data, we are developing Crusta as part of a close collaboration involving earth and computer scientists. Crusta is a new virtual globe that differs from widely used globes by both providing accurate global data representation and the ability to easily visualize custom topographic and image data. As a result, Crusta enables real-time, interactive visualization of high resolution digital elevation data spanning thousands of square kilometers, such as the complete 2007 Northern California GeoEarthScope airborne LiDAR data set. To implement an accurate data representation and avoid distortion of the display at the poles, where other projections have singularities, Crusta represents the globe as a thirty-sided polyhedron. Each side of this polyhedron can be subdivided to an arbitrarily fine grid on the surface of the globe, which allows Crusta to accommodate input data of arbitrary resolution ranging from global (e.g., Blue Marble) to local (e.g., a tripod

  10. First mid-infrared spectrum of a faint high-z galaxy: Observations of CFRS 14.1157 with the Infrared Spectrograph on the Spitzer Space Telescope

    CERN Document Server

    Higdon, S J U; Higdon, J L; Herter, T; Charmandaris, V; Houck, J R; Soifer, B T; Brandl, B R; Armus, L; Hao, L

    2004-01-01

    The unprecedented sensitivity of the Infrared Spectrograph on the Spitzer Space Telescope allows for the first time the measurement of mid-infrared spectra from 14 to 38 microns of faint high-z galaxies. This unique capability is demonstrated with observations of sources having 16 micron fluxes of 3.6 mJy (CFRS 14.1157) and 0.35 mJy (CFRS 14.9025). A spectral-fitting technique is illustrated which determines the redshift by fitting emission and absorption features characteristic of nearby galaxies to the spectrum of an unknown source. For CFRS 14.1157, the measured redshift is z = 1.00+/-0.20 in agreement with the published result of z = 1.15. The spectrum is dominated by emission from an AGN, similar to the nucleus of NGC 1068, rather than a typical starburst with strong PAH emission like M82. Such spectra will be crucial in characterizing the nature of newly discovered distant galaxies, which are too faint for optical follow-up.

  11. Contamination of Broad-Band Photometry by Nebular Emission in High Redshift Galaxies: Investigations with Keck's MOSFIRE Near-Infrared Spectrograph

    CERN Document Server

    Schenker, Matthew A; Konidaris, Nick P; Stark, Daniel P

    2013-01-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ~ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared those derived assuming broad-band photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 20 3.0 < z < 3.8 Lyman break galaxies using the newly-commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use this data to derive the rest-frame equivalent widths (EW) of [O III] emission and show that these are comparable to estimates derived using the SED fitting technique introduced for sources of known redshift by Stark et al (2013). Although our current sample is modest, its [O III] EW distribution is consisten...

  12. NIR Camera/spectrograph: TEQUILA

    Science.gov (United States)

    Ruiz, E.; Sohn, E.; Cruz-Gonzalez, I.; Salas, L.; Parraga, A.; Torres, R.; Perez, M.; Cobos, F.; Tejada, C.; Iriarte, A.

    1998-11-01

    We describe the configuration and operation modes of the IR camera/spectrograph called TEQUILA, based on a 1024X1024 HgCdTe FPA (HAWAII). The optical system will allow three possible modes of operation: direct imaging, low and medium resolution spectroscopy and polarimetry. The basic system is being designed to consist of the following: 1) A LN$_2$ dewar that allocates the FPA together with the preamplifiers and a 24 filter position cylinder. 2) Control and readout electronics based on DSP modules linked to a workstation through fiber optics. 3) An optomechanical assembly cooled to -30oC that provides an efficient operation of the instrument in its various modes. 4) A control module for the moving parts of the instrument. The opto-mechanical assembly will have the necessary provisions to install a scanning Fabry-Perot interferometer and an adaptive optics correction system. The final image acquisition and control of the whole instrument is carried out in a workstation to provide the observer with a friendly environment. The system will operate at the 2.1 m telescope at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), and is intended to be a first-light instrument for the new 7.8 m Mexican Infrared-Optical Telescope (TIM).

  13. High-resolution noncontact atomic force microscopy.

    Science.gov (United States)

    Pérez, Rubén; García, Ricardo; Schwarz, Udo

    2009-07-01

    original papers authored by many of the leading groups in the field with the goal of providing a well-balanced overview on the state-of-the-art in this rapidly evolving field. These papers, many of which are based on notable presentations given during the Madrid conference, feature highlights such as (1) the development of sophisticated force spectroscopy procedures that are able to map the complete 3D tip-sample force field on different surfaces; (2) the considerable resolution improvement of Kelvin probe force microscopy (reaching, in some cases, the atomic scale), which is accompanied by a thorough, quantitative understanding of the contrast observed; (3) the perfecting of atomic resolution imaging on insulating substrates, which helps reshape our microscopic understanding of surface properties and chemical activity of these surfaces; (4) the description of instrumental and methodological developments that pave the way to the atomic-scale characterization of magnetic and electronic properties of nanostructures, and last but not least (5) the extension of dynamic imaging modes to high-resolution operation in liquids, ultimately achieving atomic resolution. The latter developments are already having a significant impact in the highly competitive field of biological imaging under physiological conditions. This special issue of Nanotechnology would not have been possible without the highly professional support from Nina Couzin, Amy Harvey, Alex Wotherspoon and the entire Nanotechnology team at IOP Publishing. We are thankful for their help in pushing this project forward. We also thank the authors who have contributed their excellent original articles to this issue, the referees whose comments have helped make the issue an accurate portrait of this rapidly moving field, and the entire NC-AFM community that continues to drive NC-AFM to new horizons.

  14. High-resolution and Monte Carlo additions to the SASKTRAN radiative transfer model

    Directory of Open Access Journals (Sweden)

    D. J. Zawada

    2015-06-01

    Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS instrument on board the Odin spacecraft has been measuring limb-scattered radiance since 2001. The vertical radiance profiles measured as the instrument nods are inverted, with the aid of the SASKTRAN radiative transfer model, to obtain vertical profiles of trace atmospheric constituents. Here we describe two newly developed modes of the SASKTRAN radiative transfer model: a high-spatial-resolution mode and a Monte Carlo mode. The high-spatial-resolution mode is a successive-orders model capable of modelling the multiply scattered radiance when the atmosphere is not spherically symmetric; the Monte Carlo mode is intended for use as a highly accurate reference model. It is shown that the two models agree in a wide variety of solar conditions to within 0.2 %. As an example case for both models, Odin–OSIRIS scans were simulated with the Monte Carlo model and retrieved using the high-resolution model. A systematic bias of up to 4 % in retrieved ozone number density between scans where the instrument is scanning up or scanning down was identified. The bias is largest when the sun is near the horizon and the solar scattering angle is far from 90°. It was found that calculating the multiply scattered diffuse field at five discrete solar zenith angles is sufficient to eliminate the bias for typical Odin–OSIRIS geometries.

  15. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  16. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  17. High-Resolution Scintimammography: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  18. High-resolution light microscopy of nanoforms

    Science.gov (United States)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  19. High Resolution Near-IR Spectroscopy of Protostars With Large Telescopes

    Science.gov (United States)

    Greene, Tom; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    It is now possible to measure absorption spectra of Class I protostars using D greater than or = 8m telescopes equipped with sensitive cryogenic IR spectrographs. Our latest high-resolution (R approx. 20,000) Keck data reveal that Class I protostars are indeed low-mass stars with dwarf-like features. However, they differ from T Tauri stars in that Class I protostars have much higher IR veilings (tau(sub k) greater than or = 1 - 3+) and they are rotating quickly, v sin i greater than 20 km/s. Interestingly, the vast majority of protostellar absorption spectra show stellar - not disk - absorption features. A preliminary H-R diagram suggests that protostellar photospheres may have different physical structures than T Tauri stars, perhaps due to their higher accretion rates.

  20. High resolution spectroscopy of comet C/2002 C1 Ikeya-Zhang with SARG at TNG

    Science.gov (United States)

    Capria, M. T.; Cremonese, G.; Boattini, A.; de Sanctis, M. C.; D'Abramo, G.; Buzzoni, A.

    2002-11-01

    A program of high resolution spectroscopy of comets is being conducted at TNG in Canary Islands using the echelle spectrograph SARG. The aim of the program is to catalogue known and unknown emission lines, compare them with the lines already listed in existing catalogues and possibly identify unknown lines. In the visible range of the spectrum emission lines of daughter molecules and ions can be found, and many of them are still unidentified. The comet C/2002 C1 Ikeya-Zhang was observed with SARG during the night 19-20 of April and spectra with two different setups were taken. In the first case a narrow band filter was used to isolate the sodium emissions with a long slit and R = 43000. The data show very interesting cometary sodium emissions in the coma. The second setup used a short slit covering the spectral range of 4620-7920 Å with R = 57000.

  1. New, Efficient High-Resolution Red VPH Grisms in VIMOS

    Science.gov (United States)

    Marconi, Gianni; Bagnulo, Stefano; Lizon, Jean-Louis; Buzzoni, Bernard; Dekker, Hans; D'Odorico, Sandro; Izzo, Carlo; Wolff, Burkhard F.

    2006-06-01

    VIMOS is the visible (360 to 1000 nm) wide-field imager and multi-object spectrograph mounted on the Nasmyth focus B of Melipal (UT3) (Le Fèvre et al. 2003). The instrument is comprised of four identical arms each with a field of view of 7' × 8' with a 0.205' pixel size and a gap between each quadrant of ~ 2'. Each arm is equipped with six grisms providing a spectral resolution range from ~ 200-2500 and with an EEV 44-82, thinned, anti-reflection coated, 4k × 2k pixel CCD. VIMOS operates in three different modes: Imaging (IMG), Multi-Object Spectroscopy (MOS), and with Integral Field Unit (IFU). For a summary of the instrument capability and performance, see http://www.eso.org/instruments/vimos/.

  2. Venus gravity - A high-resolution map

    Science.gov (United States)

    Reasenberg, R. D.; Goldberg, Z. M.; Macneil, P. E.; Shapiro, I. I.

    1981-01-01

    The Doppler data from the radio tracking of the Pioneer Venus Orbiter (PVO) have been used in a two-stage analysis to develop a high-resolution map of the gravitational potential of Venus, represented by a central mass and a surface mass density. The two-stage procedure invokes a Kalman filter-smoother to determine the orbit of the spacecraft, and a stabilized linear inverter to estimate the surface mass density. The resultant gravity map is highly correlated with the topographic map derived from the PVO radar altimeter data. However, the magnitudes of the gravity variations are smaller than would be expected if the topography were uncompensated, indicating that at least partial compensation has taken place.

  3. Ultra-high resolution computed tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  4. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  5. A HIGH-RESOLUTION ATLAS OF URANIUM-NEON IN THE H BAND

    Energy Technology Data Exchange (ETDEWEB)

    Redman, Stephen L.; Terrien, Ryan; Mahadevan, Suvrath; Ramsey, Lawrence W.; Bender, Chad F. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Ycas, Gabriel G. [Department of Physics, University of Colorado, Boulder, CO 80309 (United States); Osterman, Steven N. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Diddams, Scott A.; Quinlan, Franklyn [Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305 (United States); Lawler, James E. [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706 (United States); Nave, Gillian [Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2012-03-01

    We present a high-resolution (R Almost-Equal-To 50,000) atlas of a uranium-neon (U/Ne) hollow-cathode spectrum in the H band (1454-1638 nm) for the calibration of near-infrared spectrographs. We obtained this U/Ne spectrum simultaneously with a laser-frequency comb spectrum, which we used to provide a first-order calibration to the U/Ne spectrum. We then calibrated the U/Ne spectrum using the recently published uranium line list of Redman et al., which is derived from high-resolution Fourier transform spectrometer measurements. These two independent calibrations allowed us to easily identify emission lines in the hollow-cathode lamp that do not correspond to known (classified) lines of either uranium or neon, and to compare the achievable precision of each source. Our frequency comb precision was limited by modal noise and detector effects, while the U/Ne precision was limited primarily by the signal-to-noise ratio (S/N) of the observed emission lines and our ability to model blended lines. The standard deviation in the dispersion solution residuals from the S/N-limited U/Ne hollow-cathode lamp was 50% larger than the standard deviation of the dispersion solution residuals from the modal-noise-limited laser-frequency comb. We advocate the use of U/Ne lamps for precision calibration of near-infrared spectrographs, and this H-band atlas makes these lamps significantly easier to use for wavelength calibration.

  6. High spatial resolution FeXII observations of solar active region

    CERN Document Server

    Testa, Paola; Hansteen, Viggo

    2016-01-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal FeXII 1349.4A emission at unprecedented high spatial resolution (~0.33"). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), FeXII emission can be studied with IRIS at high spatial and spectral resolution, at least for high density plasma (e.g., post-flare loops, and active region moss). We find that upper transition region (moss) FeXII emission shows very small average Doppler redshifts (v_Dop ~3 km/s), as well as modest non-thermal velocities (with an average ~24 km/s, and the peak of the distribution at ~15 km/s). The observed distribution of Doppler shifts appears to be compatible with advanced 3D radiative MHD simulations in which impulsive heating is concentrated at the transition region footpoints of a hot corona. While the non-thermal broadening of FeXII 1349.4A peaks at similar values as lower resolut...

  7. High resolution spectroscopic analysis of seven giants in the bulge globular cluster NGC 6723

    CERN Document Server

    Rojas-Arriagada, A; Vásquez, S; Ripepi, V; Musella, I; Marconi, M; Grado, A; Limatola, L

    2016-01-01

    Globular clusters associated with the Galactic bulge are important tracers of stellar populations in the inner Galaxy. High resolution analysis of stars in these clusters allows us to characterize them in terms of kinematics, metallicity, and individual abundances, and to compare these fingerprints with those characterizing field populations. We present iron and element ratios for seven red giant stars in the globular cluster NGC~6723, based on high resolution spectroscopy. High resolution spectra ($R\\sim48~000$) of seven K giants belonging to NGC 6723 were obtained with the FEROS spectrograph at the MPG/ESO 2.2m telescope. Photospheric parameters were derived from $\\sim130$ FeI and FeII transitions. Abundance ratios were obtained from line-to-line spectrum synthesis calculations on clean selected features. An intermediate metallicity of [Fe/H]$=-0.98\\pm0.08$ dex and a heliocentric radial velocity of $v_{hel}=-96.6\\pm1.3~km s^{-1}$ were found for NGC 6723. Alpha-element abundances present enhancements of $[O/...

  8. High-resolution colorimetric imaging of paintings

    Science.gov (United States)

    Martinez, Kirk; Cupitt, John; Saunders, David R.

    1993-05-01

    With the aim of providing a digital electronic replacement for conventional photography of paintings, a scanner has been constructed based on a 3000 X 2300 pel resolution camera which is moved precisely over a 1 meter square area. Successive patches are assembled to form a mosaic which covers the whole area at c. 20 pels/mm resolution, which is sufficient to resolve the surface textures, particularly craquelure. To provide high color accuracy, a set of seven broad-band interference filters are used to cover the visible spectrum. A calibration procedure based upon a least-mean-squares fit to the color of patches from a Macbeth Colorchecker chart yields an average color accuracy of better than 3 units in the CMC uniform color space. This work was mainly carried out as part of the VASARI project funded by the European Commission's ESPRIT program, involving companies and galleries from around Europe. The system is being used to record images for conservation research, for archival purposes and to assist in computer-aided learning in the field of art history. The paper will describe the overall system design, including the selection of the various hardware components and the design of controlling software. The theoretical basis for the color calibration methodology is described as well as the software for its practical implementation. The mosaic assembly procedure and some of the associated image processing routines developed are described. Preliminary results from the research will be presented.

  9. High resolution CT of temporal bone trauma

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Eun Kyung [Korea General Hospital, Seoul (Korea, Republic of)

    1986-10-15

    Radiographic studies of the temporal bone following head trauma are indicated when there is cerebrospinal fluid otorrhea or rhinorrhoea, hearing loss, or facial nerve paralysis. Plain radiography displays only 17-30% of temporal bone fractures and pluridirectional tomography is both difficult to perform, particularly in the acutely ill patient, and less satisfactory for the demonstration of fine fractures. Consequently, high resolution CT is the imaging method of choice for the investigation of suspected temporal bone trauma and allows special resolution of fine bony detail comparable to that attainable by conventional tomography. Eight cases of temporal bone trauma examined at Korea General Hospital April 1985 through May 1986. The results were as follows: Seven patients (87%) suffered longitudinal fractures. In 6 patients who had purely conductive hearing loss, CT revealed various ossicular chain abnormality. In one patient who had neuro sensory hearing loss, CT demonstrated intract ossicular with a fracture nearing lateral wall of the lateral semicircular canal. In one patient who had mixed hearing loss, CT showed complex fracture.

  10. High Resolution Radar Measurements of Snow Avalanches

    Science.gov (United States)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  11. Pyramidal fractal dimension for high resolution images

    Science.gov (United States)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  12. Giant quiescent solar filament observed with high-resolution spectroscopy

    Science.gov (United States)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na i D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He i λ10830 Å, Hα, and Ca ii K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na i D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  13. Detection of proximal caries with high-resolution and standard resolution digital radiographic systems

    NARCIS (Netherlands)

    Berkhout, W.E.R.; Verheij, H.G.C.; Syriopoulos, K.; Li, G.; Sanderink, G.C.H.; van der Stelt, P.F.

    2007-01-01

    Aims: The aim of this study was to: (1) compare the diagnostic accuracy of the high-resolution and standard resolution settings of four digital imaging systems for caries diagnosis and (2) compare the effect on the diagnostic accuracy of reducing the high-resolution image sizes to the standard

  14. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  15. A new high-resolution TOF technology

    CERN Document Server

    Fonte, Paulo J R; Williams, M C S

    2000-01-01

    In the framework of the ALICE collaboration we have recently studied the performance of multigap Resistive Plate Chambers operated in avalanche mode and at atmospheric pressure for time-of-flight measurements. The detector provided an overall (detector plus electronics) timing accuracy of 120 ps sigma at an efficiency of 98% for MIPs. The chambers had 4 gas gaps of 0.3 mm, each limited by a metallised ceramic plate and a glass plate, with an active dimension of 4'4cm2. The gas mixture contained C2H2F4+5%isobutane+10%SF6. A few percent of streamer discharges, each releasing about 20 pC, was tolerated without any noticeable inconvenience. This detector opens perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and a time resolution comparable to existing scintillator-based TOF technology but with significantly, up to an order of magnitude, lower price per channel.

  16. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  17. Speleothems as high-resolution paleoflood archives

    Science.gov (United States)

    Denniston, Rhawn F.; Luetscher, Marc

    2017-08-01

    Over the last two decades, speleothems have become widely utilized records of past environmental variability, typically through their stable isotopic and trace elemental chemistry. Numerous speleothem researchers have identified evidence of flooding recorded by detrital layers trapped within speleothems, but few studies have developed paleoflood reconstructions from such samples. Because they can be precisely dated, are generally immune to post-depositional distortion or erosion, and can be tied to a fixed elevational baseline, speleothems hold enormous potential as high-resolution archives of cave floods, and thus as proxies for extreme rainfall or other hydrologic drivers of cave flooding. Here we review speleothem-based paleoflood reconstruction methods, identify potential biases and pitfalls, and suggest standard practices for future studies.

  18. High-resolution CT of otosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Dewen, Yang; Kodama, Takao; Tono, Tetsuya; Ochiai, Reiji; Kiyomizu, Kensuke; Suzuki, Yukiko; Yano, Takanori; Watanabe, Katsushi [Miyazaki Medical Coll., Kiyotake (Japan)

    1997-11-01

    High-resolution CT (HRCT) scans of thirty-two patients (60 ears) with the clinical diagnosis of fenestral otosclerosis were evaluated retrospectively. HRCT was performed with 1-mm-thick targeted sections and 1-mm (36 ears) or 0.5-mm (10 ears) intervals in the semiaxial projection. Seven patients (14 ears) underwent helical scanning with a 1-mm slice thickness and 1-mm/sec table speed. Forty-five ears (75%) were found to have one or more otospongiotic or otosclerotic foci on HRCT. In most instances (30 ears), the otospongiotic foci were found in the region of the fissula ante fenestram. No significant correlations between CT findings and air conduction threshold were observed. We found a significant relationship between lesions of the labyrinthine capsule and sensorineural hearing loss. We conclude that HRCT is a valuable modality for diagnosing otosclerosis, especially when otospongiotic focus is detected. (author)

  19. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  20. GRANULOMETRIC MAPS FROM HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Catherine Mering

    2011-05-01

    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  1. High resolution CT of Meckel's cave.

    Science.gov (United States)

    Chui, M; Tucker, W; Hudson, A; Bayer, N

    1985-01-01

    High resolution CT of the parasellar region was carried out in 50 patients studied for suspected pituitary microadenoma, but who showed normal pituitary gland or microadenoma on CT. This control group of patients all showed an ellipsoid low-density area in the posterior parasellar region. Knowledge of the gross anatomy and correlation with metrizamide cisternography suggest that the low density region represents Meckel's cave, rather than just the trigeminal ganglion alone. Though there is considerable variation in the size of Meckel's cave in different patients as well as the two sides of the same patient, the rather constant ellipsoid configuration of the cave in normal subjects will aid in diagnosing small pathological lesions, thereby obviating more invasive cisternography via the transovale or lumbar route. Patients with "idiopathic" tic douloureux do not show a Meckel's cave significantly different from the control group.

  2. Georadar - high resolution geophysical electromagnetic device

    Directory of Open Access Journals (Sweden)

    Janez Stern

    1995-12-01

    Full Text Available Georadar is a high resolution geophysical electromagnetic device that was developed in the first part of the 1980's. In Slovenia it was first tested in 1991 on several objects of economicgeological, geotechnical and hydrogeologic nature.Here its usefulness in karst studied is presented. The first part of the paper deals with description of measurement procedure and methodological bases, and the second part with experience and results of case histories. Shown are radargrams from ornamental stone quarry Hotavlje, calcite mine Stahovica, Golobja jama karstcave near Divača and from highway construction site Razdrto-Čebulovica. All measurements were performed with the georadar instrument Pulse EKKO IV with a lOOMHz antenna according to the method of reflection profiling.

  3. Potential High Resolution Dosimeters For MRT

    Science.gov (United States)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  4. High-Resolution Movement EEG Classification

    Directory of Open Access Journals (Sweden)

    Jakub Štastný

    2007-01-01

    Full Text Available The aim of the contribution is to analyze possibilities of high-resolution movement classification using human EEG. For this purpose, a database of the EEG recorded during right-thumb and little-finger fast flexion movements of the experimental subjects was created. The statistical analysis of the EEG was done on the subject's basis instead of the commonly used grand averaging. Statistically significant differences between the EEG accompanying movements of both fingers were found, extending the results of other so far published works. The classifier based on hidden Markov models was able to distinguish between movement and resting states (classification score of 94–100%, but it was unable to recognize the type of the movement. This is caused by the large fraction of other (nonmovement related EEG activities in the recorded signals. A classification method based on advanced EEG signal denoising is being currently developed to overcome this problem.

  5. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  6. Earthshine observations at high spectral resolution: Exploring and detecting metal lines in the Earth's upper atmosphere

    CERN Document Server

    González-Merino, B; Motalebi, F; Montañés-Rodríguez, P; Kissler-Patig, M

    2013-01-01

    Observations of the Earth as a planet using the earthshine technique (i.e. looking at the light reflected from the darkside of the Moon), have been used for climate and astrobiology studies. They provide information about the planetary albedo, a fundamental parameter of the Earth's energy balance. Here we present for the first time, observations of the earthshine taken at high spectral resolution. The high spectral resolution was chosen in order to investigate the possibility of detecting metallic layers in the Earth's atmosphere of geological or meteoritic origin. The SARG echelle spectrograph at the Telescopio Nazionale Galileo in La Palma was used to acquire the earthshine data. Observations were carried out on several nights in February 2011, with the spectral resolution set at 29,000, covering a spectral range from the near-ultraviolet (360 nm) to near-infrared (1011.9 nm). While we find evidence for the detection of a Na layer in the earthshine, other atomic species are not detected, perhaps due to the ...

  7. The Infrared Imaging Spectrograph (IRIS) for TMT: Volume phase holographic grating performance testing and discussion

    CERN Document Server

    Chen, Shaojie; Wright, Shelley A; Moore, Anna M; Larkin, James E; Maire, Jerome; Mieda, Etsuko; Simard, Luc

    2014-01-01

    Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82{\\mu}m (H-band) to produce a spectral resolution of 4000 and 1.19- 1.37 {\\mu}m (J-band) to produce a spectral resolution of 8000....

  8. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  9. Updated Status and Performance of the Cosmic Origins Spectrograph on the Hubble Space Telescope

    Science.gov (United States)

    Fix, Mees Bernard; De Rosa, Gisella; Fox, Andrew; Indriolo, Nick; James, Bethan; Jedrzejewski, Robert I.; Oliveira, Cristina M.; Penton, Steven V.; Plesha, Rachel; Rafelski, Marc; Roman-Duval, Julia; Sahnow, David J.; Sonnentrucker, Paule; Snyder, Elaine M.; Taylor, Joanna M.; White, James

    2017-01-01

    The Cosmic Origins Spectrograph (COS) was installed on the Hubble Space Telescope (HST) in May 2009. COS was designed to perform high-sensitivity medium and low-resolution spectroscopy of astronomical objects in the far-ultraviolet (FUV) and near-ultraviolet (NUV) wavelength regimes. Here, we present updates on the time-dependent sensitivities (TDS) for the NUV and FUV detectors, NUV wavelength calibration, and the FUV and NUV dark rates. Additionally, we discuss the move to lifetime position four (LP4) planned for July 2017, including the detector location and impact on resolution.

  10. Spectrographs and Large Telescopes: A Study of Instrumentation

    Science.gov (United States)

    Fica, Haley Diane; Crane, Jeffrey D.; Uomoto, Alan K.; Hare, Tyson

    2017-01-01

    It is a truth universally acknowledged, that a telescope in possession of a large aperture, must be in want of a high resolution spectrograph. Subsystems of these instruments require testing and upgrading to ensure that they can continue to be scientifically productive and usher in a new era of astronomical research. The Planet Finder Spectrograph (PFS) and Magellan Inamori Kyocera Echelle (MIKE), both on the Magellan II Clay telescope at Las Campanas Observatory, and the Giant Magellan Telescope (GMT) Consortium Large Earth Finder (G-CLEF) are examples of such instruments. Bluer flat field lamps were designed for PFS and MIKE to replace lamps no longer available in order to ensure continued, efficient functionality. These newly designed lamps will result in better flat fielding and calibration of data, and thus result in increased reduction of instrument noise. When it is built and installed in 2022, G-CLEF will be be fed by a tertiary mirror on the GMT. Stepper motors attached to the back of this mirror will be used to correct misalignments in the optical relay system. These motors were characterized to ensure that they function as expected to an accuracy of a few microns. These projects incorporate several key aspects of astronomical instrumentation: designing, building, and testing.

  11. The infrared imaging spectrograph (IRIS) for TMT: sensitivities and simulations

    CERN Document Server

    Wright, Shelley A; Larkin, James E; Moore, Anna M; Crampton, David; Simard, Luc

    2010-01-01

    We present sensitivity estimates for point and resolved astronomical sources for the current design of the InfraRed Imaging Spectrograph (IRIS) on the future Thirty Meter Telescope (TMT). IRIS, with TMT's adaptive optics system, will achieve unprecedented point source sensitivities in the near-infrared (0.84 - 2.45 {\\mu}m) when compared to systems on current 8-10m ground based telescopes. The IRIS imager, in 5 hours of total integration, will be able to perform a few percent photometry on 26 - 29 magnitude (AB) point sources in the near-infrared broadband filters (Z, Y, J, H, K). The integral field spectrograph, with a range of scales and filters, will achieve good signal-to-noise on 22 - 26 magnitude (AB) point sources with a spectral resolution of R=4,000 in 5 hours of total integration time. We also present simulated 3D IRIS data of resolved high-redshift star forming galaxies (1 < z < 5), illustrating the extraordinary potential of this instrument to probe the dynamics, assembly, and chemical abunda...

  12. The Interface Region Imaging Spectrograph (IRIS)

    CERN Document Server

    De Pontieu, B; Lemen, J; Kushner, G D; Akin, D J; Allard, B; Berger, T; Boerner, P; Cheung, M; Chou, C; Drake, J F; Duncan, D W; Freeland, S; Heyman, G F; Hoffman, C; Hurlburt, N E; Lindgren, R W; Mathur, D; Rehse, R; Sabolish, D; Seguin, R; Schrijver, C J; Tarbell, T D; Wuelser, J -P; Wolfson, C J; Yanari, C; Mudge, J; Nguyen-Phuc, N; Timmons, R; van Bezooijen, R; Weingrod, I; Brookner, R; Butcher, G; Dougherty, B; Eder, J; Knagenhjelm, V; Larsen, S; Mansir, D; Phan, L; Boyle, P; Cheimets, P N; DeLuca, E E; Golub, L; Gates, R; Hertz, E; McKillop, S; Park, S; Perry, T; Podgorski, W A; Reeves, K; Saar, S; Testa, P; Tian, H; Weber, M; Dunn, C; Eccles, S; Jaeggli, S A; Kankelborg, C C; Mashburn, K; Pust, N; Springer, L; Carvalho, R; Kleint, L; Marmie, J; Mazmanian, E; Pereira, T M D; Sawyer, S; Strong, J; Worden, S P; Carlsson, M; Hansteen, V H; Leenaarts, J; Wiesmann, M; Aloise, J; Chu, K -C; Bush, R I; Scherrer, P H; Brekke, P; Martinez-Sykora, J; Lites, B W; McIntosh, S W; Uitenbroek, H; Okamoto, T J; Gummin, M A; Auker, G; Jerram, P; Pool, P; Waltham, N

    2014-01-01

    The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s temporal resolution and 1 km/s velocity resolution over a field-of-view of up to 175 arcsec x 175 arcsec. IRIS was launched into a Sun-synchronous orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains spectra in passbands from 1332-1358, 1389-1407 and 2783-2834 Angstrom including bright spectral lines formed in the chromosphere (Mg II h 2803 Angstrom and Mg II k 2796 Angstrom) and transition region (C II 1334/1335 Angstrom and Si IV 1394/1403 Angstrom). Slit-jaw images in four different passbands (C II 1330, Si IV 1400, Mg II k 2796 and Mg II wing 2830 Angstrom) can be taken simultaneously with spectral rasters that sample regions up to 130 arcsec x 175 arcsec at a variety of spatial sa...

  13. The high resolution neutrino calorimeter KARMEN

    Energy Technology Data Exchange (ETDEWEB)

    Drexlin, G.; Eberhard, V.; Gemmeke, H.; Giorginis, G.; Grandegger, W.; Gumbsheimer, R.; Hucker, H.; Husson, L.; Kleinfeller, J.; Maschuw, R.; Plischke, P.; Spohrer, G.; Schmidt, F.K.; Wochele, J.; Woelfle, S.; Zeitnitz, B. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Inst. fuer Kernphysik 1 Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Experimentelle Kernphysik); Bodman, B.; Burtak, F.; Finckh, E.; Glombik, A.; Kretschmer, W.; Schilling, F.; Voetisch, D. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Physikalisches Inst.); Edgington, J.A.; Gorringe, T.; Malik, A. (Queen Mary Coll., London (UK)); Booth, N.E. (Oxford Univ. (UK)); Dodd, A.; Payne, A.G.D. (Rutherford Appleton Lab., Chilton (UK))

    1990-04-15

    KARMEN is a 56 t scintillation calorimeter designed for beam dump neutrino experiments at the neutron spallation facility ISIS of the Rutherford Appleton Laboratory. The calorimetric properties are demonstrated by cosmic muons and laser calibration. The measured energy resolution of the detector is {sigma}{sub E}/E{approx equal}11.5%/{radical}E(MeV), the position resolution {sigma}{sub x}=5 cm and the timing resolution {sigma}{sub t}{approx equal}350 ps. (orig.).

  14. High resolution image reconstruction from projection of low resolution images differing in subpixel shifts

    Science.gov (United States)

    Mareboyana, Manohar; Le Moigne, Jacqueline; Bennett, Jerome

    2016-05-01

    In this paper, we demonstrate simple algorithms that project low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithms are very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. are used in projection. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML) algorithms. The algorithms are robust and are not overly sensitive to the registration inaccuracies.

  15. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    Science.gov (United States)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  16. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  17. Logging Data High-Resolution Sequence Stratigraphy

    Institute of Scientific and Technical Information of China (English)

    Li Hongqi; Xie Yinfu; Sun Zhongchun; Luo Xingping

    2006-01-01

    The recognition and contrast of bed sets in parasequence is difficult in terrestrial basin high-resolution sequence stratigraphy. This study puts forward new methods for the boundary identification and contrast of bed sets on the basis of manifold logging data. The formation of calcareous interbeds, shale resistivity differences and the relation of reservoir resistivity to altitude are considered on the basis of log curve morphological characteristics, core observation, cast thin section, X-ray diffraction and scanning electron microscopy. The results show that the thickness of calcareous interbeds is between 0.5 m and 2 m, increasing on weathering crusts and faults. Calcareous interbeds occur at the bottom of Reservoir resistivity increases with altitude. Calcareous interbeds may be a symbol of recognition for the boundary of bed sets and isochronous contrast bed sets, and shale resistivity differences may confirm the stack relation and connectivity of bed sets. Based on this, a high-rcsolution chronostratigraphic framework of Xi-1 segment in Shinan area, Junggar basin is presented, and the connectivity of bed sets and oil-water contact is confirmed. In this chronostratigraphic framework, the growth order, stack mode and space shape of bed sets are qualitatively and quantitatively described.

  18. High resolution low frequency ultrasonic tomography.

    Science.gov (United States)

    Lasaygues, P; Lefebvre, J P; Mensah, S

    1997-10-01

    Ultrasonic reflection tomography results from a linearization of the inverse acoustic scattering problem, named the inverse Born approximation. The goal of ultrasonic reflection tomography is to obtain reflectivity images from backscattered measurements. This is a Fourier synthesis problem and the first step is to correctly cover the frequency space of the object. For this inverse problem, we use the classical algorithm of tomographic reconstruction by summation of filtered backprojections. In practice, only a limited number of views are available with our mechanical rig, typically 180, and the frequency bandwidth of the pulses is very limited, typically one octave. The resolving power of the system is them limited by the bandwidth of the pulse. Low and high frequencies can be restored by use of a deconvolution algorithm that enhances resolution. We used a deconvolution technique based on the Papoulis method. The advantage of this technique is conservation of the overall frequency information content of the signals. The enhancement procedure was tested by imaging a square aluminium rod with a cross-section less than the wavelength. In this application, the central frequency of the transducer was 250 kHz so that the central wavelength was 6 mm whereas the cross-section of the rod was 4 mm. Although the Born approximation was not theoretically valid in this case (high contrast), a good reconstruction was obtained.

  19. Automatic abundance analysis of high resolution spectra

    CERN Document Server

    Bonifacio, P; Bonifacio, Piercarlo; Caffau, Elisabetta

    2003-01-01

    We describe an automatic procedure for determining abundances from high resolution spectra. Such procedures are becoming increasingly important as large amounts of data are delivered from 8m telescopes and their high-multiplexing fiber facilities, such as FLAMES on ESO-VLT. The present procedure is specifically targeted for the analysis of spectra of giants in the Sgr dSph; however, the procedure may be, in principle, tailored to analyse stars of any type. Emphasis is placed on the algorithms and on the stability of the method; the external accuracy rests, ultimately, on the reliability of the theoretical models (model-atmospheres, synthetic spectra) used to interpret the data. Comparison of the results of the procedure with the results of a traditional analysis for 12 Sgr giants shows that abundances accurate at the level of 0.2 dex, comparable with that of traditional analysis of the same spectra, may be derived in a fast and efficient way. Such automatic procedures are not meant to replace the traditional ...

  20. Supporting observation campaigns with high resolution modeling

    Science.gov (United States)

    Klocke, Daniel; Brueck, Matthias; Voigt, Aiko

    2017-04-01

    High resolution simulation in support of measurement campaigns offers a promising and emerging way to create large-scale context for small-scale observations of clouds and precipitation processes. As these simulation include the coupling of measured small-scale processes with the circulation, they also help to integrate the research communities from modeling and observations and allow for detailed model evaluations against dedicated observations. In connection with the measurement campaign NARVAL (August 2016 and December 2013) simulations with a grid-spacing of 2.5 km for the tropical Atlantic region (9000x3300 km), with local refinement to 1.2 km for the western part of the domain, were performed using the icosahedral non-hydrostatic (ICON) general circulation model. These simulations are again used to drive large eddy resolving simulations with the same model for selected days in the high definition clouds and precipitation for advancing climate prediction (HD(CP)2) project. The simulations are presented with the focus on selected results showing the benefit for the scientific communities doing atmospheric measurements and numerical modeling of climate and weather. Additionally, an outlook will be given on how similar simulations will support the NAWDEX measurement campaign in the North Atlantic and AC3 measurement campaign in the Arctic.

  1. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of correspo

  2. Hunting the parent of the Orphan stream. II. The first high-resolution spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Andrew R.; Keller, Stefan C.; Da Costa, Gary; Maunder, Elizabeth [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Frebel, Anna, E-mail: andrew.casey@anu.edu.au [Department of Physics, Massachusetts Institute of Technology and Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States)

    2014-03-20

    We present the first high-resolution spectroscopic study on the Orphan stream for five stream candidates, observed with the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Clay telescope. The targets were selected from the low-resolution catalog of Casey et al.: three high-probability members, one medium, and one low-probability stream candidate were observed. Our analysis indicates that the low- and medium-probability targets are metal-rich field stars. The remaining three high-probability targets range over ∼1 dex in metallicity, and are chemically distinct compared to the other two targets and all standard stars: low [α/Fe] abundance ratios are observed, and lower limits are ascertained for [Ba/Y], which sit well above the Milky Way trend. These chemical signatures demonstrate that the undiscovered parent system is unequivocally a dwarf spheroidal galaxy, consistent with dynamical constraints inferred from the stream width and arc. As such, we firmly exclude the proposed association between NGC 2419 and the Orphan stream. A wide range in metallicities adds to the similarities between the Orphan stream and Segue 1, although the low [α/Fe] abundance ratios in the Orphan stream are in tension with the high [α/Fe] values observed in Segue 1. Open questions remain before Segue 1 could possibly be claimed as the 'parent' of the Orphan stream. The parent system could well remain undiscovered in the southern sky.

  3. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results

    Science.gov (United States)

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward H.; Sirk, Martin; Muirhead, Philip S.; Muterspaugh, Matthew W.; Lloyd, James P.; Ishikawa, Yuzo; McDonald, Eliza A.; Shourt, William V.; Vanderburg, Andrew M.

    2016-04-01

    High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the "TEDI" interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10×) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced by the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20×) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350× times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels-EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. A section on theoretical photon limited sensitivity is in a companion paper, part 2.

  4. The High Time Resolution Radio Sky

    Science.gov (United States)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  5. AIRBORNE HIGH-RESOLUTION DIGITAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Prado-Molina, J.

    2006-04-01

    Full Text Available A low-cost airborne digital imaging system capable to perform aerial surveys with small-format cameras isintroduced. The equipment is intended to obtain high-resolution multispectral digital photographs constituting so aviable alternative to conventional aerial photography and satellite imagery. Monitoring software handles all theprocedures involved in image acquisition, including flight planning, real-time graphics for aircraft position updatingin a mobile map, and supervises the main variables engaged in the imaging process. This software also creates fileswith the geographical position of the central point of every image, and the flight path followed by the aircraftduring the entire survey. The cameras are mounted on a three-axis stabilized platform. A set of inertial sensorsdetermines platform's deviations independently from the aircraft and an automatic control system keeps thecameras at a continuous nadir pointing and heading, with a precision better than ± 1 arc-degree in three-axis. Thecontrol system is also in charge of saving the platform’s orientation angles when the monitoring software triggersthe camera. These external orientation parameters, together with a procedure for camera calibration give theessential elements for image orthocorrection. Orthomosaics are constructed using commercial GIS software.This system demonstrates the feasibility of large area coverage in a practical and economical way using smallformatcameras. Monitoring and automatization reduce the work while increasing the quality and the amount ofuseful images.

  6. High spatial resolution probes for neurobiology applications

    Science.gov (United States)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  7. High Spectral Resolution Lidar (HSRL) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-04-01

    High Spectral Resolution Lidar (HSRL) systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are absolutely calibrated by reference to molecular scattering, which is measured at each point in the lidar profile. Like the Raman lidar but unlike simple backscatter lidars such as the micropulse lidar, the HSRL can measure backscatter cross-sections and optical depths without prior assumptions about the scattering properties of the atmosphere. The depolarization observations also allow robust discrimination between ice and water clouds. In addition, rigorous error estimates can be computed for all measurements. A very narrow, angular field of view reduces multiple scattering contributions. The small field of view, coupled with a narrow optical bandwidth, nearly eliminates noise due to scattered sunlight. There are two operational U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility HSRL systems, one at the Barrow North Slope of Alaska (NSA) site and the other in the second ARM Mobile Facility (AMF2) collection of instrumentation.

  8. Holographic high-resolution endoscopic image recording

    Science.gov (United States)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  9. High-resolution imaging using endoscopic holography

    Science.gov (United States)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  10. DUACS: Toward High Resolution Sea Level Products

    Science.gov (United States)

    Faugere, Y.; Gerald, D.; Ubelmann, C.; Claire, D.; Pujol, M. I.; Antoine, D.; Desjonqueres, J. D.; Picot, N.

    2016-12-01

    The DUACS system produces, as part of the CNES/SALP project, and the Copernicus Marine Environment and Monitoring Service, high quality multimission altimetry Sea Level products for oceanographic applications, climate forecasting centers, geophysic and biology communities... These products consist in directly usable and easy to manipulate Level 3 (along-track cross-calibrated SLA) and Level 4 products (multiple sensors merged as maps or time series) and are available in global and regional version (Mediterranean Sea, Arctic, European Shelves …).The quality of the products is today limited by the altimeter technology "Low Resolution Mode" (LRM), and the lack of available observations. The launch of 2 new satellites in 2016, Jason-3 and Sentinel-3A, opens new perspectives. Using the global Synthetic Aperture Radar mode (SARM) coverage of S3A and optimizing the LRM altimeter processing (retracking, editing, ...) will allow us to fully exploit the fine-scale content of the altimetric missions. Thanks to this increase of real time altimetry observations we will also be able to improve Level-4 products by combining these new Level-3 products and new mapping methodology, such as dynamic interpolation. Finally these improvements will benefit to downstream products : geostrophic currents, Lagrangian products, eddy atlas… Overcoming all these challenges will provide major upgrades of Sea Level products to better fulfill user needs.

  11. Laser wavelength comparison by high resolution interferometry.

    Science.gov (United States)

    Layer, H P; Deslattes, R D; Schweitzer, W G

    1976-03-01

    High resolution interferometry has been used to determine the wavelength ratio between two molecularly stabilized He-Ne lasers, one locked to a methane absorption at 3.39 microm and the other locked to the k peak of (129)I(2) at 633 nm. An optical beat frequency technique gave fractional orders while a microwave sideband method yielded the integer parts. Conventional (third derivative) peak seeking servoes stabilized both laser and cavity lengths. Reproducibility of the electronic control system and optics was a few parts in 10(12), while systematic errors associated with curvature of the cavity mirrors limited the accuracy of the wavelength ratio measurement to 2 parts in 10(10). The measured wavelength ratio of the methane stabilized He-Ne laser at 3.39 microm [P(7) line, nu(3) band] to the (129)I(2) (k peak) stabilized He-Ne laser at 633 nm was 5.359 049 260 6 (0.000 2 ppm). This ratio agrees with that calculated from the (lower accuracy) results of earlier wavelength measurements made relative to the (86)Kr standard. Its higher accuracy thus permits a provisional extension of the frequency scale based on the cesium oscillator into the visible spectrum.

  12. High-resolution ophthalmic imaging system

    Science.gov (United States)

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  13. High Resolution HDS/SUBARU chemical abundances of the young stellar cluster Palomar 1

    CERN Document Server

    Monaco, L; Correnti, M; Bonifacio, P; Geisler, D

    2010-01-01

    Context. Palomar\\,1 is a peculiar globular cluster (GC). It is the youngest Galactic GC and it has been tentatively associated to several of the substructures recently discovered in the Milky Way (MW), including the Canis Major (CMa) overdensity and the Galactic Anticenter Stellar Structure (GASS). Aims. In order to provide further insights into its origin, we present the first high resolution chemical abundance analysis for one red giant in Pal\\,1. Methods. We obtained high resolution (R=30000) spectra for one red giant star in Pal\\,1 using the High Dispersion Spectrograph (HDS) mounted at the SUBARU telescope. We used ATLAS-9 model atmospheres coupled with the SYNTHE and WIDTH calculation codes to derive chemical abundances from the measured line equivalent widths of 18 among $\\alpha$, Iron-peak, light and heavy elements. Results. The Palomar~1 chemical pattern is broadly compatible to that of the MW open clusters population and similar to disk stars. It is, instead, remarkably different from that of the Sa...

  14. The High Resolution IRAS Galaxy Atlas

    CERN Document Server

    Cao, Y; Prince, T A; Beichman, C A; Cao, Yu; Terebey, Susan; Prince, Thomas A.; Beichman, Charles A.

    1997-01-01

    An atlas of the Galactic plane (-4.7 deg < b < 4.7 deg) plus the molecular clouds in Orion, Rho Oph, and Taurus-Auriga has been produced at 60 and 100 micron from IRAS data. The Atlas consists of resolution-enhanced coadded images having 1 arcmin -- 2 arcmin resolution as well as coadded images at the native IRAS resolution. The IRAS Galaxy Atlas, together with the DRAO HI line / 21 cm continuum and FCRAO CO (1-0) line Galactic plane surveys, both with similar (approx. 1 arcmin) resolution, provide a powerful venue for studying the interstellar medium, star formation and large scale structure in our Galaxy. This paper documents the production and characteristics of the Atlas.

  15. Cosmic evolution of the C IV in high-resolution hydrodynamic simulations

    Science.gov (United States)

    Tescari, E.; Viel, M.; D'Odorico, V.; Cristiani, S.; Calura, F.; Borgani, S.; Tornatore, L.

    2011-02-01

    We investigate the properties of triply ionized carbon (C IV) in the intergalactic medium (IGM) using a set of high resolution and large box size cosmological hydrodynamic simulations of a Lambda cold dark matter (ΛCDM) model. We rely on a modification of the publicly available TreeSPH code GADGET-2 that self-consistently follows the metal enrichment mechanism by means of a detailed chemical evolution model. We focus on several numerical implementations of galactic feedback: galactic winds in the energy-driven and momentum-driven prescriptions, galactic winds hydrodynamically coupled to the surrounding gas and active galactic nuclei (AGNs) powered by gas accretion on to massive black holes. Furthermore, our results are compared to a run in which galactic feedback is not present and we also explore different initial stellar mass function. After having addressed some global properties of the simulated volume like the impact on the star formation rate and the content in carbon and C IV, we extract mock IGM transmission spectra in neutral hydrogen (H I) and C IV and perform Voigt profile fitting. The results are then compared with high-resolution quasar (QSO) spectra obtained with the Ultraviolet Echelle Spectrograph (UVES) at the Very Large Telescope (VLT) and the High Resolution Echelle Spectrograph (HIRES) at Keck. We find that feedback has little impact on statistics related to the neutral hydrogen, while C IV is more affected by galactic winds and/or AGN feedback. The feedback schemes investigated have a different strength and redshift evolution with a general tendency for AGN feedback to be more effective at lower redshift than galactic winds. When the same analysis is performed over observed and simulated C IV lines, we find a reasonably good agreement between data and simulations over the column density range NC IV= 1012.5-15 cm-2. Also the C IV linewidth distribution appears to be in agreement with the observed values, while the H I Doppler parameters, bH I

  16. An Integral-Field Spectrograph for a Terrestrial Planet Finding Mission

    Science.gov (United States)

    Heap, Sara R.

    2011-01-01

    We describe a conceptual design for an integral field spectrograph for characterizing exoplanets that we developed for NASA's Terrestrial Planet Finder Coronagraph (TPF-C), although it is equally applicable to an external-occulter mission. The spectrograph fulfills all four scientific objectives of a terrestrial planet finding mission by: (1) Spectrally characterizing the atmospheres of detected planets in search of signatures of habitability or even biological activity; (2) Directly detecting terrestrial planets in the habitable zone around nearby stars; (3) Studying all constituents of a planetary system including terrestrial and giant planets, gas and dust around sun-like stars of different ages and metallicities; (4) Enabling simultaneous, high-spatial-resolution, spectroscopy of all astrophysical sources regardless of central source luminosity, such as AGN's, proplyds, etc.

  17. High resolution fire risk mapping in Italy

    Science.gov (United States)

    Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko

    2014-05-01

    extinguishing actions, leaving more resources to improve safety in areas at risk. With the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a procedure was defined in order to assess areas at risk with high spatial resolution (900 m2) based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behaviour. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November- April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. About 48000 fire perimeters which burnt about 5500 km2 were considered in the analysis. The analysis has been carried out at 30 m spatial resolution. Some important considerations relating to climate and the territorial features that characterize the fire regime at national level contribute to better understand the forest fire phenomena. These results allow to define new strategies for forest fire prevention and management extensible to other geographical areas.

  18. MEGARA: a new generation optical spectrograph for GTC

    Science.gov (United States)

    Gil de Paz, A.; Gallego, J.; Carrasco, E.; Iglesias-Páramo, J.; Cedazo, R.; Vílchez, J. M.; García-Vargas, M. L.; Arrillaga, X.; Carrera, M. A.; Castillo-Morales, A.; Castillo-Domínguez, E.; Eliche-Moral, M. C.; Ferrusca, D.; González-Guardia, E.; Lefort, B.; Maldonado, M.; Marino, R. A.; Martínez-Delgado, I.; Morales Durán, I.; Mujica, E.; Páez, G.; Pascual, S.; Pérez-Calpena, A.; Sánchez-Penim, A.; Sánchez-Blanco, E.; Tulloch, S.; Velázquez, M.; Zamorano, J.; Aguerri, A. L.; Barrado y Naváscues, D.; Bertone, E.; Cardiel, N.; Cava, A.; Cenarro, J.; Chávez, M.; García, M.; Guichard, J.; Gúzman, R.; Herrero, A.; Huélamo, N.; Hughes, D.; Jiménez-Vicente, J.; Kehrig, C.; Márquez, I.; Masegosa, J.; Mayya, Y. D.; Méndez-Abreu, J.; Mollá, M.; Muñoz-Tuñón, C.; Peimbert, M.; Pérez-González, P. G.; Pérez Montero, E.; Rodríguez, M.; Rodríguez-Espinosa, J. M.; Rodríguez-Merino, L.; Rosa-González, D.; Sánchez-Almeida, J.; Sánchez Contreras, C.; Sánchez-Blázquez, P.; Sánchez Moreno, F. M.; Sánchez, S. F.; Sarajedini, A.; Serena, F.; Silich, S.; Simón-Díaz, S.; Tenorio-Tagle, G.; Terlevich, E.; Terlevich, R.; Torres-Peimbert, S.; Trujillo, I.; Tsamis, Y.; Vega, O.; Villar, V.

    2014-07-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma. MEGARA offers two IFU fiber bundles, one covering 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec (Large Compact Bundle; LCB) and another one covering 8.5x6.7 arcsec2 with a spaxel size of 0.42 arcsec (Small Compact Bundle; SCB). The MEGARA MOS mode will allow observing up to 100 objects in a region of 3.5x3.5 arcmin2 around the two IFU bundles. Both the LCB IFU and MOS capabilities of MEGARA will provide intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3650-9700ÅÅ. These values become RFWHM~7,000, 13,500, and 21,500 when the SCB is used. A mechanism placed at the pseudo-slit position allows exchanging the three observing modes and also acts as focusing mechanism. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts an E2V231-84 4kx4k CCD. The UCM (Spain) leads the MEGARA Consortium that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). MEGARA is being developed under a contract between GRANTECAN and UCM. The detailed design, construction and AIV phases are now funded and the instrument should be delivered to GTC before the end of 2016.

  19. Numerical simulation of space UV spectrographs

    Science.gov (United States)

    Yushkin, Maksim; Fatkhullin, Timur; Panchuk, Vladimir; Sachkov, Mikhail; Kanev, Evgeny

    2016-07-01

    Based on the ray tracing method, we developed algorithms for constructing numerical model of spectroscopic instrumentation. The Software is realized in C ++ using nVidia CUDA technology. The software package consists of three separate modules: the ray tracing module, a module for calculating energy efficiency and module of CCD image simulation. The main objective of this work was to obtain images of the spectra for the cross-dispersed spectrographs as well as segmented aperture Long Slit Spectrograph. The software can be potentially used by WSO-UV project. To test our algorithms and the software package we have performed simulations of the ground cross-dispersed Nasmyth Echelle Spectrometer (NES) installed on the platform of the Nasmyth focus of the Russian 6-meter BTA telescope. The comparison of model images of stellar spectra with observations on this device confirms that the software works well. The high degree of agreement between the theoretical and real spectra is shown.

  20. LOTUS: a low-cost, ultraviolet spectrograph

    Science.gov (United States)

    Steele, I. A.; Marchant, J. M.; Jermak, H. E.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Fitzsimmons, A.; Jehin, E.; Jones, G.; Mottram, C. J.; Smith, R. J.; Snodgrass, C.; de Val-Borro, M.

    2016-08-01

    We describe the design, construction and commissioning of a simple, low-cost long-slit spectrograph for the Liverpool Telescope. The design is optimized for near-UV and visible wavelengths and uses all transmitting optics. It exploits the instrument focal plane field curvature to partially correct axial chromatic aberration. A stepped slit provides narrow (2.5 × 95 arcsec) and wide (5 × 25 arcsec) options that are optimized for spectral resolution and flux calibration, respectively. On sky testing shows a wavelength range of 3200-6300 Å with a peak system throughput (including detector quantum efficiency) of 15 per cent and wavelength dependent spectral resolution of R = 225-430. By repeated observations of the symbiotic emission line star AG Peg, we demonstrate the wavelength stability of the system is <2 Å rms and is limited by the positioning of the object in the slit. The spectrograph is now in routine operation monitoring the activity of comet 67P/Churyumov-Gerasimenko during its current post-perihelion apparition.

  1. LOTUS: A low cost, ultraviolet spectrograph

    CERN Document Server

    Steele, I A; Jermak, H E; Barnsley, R M; Bates, S D; Clay, N R; Fitzsimmons, A; Jehin, E; Jones, G; Mottram, C J; Smith, R J; Snodgrass, C; de Val-Borro, M

    2016-01-01

    We describe the design, construction and commissioning of LOTUS; a simple, low-cost long-slit spectrograph for the Liverpool Telescope. The design is optimized for near-UV and visible wavelengths and uses all transmitting optics. It exploits the instrument focal plane field curvature to partially correct axial chromatic aberration. A stepped slit provides narrow (2.5x95 arcsec) and wide (5x25 arcsec) options that are optimized for spectral resolution and flux calibration respectively. On sky testing shows a wavelength range of 3200-6300 Angstroms with a peak system throughput (including detector quantum efficiency) of 15 per cent and wavelength dependant spectral resolution of R=225-430. By repeated observations of the symbiotic emission line star AG Peg we demonstrate the wavelength stability of the system is less than 2 Angstroms rms and is limited by the positioning of the object in the slit. The spectrograph is now in routine operation monitoring the activity of comet 67P/Churyumov-Gerasimenko during its ...

  2. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images.

    Science.gov (United States)

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen

    2017-05-07

    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images.

  3. Large Scale, High Resolution, Mantle Dynamics Modeling

    Science.gov (United States)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  4. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM)

    Science.gov (United States)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  5. The Ultraviolet Spectrograph on the Europa Mission (Europa-UVS)

    Science.gov (United States)

    Retherford, K. D.; Gladstone, R.; Greathouse, T. K.; Steffl, A.; Davis, M. W.; Feldman, P. D.; McGrath, M. A.; Roth, L.; Saur, J.; Spencer, J. R.; Stern, S. A.; Pope, S.; Freeman, M. A.; Persyn, S. C.; Araujo, M. F.; Cortinas, S. C.; Monreal, R. M.; Persson, K. B.; Trantham, B. J.; Versteeg, M. H.; Walther, B. C.

    2015-12-01

    NASA's Europa multi-flyby mission is designed to provide a diversity of measurements suited to enrich our understanding of the potential habitability of this intriguing ocean world. The Europa mission's Ultraviolet Spectrograph, Europa-UVS, is the sixth in a series of successful ultraviolet imaging spectrographs (Rosetta-Alice, New Horizons Pluto-Alice, LRO-LAMP) and, like JUICE-UVS (now under Phase B development), is largely based on the most recent of these to fly, Juno-UVS. Europa-UVS observes photons in the 55-210 nm wavelength range, at moderate spectral and spatial resolution along a 7.5° slit. Three distinct apertures send light to the off-axis telescope mirror feeding the long-slit spectrograph: i) a main entrance airglow port is used for most observations (e.g., airglow, aurora, surface mapping, and stellar occultations); ii) a high-spatial-resolution port consists of a small hole in an additional aperture door, and is used for detailed observations of bright targets; and iii) a separate solar port allows for solar occultations, viewing at a 60° offset from the nominal payload boresight. Photon event time-tagging (pixel list mode) and programmable spectral imaging (histogram mode) allow for observational flexibility and optimal science data management. As on Juno-UVS, the effects of penetrating electron radiation on electronic parts and data quality are mitigated through contiguous shielding, filtering of pulse height amplitudes, management of high-voltage settings, and careful use of radiation-hard parts. The science goals of Europa-UVS are to: 1) Determine the composition & chemistry, source & sinks, and structure & variability of Europa's atmosphere, from equator to pole; 2) Search for and characterize active plumes in terms of global distribution, structure, composition, and variability; 3) Explore the surface composition & microphysics and their relation to endogenic & exogenic processes; and 4) Investigate how energy and mass flow in the Europa

  6. Velocity and abundance precisions for future high-resolution spectroscopic surveys: a study for 4MOST

    CERN Document Server

    Caffau, E; Sbordone, L; Sartoretti, P; Hansen, C J; Royer, F; Leclerc, N; Bonifacio, P; Christlieb, N; Ludwig, H G; Grebel, E K; de Jong, R S; Chiappini, C; Walcher, J; Mignot, S; Feltzing, S; Cohen, M; Minchev, I; Helmi, A; Piffl, T; Depagne, E; Schnurr, O

    2012-01-01

    In preparation for future, large-scale, multi-object, high-resolution spectroscopic surveys of the Galaxy, we present a series of tests of the precision in radial velocity and chemical abundances that any such project can achieve at a 4m class telescope. We briefly discuss a number of science cases that aim at studying the chemo-dynamical history of the major Galactic components (bulge, thin and thick disks, and halo) - either as a follow-up to the Gaia mission or on their own merits. Based on a large grid of synthetic spectra that cover the full range in stellar parameters of typical survey targets, we devise an optimal wavelength range and argue for a moderately high-resolution spectrograph. As a result, the kinematic precision is not limited by any of these factors, but will practically only suffer from systematic effects, easily reaching uncertainties <1 km/s. Under realistic survey conditions (namely, considering stars brighter than r=16 mag with reasonable exposure times) we prefer an ideal resolving...

  7. High-resolution Observation of Moving Magnetic Features in Active Regions

    Science.gov (United States)

    Li, Qin; Deng, Na; Jing, Ju; Wang, Haimin

    2017-08-01

    Moving magnetic features (MMFs) are small photospheric magnetic elements that emerge and move outward toward the boundary of moat regions mostly during a sunspot decaying phase, in a serpent wave-like magnetic topology. Studies of MMFs and their classification (e.g., unipolar or bipolar types) strongly rely on the high spatiotemporal-resolution observation of photospheric magnetic field. In this work, we present a detailed observation of a sunspot evolution in NOAA active region (AR) 12565, using exceptionally high resolution Halpha images from the 1.6 New Solar telescope (NST) at Big Bear Solar Observatory (BBSO) and the UV images from the Interface Region Imaging Spectrograph (IRIS). The spectropolarimetric measurements of photospheric magnetic field are obtained from the NST Near InfraRed Imaging Spectropolarimeter (NIRIS) at Fe I 1.56 um line. We investigate the horizontal motion of the classified MMFs and discuss the clustering patterns of the geometry and motion of the MMFs. We estimate the rate of flux generation by appearance of MMFs and the role MMFs play in sunspot decaying phase. We also study the interaction between the MMFs and the existing magnetic field features and its response to Ellerman bombs and IRIS bombs respectively at higher layers.

  8. A High-Resolution Atlas of Uranium-Neon in the H Band

    CERN Document Server

    Redman, Stephen L; Terrien, Ryan; Mahadevan, Suvrath; Ramsey, Lawrence W; Bender, Chad F; Osterman, Steven N; Diddams, Scott A; Quinlan, Franklyn; Lawler, James E; Nave, Gillian

    2011-01-01

    We present a high-resolution (R ~ 50 000) atlas of a uranium-neon (U/Ne) hollow-cathode spectrum in the H-band (1454 nm to 1638 nm) for the calibration of near-infrared spectrographs. We obtained this U/Ne spectrum simultaneously with a laser-frequency comb spectrum, which we used to provide a first-order calibration to the U/Ne spectrum. We then calibrated the U/Ne spectrum using the recently-published uranium line list of Redman et al. (2011), which is derived from high-resolution Fourier transform spectrometer measurements. These two independent calibrations allowed us to easily identify emission lines in the hollow cathode lamp that do not correspond to known (classified) lines of either uranium or neon, and to compare the achievable precision of each source. Our frequency comb precision was limited by modal noise and detector effects, while the U/Ne precision was limited primarily by the signal-to-noise ratio (S/N) of the observed emission lines and our ability to model blended lines. The standard deviat...

  9. Diamond-machined ZnSe immersion grating for NIR high-resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Y; Kobayashi, N; Kuzmenko, P J; Little, S L; Yasui, C; Kondo, S; Minami, A; Motohara, K

    2008-07-25

    ZnSe immersion gratings (n {approx} 2.45) provide the possibility of high-resolution spectroscopy for the near-infrared (NIR) region. Since ZnSe has a lower internal attenuation than other NIR materials, it is most suitable for immersion grating, particularly in short NIR region (0.8-1.4 {micro}m). We are developing an extremely high-resolution spectrograph with {lambda}/{Delta}{lambda} = 100,000, WINERED, customized for the short NIR region, using ZnSe (or ZnS) immersion grating. However, it had been very difficult to make fine grooves on ZnSe substrate with a small pitch of less than 50 {micro}m because ZnSe is a soft/brittle material. We have overcome this problem and successfully machined sharp grooves with fine pitch on ZnSe substrates by nano precision fly-cutting technique at LLNL. The optical testing of the sample grating with HeNe laser shows an excellent performance: the relative efficiency more than 87.4 % at 0.633 {micro}m for a classical grating configuration. The diffraction efficiency when used as an immersion grating is estimated to be more than 65 % at 1 {micro}m. Following this progress, we are about to start machining a grating on a large ZnSe prism with an entrance aperture of 23mm x 50mm and the blaze angle of 70{sup o}.

  10. Prime focus spectrograph: Subaru's future

    OpenAIRE

    Sugai, Hajime; Dekany, Richard G.; Ellis, Richard S.; Seiffert, Michael D.; Smith, Roger M.

    2012-01-01

    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea, Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution. Taking advantage of Subaru’s wide field of view, which is further extended with the recently completed Wide Fie...

  11. High Resolution Surface Science at Mars

    Science.gov (United States)

    Bailey, Zachary J.; Tamppari, Leslie K.; Lock, Robert E.; Sturm, Erick J.

    2013-01-01

    The proposed mission would place a 2.4 m telescope in orbit around Mars with two focal plane instruments to obtain the highest resolution images and spectral maps of the surface to date (3-10x better than current). This investigation would make major contributions to all of the Mars Program Goals: life, climate, geology and preparation for human presence.

  12. High spatial resolution LWIR hyperspectral sensor

    Science.gov (United States)

    Roberts, Carson B.; Bodkin, Andrew; Daly, James T.; Meola, Joseph

    2015-06-01

    Presented is a new hyperspectral imager design based on multiple slit scanning. This represents an innovation in the classic trade-off between speed and resolution. This LWIR design has been able to produce data-cubes at 3 times the rate of conventional single slit scan devices. The instrument has a built-in radiometric and spectral calibrator.

  13. Near-Infrared high resolution spectral survey of comets with GIANO/TNG: The CN red-system at 1.1 μm

    Science.gov (United States)

    Faggi, Sara; Villanueva, Geronimo Luis; Mumma, Michael J.; Tozzi, Gian-Paolo; Brucato, John Robert

    2016-10-01

    High-resolution spectroscopy in the near-infrared spectral range is a powerful tool to investigate chemical composition and isotopic fractionation.Comets are the best preserved relic of the enfant stages of the solar system. By targeting biologically relevant species in cometary comae and retrieving isotopic (e.g. D/H) and spin isomeric (e.g., ortho- and para- water) ratios, we can study the formation and evolution of solar system matter, address the origin of Earth's oceans and characterize the delivery of organic matter that was essential for the appearance of life on early Earth. We initiated the first high resolution spectral survey of comets ever conducted in the 0.9-2.5 μm range, targeting C/2014 Q2 (Lovejoy), C/2013 US10 (Catalina) and C/2013 X1 (Panstarrs) with GIANO - the near-IR high resolution spectrograph on Telescopio Nazionale Galileo (TNG). In comet Lovejoy, we detected eight ro-vibrational bands of H2O (Faggi et al., 2016, ApJ in press), emission from the red-system of CN, and many other emission lines whose precursors are now being identified. In this talk we will present a new quantum mechanical solar fluorescence model for the CN red system and the retrievals obtained with it from our cometary spectra. These observations open new pathways for cometary science in the near-infrared spectral range (0.9-2.5 μm) and establish the feasibility of astrobiology-related scientific investigations with future high resolution IR spectrographs on 30-m class telescopes, e.g., the HIRES spectrograph on the E-ELT telescope. This work is part of Sara Faggi's Ph.D. thesis project. NASA's Planetary Astronomy Program supported GLV and MJM through funding awarded under proposal 11-PAST11-0045 (M. J. Mumma, PI ).

  14. A fast new cadioptric design for fiber-fed spectrographs

    Science.gov (United States)

    Saunders, Will

    2012-09-01

    The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per

  15. High-speed photography of high-resolution moire patterns

    Science.gov (United States)

    Whitworth, Martin B.; Huntley, Jonathan M.; Field, John E.

    1991-04-01

    The techniques of high resolution moire photography and high speed photography have been combined to allow measurement of the in-plane components of a transient displacement field with microsecond time resolution. Specimen gratings are prepared as casts in a thin layer of epoxy resin on the surface of a specimen. These are illuminated with a flash tube and imaged onto a reference grating with a specially modified camera lens, which incorporates a slotted mask in the aperture plane. For specimen gratings of 75 lines mm1, this selects the +1 and -1 order diffracted beams, thus doubling the effective grating frequency to 150 lines mm1. The resulting real-time moire fringes are recorded with a Hadland 792 image converter camera (Imacon) at an inter-frame time of 2-5ts. The images are digitised and an automatic fringe analysis technique based on the 2-D Fourier transform method is used to extract the displacement information. The technique is illustrated by the results of an investigation into the transient deformation of composite disc specimens, impacted with rectangular metal sliders fired from a gas gun.

  16. Characteristics of the Belgrade Astronomical Observatory's stellar spectrograph

    Directory of Open Access Journals (Sweden)

    Vince Ištvan I.

    2005-01-01

    Full Text Available In this paper the main features of the new SpectraPro-750 spectrograph of Belgrade Astronomical Observatory are described. The instrumental profile of the spectrograph for the 1200 l/mm grating is determined using a fiber optic bundle with fibers arranged in a pseudo-slit pattern. This instrumental profile is compared to the instrumental profiles obtained when the same fiber optic bundle illuminates the entrance slit with different widths. From appropriate instrumental profiles the practical spectral purities and the spectral resolutions for different entrance slit widths are obtained. The variation of the reciprocal linear dispersion with wavelength in the spectral range 350 - 600 nm is determined. A proposal for a link between telescope and the spectrograph is given.

  17. Quantum interpolation for high-resolution sensing.

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-02-28

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

  18. High Resolution RPCs for Large TOF Systems

    CERN Document Server

    Ferreira-Marques, R; CERN. Geneva; Carolino, N; Policarpo, Armando; Fonte, P

    1999-01-01

    Here we report on a particular type of RPC that presents above 95% efficiency for minimum ionizing particles and a very sharp time resolution, below 80 ps sigma. Our 9cm2 cells, made with glass and metal electrodes that form accurately spaced gaps of a few hundred micrometers, are operated at atmospheric pressure in non-flammable gases and can be economically produced in large quantities, opening perspectives for the construction of large area timeof flight systems.

  19. Ultra-high resolution electron microscopy

    Science.gov (United States)

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2017-02-01

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  20. High-quality multi-resolution volume rendering in medicine

    Institute of Scientific and Technical Information of China (English)

    XIE Kai; YANG Jie; LI Xiao-liang

    2007-01-01

    In order to perform a high-quality interactive rendering of large medical data sets on a single off-theshelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.

  1. The interstellar D1 line at high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, L.M.; Welty, D.E. (Chicago Univ., IL (USA))

    1991-02-01

    Observations at a resolving power or a velocity resolution are reported of the interstellar D{sub 1} line of Na I in the spectra of Gamma Cas, Delta Ori, Epsilon Ori, Pi Sco, Delta Cyg, and Alpha Cyg. An echelle grating was used in a double-pass configuration with a CCD detector in the coude spectrograph of the 2.7 m reflector at McDonald Observatory. At least 42 kinematically distinct clouds are detected along the light paths to the five more distant stars, in addition to a single cloud seen toward Delta Cyg. The absorption lines arising in 13 of the clouds are sufficiently narrow and unblended to reveal clearly resolved hyperfine structure components split by 1.05 km/s. An additional 13 clouds apparently show comparably narrow, but more strongly blended, lines. For each individual cloud, upper limits T{sub max} and (v{sub t}){sub max} on the temperature and the turbulent velocity, respectively, are derived by fitting the observing lines with theoretical absorption profiles. 15 refs.

  2. The interstellar D1 line at high resolution

    Science.gov (United States)

    Hobbs, L. M.; Welty, D. E.

    1991-01-01

    Observations at a resolving power or a velocity resolution are reported of the interstellar D(sub 1) line of Na I in the spectra of Gamma Cas, Delta Ori, Epsilon Ori, Pi Sco, Delta Cyg, and Alpha Cyg. An echelle grating was used in a double-pass configuration with a CCD detector in the coude spectrograph of the 2.7 m reflector at McDonald Observatory. At least 42 kinematically distinct clouds are detected along the light paths to the five more distant stars, in addition to a single cloud seen toward Delta Cyg. The absorption lines arising in 13 of the clouds are sufficiently narrow and unblended to reveal clearly resolved hyperfine structure components split by 1.05 km/s. An additional 13 clouds apparently show comparably narrow, but more strongly blended, lines. For each individual cloud, upper limits T(sub max) and (v sub t) (sub max) on the temperature and the turbulent velocity, respectively, are derived by fitting the observing lines with theoretical absorption profiles.

  3. Using high-resolution displays for high-resolution cardiac data.

    Science.gov (United States)

    Goodyer, Christopher; Hodrien, John; Wood, Jason; Kohl, Peter; Brodlie, Ken

    2009-07-13

    The ability to perform fast, accurate, high-resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to visualization must evolve. In this paper, we address the interactive display of data from high-resolution magnetic resonance imaging scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled liquid crystal display panel display wall and associated software, which provides an interactive and intuitive user interface. The oView software is an OpenGL application that is written for the VR Juggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at the universities of both Leeds and Oxford. We discuss important factors to be considered for interactive two-dimensional display of large three-dimensional datasets, including the use of intuitive input devices and level of detail aspects.

  4. The FUV detector for the cosmic origins spectrograph on the Hubble Space Telescope

    Science.gov (United States)

    Vallerga, J.; Zaninovich, J.; Welsh, B.; Siegmund, O.; McPhate, J.; Hull, J.; Gaines, G.; Buzasi, D.

    2002-01-01

    The Cosmic Origins Spectrograph (COS) is a high throughput spectrometer that will be placed on the Hubble Space Telescope (HST) during the last servicing mission in the year 2003. COS will be the most sensitive UV spectrograph ever flown aboard HST and will investigate such fundamental issues as the ionization and baryon content of the intergalactic medium and the origin of large-scale structure of the Universe. The driving design goal for COS is to maximize throughput at a moderate spectral resolution of />20,000 using optics with very few reflections and detectors with high quantum efficiency in two bandpass channels: FUV (1150-1775Å) and NUV (1750-3200Å). The COS FUV detector, a windowless microchannel plate (MCP) detector, consists of two segments each 85mm×10mm concatenated end to end with a 9mm gap between them. The design is based on the Far Ultraviolet Spectroscopic Explorer detectors with identical format and front surface radius of curvature that matches the grating focal plane of the spectrograph. However, enhancements have been made in the design and fabrication of the MCPs, the photocathode, the delay line anode and the readout electronics. We discuss these design enhancements and their significance.

  5. A Flexible and Modular Data Reduction Library for Fiber-fed Echelle Spectrographs

    CERN Document Server

    Sosnowska, Danuta; Figueira, Pedro; Modigliani, Andrea; Di Marcantonio, Paolo; Megevand, Denis; Pepe, Francesco

    2015-01-01

    Within the ESPRESSO project a new flexible data reduction library is being built. ESPRESSO, the Echelle SPectrograph for Rocky Exoplanets and Stable Spectral Observations is a fiber-fed, high-resolution, cross-dispersed echelle spectrograph. One of its main scientific goals is to search for terrestrial exoplanets using the radial velocity technique. A dedicated pipeline is being developed. It is designed to be able to reduce data from different similar spectrographs: not only ESPRESSO, but also HARPS, HARPS-N and possibly others. Instrument specifics are configurable through an input static configuration table. The first written recipes are already tested on HARPS and HARPS-N real data and ESPRESSO simulated data. The final scientific products of the pipeline will be the extracted 1-dim and 2-dim spectra. Using these products the radial velocity of the observed object can be computed with high accuracy. The library is developed within the standard ESO pipeline environment. It is being written in ANSI C and ma...

  6. An EXES High-Resolution Molecular Line Survey towards Orion IRc2

    Science.gov (United States)

    Rangwala, Naseem

    High spectral resolution molecular line surveys provide a chemical inventory for star forming regions and are essential for studying their chemistry, kinematics and physical conditions. Previous surveys have been limited to radio, sub-mm and FIR wavelengths. In the mid-infrared (MIR), there has not been any line survey with high spectral resolution. MIR missions such as ISO and Spitzer had low to moderate resolving power that were only able to link broad features with particular molecular bands and could not resolve the individual rovibrational transitions needed to identify specific molecules with certainty. The EXES instrument is currently the only available (airborne or spaceborne) spectrograph that provides high spectral resolution in the MIR region. We propose to use EXES to conduct an unbiased molecular line survey towards Orion IRc2 from 6 - 28.5 microns with a S/N of better than 70 over 90% of the proposed bandpass. The survey (due to its higher resolving power; R = 50,000) will do 5 - 50 times better than ISO in detecting isolated, narrow lines. This will allow us to (a) resolve the rovibrational structure of the gas phase molecules in order to identify them, (b) resolve their kinematics, (c) detect new gas phase molecules that were missed by ISO, and (d) provide useful constraints on Orion's hot core chemistry as sampled by IRc2. The proposed observations will provide the best infrared measurements (to date) of molecular column densities and physical conditions - providing strong constraints on the current chemical network models for star forming regions. This survey will greatly enhance the inventory of resolved line features in the MIR, making it an invaluable reference to be used by the JWST and ALMA scientific communities. By waiving the proprietary period, this program will allow astronomers to exploit these data as soon as they become available.

  7. High resolution RPC's for large TOF systems

    CERN Document Server

    Fonte, Paulo J R; Pinhão, J; Carolino, N; Policarpo, Armando

    2000-01-01

    Here we report on a particular type of RPC that presents up to 99% efficiency for minimum ionizing particles and a very good time resolution, below 50 ps s for the most optimized construction. Our 9 cm2 cells, made with glass and metal electrodes that form accurately spaced gaps of a few hundred micrometers, are operated at atmospheric pressure in non-flammable gases and can be economically produced in large quantities, opening perspectives for the construction of large area time of flight systems.

  8. High resolution IVEM tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Sedat, J.W.; Agard, D.A. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.

  9. DSCOVR High Time Resolution Solar Wind Measurements

    Science.gov (United States)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  10. Nanosecond microscopy with a high spectroscopic resolution

    CERN Document Server

    Heinrich, C; Ritsch-Marte, M; Bernet, Stefan; Heinrich, Christoph; Ritsch-Marte, Monika

    2005-01-01

    We demonstrate coherent anti-Stokes Raman scattering (CARS) microscopy in a wide-field setup with nanosecond laser pulse excitation. In contrast to confocal setups, the image of a sample can be recorded with a single pair of excitation pulses. For this purpose the excitation geometry is specially designed in order to satisfy the phase matching condition over the whole sample area. The spectral, temporal and spatial sensitivity of the method is demonstrated by imaging test samples, i.e. oil vesicles in sunflower seeds, on a nanosecond timescale. The method provides snapshot imaging in 3 nanoseconds with a spectral resolution of 25 wavenumbers (cm$^{-1}$).

  11. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  12. Towards high resolution data assimilation and ensemble forecasting

    NARCIS (Netherlands)

    Stappers, R.J.J.

    2013-01-01

    Due the increase in computational power of supercomputers the grid resolution of high resolution numerical weather prediction models is now reaching the 1 km scale. As a result, mesoscale processes related to high impact weather (such as deep convection) can now explicitly be resolved by the models.

  13. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  14. High-Speed Smart Camera with High Resolution

    Directory of Open Access Journals (Sweden)

    J. Dubois

    2007-02-01

    Full Text Available High-speed video cameras are powerful tools for investigating for instance the biomechanics analysis or the movements of mechanical parts in manufacturing processes. In the past years, the use of CMOS sensors instead of CCDs has enabled the development of high-speed video cameras offering digital outputs, readout flexibility, and lower manufacturing costs. In this paper, we propose a high-speed smart camera based on a CMOS sensor with embedded processing. Two types of algorithms have been implemented. A compression algorithm, specific to high-speed imaging constraints, has been implemented. This implementation allows to reduce the large data flow (6.55 Gbps and to propose a transfer on a serial output link (USB 2.0. The second type of algorithm is dedicated to feature extraction such as edge detection, markers extraction, or image analysis, wavelet analysis, and object tracking. These image processing algorithms have been implemented into an FPGA embedded inside the camera. These implementations are low-cost in terms of hardware resources. This FPGA technology allows us to process in real time 500 images per second with a 1280×1024 resolution. This camera system is a reconfigurable platform, other image processing algorithms can be implemented.

  15. High-Speed Smart Camera with High Resolution

    Directory of Open Access Journals (Sweden)

    Mosqueron R

    2007-01-01

    Full Text Available High-speed video cameras are powerful tools for investigating for instance the biomechanics analysis or the movements of mechanical parts in manufacturing processes. In the past years, the use of CMOS sensors instead of CCDs has enabled the development of high-speed video cameras offering digital outputs, readout flexibility, and lower manufacturing costs. In this paper, we propose a high-speed smart camera based on a CMOS sensor with embedded processing. Two types of algorithms have been implemented. A compression algorithm, specific to high-speed imaging constraints, has been implemented. This implementation allows to reduce the large data flow (6.55 Gbps and to propose a transfer on a serial output link (USB 2.0. The second type of algorithm is dedicated to feature extraction such as edge detection, markers extraction, or image analysis, wavelet analysis, and object tracking. These image processing algorithms have been implemented into an FPGA embedded inside the camera. These implementations are low-cost in terms of hardware resources. This FPGA technology allows us to process in real time 500 images per second with a 1280×1024 resolution. This camera system is a reconfigurable platform, other image processing algorithms can be implemented.

  16. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  17. NAHUAL: A cool spectrograph for planets of ultra-cool objects

    CERN Document Server

    Guenther, E W; Barrado y Navascués, D; Laux, U

    2005-01-01

    We present the status of an ongoing study to built a a high resolution near infrared Echelle spectrograph (NAHUAL) for the 10.4-m-Gran Telescopio Canarias (GTC) which will be especially optimised for planet searches by means of high precision radial velocity measurements. We show that infrared radial velocity programs are particularly suitable to search for planets very low mass stars and brown dwarfs, as well as active stars. The goal of NAHUAL is to reach an accuracy of the radial velocity measurement of a few m/s, which would allow the detection of planets with a few earth-masses orbiting low-mass stars and brown dwarfs. It is planed that NAHUAL covers simultaneously the full wavelength range in the J, H, and K-band, and will also serve as a general purpose high resolution near infrared spectrograph of the GTC. The planed instrument will have a resolution of R=50,000 with a 0.175 arcsec slit, and an AO-system. An absorption cell will serve as a simultaneous wavelength reference.

  18. A Method to Calibrate the High-resolution Catania Astrophysical Observatory Spectropolarimeter

    Science.gov (United States)

    Leone, F.; Avila, G.; Bellassai, G.; Bruno, P.; Catalano, S.; Di Benedetto, R.; Di Stefano, A.; Gangi, M.; Giarrusso, M.; Greco, V.; Martinetti, E.; Miraglia, M.; Munari, M.; Pontoni, C.; Scalia, C.; Scuderi, S.; Spanó, P.

    2016-05-01

    The Catania Astrophysical Observatory Spectropolarimeter (CAOS) is a white-pupil cross-dispersed échelle spectrograph with a spectral resolution of up to R = 55,000 in the 375-1100 nm range in a single exposure, with complete coverage up to 856 nm. CAOS is linked to the 36-inch telescope, at Mount Etna Observatory, with a couple of 100 μm optical fibers and it achieves a signal-to-noise ratio better than 60 for a V = 10 mag star in one hour. CAOS is thermally stabilized in temperature within a 0.01 K rms, so that radial velocities are measured with a precision better than 100 m s-1 from a single spectral line. Linear and circular spectropolarimetric observations are possible by means of a Savart plate working in series with a half-wave and a quarter-wave retarder plate in the 376-850 nm range. As is usual for high-resolution spectropolarimeters, CAOS is suitable to measure all Stokes parameters across spectral lines and it cannot measure the absolute degree of polarization. Observations of unpolarized standard stars show that instrumental polarization is generally zero at 550 nm and can increase up to 3% at the other wavelengths. Since polarized and unpolarized standard stars are useless, we suggest a method to calibrate a high-resolution spectropolarimeter on the basis of the polarimetric properties of spectral lines formed in the presence of a magnetic field. As applied to CAOS, observations of magnetic chemically peculiar stars of the main sequence show that the cross-talk from linear to circular polarization is smaller than 0.4% and that conversion from circular to linear is less than 2.7%. Strength and wavelength dependences of cross-talk can be entirely ascribed, via numerical simulations, to the incorrect retardance of achromatic wave plates.

  19. The high spectral resolution (scanning) lidar (HSRL)

    Energy Technology Data Exchange (ETDEWEB)

    Eloranta, E. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Lidars enable the spatial resolution of optical depth variation in clouds. The optical depth must be inverted from the backscatter signal, a process which is complicated by the fact that both molecular and aerosol backscatter signals are present. The HSRL has the advantage of allowing these two signals to be separated. It has a huge dynamic range, allowing optical depth retrieval for t = 0.01 to 3. Depolarization is used to determine the nature of hydrometeors present. Experiments show that water clouds must almost always be taken into account during cirrus observations. An exciting new development is the possibility of measuring effective radius via diffraction peak width and variable field-of-view measurements. 2 figs.

  20. Studying stellar populations at high spectral resolution

    CERN Document Server

    Bruzual, Gustavo A

    2007-01-01

    I describe very briefly the new libraries of empirical spectra of stars covering wide ranges of values of the atmospheric parameters Teff, log g, [Fe/H], as well as spectral type, that have become available in the recent past, among them the HNGSL, MILES, UVES-POP, ELODIE, and the IndoUS libraries. I show the results of using the IndoUS and the HNGSL libraries, as well as an atlas of theoretical model atmospheres, to build population synthesis models. These libraries are complementary in spectral resolution and wavelength coverage, and will prove extremely useful to describe spectral features expected in galaxy spectra from the NUV to the NIR. The fits to observed galaxy spectra using simple and composite stellar population models are discussed.

  1. High resolution spectral survey of symbiotic stars in the near-IR over the GAIA wavelength range

    CERN Document Server

    Marrese, P M; Munari, U; Marrese, Paola M.; Sordo, Rosanna; Munari, Ulisse

    2002-01-01

    High resolution (R~20,000), high signal-to-noise (S/N~100) spectra were collected for ~40 symbiotic stars with the Asiago echelle spectrograph over the same 8480-8740 Ang wavelength range covered by the ESA Cornerstone mission GAIA, centered on the near-IR CaII triplet and the head of the Paschen series. A large number (~140) of cool MKK giant and supergiant templates were observed with the same instrumentation to serve as a reference and classification grid. The spectra offer bright prospects in classifying and addressing the nature of the cool component of symbiotic stars (deriving T(eff), log g, [Fe/H], [alpha/Fe], V(rot)sin i both via MDM-like methods and syntetic atmosphere modeling) and mapping the physical condition and kinematics of the gas regions responsible for the emission lines.

  2. Exoplanet Science with the European Extremely Large Telescope. The Case for Visible and Near-IR Spectroscopy at High Resolution

    CERN Document Server

    Udry, S; Bouchy, F; Cameron, A Collier; Henning, T; Mayor, M; Pepe, F; Piskunov, N; Pollacco, D; Queloz, D; Quirrenbach, A; Rauer, H; Rebolo, R; Santos, N C; Snellen, I; Zerbi, F

    2014-01-01

    Exoplanet science is booming. In 20 years our knowledge has expanded considerably, from the first discovery of a Hot Jupiter, to the detection of a large population of Neptunes and super-Earths, to the first steps toward the characterization of exoplanet atmospheres. Between today and 2025, the field will evolve at an even faster pace with the advent of several space-based transit search missions, ground-based spectrographs, high-contrast imaging facilities, and the James Webb Space Telescope. Especially the ESA M-class PLATO mission will be a game changer in the field. From 2024 onwards, PLATO will find transiting terrestrial planets orbiting within the habitable zones of nearby, bright stars. These objects will require the power of Extremely Large Telescopes (ELTs) to be characterized further. The technique of ground-based high-resolution spectroscopy is establishing itself as a crucial pathway to measure chemical composition, atmospheric structure and atmospheric circulation in transiting exoplanets. A hig...

  3. A high-resolution vehicle emission inventory for China

    Science.gov (United States)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  4. Towards optical intensity interferometry for high angular resolution stellar astrophysics

    CERN Document Server

    Nunez, Paul D

    2012-01-01

    Most neighboring stars are still detected as point sources and are beyond the angular resolution reach of current observatories. Methods to improve our understanding of stars at high angular resolution are investigated. Air Cherenkov telescopes (ACTs), primarily used for Gamma-ray astronomy, enable us to increase our understanding of the circumstellar environment of a particular system. When used as optical intensity interferometers, future ACT arrays will allow us to detect stars as extended objects and image their surfaces at high angular resolution. Optical stellar intensity interferometry (SII) with ACT arrays, composed of nearly 100 telescopes, will provide means to measure fundamental stellar parameters and also open the possibility of model-independent imaging. A data analysis algorithm is developed and permits the reconstruction of high angular resolution images from simulated SII data. The capabilities and limitations of future ACT arrays used for high angular resolution imaging are investigated via ...

  5. Research Relative to High Spatial Resolution Passive Microwave Sounding Systems

    Science.gov (United States)

    Staelin, D. H.; Rosenkranz, P. W.

    1984-01-01

    Methods to obtain high resolution passive microwave weather observations, and understanding of their probable impact on numerical weather prediction accuracy were investigated. The development of synthetic aperture concepts for geosynchronous passive microwave sounders were studied. The effects of clouds, precipitation, surface phenomena, and atmospheric thermal fine structure on a scale of several kilometers were examined. High resolution passive microwave sounders (e.g., AMSU) with an increased number of channels will produce initialization data for numerical weather prediction (NWP) models with both increased spatial resolution and coverage. The development of statistical models for error growth in high resolution primitive equation NWP models which permit the consequences of various observing system alternatives, including sensors and assimilation times and procedures is discussed. A high resolution three dimensional primitive equation NWP model to determine parameters in an error growth model similar to that formulated by Lorenz, but with more degrees of freedom is utilized.

  6. Whole-animal imaging with high spatio-temporal resolution

    Science.gov (United States)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  7. Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR

    Science.gov (United States)

    Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.

    2016-07-01

    An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.

  8. Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, V K; Alti, K; Nayak, R; Bernard, R; Kartha, V B; Santhosh, C [Centre for Atomic and Molecular Physics, Manipal University, Manipal (India); Khetarpal, N [Department of Biotechnology, Manipal University, Manipal (India); Gupta, G P; Suri, B M, E-mail: santhosh.cls@manipal.ed [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai (India)

    2010-04-15

    Laser-Induced Breakdown Spectroscopy (LIBS) is well recognized as a promising tool for in situ/remote elemental analysis of environmental, archeological, clinical, and hazardous samples. With the aim of quantifying trace elements in such samples, using LIBS technique, an echelle spectrograph-ICCD system with high sensitivity and good resolution has been assembled. Various important parameters of this system were studied and optimized. Conditions for getting good quality LIBS spectra and signal for multielemental analysis have been achieved, and these are discussed and illustrated in this paper.

  9. High resolution resonant recombination measurements using evaporative cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Beilmann, C; Lopez-Urrutia, J R Crespo; Mokler, P H; Ullrich, J, E-mail: christian.beilmann@mpi-hd.mpg.d [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2010-09-15

    We report on a method significantly improving the energy resolution of dielectronic recombination (DR) measurements in electron beam ion traps (EBITs). The line width of DR resonances can be reduced to values distinctly smaller than the corresponding space charge width of the uncompensated electron beam. The experimental technique based on forced evaporative cooling is presented together with test measurements demonstrating its high efficiency. The principle for resolution improvement is elucidated and the limiting factors are discussed. This method opens access to high resolution DR measurements at high ion-electron collision energies required for innermost shell DR in highly charged ions (HCI).

  10. Fast Imaging Solar Spectrograph System in New Solar Telescope

    Science.gov (United States)

    Park, Y.-D.; Kim, Y. H.; Chae, J.; Goode, P. R.; Cho, K. S.; Park, H. M.; Nah, J. K.; Jang, B. H.

    2010-12-01

    In 2004, Big Bear Solar Observatory in California, USA launched a project for construction of the world's largest aperture solar telescope (D = 1.6m) called New Solar Telescope(NST). University of Hawaii (UH) and Korea Astronomy and Space Science Institute(KASI) partly collaborate on the project. NST is a designed off-axis parabolic Gregorian reflector with very high spatial resolution(0.07 arcsec at 5000A) and is equipped with several scientific instruments such as Visible Imaging Magnetograph (VIM), InfraRed Imaging Magnetograph IRIM), and so on. Since these scientific instruments are focused on studies of the solar photosphere, we need a post-focus instrument for the NST to study the fine structures and dynamic patterns of the solar chromosphere and low Transition Region (TR) layer, including filaments/prominences, spicules, jets, micro flares, etc. For this reason, we developed and installed a fast imaging solar spectrograph(FISS) system on the NST withadvantages of achieving compact design with high spectral resolution and small aberration as well as recording many solar spectral lines in a single and/or dual band mode. FISS was installed in May, 2010 and now we carry out a test observation. In this talk, we introduce the FISS system and the results of the test observation after FISS installation.

  11. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  12. Lines and continuum sky emission in the near infrared: observational constraints from deep high spectral resolution spectra with GIANO-TNG

    CERN Document Server

    Oliva, E; Scuderi, S; Benatti, S; Carleo, I; Lapenna, E; Mucciarelli, A; Baffa, C; Biliotti, V; Carbonaro, L; Falcini, G; Giani, E; Iuzzolino, M; Massi, F; Sanna, N; Sozzi, M; Tozzi, A; Ghedina, A; Ghinassi, F; Lodi, M; Harutyunyan, A; Pedani, M

    2015-01-01

    Aims Determining the intensity of lines and continuum airglow emission in the H-band is important for the design of faint-object infrared spectrographs. Existing spectra at low/medium resolution cannot disentangle the true sky-continuum from instrumental effects (e.g. diffuse light in the wings of strong lines). We aim to obtain, for the first time, a high resolution infrared spectrum deep enough to set significant constraints on the continuum emission between the lines in the H-band. Methods During the second commissioning run of the GIANO high-resolution infrared spectrograph at La Palma Observatory, we pointed the instrument directly to the sky and obtained a deep spectrum that extends from 0.97 to 2.4 micron. Results The spectrum shows about 1500 emission lines, a factor of two more than in previous works. Of these, 80% are identified as OH transitions; half of these are from highly excited molecules (hot-OH component) that are not included in the OH airglow emission models normally used for astronomical ...

  13. A high-resolution time-to-digital converter using a three-level resolution

    Science.gov (United States)

    Dehghani, Asma; Saneei, Mohsen; Mahani, Ali

    2016-08-01

    In this article, a three-level resolution Vernier delay line time-to-digital converter (TDC) was proposed. The proposed TDC core was based on the pseudo-differential digital architecture that made it insensitive to nMOS and pMOS transistor mismatches. It also employed a Vernier delay line (VDL) in conjunction with an asynchronous read-out circuitry. The time interval resolution was equal to the difference of delay between buffers of upper and lower chains. Then, via the extra chain included in the lower delay line, resolution was controlled and power consumption was reduced. This method led to high resolution and low power consumption. The measurement results of TDC showed a resolution of 4.5 ps, 12-bit output dynamic range, and integral nonlinearity of 1.5 least significant bits. This TDC achieved the consumption of 68.43 µW from 1.1-V supply.

  14. Prime Focus Spectrograph - Subaru's future -

    CERN Document Server

    Sugai, Hajime; Takato, Naruhisa; Tamura, Naoyuki; Shimono, Atsushi; Ohyama, Youichi; Ueda, Akitoshi; Ling, Hung-Hsu; de Arruda, Marcio Vital; Barkhouser, Robert H; Bennett, Charles L; Bickerton, Steve; Braun, David F; Bruno, Robin J; Carr, Michael A; Oliveira, João Batista de Carvalho; Chang, Yin-Chang; Chen, Hsin-Yo; Dekany, Richard G; Dominici, Tania Pereira; Ellis, Richard S; Fisher, Charles D; Gunn, James E; Heckman, Timothy M; Ho, Paul T P; Hu, Yen-Shan; Jaquet, Marc; Karr, Jennifer; Kimura, Masahiko; Fèvre, Olivier Le; Mignant, David Le; Loomis, Craig; Lupton, Robert H; Madec, Fabrice; Marrara, Lucas Souza; Martin, Laurent; Murayama, Hitoshi; de Oliveira, Antonio Cesar; de Oliveira, Claudia Mendes; de Oliveira, Ligia Souza; Orndorff, Joe D; Vilaça, Rodrigo de Paiva; Macanhan, Vanessa Bawden de Paula; Prieto, Eric; Santos, Jesulino Bispo dos; Seiffert, Michael D; Smee, Stephen A; Smith, Roger M; Sodré, Laerte; Spergel, David N; Surace, Christian; Vives, Sebastien; Wang, Shiang-Yu; Yan, Chi-Hung

    2012-01-01

    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea, Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution. Taking advantage of Subaru's wide field of view, which is further extended with the recently completed Wide Field Corrector, PFS will enable us to carry out multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A microlens is attached at each fiber entrance for F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. Fibers are accurately placed onto target positions by positioners, each of which consists of two stages of piezo-electric rotary motors, through iterations by using back-illuminated fiber position measurements with a wide-field metrology camera. Fibers then carry l...

  15. Updating Maps Using High Resolution Satellite Imagery

    Science.gov (United States)

    Alrajhi, Muhamad; Shahzad Janjua, Khurram; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Kingdom of Saudi Arabia is one of the most dynamic countries of the world. We have witnessed a very rapid urban development's which are altering Kingdom's landscape on daily basis. In recent years a substantial increase in urban populations is observed which results in the formation of large cities. Considering this fast paced growth, it has become necessary to monitor these changes, in consideration with challenges faced by aerial photography projects. It has been observed that data obtained through aerial photography has a lifecycle of 5-years because of delay caused by extreme weather conditions and dust storms which acts as hindrances or barriers during aerial imagery acquisition, which has increased the costs of aerial survey projects. All of these circumstances require that we must consider some alternatives that can provide us easy and better ways of image acquisition in short span of time for achieving reliable accuracy and cost effectiveness. The approach of this study is to conduct an extensive comparison between different resolutions of data sets which include: Orthophoto of (10 cm) GSD, Stereo images of (50 cm) GSD and Stereo images of (1 m) GSD, for map updating. Different approaches have been applied for digitizing buildings, roads, tracks, airport, roof level changes, filling stations, buildings under construction, property boundaries, mosques buildings and parking places.

  16. Sunspot Group Development in High Resolution

    CERN Document Server

    Muraközy, J; Ludmány, A

    2014-01-01

    The Solar and Heliospheric Obseratory/Michelson Doppler Imager--Debrecen Data (SDD) sunspot catalogue provides an opportunity to study the details and development of sunspot groups on a large statistical sample. The SDD data allow, in particular, the differential study of the leading and following parts with a temporal resolution of 1.5 hours. In this study, we analyse the equilibrium distance of sunspot groups as well as the evolution of this distance over the lifetime of the groups and the shifts in longitude associated with these groups. We also study the asymmetry between the compactness of the leading and following parts, as well as the time-profiles for the development of the area of sunspot groups. A logarithmic relationship has been found between the total area and the distance of leading-following parts of active regions (ARs) at the time of their maximum area. In the developing phase the leading part moves forward; this is more noticeable in larger ARs. The leading part has a higher growth rate than...

  17. Wide-field, high-resolution Fourier ptychographic microscopy

    CERN Document Server

    Zheng, Guoan; Yang, Changhuei

    2014-01-01

    In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope's depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 um, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM's successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system's optics to one that is solvable through computation.

  18. Subaru high resolution spectroscopy of complex metal absorption lines of QSO HS1603+3820

    CERN Document Server

    Misawa, T; Takada-Hidai, M; Wang, Y; Kashikawa, N; Iye, M; Tanaka, I; Misawa, Toru; Yamada, Toru; Takada-Hidai, Masahide; Wang, Yiping; Kashikawa, Nobunari; Iye, Masanori; Tanaka, Ichi

    2002-01-01

    We present a high resolution spectrum of the quasar, HS1603+3820 (z_em=2.542), observed with the High Dispersion Spectrograph (HDS) on Subaru Telescope. This quasar, first discovered in the Hamburg/CfA Quasar Survey, has 11 C IV lines at 1.96 2.29 and resolves some of them into multiple narrow components with b 65 km/s). We use three properties of C IV lines, specifically, time variability, covering factor, and absorption line profile, to classify them into quasar intrinsic absorption lines (QIALs) and spatially intervening absorption lines (SIALs). The C IV lines at 2.42 < z_abs < 2.45 are classified as QIALs in spite of their large velocity shifts from the quasar. Perhaps they are produced by gas clouds ejected from the quasar with the velocity of v_ej = 8000 km/s -- 10000 km/s. On the other hand, three C IV lines at 2.48 < z_abs < 2.55 are classified as SIALs, which suggests there exist intervening absorbers near the quasar. We, however, cannot rule out QIALs for the two lines at z_abs ~ 2.54...

  19. High-resolution CCD spectra of stars in globular clusters. I - Oxygen in M13

    Science.gov (United States)

    Leep, E. M.; Wallerstein, G.; Oke, J. B.

    1986-01-01

    High-resolution (0.3 A) CCD spectra obtained at the 200 in. coude spectrograph have been analyzed for the abundances of O, Sc, Fe, and La in four stars in the globular cluster M13. Fe/H abundance is found to be = -1.6, as found by many other observers of this cluster. For three stars O/Fe abundance is found to be = +0.3 + or - 0.1, which is similar to O/Fe ratios in other globular clusters and metal-poor field stars. For star II-67, no oxygen line is visible at 6300 A and O/Fe abundance is found to be not greater than -0.4 (for a high carbon content) and not greater than -0.7 (for a low carbon content). The latter is more likely to be correct. Two possible explanations of the oxygen deficiency in II-67 are discussed: primordial deficiency, and CNO cycling at or above a temperature of 25,000,000 K.

  20. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    We present high resolution upconversion of incoherent infrared radiation by means of sum-frequency mixing with a laser followed by simple CCD Si-camera detection. Noise associated with upconversion is, in strong contrast to room temperature direct mid-IR detection, extremely small, thus very faint...... signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...

  1. Achieving High Resolution Timer Events in Virtualized Environment.

    Science.gov (United States)

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  2. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... to, for example, atmospheric research, combustion and gasification. Some high-temperature, high-resolution IR/UV absorption/transmission measurements gases (e.g. CO2, SO2, SO3 and phenol) are presented....

  3. Absolute calibration of space-resolving soft X-ray spectrograph for plasma diagnostics

    Science.gov (United States)

    Yoshikawa, M.; Okamoto, Y.; Kawamori, E.; Watanabe, Y.; Watabe, C.; Yamaguchi, N.; Tamano, T.

    2001-07-01

    A grazing incidence flat-field soft X-ray (20-350 Å) spectrograph was constructed and applied for impurity diagnostics in the GAMMA 10 fusion plasma. The spectrograph consisted of a limited height entrance slit, an aberration-corrected concave grating, a microchannel-plate intensified detector and an instant camera/a high speed solid state camera. An absolute calibration experiment for the SX spectrograph was performed at the Photon Factory in the High Energy Accelerator Research Organization with monitoring the incident synchrotron beam intensity by using an absolutely calibrated XUV silicon photodiode. From the results of absolute calibration of the spectrograph, the radiation loss from the plasma was obtained.

  4. Absolute calibration of space-resolving soft X-ray spectrograph for plasma diagnostics

    CERN Document Server

    Yoshikawa, M; Kawamori, E; Watanabe, Y; Watabe, C; Yamaguchi, N; Tamano, T

    2001-01-01

    A grazing incidence flat-field soft X-ray (20-350 A) spectrograph was constructed and applied for impurity diagnostics in the GAMMA 10 fusion plasma. The spectrograph consisted of a limited height entrance slit, an aberration-corrected concave grating, a microchannel-plate intensified detector and an instant camera/a high speed solid state camera. An absolute calibration experiment for the SX spectrograph was performed at the Photon Factory in the High Energy Accelerator Research Organization with monitoring the incident synchrotron beam intensity by using an absolutely calibrated XUV silicon photodiode. From the results of absolute calibration of the spectrograph, the radiation loss from the plasma was obtained.

  5. Ultra-high resolution and high-brightness AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  6. High resolution study of 0{sup +} and 2{sup +} excitations in {sup 168}Er and {sup 130}Ba with the (p,t) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Hans-Friedrich; Faestermann, Thomas; Kruecken, Reiner; Mahgoub, Mahmoud [Physik-Department, Technische Universitaet Muenchen, Garching (Germany); Bucurescu, Dorel; Suliman, Gabriel [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Hertenberger, Ralf; Graw, Gerhard [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Jolie, Jan; Brentano, Peter von; Braun, Norbert; Heinze, Stefan; Moeller, Oliver; Muecher, Dennis; Scholl, Clemens [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Casten, Richard; Meyer, Deseree [Wright Nuclear Structure Laboratory, Yale University, New Haven (United States); Lo Iudice, Nicola [Dipartimento di Scienze Fisiche, Universita di Napoli (Italy); Chauvin, Nicolas [CSNSM, Institut de Physique Nucleaire, Orsay (France)

    2008-07-01

    Excited states in the deformed nucleus {sup 168}Er have been studied with high energy resolution, in the (p,t) reaction, with the Munich Q3D spectrograph. A number of 25 excited 0{sup +} states and 63 2{sup +} states have been assigned up to 4.0 MeV excitation energy. This unusually rich information offers a unique opportunity to check in detail nuclear structure models. The experimental data are compared with the quasiparticle phonon model (QPM) and the projected shell model (PSM). Latest results for {sup 130}Ba from a (p,t) measurement are also discussed.

  7. High-Resolution Spectroscopy of Extremely Metal-Poor Stars from SDSS/SEGUE: I. Atmospheric Parameters and Chemical Compositions

    CERN Document Server

    Aoki, Wako; Lee, Young Sun; Honda, Satoshi; Ito, Hiroko; Takada-Hidai, Masahide; Frebel, Anna; Suda, Takuma; Fujimoto, Masatuki Y; Carollo, Daniela; Sivarani, Thirupathi

    2012-01-01

    Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turn-off stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband $(V-K)_0$ and $(g-r)_0$ colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] $ +0.7$) among the 25 giants in our sample is as high as 36%, while only a lowe...

  8. Spatially adaptive regularized iterative high-resolution image reconstruction algorithm

    Science.gov (United States)

    Lim, Won Bae; Park, Min K.; Kang, Moon Gi

    2000-12-01

    High resolution images are often required in applications such as remote sensing, frame freeze in video, military and medical imaging. Digital image sensor arrays, which are used for image acquisition in many imaging systems, are not dense enough to prevent aliasing, so the acquired images will be degraded by aliasing effects. To prevent aliasing without loss of resolution, a dense detector array is required. But it may be very costly or unavailable, thus, many imaging systems are designed to allow some level of aliasing during image acquisition. The purpose of our work is to reconstruct an unaliased high resolution image from the acquired aliased image sequence. In this paper, we propose a spatially adaptive regularized iterative high resolution image reconstruction algorithm for blurred, noisy and down-sampled image sequences. The proposed approach is based on a Constrained Least Squares (CLS) high resolution reconstruction algorithm, with spatially adaptive regularization operators and parameters. These regularization terms are shown to improve the reconstructed image quality by forcing smoothness, while preserving edges in the reconstructed high resolution image. Accurate sub-pixel motion registration is the key of the success of the high resolution image reconstruction algorithm. However, sub-pixel motion registration may have some level of registration error. Therefore, a reconstruction algorithm which is robust against the registration error is required. The registration algorithm uses a gradient based sub-pixel motion estimator which provides shift information for each of the recorded frames. The proposed algorithm is based on a technique of high resolution image reconstruction, and it solves spatially adaptive regularized constrained least square minimization functionals. In this paper, we show that the reconstruction algorithm gives dramatic improvements in the resolution of the reconstructed image and is effective in handling the aliased information. The

  9. The Mitchell Spectrograph: Studying Nearby Galaxies with the VIRUS Prototype

    Directory of Open Access Journals (Sweden)

    Guillermo A. Blanc

    2013-01-01

    Full Text Available The Mitchell Spectrograph (a.k.a. VIRUS-P on the 2.7 m Harlan J. Smith telescope at McDonald Observatory is currently the largest field of view (FOV integral field unit (IFU spectrograph in the world (1.7′×1.7′. It was designed as a prototype for the highly replicable VIRUS spectrograph which consists of a mosaic of IFUs spread over a 16′ diameter FOV feeding 150 spectrographs similar to the Mitchell. VIRUS will be deployed on the 9.2 meter Hobby-Eberly Telescope (HET and will be used to conduct the HET Dark Energy Experiment (HETDEX. Since seeing first light in 2007 the Mitchell Spectrograph has been widely used, among other things, to study nearby galaxies in the local universe where their internal structure and the spatial distribution of different physical parameters can be studied in great detail. These observations have provided important insight into many aspects of the physics behind the formation and evolution of galaxies and have boosted the scientific impact of the 2.7 meter telescope enormously. Here I review the contributions of the Mitchell Spectrograph to the study of nearby galaxies, from the investigation the spatial distribution of dark matter and the properties of supermassive black holes, to the studies of the process of star formation and the chemical composition of stars and gas in the ISM, which provide important information regarding the formation and evolution of these systems. I highlight the fact that wide field integral field spectrographs on small and medium size telescopes can be powerful cost effective tools to study the astrophysics of galaxies. Finally I briefly discuss the potential of HETDEX for conducting studies on nearby galaxies. The survey parameters make it complimentary and competitive to ongoing and future surveys like SAMI and MANGA.

  10. Sensitivity study of reliable, high-throughput resolution metricsfor photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Christopher N.; Naulleau, Patrick P.

    2007-07-30

    The resolution of chemically amplified resists is becoming an increasing concern, especially for lithography in the extreme ultraviolet (EUV) regime. Large-scale screening and performance-based down-selection is currently underway to identify resist platforms that can support shrinking feature sizes. Resist screening efforts, however, are hampered by the absence of reliable resolution metrics that can objectively quantify resist resolution in a high-throughput fashion. Here we examine two high-throughput metrics for resist resolution determination. After summarizing their details and justifying their utility, we characterize the sensitivity of both metrics to two of the main experimental uncertainties associated with lithographic exposure tools, namely: limited focus control and limited knowledge of optical aberrations. For an implementation at EUV wavelengths, we report aberration and focus limited error bars in extracted resolution of {approx} 1.25 nm RMS for both metrics making them attractive candidates for future screening and down-selection efforts.

  11. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes.

    Science.gov (United States)

    Yang, Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R

    2006-05-07

    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is approximately 2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach.

  12. High Resolution CryoFESEM of Microbial Surfaces

    Science.gov (United States)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  13. High Resolution Orthoimagery = Orthorectified Metro Areas: 2000 - Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a...

  14. High-resolution SPECT for small-animal imaging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency.

  15. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  16. High Resolution Screening of biologically active compounds and metabolites

    NARCIS (Netherlands)

    Kool, J.

    2007-01-01

    High Resolution Screening of biologically active compounds and metabolites Jeroen Kool Biotransformation enzymes play a crucial role in the metabolism of both endogenous compounds and xenobiotics. Usually, the detoxication of these compounds by biotransformation enzymes results in harmless metab

  17. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  18. High Resolution, Range/Range-Rate Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Visidyne proposes to develop a design for a small, lightweight, high resolution, in x, y, and z Doppler imager to assist in the guidance, navigation and control...

  19. Using High Spatial Resolution Digital Imagery

    Science.gov (United States)

    2005-02-01

    frame and a bright area (hot spot) at the center. The same brightness shifts are present within most aerial photography , particularly the pronounced hot...the deciduous trees and shrubs were without leaves. In addition, the reed and grass species were fully senesced . The lack of photosynthetically...For example, high quality, large-scale aerial photography will provide adequate clarity and detail to accurately identify surface features that are

  20. High-resolution abundance analysis of very metal-poor r-I stars

    CERN Document Server

    Siqueira-Mello, C; Barbuy, B; Spite, M; Spite, F; Beers, T C; Caffau, E; Bonifacio, P; Cayrel, R; François, P; Schatz, H; Wanajo, S

    2014-01-01

    Moderately r-process-enriched stars (r-I) are at least four times as common as those that are greatly enriched in r-process elements (r-II), and the abundances in their atmospheres are important tools for obtaining a better understanding of the nucleosynthesis processes responsible for the origin of the elements beyond the iron peak. The main aim of this work is to derive abundances for a sample of seven metal-poor stars with classified as r-I stars, to understand the role of these stars for constraining the astrophysical nucleosynthesis event(s) that is(are) responsible for the production of the r-process, and to investigate whether they differ, in any significant way, from the r-II stars. We carried out a detailed abundance analysis based on high-resolution spectra obtained with the VLT/UVES spectrograph. The OSMARCS LTE 1D model atmosphere grid was employed, along with the spectrum synthesis code Turbospectrum. We have derived abundances of light elements Li, C, and N, alpha-elements, odd-Z elements, iron-...

  1. Analysis and modeling of high temporal resolution spectroscopic observations of flares on AD Leo

    CERN Document Server

    Crespo-Chacon, I; Foing, B H; García-Álvarez, D; López-Santiago, J; Montes, D

    2006-01-01

    We report the results of a high temporal resolution spectroscopic monitoring of the flare star AD Leo. During 4 nights, more than 600 spectra were taken in the optical range using the Isaac Newton Telescope (INT) and the Intermediate Dispersion Spectrograph (IDS). We have observed a large number of short and weak flares occurring very frequently (flare activity > 0.71 hours-1). This is in favour of the very important role that flares can play in stellar coronal heating. The detected flares are non white-light flares and, though most of solar flares belong to this kind, very few such events had been previously observed on stars. The behaviour of different chromospheric lines (Balmer series from H_alpha to H_11, Ca II H & K, Na I D_1 & D_2, He I 4026 AA and He I D_3) has been studied in detail for a total of 14 flares. We have also estimated the physical parameters of the flaring plasma by using a procedure which assumes a simplified slab model of flares. All the obtained physical parameters are consist...

  2. High resolution spectroscopy of the three dimensional cosmic web with close QSO groups

    CERN Document Server

    Cappetta, M; Cristiani, S; Saitta, F; Viel, M

    2010-01-01

    We study the three-dimensional distribution of matter at z~2 using high resolution spectra of QSO pairs and simulated spectra drawn from cosmological hydro-dynamical simulations. We present a sample of 15 QSOs, corresponding to 21 baselines of angular separations evenly distributed between ~1 and 14 arcmin, observed with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the European Southern Observatory-Very Large Telescope (ESO-VLT). The observed correlation functions of the transmitted flux in the HI Lya forest transverse to and along the line of sight are in agreement, implying that the distortions in redshift space due to peculiar velocities are relatively small and - within the relatively large error bars - not significant. The clustering signal is significant up to velocity separations of ~300 km/s, corresponding to about 5 h^{-1} comoving Mpc. Compatibility at the 2 sigma level has been found both for the Auto- and Cross-correlation functions and for the set of the Cross correlation coefficient...

  3. SOFIA/EXES Observations of Water Absorption in the Protostar AFGL 2591 at High Spectral Resolution

    CERN Document Server

    Indriolo, Nick; DeWitt, C N; Richter, M J; Boogert, A C A; Harper, G M; Jaffe, D T; Kulas, K R; McKelvey, M E; Ryde, N; Vacca, W

    2015-01-01

    We present high spectral resolution (~3 km/s) observations of the nu_2 ro-vibrational band of H2O in the 6.086--6.135 micron range toward the massive protostar AFGL 2591 using the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory for Infrared Astronomy (SOFIA). Ten absorption features are detected in total, with seven caused by transitions in the nu_2 band of H2O, two by transitions in the first vibrationally excited nu_2 band of H2O, and one by a transition in the nu_2 band of H2{18}O. Among the detected transitions is the nu_2 1(1,1)--0(0,0) line which probes the lowest lying rotational level of para-H2O. The stronger transitions appear to be optically thick, but reach maximum absorption at a depth of about 25%, suggesting that the background source is only partially covered by the absorbing gas, or that the absorption arises within the 6 micron emitting photosphere. Assuming a covering fraction of 25%, the H2O column density and rotational temperature that best fit the observed abs...

  4. A giant quiescent solar filament observed with high-resolution spectroscopy

    CERN Document Server

    Kuckein, C; Denker, C

    2016-01-01

    A giant, quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide on 2011 November 15. A mosaic of spectra (10 maps of 100" X 182") was recorded simultaneously in the chromospheric absorption lines H-alpha and Na I D2. Physical parameters of the filament plasma were derived using Cloud Model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He I 10830 A, H-alpha, and Ca II K) of the Chromspheric Telescope (ChroTel) and full-disk magnetograms of HMI. The filament had extremely large linear dimensions (817"), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 H-alpha contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was larger. LOS velocity trends inferred...

  5. High-Resolution Spectroscopy in Tr37: Gas Accretion Evolution in Evolved Dusty Disks

    CERN Document Server

    Sicilia-Aguilar, A; Furezs, G; Henning, T; Dullemond, C; Brandner, W; Sicilia-Aguilar, Aurora; Hartmann, Lee; Furezs, Gabor; Henning, Thomas; Dullemond, Cornelis; Brandner, Wolfgang

    2006-01-01

    Using the Hectochelle multifiber spectrograph, we have obtained high-resolution (R~34,000) spectra in the Halpha region for a large number of stars in the 4 Myr-old cluster Tr 37, containing 146 previously known members and 26 newly identified ones. We present the Halpha line profiles of all members, compare them to our IR observations of dusty disks (2MASS/JHK + IRAC + MIPS 24 micron), use the radial velocities as a membership criterion, and calculate the rotational velocities. We find a good correlation between the accretion-broadened profiles and the presence of protoplanetary disks, noting that a small fraction of the accreting stars presents broad profiles with Halpha equivalent widths smaller than the canonical limit separating CTTS and WTTS. The number of strong accretors appears to be lower than in younger regions, and a large number of CTTS have very small accretion rates (dM/dt<10^{-9} Msun/yr). Taking into account that the spectral energy distributions are consistent with dust evolution (grain g...

  6. High resolution survey for topographic surveying

    Science.gov (United States)

    Luh, L. C.; Setan, H.; Majid, Z.; Chong, A. K.; Tan, Z.

    2014-02-01

    In this decade, terrestrial laser scanner (TLS) is getting popular in many fields such as reconstruction, monitoring, surveying, as-built of facilities, archaeology, and topographic surveying. This is due the high speed in data collection which is about 50,000 to 1,000,000 three-dimensional (3D) points per second at high accuracy. The main advantage of 3D representation for the data is that it is more approximate to the real world. Therefore, the aim of this paper is to show the use of High-Definition Surveying (HDS), also known as 3D laser scanning for topographic survey. This research investigates the effectiveness of using terrestrial laser scanning system for topographic survey by carrying out field test in Universiti Teknologi Malaysia (UTM), Skudai, Johor. The 3D laser scanner used in this study is a Leica ScanStation C10. Data acquisition was carried out by applying the traversing method. In this study, the result for the topographic survey is under 1st class survey. At the completion of this study, a standard of procedure was proposed for topographic data acquisition using laser scanning systems. This proposed procedure serves as a guideline for users who wish to utilize laser scanning system in topographic survey fully.

  7. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors...

  8. High resolution computed tomography for peripheral facial nerve paralysis

    Energy Technology Data Exchange (ETDEWEB)

    Koester, O.; Straehler-Pohl, H.J.

    1987-01-01

    High resolution computer tomographic examinations of the petrous bones were performed on 19 patients with confirmed peripheral facial nerve paralysis. High resolution CT provides accurate information regarding the extent, and usually regarding the type, of pathological process; this can be accurately localised with a view to possible surgical treatments. The examination also differentiates this from idiopathic paresis, which showed no radiological changes. Destruction of the petrous bone, without facial nerve symptoms, makes early suitable treatment mandatory.

  9. Geometric calibration of high-resolution remote sensing sensors

    Institute of Scientific and Technical Information of China (English)

    LIANG Hong-you; GU Xing-fa; TAO Yu; QIAO Chao-fei

    2007-01-01

    This paper introduces the applications of high-resolution remote sensing imagery and the necessity of geometric calibration for remote sensing sensors considering assurance of the geometric accuracy of remote sensing imagery. Then the paper analyzes the general methodology of geometric calibration. Taking the DMC sensor geometric calibration as an example, the paper discusses the whole calibration procedure. Finally, it gave some concluding remarks on geometric calibration of high-resolution remote sensing sensors.

  10. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, some...... of the computations we present have never before been carried out by standard desktop computers on data sets of comparable size....

  11. The SLICE, CHESS, and SISTINE Ultraviolet Spectrographs: Rocket-Borne Instrumentation Supporting Future Astrophysics Missions

    Science.gov (United States)

    France, Kevin; Hoadley, Keri; Fleming, Brian T.; Kane, Robert; Nell, Nicholas; Beasley, Matthew; Green, James C.

    2016-03-01

    NASA’s suborbital program provides an opportunity to conduct unique science experiments above Earth’s atmosphere and is a pipeline for the technology and personnel essential to future space astrophysics, heliophysics, and atmospheric science missions. In this paper, we describe three astronomy payloads developed (or in development) by the Ultraviolet Rocket Group at the University of Colorado. These far-ultraviolet (UV) (100-160nm) spectrographic instruments are used to study a range of scientific topics, from gas in the interstellar medium (accessing diagnostics of material spanning five orders of magnitude in temperature in a single observation) to the energetic radiation environment of nearby exoplanetary systems. The three instruments, Suborbital Local Interstellar Cloud Experiment (SLICE), Colorado High-resolution Echelle Stellar Spectrograph (CHESS), and Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars (SISTINE) form a progression of instrument designs and component-level technology maturation. SLICE is a pathfinder instrument for the development of new data handling, storage, and telemetry techniques. CHESS and SISTINE are testbeds for technology and instrument design enabling high-resolution (R>105) point source spectroscopy and high throughput imaging spectroscopy, respectively, in support of future Explorer, Probe, and Flagship-class missions. The CHESS and SISTINE payloads support the development and flight testing of large-format photon-counting detectors and advanced optical coatings: NASA’s top two technology priorities for enabling a future flagship observatory (e.g. the LUVOIR Surveyor concept) that offers factors of ˜50-100 gain in UV spectroscopy capability over the Hubble Space Telescope. We present the design, component level laboratory characterization, and flight results for these instruments.

  12. Dynamics of High-Resolution Networks

    DEFF Research Database (Denmark)

    Sekara, Vedran

    NETWORKS are everywhere. From the smallest confines of the cells within our bodies to the webs of social relations across the globe. Networks are not static, they constantly change, adapt, and evolve to suit new conditions. In order to understand the fundamental laws that govern networks we need...... the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...

  13. High-resolution noise radar using slow ADC

    Science.gov (United States)

    Lukin, Konstantin; Vyplavin, Pavlo; Zemlyanyi, Oleg; Lukin, Sergiy; Palamarchuk, Volodymyr

    2011-06-01

    Conventional digital signal processing scheme in noise radars has some limitations related to combination of high resolution and high dynamic range. Those limitations are caused by a tradeoff in performance of currently available ADCs: the faster is ADC the smaller is its depth (number of bits) available. Depth of the ADC determines relation between the smallest and highest observable signals and thus limits its dynamic range. In noise radar with conventional processing the sounding and reference signals are to be digitized at intermediate frequency band and to be processed digitally. The power spectrum bandwidth of noise signal which can be digitized with ADC depends on its sampling rate. The bandwidth of radar signal defines range resolution of any radar: the wider the spectrum the better the resolution. Actually this is the main bottleneck of high resolution Noise Radars: conventional processing doesn't enable to get both high range resolution and high dynamic range. In the paper we present a way to go around this drawback by changing signal processing ideology in noise radar. We present results of our consideration and design of high resolution Noise Radar which uses slow ADCs. The design is based upon generation of both probing and reference signals digitally and realization of their cross-correlation in an analog correlator. The output of the correlator is a narrowband signal that requires rather slow ADC to be sampled which nowadays may give up to 130 dB dynamic range.

  14. High resolution 3-D wavelength diversity imaging

    Science.gov (United States)

    Farhat, N. H.

    1981-09-01

    A physical optics, vector formulation of microwave imaging of perfectly conducting objects by wavelength and polarization diversity is presented. The results provide the theoretical basis for optimal data acquisition and three-dimensional tomographic image retrieval procedures. These include: (a) the selection of highly thinned (sparse) receiving array arrangements capable of collecting large amounts of information about remote scattering objects in a cost effective manner and (b) techniques for 3-D tomographic image reconstruction and display in which polarization diversity data is fully accounted for. Data acquisition employing a highly attractive AMTDR (Amplitude Modulated Target Derived Reference) technique is discussed and demonstrated by computer simulation. Equipment configuration for the implementation of the AMTDR technique is also given together with a measurement configuration for the implementation of wavelength diversity imaging in a roof experiment aimed at imaging a passing aircraft. Extension of the theory presented to 3-D tomographic imaging of passive noise emitting objects by spectrally selective far field cross-correlation measurements is also given. Finally several refinements made in our anechoic-chamber measurement system are shown to yield drastic improvement in performance and retrieved image quality.

  15. VizieR Online Data Catalog: High-resolution NIR spectra of local giants (Feuillet+, 2016)

    Science.gov (United States)

    Feuillet, D. K.; Bovy, J.; Holtzman, J.; Girardi, L.; MacDonald, N.; Majewski, S. R.; Nidever, D. L.

    2016-04-01

    We present a sample of 705 local giant stars observed using the New Mexico State University 1m telescope with the Sloan Digital Sky Survey-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph, for which we estimate stellar ages and the local star formation history (SFH). The high-resolution (R~22500), near infrared (1.51-1.7μm) APOGEE spectra provide measurements of stellar atmospheric parameters (temperature, surface gravity, [M/H], and [α/M]). Due to the smaller uncertainties in surface gravity possible with high-resolution spectra and accurate Hipparcos distance measurements, we are able to calculate the stellar masses to within 30%. For giants, the relatively rapid evolution up the red giant branch allows the age to be constrained by the mass. We examine methods of estimating age using both the mass-age relation directly and a Bayesian isochrone matching of measured parameters, assuming a constant SFH. To improve the SFH prior, we use a hierarchical modeling approach to constrain the parameters of the model SFH using the age probability distribution functions of the data. The results of an α-dependent Gaussian SFH model show a clear age-[α/M] relation at all ages. Using this SFH model as the prior for an empirical Bayesian analysis, we determine ages for individual stars. The resulting age-metallicity relation is flat, with a slight decrease in [M/H] at the oldest ages and a ~0.5 dex spread in metallicity across most ages. For stars with ages <~1Gyr we find a smaller spread, consistent with radial migration having a smaller effect on these young stars than on the older stars. (1 data file).

  16. High-resolution gravity model of Venus

    Science.gov (United States)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  17. A Very High Spatial Resolution Detector for Small Animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Kanai Shah, M.S.

    2007-03-06

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  18. High-resolution spectroscopy of gamma-ray transients

    Energy Technology Data Exchange (ETDEWEB)

    Cline, T.L.

    1988-09-25

    The first high-resolution spectrometer flown to observe gamma-ray bursts was launched on the ISEE-3 spacecraft over nine years ago. It recorded two events before instrument failure, giving results that were suggestive but marginal. Other studies, with coarser energy resolution, also show evidence for spectral features as well as for spectral evolution on short time scales. Absolute source strength calibration will be possible only with source identification, but understanding of the burst emission processes will surely come only from the measurements having the best spectral and temporal precision. The only high- resolution gamma-ray spectrometer now planned, here or abroad, for space flight is an instrument sequel to the ISEE-3 spectrometer, to be flown on the interplanetary 'GGS Wind' mission. Much larger and higher-sensitivity, high-resolution instruments may have their optimum opportunities in conjunction with studies of solar flares in the time frame of the solar maximum of 2002.

  19. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  20. Climatologies at high resolution for the Earth land surface areas

    CERN Document Server

    Karger, Dirk Nikolaus; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus; Linder, H Peter; Kessler, Michael

    2016-01-01

    High resolution information of climatic conditions is essential to many application in environmental sciences. Here we present the CHELSA algorithm to downscale temperature and precipitation estimates from the European Centre for Medium-Range Weather Forecast (ECMWF) climatic reanalysis interim (ERA-Interim) to a high resolution of 30 arc sec. The algorithm for temperature is based on a statistical downscaling of atmospheric temperature from the ERA-Interim climatic reanalysis. The precipitation algorithm incorporates orographic predictors such as wind fields, valley exposition, and boundary layer height, and a bias correction using Global Precipitation Climatology Center (GPCC) gridded and Global Historical Climate Network (GHCN) station data. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We present a comparison of data derived from the CHELSA algorithm with two other high resolution gridded products with overlapping temporal resolution (Tropical R...

  1. High resolution single particle refinement in EMAN2.1.

    Science.gov (United States)

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods.

  2. ERIS: the exoplanet high-resolution image simulator for CHARIS

    Science.gov (United States)

    Limbach, Mary Anne; Groff, Tyler D.; Kasdin, N. J.; Brandt, Timothy; Mede, Kyle; Loomis, Craig; Hayashi, Masahiko; Takato, Naruhisa

    2014-07-01

    ERIS is an image simulator for CHARIS, the high-contrast exoplanet integral field spectrograph (IFS) being built at Princeton University for the Subaru telescope. We present here the software design and implementation of the ERIS code. ERIS simulates CHARIS FITS images and data cubes that are used for developing the data reduction pipeline and verifying the expected CHARIS performance. Components of the software include detailed models of the light source (such as a star or exoplanet), atmosphere, telescope, adaptive optics systems (AO188 and SCExAO), CHARIS IFS and the Hawaii2-RG infrared detector. Code includes novel details such as the phase errors at the lenslet array, optical wavefront error maps and pinholes for reducing crosstalk, just to list a few. The details of the code as well as several simulated images are presented in this paper. This IFS simulator is critical for the CHARIS data analysis pipeline development, minimizing troubleshooting in the lab and on-sky and the characterization of crosstalk.

  3. The Mitchell Spectrograph: Studying Nearby Galaxies with the VIRUS Prototype

    CERN Document Server

    Blanc, Guillermo A

    2014-01-01

    The Mitchell Spectrograph (a.k.a. VIRUS-P) on the 2.7m Harlan J. Smith telescope at McDonald Observatory is currently the largest field of view (FOV) integral field unit (IFU) spectrograph in the world (1.7'x1.7'). It was designed as a prototype for the highly replicable VIRUS spectrograph which consists of a mosaic of IFUs spread over a 16' diameter FOV feeding 150 spectrographs similar to the Mitchell. VIRUS will be deployed on the 9.2 meter Hobby-Eberly Telescope (HET) and will be used to conduct the HET Dark Energy Experiment (HETDEX). Since seeing first light in 2007 the Mitchell Spectrograph has been widely used, among other things, to study nearby galaxies in the local universe where their internal structure and the spatial distribution of different physical parameters can be studied in great detail. These observations have provided important insight into many aspects of the physics behind the formation and evolution of galaxies and have boosted the scientific impact of the 2.7 meter telescope enormous...

  4. Optical Design of the SuMIRe PFS Spectrograph

    CERN Document Server

    Pascal, Sandrine; Barkhouser, Robert; Gunn, James

    2014-01-01

    The SuMIRe Prime Focus Spectrograph (PFS), developed for the 8-m class SUBARU telescope, will consist of four identical spectrographs, each receiving 600 fibers from a 2394 fiber robotic positioner at the telescope prime focus. Each spectrograph includes three spectral channels to cover the wavelength range 0.38-1.26 um with a resolving power ranging between 2000 and 4000. A medium resolution mode is also implemented to reach a resolving power of 5000 at 0.8 um. Each spectrograph is made of 4 optical units: the entrance unit which produces three corrected collimated beams and three camera units (one per spectral channel). The beam is split by using two large dichroics; and in each arm, the light is dispersed by large VPH gratings. The proposed optical design was optimized to achieve the requested image quality while simplifying the manufacturing of the whole optical system. The camera design consists in an innovative Schmidt camera observing a large field-of-view (10 degrees) with a very fast beam. To achieve...

  5. High resolution temperature measurement technique for measuring marine heat flow

    Institute of Scientific and Technical Information of China (English)

    QIN; YangYang; YANG; XiaoQiu; WU; BaoZhen; SUN; ZhaoHua; SHI; XiaoBin

    2013-01-01

    High resolution temperature measurement technique is one of the key techniques for measuring marine heat flow. Basing on Pt1000 platinum resistance which has the characteristics of high accuracy and good stability, we designed a bridge reversal excitation circuit for high resolution temperature measurement. And the deep ocean floor in-situ test results show that: (1) temperature deviation and peak-to-peak resolution of the first version circuit board (V1) are 1.960-1.990 mK and 0.980-0.995 m Kat 1.2-2.7°C, respectively; and temperature deviation and peak-to-peak resolution of the second circuit board (V2) are 2.260mK and 1.130 mK at 1.2-1.3°C, respectively; (2) During the 2012NSFC-IndOcean cruise, seafloor geothermal gradient at Ind2012HF03,-07 and-12 stations (water depth ranges from 3841 to 4541 m) were successfully measured, the values are 59.1,75.1 and 71.6°C/km, respectively. And the measurement errors of geothermal gradient at these three stations are less than 3.0% in terms of the peak-to-peak resolution. These indicate that the high resolution temperature measurement technique based on Pt1000 platinum resistance in this paper can be applied to marine heat flow measurement to obtain high precision geothermal parameters.

  6. High resolution surface plasmon microscopy for cell imaging

    Science.gov (United States)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  7. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  8. Field Raman Spectrograph for Environmental Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.M.; Haas, J.W.; Spencer, K.M.; Carrabba, M.M.; Rauh, R.D.; Forney, R.W.; Johnston, T.M.

    1998-07-01

    The widespread contamination found across the US Department of Energy (DOE) complex has received considerable attention from the government and public alike. A massive site characterization and cleanup effort has been underway for several years and is expected to continue for several decades more. The scope of the cleanup effort ranges from soil excavation and treatment to complete dismantling and decontamination of whole buildings. To its credit, DOE has supported research and development of new technologies to speed up and reduce the cost of this effort. One area in particular has been the development of portable instrumentation that can be used to perform analytical measurements in the field. This approach provides timely data to decision makers and eliminates the expense, delays, and uncertainties of sample preservation, transport, storage, and laboratory analysis. In this program, we have developed and demonstrated in the field a transportable, high performance Raman spectrograph that can be used to detect and identify contaminants in a variety of scenarios. With no moving parts, the spectrograph is rugged and can perform many Raman measurements in situ with flexible fiber optic sampling probes. The instrument operates under computer control and a software package has been developed to collect and process spectral data. A collection of Raman spectra for 200 contaminants of DOE importance has been compiled in a searchable format to assist in the identification of unknown contaminants in the field.

  9. Project overview of OPTIMOS-EVE: the fibre-fed multi-object spectrograph for the E-ELT

    NARCIS (Netherlands)

    Navarro, R.; Chemla, F.; Bonifacio, P.; Flores, H.; Guinouard, I.; Huet, J.-M.; Puech, M.; Royer, F.; Pragt, J.H.; Wulterkens, G.; Sawyer, E.C.; Caldwell, M.E.; Tosh, I.A.J.; Whalley, M.S.; Woodhouse, G.F.W.; Spanò, P.; Di Marcantonio, P.; Andersen, M.I.; Dalton, G.B.; Kaper, L.; Hammer, F.

    2010-01-01

    OPTIMOS-EVE (OPTical Infrared Multi Object Spectrograph - Extreme Visual Explorer) is the fibre fed multi object spectrograph proposed for the European Extremely Large Telescope (E-ELT), planned to be operational in 2018 at Cerro Armazones (Chile). It is designed to provide a spectral resolution of

  10. A high-resolution survey of interstellar Na I D1 lines

    Science.gov (United States)

    Welty, Daniel E.; Hobbs, L. M.; Kulkarni, Varsha P.

    1994-01-01

    We present high-resolution (0.5 km/s) spectra, obtained with the McDonald Observatory 2.7 m coude echelle spectrograph, of interstellar Na I D1 absorption toward 38 bright stars. Numerous narrow, closely blended absorption components, showing resolved Na I hyperfine structure, are evident in these spectra; such narrow components appear in both low halo and quite local gas, as well as in gas toward more distant disk stars. We have used the method of profile fitting in an attempt to determine column densities, line widths, and velocities for the individual interstellar clouds contributing to the observed absorption lines. The resulting sample of 276 clouds is significantly larger, and likely more complete, than several previous samples of 'individual' interstellar clouds, and allows more precise investigation of various statistical properties. We find that the cloud column density (N) and line width parameter (b) are not correlated, for 0.3 km/s approximately less than b approximately less than 1.5 km/s and 10.0/sq cm approximately less than log (N(Na I)) approximately less than 11.6/sq cm. The median b is about 0.73 km/s, the median log N is about 11.09/sq cm, and the median separation between adjacent components is about 2.0 km/s. All these are overestimates of the true median values, however, due to our inability to completely resolve all the component structure present in some cases; even at a resolution of 0.5 km/s, we may have discerned only 60% of the full number of individual components actually present. The one-dimensional dispersion of component velocities, in the local standard of rest, is approximately 8.6 km/s; the distribution of velocities is broader and displaced to more negative velocities for the weaker components. If 80 K is a representative temperature for the interstellar clouds seen in Na I absorption, then at least 38% (and probably the majority) of the clouds have subsonic internal turbulent motions. The range in N(H I) observed at a given N

  11. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  12. High resolution positron tomography using PCR-I

    Energy Technology Data Exchange (ETDEWEB)

    Brownell, G.L.; Burnham, C.A.; Sandrew, B.; Elmaleh, D.R.; Livni, E.; Kizuka, H.

    1984-01-01

    PCR-I is a high resolution positron tomograph developed by the Physics Research Laboratory of the Massachusetts General Hospital to explore resolution limits of positron tomographs. PCR-I currently obtains images with 4.8 mm FWHM resolution at the center. Plane thickness may be varied between 5 and 10 mm. The instrument uses analog coding to obtain high resolution images without mechanical motion. This permits rapid dynamic imaging and gated cardiac imaging as well as conventional high resolution imaging. A series of studies has been carried out to demonstrate the ability of PCR-I to image structures in small animals. F-18 in the rat skeleton is clearly defined and various structures such as the spinal processes can be clearly resolved. A sequence of images at different spacing provides a three-dimensional reconstruction of the rat skeleton. Blood volume and palmitic acid have been imaged in the dog heart. Again, the sequence of images provides a clear delineation of the three dimensional nature of the blood pools and of the surrounding musculature. Blood flow, blood volume and glucose metabolism have been studied in the monkey brain. Structures within the brain of the Resus monkey can be clearly resolved. Increased activity resulting from induced seizures in the squirrel monkey have been observed and delineated. All of these studies indicate areas of future animal and clinical research using the high resolution tomograph, PCR-I.

  13. High-resolution neutron microtomography with noiseless neutron counting detector

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Feller, W.B. [Nova Scientific Inc., 10 Picker Road, Sturbridge, MA 01566 (United States); Lehmann, E. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Butler, L.G. [Louisiana State University, Baton Rouge, LA 70803 (United States); Dawson, M. [Helmholtz Centre Berlin for Materials and Energy (Germany)

    2011-10-01

    The improved collimation and intensity of thermal and cold neutron beamlines combined with recent advances in neutron imaging devices enable high-resolution neutron radiography and microtomography, which can provide information on the internal structure of objects not achievable with conventional X-ray imaging techniques. Neutron detection efficiency, spatial and temporal resolution (important for the studies of dynamic processes) and low background count rate are among the crucial parameters defining the quality of radiographic images and tomographic reconstructions. The unique capabilities of neutron counting detectors with neutron-sensitive microchannel plates (MCPs) and with Timepix CMOS readouts providing high neutron detection efficiency ({approx}70% for cold neutrons), spatial resolutions ranging from 15 to 55 {mu}m and a temporal resolution of {approx}1 {mu}s-combined with the virtual absence of readout noise-make these devices very attractive for high-resolution microtomography. In this paper we demonstrate the capabilities of an MCP-Timepix detection system applied to microtomographic imaging, performed at the ICON cold neutron facility of the Paul Scherrer Institute. The high resolution and the absence of readout noise enable accurate reconstruction of texture in a relatively opaque wood sample, differentiation of internal tissues of a fly and imaging of individual {approx}400 {mu}m grains in an organic powder encapsulated in a {approx}700 {mu}m thick metal casing.

  14. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: svein.mjos@kj.uib.no [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  15. Extreme Precision Environmental Control for Next Generation Radial Velocity Spectrographs

    Science.gov (United States)

    Stefansson, Gudmundur K.; Hearty, Fred; Levi, Eric; Robertson, Paul; Mahadevan, Suvrath; Bender, Chad; Nelson, Matt; Halverson, Samuel

    2015-12-01

    Extreme radial velocity precisions of order 10cm/s will enable the discoveries of Earth-like planets around solar-type stars. Temperature and pressure variations inside a spectrograph can lead to thermomechanical instabilities in the optics and mounts, and refractive index variations in both the optical elements as well as the surrounding air. Together, these variations can easily induce instrumental drifts of several tens to hundreds of meters per second. Enclosing the full optical train in thermally stabilized high-vacuum environments minimizes such errors. In this talk, I will discuss the Environmental Control System (ECS) for the Habitable Zone Planet Finder (HPF) spectrograph: a near infrared (NIR) facility class instrument we will commission at the Hobby Eberly Telescope in 2016. The ECS will maintain the HPF optical bench stable at 180K at the sub milli-Kelvin level on the timescale of days, and at the few milli-Kelvin level over months to years. The entire spectrograph is kept under high-quality vacuum (compensated for with an actively controlled radiation shield outfitted with custom feedback electronics. High efficiency Multi-Layer Insulation (MLI) blankets, and a passive external thermal enclosure further isolate the optics from ambient perturbations. This environmental control scheme is versatile, suitable to stabilize both next generation NIR, and optical spectrographs. I will show how we are currently testing this control system for use with our design concept of the Extreme Precision Doppler Spectrograph (EPDS), the next generation optical spectrograph for the WIYN 3.5m telescope. Our most recent results from full-scale stability tests will be presented.

  16. The Interface Region Imaging Spectrograph (IRIS) NASA SMEX

    Science.gov (United States)

    Lemen, James; Title, A.; De Pontieu, B.; Schrijver, C.; Tarbell, T.; Wuelser, J.; Golub, L.; Kankelborg, C.

    2011-05-01

    The solar chromosphere and transition region (TR) is highly structured, dynamic, and intimately connected to the corona. It requires more than ten times the energy required to heat the corona, and yet it has received far less interest because of the complexity of the required observational and analytical tools. In the TR the density drops by six orders of magnitude and the temperature increases by three orders of magnitude. Hinode observations reveal the importance the magnetic field has on this region of the solar atmosphere that acts as the interface between the photosphere and the corona. The Interface Region Imaging Spectrograph (IRIS) was selected for a NASA SMEX mission in 2009 and is scheduled to launch in December 2012. IRIS addresses critical questions in order to understand the flow of energy and mass through the chromosphere and TR, namely: (1) Which types of non-thermal energy dominate in the chromosphere and beyond? (2) How does the chromosphere regulate mass and energy supply to the corona and heliosphere? (3) How do magnetic flux and matter rise through the lower atmosphere, and what roles dos flux emergence play in flares and mass ejections? These questions are addressed with a high-resolution imaging spectrometer that observes Near- and Far-VU emissions that are formed at temperatures between 5,000K and 1.5 x 106 K. IRIS has a field-of-view of 120 arcsec, a spatial resolution of 0.4 arcsec, and velocity resolution of 0.5 km/s. Members of the IRIS investigation team are developing advanced radiative MHD codes to facilitate comparison with and interpretation of observations. We present the status of the IRIS observatory development, which completed its Critical Design Review in December 2010.

  17. Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    CERN Document Server

    Arridge, Simon; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-01-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then...

  18. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    CERN Document Server

    Suerfu, Burkhant

    2015-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pio...

  19. Performance of a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  20. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively.

  1. Exploring variations in the fundamental constants with ELTs: the CODEX spectrograph on OWL

    Science.gov (United States)

    Molaro, Paolo; Murphy, Michael T.; Levshakov, Sergei A.

    Cosmological variations in the fine structure constant, α, can be probed through precise velocity measurements of metallic absorption lines from intervening gas clouds seen in spectra of distant quasars. Data from the Keck/HIRES instrument support a variation in α of 6 parts per million. Such a variation would have profound implications, possibly providing a window into the extra spatial dimensions required by unified theories such as string/M-theory. However, recent results from VLT/UVES suggest no variation in α. The COsmic Dynamics EXperiment (CODEX) spectrograph currently being designed for the ESO OWL telescope (Pasquini et al. 2005) with a resolution high enough to properly resolve even the narrowest of metallic absorption lines, R > 150000, will achieve a 2-to-3 order-of-magnitude precision increase in Δα/α. This will rival the precision available from the Oklo natural fission reactor and upcoming satellite-borne atomic clock experiments. Given the vital constraints on fundamental physics possible, the ELT community must consider such a high-resolution optical spectrograph like CODEX.

  2. Gemini Planet Imager Observational Calibrations VI: Photometric and Spectroscopic Calibration for the Integral Field Spectrograph

    CERN Document Server

    Maire, Jérôme; De Rosa, Robert J; Perrin, Marshall D; Rajan, Abhijith; Savransky, Dmitry; Wang, Jason J; Ruffio, Jean-Baptiste; Wolff, Schuyler G; Chilcote, Jeffrey K; Doyon, René; Graham, James R; Greenbaum, Alexandra Z; Konopacky, Quinn M; Larkin, James E; Macintosh, Bruce A; Marois, Christian; Millar-Blanchaer, Max; Patience, Jennifer; Pueyo, Laurent A; Sivaramakrishnan, Anand; Thomas, Sandrine J; Weiss, Jason L

    2014-01-01

    The Gemini Planet Imager (GPI) is a new facility instrument for the Gemini Observatory designed to provide direct detection and characterization of planets and debris disks around stars in the solar neighborhood. In addition to its extreme adaptive optics and corona graphic systems which give access to high angular resolution and high-contrast imaging capabilities, GPI contains an integral field spectrograph providing low resolution spectroscopy across five bands between 0.95 and 2.5 $\\mu$m. This paper describes the sequence of processing steps required for the spectro-photometric calibration of GPI science data, and the necessary calibration files. Based on calibration observations of the white dwarf HD 8049B we estimate that the systematic error in spectra extracted from GPI observations is less than 5%. The flux ratio of the occulted star and fiducial satellite spots within coronagraphic GPI observations, required to estimate the magnitude difference between a target and any resolved companions, was measur...

  3. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  4. Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph

    CERN Document Server

    Sugai, Hajime; Karoji, Hiroshi; Shimono, Atsushi; Takato, Naruhisa; Kimura, Masahiko; Ohyama, Youichi; Ueda, Akitoshi; Aghazarian, Hrand; de Arruda, Marcio Vital; Barkhouser, Robert H; Bennett, Charles L; Bickerton, Steve; Bozier, Alexandre; Braun, David F; Bui, Khanh; Capocasale, Christopher M; Carr, Michael A; Castilho, Bruno; Chang, Yin-Chang; Chen, Hsin-Yo; Chou, Richard C Y; Dawson, Olivia R; Dekany, Richard G; Ek, Eric M; Ellis, Richard S; English, Robin J; Ferrand, Didier; Ferreira, Décio; Fisher, Charles D; Golebiowski, Mirek; Gunn, James E; Hart, Murdock; Heckman, Timothy M; Ho, Paul T P; Hope, Stephen; Hovland, Larry E; Hsu, Shu-Fu; Hu, Yen-Shan; Huang, Pin Jie; Jaquet, Marc; Karr, Jennifer E; Kempenaar, Jason G; King, Matthew E; Fèvre, Olivier Le; Mignant, David Le; Ling, Hung-Hsu; Loomis, Craig; Lupton, Robert H; Madec, Fabrice; Mao, Peter; Marrara, Lucas Souza; Ménard, Brice; Morantz, Chaz; Murayama, Hitoshi; Murray, Graham J; de Oliveira, Antonio Cesar; de Oliveira, Claudia Mendes; de Oliveira, Ligia Souza; Orndorff, Joe D; Vilaça, Rodrigo de Paiva; Partos, Eamon J; Pascal, Sandrine; Pegot-Ogier, Thomas; Reiley, Daniel J; Riddle, Reed; Santos, Leandro; Santos, Jesulino Bispo dos; Schwochert, Mark A; Seiffert, Michael D; Smee, Stephen A; Smith, Roger M; Steinkraus, Ronald E; Sodré, Laerte; Spergel, David N; Surace, Christian; Tresse, Laurence; Vidal, Clément; Vives, Sebastien; Wang, Shiang-Yu; Wen, Chih-Yi; Wu, Amy C; Wyse, Rosie; Yan, Chi-Hung

    2015-01-01

    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 {\\mu}m to 1.26 {\\mu}m, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 {\\mu}m to 0.89 {\\mu}m will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning ...

  5. Triple Fabry-Pérot Imaging Interferometer for High Resolution Solar Spectroscopy using the ATST

    Science.gov (United States)

    Robinson, B. M.; Gary, G. A.; Balasubramaniam, K. S.

    2005-05-01

    We present a telecenrically mounted triple Fabry-Pérot imaging interferometer for the NSOs Advanced Technology Solar Telescope (ATST). It consists of three Fabry-Pérot etalons and the feed and imaging optics. This system provides high throughput, flexibility and breadth of operation when compared to other spectroscopic imaging systems. It can operate in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. In the proposed telecentric mount configuration, the transmittance of the etalon system is not a function of position in the field, so that instantaneous spectroscopic measurements can be performed across the entire field of view; however, the transmission peak of the interferometer is broadened. Mitigation of this broadening requires a low F# image at the etalons. Together with the requirement that the field of view be large enough to observe large-scale processes in the solar atmosphere, this limitation dictates that the diameter of the etalons have a large aperture. Specifically, for a spectrographic passband full-width at half-maximum (FWHM) of around 2 pm, and entrance pupil diameter of 4 m, and a field of view of 35", the required etalon diameter is around 200 mm. This is beyond the size of current Fabry-Pérot etalons and near the current projected limit of manufacturability. The development of this instrument will bring these large etalons to realization and take Fabry-Pérot imaging interferometry to the next level of operational capability within telescopes of large aperture. This instrument will provide spectral, spatial, and temporal resolution which is not currently available to large aperture solar astronomy, but which is necessary, in conjunction with the new class telescopes, to the continuing discovery of laws that govern the dynamics of the sun and the earth-sun connection. The resolution afforded by higher aperture telescopes and instrumentation will

  6. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data.

    Science.gov (United States)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis.

  7. Study of Saturn electrostatic discharges with high time resolution

    Science.gov (United States)

    Zakharenko, V.; Mylostna, K.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griessmeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2013-09-01

    Ground-based observations of SED (Saturn Electrostatic Discharges) with high time resolution are the next stage of extraterrestrial atmospheric processes study. Due to extremely high intensity of Saturn's storm J (2010) [1] we have obtained the records with high signal-to-noise (S/N) ratio with the time resolution of 15 ns. It permitted us to investigate the microsecond structure of lightning and clearly distinguish SED in the presence of local interference in virtue of a dispersive delay of extraterrestrial planetary signals.

  8. Evacuee Compliance Behavior Analysis using High Resolution Demographic Information

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei [ORNL; Han, Lee [University of Tennessee, Knoxville (UTK); Liu, Cheng [ORNL; Tuttle, Mark A [ORNL; Bhaduri, Budhendra L [ORNL

    2014-01-01

    The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic traffic simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.

  9. Design and implementation of spaceborne high resolution infrared touch screen

    Science.gov (United States)

    Li, Tai-guo; Li, Wen-xin; Dong, Yi-peng; Ma, Wen; Xia, Jia-gao

    2015-10-01

    For the consideration of the special application environment of the electronic products used in aerospace and to further more improve the human-computer interaction of the manned aerospace area. The research is based on the design and implementation way of the high resolution spaceborne infrared touch screen on the basis of FPGA and DSP frame structure. Beside the introduction of the whole structure for the high resolution spaceborne infrared touch screen system, this essay also gives the detail information about design of hardware for the high resolution spaceborne infrared touch screen system, FPGA design, GUI design and DSP algorithm design based on Lagrange interpolation. What is more, the easy makes a comprehensive research of the reliability design for the high resolution spaceborne infrared touch screen for the special purpose of it. Besides, the system test is done after installation of spaceborne infrared touch screen. The test result shows that the system is simple and reliable enough, which has a stable running environment and high resolution, which certainly can meet the special requirement of the manned aerospace instrument products.

  10. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony;

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...

  11. Stars and planets at high spatial and spectral resolution

    NARCIS (Netherlands)

    Albrecht, Simon

    2008-01-01

    The work presented in this thesis involves the development of new instrumental techniques and analysing tools, combining high spectral resolution with high spatial information, with the aim to increase our understanding of the formation and evolution of stars and planets. First, a novel instrumental

  12. Achieving High Resolution Timer Events in Virtualized Environment.

    Directory of Open Access Journals (Sweden)

    Blazej Adamczyk

    Full Text Available Virtual Machine Monitors (VMM have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service. Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  13. High-resolution structure of viruses from random diffraction snapshots

    CERN Document Server

    Hosseinizadeh, A; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A

    2014-01-01

    The advent of the X-ray Free Electron Laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date, and provides a potentially powerful alternative route for analysis of data from crystalline and nanocrystalline objects.

  14. New high resolution synthetic stellar libraries for the Gaia Mission

    CERN Document Server

    Sordo, R; Bouret, J C; Brott, I; Edvardsson, B; Frémat, Y; Heber, U; Josselin, E; Kochukhov, O; Korn, A; Lanzafame, A; Martins, F; Schweitzer, A; Thévenin, F; Zorec, J

    2008-01-01

    High resolution synthetic stellar libraries are of fundamental importance for the preparation of the Gaia Mission. We present new sets of spectral stellar libraries covering two spectral ranges: 300 --1100 nm at 0.1 nm resolution, and 840 -- 890 nm at 0.001 nm resolution. These libraries span a large range in atmospheric parameters, from super-metal-rich to very metal-poor (-5.0 $<$[Fe/H]$<$+1.0), from cool to hot (\\teff=3000--50000 K) stars, including peculiar abundance variations. The spectral resolution, spectral type coverage and number of models represent a substantial improvement over previous libraries used in population synthesis models and in atmospheric analysis.

  15. Near ultraviolet spectrograph for balloon platform

    Science.gov (United States)

    Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    2015-06-01

    Small and compact scientific payloads may be easily designed constructed and own on high altitude balloons. Despite the fact that large orbital observatories provide accurate observations and statistical studies of remote and/or faint space sources, small telescopes on board balloons or rockets are still attractive because of their low cost and rapid response time. We describe here a near ultraviolet (NUV) spectrograph designed to be own on a high{altitude balloon platform. Our basic optical design is a modified Czerny-Turner system using off the shelf optics. We compare different methods of aberration corrections in such a system. We intend the system to be portable and scalable to different telescopes. The use of reflecting optics reduces the transmission loss in UV. We plan on using an image intensified CMOS sensor operating in photon counting mode as the detector of choice.

  16. Subcutaneous Cysticercosis: Role of High Resolution Ultrasound in Diagnosis

    Directory of Open Access Journals (Sweden)

    Sachin Lohra

    2014-02-01

    Full Text Available BACKGROUND: Though the commonest site of extraintestinal infestation with Taenia solium is brain, Subcutaneous cysticercosis is fairly common in asia. The advent of high resolution ultrasound, FNAC, and a heightened clinician awareness of the existence of isolated soft tissue cysticerci has probably supplanted the need for surgical intervention and excision biopsy in asymptomatic subcutaneous cysts, as cysts have high rate of spontaneous resolution. OBJECTIVES: - To observe role of high resolution ultrasound in diagnosis and need of surgical intervention in treatment of subcutaneous cysticercosis. MATERIALS and METHODS: retrospective study of seven cases of extraneural cysticercosis, all involving the subcutaneous tissues or muscles over the arms and torso. Either high resolution ultrasound, FNAC, or excision biopsy, or a combination of these were used to arrive at a diagnosis. All patients were followed up with serial ultrasounds. All patients received oral nitazoxanide for autoinfection. Surgical excision was resorted to in two patients, in whom it was possible to obtain a histopathologic diagnosis. RESULTS: of the seven cases of subcutaneous cysticercosis all have rural background, most of the patients (6 were vegetarian and one was non vegetarian. Age and gender of patient, size and duration of lesion were insignificant in establishing the diagnosis. High resolution ultrasound was highly significant in establishing the diagnosis over FNAC and histopathology. Five of the cases resolved spontaneously and surgical intervention was required only in two cases. INTERPRETATION and CONCLUSIONS: With heightened clinician awareness of the existence of isolated subcutaneous cysticercosis in patients with close animal contact, and the widespread availability of high resolution ultrasound and FNAC, subcutaneous cysticercosis can be diagnosed readily. Surgery can be avoided in the great majority of these patients, as the cysts mostly resolve on their own

  17. High-resolution DEM Effects on Geophysical Flow Models

    Science.gov (United States)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  18. The RINGS Survey: High-Resolution H-alpha Velocity Fields of Nearby Spiral Galaxies with the SALT Fabry-Perot

    CERN Document Server

    Mitchell, Carl J; Williams, T B; Spekkens, Kristine; Lee-Waddell, K; de Naray, Rachel Kuzio

    2015-01-01

    We have obtained high-spatial-resolution spectrophotometric data on several nearby spiral galaxies with the Southern African Large Telescope (SALT) Fabry-P\\'erot interferometer on the Robert Stobie Spectrograph (RSS) as a part of the RSS Imaging spectroscopy Nearby Galaxy Survey (RINGS). We have successfully reduced two tracks of Fabry-P\\'erot data for the galaxy NGC 2280 to produce a velocity field of the H-alpha line of excited hydrogen. We have modeled these data with the DiskFit modeling software and found these models to be in excellent agreement both with previous measurements in the literature and with our lower-resolution HI velocity field of the same galaxy. Despite this good agreement, small regions exist where the difference between the H-alpha and HI velocities is larger than would be expected from typical dispersions. We investigate these regions of high velocity difference and offer possible explanations for their existence.

  19. Vehicle Detection and Classification from High Resolution Satellite Images

    Science.gov (United States)

    Abraham, L.; Sasikumar, M.

    2014-11-01

    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  20. High resolution SPM imaging of organic molecules with functionalized tips

    Science.gov (United States)

    Jelínek, Pavel

    2017-08-01

    One of the most remarkable and exciting achievements in the field of scanning probe microscopy (SPM) in the last years is the unprecedented sub-molecular resolution of both atomic and electronic structures of single molecules deposited on solid state surfaces. Despite its youth, the technique has already brought many new possibilities to perform different kinds of measurements, which cannot be accomplished by other techniques. This opens new perspectives in advanced characterization of physical and chemical processes and properties of molecular structures on surfaces. Here, we discuss the history and recent progress of the high resolution imaging with a functionalized probe by means of atomic force microscopy (AFM), scanning tunnelling microscopy (STM) and inelastic electron tunneling spectroscopy (IETS). We describe the mechanisms responsible for the high-resolution AFM, STM and IETS-STM contrast. The complexity of this technique requires new theoretical approaches, where a relaxation of the functionalized probe is considered. We emphasise the similarities of the mechanism driving high-resolution SPM with other imaging methods. We also summarise briefly significant achievements and progress in different branches. Finally we provide brief perspectives and remaining challenges of the further refinement of these high-resolution methods.

  1. High resolution magnetic imaging: MicroSQUID Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hasselbach, K; Ladam, C; Dolocan, V O; Hykel, D; Crozes, T [Institut Neel, CNRS et Universite Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Schuster, K [Institut de RadioAstronomie Millimetrique 300 rue de la Piscine, Domaine Universitaire F-38406 Saint Martin d' Heres (France); Mailly, D [Laboratoire de Photonique et de Nanostructures, CNRS, Site Alcatel de Marcoussis Route de Nozay F-91460 Marcoussis (France)], E-mail: klaus.hasselbach@grenoble.cnrs.fr

    2008-02-01

    Magnetic imaging at the micrometer scale with high sensitivity is a challenge difficult to be met. Magnetic force microscopy has a very high spatial resolution but is limited in magnetic resolution. Hall probe microscopy is very powerful but sensor fabrication at the one micron scale is difficult and effects due to discreteness of charge appear in the form of significant 1/f noise. SQUID microscopy is very powerful, having high magnetic resolution, but spatial resolution is usually of the order of 10 {mu}m. The difficulties lay mostly in an efficient way to couple flux to the sensor. The only way to improve spatial resolution is to place the probe close to the very edge of the support, thus maximising coupling and spatial resolution. If there has been found a way to bring close the tip, there must be also found a reliable a way to maintain distance during scanning. We want to present recent improvements on scanning microsquid microscopy: Namely the improved fabrication of microSQUID tips using silicon micro machining and the precise positioning of the micrometer diameter microSQUID loop by electron beam lithography. The microSQUID is a microbridge DC SQUID, with two opposite microbridges. The constrictions are patterned by high-resolution e-beam lithography and have a width of 20 nm and a length of about 100 nm. The distance control during scanning is obtained by integrating the microSQUID sensor with a piezoelectric tuning fork acting as a force sensor allowing to control height and even topographic imaging. The detector is placed in a custom built near field microscope and the sample temperature can be varied between 0.1 Kelvin and 10 K. The microscope is used to study magnetic flux structures in unconventional superconductors and will be used to observe thermal domains in superconducting detectors in the voltage state.

  2. High spatial resolution diffusion tensor imaging and its applications

    CERN Document Server

    Wang, J J

    2002-01-01

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI...

  3. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony;

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit hi...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors......In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...

  4. A high resolution powder diffractometer using focusing optics

    Indian Academy of Sciences (India)

    V Siruguri; P D Babu; M Gupta; A V Pimpale; P S Goyal

    2008-11-01

    In this paper, we describe the design, construction and performance of a new high resolution neutron powder diffractometer that has been installed at the Dhruva reactor, Trombay, India. The instrument employs novel design concepts like the use of bent, perfect crystal monochromator and open beam geometry, enabling the use of smaller samples. The resolution curve of the instrument was found to have little variation over a wide angular region and a / ∼ 0.3% has been achieved. The instrument provides sample environment of very low temperatures and high magnetic fields using a 7 Tesla cryogen-free superconducting magnet with a VTI having a temperature range of 1.5–320 K. The special sample environment and high resolution make this neutron powder diffractometer a very powerful facility for studying magnetic properties of materials.

  5. Near Ultraviolet Spectrograph for Cubesats

    Science.gov (United States)

    Aickara Gopinathan, Sreejith; Mathew, Joice; Sarpotdar, Mayuresh; Suresh, Ambily; Kaippacheri, Nirmal; Safonova, Margarita; Murthy, Jayant

    2017-01-01

    We have designed a near ultraviolet (200 - 400 nm) spectrograph to fit into a 2U CubeSat and planned for flight in mid-2017 with a scientific goal of obtaining NUV spectra of bright sources (procurement delays and cost. Our baseline optical design consists of a collecting mirror with a 70 mm diameter which reflects light onto a concave reflection grating with a spacing of 1200 lines per mm. The grating focuses the light onto a linear array back-thinned FFT CCD with a pixel size of 14-μm × 14-μm.We will present the design of the payload and the choices forced on us by the restrictive CubeSat environment and the short lead times. This payload is a part of our program to build payloads that will address limited scientific goals but making full use of the opportunities that are arising for CubeSat class missions.

  6. High-resolution low-dose scanning transmission electron microscopy.

    Science.gov (United States)

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  7. Novel techniques in VUV high-resolution spectroscopy

    CERN Document Server

    Ubachs, W; Eikema, K S E; de Oliveira, N; Nahon, L

    2013-01-01

    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies. While the ns and ps pulsed laser sources, at Fourier-transform limited bandwidths, are used in wavelength scanning spectroscopy, the fs laser source is used in a two-pulse time delayed mode. In addition a Fourier-transform spectrometer for high resolution gas-phase spectroscopic studies in the VUV is described, exhibiting the multiplex advantage to measure many resonances simultaneously.

  8. High-resolution second harmonic optical coherence tomography

    Science.gov (United States)

    Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping

    2005-04-01

    A high-resolution Second Harmonic Optical Coherence Tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti:sapphire laser. An axial resolution of 4.2 μm at the second harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second harmonic generation signals that strongly depend on the orientation, polarization and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues like the rat-tail tendon. Images of highly organized collagen fibrils in the rat-tail tendon have been demonstrated.

  9. High resolution spectroscopic analysis of seven giants in the bulge globular cluster NGC 6723

    Science.gov (United States)

    Rojas-Arriagada, A.; Zoccali, M.; Vásquez, S.; Ripepi, V.; Musella, I.; Marconi, M.; Grado, A.; Limatola, L.

    2016-03-01

    Context. Globular clusters associated with the Galactic bulge are important tracers of stellar populations in the inner Galaxy. High resolution analysis of stars in these clusters allows us to characterize them in terms of kinematics, metallicity, and individual abundances, and to compare these fingerprints with those characterizing field populations. Aims: We present iron and element ratios for seven red giant stars in the globular cluster NGC 6723, based on high resolution spectroscopy. Methods: High resolution spectra (R ~ 48 000) of seven K giants belonging to NGC 6723 were obtained with the FEROS spectrograph at the MPG/ESO 2.2 m telescope. Photospheric parameters were derived from ~130 Fe i and Fe ii transitions. Abundance ratios were obtained from line-to-line spectrum synthesis calculations on clean selected features. Results: An intermediate metallicity of [Fe/H] = -0.98 ± 0.08 dex and a heliocentric radial velocity of vhel = -96.6 ± 1.3 km s-1 were found for NGC 6723. Alpha-element abundances present enhancements of [O/Fe] = 0.29 ± 0.18 dex, [Mg/Fe] = 0.23 ± 0.10 dex, [Si/Fe] = 0.36 ± 0.05 dex, and [Ca/Fe] = 0.30 ± 0.07 dex. Similar overabundance is found for the iron-peak Ti with [Ti/Fe] = 0.24 ± 0.09 dex. Odd-Z elements Na and Al present abundances of [Na/Fe] = 0.00 ± 0.21 dex and [Al/Fe] = 0.31 ± 0.21 dex, respectively. Finally, the s-element Ba is also enhanced by [Ba/Fe] = 0.22 ± 0.21 dex. Conclusions: The enhancement levels of NGC 6723 are comparable to those of other metal-intermediate bulge globular clusters. In turn, these enhancement levels are compatible with the abundance profiles displayed by bulge field stars at that metallicity. This hints at a possible similar chemical evolution with globular clusters and the metal-poor of the bulge going through an early prompt chemical enrichment.

  10. High-resolution spectra of the planetary nebula NGC 6803

    Science.gov (United States)

    Lee, S.-J.; Hyung, S.

    2013-01-01

    We present the high-dispersion spectra of the elliptical ring shaped planetary nebula NGC 6803, secured with the Hamilton Echelle Spectrograph attached to the 3-m Shane telescope of Lick Observatory. Numerous lines from neutral to quadruply ionized ions are presented in the wavelength region from 3650 to 9900 Å. We also use the low dispersion UV spectral data obtained with the 60-cm interstellar ultraviolet explorer. In spite of its simplistic symmetrical bilateral shape, the diagnostics imply that the physical condition of the nebular shell is very complex with a huge density range of 1300-80 000 cm-3. A comparison of the 1995 and 2001 [Ar iv] data suggests that the density increase occurred near the inner shell boundary. In spite of a huge ionization potential range, the average electron temperature indicated by primary diagnostic lines is relatively low, i.e., Te ≤ 9500 K, except for [Cl iv], from which we derive a temperature that is around 11 500 K. We derived the chemical abundances of He, C, N, O, Ne, S, Ar, Cl, and K, based on the physical condition suggested by diagnostics and photo-ionization analysis. The chemical abundances of NGC 6803 are mostly enhanced when compared with the average Galactic planetary nebula. The effective temperature of its central star appears to be about 90 000 K and its luminosity about 2400 L⊙, assuming a distance of 3000 pc. The evolutionary track implies that NGC 6803 might have been evolved from a companion star of about 1.0 M⊙ in a binary system, or from a single progenitor of about 1.5 M⊙, born in a metal-rich zone near the Galactic plane. Table 2 is available in electronic form at http://www.aanda.org

  11. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  12. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG).

    Science.gov (United States)

    Gavaret, M; Maillard, L; Jung, J

    2015-03-01

    High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) allow the recording of spontaneous or evoked electromagnetic brain activity with excellent temporal resolution. Data must be recorded with high temporal resolution (sampling rate) and high spatial resolution (number of channels). Data analyses are based on several steps with selection of electromagnetic signals, elaboration of a head model and use of algorithms in order to solve the inverse problem. Due to considerable technical advances in spatial resolution, these tools now represent real methods of ElectroMagnetic Source Imaging. HR-EEG and MEG constitute non-invasive and complementary examinations, characterized by distinct sensitivities according to the location and orientation of intracerebral generators. In the presurgical assessment of drug-resistant partial epilepsies, HR-EEG and MEG can characterize and localize interictal activities and thus the irritative zone. HR-EEG and MEG often yield significant additional data that are complementary to other presurgical investigations and particularly relevant in MRI-negative cases. Currently, the determination of the epileptogenic zone and functional brain mapping remain rather less well-validated indications. In France, in 2014, HR-EEG is now part of standard clinical investigation of epilepsy, while MEG remains a research technique.

  13. Field Raman spectrograph for environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haas, J.W. III; Forney, R.W.; Carrabba, M.M. [EIC Labs, Norwood, MA (United States)] [and others

    1995-10-01

    This project entails the development of a compact raman spectrograph for field screening and monitoring of a wide variety of wastes, pollutants, and corrosion products in tanks, and environmental materials. The design of a fiber optic probe for use with the spectrograph is also discussed.

  14. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    Science.gov (United States)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  15. High resolution transmission spectrum of the Earth's atmosphere -- Seeing Earth as an exoplanet using a lunar eclipse

    CERN Document Server

    Yan, Fei; Petr-Gotzens, Monika G; Zhao, Gang; Wang, Wei; Wang, Liang; Liu, Yujuan; Pallé, Enric

    2014-01-01

    With the rapid developments in the exoplanet field, more and more terrestrial exoplanets are being detected. Characterising their atmospheres using transit observations will become a key datum in the quest for detecting an Earth-like exoplanet. The atmospheric transmission spectrum of our Earth will be an ideal template for comparison with future exo-Earth candidates. By observing a lunar eclipse, which offers a similar configuration to that of an exoplanet transit, we have obtained a high resolution and high signal-to-noise ratio transmission spectrum of the Earth's atmosphere. This observation was performed with the High Resolution Spectrograph at Xinglong Station, China during the total lunar eclipse in December 2011. We compare the observed transmission spectrum with our atmospheric model, and determine the characteristics of the various atmospheric species in detail. In the transmission spectrum, O2, O3, O2-O2, NO2 and H2O are detected, and their column densities are measured and compared with the satell...

  16. Developing an integrated concept for the E-ELT Multi-Object Spectrograph (MOSAIC): design issues and trade-offs

    CERN Document Server

    Rodrigues, Myriam; Fitzsimons, Ewan; Chemla, Fanny; Morris, Tim; Hammer, Francois; Puech, Mathieu; Evans, Christopher; Jagourel, Pascal

    2016-01-01

    We present a discussion of the design issues and trade-offs that have been considered in putting together a new concept for MOSAIC, the multi-object spectrograph for the E-ELT. MOSAIC aims to address the combined science cases for E-ELT MOS that arose from the earlier studies of the multi-object and multi-adaptive optics instruments. MOSAIC combines the advantages of a highly-multiplexed instrument targeting single-point objects with one which has a more modest multiplex but can spatially resolve a source with high resolution (IFU). These will span across two wavebands: visible and near-infrared.

  17. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model

    Science.gov (United States)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.

    2013-12-01

    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  18. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  19. High resolution map of light pollution over Poland

    Science.gov (United States)

    Netzel, Henryka; Netzel, Paweł

    2016-09-01

    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  20. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.