Sample records for high resolution sequence

  1. Logging Data High-Resolution Sequence Stratigraphy

    Institute of Scientific and Technical Information of China (English)

    Li Hongqi; Xie Yinfu; Sun Zhongchun; Luo Xingping


    The recognition and contrast of bed sets in parasequence is difficult in terrestrial basin high-resolution sequence stratigraphy. This study puts forward new methods for the boundary identification and contrast of bed sets on the basis of manifold logging data. The formation of calcareous interbeds, shale resistivity differences and the relation of reservoir resistivity to altitude are considered on the basis of log curve morphological characteristics, core observation, cast thin section, X-ray diffraction and scanning electron microscopy. The results show that the thickness of calcareous interbeds is between 0.5 m and 2 m, increasing on weathering crusts and faults. Calcareous interbeds occur at the bottom of Reservoir resistivity increases with altitude. Calcareous interbeds may be a symbol of recognition for the boundary of bed sets and isochronous contrast bed sets, and shale resistivity differences may confirm the stack relation and connectivity of bed sets. Based on this, a high-rcsolution chronostratigraphic framework of Xi-1 segment in Shinan area, Junggar basin is presented, and the connectivity of bed sets and oil-water contact is confirmed. In this chronostratigraphic framework, the growth order, stack mode and space shape of bed sets are qualitatively and quantitatively described.

  2. High-resolution mapping of protein sequence-function relationships. (United States)

    Fowler, Douglas M; Araya, Carlos L; Fleishman, Sarel J; Kellogg, Elizabeth H; Stephany, Jason J; Baker, David; Fields, Stanley


    We present a large-scale approach to investigate the functional consequences of sequence variation in a protein. The approach entails the display of hundreds of thousands of protein variants, moderate selection for activity and high-throughput DNA sequencing to quantify the performance of each variant. Using this strategy, we tracked the performance of >600,000 variants of a human WW domain after three and six rounds of selection by phage display for binding to its peptide ligand. Binding properties of these variants defined a high-resolution map of mutational preference across the WW domain; each position had unique features that could not be captured by a few representative mutations. Our approach could be applied to many in vitro or in vivo protein assays, providing a general means for understanding how protein function relates to sequence.


    Directory of Open Access Journals (Sweden)

    M. Nagaraju Naik


    Full Text Available Unlike most other information technologies, which have enjoyed an exponential growth for the past several decades, display resolution has largely stagnated. Low display resolution has in turn limited the resolution of digital images. Scaling is a non-trivial process that involves a trade-off between efficiency, smoothness and sharpness. As the size of an image is increased, so the pixels, which comprise the image, become increasingly visible, making the image to appear soft. Super scalar representation of image sequence is limited due to image information present in low dimensional image sequence. To project a image frame sequence into high-resolution static or fractional scalingvalue, a scaling approach is developed based on energy spectral interpolation and frequency spectral interpolation techniques. To realize the frequency spectral resolution Cubic-B-Spline method is used.

  4. A high-throughput de novo sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Banfield Jillian F


    Full Text Available Abstract Background High-resolution tandem mass spectra can now be readily acquired with hybrid instruments, such as LTQ-Orbitrap and LTQ-FT, in high-throughput shotgun proteomics workflows. The improved spectral quality enables more accurate de novo sequencing for identification of post-translational modifications and amino acid polymorphisms. Results In this study, a new de novo sequencing algorithm, called Vonode, has been developed specifically for analysis of such high-resolution tandem mass spectra. To fully exploit the high mass accuracy of these spectra, a unique scoring system is proposed to evaluate sequence tags based primarily on mass accuracy information of fragment ions. Consensus sequence tags were inferred for 11,422 spectra with an average peptide length of 5.5 residues from a total of 40,297 input spectra acquired in a 24-hour proteomics measurement of Rhodopseudomonas palustris. The accuracy of inferred consensus sequence tags was 84%. According to our comparison, the performance of Vonode was shown to be superior to the PepNovo v2.0 algorithm, in terms of the number of de novo sequenced spectra and the sequencing accuracy. Conclusions Here, we improved de novo sequencing performance by developing a new algorithm specifically for high-resolution tandem mass spectral data. The Vonode algorithm is freely available for download at

  5. Division of high resolution sequence stratigraphy units with wavelet transform of logs in Dagang Oilfield

    Institute of Scientific and Technical Information of China (English)


    Division of high resolution sequence stratigraphy units based on wavelet transform of logging data is found to be good at identifying subtle cycles of geological process in Kongnan area of Dagang Oilfield. The analysis of multi-scales gyre of formation with 1-D continuous Dmey wavelet transform of log curve (GR) and 1-D discrete Daubechies wavelet transform of log curve (Rt) all make the division of sequence interfaces more objective and precise, which avoids the artificial influence with core analysis and the uncertainty with seismic data and core analysis.

  6. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis

    Directory of Open Access Journals (Sweden)

    Zhao Patrick X


    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common type of sequence variation among plants and are often functionally important. We describe the use of 454 technology and high resolution melting analysis (HRM for high throughput SNP discovery in tetraploid alfalfa (Medicago sativa L., a species with high economic value but limited genomic resources. Results The alfalfa genotypes selected from M. sativa subsp. sativa var. 'Chilean' and M. sativa subsp. falcata var. 'Wisfal', which differ in water stress sensitivity, were used to prepare cDNA from tissue of clonally-propagated plants grown under either well-watered or water-stressed conditions, and then pooled for 454 sequencing. Based on 125.2 Mb of raw sequence, a total of 54,216 unique sequences were obtained including 24,144 tentative consensus (TCs sequences and 30,072 singletons, ranging from 100 bp to 6,662 bp in length, with an average length of 541 bp. We identified 40,661 candidate SNPs distributed throughout the genome. A sample of candidate SNPs were evaluated and validated using high resolution melting (HRM analysis. A total of 3,491 TCs harboring 20,270 candidate SNPs were located on the M. truncatula (MT 3.5.1 chromosomes. Gene Ontology assignments indicate that sequences obtained cover a broad range of GO categories. Conclusions We describe an efficient method to identify thousands of SNPs distributed throughout the alfalfa genome covering a broad range of GO categories. Validated SNPs represent valuable molecular marker resources that can be used to enhance marker density in linkage maps, identify potential factors involved in heterosis and genetic variation, and as tools for association mapping and genomic selection in alfalfa.

  7. Rapid high resolution genotyping of Francisella tularensis by whole genome sequence comparison of annotated genes ("MLST+".

    Directory of Open Access Journals (Sweden)

    Markus H Antwerpen

    Full Text Available The zoonotic disease tularemia is caused by the bacterium Francisella tularensis. This pathogen is considered as a category A select agent with potential to be misused in bioterrorism. Molecular typing based on DNA-sequence like canSNP-typing or MLVA has become the accepted standard for this organism. Due to the organism's highly clonal nature, the current typing methods have reached their limit of discrimination for classifying closely related subpopulations within the subspecies F. tularensis ssp. holarctica. We introduce a new gene-by-gene approach, MLST+, based on whole genome data of 15 sequenced F. tularensis ssp. holarctica strains and apply this approach to investigate an epidemic of lethal tularemia among non-human primates in two animal facilities in Germany. Due to the high resolution of MLST+ we are able to demonstrate that three independent clones of this highly infectious pathogen were responsible for these spatially and temporally restricted outbreaks.

  8. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. (United States)

    Ren, Yi; Zhao, Hong; Kou, Qinghe; Jiang, Jiao; Guo, Shaogui; Zhang, Haiying; Hou, Wenju; Zou, Xiaohua; Sun, Honghe; Gong, Guoyi; Levi, Amnon; Xu, Yong


    As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F(8) population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ∼800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits.

  9. Very high resolution single pass HLA genotyping using amplicon sequencing on the 454 next generation DNA sequencers: Comparison with Sanger sequencing. (United States)

    Yamamoto, F; Höglund, B; Fernandez-Vina, M; Tyan, D; Rastrou, M; Williams, T; Moonsamy, P; Goodridge, D; Anderson, M; Erlich, H A; Holcomb, C L


    Compared to Sanger sequencing, next-generation sequencing offers advantages for high resolution HLA genotyping including increased throughput, lower cost, and reduced genotype ambiguity. Here we describe an enhancement of the Roche 454 GS GType HLA genotyping assay to provide very high resolution (VHR) typing, by the addition of 8 primer pairs to the original 14, to genotype 11 HLA loci. These additional amplicons help resolve common and well-documented alleles and exclude commonly found null alleles in genotype ambiguity strings. Simplification of workflow to reduce the initial preparation effort using early pooling of amplicons or the Fluidigm Access Array™ is also described. Performance of the VHR assay was evaluated on 28 well characterized cell lines using Conexio Assign MPS software which uses genomic, rather than cDNA, reference sequence. Concordance was 98.4%; 1.6% had no genotype assignment. Of concordant calls, 53% were unambiguous. To further assess the assay, 59 clinical samples were genotyped and results compared to unambiguous allele assignments obtained by prior sequence-based typing supplemented with SSO and/or SSP. Concordance was 98.7% with 58.2% as unambiguous calls; 1.3% could not be assigned. Our results show that the amplicon-based VHR assay is robust and can replace current Sanger methodology. Together with software enhancements, it has the potential to provide even higher resolution HLA typing. Copyright © 2015. Published by Elsevier Inc.

  10. De Novo Peptide Sequencing: Deep Mining of High-Resolution Mass Spectrometry Data. (United States)

    Islam, Mohammad Tawhidul; Mohamedali, Abidali; Fernandes, Criselda Santan; Baker, Mark S; Ranganathan, Shoba


    High resolution mass spectrometry has revolutionized proteomics over the past decade, resulting in tremendous amounts of data in the form of mass spectra, being generated in a relatively short span of time. The mining of this spectral data for analysis and interpretation though has lagged behind such that potentially valuable data is being overlooked because it does not fit into the mold of traditional database searching methodologies. Although the analysis of spectra by de novo sequences removes such biases and has been available for a long period of time, its uptake has been slow or almost nonexistent within the scientific community. In this chapter, we propose a methodology to integrate de novo peptide sequencing using three commonly available software solutions in tandem, complemented by homology searching, and manual validation of spectra. This simplified method would allow greater use of de novo sequencing approaches and potentially greatly increase proteome coverage leading to the unearthing of valuable insights into protein biology, especially of organisms whose genomes have been recently sequenced or are poorly annotated.

  11. Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing. (United States)

    Conway, Tyrrell; Creecy, James P; Maddox, Scott M; Grissom, Joe E; Conkle, Trevor L; Shadid, Tyler M; Teramoto, Jun; San Miguel, Phillip; Shimada, Tomohiro; Ishihama, Akira; Mori, Hirotada; Wanner, Barry L


    We analyzed the transcriptome of Escherichia coli K-12 by strand-specific RNA sequencing at single-nucleotide resolution during steady-state (logarithmic-phase) growth and upon entry into stationary phase in glucose minimal medium. To generate high-resolution transcriptome maps, we developed an organizational schema which showed that in practice only three features are required to define operon architecture: the promoter, terminator, and deep RNA sequence read coverage. We precisely annotated 2,122 promoters and 1,774 terminators, defining 1,510 operons with an average of 1.98 genes per operon. Our analyses revealed an unprecedented view of E. coli operon architecture. A large proportion (36%) of operons are complex with internal promoters or terminators that generate multiple transcription units. For 43% of operons, we observed differential expression of polycistronic genes, despite being in the same operons, indicating that E. coli operon architecture allows fine-tuning of gene expression. We found that 276 of 370 convergent operons terminate inefficiently, generating complementary 3' transcript ends which overlap on average by 286 nucleotides, and 136 of 388 divergent operons have promoters arranged such that their 5' ends overlap on average by 168 nucleotides. We found 89 antisense transcripts of 397-nucleotide average length, 7 unannotated transcripts within intergenic regions, and 18 sense transcripts that completely overlap operons on the opposite strand. Of 519 overlapping transcripts, 75% correspond to sequences that are highly conserved in E. coli (>50 genomes). Our data extend recent studies showing unexpected transcriptome complexity in several bacteria and suggest that antisense RNA regulation is widespread. Importance: We precisely mapped the 5' and 3' ends of RNA transcripts across the E. coli K-12 genome by using a single-nucleotide analytical approach. Our resulting high-resolution transcriptome maps show that ca. one-third of E. coli operons are

  12. High-resolution analysis of the 5'-end transcriptome using a next generation DNA sequencer.

    Directory of Open Access Journals (Sweden)

    Shin-ichi Hashimoto

    Full Text Available Massively parallel, tag-based sequencing systems, such as the SOLiD system, hold the promise of revolutionizing the study of whole genome gene expression due to the number of data points that can be generated in a simple and cost-effective manner. We describe the development of a 5'-end transcriptome workflow for the SOLiD system and demonstrate the advantages in sensitivity and dynamic range offered by this tag-based application over traditional approaches for the study of whole genome gene expression. 5'-end transcriptome analysis was used to study whole genome gene expression within a colon cancer cell line, HT-29, treated with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5Aza. More than 20 million 25-base 5'-end tags were obtained from untreated and 5Aza-treated cells and matched to sequences within the human genome. Seventy three percent of the mapped unique tags were associated with RefSeq cDNA sequences, corresponding to approximately 14,000 different protein-coding genes in this single cell type. The level of expression of these genes ranged from 0.02 to 4,704 transcripts per cell. The sensitivity of a single sequence run of the SOLiD platform was 100-1,000 fold greater than that observed from 5'end SAGE data generated from the analysis of 70,000 tags obtained by Sanger sequencing. The high-resolution 5'end gene expression profiling presented in this study will not only provide novel insight into the transcriptional machinery but should also serve as a basis for a better understanding of cell biology.

  13. Development of a multilocus sequence typing tool for high-resolution genotyping of Enterocytozoon bieneusi. (United States)

    Feng, Yaoyu; Li, Na; Dearen, Theresa; Lobo, Maria L; Matos, Olga; Cama, Vitaliano; Xiao, Lihua


    Thus far, genotyping of Enterocytozoon bieneusi has been based solely on DNA sequence analysis of the internal transcribed spacer (ITS) of the rRNA gene. Both host-adapted and zoonotic (human-pathogenic) genotypes of E. bieneusi have been identified. In this study, we searched for microsatellite and minisatellite sequences in the whole-genome sequence database of E. bieneusi isolate H348. Seven potential targets (MS1 to MS7) were identified. Testing of the seven targets by PCR using two human-pathogenic E. bieneusi genotypes (A and Peru10) led to the selection of four targets (MS1, MS3, MS4, and MS7). Further analysis of the four loci with an additional 24 specimens of both host-adapted and zoonotic E. bieneusi genotypes indicated that most host-adapted genotypes were not amplified by PCR targeting these loci. In contrast, 10 or 11 of the 13 specimens of the zoonotic genotypes were amplified by PCR at each locus. Altogether, 12, 8, 7, and 11 genotypes of were identified at MS1, MS3, MS4, and MS7, respectively. Phylogenetic analysis of the nucleotide sequences obtained produced a genetic relationship that was similar to the one at the ITS locus, with the formation of a large group of zoonotic genotypes that included most E. bieneusi genotypes in humans. Thus, a multilocus sequence typing tool was developed for high-resolution genotyping of E. bieneusi. Data obtained in the study should also have implications for understanding the taxonomy of Enterocytozoon spp., the public health significance of E. bieneusi in animals, and the sources of human E. bieneusi infections.

  14. High resolution measurement of DUF1220 domain copy number from whole genome sequence data. (United States)

    Astling, David P; Heft, Ilea E; Jones, Kenneth L; Sikela, James M


    DUF1220 protein domains found primarily in Neuroblastoma BreakPoint Family (NBPF) genes show the greatest human lineage-specific increase in copy number of any coding region in the genome. There are 302 haploid copies of DUF1220 in hg38 (~160 of which are human-specific) and the majority of these can be divided into 6 different subtypes (referred to as clades). Copy number changes of specific DUF1220 clades have been associated in a dose-dependent manner with brain size variation (both evolutionarily and within the human population), cognitive aptitude, autism severity, and schizophrenia severity. However, no published methods can directly measure copies of DUF1220 with high accuracy and no method can distinguish between domains within a clade. Here we describe a novel method for measuring copies of DUF1220 domains and the NBPF genes in which they are found from whole genome sequence data. We have characterized the effect that various sequencing and alignment parameters and strategies have on the accuracy and precision of the method and defined the parameters that lead to optimal DUF1220 copy number measurement and resolution. We show that copy number estimates obtained using our read depth approach are highly correlated with those generated by ddPCR for three representative DUF1220 clades. By simulation, we demonstrate that our method provides sufficient resolution to analyze DUF1220 copy number variation at three levels: (1) DUF1220 clade copy number within individual genes and groups of genes (gene-specific clade groups) (2) genome wide DUF1220 clade copies and (3) gene copy number for DUF1220-encoding genes. To our knowledge, this is the first method to accurately measure copies of all six DUF1220 clades and the first method to provide gene specific resolution of these clades. This allows one to discriminate among the ~300 haploid human DUF1220 copies to an extent not possible with any other method. The result is a greatly enhanced capability to analyze the

  15. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.


    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  16. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.


    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics. PMID:28176860

  17. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling. (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I


    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  18. High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach

    Directory of Open Access Journals (Sweden)

    Allard Marc W


    Full Text Available Abstract Background Next-Generation Sequencing (NGS is increasingly being used as a molecular epidemiologic tool for discerning ancestry and traceback of the most complicated, difficult to resolve bacterial pathogens. Making a linkage between possible food sources and clinical isolates requires distinguishing the suspected pathogen from an environmental background and placing the variation observed into the wider context of variation occurring within a serovar and among other closely related foodborne pathogens. Equally important is the need to validate these high resolution molecular tools for use in molecular epidemiologic traceback. Such efforts include the examination of strain cluster stability as well as the cumulative genetic effects of sub-culturing on these clusters. Numerous isolates of S. Montevideo were shot-gun sequenced including diverse lineage representatives as well as numerous replicate clones to determine how much variability is due to bias, sequencing error, and or the culturing of isolates. All new draft genomes were compared to 34 S. Montevideo isolates previously published during an NGS-based molecular epidemiological case study. Results Intraserovar lineages of S. Montevideo differ by thousands of SNPs, that are only slightly less than the number of SNPs observed between S. Montevideo and other distinct serovars. Much less variability was discovered within an individual S. Montevideo clade implicated in a recent foodborne outbreak as well as among individual NGS replicates. These findings were similar to previous reports documenting homopolymeric and deletion error rates with the Roche 454 GS Titanium technology. In no case, however, did variability associated with sequencing methods or sample preparations create inconsistencies with our current phylogenetic results or the subsequent molecular epidemiological evidence gleaned from these data. Conclusions Implementation of a validated pipeline for NGS data acquisition and

  19. Heterozygous mapping strategy (HetMapps)for high resolution genotyping-by-sequencing markers: a case study in grapevine (United States)

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low per-sample genotyping cost, but missing data and under-calling of heterozygotes complicate the creation of GBS linkage maps for highly heterozygous species. To overcome these issues, we developed ...

  20. Preliminary results of high resolution magneto-biostratigraphy of continental sequences in Chapala Basin, Southwestern Mexico (United States)

    Mendez Cardenas, D. L.; Benammi, M.


    Chapala Lake is south from Guadalajara, Jalisco State (Southwestern Mexico). Belongs to a series of Pliocenic lakes along the Mexican Volcanic Belt. It is localized in the Chapala rift, and the entire area is controlled by the tectonic setting of the Colima, Tepic and Chapala rifts, constituting the triple junction rift-rift-rift. The deposits studied belong to volcanosedimentary sequences, composed by lacustrine and fluvial associations alternated with units of ash and pumice. The faunistic component reported consists at least of 27 mammals species, and the sediments were there're in have to work with special attention for seek rodents by handpicking. Probably these rodents will be the clue to determine the deposits correlation. Core demagnetization shows that they are low-coercivity magnetic minerals like magnetite or Ti-magnetite. It was verified that the characteristic magnetization corresponds to MNRp and the inversion test resulted good. Rodents are represented by Geomynae, Sigmondontinae and Sciurinae. The Geomynae family is the most common, and the faunistic association indicates Blancan age. This also allows a correlation with the polarity pattern in the GSS between 3,6 and 2,6 Ma. Actually, is known that this kind of studies in continental sequences supported with paleontological record of vertebrates could give us a more precised calibration of the age of such deposits. Allowing better understanding of the evolution of these mammals and their path trough geological record. This work shows the preliminary results of rodents palaeontology and high resolution magneto-stratigraphy in the units from to Chapala Basin.

  1. Intron sequences provide a tool for high-resolution phylogenetic analysis of volvocine algae. (United States)

    Liss, M; Kirk, D L; Beyser, K; Fabry, S


    Three nuclear spliceosomal introns in conserved locations were amplified and sequenced from 28 strains representing 14 species and 4 genera of volvocalean green algae. Data derived from the three different introns yielded congruent results in nearly all cases. In pairwise comparisons, a spectrum of taxon-specific sequence differences ranging from complete identity to no significant similarity was observed, with the most distantly related organisms lacking any conserved elements apart from exon-intron boundaries and a pyrimidine-rich stretch near the 3' splice site. A metric (SI50), providing a measure of the degree of similarity of any pair of intron sequences, was defined and used to calculate phylogenetic distances between organisms whose introns displayed statistically significant similarities. The rate of sequences divergence in the introns was great enough to provide useful information about relationships among different geographical isolates of a single species, but in most cases was too great to provide reliable guides to relationships above the species level. A substitution rate of approximately 3 x 10(-8) per intron position per year was estimated, which is about 150-fold higher than in nuclear genes encoding rRNA and about 10-fold higher than the synonymous substitution rate in protein-coding regions. Thus, these homologous introns not only provide useful information about intraspecific phylogenetic relationships, but also illustrate the concept that different parts of a gene may be subject to extremely different intensities of selection. The intron data generated here (1) reliably resolve for the first time the relationships among the five most extensively studied strains of Volvox, (2) reveal that two other Volvox species may be more closely related than had previously been suspected, (3) confirm prior evidence that particular isolates of Eudorina elegans and Pleodorina illinoisensis appear to be sibling taxa, and (4) contribute to the resolution of

  2. High-resolution mapping and transcriptional activity analysis of chicken centromere sequences on giant lampbrush chromosomes. (United States)

    Krasikova, Alla; Fukagawa, Tatsuo; Zlotina, Anna


    Exploration into morphofunctional organisation of centromere DNA sequences is important for understanding the mechanisms of kinetochore specification and assembly. In-depth epigenetic analysis of DNA fragments associated with centromeric nucleosome proteins has demonstrated unique features of centromere organisation in chicken karyotype: there are both mature centromeres, which comprise chromosome-specific homogeneous arrays of tandem repeats, and recently evolved primitive centromeres, which consist of non-tandemly organised DNA sequences. In this work, we describe the arrangement and transcriptional activity of chicken centromere repeats for Cen1, Cen2, Cen3, Cen4, Cen7, Cen8, and Cen11 and non-repetitive centromere sequences of chromosomes 5, 27, and Z using highly elongated lampbrush chromosomes, which are characteristic of the diplotene stage of oogenesis. The degree of chromatin packaging and fine spatial organisations of tandemly repetitive and non-tandemly repetitive centromeric sequences significantly differ at the lampbrush stage. Using DNA/RNA FISH, we have demonstrated that during the lampbrush stage, DNA sequences are transcribed within the centromere regions of chromosomes that lack centromere-specific tandem repeats. In contrast, chromosome-specific centromeric repeats Cen1, Cen2, Cen3, Cen4, Cen7, Cen8, and Cen11 do not demonstrate any transcriptional activity during the lampbrush stage. In addition, we found that CNM repeat cluster localises adjacent to non-repetitive centromeric sequences in chicken microchromosome 27 indicating that centromere region in this chromosome is repeat-rich. Cross-species FISH allowed localisation of the sequences homologous to centromeric DNA of chicken chromosomes 5 and 27 in centromere regions of quail orthologous chromosomes.

  3. Sedimentology and High Resolution Sequence Stratigraphy of the Middle Jurassic Dhruma Formation Carbonates Outcrops in the Central Saudi Arabia (United States)

    Yousif, Ibrahim; Abdullatif, Osman; Makkawi, Mohammed; Abdulghani, Waleed


    This study investigates the microfacies and sequence stratigraphic frame work of the Middle Jurassic Dhruma Formation in outcrops in central Saudi Arabia. The study contributes to the efforts to understand and enhance local and regional stratigraphic relationship and correlation of the Jurassic carbonate sequences and their significance to reservoir description and prediction in the subsurcae. The study describes and characterizes the sedimentology, microfacies and the stratigraphy of Dhruma Formation from outcrop sections having a total thickness of 70 m. Detailed microfacies and high-resolution stratigraphical analysis were carried out to determine microfacies, cyclicity, sequences and staking pattern. The study revealed ten lithofacies namely: oolitic grainstone,bioclastic oolitic grainstone, oolitic grapestone, bioclastic grainstone,foraminiferal packstone, echinoderm packstone, peloidal packstone to grainstone,skeletal wackestone to packstone, mudstone, and marlstone.These lithofacies were grouped into five lithofacies associations that deposited on a carbonate ramp setting. The depositional environment ranging from low energy lagoonal setting to high-energy shoals and banks to low energy outer ramp setting. Five high-resolution composite sequences have been defined and each sequence is composed at the bottom of intercalated mudstone/wackestone that passing up into grainstone lithofacies.The composite sequences range in thickness from 7 to 15 m, while the parasequences range from 0.5 to 1.5 m. The composite sequences extend laterally for a distance of more than 350 m. The overall composite section shows a shallowing upward succession of the 4th to the 5th order high-resolution sequences.The dominant lithofacies are the grainy ones, which constitute 30%, 50% and 80% of the studied sections. Furthermore, the parasequences thickness and their bio-components are increasing towards the top. The muddy lithofacies intensively affected the vertical continuity of the

  4. High Resolution Imaging of PHIBSS z~2 Main Sequence Galaxies in CO J=1-0

    CERN Document Server

    Bolatto, A D; Leroy, A K; Tacconi, L J; Bouché, N; Schreiber, N M Förster; Genzel, R; Cooper, M C; Fisher, D B; Combes, F; García-Burillo, S; Burkert, A; Bournaud, F; Weiss, A; Saintonge, A; Wuyts, S; Sternberg, A


    We present Karl G. Jansky Very Large Array observations of the CO J=1-0 transition in a sample of four $z\\sim2$ main sequence galaxies. These galaxies are in the blue sequence of star-forming galaxies at their redshift, and are part of the IRAM Plateau de Bure HIgh-$z$ Blue Sequence Survey (PHIBSS) which imaged them in CO J=3-2. Two galaxies are imaged here at high signal-to-noise, allowing determinations of their disk sizes, line profiles, molecular surface densities, and excitation. Using these and published measurements, we show that the CO and optical disks have similar sizes in main-sequence galaxies, and in the galaxy where we can compare CO J=1-0 and J=3-2 sizes we find these are also very similar. Assuming a Galactic CO-to-H$_2$ conversion, we measure surface densities of $\\Sigma_{mol}\\sim1200$ M$_\\odot$pc$^{-2}$ in projection and estimate $\\Sigma_{mol}\\sim500-900$ M$_\\odot$pc$^{-2}$ deprojected. Finally, our data yields velocity-integrated Rayleigh-Jeans brightness temperature line ratios $r_{31}$ th...

  5. High-resolution three-dimensional T2-weighted sequence for neuronavigation: a new setup and clinical trial. (United States)

    Gralla, Jan; Guzman, Raphael; Brekenfeld, Caspar; Remonda, Luca; Kiefer, Claus


    Conventional imaging for neuronavigation is performed using high-resolution computerized tomography (CT) scanning or a T1-weighted isovoxel magnetic resonance (MR) sequence. The extension of some lesions, however, is depicted much better on T2-weighted MR images. A possible fusion process used to match low-resolution T2-weighted MR image set with a referenced CT or T1-weighted data set leads to poor resolution in the three-dimensional (3D) reconstruction and decreases accuracy, which is unacceptable for neuronavigation. The object of this work was to develop a 3D T2-weighted isovoxel sequence (3D turbo-spin echo [TSE]) for image-guided neuronavigation of the whole brain and to evaluate its clinical application. The authors performed a phantom study and a clinical trial on a newly developed T2-weighted isovoxel sequence, 3D TSE, for image-guided neuronavigation using a common 1.5-tesla MR imager (Siemens Sonata whole-body imager). The accuracy study and intraoperative image guidance were performed with the aid of the pointer-based Medtronic Stealth Station Treon. The 3D TSE data set was easily applied to the navigational setup and demonstrated a high registration accuracy during the experimental trial and during an initial prospective clinical trial in 25 patients. The sequence displayed common disposable skin fiducial markers and provided convincing delineation of lesions that appear hyperintense on T2-weighted images such as low-grade gliomas and cavernomas in its clinical application. Three-dimensional TSE imaging broadens the spectrum of navigational and intraoperative data sets, especially for lesions that appear hyperintense on T2-weighted images. The accuracy of its registration is very reliable and it enables high-resolution reconstruction in any orientation, maintaining the advantages of image-guided surgery.

  6. High resolution profiling of human exon methylation by liquid hybridization capture-based bisulfite sequencing

    Directory of Open Access Journals (Sweden)

    Wang Junwen


    Full Text Available Abstract Background DNA methylation plays important roles in gene regulation during both normal developmental and disease states. In the past decade, a number of methods have been developed and applied to characterize the genome-wide distribution of DNA methylation. Most of these methods endeavored to screen whole genome and turned to be enormously costly and time consuming for studies of the complex mammalian genome. Thus, they are not practical for researchers to study multiple clinical samples in biomarker research. Results Here, we display a novel strategy that relies on the selective capture of target regions by liquid hybridization followed by bisulfite conversion and deep sequencing, which is referred to as liquid hybridization capture-based bisulfite sequencing (LHC-BS. To estimate this method, we utilized about 2 μg of native genomic DNA from YanHuang (YH whole blood samples and a mature dendritic cell (mDC line, respectively, to evaluate their methylation statuses of target regions of exome. The results indicated that the LHC-BS system was able to cover more than 97% of the exome regions and detect their methylation statuses with acceptable allele dropouts. Most of the regions that couldn't provide accurate methylation information were distributed in chromosomes 6 and Y because of multiple mapping to those regions. The accuracy of this strategy was evaluated by pair-wise comparisons using the results from whole genome bisulfite sequencing and validated by bisulfite specific PCR sequencing. Conclusions In the present study, we employed a liquid hybridisation capture system to enrich for exon regions and then combined with bisulfite sequencing to examine the methylation statuses for the first time. This technique is highly sensitive and flexible and can be applied to identify differentially methylated regions (DMRs at specific genomic locations of interest, such as regulatory elements or promoters.

  7. High resolution radiation hybrid maps of bovine chromosomes 19 and 29: comparison with the bovine genome sequence assembly

    Directory of Open Access Journals (Sweden)

    Womack James E


    Full Text Available Abstract Background High resolution radiation hybrid (RH maps can facilitate genome sequence assembly by correctly ordering genes and genetic markers along chromosomes. The objective of the present study was to generate high resolution RH maps of bovine chromosomes 19 (BTA19 and 29 (BTA29, and compare them with the current 7.1X bovine genome sequence assembly (bovine build 3.1. We have chosen BTA19 and 29 as candidate chromosomes for mapping, since many Quantitative Trait Loci (QTL for the traits of carcass merit and residual feed intake have been identified on these chromosomes. Results We have constructed high resolution maps of BTA19 and BTA29 consisting of 555 and 253 Single Nucleotide Polymorphism (SNP markers respectively using a 12,000 rad whole genome RH panel. With these markers, the RH map of BTA19 and BTA29 extended to 4591.4 cR and 2884.1 cR in length respectively. When aligned with the current bovine build 3.1, the order of markers on the RH map for BTA19 and 29 showed inconsistencies with respect to the genome assembly. Maps of both the chromosomes show that there is a significant internal rearrangement of the markers involving displacement, inversion and flips within the scaffolds with some scaffolds being misplaced in the genome assembly. We also constructed cattle-human comparative maps of these chromosomes which showed an overall agreement with the comparative maps published previously. However, minor discrepancies in the orientation of few homologous synteny blocks were observed. Conclusion The high resolution maps of BTA19 (average 1 locus/139 kb and BTA29 (average 1 locus/208 kb presented in this study suggest that by the incorporation of RH mapping information, the current bovine genome sequence assembly can be significantly improved. Furthermore, these maps can serve as a potential resource for fine mapping QTL and identification of causative mutations underlying QTL for economically important traits.

  8. A high-resolution radiation hybrid map of the human genome draft sequence. (United States)

    Olivier, M; Aggarwal, A; Allen, J; Almendras, A A; Bajorek, E S; Beasley, E M; Brady, S D; Bushard, J M; Bustos, V I; Chu, A; Chung, T R; De Witte, A; Denys, M E; Dominguez, R; Fang, N Y; Foster, B D; Freudenberg, R W; Hadley, D; Hamilton, L R; Jeffrey, T J; Kelly, L; Lazzeroni, L; Levy, M R; Lewis, S C; Liu, X; Lopez, F J; Louie, B; Marquis, J P; Martinez, R A; Matsuura, M K; Misherghi, N S; Norton, J A; Olshen, A; Perkins, S M; Perou, A J; Piercy, C; Piercy, M; Qin, F; Reif, T; Sheppard, K; Shokoohi, V; Smick, G A; Sun, W L; Stewart, E A; Fernando, J; Tejeda; Tran, N M; Trejo, T; Vo, N T; Yan, S C; Zierten, D L; Zhao, S; Sachidanandam, R; Trask, B J; Myers, R M; Cox, D R


    We have constructed a physical map of the human genome by using a panel of 90 whole-genome radiation hybrids (the TNG panel) in conjunction with 40,322 sequence-tagged sites (STSs) derived from random genomic sequences as well as expressed sequences. Of 36,678 STSs on the TNG radiation hybrid map, only 3604 (9.8%) were absent from the unassembled draft sequence of the human genome. Of 20,030 STSs ordered on the TNG map as well as the assembled human genome draft sequence and the Celera assembled human genome sequence, 36% of the STSs had a discrepant order between the working draft sequence and the Celera sequence. The TNG map order was identical to one of the two sequence orders in 60% of these discrepant cases.

  9. High resolution MR angiography with rephasing and dephasing sequences for selective vascular imaging of arteries

    Energy Technology Data Exchange (ETDEWEB)

    Seiderer, M.; Laub, G.; Staebler, A.; Yousry, P.; Lauterjung, L.


    With rephasing and dephasing sequences the vascular system is imaged with high or low signal intensity whereas stationary tissue is imaged with identical signal intensity. With images recorded in systole and diastole followed by image subtraction separate imaging of arteries or veins without background superposition is possible. 13 patients with vascular lesions of the lower extremities and 7 volunteers were examined. Vascular stenosis, aneurysm, dilatation, occlusion and collateral vessels could be imaged similar to digital subtraction angiography. Vessels with a diameter down to 1 mm could be imaged. The large slice thickness up to 80 mm results in projection type images where the vascular tree is imaged over the whole field of view and without partial volume effects.

  10. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis.

    Directory of Open Access Journals (Sweden)

    Xue-Feng Ma

    Full Text Available We have created a high-resolution linkage map of Miscanthus sinensis, using genotyping-by-sequencing (GBS, identifying all 19 linkage groups for the first time. The result is technically significant since Miscanthus has a very large and highly heterozygous genome, but has no or limited genomics information to date. The composite linkage map containing markers from both parental linkage maps is composed of 3,745 SNP markers spanning 2,396 cM on 19 linkage groups with a 0.64 cM average resolution. Comparative genomics analyses of the M. sinensis composite linkage map to the genomes of sorghum, maize, rice, and Brachypodium distachyon indicate that sorghum has the closest syntenic relationship to Miscanthus compared to other species. The comparative results revealed that each pair of the 19 M. sinensis linkages aligned to one sorghum chromosome, except for LG8, which mapped to two sorghum chromosomes (4 and 7, presumably due to a chromosome fusion event after genome duplication. The data also revealed several other chromosome rearrangements relative to sorghum, including two telomere-centromere inversions of the sorghum syntenic chromosome 7 in LG8 of M. sinensis and two paracentric inversions of sorghum syntenic chromosome 4 in LG7 and LG8 of M. sinensis. The results clearly demonstrate, for the first time, that the diploid M. sinensis is tetraploid origin consisting of two sub-genomes. This complete and high resolution composite linkage map will not only serve as a useful resource for novel QTL discoveries, but also enable informed deployment of the wealth of existing genomics resources of other species to the improvement of Miscanthus as a high biomass energy crop. In addition, it has utility as a reference for genome sequence assembly for the forthcoming whole genome sequencing of the Miscanthus genus.

  11. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling. (United States)

    Irigoyen, Nerea; Firth, Andrew E; Jones, Joshua D; Chung, Betty Y-W; Siddell, Stuart G; Brierley, Ian


    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  12. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Directory of Open Access Journals (Sweden)

    Nerea Irigoyen


    Full Text Available Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV, are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59, a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the

  13. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    NARCIS (Netherlands)

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.


    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it po

  14. Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. (United States)

    Park, Hansoo; Kim, Jong-Il; Ju, Young Seok; Gokcumen, Omer; Mills, Ryan E; Kim, Sheehyun; Lee, Seungbok; Suh, Dongwhan; Hong, Dongwan; Kang, Hyunseok Peter; Yoo, Yun Joo; Shin, Jong-Yeon; Kim, Hyun-Jin; Yavartanoo, Maryam; Chang, Young Wha; Ha, Jung-Sook; Chong, Wilson; Hwang, Ga-Ram; Darvishi, Katayoon; Kim, Hyeran; Yang, Song Ju; Yang, Kap-Seok; Kim, Hyungtae; Hurles, Matthew E; Scherer, Stephen W; Carter, Nigel P; Tyler-Smith, Chris; Lee, Charles; Seo, Jeong-Sun


    Copy number variants (CNVs) account for the majority of human genomic diversity in terms of base coverage. Here, we have developed and applied a new method to combine high-resolution array comparative genomic hybridization (CGH) data with whole-genome DNA sequencing data to obtain a comprehensive catalog of common CNVs in Asian individuals. The genomes of 30 individuals from three Asian populations (Korean, Chinese and Japanese) were interrogated with an ultra-high-resolution array CGH platform containing 24 million probes. Whole-genome sequencing data from a reference genome (NA10851, with 28.3x coverage) and two Asian genomes (AK1, with 27.8x coverage and AK2, with 32.0x coverage) were used to transform the relative copy number information obtained from array CGH experiments into absolute copy number values. We discovered 5,177 CNVs, of which 3,547 were putative Asian-specific CNVs. These common CNVs in Asian populations will be a useful resource for subsequent genetic studies in these populations, and the new method of calling absolute CNVs will be essential for applying CNV data to personalized medicine.

  15. Core Genome Multilocus Sequence Typing Scheme for High-resolution Typing of Enterococcus faecium

    DEFF Research Database (Denmark)

    de Been, Mark; Pinholt, Mette; Top, Janetta


    Enterococcus faecium, a common inhabitant of the human gut, has emerged as an important multidrug-resistant nosocomial pathogen in the last two decades. Since the start of the 21(st) century, multi-locus sequence typing (MLST) has been used to study the molecular epidemiology of E. faecium. However...

  16. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. (United States)

    Adachi, Kei; Enoki, Tatsuji; Kawano, Yasuhiro; Veraz, Michael; Nakai, Hiroyuki


    Adeno-associated virus (AAV) capsid engineering is an emerging approach to advance gene therapy. However, a systematic analysis on how each capsid amino acid contributes to multiple functions remains challenging. Here we show proof-of-principle and successful application of a novel approach, termed AAV Barcode-Seq, that allows us to characterize phenotypes of hundreds of different AAV strains in a high-throughput manner and therefore overcomes technical difficulties in the systematic analysis. In this approach, we generate DNA barcode-tagged AAV libraries and determine a spectrum of phenotypes of each AAV strain by Illumina barcode sequencing. By applying this method to AAV capsid mutant libraries tagged with DNA barcodes, we can draw a high-resolution map of AAV capsid amino acids important for the structural integrity and functions including receptor binding, tropism, neutralization and blood clearance. Thus, Barcode-Seq provides a new tool to generate a valuable resource for virus and gene therapy research.

  17. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome

    DEFF Research Database (Denmark)

    Zhang, Guojie; Guo, Guangwu; Hu, Xueda


    present the first transcriptome atlas for eight organs of cultivated rice. Using high-throughput paired-end RNA-seq, we unambiguously detected transcripts expressing at an extremely low level, as well as a substantial number of novel transcripts, exons, and untranslated regions. An analysis of alternative...... fusion events are more common than expected. In-depth analysis revealed a multitude of fusion transcripts that might be by-products of alternative splicing. Validation and chimeric transcript structural analysis provided evidence that some of these transcripts are likely to be functional in the cell...

  18. HLA-A Gene Polymorphism Defined by High-Resolution Sequence Based Typing in 161 Northern Chinese Han People

    Institute of Scientific and Technical Information of China (English)

    Chunxia Yan; Haiyan Sun; Xiuqing Zhang; Jian Wang; Huanming Yang; Shengbin Li; Ruilin Wang; Jingxiang Li; Yajun Deng; Dongying Wu; Hongbo Zhang; Hongxing Zhang; Lidong Wang; Chunrong Zhang


    Human leukocyte antigen (HLA) system is the most polymorphic region known in the human genome. In the present study, we analyzed for the first time the HLA-A gene polymorphisms defined by the high-resolution typing methods--sequence-based typing (SBT) in 161 Northern Chinese Han people. A total of 74 different HLA-A gene types and 36 alleles were detected. The most frequent alleles were A*110101 (GF=0.2360), A*24020101 (GF=0.1646), and A*020101 (GF=0.1553); followed by A*3303 (GF=0.1180), A*3001 (GF=0.0590),and A*310102 (GF=0.0404). The frequencies of following alleles, A*0203, A*0205,A*0206, A*0207, A*030101, A*2423, A*2601, A*3201, and A*3301, are all higher than 0.0093. The homozygous alleles include A*020101, A*110101, A*24020101 and A*310102. Heterozygosity (H), polymorphism information content (PIC), discrimination power (DP) and probability of paternity exclusion (PPE) of HLA-A in the samples were calculated and their values were 0.8705, 0.8491, 0.6014, and 0.9475, respectively. These results by SBT analysis of HLA-A polymorphism in Northern Chinese Han population, especially the allele subtypes character, will be of great interest for clinical transplantation, disease-associated study and forensic identification. Implementation of high-resolution typing methods allows a significantly wider spectrum of HLA variation including rare alleles. This spectrum will further be extensively utilized in many fields.

  19. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan (United States)

    Farrell, K. M.


    This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution

  20. Rapid identification of bovine mastitis pathogens by high-resolution melt analysis of 16S rDNA sequences. (United States)

    Ajitkumar, Praseeda; Barkema, Herman W; De Buck, Jeroen


    Accurate identification of mastitis pathogens is often compromised when using conventional culture-based methods. Here, we report a novel, rapid assay tested for speciation of bacterial mastitis pathogens using high-resolution melt analysis (HRMA) of 16S rDNA sequences. Real-time PCR amplification of 16S rRNA gene fragment, spanning the variable region V5 and V6 was performed with a resulting amplicon of 290bp. First, a library was generated of melt curves of 9 common pathogens that are implicated in bovine mastitis. Six of the isolates, Escherichia coli, Streptococcus agalactiae, Klebsiella pneumoniae, Streptococcus uberis, Staphylococcus aureus and Mycoplasma bovis, were type strains while the other 3, Arcanobacterium pyogenes, Corynebacterium bovis and Streptococcus dysgalactiae, were bovine mastitis field isolates. Four of the type strains, E. coli, S. agalactiae, K. pneumoniae and S. aureus, were found to be of human origin, while the other 3 type strains were isolated from bovine infections. Secondly, the melt curves and corresponding amplicon sequences of A. pyogenes, E. coli, S. agalactiae, S. dysgalactiae, K. pneumoniae, S. uberis and S. aureus were compared with 10 bovine mastitis field isolates of each pathogen. Based on the distinct differences in melt curves and sequences between human and bovine isolates of E. coli and K. pneumoniae, it was deemed necessary to select a set of bovine strains for these pathogens to be used as reference strains in the HRMA. Next, the HRMA was validated by three interpreters analyzing the differential clustering pattern of melt curves of 60 bacterial cultures obtained from mastitis milk samples. The three test interpreters were blinded to the culture and sequencing results of the isolates. Overall accuracy of the validation assay was 95% as there was difficulty in identifying the streptococci due to heterogeneity observed in the PCR amplicons of S. uberis. The present study revealed that broad-range real-time PCR with


    Institute of Scientific and Technical Information of China (English)

    吴时国; 黄孝健


    Seismic stratigraphic analysis of 150 km of high-resolution seismic profiles (G E OPULSE and 3.5 kHz) obtained along the muddy coast off Taishan, Guangdong pr ovided valuable information on the offshore Quaternary stratigraphy, tectonics, sedimentary evol ution, and environmental and engineering geology of this area.The following late Quaternary stratigraphic sequences were mapped. (1) Pleistoce ne alluvial silty sand and shallow marine clay; (2) coarse fluvial channel sand; (3 ) nearshore and bay clayey sediments. The incision of fluvial channels occurred in two stages: duri ng the Late Pleistocene and at the beginning of the Holocene. The Pleistocene fluvial channe ls have been filled by coarse sand overlain by more than 10 m of late Pleistocene clay and 20-30 m o f Holocene clay.The coastal area is dissected by two major fault systems: the first group strike s ENE-WSW and controls the evolution of the adjacent Quaternary basin, while the second one tr ends NNE-SSW. These fault systems must be taken into account in any coastal engineering consid erations. In addition, both granitic and metamorphic basements were recognized.

  2. High-Resolution Analysis by Whole-Genome Sequencing of an International Lineage (Sequence Type 111) of Pseudomonas aeruginosa Associated with Metallo-Carbapenemases in the United Kingdom. (United States)

    Turton, Jane F; Wright, Laura; Underwood, Anthony; Witney, Adam A; Chan, Yuen-Ting; Al-Shahib, Ali; Arnold, Catherine; Doumith, Michel; Patel, Bharat; Planche, Timothy D; Green, Jonathan; Holliman, Richard; Woodford, Neil


    Whole-genome sequencing (WGS) was carried out on 87 isolates of sequence type 111 (ST-111) of Pseudomonas aeruginosa collected between 2005 and 2014 from 65 patients and 12 environmental isolates from 24 hospital laboratories across the United Kingdom on an Illumina HiSeq instrument. Most isolates (73) carried VIM-2, but others carried IMP-1 or IMP-13 (5) or NDM-1 (1); one isolate had VIM-2 and IMP-18, and 7 carried no metallo-beta-lactamase (MBL) gene. Single nucleotide polymorphism analysis divided the isolates into distinct clusters; the NDM-1 isolate was an outlier, and the IMP isolates and 6/7 MBL-negative isolates clustered separately from the main set of 73 VIM-2 isolates. Within the VIM-2 set, there were at least 3 distinct clusters, including a tightly clustered set of isolates from 3 hospital laboratories consistent with an outbreak from a single introduction that was quickly brought under control and a much broader set dominated by isolates from a long-running outbreak in a London hospital likely seeded from an environmental source, requiring different control measures; isolates from 7 other hospital laboratories in London and southeast England were also included. Bayesian evolutionary analysis indicated that all the isolates shared a common ancestor dating back ∼50 years (1960s), with the main VIM-2 set separating approximately 20 to 30 years ago. Accessory gene profiling revealed blocks of genes associated with particular clusters, with some having high similarity (≥95%) to bacteriophage genes. WGS of widely found international lineages such as ST-111 provides the necessary resolution to inform epidemiological investigations and intervention policies.

  3. Identification of submicroscopic genetic changes and precise breakpoint mapping in myelofibrosis using high resolution mate-pair sequencing. (United States)

    Lasho, Terra; Johnson, Sarah H; Smith, David I; Crispino, John D; Pardanani, Animesh; Vasmatzis, George; Tefferi, Ayalew


    We used high resolution mate-pair sequencing (HRMPS) in 15 patients with primary myelofibrosis (PMF): eight with normal karyotype and seven with PMF-characteristic cytogenetic abnormalities, including der(6)t(1;6)(q21-23;p21.3) (n = 4), der(7)t(1;7)(q10;p10) (n = 2), del(20)(q11.2q13.3) (n = 3), and complex karyotype (n = 1). We describe seven novel deletions/translocations in five patients (including two with normal karyotype) whose breakpoints were PCR-validated and involved MACROD2, CACNA2D4, TET2, SGMS2, LRBA, SH3D19, INTS3, FOP (CHTOP), SCLT1, and PHF17. Deletions with breakpoints involving MACROD2 (lysine deacetylase; 20p12.1) were recurrent and found in two of the 15 study patients. A novel fusion transcript was found in one of the study patients (INTS3-CHTOP), and also in an additional non-study patient with PMF. In two patients with der(6)t(1;6)(q21-23;p21.3), we were able to map the precise translocation breakpoints, which involved KCNN3 and GUSBP2 in one case and HYDIN2 in another. This study demonstrates the utility of HRMPS in uncovering submicroscopic deletions/translocations/fusions, and precise mapping of breakpoints in those with overt cytogenetic abnormalities. The overall results confirm the genetic heterogeneity of PMF, given the low frequency of recurrent specific abnormalities, identified by this screening strategy. Currently, we are pursuing the pathogenetic relevance of some of the aforementioned findings.

  4. Obscured Star-Formation in Merging Galaxies: High Resolution Radio Imaging of a Time-Ordered Sequence (United States)

    Neff, S. G.; Campion, S. D.; Ulvestad, J. S.


    We present new, deep, high resolution 6cm and 4cm radio continuum images of the central regions of a time-ordered sequence of seven large galaxy mergers. The radio observations are able to detect star-forming re- gions that are completely obscured at optical wavelengths. In all systems, we detect numerous compact radio sources embedded in more diffuse ra- dio emission, with limiting luminosities of approx. 1-5 x 10(exp l8) W Hz or approx. 1-5 times the luminosity of Cas A. Many of the compact radio sources are loosely associated with active starforming regions but not with specific optical or W emission sources. Several of the compact radio sources are coincident with Ultra-luminous X-ray objects (ULX's). In most systems, we are able to measure reliable spectral indices for the stronger sources. We find that the fraction of compact radio cources with nominally flat radio spectral indices (indicating they ae dominated by thermal radio emission from HII regions) decreases with merger age, while the fraction of sources with nonimally steep spectral indices (indicating they are dominated by nonthermal emission from supernova remnants) increases. For the flat-spectrum sources, we estimate the numbers of young massive stars, associated ionized gas masses, we estimate supernova rates and required star-formation rates, We compare these results with those from other well-studied merging galaxy systems and from other determinations of star-formation rates. We gratefully acknowledge use of the NRAO Very Large Array (VLA) and the VLA Archive. NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  5. HLA-DRB1, -DRB3, -DRB4 and -DRB5 genotyping at a super-high resolution level by long range PCR and high-throughput sequencing. (United States)

    Ozaki, Y; Suzuki, S; Shigenari, A; Okudaira, Y; Kikkawa, E; Oka, A; Ota, M; Mitsunaga, S; Kulski, J K; Inoko, H; Shiina, T


    Super high-resolution single molecule sequence-based typing (SS-SBT) is a human leukocyte antigen (HLA) DNA typing method to the field 4 level of allelic resolution (formerly known as eight-digit typing) to efficiently detect new and null alleles without phase ambiguity by combination of long ranged polymerase chain reaction (PCR) amplification and next-generation sequencing (NGS) technologies. We previously reported the development and application of the SS-SBT method for the eight classical HLA loci, A, B, C, DRB1, DQA1, DQB1, DPA1 and DPB1. In this article, we describe the development of the SS-SBT method for three DRB1 linked loci, DRB3, DRB4 and DRB5 (DRB3/4/5) and characterization of DRB1-DRB3/4/5 haplotype structures to the field 4 level. Locus specific PCR primers for DRB3/4/5 were designed to amplify the gene regions from intron 1 to exon 6 [3' untranslated region (3'UTR)]. In total 20 DRB1 and 13 DRB3/4/5 allele sequences were determined by the SS-SBT to the field 4 level without phase ambiguity using 19 DR51, DR52 and DR53 positive genomic DNA samples obtained from Japanese. Moreover, 18 DRB1-DRB3/4/5 haplotypes were estimated to the field 4 level by the SS-SBT method in contrast to 10 haplotypes estimated by conventional methods to the field 1 level (formerly known as two digit typing). Therefore, DRB1-DRB3/4/5 haplotyping by SS-SBT is expected to provide informative data for improved HLA matching in medical research, transplantation procedures, HLA-related disease studies and human population diversity studies.

  6. MRI of the wrist: Comparison of high resolution pulse sequences and different fat-suppression techniques; Magnetresonanztomographie des Handgelenks - Vergleich hochaufloesender Pulssequenzen und unterschiedlicher Fettsignalunterdrueckungen an Leichenpraeparaten

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, A.; Spieker, A.; Bonel, H.; Glaser, C.; Reiser, M. [Klinikum Grosshadern, Muenchen (Germany). Inst. fuer Radiologische Diagnostik; Schrank, C.; Putz, R. [Muenchen Univ. (Germany). Anatomische Anstalt; Petsch, R. [Siemens AG, Erlangen (Germany). Unternehmensbereich Medizinische Technik


    Purpose: To evaluate high resolution sequences with and without fat-suppression techniques for MR imaging of the wrist. Results: The highest homogeneity and the least artifacts were achieved by the T{sub 1}-w SE sequence. For the STIR and PD-FS TSE sequence high rankings were found for the detection of free water. The PD FS sequence had high ranking also for visualization of the SL ligament and the triangular fibrocartilage. The best sequence for the assessment of hyaline cartilage was the FLASH-FS sequence. For detailed analysis of bony structures the CISS sequence performed best. Conclusion: The isolated use of a PD-FS-TSE sequence enables for evaluation of all clinically relevant structures at the wrist. Dedicated questions for hyaline cartilage are answered best by the use of a FLASH 3D-FS sequence. Selective water excitation reduces acquisition time to 60%, nevertheless FS sequences are still diagnostically superior to WE sequences. (orig./AJ) [German] Ziel: Beurteilung der Wertigkeit hochaufloesender MRT-Sequenzen ohne und mit Fettsignalunterdrueckung (FS) und selektiver Wasseranregung (WE) fuer Untersuchungen des Handgelenkes. Ergebnisse: SE-T{sub 1} zeigte die hoechste Signalhomogenitaet bei geringsten Artefakten. Die STIR und PD FS-Sequenz stellten Signal von freiem Wasser am besten dar. Die beste Knorpeldarstellung erreicht die FLASH 3D-FS-Sequenz. Die Kortikalis und die Spongiosa konnten am besten mit der CISS-Sequenz beurteilt werden. Die FS-Sequenzen waren den WE-Sequenzen diagnostisch ueberlegen. Schlussfolgerungen: Mit der PD FS TSE-Sequenz mit verlaengerter Echozeit ist eine gute Beurteilung aller klinisch wichtigen Strukturen moeglich. Die beste Darstellung des hyalinen Knorpels wird mit der FLASH-3D-FS-, des Knochens mit der CISS-Sequenz erreicht. Die selektive Wasseranregung bei FLASH- und DESS-Sequenzen reduziert die Aufnahmezeit, ohne die diagnostische Aussagekraft der FS-Sequenzen zu erreichen. (orig./AJ)

  7. A strand specific high resolution normalization method for chip-sequencing data employing multiple experimental control measurements

    DEFF Research Database (Denmark)

    Enroth, Stefan; Andersson, Claes; Andersson, Robin;


    High-throughput sequencing is becoming the standard tool for investigating protein-DNA interactions or epigenetic modifications. However, the data generated will always contain noise due to e.g. repetitive regions or non-specific antibody interactions. The noise will appear in the form of a backg......High-throughput sequencing is becoming the standard tool for investigating protein-DNA interactions or epigenetic modifications. However, the data generated will always contain noise due to e.g. repetitive regions or non-specific antibody interactions. The noise will appear in the form......, the background is only used to adjust peak calling and not as a pre-processing step that aims at discerning the signal from the background noise. A normalization procedure that extracts the signal of interest would be of universal use when investigating genomic patterns....

  8. A strand specific high resolution normalization method for chip-sequencing data employing multiple experimental control measurements

    DEFF Research Database (Denmark)

    Enroth, Stefan; Andersson, Claes; Andersson, Robin


    High-throughput sequencing is becoming the standard tool for investigating protein-DNA interactions or epigenetic modifications. However, the data generated will always contain noise due to e.g. repetitive regions or non-specific antibody interactions. The noise will appear in the form of a backg......, the background is only used to adjust peak calling and not as a pre-processing step that aims at discerning the signal from the background noise. A normalization procedure that extracts the signal of interest would be of universal use when investigating genomic patterns.......High-throughput sequencing is becoming the standard tool for investigating protein-DNA interactions or epigenetic modifications. However, the data generated will always contain noise due to e.g. repetitive regions or non-specific antibody interactions. The noise will appear in the form...

  9. High-resolution Imaging of PHIBSS z ˜ 2 Main-sequence Galaxies in CO J = 1 → 0 (United States)

    Bolatto, A. D.; Warren, S. R.; Leroy, A. K.; Tacconi, L. J.; Bouché, N.; Förster Schreiber, N. M.; Genzel, R.; Cooper, M. C.; Fisher, D. B.; Combes, F.; García-Burillo, S.; Burkert, A.; Bournaud, F.; Weiss, A.; Saintonge, A.; Wuyts, S.; Sternberg, A.


    We present Karl Jansky Very Large Array observations of the CO J=1-0 transition in a sample of four z˜ 2 main-sequence galaxies. These galaxies are in the blue sequence of star-forming galaxies at their redshift, and are part of the IRAM Plateau de Bure HIgh-z Blue Sequence Survey which imaged them in CO J=3-2. Two galaxies are imaged here at high signal-to-noise, allowing determinations of their disk sizes, line profiles, molecular surface densities, and excitation. Using these and published measurements, we show that the CO and optical disks have similar sizes in main-sequence galaxies, and in the galaxy where we can compare CO J=1-0 and J=3-2 sizes we find these are also very similar. Assuming a Galactic CO-to-H2 conversion, we measure surface densities of {{{Σ }}}{mol}˜ 1200 {M}⊙ pc-2 in projection and estimate {{{Σ }}}{mol}˜ 500-900 {M}⊙ pc-2 deprojected. Finally, our data yields velocity-integrated Rayleigh-Jeans brightness temperature line ratios r31 that are approximately at unity. In addition to the similar disk sizes, the very similar line profiles in J=1-0 and J=3-2 indicate that both transitions sample the same kinematics, implying that their emission is coextensive. We conclude that in these two main-sequence galaxies there is no evidence for significant excitation gradients or a large molecular reservoir that is diffuse or cold and not involved in active star formation. We suggest that r31 in very actively star-forming galaxies is likely an indicator of how well-mixed the star formation activity and the molecular reservoir are.

  10. The feasibility of using high resolution genome sequencing of influenza A viruses to detect mixed infections and quasispecies.

    Directory of Open Access Journals (Sweden)

    Muthannan A Ramakrishnan

    Full Text Available BACKGROUND: The rapidly expanding availability of de novo sequencing technologies can greatly facilitate efforts to monitor the relatively high mutation rates of influenza A viruses and the detection of quasispecies. Both the mutation rates and the lineages of influenza A viruses are likely to play an important role in the natural history of these viruses and the emergence of phenotypically and antigenically distinct strains. METHODOLOGY AND PRINCIPAL FINDINGS: We evaluated quasispecies and mixed infections by de novo sequencing the whole genomes of 10 virus isolates, including eight avian influenza viruses grown in embryonated chicken eggs (six waterfowl isolates - five H3N2 and one H4N6; an H7N3 turkey isolate; and a bald eagle isolate with H1N1/H2N1 mixed infection, and two tissue cultured H3N2 swine influenza viruses. Two waterfowl cloacal swabs were included in the analysis. Full-length sequences of all segments were obtained with 20 to 787-X coverage for the ten viruses and one cloacal swab. The second cloacal swab yielded 15 influenza reads of approximately 230 bases, sufficient for bioinformatic inference of mixed infections or quasispecies. Genomic subpopulations or quasispecies of viruses were identified in four egg grown avian influenza isolates and one cell cultured swine virus. A bald eagle isolate and the second cloacal swab showed evidence of mixed infections with two (H1 and H2 and three (H1, H3, and H4 HA subtypes, respectively. Multiple sequence differences were identified between cloacal swab and the virus recovered using embryonated chicken eggs. CONCLUSIONS: We describe a new approach to comprehensively identify mixed infections and quasispecies in low passage influenza A isolates and cloacal swabs and add to the understanding of the ecology of influenza A virus populations.

  11. High Resolution Elevation Contours (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  12. Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis. (United States)

    Lappin, Fiona M; Shaw, Rebecca L; Macqueen, Daniel J


    High-throughput sequencing has revolutionised comparative and evolutionary genome biology. It has now become relatively commonplace to generate multiple genomes and/or transcriptomes to characterize the evolution of large taxonomic groups of interest. Nevertheless, such efforts may be unsuited to some research questions or remain beyond the scope of some research groups. Here we show that targeted high-throughput sequencing offers a viable alternative to study genome evolution across a vertebrate family of great scientific interest. Specifically, we exploited sequence capture and Illumina sequencing to characterize the evolution of key components from the insulin-like growth (IGF) signalling axis of salmonid fish at unprecedented phylogenetic resolution. The IGF axis represents a central governor of vertebrate growth and its core components were expanded by whole genome duplication in the salmonid ancestor ~95Ma. Using RNA baits synthesised to genes encoding the complete family of IGF binding proteins (IGFBP) and an IGF hormone (IGF2), we captured, sequenced and assembled orthologous and paralogous exons from species representing all ten salmonid genera. This approach generated 299 novel sequences, most as complete or near-complete protein-coding sequences. Phylogenetic analyses confirmed congruent evolutionary histories for all nineteen recognized salmonid IGFBP family members and identified novel salmonid-specific IGF2 paralogues. Moreover, we reconstructed the evolution of duplicated IGF axis paralogues across a replete salmonid phylogeny, revealing complex historic selection regimes - both ancestral to salmonids and lineage-restricted - that frequently involved asymmetric paralogue divergence under positive and/or relaxed purifying selection. Our findings add to an emerging literature highlighting diverse applications for targeted sequencing in comparative-evolutionary genomics. We also set out a viable approach to obtain large sets of nuclear genes for any

  13. Development and Characterization of Simple Sequence Repeat Markers Providing Genome-Wide Coverage and High Resolution in Maize (United States)

    Xu, Jie; Liu, Ling; Xu, Yunbi; Chen, Churun; Rong, Tingzhao; Ali, Farhan; Zhou, Shufeng; Wu, Fengkai; Liu, Yaxi; Wang, Jing; Cao, Moju; Lu, Yanli


    Simple sequence repeats (SSRs) have been widely used in maize genetics and breeding, because they are co-dominant, easy to score, and highly abundant. In this study, we used whole-genome sequences from 16 maize inbreds and 1 wild relative to determine SSR abundance and to develop a set of high-density polymorphic SSR markers. A total of 264 658 SSRs were identified across the 17 genomes, with an average of 135 693 SSRs per genome. Marker density was one SSR every of 15.48 kb. (C/G)n, (AT)n, (CAG/CTG)n, and (AAAT/ATTT)n were the most frequent motifs for mono, di-, tri-, and tetra-nucleotide SSRs, respectively. SSRs were most abundant in intergenic region and least frequent in untranslated regions, as revealed by comparing SSR distributions of three representative resequenced genomes. Comparing SSR sequences and e-polymerase chain reaction analysis among the 17 tested genomes created a new database, including 111 887 SSRs, that could be develop as polymorphic markers in silico. Among these markers, 58.00, 26.09, 7.20, 3.00, 3.93, and 1.78% of them had mono, di-, tri-, tetra-, penta-, and hexa-nucleotide motifs, respectively. Polymorphic information content for 35 573 polymorphic SSRs out of 111 887 loci varied from 0.05 to 0.83, with an average of 0.31 in the 17 tested genomes. Experimental validation of polymorphic SSR markers showed that over 70% of the primer pairs could generate the target bands with length polymorphism, and these markers would be very powerful when they are used for genetic populations derived from various types of maize germplasms that were sampled for this study. PMID:23804557

  14. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.


    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  15. Swine Leukocyte Antigen (SLA) class I allele typing of Danish swine herds and the identification of commonly expressed haplotypes using sequence specific low- and high resolution primers

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Fink, Dorte Rosenbek; Jungersen, Gregers

    The genomic region (SLA) of the swine major histocompatibility complex (MHC), which bind and present endogenous peptides to circulating T cells of the immune system, is extremely polymorphic comprising high numbers of different alleles, many of which encode a distinct MHC class I molecule. Each SLA...... individual. Therefore analyses of the prevalence of SLA alleles in a population are fundamental to employ pathogen-specific subunits or peptides in novel vaccines or immune diagnostics. In this study we present the use of low- and high-resolution PCR-based typing methods to identify individual and commonly...... expressed SLA class I alleles in Danish outbred swine. A total of 108 animals from eight different production herds were tested, and with low resolution sequence specific primer (SSP)-PCR typing the top five most commonly expressed SLA class I allele groups were found to be SLA-3*04XX, SLA-1*08XX, SLA-1...

  16. Resolution enhancement of color video sequences. (United States)

    Shah, N R; Zakhor, A


    We propose a new multiframe algorithm to enhance the spatial resolution of frames in video sequences. Our technique specifically accounts for the possibility that motion estimation will be inaccurate and compensates for these inaccuracies. Experiments show that our multiframe enhancement algorithm yields perceptibly sharper enhanced images with significant signal-to-noise ratio (SNR) improvement over bilinear and cubic B-spline interpolation.

  17. Facies architecture and high-resolution sequence stratigraphy of an Upper Cretaceous platform margin succession, southern central Pyrenees, Spain (United States)

    Pomar, Luis; Gili, Eulalia; Obrador, Antonio; Ward, William C.


    Excellent exposures of Upper Cretaceous (Santonian) carbonate platforms on the northern flank of Sant Corneli anticline (southern central Pyrenees) provide detailed information of facies architecture in both depositional strike and dip directions. Basic accretional units are differentiated by facies contrast across mappable surfaces. These surfaces do not show clear evidence of subaerial erosion and are correlated basinward with bedding planes across which there are subtle changes in skeletal composition. Two types of basic accretional units have been identified based on bedding patterns, internal facies architecture and skeletal composition: (1) Rudist buildups consist of a rudist and coral belt at the platform margin, passing landward into a slender-hippuritid lithosome, locally overlain by a bioclastic blanket that passes basinward, into bioclastic "apron-like" clinobeds and into fine-grained packstone/wackestone. (2) Calcarenite wedges consist of yellow-brown, benthic-foraminifer-rich grainstones to grain-dominated packstones, with scattered rudist shells and small coral colonies, passing basinward into mud-dominated packstones to wackestones, with variable siliciclastic content (quartz sand to silt and clay). Rudist buildups and calcarenite wedges alternate, although not rhythmically. These changes in platform skeletal composition reflect changes in the dominant type of carbonate-producing biota independently of the changes in accommodation. Both types of basic accretional units: rudist buildups and calcarenite wedges, form simple sequences and parasequences according to internal lithofacies arrangement and inferred sea-level cyclicity (cycles or paracycles). High-frequency sea-level cyclicity fits in the Milankovitch frequency band. Long-term changes in accommodation governing aggradation, progradation and backstepping of basic sequences and parasequences reflect tectonic influence rather than long-term changes in eustatic sea level.

  18. A method to determine fault vectors in 4H-SiC from stacking sequences observed on high resolution transmission electron microscopy images

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fangzhen; Wang, Huanhuan; Raghothamachar, Balaji; Dudley, Michael, E-mail: [Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11790 (United States); Mueller, Stephan G.; Chung, Gil; Sanchez, Edward K.; Hansen, Darren; Loboda, Mark J. [Dow Corning Compound Semiconductor Solutions, Midland, Michigan 48686 (United States); Zhang, Lihua; Su, Dong; Kisslinger, Kim; Stach, Eric [Center for Functional Materials, Brookhaven National Laboratory, Upton, New York 11973 (United States)


    A new method has been developed to determine the fault vectors associated with stacking faults in 4H-SiC from their stacking sequences observed on high resolution TEM images. This method, analogous to the Burgers circuit technique for determination of dislocation Burgers vector, involves determination of the vectors required in the projection of the perfect lattice to correct the deviated path constructed in the faulted material. Results for several different stacking faults were compared with fault vectors determined from X-ray topographic contrast analysis and were found to be consistent. This technique is expected to applicable to all structures comprising corner shared tetrahedra.

  19. Application of the High Resolution Melting analysis for genetic mapping of Sequence Tagged Site markers in narrow-leafed lupin (Lupinus angustifolius L.). (United States)

    Kamel, Katarzyna A; Kroc, Magdalena; Święcicki, Wojciech


    Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.

  20. High-resolution headlamp (United States)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius


    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  1. ‘‘Blind'' mapping of genic DNA sequence polymorphisms in Lolium perenne L. by high resolution melting curve analysis

    DEFF Research Database (Denmark)

    Studer, Bruno; Jensen, Louise Bach; Fiil, Alice;


    in vernalization response successfully discriminated genotypes in absence of allelic sequence information, and allowed to determine allele segregation in VrnA. Here we introduce the concept of "blind" mapping based on HRM as a powerful, fast and cheap method to map any DNA sequence polymorphisms without prior...... curves. In this study, HRM was used for simultaneous screening and genotyping of genic DNA sequence polymorphisms identified in the Lolium perenne F2 mapping population VrnA. Melting profiles of PCR products amplified from previously published gene loci and from a novel gene putatively involved...

  2. High-Resolution Hepatitis C Virus Subtyping Using NS5B Deep Sequencing and Phylogeny, an Alternative to Current Methods (United States)

    Gregori, Josep; Rodríguez-Frias, Francisco; Buti, Maria; Madejon, Antonio; Perez-del-Pulgar, Sofia; Garcia-Cehic, Damir; Casillas, Rosario; Blasi, Maria; Homs, Maria; Tabernero, David; Alvarez-Tejado, Miguel; Muñoz, Jose Manuel; Cubero, Maria; Caballero, Andrea; delCampo, Jose Antonio; Domingo, Esteban; Belmonte, Irene; Nieto, Leonardo; Lens, Sabela; Muñoz-de-Rueda, Paloma; Sanz-Cameno, Paloma; Sauleda, Silvia; Bes, Marta; Gomez, Jordi; Briones, Carlos; Perales, Celia; Sheldon, Julie; Castells, Lluis; Viladomiu, Lluis; Salmeron, Javier; Ruiz-Extremera, Angela; Quiles-Pérez, Rosa; Moreno-Otero, Ricardo; López-Rodríguez, Rosario; Allende, Helena; Romero-Gómez, Manuel; Guardia, Jaume; Esteban, Rafael; Garcia-Samaniego, Javier; Forns, Xavier


    Hepatitis C virus (HCV) is classified into seven major genotypes and 67 subtypes. Recent studies have shown that in HCV genotype 1-infected patients, response rates to regimens containing direct-acting antivirals (DAAs) are subtype dependent. Currently available genotyping methods have limited subtyping accuracy. We have evaluated the performance of a deep-sequencing-based HCV subtyping assay, developed for the 454/GS-Junior platform, in comparison with those of two commercial assays (Versant HCV genotype 2.0 and Abbott Real-time HCV Genotype II) and using direct NS5B sequencing as a gold standard (direct sequencing), in 114 clinical specimens previously tested by first-generation hybridization assay (82 genotype 1 and 32 with uninterpretable results). Phylogenetic analysis of deep-sequencing reads matched subtype 1 calling by population Sanger sequencing (69% 1b, 31% 1a) in 81 specimens and identified a mixed-subtype infection (1b/3a/1a) in one sample. Similarly, among the 32 previously indeterminate specimens, identical genotype and subtype results were obtained by direct and deep sequencing in all but four samples with dual infection. In contrast, both Versant HCV Genotype 2.0 and Abbott Real-time HCV Genotype II failed subtype 1 calling in 13 (16%) samples each and were unable to identify the HCV genotype and/or subtype in more than half of the non-genotype 1 samples. We concluded that deep sequencing is more efficient for HCV subtyping than currently available methods and allows qualitative identification of mixed infections and may be more helpful with respect to informing treatment strategies with new DAA-containing regimens across all HCV subtypes. PMID:25378574

  3. Qualitative Evaluation of a High-Resolution 3D Multi-Sequence Intracranial Vessel Wall Protocol at 3 Tesla MRI

    NARCIS (Netherlands)

    Dieleman, Nikki; Yang, Wenjie; van der Kolk, Anja G; Abrigo, Jill; Lee, Ka Lok; Chu, Winnie Chiu Wing; Zwanenburg, Jaco J M; Siero, Jeroen C. W.; Wong, Ka Sing; Hendrikse, Jeroen; Chen, Fiona Xiang Yan


    BACKGROUND AND PURPOSE: Intracranial vessel wall imaging using MRI has great potential as a clinical method for assessing intracranial atherosclerosis. The purpose of the current study was to compare three 3T MRI vessel wall sequences with different contrast weightings (T1w, PD, T2w) and dedicated s

  4. Preliminary validation of a novel high-resolution melt-based typing method based on the multilocus sequence typing scheme of Streptococcus pyogenes. (United States)

    Richardson, L J; Tong, S Y C; Towers, R J; Huygens, F; McGregor, K; Fagan, P K; Currie, B J; Carapetis, J R; Giffard, P M


    The major limitation of current typing methods for Streptococcus pyogenes, such as emm sequence typing and T typing, is that these are based on regions subject to considerable selective pressure. Multilocus sequence typing (MLST) is a better indicator of the genetic backbone of a strain but is not widely used due to high costs. The objective of this study was to develop a robust and cost-effective alternative to S. pyogenes MLST. A 10-member single nucleotide polymorphism (SNP) set that provides a Simpson's Index of Diversity (D) of 0.99 with respect to the S. pyogenes MLST database was derived. A typing format involving high-resolution melting (HRM) analysis of small fragments nucleated by each of the resolution-optimized SNPs was developed. The fragments were 59-119 bp in size and, based on differences in G+C content, were predicted to generate three to six resolvable HRM curves. The combination of curves across each of the 10 fragments can be used to generate a melt type (MelT) for each sequence type (ST). The 525 STs currently in the S. pyogenes MLST database are predicted to resolve into 298 distinct MelTs and the method is calculated to provide a D of 0.996 against the MLST database. The MelTs are concordant with the S. pyogenes population structure. To validate the method we examined clinical isolates of S. pyogenes of 70 STs. Curves were generated as predicted by G+C content discriminating the 70 STs into 65 distinct MelTs.

  5. High Resolution Acoustical Imaging (United States)


    1028 (September 1982). 26 G. Arfken , Mathematical Methods for Physicists (Academic Press, New York, 1971), 2nd printing, pp.662-666. 27 W. R. Hahn...difference in the approach used by the two methods , as noted in the previous paragraph, forming a direct mathematical com- parison may be impossible...examines high resolution methods which use a linear array to locate stationary objects which have scattered the fressure waves. Several;- new methods

  6. High resolution differential thermometer

    Directory of Open Access Journals (Sweden)

    Gotra Z. Yu.


    Full Text Available Main schematic solutions of differential thermometers with measurement resolution about 0.001°C are considered. Differential temperature primary transducer realized on a transistor differential circuit in microampere mode. Analytic calculation and schematic mathematic simulation of primary transducer are fulfilled. Signal transducer is realized on a high precision Zero-Drift Single-Supply Rail-to-Rail operation amplifier AD8552 and 24-Bit S-D microconverter ADuC834.

  7. High-resolution deep sequencing reveals biodiversity, population structure, and persistence of HIV-1 quasispecies within host ecosystems

    Directory of Open Access Journals (Sweden)

    Yin Li


    Full Text Available Abstract Background Deep sequencing provides the basis for analysis of biodiversity of taxonomically similar organisms in an environment. While extensively applied to microbiome studies, population genetics studies of viruses are limited. To define the scope of HIV-1 population biodiversity within infected individuals, a suite of phylogenetic and population genetic algorithms was applied to HIV-1 envelope hypervariable domain 3 (Env V3 within peripheral blood mononuclear cells from a group of perinatally HIV-1 subtype B infected, therapy-naïve children. Results Biodiversity of HIV-1 Env V3 quasispecies ranged from about 70 to 270 unique sequence clusters across individuals. Viral population structure was organized into a limited number of clusters that included the dominant variants combined with multiple clusters of low frequency variants. Next generation viral quasispecies evolved from low frequency variants at earlier time points through multiple non-synonymous changes in lineages within the evolutionary landscape. Minor V3 variants detected as long as four years after infection co-localized in phylogenetic reconstructions with early transmitting viruses or with subsequent plasma virus circulating two years later. Conclusions Deep sequencing defines HIV-1 population complexity and structure, reveals the ebb and flow of dominant and rare viral variants in the host ecosystem, and identifies an evolutionary record of low-frequency cell-associated viral V3 variants that persist for years. Bioinformatics pipeline developed for HIV-1 can be applied for biodiversity studies of virome populations in human, animal, or plant ecosystems.

  8. High-spatial-resolution three-dimensional MR cholangiography using a high-sampling-efficiency technique (SPACE) at 3T: comparison with the conventional constant flip angle sequence in healthy volunteers. (United States)

    Arizono, Shigeki; Isoda, Hiroyoshi; Maetani, Yoji S; Hirokawa, Yuusuke; Shimada, Kotaro; Nakamoto, Yuji; Togashi, Kaori


    To evaluate the image quality of high-spatial-resolution three-dimensional magnetic resonance cholangiography (MRC) with a high-sampling-efficiency technique (sampling perfection with application optimized contrasts using different flip angle evolutions [SPACE]) in comparison with a conventional constant flip angle (FA) sequence at 3T. Eighteen volunteers were examined on a 3T MR unit using MRC imaging performed with three different free-breathing three-dimensional T2-weighted turbo spin-echo (TSE) sequences: 1) SPACE (spatial resolution, 1.1x1.0x0.84 mm), 2) constant FA (1.1x1.0x0.84 mm), and 3) SPACE at a higher resolution (SPACE HR; 1.0x0.9x0.644 mm). A five-point scale was used to compare overall image quality and visualization of the third branches of the bile duct (B2, B6, and B8). Depictions of cystic duct insertion and the highest order of bile duct visible were also compared. MRC with SPACE and SPACE HR sequences produced significantly better overall image quality than the constant FA sequence. In all analyses of duct visibility, SPACE and SPACE HR sequences showed higher scores than the constant FA sequence. High-resolution three-dimensional MRC with SPACE at 3T allows high-quality imaging of the biliary tract, and has the ability to depict nondilated intrahepatic bile ducts (IHBD) in healthy volunteers. Copyright (c) 2008 Wiley-Liss, Inc.

  9. On the analysis of the high-resolution sequence stratigraphy and coal accumulating law of jurassic in Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    LI Zeng-xue; HAN Mei-lian; LI Jiang-tao; YU Ji-feng; L(U) Da-wei; LIU Han-feng


    The strata of Jurassic was divided into three tectonic sequences and eight se-quences of third rank, according to the developing feature of the tectonic inconformity and the transforming feature of the depositional system tracts. Also the identification and the division of the base-level cycle of different period were carded through. Therefore three cycles of super period, eight cycles of long period, twenty-four cycles of middle period and some cycles of short pedod were identified. From the overall character of the coal-accu-mulation in the Mesozoic, we can see that the Yan'an formation is of the best nature of coal bearing. When the coal bearing systems of Jurassic were depositing, the Ordos area is the coal accumulating basin of terrene of large scale and located in the same tectonic unit. But the local structure of different part and the paleolandform are different in the basin,which resulted in the difference of the depositional environment. So the layer number and the distribution of the thickness of the coal beds are different in the different part of the ba-sin. The coal-accumulating action migrated regularly along with the development, evolve-ment and migration of the depositional systems. The layer numbers of the coal beds,which can be mined, are more in the north and west fringe of the basin, whose distributing area is extensive, and they are more steady in the landscape orientation, also the total thickness is great. Therefore the nature of coal bearing and the coal-accumulating action of different part changed obviously in the space in Ordos area.

  10. Saturn's rings - high resolution (United States)


    Voyager 2 obtained this high-resolution picture of Saturn's rings Aug. 22, when the spacecraft was 4 million kilometers (2.5 million miles) away. Evident here are the numerous 'spoke' features, in the B-ring; their very sharp, narrow appearance suggests short formation times. Scientists think electromagnetic forces are responsible in some way for these features, but no detailed theory has been worked out. Pictures such as this and analyses of Voyager 2's spoke movies may reveal more clues about the origins of these complex structures. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  11. High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree.

    Directory of Open Access Journals (Sweden)

    Linnéa Smeds


    Full Text Available Recombination is an engine of genetic diversity and therefore constitutes a key process in evolutionary biology and genetics. While the outcome of crossover recombination can readily be detected as shuffled alleles by following the inheritance of markers in pedigreed families, the more precise location of both crossover and non-crossover recombination events has been difficult to pinpoint. As a consequence, we lack a detailed portrait of the recombination landscape for most organisms and knowledge on how this landscape impacts on sequence evolution at a local scale. To localize recombination events with high resolution in an avian system, we performed whole-genome re-sequencing at high coverage of a complete three-generation collared flycatcher pedigree. We identified 325 crossovers at a median resolution of 1.4 kb, with 86% of the events localized to <10 kb intervals. Observed crossover rates were in excellent agreement with data from linkage mapping, were 52% higher in male (3.56 cM/Mb than in female meiosis (2.28 cM/Mb, and increased towards chromosome ends in male but not female meiosis. Crossover events were non-randomly distributed in the genome with several distinct hot-spots and a concentration to genic regions, with the highest density in promoters and CpG islands. We further identified 267 non-crossovers, whose location was significantly associated with crossover locations. We detected a significant transmission bias (0.18 in favour of 'strong' (G, C over 'weak' (A, T alleles at non-crossover events, providing direct evidence for the process of GC-biased gene conversion in an avian system. The approach taken in this study should be applicable to any species and would thereby help to provide a more comprehensive portray of the recombination landscape across organism groups.

  12. High Resolution Laboratory Spectroscopy

    CERN Document Server

    Brünken, Sandra


    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limita...

  13. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. (United States)

    Szinay, Dóra; Chang, Song-Bin; Khrustaleva, Ludmila; Peters, Sander; Schijlen, Elio; Bai, Yuling; Stiekema, Willem J; van Ham, Roeland C H J; de Jong, Hans; Klein Lankhorst, René M


    Within the framework of the International Solanaceae Genome Project, the genome of tomato (Solanum lycopersicum) is currently being sequenced. We follow a 'BAC-by-BAC' approach that aims to deliver high-quality sequences of the euchromatin part of the tomato genome. BACs are selected from various libraries of the tomato genome on the basis of markers from the F2.2000 linkage map. Prior to sequencing, we validated the precise physical location of the selected BACs on the chromosomes by five-colour high-resolution fluorescent in situ hybridization (FISH) mapping. This paper describes the strategies and results of cytogenetic mapping for chromosome 6 using 75 seed BACs for FISH on pachytene complements. The cytogenetic map obtained showed discrepancies between the actual chromosomal positions of these BACs and their markers on the linkage group. These discrepancies were most notable in the pericentromere heterochromatin, thus confirming previously described suppression of cross-over recombination in that region. In a so called pooled-BAC FISH, we hybridized all seed BACs simultaneously and found a few large gaps in the euchromatin parts of the long arm that are still devoid of seed BACs and are too large for coverage by expanding BAC contigs. Combining FISH with pooled BACs and newly recruited seed BACs will thus aid in efficient targeting of novel seed BACs into these areas. Finally, we established the occurrence of repetitive DNA in heterochromatin/euchromatin borders by combining BAC FISH with hybridization of a labelled repetitive DNA fraction (Cot-100). This strategy provides an excellent means to establish the borders between euchromatin and heterochromatin in this chromosome.

  14. Bilateral mesial temporal sclerosis: MRI with high-resolution fast spin-echo and fluid-attenuated inversion-recovery sequences

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheim, C.; Dormont, D.; Lehericy, S.; Marsault, C. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France); Hasboun, D. [Dept. of Neuroradiology, Groupe Hospitalier Pite-Salpetriere, Paris (France)]|[Dept. of Neurology, Paris VI Univ. (France); Bazin, B.; Samson, S.; Baulac, M. [Dept. of Neurology, Paris VI Univ. (France)


    We report a retrospective analysis of MRI in 206 patients with intractable seizures and describe the findings in bilateral mesial temporal sclerosis (MTS) on fast spin-echo (FSE) and fast fluid-attenuated inversion-recovery (fFLAIR) sequences. Criteria for MTS were atrophy, signal change and loss of the digitations of the head of the hippocampus. In patients with bilateral MRI signs of MTS, correlation with clinical electro, volumetric MRI data and neuropsychological tests, when available, was performed. Bilateral MTS was observed in seven patients. Bilateral loss of the digitations and signal change of fFLAIR was seen in all seven. In three, bilateral atrophy was obvious. In two patients, mild bilateral atrophy was observed and in two others, the hippocampi were: asymmetrical, with obvious atrophy on only one side. Volumetric data confirmed bilateral symmetrical atrophy in five patients, and volumes were at the lowest of the normal range in other two. The EEG showed temporal abnormalities in all patients, unilateral in five and bilateral in two. All patients had memory impairment and neuropsychological data confirmed visual and verbal memory deficits; two patients failed the Wada test on both sides. High-resolution T2-weighted FSE and fFLAIR sequences allow diagnosis of bilateral MTS, which has important therapeutic and prognostic implications. (orig.)

  15. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew


    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  16. A High-Resolution Multiband Survey of Westerlund 2 With the Hubble Space Telescope. II. Mass accretion in the Pre-Main Sequence Population

    CERN Document Server

    Zeidler, Peter; Nota, Antonella; Sabbi, Elena; Pasquali, Anna; Tosi, Monica; Bonanos, Alceste Z; Christian, Carol


    We present a detailed analysis of the pre-main-sequence (PMS) population of the young star cluster Westerlund~2 (Wd2), the central ionizing cluster of the HII region RCW 49, using data from a high resolution multi-band survey with the Hubble Space Telescope. The data were acquired with the Advanced Camera for Surveys in the F555W, F814W, and F658N filters and with the Wide Field Camera 3 in the F125W, F160W, and F128N filters. We find a mean age of the region of 1.04+-0.72 Myr. The combination of dereddened F555W and F814W photometry in combination with F658N photometry allows us to study and identify stars with H_alpha excess emission. With a careful selection of 240 bona-fide PMS H_alpha excess emitters we were able to determine their H_alpha luminosity, which has a mean value L(H_alpha)=1.67 x 10^{-31} erg s^{-1}. Using the PARSEC 1.2S isochrones to obtain the stellar parameters of the PMS stars we determined a mean mass accretion rate \\dot M_acc=4.43 x 10^{-8} M_sun yr^{-1} per star. A careful analysis of...

  17. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6

    NARCIS (Netherlands)

    Szinay, D.; Chang, S.B.; Khrustaleva, L.I.; Peters, S.A.; Schijlen, E.G.W.M.; Bai, Y.; Stiekema, W.; Ham, van R.C.H.J.; Jong, de H.; Klein Lankhorst, R.M.


    Within the framework of the International Solanaceae Genome Project, the genome of tomato (Solanum lycopersicum) is currently being sequenced. We follow a 'BAC-by-BAC' approach that aims to deliver high-quality sequences of the euchromatin part of the tomato genome. BACs are selected from various li

  18. High Resolution Formaldehyde Photochemistry (United States)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.


    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  19. Identification of BRCA1/2 founder mutations in Southern Chinese breast cancer patients using gene sequencing and high resolution DNA melting analysis.

    Directory of Open Access Journals (Sweden)

    Ava Kwong

    Full Text Available BACKGROUND: Ethnic variations in breast cancer epidemiology and genetics have necessitated investigation of the spectra of BRCA1 and BRCA2 mutations in different populations. Knowledge of BRCA mutations in Chinese populations is still largely unknown. We conducted a multi-center study to characterize the spectra of BRCA mutations in Chinese breast and ovarian cancer patients from Southern China. METHODOLOGY/PRINCIPAL FINDINGS: A total of 651 clinically high-risk breast and/or ovarian cancer patients were recruited from the Hong Kong Hereditary Breast Cancer Family Registry from 2007 to 2011. Comprehensive BRCA1 and BRCA2 mutation screening was performed using bi-directional sequencing of all coding exons of BRCA1 and BRCA2. Sequencing results were confirmed by in-house developed full high resolution DNA melting (HRM analysis. Among the 451 probands analyzed, 69 (15.3% deleterious BRCA mutations were identified, comprising 29 in BRCA1 and 40 in BRCA2. The four recurrent BRCA1 mutations (c.470_471delCT, c.3342_3345delAGAA, c.5406+1_5406+3delGTA and c.981_982delAT accounted for 34.5% (10/29 of all BRCA1 mutations in this cohort. The four recurrent BRCA2 mutations (c.2808_2811delACAA, c.3109C>T, c.7436_7805del370 and c.9097_9098insA accounted for 40% (16/40 of all BRCA2 mutations. Haplotype analysis was performed to confirm 1 BRCA1 and 3 BRCA2 mutations are putative founder mutations. Rapid HRM mutation screening for a panel of the founder mutations were developed and validated. CONCLUSION: In this study, our findings suggest that BRCA mutations account for a substantial proportion of hereditary breast/ovarian cancer in Southern Chinese population. Knowing the spectrum and frequency of the founder mutations in this population will assist in the development of a cost-effective rapid screening assay, which in turn facilitates genetic counseling and testing for the purpose of cancer risk assessment.

  20. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja


    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  1. A new high-resolution pollen sequence at Lake Van, Turkey: insights into penultimate interglacial-glacial climate change on vegetation history (United States)

    Pickarski, Nadine; Litt, Thomas


    A new detailed pollen and oxygen isotope record of the penultimate interglacial-glacial cycle, corresponding to the marine isotope stage (MIS) 7-6, has been generated from the Ahlat Ridge (AR) sediment core at Lake Van, Turkey. The presented Lake Van pollen record (ca. 250.2-128.8 ka) displays the highest temporal resolution in this region with a mean sampling interval of ˜ 540 years.The integration of all available proxies shows three temperate intervals of high effective soil moisture availability. This is evidenced by the predominance of steppe-forested landscapes (oak steppe-forest) similar to the present interglacial vegetation in this sensitive semiarid region between the Black Sea, the Caspian Sea, and the Mediterranean Sea.The wettest and warmest stage, as indicated by highest temperate tree percentages, can be broadly correlated with MIS 7c, while the amplitude of the tree population maximum during the oldest penultimate interglacial (MIS 7e) appears to be reduced due to warm but drier climatic conditions. The detailed comparison of the penultimate interglacial complex (MIS 7) to the last interglacial (Eemian, MIS 5e) and the current interglacial (Holocene, MIS 1) provides a vivid illustration of possible differences in the successive climatic cycles. Intervening periods of treeless vegetation can be correlated with MIS 7d and 7a, in which open landscapes favor local erosion and detrital sedimentation. The predominance of steppe elements (e.g., Artemisia, Chenopodiaceae) during MIS 7d indicates very dry and cold climatic conditions. In contrast, the occurrence of higher temperate tree percentages (mainly deciduous Quercus) throughout MIS 7b points to relatively humid and mild conditions, which is in agreement with other pollen sequences in southern Europe.Despite the general dominance of dry and cold desert-steppe vegetation during the penultimate glacial (broadly equivalent to MIS 6), this period can be divided into two parts: an early stage (ca. 193

  2. Complex high-resolution linkage disequilibrium and haplotype patterns of single-nucleotide polymorphisms in 2.5 Mb of sequence on human chromosome 21. (United States)

    Olivier, M; Bustos, V I; Levy, M R; Smick, G A; Moreno, I; Bushard, J M; Almendras, A A; Sheppard, K; Zierten, D L; Aggarwal, A; Carlson, C S; Foster, B D; Vo, N; Kelly, L; Liu, X; Cox, D R


    One approach to identify potentially important segments of the human genome is to search for DNA regions with nonrandom patterns of human sequence variation. Previous studies have investigated these patterns primarily in and around candidate gene regions. Here, we determined patterns of DNA sequence variation in 2.5 Mb of finished sequence from five regions on human chromosome 21. By sequencing 13 individual chromosomes, we identified 1460 single-nucleotide polymorphisms (SNPs) and obtained unambiguous haplotypes for all chromosomes. For all five chromosomal regions, we observed segments with high linkage disequilibrium (LD), extending from 1.7 to>81 kb (average 21.7 kb), disrupted by segments of similar or larger size with no significant LD between SNPs. At least 25% of the contig sequences consisted of segments with high LD between SNPs. Each of these segments was characterized by a restricted number of observed haplotypes,with the major haplotype found in over 60% of all chromosomes. In contrast, the interspersed segments with low LD showed significantly more haplotype patterns. The position and extent of the segments of high LD with restricted haplotype variability did not coincide with the location of coding sequences. Our results indicate that LD and haplotype patterns need to be investigated with closely spaced SNPs throughout the human genome, independent of the location of coding sequences, to reliably identify regions with significant LD useful for disease association studies.

  3. High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. (United States)

    Rabbi, Ismail Y; Hamblin, Martha T; Kumar, P Lava; Gedil, Melaku A; Ikpan, Andrew S; Jannink, Jean-Luc; Kulakow, Peter A


    Cassava mosaic disease (CMD), caused by different species of cassava mosaic geminiviruses (CMGs), is the most important disease of cassava in Africa and the Indian sub-continent. The cultivated cassava species is protected from CMD by polygenic resistance introgressed from the wild species Manihot glaziovii and a dominant monogenic type of resistance, named CMD2, discovered in African landraces. The ability of the monogenic resistance to confer high levels of resistance in different genetic backgrounds has led recently to its extensive usage in breeding across Africa as well as pre-emptive breeding in Latin America. However, most of the landraces carrying the monogenic resistance are morphologically very similar and come from a geographically restricted area of West Africa, raising the possibility that the diversity of the single-gene resistance could be very limited, or even located at a single locus. Several mapping studies, employing bulk segregant analysis, in different genetic backgrounds have reported additional molecular markers linked to supposedly new resistance genes. However, it is not possible to tell if these are indeed new genes in the absence adequate genetic map framework or allelism tests. To address this important question, a high-density single nucleotide polymorphism (SNP) map of cassava was developed through genotyping-by-sequencing a bi-parental mapping population (N=180) that segregates for the dominant monogenic resistance to CMD. Virus screening using PCR showed that CMD symptoms and presence of virus were strongly correlated (r=0.98). Genome-wide scan and high-resolution composite interval mapping using 6756 SNPs uncovered a single locus with large effect (R(2)=0.74). Projection of the previously published resistance-linked microsatellite markers showed that they co-occurred in the same chromosomal location surrounding the presently mapped resistance locus. Moreover, their relative distance to the mapped resistance locus correlated with

  4. A gene-based high-resolution comparative radiation hybrid map as a framework for genome sequence assembly of a bovine chromosome 6 region associated with QTL for growth, body composition, and milk performance traits

    Directory of Open Access Journals (Sweden)

    Laurent Pascal


    Full Text Available Abstract Background A number of different quantitative trait loci (QTL for various phenotypic traits, including milk production, functional, and conformation traits in dairy cattle as well as growth and body composition traits in meat cattle, have been mapped consistently in the middle region of bovine chromosome 6 (BTA6. Dense genetic and physical maps and, ultimately, a fully annotated genome sequence as well as their mutual connections are required to efficiently identify genes and gene variants responsible for genetic variation of phenotypic traits. A comprehensive high-resolution gene-rich map linking densely spaced bovine markers and genes to the annotated human genome sequence is required as a framework to facilitate this approach for the region on BTA6 carrying the QTL. Results Therefore, we constructed a high-resolution radiation hybrid (RH map for the QTL containing chromosomal region of BTA6. This new RH map with a total of 234 loci including 115 genes and ESTs displays a substantial increase in loci density compared to existing physical BTA6 maps. Screening the available bovine genome sequence resources, a total of 73 loci could be assigned to sequence contigs, which were already identified as specific for BTA6. For 43 loci, corresponding sequence contigs, which were not yet placed on the bovine genome assembly, were identified. In addition, the improved potential of this high-resolution RH map for BTA6 with respect to comparative mapping was demonstrated. Mapping a large number of genes on BTA6 and cross-referencing them with map locations in corresponding syntenic multi-species chromosome segments (human, mouse, rat, dog, chicken achieved a refined accurate alignment of conserved segments and evolutionary breakpoints across the species included. Conclusion The gene-anchored high-resolution RH map (1 locus/300 kb for the targeted region of BTA6 presented here will provide a valuable platform to guide high-quality assembling and

  5. High resolution digital delay timer (United States)

    Martin, Albert D.


    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).



    Brouard, Olivier; Delannay, Fabrice; Ricordel, Vincent; Barba, Dominique


    4 pages; International audience; Motion segmentation methods are effective for tracking video objects. However, objects segmentation methods based on motion need to know the global motion of the video in order to back-compensate it before computing the segmentation. In this paper, we propose a method which estimates the global motion of a High Definition (HD) video shot and then segments it using the remaining motion information. First, we develop a fast method for multi-resolution motion est...

  7. High-resolution and functional magnetic resonance imaging of the brachial plexus using an isotropic 3D T2 STIR (Short Term Inversion Recovery) SPACE sequence and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Viallon, M.; Vargas, M.I.; Jlassi, H.; Loevblad, K.O.; Delavelle, J. [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland)


    This technical note demonstrates the relevance of the isotropic 3D T2 turbo-spin-echo (TSE) sequence with short-term inversion recovery (STIR) and variable flip angle RF excitations (SPACE: Sampling Perfection with Application optimized Contrasts using different flip angle Evolutions) for high-resolution brachial plexus imaging. The sequence was used in 11 patients in the diagnosis of brachial plexus pathologies involving primary and secondary tumors, and in six volunteers. We show that 3D STIR imaging is not only a reliable alternative to 2D STIR imaging, but it also better evaluates the anatomy, nerve site compression and pathology of the plexus, especially to depict space-occupying tumors along its course. Finally, due to its appropriate contrast we describe how 3D-STIR can be used as a high-resolution mask to be fused with fraction of anisotropy (FA) maps calculated from diffusion tensor imaging (DTI) data of the plexus. (orig.)

  8. Swine Leukocyte Antigen (SLA) class I allele typing of Danish swine herds and identification of commonly occurring haplotypes using sequence specific low and high resolution primers. (United States)

    Pedersen, Lasse Eggers; Jungersen, Gregers; Sorensen, Maria Rathmann; Ho, Chak-Sum; Vadekær, Dorte Fink


    The swine major histocompatibility complex (MHC) genomic region (SLA) is extremely polymorphic comprising high numbers of different alleles, many encoding a distinct MHC class I molecule, which binds and presents endogenous peptides to circulating T cells of the immune system. Upon recognition of such peptide-MHC complexes (pMHC) naïve T cells can become activated and respond to a given pathogen leading to its elimination and the generation of memory cells. Hence SLA plays a crucial role in maintaining overall adaptive immunologic resistance to pathogens. Knowing which SLA alleles that are commonly occurring can be of great importance in regard to future vaccine development and the establishment of immune protection in swine through broad coverage, highly specific, subunit based vaccination against viruses such as swine influenza, porcine reproductive and respiratory syndrome virus, vesicular stomatitis virus, foot-and-mouth-disease virus and others. Here we present the use of low- and high-resolution PCR-based typing methods to identify individual and commonly occurring SLA class I alleles in Danish swine. A total of 101 animals from seven different herds were tested, and by low resolution typing the top four most frequent SLA class I alleles were those of the allele groups SLA-3*04XX, SLA-1*08XX, SLA-2*02XX, and SLA-1*07XX, respectively. Customised high resolution primers were used to identify specific alleles within the above mentioned allele groups as well as within the SLA-2*05XX allele group. Our studies also suggest the most common haplotype in Danish pigs to be Lr-4.0 expressing the SLA-1*04XX, SLA-2*04XX, and SLA-3*04XX allele combination. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Temporal Resolution Enhancement in Compressed Video Sequences

    Directory of Open Access Journals (Sweden)

    Robert L. Stevenson


    Full Text Available Compressed video may possess a number of artifacts, both spatial and temporal. Spatial compression artifacts arise as a result of quantization of the transform-domain coefficients, and are often manifested as blocking and ringing artifacts. Temporal limitations in compressed video occur when the encoder, in an effort to reduce bandwidth, drops frames. Omitting frames decreases the reconstructed frame rate, which can cause motion to appear jerky and uneven. This paper discusses a method to increase the frame rate of video compressed with the DCT by inserting images between received frames of the sequence. The Bayesian formulation of the restoration prevents spatial compression artifacts in the received frames from propagating to the reconstructed frames.

  10. High Resolution Orientation Imaging Microscopy (United States)


    carbon distribution as it relates to the presence of Bainite phase (with small tetragonality) interspersed among the cubic ferrite. An example of the...preferentially segregate. The view offered by these high resolution methods differs from what has been considered before: grains thought to be Bainite

  11. High-Resolution Instrumentation Radar. (United States)


    30 September 1986 Los Angeles Air Force Station 13. NUMBER OF PAGES Los Angeles, Calif. 90009-2960 36 74. MONITORING AGENCY NAME & ADDRESS(If...TREE PLMUT ",-20 -CUTLIASS DumpER SED AN... TREE TRUNK, -0 - MERC BUMPER f - 40 H!-I -50 iI Fig. 7. High-Resolution Instrumentation Radar View of

  12. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)


    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  13. Performance of simultaneous high temporal resolution quantitative perfusion imaging of bladder tumors and conventional multi-phase urography using a novel free-breathing continuously acquired radial compressed-sensing MRI sequence. (United States)

    Parikh, Nainesh; Ream, Justin M; Zhang, Hoi Cheung; Block, Kai Tobias; Chandarana, Hersh; Rosenkrantz, Andrew B


    To investigate the feasibility of high temporal resolution quantitative perfusion imaging of bladder tumors performed simultaneously with conventional multi-phase MR urography (MRU) using a novel free-breathing continuously acquired radial MRI sequence with compressed-sensing reconstruction. 22 patients with bladder lesions underwent MRU using GRASP (Golden-angle RAdial Sparse Parallel) acquisition. Multi-phase contrast-enhanced abdominopelvic GRASP was performed during free-breathing (1.4×1.4×3.0mm(3) voxel size; 3:44min acquisition). Two dynamic datasets were retrospectively reconstructed by combining different numbers of sequentially acquired spokes into each dynamic frame: 110 spokes per frame for 25-s temporal resolution (serving as conventional MRU for clinical interpretation) and 8 spokes per frame for 1.7-s resolution. Using 1.7-s resolution images, ROIs were placed within bladder lesions and normal bladder wall, a femoral artery arterial input function was generated, and the Generalized Kinetic Model was applied. Biopsy/cystectomy demonstrated 16 bladder tumors (13 stage≥T2, 3 stage≤T1) and 6 benign lesions. All lesions were well visualized using 25-s clinical multi-phase images. Using 1.7-s resolution images, K(trans) was significantly higher in tumors (0.38±0.24) than normal bladder (0.12±0.02=8, pMRU examinations using only one contrast injection and without additional scan time. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)


    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  15. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)


    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  16. HRSC: High resolution stereo camera (United States)

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.


    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  17. Section on High Resolution Optical Imaging (HROI) (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  18. Super-Resolution Reconstruction of Image Sequence Using Multiple Motion Estimation Fusion

    Institute of Scientific and Technical Information of China (English)

    Cheng Wang; Run-Sheng Wang


    Super-resolution reconstruction algorithm produces a high-resolution image from a low-resolution image sequence. The accuracy and the stability of the motion estimation (ME) are essential for the whole restoration. In this paper, a new super-resolution reconstruction algorithm is developed using a robust ME method, which fuses multiple estimated motion vectors within the sequence. The new algorithm has two major improvements compared with the previous research. First, instead of only two frames, the whole sequence is used to obtain a more accurate and stable estimation of the motion vector of each frame; second, the reliability of the ME is quantitatively measured and introduced into the cost function of the reconstruction algorithm. The algorithm is applied to both synthetic and real sequences, and the results are presented in the paper.

  19. Comparison of high-resolution melting analysis with direct sequencing for the detection of recurrent mutations in DNA methyltransferase 3A and isocitrate dehydrogenase 1 and 2 genes in acute myeloid leukemia patients. (United States)

    Gorniak, Patryk; Ejduk, Anna; Borg, Katarzyna; Makuch-Lasica, Hanna; Nowak, Grazyna; Lech-Maranda, Ewa; Prochorec-Sobieszek, Monika; Warzocha, Krzysztof; Juszczynski, Przemyslaw


    Acute myeloid leukemia (AML) cells harbor frequent mutations in genes responsible for epigenetic modifications. Increasing evidence of clinical role of DNMT3A and IDH1/2 mutations highlights the need for a robust and inexpensive test to identify these mutations in routine diagnostic work-up. Herein, we compared routinely used direct sequencing method with high-resolution melting (HRM) assay for screening DNMT3A and IDH1/2 mutations in patients with AML. We show very high concordance between HRM and Sanger sequencing (100% samples for IDH2-R140 and DNMT3-R882 mutations, 99% samples for IDH1-R132 and IDH2-R172 mutations). HRM method reported no false-negative results, suggesting that it can be used for mutations screening. Moreover, HRM displayed much higher sensitivity in comparison with DNA sequencing in all assessed loci. With Sanger sequencing, robust calls were observed when the sample contained 50% of mutant DNA in the background of wild-type DNA. In marked contrast, the detection limit of HRM improved down to 10% of mutated DNA. Given the ubiquitous presence of wild-type DNA background in bone marrow aspirates and clonal variations regarding mutant allele burden, these results favor HRM as a sensitive, specific, labor-, and cost-effective tool for screening and detection of mutations in IDH1/2 and DNMT3A genes in patients with AML.

  20. 基于MPMAP序列红外图像高分辨力重建和非均匀性校正%High-Resolution Reconstruction and Non-Uniformity Correction from Images Sequences Based on Poisson-Markov Model MAP

    Institute of Scientific and Technical Information of China (English)

    刘秀; 金伟其; 徐超


    红外焦平面阵列(IRFPA)的非均匀性校正是获得高性能热成像的基本保证,非均匀性校正(NUC)算法是当前国内外研究的重要方向.鉴于序列图像的超分辨力复原方法和基于场景的NUC算法都需要存在微位移的多帧序列目标场景图像,本文在Poisson和Markov分布假设的基础上,将超分辨力复原与NUC结合,针对存在非均匀性的红外低分辨力图像序列,研究提出了基于Poisson- Markov分布的最大后验概率(MPMAP)的序列红外图像高分辨力重建和非均匀性校正一体化处理算法.对仿真和实际热图像的处理结果表明,算法不仅可有效抑制随机噪声,实现高分辨力图像的复原,而且可有效地消除非均匀性噪声.%Non-uniformity correction(NUC)of infrared focal plane array(IRFPA)is the development direction of the future and the basic guarantee to gain high quality thermal imaging system. As both super-resolution restoration and NUC algorithm based on scene need the micro-displacement that between image sequences, we propose super-resolution image restoration and non-uniformity correction algorithm based on Poisson and Markov model maximum a posteriori (MPMAP) focus on infrared low resolution image sequences with non-uniformity noise. The results of simulator image sequences and real infrared thermal image sequences show that the algorithm is presented not only has high super-resolution performance for the image degraded with random noise, but also eliminate the fixed pattern noise effectively.

  1. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  2. High-resolution image analysis. (United States)

    Preston, K


    In many departments of cytology, cytogenetics, hematology, and pathology, research projects using high-resolution computerized microscopy are now being mounted for computation of morphometric measurements on various structural components, as well as for determination of cellular DNA content. The majority of these measurements are made in a partially automated, computer-assisted mode, wherein there is strong interaction between the user and the computerized microscope. At the same time, full automation has been accomplished for both sample preparation and sample examination for clinical determination of the white blood cell differential count. At the time of writing, approximately 1,000 robot differential counting microscopes are in the field, analyzing images of human white blood cells, red blood cells, and platelets at the overall rate of about 100,000 slides per day. This mammoth through-put represents a major accomplishment in the application of machine vision to automated microscopy for hematology. In other areas of automated high-resolution microscopy, such as cytology and cytogenetics, no commercial instruments are available (although a few metaphase-finding machines are available and other new machines have been announced during the past year). This is a disappointing product, considering the nearly half century of research effort in these areas. This paper provides examples of the state of the art in automation of cell analysis for blood smears, cervical smears, and chromosome preparations. Also treated are new developments in multi-resolution automated microscopy, where images are now being generated and analyzed by a single machine over a range of 64:1 magnification and from 10,000 X 20,000 to 500 X 500 in total picture elements (pixels). Examples of images of human lymph node and liver tissue are presented. Semi-automated systems are not treated, although there is mention of recent research in the automation of tissue analysis.

  3. High-Resolution Mass Spectrometers (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.


    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  4. Ultra-high resolution AMOLED (United States)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal


    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  5. High-resolution gene expression profiling using RNA sequencing in patients with inflammatory bowel disease and in mouse models of colitis

    DEFF Research Database (Denmark)

    Holgersen, Kristine; Kutlu, Burak; Fox, Brian;


    pathways and assess the similarity between the experimental models and human disease. RNA sequencing was performed on colon biopsies from CD patients, UC patients and non-IBD controls. Genes shown to be significantly dysregulated in human IBD were used to study gene expression in colons from a piroxicam...

  6. Evaluation of a dedicated dual phased-array surface coil using a black-blood FSE sequence for high resolution MRI of the carotid vessel wall

    NARCIS (Netherlands)

    M. Ouhlous (Mohamed); F. Lethimonnier; D.W.J. Dippel (Diederik); M.R.H.M. van Sambeek (Marc); L.C.J. van Heerebeek (Lambertus C.); P.M.T. Pattynama (Peter); A. van der Lugt (Aad)


    textabstractPurpose: To investigate the ability of magnetic resonance imaging (MRI) to visualize the carotid vessel wall using a phased-array coil and a black-blood (BB) fast spin-echo (FSE) sequence. Materials and Methods: The phased-array coil was compared with a three-inch coil. Images from volun

  7. High-resolution slug testing. (United States)

    Zemansky, G M; McElwee, C D


    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases.

  8. High-resolution land topography (United States)

    Massonnet, Didier; Elachi, Charles


    After a description of the background, methods of production and some scientific uses of high-resolution land topography, we present the current status and the prospect of radar interferometry, regarded as one of the best techniques for obtaining the most global and the most accurate topographic maps. After introducing briefly the theoretical aspects of radar interferometry - principles, limits of operation and various capabilities -, we will focus on the topographic applications that resulted in an almost global topographic map of the earth: the SRTM map. After introducing the Interferometric Cartwheel system, we will build on its expected performances to discuss the scientific prospects of refining a global topographic map to sub-metric accuracy. We also show how other fields of sciences such as hydrology may benefit from the products generated by interferometric radar systems. To cite this article: D. Massonnet, C. Elachi, C. R. Geoscience 338 (2006).

  9. Super-Resolution for Traditional and Omnidirectional Image Sequences

    Directory of Open Access Journals (Sweden)

    Attila Nagy


    Full Text Available This article presents a simple method on how to implement a super-resolutionbased video enhancement technique in .NET using the functions of the OpenCV library.First, we outline the goal of this project and after that, a short review of the steps of superresolutiontechnique is given. As a part of the discussion about the implementation itself,the general design aspects are detailed in short. Then, the different optical flow algorithmsare analyzed and the super-resolution calculation of omnidirectional image sequences isdiscussed. After all that, the achieved results can be seen and finally, a short generalconclusion can be read. This paper is a revision of our previous work [1]. In this edition,we focus on the super-resolution of omnidirectional image sequences rather than thetechnological issues that were discussed in our previous article. Further information aboutthe implementation and wrapper development can be found in [1 and 12].

  10. Identification of a new DRB3*02 allelic variant (DRB3*0209) by high-resolution sequence-based typing. (United States)

    Morabito, A; Pera, C; Longo, A; Delfino, L; Ferrara, G B


    The HLA-DRB3/B4/B5 sequence-based typing method developed in this study in combination with PCR-SSP, enabled us to identify a new DRB3*02 allele, that was named as DRB3*0209 (GenBank accession number AF148518). This name has been officially assigned by the WHO Nomenclature Committee in May 1999. The new allele differs from DRB3*0207 by one substitution in codon 51 from AGG to ACG and another in codon 60 from TAC to TCC, resulting in aminoacid changes from Arg-->Thr (codon 51) and from Tyr-->Ser (codon 60). The DRB3*0209 allele was discovered in two related North Italian families. The fact that it was present in an hemizygous situation in three members of the paternal family and in one member of the secondary related family enabled us to isolate and sequence the new DRB3 allele without cloning, to identify its association with the DRB1 locus, and to generate an Epstein-Barr virus (EBV)-transformed cell line, now present in our ECBR (European Collection for Biomedical Research) Cell Line Bank.

  11. High resolution emission tomography; Tomographie d`emission haute resolution

    Energy Technology Data Exchange (ETDEWEB)

    Charon, Y.; Laniece, P.; Mastrippolito, R.; Pinot, L.; Ploux, L.; Valda Ochoa, A.; Valentin, L. [Groupe I.P.B., Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)


    We have developed an original high resolution tomograph for in-vivo small animal imaging. A first prototype is under evaluation. Initial results of its characterisation are presented. (authors) 3 figs.

  12. Diagnostic performance of 64-MDCT and 1.5-T MRI with high-resolution sequences in the T staging of gastric cancer: a comparative analysis with histopathology. (United States)

    Anzidei, M; Napoli, A; Zaccagna, F; Di Paolo, P; Zini, C; Cavallo Marincola, B; Geiger, D; Catalano, C; Passariello, R


    This study was undertaken to compare the accuracy of magnetic resonance (MR) imaging and 64-slice multidetector computed tomography (64-MDCT) in the T staging of gastric carcinoma in comparison with histopathology. Forty patients with an endoscopic diagnosis of gastric carcinoma underwent preoperative MR imaging and 64-MDCT, both of which were performed after i.v. injection of scopolamine and water distension of the stomach. In the MR imaging protocol, we acquired T2-weighted turbo spin-echo (TSE) sequences, true fast imaging steady-state free precession (true-FISP) and gadolinium-enhanced T1-weighted volumetric interpolated breath-hold examination (VIBE) 3D sequences. Contrastenhanced CT scans were obtained in the arterial and venous phases. Two groups of radiologists independently reviewed the MR and 64-MDCT images. The results were compared with pathology findings. In the evaluation of T stage, 64-MDCT had 82.5% and MR imaging had 80% sensitivity. Accuracy of MR imaging was slightly higher than that of 64-MDCT in identifying T1 lesions (50% vs 37.5%), whereas the accuracy of 64-MDCT was higher in differentiating T2 lesions (81.2% vs 68.7%). The accuracy of MR imaging and 64-MDCT did not differ significantly in the evaluation of T3-T4 lesions (p>0.05). Understaging was observed in 20% of cases with MR imaging and in 17.5% with 64-MDCT. MR imaging and 64-MDCT accuracy levels did not differ in advanced stages of disease, whereas MR imaging was superior in identifying early stages of gastric cancer and can be considered a valid alternative to MDCT in clinical practice.

  13. Witnessing the birth of the red sequence: ALMA high-resolution imaging of [CII] and dust in two interacting ultra-red starbursts at z = 4.425

    CERN Document Server

    Oteo, I; Dunne, L; Smail, I; Swinbank, M; Zhang, Z-Y; Lewis, A; Maddox, S; Riechers, D; Serjeant, S; Van der Werf, P; Bremer, M; Cigan, P; Clements, D L; Cooray, A; Dannerbauer, H; Eales, S; Ibar, E; Messias, H; Michałowski, M J; Pérez-Fournon, I; van Kampen, E


    Exploiting the sensitivity and spatial resolution of the Atacama Large Millimeter/submillimeter Array (ALMA), we have studied the morphology and the physical scale of the interstellar medium - both gas and dust - in SGP38326, an unlensed pair of interacting starbursts at $z= 4.425$. SGP38326 is the most luminous star bursting system known at $z > 4$ with an IR-derived ${\\rm SFR \\sim 4300 \\,} M_\\odot \\, {\\rm yr}^{-1}$. SGP38326 also contains a molecular gas reservoir among the most massive ever found in the early Universe, and it is the likely progenitor of a massive, red-and-dead elliptical galaxy at $z \\sim 3$. Probing scales of $\\sim 0.1"$ or $\\sim 800 \\, {\\rm pc}$ we find that the smooth distribution of the continuum emission from cool dust grains contrasts with the more irregular morphology of the gas, as traced by the [CII] fine structure emission. The gas is also extended over larger physical scales than the dust. The velocity information provided by the resolved [CII] emission reveals that the dynamics...

  14. VT Hydrography Dataset - High Resolution NHD (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Vermont Hydrography Dataset (VHD) is compliant with the local resolution (also known as High Resolution) National Hydrography Dataset (NHD)...

  15. High-resolution infrared imaging (United States)

    Falco, Charles M.


    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  16. Three dimensional and high resolution magnetic resonance imaging of the inner ear. Normal ears and anomaly scanned with 3D-CISS sequence

    Energy Technology Data Exchange (ETDEWEB)

    Edamatsu, Hideo [Dokkyo Univ., Saitama (Japan). Koshigaya Hospital; Uechi, Yoko; Honjyo, Shiro; Yamashita, Koichi; Tonami, Hisao


    The MRI system used in this study was a new scanning sequence, 3D-CISS (Three dimensional-constructive interference in steady state) with 1.5 Tesla. Ten normal ears and one ear with Mondini type anomaly were scanned and reconstructed. In imagings of normal inner ears, the cochlea has three spiral layers; basal, middle and apical turns. Each turn was separated into three parts; the scala vestibuli, osseous spiral lamina and scala tympani. Three semicircular ducts, utricle and saccule were also reconstructed in one frame. In the inner ear of Mondini anomaly, 3D MRI showed cochlear aplasia, hypoplasia of semicircular ducts and widely dilated vestibule. The imaging was identical with findings of ``common cavity``. The anomaly was easily recognized in 3D MRI more than in 2D imagings. The detailed and cubic imagings of the Mondini anomaly in 3D MRI could not be observed with conventional 2D MRI. 3D MRI is not invasive method and can scan a target very quickly. (author)

  17. The Mass Function of Main-Sequence Stars in NGC 6397 from Near-Infrared and Optical High-Resolution Hubble Space Telescope Observations (United States)

    De Marchi, Guido; Paresce, Francesco; Pulone, Luigi


    We have investigated the properties of the stellar mass function in the globular cluster NGC 6397 through the use of a large set of Hubble Space Telescope (HST) observations. The latter include existing WFPC 2 images in the V and I bands, obtained at ~4.5‧ and 10' radial distances, as well as a series of deep images in the J and H bands obtained with the NIC 2 and NIC 3 cameras of the NICMOS instrument pointed, respectively, to regions located ~4.5‧ and ~3.2‧ from the center. These observations span the region from ~1 to ~3 times the cluster's half-light radius (rhl~=3') and have been subjected to the same, homogeneous data processing so as to guarantee that the ensuing results could be directly compared to one another. We have built color-magnitude diagrams that we use to measure the luminosity function of main-sequence stars extending from just below the turnoff all the way down to the hydrogen-burning limit. All luminosity functions derived in this way show the same, consistent behavior in that they all increase with decreasing luminosity up to a peak at MI~=8.5 or MH~=7 and then drop precipitously well before photometric incompleteness becomes significant. Within the observational uncertainties, at MI~=12 or MH~=10.5 (~0.09 Msolar) the luminosity functions are compatible with zero. The direct comparison of our NIC 2 field with previous WFPC 2 observations of the same area shows that down to MH~=11 there are no more faint, red stars than those already detected by the WFPC 2, thus excluding a significant population of faint, low-mass stars at the bottom of the main sequence. By applying the best available mass-luminosity relation appropriate to the metallicity of NGC 6397 and consistent with our color-magnitude diagrams to both the optical and the IR data, we obtain a mass function that shows a break in slope at ~0.3 Msolar. No single-exponent power-law distribution is compatible with these data, regardless of the value of the exponent. We find that a

  18. High-resolution neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mikerov, V.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Zhitnik, I.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Ignat`ev, A.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Isakov, A.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Korneev, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Krutov, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Kuzin, S.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Oparin, S.N. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Pertsov, A.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Podolyak, E.R. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Sobel`man, I.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tindo, I.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tukarev, B.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation)


    A neutron tomography technique with a coordinate resolution of several tens of micrometers has been developed. Our results indicate that the technique resolves details with dimensions less than 100 {mu}m and measures a linear attenuation of less than {approx} 0.1 cm{sup -1}. Tomograms can be reconstructed using incomplete data. Limits on the resolution of the restored pattern are analyzed, and ways to improve the sensitivity of the technique are discussed. (orig.).

  19. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  20. Swine Leukocyte Antigen (SLA) class I allele typing of Danish swine herds and identification of commonly occurring haplotypes using sequence specific low and high resolution primers

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Jungersen, Gregers; Sørensen, Maria Rathmann;


    of such peptide-MHC complexes (pMHC) naïve T cells can become activated and respond to a given pathogen leading to its elimination and the generation of memory cells. Hence SLA plays a crucial role in maintaining overall adaptive immunologic resistance to pathogens. Knowing which SLA alleles that are commonly...... occurring can be of great importance in regard to future vaccine development and the establishment of immune protection in swine through broad coverage, highly specific, subunit based vaccination against viruses such as swine influenza, porcine reproductive and respiratory syndrome virus, vesicular...

  1. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H


    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  2. DESIR high resolution separator at GANIL, France

    Directory of Open Access Journals (Sweden)

    Toprek Dragan


    Full Text Available A high-resolution separator for the SPIRAL2/DESIR project at GANIL has been designed. The extracted isotopes from SPIRAL2 will be transported to and cooled in a RFQ cooler yielding beams with very low transverse emittance and energy spread. These beams will then be accelerated to 60 keV and sent to a high-resolution mass separator where a specific isotope will be selected. The good beam properties extracted from the RFQ cooler will allow one to obtain a mass resolution of č26000 with the high-resolution mass separator.

  3. Spatially adaptive regularized iterative high-resolution image reconstruction algorithm (United States)

    Lim, Won Bae; Park, Min K.; Kang, Moon Gi


    High resolution images are often required in applications such as remote sensing, frame freeze in video, military and medical imaging. Digital image sensor arrays, which are used for image acquisition in many imaging systems, are not dense enough to prevent aliasing, so the acquired images will be degraded by aliasing effects. To prevent aliasing without loss of resolution, a dense detector array is required. But it may be very costly or unavailable, thus, many imaging systems are designed to allow some level of aliasing during image acquisition. The purpose of our work is to reconstruct an unaliased high resolution image from the acquired aliased image sequence. In this paper, we propose a spatially adaptive regularized iterative high resolution image reconstruction algorithm for blurred, noisy and down-sampled image sequences. The proposed approach is based on a Constrained Least Squares (CLS) high resolution reconstruction algorithm, with spatially adaptive regularization operators and parameters. These regularization terms are shown to improve the reconstructed image quality by forcing smoothness, while preserving edges in the reconstructed high resolution image. Accurate sub-pixel motion registration is the key of the success of the high resolution image reconstruction algorithm. However, sub-pixel motion registration may have some level of registration error. Therefore, a reconstruction algorithm which is robust against the registration error is required. The registration algorithm uses a gradient based sub-pixel motion estimator which provides shift information for each of the recorded frames. The proposed algorithm is based on a technique of high resolution image reconstruction, and it solves spatially adaptive regularized constrained least square minimization functionals. In this paper, we show that the reconstruction algorithm gives dramatic improvements in the resolution of the reconstructed image and is effective in handling the aliased information. The

  4. High Resolution Silicon Deformable Mirrors Project (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  5. A Fast Super-Resolution Reconstruction from Image Sequence

    Institute of Scientific and Technical Information of China (English)


    Based on the mechanism of imagery, a novel method called the delaminating combining template method, used for the problem of super-resolution reconstruction from image sequence, is described in this paper. The combining template method contains two steps: a delaminating strategy and a combining template algorithm. The delaminating strategy divides the original problem into several sub-problems;each of them is only connected to one degrading factor. The combining template algorithm is suggested to resolve each sub-problem. In addition, to verify the valid of the method, a new index called oriental entropy is presented. The results from the theoretical analysis and experiments illustrate that this method to be promising and efficient.

  6. High resolution positron tomography using PCR-I

    Energy Technology Data Exchange (ETDEWEB)

    Brownell, G.L.; Burnham, C.A.; Sandrew, B.; Elmaleh, D.R.; Livni, E.; Kizuka, H.


    PCR-I is a high resolution positron tomograph developed by the Physics Research Laboratory of the Massachusetts General Hospital to explore resolution limits of positron tomographs. PCR-I currently obtains images with 4.8 mm FWHM resolution at the center. Plane thickness may be varied between 5 and 10 mm. The instrument uses analog coding to obtain high resolution images without mechanical motion. This permits rapid dynamic imaging and gated cardiac imaging as well as conventional high resolution imaging. A series of studies has been carried out to demonstrate the ability of PCR-I to image structures in small animals. F-18 in the rat skeleton is clearly defined and various structures such as the spinal processes can be clearly resolved. A sequence of images at different spacing provides a three-dimensional reconstruction of the rat skeleton. Blood volume and palmitic acid have been imaged in the dog heart. Again, the sequence of images provides a clear delineation of the three dimensional nature of the blood pools and of the surrounding musculature. Blood flow, blood volume and glucose metabolism have been studied in the monkey brain. Structures within the brain of the Resus monkey can be clearly resolved. Increased activity resulting from induced seizures in the squirrel monkey have been observed and delineated. All of these studies indicate areas of future animal and clinical research using the high resolution tomograph, PCR-I.

  7. Developing a High-Resolution Sequence Stratigraphic Framework for Upper Lower Miocene Strata (18-16 Ma) From the ANDRILL AND-2A Drillcore, Southern McMurdo Sound Project, Antarctica (United States)

    Koss, H. C.; Pekar, S. F.


    A high resolution sequence stratigraphic framework was developed for the upper lower Miocene (18-16 Ma) in Southern McMurdo Sound. Southern McMurdo Sound Project (SMS) of the ANDRILL Program completed the AND-2A drillcore (77° 45.488 S; 165° 16.613 E) from a floating sea-ice platform over approximately 380 meters of water, reaching a total depth of 1138.54 mbsf, during the 2007 austral spring/summer. One objective of the SMS Project was to recover a history of ice-proximal paleoenvironmental variation during the early to middle Miocene, which includes the Early Miocene Climatic Optimum (EMCO, 17.8-16.1 Ma), the Middle Miocene Climatic Optimum (16.0-14.2 Ma), and the climatic cooling that followed. The AND-2A drillcore recovered several distinct stratigraphic intervals including a thick middle Miocene section (400 to 223 mbsf) and an expanded upper lower Miocene section (700-400 mbsf) that includes the Early Miocene Climatic Optimum, with the latter being the focus of this study. Three motifs of stratigraphic stacking patterns were recognized in the AND-2A borehole of which two are observed between 700-400 mbsf. Motif 2, which dominates above 523 mbsf, is characterized by a sharp-based conglomerate and sandstone overlain by stratified, clast-poor diamictite. This is overlain by bioturbated clayey siltstone with interlaminated sandstone and siltstone above it. This is overlain by diamictite. Motif 3 is only recognized below 523 mbsf and is characterized by a sharp-based conglomerate and clast-rich sandstone overlain by stratified diamictite which grades upward into interlaminated siltstone and very fine sandstone with diamictite interbeds. This is overlain by fossiliferous diamictite. Each motif of stratigraphic stacking is capped with a sharp-based conglomerate. A minimum of 15 cycles of stratigraphic stacking, occurring at roughly 20-meter intervals between 700 and 400 mbsf, are recognized in core photographs and observations made on-ice during core description

  8. High-Resolution Data for a Low-Resolution World

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Brendan Williams [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated by a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.

  9. 高分辨率层序地层学在河流相油田开发中的应用%Application of High-resolution Sequence Stratigraphy of Fluvial Facies in Development of Oilfield

    Institute of Scientific and Technical Information of China (English)

    胡光义; 陈飞; 孙立春; 范廷恩; 赵春明; 吴胜和


    Fluvial sandbody is one of the most important hydrocarbon reservoirs in China.Using of high-resolution sequence stratigraphy in fluvial facies in development of oilfield is very important to the Guidance of fluvail sandbod Subdivision and Correlation.There are complex factors,including fluvial facies autocyclicity sediment,the effect of sedimentary surface,channel pattern and sandbody architecture,and the orders of base-level cycles,which resulted in the difficulty to define subdivision and correlation.According to the theory and approach of high-resolution sequence stratigraphy,combining with fluvial facies model,lithofacies and facies sequence and association,and key surface correlation,reservoir fluid correlation and channel erosion and fill,fluvial reservoir subdivision and comparison have been carried out.Provided a clue and methods on the fluvial facies subdivision and correlation in development of oilfield of intermediary and later stage,in order to be helpful to product and develop of oilfield.In Minghuazhen Formation Bohai Q Oilfield,It has achieved good results in the practical application.%河流相是我国陆相盆地重要的油气储集层系类型之一,开发阶段应用高分辨率层序地层学进行河流相高精度小层划分,对于指导河道砂体的精细划分对比有重要意义.由于受到河流相地层自旋回沉积、沉积间歇面的作用、河型和砂体叠置样式的变化以及基准面旋回的级次的划分等复杂因素的影响,在开发阶段进行高精度层序对比时,难度更大.运用高分辨率层序地层学原理和方法,综合分析河流相模式的特点,充分利用河流相岩相、相序的组合特征随空容纳空间规律性变化,结合各种关键面的约束控制、油水界面在小层内部空间的分布位置以及河道的切割充填作用,进行精细河流相小层划分对比.旨在摸索一套油田开发中后期河流相高精度层序划分的思路和方法,以指导油田

  10. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes

    Directory of Open Access Journals (Sweden)

    Cronn Richard


    Full Text Available Abstract Background Molecular evolutionary studies share the common goal of elucidating historical relationships, and the common challenge of adequately sampling taxa and characters. Particularly at low taxonomic levels, recent divergence, rapid radiations, and conservative genome evolution yield limited sequence variation, and dense taxon sampling is often desirable. Recent advances in massively parallel sequencing make it possible to rapidly obtain large amounts of sequence data, and multiplexing makes extensive sampling of megabase sequences feasible. Is it possible to efficiently apply massively parallel sequencing to increase phylogenetic resolution at low taxonomic levels? Results We reconstruct the infrageneric phylogeny of Pinus from 37 nearly-complete chloroplast genomes (average 109 kilobases each of an approximately 120 kilobase genome generated using multiplexed massively parallel sequencing. 30/33 ingroup nodes resolved with ≥ 95% bootstrap support; this is a substantial improvement relative to prior studies, and shows massively parallel sequencing-based strategies can produce sufficient high quality sequence to reach support levels originally proposed for the phylogenetic bootstrap. Resampling simulations show that at least the entire plastome is necessary to fully resolve Pinus, particularly in rapidly radiating clades. Meta-analysis of 99 published infrageneric phylogenies shows that whole plastome analysis should provide similar gains across a range of plant genera. A disproportionate amount of phylogenetic information resides in two loci (ycf1, ycf2, highlighting their unusual evolutionary properties. Conclusion Plastome sequencing is now an efficient option for increasing phylogenetic resolution at lower taxonomic levels in plant phylogenetic and population genetic analyses. With continuing improvements in sequencing capacity, the strategies herein should revolutionize efforts requiring dense taxon and character sampling

  11. High resolution studies of massive primordial haloes

    CERN Document Server

    Latif, M A; Schmidt, W; Niemeyer, J


    Atomic cooling haloes with T_vir > 10^4 K are the most plausible sites for the formation of the first galaxies. In this article, we aim to study the implications of gravity driven turbulence in protogalactic haloes. By varying the resolution per Jeans length, we explore whether the turbulent cascade is resolved well enough to obtain converged results. We have performed high resolution cosmological simulations using the adaptive mesh refinement code Enzo including a subgrid-scale turbulence model to study the role of unresolved turbulence. We compared the results of three different Jeans resolutions from 16 to 64 cells. While radially averaged profiles roughly agree at different resolutions, differences in the morphology reveal that even the highest resolution employed provides no convergence. Moreover, taking into account unresolved turbulence significantly influences the morphology of a halo. We have quantified the properties of the high-density clumps in the halo. These clumps are gravitationally unbound wi...

  12. High Resolution Silicon Deformable Mirrors Project (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  13. High range resolution micro-Doppler analysis (United States)

    Cammenga, Zachary A.; Smith, Graeme E.; Baker, Christopher J.


    This paper addresses use of the micro-Doppler effect and the use of high range-resolution profiles to observe complex targets in complex target scenes. The combination of micro-Doppler and high range-resolution provides the ability to separate the motion of complex targets from one another. This ability leads to the differentiation of targets based on their micro-Doppler signatures. Without the high-range resolution, this would not be possible because the individual signatures would not be separable. This paper also addresses the use of the micro-Doppler information and high range-resolution profiles to generate an approximation of the scattering properties of a complex target. This approximation gives insight into the structure of the complex target and, critically, is created without using a pre-determined target model.

  14. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL


    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  15. Spatiotemporal Super-Resolution Reconstruction Based on Robust Optical Flow and Zernike Moment for Video Sequences

    Directory of Open Access Journals (Sweden)

    Meiyu Liang


    Full Text Available In order to improve the spatiotemporal resolution of the video sequences, a novel spatiotemporal super-resolution reconstruction model (STSR based on robust optical flow and Zernike moment is proposed in this paper, which integrates the spatial resolution reconstruction and temporal resolution reconstruction into a unified framework. The model does not rely on accurate estimation of subpixel motion and is robust to noise and rotation. Moreover, it can effectively overcome the problems of hole and block artifacts. First we propose an efficient robust optical flow motion estimation model based on motion details preserving, then we introduce the biweighted fusion strategy to implement the spatiotemporal motion compensation. Next, combining the self-adaptive region correlation judgment strategy, we construct a fast fuzzy registration scheme based on Zernike moment for better STSR with higher efficiency, and then the final video sequences with high spatiotemporal resolution can be obtained by fusion of the complementary and redundant information with nonlocal self-similarity between the adjacent video frames. Experimental results demonstrate that the proposed method outperforms the existing methods in terms of both subjective visual and objective quantitative evaluations.

  16. Detection of BRAF Mutations Using a Fully Automated Platform and Comparison with High Resolution Melting, Real-Time Allele Specific Amplification, Immunohistochemistry and Next Generation Sequencing Assays, for Patients with Metastatic Melanoma.

    Directory of Open Access Journals (Sweden)

    Alexandre Harlé

    Full Text Available Metastatic melanoma is a severe disease with one of the highest mortality rate in skin diseases. Overall survival has significantly improved with immunotherapy and targeted therapies. Kinase inhibitors targeting BRAF V600 showed promising results. BRAF genotyping is mandatory for the prescription of anti-BRAF therapies.Fifty-nine formalin-fixed paraffin-embedded melanoma samples were assessed using High-Resolution-Melting (HRM PCR, Real-time allele-specific amplification (RT-ASA PCR, Next generation sequencing (NGS, immunohistochemistry (IHC and the fully-automated molecular diagnostics platform IdyllaTM. Sensitivity, specificity, positive predictive value and negative predictive value were calculated using NGS as the reference standard to compare the different assays.BRAF mutations were found in 28(47.5%, 29(49.2%, 31(52.5%, 29(49.2% and 27(45.8% samples with HRM, RT-ASA, NGS, IdyllaTM and IHC respectively. Twenty-six (81.2% samples were found bearing a c.1799T>A (p.Val600Glu mutation, three (9.4% with a c.1798_1799delinsAA (p.Val600Lys mutation and one with c.1789_1790delinsTC (p.Leu597Ser mutation. Two samples were found bearing complex mutations.HRM appears the less sensitive assay for the detection of BRAF V600 mutations. The RT-ASA, IdyllaTM and IHC assays are suitable for routine molecular diagnostics aiming at the prescription of anti-BRAF therapies. IdyllaTM assay is fully-automated and requires less than 2 minutes for samples preparation and is the fastest of the tested assays.

  17. High resolution SAR applications and instrument design (United States)

    Dionisio, C.; Torre, A.


    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  18. High spatial resolution diffusion tensor imaging and its applications

    CERN Document Server

    Wang, J J


    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI...

  19. 4MOST: the high-resolution spectrograph (United States)

    Seifert, W.; Xu, W.; Buschkamp, P.; Feiz, C.; Saviauk, A.; Barden, S.; Quirrenbach, A.; Mandel, H.


    4MOST (4-meter Multi-Object Spectroscopic Telescope) is a wide-field, fiber-feed, high-multiplex spectroscopic survey facility to be installed on the 4-meter ESO telescope VISTA in Chile. It consists of two identical low resolution spectrographs and one high resolution spectrograph. The instrument is presently in the preliminary design phase and expected to get operational end of 2022. The high resolution spectrograph will afford simultaneous observations of up to 812 targets - over a hexagonal field of view of 4.1 sq.degrees on sky - with a spectral resolution R>18,000 covering a wavelength range from 393 to 679nm in three channels. In this paper we present the optical and mechanical design of the high resolution spectrograph (HRS) as prepared for the review at ESO, Garching. The expected performance including the highly multiplexed fiber slit concept is simulated and its impact on the optical performance given. We show the thermal and finite element analyses and the resulting stability of the spectrograph under operational conditions.

  20. High-Resolution PET Detector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Joel


    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  1. A High Resolution Scale-of-four (United States)

    Fitch, V.


    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  2. Single shot high resolution digital holography. (United States)

    Khare, Kedar; Ali, P T Samsheer; Joseph, Joby


    We demonstrate a novel computational method for high resolution image recovery from a single digital hologram frame. The complex object field is obtained from the recorded hologram by solving a constrained optimization problem. This approach which is unlike the physical hologram replay process is shown to provide high quality image recovery even when the dc and the cross terms in the hologram overlap in the Fourier domain. Experimental results are shown for a Fresnel zone hologram of a resolution chart, intentionally recorded with a small off-axis reference beam angle. Excellent image recovery is observed without the presence of dc or twin image terms and with minimal speckle noise.

  3. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. (United States)

    Urich, Mark A; Nery, Joseph R; Lister, Ryan; Schmitz, Robert J; Ecker, Joseph R


    Current high-throughput DNA sequencing technologies enable acquisition of billions of data points through which myriad biological processes can be interrogated, including genetic variation, chromatin structure, gene expression patterns, small RNAs and protein-DNA interactions. Here we describe the MethylC-sequencing (MethylC-seq) library preparation method, a 2-d protocol that enables the genome-wide identification of cytosine DNA methylation states at single-base resolution. The technique involves fragmentation of genomic DNA followed by adapter ligation, bisulfite conversion and limited amplification using adapter-specific PCR primers in preparation for sequencing. To date, this protocol has been successfully applied to genomic DNA isolated from primary cell culture, sorted cells and fresh tissue from over a thousand plant and animal samples.

  4. Customized MFM probes with high lateral resolution

    Directory of Open Access Journals (Sweden)

    Óscar Iglesias-Freire


    Full Text Available Magnetic force microscopy (MFM is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm topographic (magnetic lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media by choosing tips mounted on hard (or soft cantilevers, a technology that is currently not available on the market.

  5. High-resolution electrohydrodynamic jet printing (United States)

    Park, Jang-Ung; Hardy, Matt; Kang, Seong Jun; Barton, Kira; Adair, Kurt; Mukhopadhyay, Deep Kishore; Lee, Chang Young; Strano, Michael S.; Alleyne, Andrew G.; Georgiadis, John G.; Ferreira, Placid M.; Rogers, John A.


    Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspects of the physics of this approach, which has some features in common with related but comparatively low-resolution techniques for graphic arts, are revealed through direct high-speed imaging of the droplet formation processes. Printing of complex patterns of inks, ranging from insulating and conducting polymers, to solution suspensions of silicon nanoparticles and rods, to single-walled carbon nanotubes, using integrated computer-controlled printer systems illustrates some of the capabilities. High-resolution printed metal interconnects, electrodes and probing pads for representative circuit patterns and functional transistors with critical dimensions as small as 1μm demonstrate potential applications in printed electronics.

  6. Smartphone microendoscopy for high resolution fluorescence imaging

    CERN Document Server

    Hong, Xiangqian; Mugler, Dale H; Yu, Bing


    High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the gastrointestinal tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this letter we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 {\\mu}m. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle income countries.

  7. Using mating-type gene sequences for improved phylogenetic resolution of Collectotrichum species complexes. (United States)

    Du, Meizhu; Schardl, Christopher L; Nuckles, Etta M; Vaillancourt, Lisa J


    Colletotrichum species are defined primarily on the basis of host preference and morphology of the organism in planta and in culture. However the genus contains several species complexes that encompass such a broad range of morphological and pathological variation that the species name is of relatively little use either to the taxonomist or plant pathologist. Phylogenetic analyses, primarily based on variable regions of the ribosomal DNA (rDNA) sequences, have indicated that these species complexes comprise a variable number of identifiable monophyletic clades. However rDNA sequences often are insufficiently diverse to fully resolve such closely related lineages. A group of isolates representing three species complexes (C. graminicola, C. gloeosporioides and C. acutatum) were analyzed by using the high mobility group (HMG)-encoding sequence of the MAT1-2 mating type sequence, which has been shown in other fungi to be especially suitable for distinguishing relationships among closely related groups. Results were compared with those obtained from analysis of variable regions of the rDNA as well as from standard morphological classification methods. Results achieved through analysis of MAT1-2 sequences correlated well with those obtained by analysis of rDNA sequences but provided significantly better resolution among the various lineages. Morphological traits, including hyphopodia size, colony appearance, spore size, appresorial shape and size and host preference, frequently were unreliable as indicators of phylogenetic association. Spore shape and hyphopodia shape more often were useful for this purpose.

  8. The future of high resolution electron microscopy

    Institute of Scientific and Technical Information of China (English)

    D Van Dyck


    The state of the art and the future in quantitative high resolution electron microscopy are discussed in the framework of parameter estimation. Reconstruction methods are then to be considered as direct methods to yield a starting structure for further refinement. With the increasing flexibility of the instruments, computer aided experimental strategy will become important.

  9. High resolution spectroscopy of planet bearing stars

    Directory of Open Access Journals (Sweden)

    M. C. Gálvez


    Full Text Available We present here the first steps of an extended spectroscopic survey in order to characterize the stellar hosts of extra-solar planets. We have selected several known stars with plan- ets and using high resolution spectroscopy, we have studied their properties.

  10. High-resolution seismic profiling on water


    McGee, T.M.


    Herein is presented an overview of high-resolution seismic profiling on water. Included are basic concepts and terminology as well as discussions of types of sources and receivers, field practice, data recording and data processing. Emphasis is on digital single-channel profiling for engineering and environmental purposes.

  11. Compact high-resolution spectral phase shaper

    NARCIS (Netherlands)

    Postma, S.; Walle, van der P.; Offerhaus, H.L.; Hulst, van N.F.


    The design and operation of a high-resolution spectral phase shaper with a footprint of only 7×10 cm2 is presented. The liquid-crystal modulator has 4096 elements. More than 600 independent degrees of freedom can be positioned with a relative accuracy of 1 pixel. The spectral shaping of pulses fro

  12. A High-Resolution Stopwatch for Cents (United States)

    Gingl, Z.; Kopasz, K.


    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  13. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.


    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling th

  14. Constructing a WISE High Resolution Galaxy Atlas (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.


    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  15. High-resolution traction force microscopy. (United States)

    Plotnikov, Sergey V; Sabass, Benedikt; Schwarz, Ulrich S; Waterman, Clare M


    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. © 2014 Elsevier Inc. All rights reserved.

  16. Development of a high resolution and high dispersion Thomson parabola. (United States)

    Jung, D; Hörlein, R; Kiefer, D; Letzring, S; Gautier, D C; Schramm, U; Hübsch, C; Öhm, R; Albright, B J; Fernandez, J C; Habs, D; Hegelich, B M


    Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E parabola for ion energies of more than 30 MeV/nucleon.

  17. High resolution 3D nonlinear integrated inversion

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xuben; Li Zhirong; Li Qiong; Li Zhengwen


    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  18. Progress toward high resolution EUV spectroscopy (United States)

    Korendyke, C.; Doschek, G. A.; Warren, H.; Young, P. R.; Chua, D.; Hassler, D. M.; Landi, E.; Davila, J. M.; Klimchuck, J.; Tun, S.; DeForest, C.; Mariska, J. T.; Solar C Spectroscopy Working Group; LEMUR; EUVST Development Team


    HIgh resolution EUV spectroscopy is a critical instrumental technique to understand fundamental physical processes in the high temperature solar atmosphere. Spectroscopic observations are used to measure differential emission measure, line of sight and turbulent flows, plasma densities and emission measures. Spatially resolved, spectra of these emission lines with adequate cadence will provide the necessary clues linking small scale structures with large scale, energetic solar phenomena. The necessary observations to determine underlying physical processes and to provide comprehensive temperature coverage of the solar atmosphere above the chromosphere will be obtained by the proposed EUVST instrument for Solar C. This instrument and its design will be discussed in this paper. Progress on the VEry high Resolution Imaging Spectrograph (VERIS) sounding rocket instrument presently under development at the Naval Research Laboratory will also be discussed.

  19. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)


    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  20. High-Resolution US of Rheumatologic Diseases. (United States)

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S


    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis.

  1. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M.


    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  2. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)


    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  3. High-resolution TOF with RPCs

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, P. E-mail:; Peskov, V


    In this work, we describe some recent results concerning the application of Resistive Plate Chambers operated in avalanche mode at atmospheric pressure for high-resolution time-of-flight measurements. A combination of multiple, mechanically accurate, thin gas gaps and state-of-the-art electronics yielded an overall (detector plus electronics) timing accuracy better than 50 ps {sigma} with a detection efficiency up to 99% for MIPs. Single gap chambers were also tested in order to clarify experimentally several aspects of the mode of operation of these detectors. These results open perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and time resolution comparable to the existing scintillator-based TOF technology but with a significantly, up to an order of magnitude, lower price per channel.

  4. High resolution, large dynamic range field map estimation (United States)

    Dagher, Joseph; Reese, Timothy; Bilgin, Ali


    Purpose We present a theory and a corresponding method to compute high resolution field maps over a large dynamic range. Theory and Methods We derive a closed-form expression for the error in the field map value when computed from two echoes. We formulate an optimization problem to choose three echo times which result in a pair of maximally distinct error distributions. We use standard field mapping sequences at the prescribed echo times. We then design a corresponding estimation algorithm which takes advantage of the optimized echo times to disambiguate the field offset value. Results We validate our method using high resolution images of a phantom at 7T. The resulting field maps demonstrate robust mapping over both a large dynamic range, and in low SNR regions. We also present high resolution offset maps in vivo using both, GRE and MEGE sequences. Even though the proposed echo time spacings are larger than the well known phase aliasing cutoff, the resulting field maps exhibit a large dynamic range without the use of phase unwrapping or spatial regularization techniques. Conclusion We demonstrate a novel 3-echo field map estimation method which overcomes the traditional noise-dynamic range trade-off. PMID:23401245

  5. Combination of low and high resolution T{sub 1}-weighted sequences for improved evaluation of morphologic criteria in dynamic contrast enhanced MRI of the breast; Eine Kombination niedrig und hochaufloesender dynamischer T{sub 1}-gewichteter Sequenzen zur besseren Beurteilung der Morphologie Kontrastmittel aufnehmender Laesionen in der MRT der weiblichen Brust

    Energy Technology Data Exchange (ETDEWEB)

    Vomweg, T.W.; Teifke, A.; Schreiber, W.G.; Thelen, M. [Klinik und Poliklinik fuer Radiologie, Klinikum der Universitaet Mainz (Germany); Schmidt, M. [Klinik und Poliklinik fuer Geburtshilfe und Frauenkrankheiten, Klinikum der Universitaet Mainz (Germany)


    Purpose: Presentation of a new protocol for simultaneous acquisition of both low and high resolution T{sub 1}-weighted images of breast lesions for dynamic contrast-enhanced MR mammography. Demonstration of possible diagnostic improvement with representative measurements in patients with suspected breast cancer by adding morphologic parameters from high resolution sequences to the analysis of the signal-time curve. Materials and Methods: Dynamic MR imaging was performed with a 1.5 T system (Magnetom SONATA, Siemens Medical Systems, Germany) and the manufacturer's double-breast coil. Coronal T{sub 1}-weighted 3D FLASH sequences (spatial resolution 1.25 x 1.25mm{sup 2}; slice thickness 1.7 mm) were acquired once before and five times after administration of contrast medium (Gd-DTPA, 0.15 mmol/kg) injection. In addition, a high resolution T{sub 1}-weighted 3D-FLASH sequence (spatial resolution, 0.63 x 0.63 mm{sup 2}) was obtained before administration of contrast medium and after the third post-contrast low-resolution sequence. Except for the acquisition matrix, all imaging parameters were identical for both 3D pulse sequences. To assure comparison of the measured signal intensities for both T{sub 1}-weighted sequences, calibrating phantom measurements were performed using a dilution series of Gd-DTPA. Results: Phantom measurements demonstrated similar signal intensities and enhancement pattern for both sequences. A combined protocol consisting of both pulse sequences can be employed and does not interfere with the signal-time curve analysis. By measuring one high resolution sequence 3:18 minutes after administration of contrast medium, morphologic features can be evaluated without interference from barely enhancing surrounding tissue. The overall study time is not increased. The improved spatial resolution slightly increases the severity of motion artifacts. (orig.) [German] Ziel: Vorstellung eines neuen Protokolls zur gleichzeitigen Messung von niedrig und

  6. Structural High-resolution Satellite Image Indexing


    Xia, Gui-Song; YANG, WEN; Delon, Julie; Gousseau, Yann; Sun, Hong; Maître, Henri


    International audience; Satellite images with high spatial resolution raise many challenging issues in image understanding and pattern recognition. First, they allow measurement of small objects maybe up to 0.5 m, and both texture and geometrical structures emerge simultaneously. Second, objects in the same type of scenes might appear at different scales and orientations. Consequently, image indexing methods should combine the structure and texture information of images and comply with some i...

  7. Stellar Tools for High Resolution Population Synthesis (United States)

    Chávez, M.; Bertone, E.; Rodríguez-Merino, L.; Buzzoni, A.


    We present preliminary results of the application of a new stellar library of high-resolution synthetic spectra (based upon ATLAS9 and SYNTHE codes developed by R. L. Kurucz) in the calculation of the ultraviolet-optical spectral energy distribution of simple stellar populations (SSPs). For this purpose, the library has been coupled with Buzzoni's population synthesis code. Part of this paper is also devoted to illustrate quantitatively the extent to which synthetic stellar libraries represent real stars.

  8. Petrous apex mucocele: high resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Memis, A. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Memis, A. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Alper, H. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Calli, C. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Ozer, H. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Ozdamar, N. [Dept. of Neurosurgery, Hospital of Ege Univ., Bornova, Izmir (Turkey)


    Mucocele of the petrous apex is very rare, only three cases having been reported. Since this area is inaccessible to direct examination, imaging, preferably high resolution computed tomography (HR CT) is essential. We report a case showing an eroding, non enhancing mass with sharp, lobulated contours, within the petrous apex. The presence of a large air cell on the opposite side suggested a mucocele. (orig.)

  9. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D


    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  10. High Speed and High Resolution Table-Top Nanoscale Imaging

    CERN Document Server

    Tadesse, G K; Demmler, S; HÄdrich, S; Wahyutama, I; Steinert, M; Spielmann, C; ZÜrch, M; TÜnnermann, A; Limpert, J; Rothhardt, J


    We present a table-top coherent diffraction imaging (CDI) experiment based on high-order harmonics generated at 18 nm by a high average power femtosecond fiber laser system. The high photon flux, narrow spectral bandwidth and high degree of spatial coherence allow for ultra-high sub-wavelength resolution imaging at a high numerical aperture. Our experiments demonstrate a half-pitch resolution of 13.6 nm, very close to the actual Abbe-limit of 12.4 nm, which is the highest resolution achieved from any table-top XUV or X-ray microscope. In addition, 20.5 nm resolution was achieved with only 3 sec of integration time bringing live diffraction imaging and 3D tomography on the nanoscale one step closer to reality. The current resolution is solely limited by the wavelength and the detector size. Thus, table-top nanoscopes with only a few-nm resolutions are in reach and will find applications in many areas of science and technology.

  11. High Sensitivity, High Frequency and High Time Resolution Decimetric Spectroscope (United States)

    Sawant, H. S.; Rosa, R. R.


    RESUMEN. Se ha desarrollado el primer espectroscopio decimetrico latino americano operando en una banda de 100 MHz con alta resoluci6n de fre- cuencia (100 KHz) y tiempo (10 ms), alrededor de cualquier centro de frecuencia en el intervalo de 2000-200 MHz. El prop6sito de esta nota es describir investigaciones solares y no solares que se planean, progra ma de investigaci6n y la situaci6n actual de desarrollo de este espectroscopio. ABSTRACT. First Latin American Decimetric Spectroscope operating over a band of 100 MHz with high resolution in frequency (100 KHz) and time (10 ms), around any center frequency in the range of 2000-200 MHz is being developed. The purpose of this note is to describe planned solar, and non-solar, research programmes and present status of development of this spectroscope. Keq wo : INSTRUMENTS - SPECTROSCOPY

  12. High Resolution Measurement of the Glycolytic Rate (United States)

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe


    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  13. High resolution measurement of the glycolytic rate

    Directory of Open Access Journals (Sweden)

    Carla X Bittner


    Full Text Available The glycolytic rate is sensitive to physiological activity, hormones, stress, aging and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently-developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

  14. Real-time underwater object detection based on an electrically scanned high-resolution sonar

    DEFF Research Database (Denmark)

    Henriksen, Lars


    The paper describes an approach to real time detection and tracking of underwater objects, using image sequences from an electrically scanned high-resolution sonar. The use of a high resolution sonar provides a good estimate of the location of the objects, but strains the computers on board, beca...

  15. Differentiation of Staphylococcus spp. by high-resolution melting analysis. (United States)

    Slany, Michal; Vanerkova, Martina; Nemcova, Eva; Zaloudikova, Barbora; Ruzicka, Filip; Freiberger, Tomas


    High-resolution melting analysis (HRMA) is a fast (post-PCR) high-throughput method to scan for sequence variations in a target gene. The aim of this study was to test the potential of HRMA to distinguish particular bacterial species of the Staphylococcus genus even when using a broad-range PCR within the 16S rRNA gene where sequence differences are minimal. Genomic DNA samples isolated from 12 reference staphylococcal strains (Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus intermedius, Staphylococcus saprophyticus, Staphylococcus sciuri, Staphylococcus simulans, Staphylococcus warneri, and Staphylococcus xylosus) were subjected to a real-time PCR amplification of the 16S rRNA gene in the presence of fluorescent dye EvaGreen™, followed by HRMA. Melting profiles were used as molecular fingerprints for bacterial species differentiation. HRMA of S. saprophyticus and S. xylosus resulted in undistinguishable profiles because of their identical sequences in the analyzed 16S rRNA region. The remaining reference strains were fully differentiated either directly or via high-resolution plots obtained by heteroduplex formation between coamplified PCR products of the tested staphylococcal strain and phylogenetically unrelated strain.

  16. SPIRAL2/DESIR high resolution mass separator

    Energy Technology Data Exchange (ETDEWEB)

    Kurtukian-Nieto, T., E-mail: [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver B.C., V6T 2A3 (Canada); Blank, B.; Chiron, T. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Davids, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Delalee, F. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Duval, M. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); El Abbeir, S.; Fournier, A. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Lunney, D. [CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay (France); Méot, F. [BNL, Upton, Long Island, New York (United States); Serani, L. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Stodel, M.-H.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); and others


    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/Δm of 31,000 for a 1 π-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given.

  17. Moderate resolution spectrophotometry of high redshift quasars (United States)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.


    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  18. Radiation length imaging with high resolution telescopes

    CERN Document Server

    Stolzenberg, U; Schwenker, B; Wieduwilt, P; Marinas, C; Lütticke, F


    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the $X$/$X_0$ imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of $X$/$X_0$ imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of ...

  19. High Resolution Bathymetry Estimation Improvement with Single ImageSuper Resolution Algorithm Super Resolution Forests (United States)


    process of the SRF algorithm, we were able to further increase the mean PSNR score of the high resolution estimated data from previously used bicubic...This meant that implementing the edited variance before the bicubic estimates were created caused the mean PSNR to increase the most, and all...interpolation (by about 1 dB). Figure 7: PSNR comparison (with mean scores) between Bicubic Interpolation and SRF Figure 7 shows the comparison between

  20. High resolution MAS-NMR in combinatorial chemistry. (United States)

    Shapiro, M J; Gounarides, J S

    High-resolution magic angle spinning (hr-MAS) NMR is a powerful tool for characterizing organic reactions on solid support. Because magic angle spinning reduces the line-broadening due to dipolar coupling and variations in bulk magnetic susceptibility, line widths approaching those obtained in solution-phase NMR can be obtained. The magic angle spinning method is amenable for use in conjunction with a variety of NMR-pulse sequences, making it possible to perform full-structure determinations and conformational analysis on compounds attached to a polymer support. Diffusion-weighted MAS-NMR methods such as SPEEDY (Spin-Echo-Enhanced Diffusion-Filtered Spectroscopy) can be used to remove unwanted signals from the solvent, residual reactants, and the polymer support from the MAS-NMR spectrum, leaving only those signals arising from the resin-bound product. This review will present the applications of high-resolution magic angle spinning NMR for use in combinatorial chemistry research.

  1. High-time Resolution Astrophysics and Pulsars

    CERN Document Server

    Shearer, Andy


    The discovery of pulsars in 1968 heralded an era where the temporal characteristics of detectors had to be reassessed. Up to this point detector integration times would normally be measured in minutes rather seconds and definitely not on sub-second time scales. At the start of the 21st century pulsar observations are still pushing the limits of detector telescope capabilities. Flux variations on times scales less than 1 nsec have been observed during giant radio pulses. Pulsar studies over the next 10 to 20 years will require instruments with time resolutions down to microseconds and below, high-quantum quantum efficiency, reasonable energy resolution and sensitive to circular and linear polarisation of stochastic signals. This chapter is review of temporally resolved optical observations of pulsars. It concludes with estimates of the observability of pulsars with both existing telescopes and into the ELT era.

  2. Novel high-resolution VGA QWIP detector (United States)

    Kataria, H.; Asplund, C.; Lindberg, A.; Smuk, S.; Alverbro, J.; Evans, D.; Sehlin, S.; Becanovic, S.; Tinghag, P.; Höglund, L.; Sjöström, F.; Costard, E.


    Continuing with its legacy of producing high performance infrared detectors, IRnova introduces its high resolution LWIR IDDCA (Integrated Detector Dewar Cooler assembly) based on QWIP (quantum well infrared photodetector) technology. The Focal Plane Array (FPA) has 640×512 pixels, with small (15μm) pixel pitch, and is based on the FLIRIndigo ISC0403 Readout Integrated Circuit (ROIC). The QWIP epitaxial structures are grown by metal-organic vapor phase epitaxy (MOVPE) at IRnova. Detector stability and response uniformity inherent to III/V based material will be demonstrated in terms of high performing detectors. Results showing low NETD at high frame rate will be presented. This makes it one of the first 15μm pitch QWIP based LWIR IDDCA commercially available on the market. High operability and stability of our other QWIP based products will also be shared.

  3. High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF. (United States)

    Men, Zhirong; Wang, Pengbo; Li, Chunsheng; Chen, Jie; Liu, Wei; Fang, Yue


    Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technique for acquiring high-spatial-resolution images of the Earth's surface. With the development of beam steering techniques, sliding spotlight and staring spotlight modes have been employed to support high-spatial-resolution applications. In addition to this strengthened high-spatial-resolution and wide-swath capability, high-temporal-resolution (short repeat-observation interval) represents a key capability for numerous applications. However, conventional SAR systems are limited in that the same patch can only be illuminated for several seconds within a single pass. This paper considers a novel high-squint-angle system intended to acquire high-spatial-resolution spaceborne SAR images with repeat-observation intervals varying from tens of seconds to several minutes within a single pass. However, an exponentially increased range cell migration would arise and lead to a conflict between the receive window and 'blind ranges'. An efficient data acquisition technique for high-temporal-resolution, high-spatial-resolution and high-squint-angle spaceborne SAR, in which the pulse repetition frequency (PRF) is continuously varied according to the changing slant range, is presented in this paper. This technique allows echo data to remain in the receive window instead of conflicting with the transmitted pulse or nadir echo. Considering the precision of hardware, a compromise and practical strategy is also proposed. Furthermore, a detailed performance analysis of range ambiguities is provided with respect to parameters of TerraSAR-X. For strong point-like targets, the range ambiguity of this technique would be better than that of uniform PRF technique. For this innovative technique, a resampling strategy and modified imaging algorithm have been developed to handle the non-uniformly sampled echo data. Simulations are performed to validate the efficiency of the proposed technique and the associated

  4. High-Resolution Spectroscopy of some very Active Southern Stars (United States)

    Soderblom, David R.; King, Jeremy R.; Henry, Todd J.


    We have obtained high-resolution echelle spectra of 18 solar-type stars that an earlier survey showed to have very high levels of Ca II H and K emission. Most of these stars belong to close binary systems, but five remain as probable single stars or well-separated binaries that are younger than the Pleiades on the basis of their lithium abundances and H.alpha emission. Three of these probable single stars also lie more than 1 mag above the main sequence in a color-magnitude diagram, and appear to have ages of 10 to 15 Myr. Two of them, HD 202917 and HD 222259, also appear to have a kinematic association with the pre-main-sequence multiple system HD 98800.

  5. Integrated High Resolution Monitoring of Mediterranean vegetation (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone


    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  6. Spatiotonal adaptivity in super-resolution of under-sampled image sequences

    NARCIS (Netherlands)

    Pham, T.Q.


    This thesis concerns the use of spatial and tonal adaptivity in improving the resolution of aliased image sequences under scene or camera motion. Each of the five content chapters focuses on a different subtopic of super-resolution: image registration (chapter 2), image fusion (chapter 3 and 4), sup

  7. Spatiotonal adaptivity in super-resolution of under-sampled image sequences

    NARCIS (Netherlands)

    Pham, T.Q.


    This thesis concerns the use of spatial and tonal adaptivity in improving the resolution of aliased image sequences under scene or camera motion. Each of the five content chapters focuses on a different subtopic of super-resolution: image registration (chapter 2), image fusion (chapter 3 and 4),

  8. Novel high resolution tactile robotic fingertips

    DEFF Research Database (Denmark)

    Drimus, Alin; Jankovics, Vince; Gorsic, Matija


    This paper describes a novel robotic fingertip based on piezoresistive rubber that can sense pressure tactile stimuli with a high spatial resolution over curved surfaces. The working principle is based on a three-layer sandwich structure (conductive electrodes on top and bottom and piezoresistive...... with specialized data acquisition electronics that acquire 500 frames per second provides rich information regarding contact force, shape and angle for bio- inspired robotic fingertips. Furthermore, a model of estimating the force of contact based on values of the cells is proposed....

  9. Fast Backprojection Techniques for High Resolution Tomography

    CERN Document Server

    Koshev, Nikolay; Miqueles, Eduardo X


    Fast image reconstruction techniques are becoming important with the increasing number of scientific cases in high resolution micro and nano tomography. The processing of the large scale three-dimensional data demands new mathematical tools for the tomographic reconstruction task because of the big computational complexity of most current algorithms as the sizes of tomographic data grow with the development of more powerful acquisition hardware and more refined scientific needs. In the present paper we propose a new fast back-projection operator for the processing of tomographic data and compare it against other fast reconstruction techniques.

  10. Operating mode of high pressure straws with high spatial resolution

    CERN Document Server

    Davkov, K I; Peshekhonov, V D; Cholakov, V D


    The article presents results of studying the operating mode of thin-walled drift tubes (straws) at flushing it with a high-pressure gas mixture, which allowed obtaining extremely high spatial resolution for straw detectors. The results of studying the radiation ageing of straws operating in this mode are also described.

  11. Clickstream data yields high-resolution maps of science

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Johan [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Chute, Ryan [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Balakireva, Lyudmila [Los Alamos National Laboratory


    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  12. Digital interface for high-resolution displays (United States)

    Hermann, David J.; Gorenflo, Ronald L.


    Commercial display interfaces are currently transitioning from analog to digital. Although this transition is in the very early stages, the military needs to begin planning their own transition to digital. There are many problems with the analog interface in high-resolution display systems that are solved by changing to a digital interface. Also, display system cost can be lower with a digital interface to a high resolution display. Battelle is under contract with DARPA to develop an advanced Display Interface (ADI) to replace the analog RGB interfaces currently used in high definition workstation displays. The goal is to create a standard digital display interface for military applications that is based on emerging commercial standards. Support for military application- specific functionality is addressed, including display test and control. The main challenges to implementing a digital display interface are described, along with approaches to address the problems. Conceptual ADI architectures are described and contrasted. The current and emerging commercial standards for digital display interfaces are reviewed in detail. Finally, the tasks required to complete the ADI effort are outlined and described.

  13. Crusta: Visualizing High-resolution Global Data (United States)

    Bernardin, T. S.; Kreylos, O.; Bowles, C. J.; Cowgill, E.; Hamann, B.; Kellogg, L. H.


    Virtual globes have become indispensable tools for visualizing, understanding and presenting data from Earth and other planetary bodies. The scientific community has invested much effort into exploiting existing globes to their fullest potential by refining and adapting their capabilities to better satisfy specific needs. For example, Google Earth provides users with the ability to view hillshade images derived from airborne LiDAR data such as the 2007 Northern California GeoEarthScope data. However, because most available globes were not designed with the specific needs of geoscientists in mind, shortcomings are becoming increasingly evident in geoscience applications such as terrain visualization. In particular, earth scientists struggle to visualize digital elevation models with both high spatial resolution (0.5 - 1 square meters per sample) and large extent (>2000 square kilometers), such as those obtained with airborne LiDAR. To address the specific earth science need of real-time terrain visualization of LiDAR data, we are developing Crusta as part of a close collaboration involving earth and computer scientists. Crusta is a new virtual globe that differs from widely used globes by both providing accurate global data representation and the ability to easily visualize custom topographic and image data. As a result, Crusta enables real-time, interactive visualization of high resolution digital elevation data spanning thousands of square kilometers, such as the complete 2007 Northern California GeoEarthScope airborne LiDAR data set. To implement an accurate data representation and avoid distortion of the display at the poles, where other projections have singularities, Crusta represents the globe as a thirty-sided polyhedron. Each side of this polyhedron can be subdivided to an arbitrarily fine grid on the surface of the globe, which allows Crusta to accommodate input data of arbitrary resolution ranging from global (e.g., Blue Marble) to local (e.g., a tripod

  14. High-resolution noncontact atomic force microscopy. (United States)

    Pérez, Rubén; García, Ricardo; Schwarz, Udo


    original papers authored by many of the leading groups in the field with the goal of providing a well-balanced overview on the state-of-the-art in this rapidly evolving field. These papers, many of which are based on notable presentations given during the Madrid conference, feature highlights such as (1) the development of sophisticated force spectroscopy procedures that are able to map the complete 3D tip-sample force field on different surfaces; (2) the considerable resolution improvement of Kelvin probe force microscopy (reaching, in some cases, the atomic scale), which is accompanied by a thorough, quantitative understanding of the contrast observed; (3) the perfecting of atomic resolution imaging on insulating substrates, which helps reshape our microscopic understanding of surface properties and chemical activity of these surfaces; (4) the description of instrumental and methodological developments that pave the way to the atomic-scale characterization of magnetic and electronic properties of nanostructures, and last but not least (5) the extension of dynamic imaging modes to high-resolution operation in liquids, ultimately achieving atomic resolution. The latter developments are already having a significant impact in the highly competitive field of biological imaging under physiological conditions. This special issue of Nanotechnology would not have been possible without the highly professional support from Nina Couzin, Amy Harvey, Alex Wotherspoon and the entire Nanotechnology team at IOP Publishing. We are thankful for their help in pushing this project forward. We also thank the authors who have contributed their excellent original articles to this issue, the referees whose comments have helped make the issue an accurate portrait of this rapidly moving field, and the entire NC-AFM community that continues to drive NC-AFM to new horizons.

  15. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael


    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  16. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.


    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  17. High-Resolution Scintimammography: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek


    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  18. High-resolution light microscopy of nanoforms (United States)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold


    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  19. High angular resolution diffusion imaging with stimulated echoes

    DEFF Research Database (Denmark)

    Lundell, Henrik; Alexander, Daniel C; Dyrby, Tim B


    other than the diffusion gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE and lead to a disrupted experimental design. Here, we introduce a simple compensation to the STEAM acquisition that avoids the orientational bias and disrupted experiment design...... that these gradient pulses can otherwise produce. The compensation is simple to implement by adjusting the gradient vectors in the diffusion pulses of the STEAM sequence, so that the net effective gradient vector including contributions from diffusion and other gradient pulses is as the experiment intends. High...... angular resolution diffusion imaging (HARDI) data were acquired with and without the proposed compensation. The data were processed to derive standard diffusion tensor imaging (DTI) maps, which highlight the need for the compensation. Ignoring the other gradient pulses, a bias in DTI parameters from STEAM...

  20. Venus gravity - A high-resolution map (United States)

    Reasenberg, R. D.; Goldberg, Z. M.; Macneil, P. E.; Shapiro, I. I.


    The Doppler data from the radio tracking of the Pioneer Venus Orbiter (PVO) have been used in a two-stage analysis to develop a high-resolution map of the gravitational potential of Venus, represented by a central mass and a surface mass density. The two-stage procedure invokes a Kalman filter-smoother to determine the orbit of the spacecraft, and a stabilized linear inverter to estimate the surface mass density. The resultant gravity map is highly correlated with the topographic map derived from the PVO radar altimeter data. However, the magnitudes of the gravity variations are smaller than would be expected if the topography were uncompensated, indicating that at least partial compensation has taken place.

  1. Ultra-high resolution computed tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)


    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately, and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  2. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  3. Discours polemique, refutation et resolution des sequences conversationnelles (Argumentative Discourse, Refutation and Outcome of Conversational Sequences). (United States)

    Moeschler, Jacques


    Analyzes the strategies employed in terminating conversational exchanges, with particular attention to argumentative sequences. Examines the features that distinguish these sequences from those that have a transactional character, and discusses the patterns of verbal interaction attendant to negative responses. Societe Nouvelle Didier Erudition,…

  4. High-resolution colorimetric imaging of paintings (United States)

    Martinez, Kirk; Cupitt, John; Saunders, David R.


    With the aim of providing a digital electronic replacement for conventional photography of paintings, a scanner has been constructed based on a 3000 X 2300 pel resolution camera which is moved precisely over a 1 meter square area. Successive patches are assembled to form a mosaic which covers the whole area at c. 20 pels/mm resolution, which is sufficient to resolve the surface textures, particularly craquelure. To provide high color accuracy, a set of seven broad-band interference filters are used to cover the visible spectrum. A calibration procedure based upon a least-mean-squares fit to the color of patches from a Macbeth Colorchecker chart yields an average color accuracy of better than 3 units in the CMC uniform color space. This work was mainly carried out as part of the VASARI project funded by the European Commission's ESPRIT program, involving companies and galleries from around Europe. The system is being used to record images for conservation research, for archival purposes and to assist in computer-aided learning in the field of art history. The paper will describe the overall system design, including the selection of the various hardware components and the design of controlling software. The theoretical basis for the color calibration methodology is described as well as the software for its practical implementation. The mosaic assembly procedure and some of the associated image processing routines developed are described. Preliminary results from the research will be presented.

  5. High resolution CT of temporal bone trauma

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Eun Kyung [Korea General Hospital, Seoul (Korea, Republic of)


    Radiographic studies of the temporal bone following head trauma are indicated when there is cerebrospinal fluid otorrhea or rhinorrhoea, hearing loss, or facial nerve paralysis. Plain radiography displays only 17-30% of temporal bone fractures and pluridirectional tomography is both difficult to perform, particularly in the acutely ill patient, and less satisfactory for the demonstration of fine fractures. Consequently, high resolution CT is the imaging method of choice for the investigation of suspected temporal bone trauma and allows special resolution of fine bony detail comparable to that attainable by conventional tomography. Eight cases of temporal bone trauma examined at Korea General Hospital April 1985 through May 1986. The results were as follows: Seven patients (87%) suffered longitudinal fractures. In 6 patients who had purely conductive hearing loss, CT revealed various ossicular chain abnormality. In one patient who had neuro sensory hearing loss, CT demonstrated intract ossicular with a fracture nearing lateral wall of the lateral semicircular canal. In one patient who had mixed hearing loss, CT showed complex fracture.

  6. High Resolution Radar Measurements of Snow Avalanches (United States)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris


    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  7. Pyramidal fractal dimension for high resolution images (United States)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut


    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  8. Detection of proximal caries with high-resolution and standard resolution digital radiographic systems

    NARCIS (Netherlands)

    Berkhout, W.E.R.; Verheij, H.G.C.; Syriopoulos, K.; Li, G.; Sanderink, G.C.H.; van der Stelt, P.F.


    Aims: The aim of this study was to: (1) compare the diagnostic accuracy of the high-resolution and standard resolution settings of four digital imaging systems for caries diagnosis and (2) compare the effect on the diagnostic accuracy of reducing the high-resolution image sizes to the standard

  9. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.


    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  10. A new high-resolution TOF technology

    CERN Document Server

    Fonte, Paulo J R; Williams, M C S


    In the framework of the ALICE collaboration we have recently studied the performance of multigap Resistive Plate Chambers operated in avalanche mode and at atmospheric pressure for time-of-flight measurements. The detector provided an overall (detector plus electronics) timing accuracy of 120 ps sigma at an efficiency of 98% for MIPs. The chambers had 4 gas gaps of 0.3 mm, each limited by a metallised ceramic plate and a glass plate, with an active dimension of 4'4cm2. The gas mixture contained C2H2F4+5%isobutane+10%SF6. A few percent of streamer discharges, each releasing about 20 pC, was tolerated without any noticeable inconvenience. This detector opens perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and a time resolution comparable to existing scintillator-based TOF technology but with significantly, up to an order of magnitude, lower price per channel.

  11. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P


    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  12. Speleothems as high-resolution paleoflood archives (United States)

    Denniston, Rhawn F.; Luetscher, Marc


    Over the last two decades, speleothems have become widely utilized records of past environmental variability, typically through their stable isotopic and trace elemental chemistry. Numerous speleothem researchers have identified evidence of flooding recorded by detrital layers trapped within speleothems, but few studies have developed paleoflood reconstructions from such samples. Because they can be precisely dated, are generally immune to post-depositional distortion or erosion, and can be tied to a fixed elevational baseline, speleothems hold enormous potential as high-resolution archives of cave floods, and thus as proxies for extreme rainfall or other hydrologic drivers of cave flooding. Here we review speleothem-based paleoflood reconstruction methods, identify potential biases and pitfalls, and suggest standard practices for future studies.

  13. High-resolution CT of otosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Dewen, Yang; Kodama, Takao; Tono, Tetsuya; Ochiai, Reiji; Kiyomizu, Kensuke; Suzuki, Yukiko; Yano, Takanori; Watanabe, Katsushi [Miyazaki Medical Coll., Kiyotake (Japan)


    High-resolution CT (HRCT) scans of thirty-two patients (60 ears) with the clinical diagnosis of fenestral otosclerosis were evaluated retrospectively. HRCT was performed with 1-mm-thick targeted sections and 1-mm (36 ears) or 0.5-mm (10 ears) intervals in the semiaxial projection. Seven patients (14 ears) underwent helical scanning with a 1-mm slice thickness and 1-mm/sec table speed. Forty-five ears (75%) were found to have one or more otospongiotic or otosclerotic foci on HRCT. In most instances (30 ears), the otospongiotic foci were found in the region of the fissula ante fenestram. No significant correlations between CT findings and air conduction threshold were observed. We found a significant relationship between lesions of the labyrinthine capsule and sensorineural hearing loss. We conclude that HRCT is a valuable modality for diagnosing otosclerosis, especially when otospongiotic focus is detected. (author)

  14. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K


    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...


    Directory of Open Access Journals (Sweden)

    Catherine Mering


    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  16. High resolution CT of Meckel's cave. (United States)

    Chui, M; Tucker, W; Hudson, A; Bayer, N


    High resolution CT of the parasellar region was carried out in 50 patients studied for suspected pituitary microadenoma, but who showed normal pituitary gland or microadenoma on CT. This control group of patients all showed an ellipsoid low-density area in the posterior parasellar region. Knowledge of the gross anatomy and correlation with metrizamide cisternography suggest that the low density region represents Meckel's cave, rather than just the trigeminal ganglion alone. Though there is considerable variation in the size of Meckel's cave in different patients as well as the two sides of the same patient, the rather constant ellipsoid configuration of the cave in normal subjects will aid in diagnosing small pathological lesions, thereby obviating more invasive cisternography via the transovale or lumbar route. Patients with "idiopathic" tic douloureux do not show a Meckel's cave significantly different from the control group.

  17. Georadar - high resolution geophysical electromagnetic device

    Directory of Open Access Journals (Sweden)

    Janez Stern


    Full Text Available Georadar is a high resolution geophysical electromagnetic device that was developed in the first part of the 1980's. In Slovenia it was first tested in 1991 on several objects of economicgeological, geotechnical and hydrogeologic nature.Here its usefulness in karst studied is presented. The first part of the paper deals with description of measurement procedure and methodological bases, and the second part with experience and results of case histories. Shown are radargrams from ornamental stone quarry Hotavlje, calcite mine Stahovica, Golobja jama karstcave near Divača and from highway construction site Razdrto-Čebulovica. All measurements were performed with the georadar instrument Pulse EKKO IV with a lOOMHz antenna according to the method of reflection profiling.

  18. Potential High Resolution Dosimeters For MRT (United States)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.


    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  19. High-Resolution Movement EEG Classification

    Directory of Open Access Journals (Sweden)

    Jakub Štastný


    Full Text Available The aim of the contribution is to analyze possibilities of high-resolution movement classification using human EEG. For this purpose, a database of the EEG recorded during right-thumb and little-finger fast flexion movements of the experimental subjects was created. The statistical analysis of the EEG was done on the subject's basis instead of the commonly used grand averaging. Statistically significant differences between the EEG accompanying movements of both fingers were found, extending the results of other so far published works. The classifier based on hidden Markov models was able to distinguish between movement and resting states (classification score of 94–100%, but it was unable to recognize the type of the movement. This is caused by the large fraction of other (nonmovement related EEG activities in the recorded signals. A classification method based on advanced EEG signal denoising is being currently developed to overcome this problem.

  20. Generating long sequences of high-intensity femtosecond pulses

    CERN Document Server

    Bitter, Martin


    We present an approach to create pulse sequences extending beyond 150~picoseconds in duration, comprised of $100~\\mu$J femtosecond pulses. A quarter of the pulse train is produced by a high-resolution pulse shaper, which allows full controllability over the timing of each pulse. Two nested Michelson interferometers follow to quadruple the pulse number and the sequence duration. To boost the pulse energy, the long train is sent through a multi-pass Ti:Sapphire amplifier, followed by an external compressor. A periodic sequence of 84~pulses of 120~fs width and an average pulse energy of 107~$\\mu$J, separated by 2~ps, is demonstrated as a proof of principle.

  1. High throughput 16S rRNA gene amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r...... to the presence of filamentous microorganisms was monitored weekly over 4 months. Microthrix was identified as a causative filament and suitable control measures were introduced. The level of Microthrix was reduced after 1-2 months but a number of other filamentous species were still present, with most of them...

  2. High-resolution MR cisternography of the cerebellopontine angle, obtained with a three-dimensional fast asymmetric spin-echo sequence in a 0.35-T open MR imaging unit. (United States)

    Naganawa, S; Ito, T; Iwayama, E; Fukatsu, H; Ishigaki, T


    High-resolution MR cisternography performed with 3D fast asymmetric spin-echo imaging (3D fast spin-echo with an ultra-long echo train length and asymmetric Fourier imaging) was optimized in a 0.35-T open MR imaging unit. The 0.35- and 1.5-T images of the two volunteers and three patients with acoustic schwannomas were then compared. The optimal parameters for images obtained by 3D fast asymmetric spin-echo imaging at 0.35 T were as follows: field of view, 15 cm; matrix, 256 x 256 x 40; section thickness, 1 mm; echo train length, 76; and imaging time, 10 minutes 44 seconds. Scans obtained from both normal volunteers showed the facial, cochlear, and superior and inferior vestibular nerves separately in the internal auditory canal on both 0.35- and 1.5-T images. All three acoustic schwannomas were depicted on both 0.35- and 1.5-T images. Screening for disease at the cerebellopontine angle and in the internal auditory canal, without the administration of contrast material on a low-field open MR imaging unit and within a clinically acceptable imaging time, may be possible. Further controlled prospective studies are required, however, before implementation on a wide basis. If proved effective, this may be of particular value for reducing healthcare costs and for imaging claustrophobic and pediatric patients in an open system.

  3. High-resolution downscaling for hydrological management (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos


    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  4. The high resolution neutrino calorimeter KARMEN

    Energy Technology Data Exchange (ETDEWEB)

    Drexlin, G.; Eberhard, V.; Gemmeke, H.; Giorginis, G.; Grandegger, W.; Gumbsheimer, R.; Hucker, H.; Husson, L.; Kleinfeller, J.; Maschuw, R.; Plischke, P.; Spohrer, G.; Schmidt, F.K.; Wochele, J.; Woelfle, S.; Zeitnitz, B. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Inst. fuer Kernphysik 1 Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Experimentelle Kernphysik); Bodman, B.; Burtak, F.; Finckh, E.; Glombik, A.; Kretschmer, W.; Schilling, F.; Voetisch, D. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Physikalisches Inst.); Edgington, J.A.; Gorringe, T.; Malik, A. (Queen Mary Coll., London (UK)); Booth, N.E. (Oxford Univ. (UK)); Dodd, A.; Payne, A.G.D. (Rutherford Appleton Lab., Chilton (UK))


    KARMEN is a 56 t scintillation calorimeter designed for beam dump neutrino experiments at the neutron spallation facility ISIS of the Rutherford Appleton Laboratory. The calorimetric properties are demonstrated by cosmic muons and laser calibration. The measured energy resolution of the detector is {sigma}{sub E}/E{approx equal}11.5%/{radical}E(MeV), the position resolution {sigma}{sub x}=5 cm and the timing resolution {sigma}{sub t}{approx equal}350 ps. (orig.).

  5. High resolution image reconstruction from projection of low resolution images differing in subpixel shifts (United States)

    Mareboyana, Manohar; Le Moigne, Jacqueline; Bennett, Jerome


    In this paper, we demonstrate simple algorithms that project low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithms are very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. are used in projection. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML) algorithms. The algorithms are robust and are not overly sensitive to the registration inaccuracies.

  6. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts (United States)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome


    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  7. High resolution 13C DOSY: The DEPTSE experiment (United States)

    Botana, Adolfo; Howe, Peter W. A.; Caër, Valérie; Morris, Gareth A.; Nilsson, Mathias


    High Resolution Diffusion-ordered Spectroscopy (HR-DOSY) is a valuable tool for mixture analysis by NMR. It separates the signals from different components according to their diffusion behavior, and can provide exquisite diffusion resolution when there is no signal overlap. In HR-DOSY experiments on 1H (by far the most common nucleus used for DOSY) there is frequent signal overlap that confuses interpretation. In contrast, a 13C spectrum usually has little overlap, and is in this respect a much better option for a DOSY experiment. The low signal-to-noise ratio is a critical limiting factor, but with recent technical advances such as cryogenic probes this problem is now less acute. The most widely-used pulse sequences for 13C DOSY perform diffusion encoding with 1H, using a stimulated echo in which half of the signal is lost. This signal loss can be avoided by encoding diffusion with 13C in a spin echo experiment such as the DEPTSE pulse sequence described here.

  8. High Resolution Airborne Shallow Water Mapping (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.


    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  9. High resolution low frequency ultrasonic tomography. (United States)

    Lasaygues, P; Lefebvre, J P; Mensah, S


    Ultrasonic reflection tomography results from a linearization of the inverse acoustic scattering problem, named the inverse Born approximation. The goal of ultrasonic reflection tomography is to obtain reflectivity images from backscattered measurements. This is a Fourier synthesis problem and the first step is to correctly cover the frequency space of the object. For this inverse problem, we use the classical algorithm of tomographic reconstruction by summation of filtered backprojections. In practice, only a limited number of views are available with our mechanical rig, typically 180, and the frequency bandwidth of the pulses is very limited, typically one octave. The resolving power of the system is them limited by the bandwidth of the pulse. Low and high frequencies can be restored by use of a deconvolution algorithm that enhances resolution. We used a deconvolution technique based on the Papoulis method. The advantage of this technique is conservation of the overall frequency information content of the signals. The enhancement procedure was tested by imaging a square aluminium rod with a cross-section less than the wavelength. In this application, the central frequency of the transducer was 250 kHz so that the central wavelength was 6 mm whereas the cross-section of the rod was 4 mm. Although the Born approximation was not theoretically valid in this case (high contrast), a good reconstruction was obtained.

  10. Automatic abundance analysis of high resolution spectra

    CERN Document Server

    Bonifacio, P; Bonifacio, Piercarlo; Caffau, Elisabetta


    We describe an automatic procedure for determining abundances from high resolution spectra. Such procedures are becoming increasingly important as large amounts of data are delivered from 8m telescopes and their high-multiplexing fiber facilities, such as FLAMES on ESO-VLT. The present procedure is specifically targeted for the analysis of spectra of giants in the Sgr dSph; however, the procedure may be, in principle, tailored to analyse stars of any type. Emphasis is placed on the algorithms and on the stability of the method; the external accuracy rests, ultimately, on the reliability of the theoretical models (model-atmospheres, synthetic spectra) used to interpret the data. Comparison of the results of the procedure with the results of a traditional analysis for 12 Sgr giants shows that abundances accurate at the level of 0.2 dex, comparable with that of traditional analysis of the same spectra, may be derived in a fast and efficient way. Such automatic procedures are not meant to replace the traditional ...

  11. Supporting observation campaigns with high resolution modeling (United States)

    Klocke, Daniel; Brueck, Matthias; Voigt, Aiko


    High resolution simulation in support of measurement campaigns offers a promising and emerging way to create large-scale context for small-scale observations of clouds and precipitation processes. As these simulation include the coupling of measured small-scale processes with the circulation, they also help to integrate the research communities from modeling and observations and allow for detailed model evaluations against dedicated observations. In connection with the measurement campaign NARVAL (August 2016 and December 2013) simulations with a grid-spacing of 2.5 km for the tropical Atlantic region (9000x3300 km), with local refinement to 1.2 km for the western part of the domain, were performed using the icosahedral non-hydrostatic (ICON) general circulation model. These simulations are again used to drive large eddy resolving simulations with the same model for selected days in the high definition clouds and precipitation for advancing climate prediction (HD(CP)2) project. The simulations are presented with the focus on selected results showing the benefit for the scientific communities doing atmospheric measurements and numerical modeling of climate and weather. Additionally, an outlook will be given on how similar simulations will support the NAWDEX measurement campaign in the North Atlantic and AC3 measurement campaign in the Arctic.

  12. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.


    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of correspo

  13. The High Time Resolution Radio Sky (United States)

    Thornton, D.


    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with


    Directory of Open Access Journals (Sweden)

    Prado-Molina, J.


    Full Text Available A low-cost airborne digital imaging system capable to perform aerial surveys with small-format cameras isintroduced. The equipment is intended to obtain high-resolution multispectral digital photographs constituting so aviable alternative to conventional aerial photography and satellite imagery. Monitoring software handles all theprocedures involved in image acquisition, including flight planning, real-time graphics for aircraft position updatingin a mobile map, and supervises the main variables engaged in the imaging process. This software also creates fileswith the geographical position of the central point of every image, and the flight path followed by the aircraftduring the entire survey. The cameras are mounted on a three-axis stabilized platform. A set of inertial sensorsdetermines platform's deviations independently from the aircraft and an automatic control system keeps thecameras at a continuous nadir pointing and heading, with a precision better than ± 1 arc-degree in three-axis. Thecontrol system is also in charge of saving the platform’s orientation angles when the monitoring software triggersthe camera. These external orientation parameters, together with a procedure for camera calibration give theessential elements for image orthocorrection. Orthomosaics are constructed using commercial GIS software.This system demonstrates the feasibility of large area coverage in a practical and economical way using smallformatcameras. Monitoring and automatization reduce the work while increasing the quality and the amount ofuseful images.

  15. High spatial resolution probes for neurobiology applications (United States)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.


    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  16. High Spectral Resolution Lidar (HSRL) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)


    High Spectral Resolution Lidar (HSRL) systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are absolutely calibrated by reference to molecular scattering, which is measured at each point in the lidar profile. Like the Raman lidar but unlike simple backscatter lidars such as the micropulse lidar, the HSRL can measure backscatter cross-sections and optical depths without prior assumptions about the scattering properties of the atmosphere. The depolarization observations also allow robust discrimination between ice and water clouds. In addition, rigorous error estimates can be computed for all measurements. A very narrow, angular field of view reduces multiple scattering contributions. The small field of view, coupled with a narrow optical bandwidth, nearly eliminates noise due to scattered sunlight. There are two operational U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility HSRL systems, one at the Barrow North Slope of Alaska (NSA) site and the other in the second ARM Mobile Facility (AMF2) collection of instrumentation.

  17. Holographic high-resolution endoscopic image recording (United States)

    Bjelkhagen, Hans I.


    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  18. High-resolution imaging using endoscopic holography (United States)

    Bjelkhagen, Hans I.


    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  19. DUACS: Toward High Resolution Sea Level Products (United States)

    Faugere, Y.; Gerald, D.; Ubelmann, C.; Claire, D.; Pujol, M. I.; Antoine, D.; Desjonqueres, J. D.; Picot, N.


    The DUACS system produces, as part of the CNES/SALP project, and the Copernicus Marine Environment and Monitoring Service, high quality multimission altimetry Sea Level products for oceanographic applications, climate forecasting centers, geophysic and biology communities... These products consist in directly usable and easy to manipulate Level 3 (along-track cross-calibrated SLA) and Level 4 products (multiple sensors merged as maps or time series) and are available in global and regional version (Mediterranean Sea, Arctic, European Shelves …).The quality of the products is today limited by the altimeter technology "Low Resolution Mode" (LRM), and the lack of available observations. The launch of 2 new satellites in 2016, Jason-3 and Sentinel-3A, opens new perspectives. Using the global Synthetic Aperture Radar mode (SARM) coverage of S3A and optimizing the LRM altimeter processing (retracking, editing, ...) will allow us to fully exploit the fine-scale content of the altimetric missions. Thanks to this increase of real time altimetry observations we will also be able to improve Level-4 products by combining these new Level-3 products and new mapping methodology, such as dynamic interpolation. Finally these improvements will benefit to downstream products : geostrophic currents, Lagrangian products, eddy atlas… Overcoming all these challenges will provide major upgrades of Sea Level products to better fulfill user needs.

  20. Laser wavelength comparison by high resolution interferometry. (United States)

    Layer, H P; Deslattes, R D; Schweitzer, W G


    High resolution interferometry has been used to determine the wavelength ratio between two molecularly stabilized He-Ne lasers, one locked to a methane absorption at 3.39 microm and the other locked to the k peak of (129)I(2) at 633 nm. An optical beat frequency technique gave fractional orders while a microwave sideband method yielded the integer parts. Conventional (third derivative) peak seeking servoes stabilized both laser and cavity lengths. Reproducibility of the electronic control system and optics was a few parts in 10(12), while systematic errors associated with curvature of the cavity mirrors limited the accuracy of the wavelength ratio measurement to 2 parts in 10(10). The measured wavelength ratio of the methane stabilized He-Ne laser at 3.39 microm [P(7) line, nu(3) band] to the (129)I(2) (k peak) stabilized He-Ne laser at 633 nm was 5.359 049 260 6 (0.000 2 ppm). This ratio agrees with that calculated from the (lower accuracy) results of earlier wavelength measurements made relative to the (86)Kr standard. Its higher accuracy thus permits a provisional extension of the frequency scale based on the cesium oscillator into the visible spectrum.

  1. High-resolution ophthalmic imaging system (United States)

    Olivier, Scot S.; Carrano, Carmen J.


    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  2. HAMSA: Highly Accelerated Multiple Sequence Aligner

    Directory of Open Access Journals (Sweden)

    Naglaa M. Reda


    Full Text Available For biologists, the existence of an efficient tool for multiple sequence alignment is essential. This work presents a new parallel aligner called HAMSA. HAMSA is a bioinformatics application designed for highly accelerated alignment of multiple sequences of proteins and DNA/RNA on a multi-core cluster system. The design of HAMSA is based on a combination of our new optimized algorithms proposed recently of vectorization, partitioning, and scheduling. It mainly operates on a distance vector instead of a distance matrix. It accomplishes similarity computations and generates the guide tree in a highly accelerated and accurate manner. HAMSA outperforms MSAProbs with 21.9- fold speedup, and ClustalW-MPI of 11-fold speedup. It can be considered as an essential tool for structure prediction, protein classification, motive finding and drug design studies.

  3. The High Resolution IRAS Galaxy Atlas

    CERN Document Server

    Cao, Y; Prince, T A; Beichman, C A; Cao, Yu; Terebey, Susan; Prince, Thomas A.; Beichman, Charles A.


    An atlas of the Galactic plane (-4.7 deg < b < 4.7 deg) plus the molecular clouds in Orion, Rho Oph, and Taurus-Auriga has been produced at 60 and 100 micron from IRAS data. The Atlas consists of resolution-enhanced coadded images having 1 arcmin -- 2 arcmin resolution as well as coadded images at the native IRAS resolution. The IRAS Galaxy Atlas, together with the DRAO HI line / 21 cm continuum and FCRAO CO (1-0) line Galactic plane surveys, both with similar (approx. 1 arcmin) resolution, provide a powerful venue for studying the interstellar medium, star formation and large scale structure in our Galaxy. This paper documents the production and characteristics of the Atlas.

  4. High resolution fire risk mapping in Italy (United States)

    Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko


    extinguishing actions, leaving more resources to improve safety in areas at risk. With the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a procedure was defined in order to assess areas at risk with high spatial resolution (900 m2) based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behaviour. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November- April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. About 48000 fire perimeters which burnt about 5500 km2 were considered in the analysis. The analysis has been carried out at 30 m spatial resolution. Some important considerations relating to climate and the territorial features that characterize the fire regime at national level contribute to better understand the forest fire phenomena. These results allow to define new strategies for forest fire prevention and management extensible to other geographical areas.

  5. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function. (United States)

    Goebel, Juliane; Nensa, Felix; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai


    To assess two compressed sensing cine magnetic resonance imaging (MRI) sequences with high spatial or high temporal resolution in comparison to a reference steady-state free precession cine (SSFP) sequence for reliable quantification of left ventricular (LV) volumes. LV short axis stacks of two compressed sensing breath-hold cine sequences with high spatial resolution (SPARSE-SENSE HS: temporal resolution: 40 msec, in-plane resolution: 1.0 × 1.0 mm(2) ) and high temporal resolution (SPARSE-SENSE HT: temporal resolution: 11 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) and of a reference cine SSFP sequence (standard SSFP: temporal resolution: 40 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) were acquired in 16 healthy volunteers on a 1.5T MR system. LV parameters were analyzed semiautomatically twice by one reader and once by a second reader. The volumetric agreement between sequences was analyzed using paired t-test, Bland-Altman plots, and Passing-Bablock regression. Small differences were observed between standard SSFP and SPARSE-SENSE HS for stroke volume (SV; -7 ± 11 ml; P = 0.024), ejection fraction (EF; -2 ± 3%; P = 0.019), and myocardial mass (9 ± 9 g; P = 0.001), but not for end-diastolic volume (EDV; P = 0.079) and end-systolic volume (ESV; P = 0.266). No significant differences were observed between standard SSFP and SPARSE-SENSE HT regarding EDV (P = 0.956), SV (P = 0.088), and EF (P = 0.103), but for ESV (3 ± 5 ml; P = 0.039) and myocardial mass (8 ± 10 ml; P = 0.007). Bland-Altman analysis showed good agreement between the sequences (maximum bias ≤ -8%). Two compressed sensing cine sequences, one with high spatial resolution and one with high temporal resolution, showed good agreement with standard SSFP for LV volume assessment. J. Magn. Reson. Imaging 2016;44:366-374. © 2016 Wiley Periodicals, Inc.

  6. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images. (United States)

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen


    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images.

  7. Large Scale, High Resolution, Mantle Dynamics Modeling (United States)

    Geenen, T.; Berg, A. V.; Spakman, W.


    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  8. Generating Multiple Base-Resolution DNA Methylomes Using Reduced Representation Bisulfite Sequencing. (United States)

    Chatterjee, Aniruddha; Rodger, Euan J; Stockwell, Peter A; Le Mée, Gwenn; Morison, Ian M


    Reduced representation bisulfite sequencing (RRBS) is an effective technique for profiling genome-wide DNA methylation patterns in eukaryotes. RRBS couples size selection, bisulfite conversion, and second-generation sequencing to enrich for CpG-dense regions of the genome. The progressive improvement of second-generation sequencing technologies and reduction in cost provided an opportunity to examine the DNA methylation patterns of multiple genomes. Here, we describe a protocol for sequencing multiple RRBS libraries in a single sequencing reaction to generate base-resolution methylomes. Furthermore, we provide a brief guideline for base-calling and data analysis of multiplexed RRBS libraries. These strategies will be useful to perform large-scale, genome-wide DNA methylation analysis.

  9. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM) (United States)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  10. High temporal resolution functional MRI using parallel echo volumar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F. [CEA Saclay, DSV, I2BM, Neurospin, F-91191 Gif Sur Yvette (France); Le Roux, P. [GEHC, Buc (France); Dehaine-Lambertz, G. [Unite INSERM 562, Gif Sur Yvette (France)


    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  11. Intact MicroRNA Analysis Using High Resolution Mass Spectrometry (United States)

    Kullolli, Majlinda; Knouf, Emily; Arampatzidou, Maria; Tewari, Muneesh; Pitteri, Sharon J.


    MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that post-transcriptionally regulate gene expression, and play key roles in the regulation of a variety of cellular processes and in disease. New tools to analyze miRNAs will add understanding of the physiological origins and biological functions of this class of molecules. In this study, we investigate the utility of high resolution mass spectrometry for the analysis of miRNAs through proof-of-concept experiments. We demonstrate the ability of mass spectrometry to resolve and separate miRNAs and corresponding 3' variants in mixtures. The mass accuracy of the monoisotopic deprotonated peaks from various miRNAs is in the low ppm range. We compare fragmentation of miRNA by collision-induced dissociation (CID) and by higher-energy collisional dissociation (HCD) which yields similar sequence coverage from both methods but additional fragmentation by HCD versus CID. We measure the linear dynamic range, limit of detection, and limit of quantitation of miRNA loaded onto a C18 column. Lastly, we explore the use of data-dependent acquisition of MS/MS spectra of miRNA during online LC-MS and demonstrate that multiple charge states can be fragmented, yielding nearly full sequence coverage of miRNA on a chromatographic time scale. We conclude that high resolution mass spectrometry allows the separation and measurement of miRNAs in mixtures and a standard LC-MS setup can be adapted for online analysis of these molecules.

  12. Applications of High Throughput Nucleotide Sequencing

    DEFF Research Database (Denmark)

    Waage, Johannes Eichler

    The recent advent of high throughput sequencing of nucleic acids (RNA and DNA) has vastly expanded research into the functional and structural biology of the genome of all living organisms (and even a few dead ones). With this enormous and exponential growth in biological data generation come......-sequencing, a study of the effects on alternative RNA splicing of KO of the nonsense mediated RNA decay system in Mus, using digital gene expression and a custom-built exon-exon junction mapping pipeline is presented (article I). Evolved from this work, a Bioconductor package, spliceR, for classifying alternative...... splicing events and coding potential of isoforms from full isoform deconvolution software, such as Cufflinks (article II), is presented. Finally, a study using 5’-end RNA-seq for alternative promoter detection between healthy patients and patients with acute promyelocytic leukemia is presented (article III...

  13. Symptomatic isolated middle cerebral artery dissection: High resolution MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Byon, Jung Hee; Kwak, Hyo Sung; Chung, Gyung Ho; Hwang, Seung Bae [Dept. of Radiology, Chonbuk National University Medical School, Jeonju (Korea, Republic of)


    To perform high-resolution magnetic resonance imaging (HRMRI) and determine clinical features of patients with acute symptomatic middle cerebral artery (MCA) dissection. Thirteen patients with acute symptomatic MCA dissection underwent HRMRI within 3 days after initial clinical onset. They also underwent routine brain MR imaging. HRMRI examinations included time-of-flight MR angiography (MRA), T2-weighted, T1-weighted, proton-density-weighted, and three-dimensional magnetization-prepared rapid acquisition gradient-echo (MPRAGE) sequences. Conventional angiography and MRA were used as reference standard to establish the diagnosis of MCA dissection. The angiographic findings and HRMRI findings such as intimal flap, double lumen, and intramural hematoma were analyzed in this study. All patients presented cerebral ischemia (median National Institutes of Health Stroke Scale score = 4, range = 0-18). String sign was seen on MRA in seven patients. However, double lumen was seen in all patients on HRMRI by intimal flap. High signal lesion on MPRAGE sequences around the dissection lumen due to intramural hematoma was seen in three patients. HRMRI can be used to easily detect the wall structure of MCA such as the intimal flap and double lumen in patients with acute symptomatic MCA dissection. MPRAGE can detect hemorrhage in false lumen of MCA dissection.

  14. High Resolution Surface Science at Mars (United States)

    Bailey, Zachary J.; Tamppari, Leslie K.; Lock, Robert E.; Sturm, Erick J.


    The proposed mission would place a 2.4 m telescope in orbit around Mars with two focal plane instruments to obtain the highest resolution images and spectral maps of the surface to date (3-10x better than current). This investigation would make major contributions to all of the Mars Program Goals: life, climate, geology and preparation for human presence.

  15. High spatial resolution LWIR hyperspectral sensor (United States)

    Roberts, Carson B.; Bodkin, Andrew; Daly, James T.; Meola, Joseph


    Presented is a new hyperspectral imager design based on multiple slit scanning. This represents an innovation in the classic trade-off between speed and resolution. This LWIR design has been able to produce data-cubes at 3 times the rate of conventional single slit scan devices. The instrument has a built-in radiometric and spectral calibrator.

  16. High-speed photography of high-resolution moire patterns (United States)

    Whitworth, Martin B.; Huntley, Jonathan M.; Field, John E.


    The techniques of high resolution moire photography and high speed photography have been combined to allow measurement of the in-plane components of a transient displacement field with microsecond time resolution. Specimen gratings are prepared as casts in a thin layer of epoxy resin on the surface of a specimen. These are illuminated with a flash tube and imaged onto a reference grating with a specially modified camera lens, which incorporates a slotted mask in the aperture plane. For specimen gratings of 75 lines mm1, this selects the +1 and -1 order diffracted beams, thus doubling the effective grating frequency to 150 lines mm1. The resulting real-time moire fringes are recorded with a Hadland 792 image converter camera (Imacon) at an inter-frame time of 2-5ts. The images are digitised and an automatic fringe analysis technique based on the 2-D Fourier transform method is used to extract the displacement information. The technique is illustrated by the results of an investigation into the transient deformation of composite disc specimens, impacted with rectangular metal sliders fired from a gas gun.


    Directory of Open Access Journals (Sweden)

    Sree Hari


    Full Text Available INTRODUCTION Magnetic Resonance Imaging (MRI is the imaging modality used for the assessment of infratentorial neoplasms. Although Computed Tomography (CT provides better demonstration of small or subtle calcifications within tumors. OBJECTIVES Study is done to assess the potential of MRI in characterisation of different tumors in posterior fossa by evaluating various unenhanced and gadolinium enhanced sequences and to compare high resolution FSE MRI sequences with routine FSE MRI sequences in diagnosing posterior fossa brain tumors. Also correlate findings on Magnetic Resonance Imaging with Pathological diagnosis. MATERIALS AND METHODS A total of 52 patients were diagnosed by CT brain as having posterior fossa brain for a year of 2 years were included in the study. In all studies MR imaging was performed with a clinical 1.5 T system (General electrical medical systems. A dedicated phased-array coil was used. RESULTS The age group ranged from 1 year to 60 years, majority were between 1 to 20 years (39%. Slight male preponderance was seen (males 29, females 23. Commonest tumor encountered in our study was vestibular schwannoma. DWI alone can differentiate different pediatric posterior fossa brain tumors. One case of pilocytic astrocytoma showed solid lesion instead of typical cystic lesion with mural nodule. One case AT-RT showed 2 lesions one in cerebrum, one in CP angle. Common feature being intra-axial lesion involving cerebellum. MRI was able to predict diagnosis in 50 of the 52 tumors. CONCLUSION Magnetic Resonance Imaging was found to be a highly sensitive imaging procedure and method of choice for posterior fossa brain tumors.

  18. Quantum interpolation for high-resolution sensing. (United States)

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola


    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

  19. Synthesis of rainfall time series in a high temporal resolution (United States)

    Callau Poduje, Ana Claudia; Haberlandt, Uwe


    In order to optimize the design and operation of urban drainage systems, long and continuous rain series in a high temporal resolution are essential. As the length of the rainfall records is often short, particularly the data available with the temporal and regional resolutions required for urban hydrology, it is necessary to find some numerical representation of the precipitation phenomenon to generate long synthetic rainfall series. An Alternating Renewal Model (ARM) is applied for this purpose, which consists of two structures: external and internal. The former is the sequence of wet and dry spells, described by their durations which are simulated stochastically. The internal structure is characterized by the amount of rain corresponding to each wet spell and its distribution within the spell. A multivariate frequency analysis is applied to analyze the internal structure of the wet spells and to generate synthetic events. The stochastic time series must reproduce the statistical characteristics of observed high resolution precipitation measurements used to generate them. The spatio-temporal interdependencies between stations are addressed by resampling the continuous synthetic series based on the Simulated Annealing (SA) procedure. The state of Lower-Saxony and surrounding areas, located in the north-west of Germany is used to develop the ARM. A total of 26 rainfall stations with high temporal resolution records, i.e. rainfall data every 5 minutes, are used to define the events, find the most suitable probability distributions, calibrate the corresponding parameters, simulate long synthetic series and evaluate the results. The length of the available data ranges from 10 to 20 years. The rainfall series involved in the different steps of calculation are compared using a rainfall-runoff model to simulate the runoff behavior in urban areas. The EPA Storm Water Management Model (SWMM) is applied for this evaluation. The results show a good representation of the

  20. High Resolution RPCs for Large TOF Systems

    CERN Document Server

    Ferreira-Marques, R; CERN. Geneva; Carolino, N; Policarpo, Armando; Fonte, P


    Here we report on a particular type of RPC that presents above 95% efficiency for minimum ionizing particles and a very sharp time resolution, below 80 ps sigma. Our 9cm2 cells, made with glass and metal electrodes that form accurately spaced gaps of a few hundred micrometers, are operated at atmospheric pressure in non-flammable gases and can be economically produced in large quantities, opening perspectives for the construction of large area timeof flight systems.

  1. Ultra-high resolution electron microscopy (United States)

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.


    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  2. High-quality multi-resolution volume rendering in medicine

    Institute of Scientific and Technical Information of China (English)

    XIE Kai; YANG Jie; LI Xiao-liang


    In order to perform a high-quality interactive rendering of large medical data sets on a single off-theshelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.

  3. Using high-resolution displays for high-resolution cardiac data. (United States)

    Goodyer, Christopher; Hodrien, John; Wood, Jason; Kohl, Peter; Brodlie, Ken


    The ability to perform fast, accurate, high-resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to visualization must evolve. In this paper, we address the interactive display of data from high-resolution magnetic resonance imaging scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled liquid crystal display panel display wall and associated software, which provides an interactive and intuitive user interface. The oView software is an OpenGL application that is written for the VR Juggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at the universities of both Leeds and Oxford. We discuss important factors to be considered for interactive two-dimensional display of large three-dimensional datasets, including the use of intuitive input devices and level of detail aspects.

  4. 高分辨率溶解曲线分析与基因测序检测粪便DNA对大肠癌筛查作用的比较%Compare the Role of High-Resolution Melting Curve Analysis and Gene Sequencing for Detection of Fecal DNA Screening for Colorectal Cancer

    Institute of Scientific and Technical Information of China (English)

    李琛; 许岸高; 甘爱华; 张晓慧; 钟旭辉


    目的 用基因测序评价高分辨率溶解曲线分析( high-resolution melting,HRM)检测粪便DNA的可靠性.方法 收集2009年3月~2009年9月在惠州市中心人民医院住院的39例大肠癌患者的新鲜粪便标本约1g,应用HRM法和基因测序法检测粪便中apc、k-ras、p53基因的突变情况,并对结果进行统计学分析.结果 应用HRM在39例大肠癌患者粪便中检出apc基因突变22例,检出率为56.41% (22/39),经测序HRM阳性的22例标本均发现有基因突变,HRM阴性的标本未发现有基因突变者;检出k-ras基因突变14例,检出率为35.90% (14/39),经测序HRM阳性的14例标本均发现有基因突变,HRM阴性的标本末发现有基因突变者;检出p53基因突变24例,检出率为61.54%(24/39),经测序HRM阳性的24例标本均发现有基因突变,HRM阴性的标本未发现有基因突变者.结论 HRM法与基因测序的一致率较高,提示HRM法检测粪便DNA突变筛查大肠癌具有潜在的临床应用价值.%Objective To evaluate high-resolution melting curve analysis ( high-resolution melting,HRM) the reliability of detection of fecal DNA using genome sequencing. Methods Fresh stool samples of about 1 g from 39 patients with colorectal cancer in Huizhou municipal central hospital March,2009 ~ September,2009 were colected.HRM and gene sequencing were performed to detect the mutation of ape, k-ras, p53 gene. Results There were 22 cases with ape gene mutations in 39 patients with colorectal cancer,and the detection rate was 56.41% (22/39). By sequencing 22 HRM-positive specimens were found to have mutations,HRM-negative samples showed no mutations; 14 cases with k-ras gene mutations in 39 patients and the detection rate was 35.90% (14/39). By sequencing 14 HRM-positive specimens were found to have mutations,HRM-negative samples showed no mutations ;24 cases with p53 gene mutations in 39 patients and the detection rate was 61.54% (24/39). By sequencing 24 HRM

  5. Sequence variations of the locus-specific 5' untranslated regions of SLA class I genes and the development of a comprehensive genomic DNA-based high-resolution typing method for SLA-2. (United States)

    Choi, H; Le, M T; Lee, H; Choi, M-K; Cho, H-S; Nagasundarapandian, S; Kwon, O-J; Kim, J-H; Seo, K; Park, J-K; Lee, J-H; Ho, C-S; Park, C


    The genetic diversity of the major histocompatibility complex (MHC) class I molecules of pigs has not been well characterized. Therefore, the influence of MHC genetic diversity on the immune-related traits of pigs, including disease resistance and other MHC-dependent traits, is not well understood. Here, we attempted to develop an efficient method for systemic analysis of the polymorphisms in the epitope-binding region of swine leukocyte antigens (SLA) class I genes. We performed a comparative analysis of the last 92 bp of the 5' untranslated region (UTR) to the beginning of exon 4 of six SLA classical class I-related genes, SLA-1, -2, -3, -4, -5, and -9, from 36 different sequences. Based on this information, we developed a genomic polymerase chain reaction (PCR) and direct sequencing-based comprehensive typing method for SLA-2. We successfully typed SLA-2 from 400 pigs and 8 cell lines, consisting of 9 different pig breeds, and identified 49 SLA-2 alleles, including 31 previously reported alleles and 18 new alleles. We observed differences in the composition of SLA-2 alleles among different breeds. Our method can be used to study other SLA class I loci and to deepen our knowledge of MHC class I genes in pigs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. High resolution RPC's for large TOF systems

    CERN Document Server

    Fonte, Paulo J R; Pinhão, J; Carolino, N; Policarpo, Armando


    Here we report on a particular type of RPC that presents up to 99% efficiency for minimum ionizing particles and a very good time resolution, below 50 ps s for the most optimized construction. Our 9 cm2 cells, made with glass and metal electrodes that form accurately spaced gaps of a few hundred micrometers, are operated at atmospheric pressure in non-flammable gases and can be economically produced in large quantities, opening perspectives for the construction of large area time of flight systems.

  7. High resolution IVEM tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Sedat, J.W.; Agard, D.A. [Univ. of California, San Francisco, CA (United States)


    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.

  8. DSCOVR High Time Resolution Solar Wind Measurements (United States)

    Szabo, Adam


    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  9. Nanosecond microscopy with a high spectroscopic resolution

    CERN Document Server

    Heinrich, C; Ritsch-Marte, M; Bernet, Stefan; Heinrich, Christoph; Ritsch-Marte, Monika


    We demonstrate coherent anti-Stokes Raman scattering (CARS) microscopy in a wide-field setup with nanosecond laser pulse excitation. In contrast to confocal setups, the image of a sample can be recorded with a single pair of excitation pulses. For this purpose the excitation geometry is specially designed in order to satisfy the phase matching condition over the whole sample area. The spectral, temporal and spatial sensitivity of the method is demonstrated by imaging test samples, i.e. oil vesicles in sunflower seeds, on a nanosecond timescale. The method provides snapshot imaging in 3 nanoseconds with a spectral resolution of 25 wavenumbers (cm$^{-1}$).

  10. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration


    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  11. Towards high resolution data assimilation and ensemble forecasting

    NARCIS (Netherlands)

    Stappers, R.J.J.


    Due the increase in computational power of supercomputers the grid resolution of high resolution numerical weather prediction models is now reaching the 1 km scale. As a result, mesoscale processes related to high impact weather (such as deep convection) can now explicitly be resolved by the models.

  12. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.


    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  13. High-Speed Smart Camera with High Resolution

    Directory of Open Access Journals (Sweden)

    J. Dubois


    Full Text Available High-speed video cameras are powerful tools for investigating for instance the biomechanics analysis or the movements of mechanical parts in manufacturing processes. In the past years, the use of CMOS sensors instead of CCDs has enabled the development of high-speed video cameras offering digital outputs, readout flexibility, and lower manufacturing costs. In this paper, we propose a high-speed smart camera based on a CMOS sensor with embedded processing. Two types of algorithms have been implemented. A compression algorithm, specific to high-speed imaging constraints, has been implemented. This implementation allows to reduce the large data flow (6.55 Gbps and to propose a transfer on a serial output link (USB 2.0. The second type of algorithm is dedicated to feature extraction such as edge detection, markers extraction, or image analysis, wavelet analysis, and object tracking. These image processing algorithms have been implemented into an FPGA embedded inside the camera. These implementations are low-cost in terms of hardware resources. This FPGA technology allows us to process in real time 500 images per second with a 1280×1024 resolution. This camera system is a reconfigurable platform, other image processing algorithms can be implemented.

  14. High-Speed Smart Camera with High Resolution

    Directory of Open Access Journals (Sweden)

    Mosqueron R


    Full Text Available High-speed video cameras are powerful tools for investigating for instance the biomechanics analysis or the movements of mechanical parts in manufacturing processes. In the past years, the use of CMOS sensors instead of CCDs has enabled the development of high-speed video cameras offering digital outputs, readout flexibility, and lower manufacturing costs. In this paper, we propose a high-speed smart camera based on a CMOS sensor with embedded processing. Two types of algorithms have been implemented. A compression algorithm, specific to high-speed imaging constraints, has been implemented. This implementation allows to reduce the large data flow (6.55 Gbps and to propose a transfer on a serial output link (USB 2.0. The second type of algorithm is dedicated to feature extraction such as edge detection, markers extraction, or image analysis, wavelet analysis, and object tracking. These image processing algorithms have been implemented into an FPGA embedded inside the camera. These implementations are low-cost in terms of hardware resources. This FPGA technology allows us to process in real time 500 images per second with a 1280×1024 resolution. This camera system is a reconfigurable platform, other image processing algorithms can be implemented.

  15. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan


    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  16. Proteogenomic analysis of Mycobacterium smegmatis using high resolution mass spectrometry

    Directory of Open Access Journals (Sweden)

    Matthys Gerhardus Potgieter


    Full Text Available AbstractBiochemical evidence is vital for accurate genome annotation. The integration of experimental data collected at the proteome level using high resolution mass spectrometry allows for improvements in genome annotation by providing evidence for novel gene models, while validating or modifying others. Here we report the results of a proteogenomic analysis of a reference strain of Mycobacterium smegmatis (mc2155, a fast growing model organism for the pathogenic Mycobacterium tuberculosis - the causative agent for Tuberculosis. By integrating high throughput LC/MS/MS proteomic data with genomic six frame translation and ab initio gene prediction databases, a total of 2887 ORFs were identified, including 2810 ORFs annotated to a Reference protein, and 63 ORFs not previously annotated to a Reference protein. Further, the translational start site (TSS was validated for 558 Reference proteome gene models, while upstream translational evidence was identified for 81. In addition, N-terminus derived peptide identifications allowed for downstream TSS modification of a further 24 gene models. We validated the existence of 6 previously described interrupted coding sequences at the peptide level, and provide evidence for 4 novel frameshift positions. Analysis of peptide posterior error probability (PEP scores indicates high-confidence novel peptide identifications and shows that the genome of M. smegmatis mc2155 is not yet fully annotated. Data are available via ProteomeXchange with identifier PXD003500.

  17. Preliminary experience with MRA in evaluating the degree of carotid stenosis and plaque morphology using high-resolution sequences after gadofosveset trisodium (Vasovist) administration: comparison with CTA and DSA. (United States)

    Anzidei, M; Napoli, A; Geiger, D; Cavallo Marincola, B; Zini, C; Zaccagna, F; Di Paolo, P; Catalano, C; Passariello, R


    The authors performed a preliminary study with blood-pool contrast-enhanced magnetic resonance angiography (MRA) in evaluating the degree of carotid artery stenosis and plaque morphology, comparing the diagnostic performance of first-pass (FP) and steady-state (SS) acquisitions with 64-slice computed tomography angiography (CTA) and using digital subtraction angiography (DSA) as the reference standard. Twenty patients with >or=50% carotid artery stenosis at Doppler sonography underwent blood-pool contrast-enhanced MRA, CTA and DSA. Two independent radiologists evaluated MRA and CTA examinations to assess the degree of stenosis and characterise plaque morphology. Accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for FP, SS and CTA. The McNemar and Wilcoxon tests were used to determine significant differences (p0.05). Blood-pool contrast-enhanced MRA with SS sequences allow improved diagnostic evaluation of the degree of carotid stenosis and plaque morphology compared with FP and is substantially equal to CTA and DSA.

  18. A computer-aided diagnosis system for breast DCE-MRI at high spatiotemporal resolution

    NARCIS (Netherlands)

    Dalmis, M.U.; Gubern-Merida, A.; Vreemann, S.; Karssemeijer, N.; Mann, R.; Platel, B.


    PURPOSE: With novel MRI sequences, high spatiotemporal resolution has become available in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast. Since benign structures in the breast can show enhancement similar to malignancies in DCE-MRI, characterization of detected lesions

  19. The high spectral resolution (scanning) lidar (HSRL)

    Energy Technology Data Exchange (ETDEWEB)

    Eloranta, E. [Univ. of Wisconsin, Madison, WI (United States)


    Lidars enable the spatial resolution of optical depth variation in clouds. The optical depth must be inverted from the backscatter signal, a process which is complicated by the fact that both molecular and aerosol backscatter signals are present. The HSRL has the advantage of allowing these two signals to be separated. It has a huge dynamic range, allowing optical depth retrieval for t = 0.01 to 3. Depolarization is used to determine the nature of hydrometeors present. Experiments show that water clouds must almost always be taken into account during cirrus observations. An exciting new development is the possibility of measuring effective radius via diffraction peak width and variable field-of-view measurements. 2 figs.

  20. Studying stellar populations at high spectral resolution

    CERN Document Server

    Bruzual, Gustavo A


    I describe very briefly the new libraries of empirical spectra of stars covering wide ranges of values of the atmospheric parameters Teff, log g, [Fe/H], as well as spectral type, that have become available in the recent past, among them the HNGSL, MILES, UVES-POP, ELODIE, and the IndoUS libraries. I show the results of using the IndoUS and the HNGSL libraries, as well as an atlas of theoretical model atmospheres, to build population synthesis models. These libraries are complementary in spectral resolution and wavelength coverage, and will prove extremely useful to describe spectral features expected in galaxy spectra from the NUV to the NIR. The fits to observed galaxy spectra using simple and composite stellar population models are discussed.

  1. A high-resolution vehicle emission inventory for China (United States)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.


    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  2. Towards optical intensity interferometry for high angular resolution stellar astrophysics

    CERN Document Server

    Nunez, Paul D


    Most neighboring stars are still detected as point sources and are beyond the angular resolution reach of current observatories. Methods to improve our understanding of stars at high angular resolution are investigated. Air Cherenkov telescopes (ACTs), primarily used for Gamma-ray astronomy, enable us to increase our understanding of the circumstellar environment of a particular system. When used as optical intensity interferometers, future ACT arrays will allow us to detect stars as extended objects and image their surfaces at high angular resolution. Optical stellar intensity interferometry (SII) with ACT arrays, composed of nearly 100 telescopes, will provide means to measure fundamental stellar parameters and also open the possibility of model-independent imaging. A data analysis algorithm is developed and permits the reconstruction of high angular resolution images from simulated SII data. The capabilities and limitations of future ACT arrays used for high angular resolution imaging are investigated via ...

  3. Research Relative to High Spatial Resolution Passive Microwave Sounding Systems (United States)

    Staelin, D. H.; Rosenkranz, P. W.


    Methods to obtain high resolution passive microwave weather observations, and understanding of their probable impact on numerical weather prediction accuracy were investigated. The development of synthetic aperture concepts for geosynchronous passive microwave sounders were studied. The effects of clouds, precipitation, surface phenomena, and atmospheric thermal fine structure on a scale of several kilometers were examined. High resolution passive microwave sounders (e.g., AMSU) with an increased number of channels will produce initialization data for numerical weather prediction (NWP) models with both increased spatial resolution and coverage. The development of statistical models for error growth in high resolution primitive equation NWP models which permit the consequences of various observing system alternatives, including sensors and assimilation times and procedures is discussed. A high resolution three dimensional primitive equation NWP model to determine parameters in an error growth model similar to that formulated by Lorenz, but with more degrees of freedom is utilized.

  4. Whole-animal imaging with high spatio-temporal resolution (United States)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.


    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  5. High resolution resonant recombination measurements using evaporative cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Beilmann, C; Lopez-Urrutia, J R Crespo; Mokler, P H; Ullrich, J, E-mail: christian.beilmann@mpi-hd.mpg.d [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)


    We report on a method significantly improving the energy resolution of dielectronic recombination (DR) measurements in electron beam ion traps (EBITs). The line width of DR resonances can be reduced to values distinctly smaller than the corresponding space charge width of the uncompensated electron beam. The experimental technique based on forced evaporative cooling is presented together with test measurements demonstrating its high efficiency. The principle for resolution improvement is elucidated and the limiting factors are discussed. This method opens access to high resolution DR measurements at high ion-electron collision energies required for innermost shell DR in highly charged ions (HCI).

  6. Cheetah: A high frame rate, high resolution SWIR image camera (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob


    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  7. High Resolution Studies of Mass Loss from Massive Binary Stars (United States)

    Corcoran, Michael F.; Gull, Theodore R.; Hamaguchi, Kenji; Richardson, Noel; Madura, Thomas; Post Russell, Christopher Michael; Teodoro, Mairan; Nichols, Joy S.; Moffat, Anthony F. J.; Shenar, Tomer; Pablo, Herbert


    Mass loss from hot luminous single and binary stars has a significant, perhaps decisive, effect on their evolution. The combination of X-ray observations of hot shocked gas embedded in the stellar winds and high-resolution optical/UV spectra of the cooler mass in the outflow provides unique ways to study the unstable process by which massive stars lose mass both through continuous stellar winds and rare, impulsive, large-scale mass ejections. The ability to obtain coordinated observations with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and other X-ray observatories has allowed, for the first time, studies of resolved line emisssion over the temperature range of 104- 108K, and has provided observations to confront numerical dynamical models in three dimensions. Such observations advance our knowledge of mass-loss asymmetries, spatial and temporal variabilities, and the fundamental underlying physics of the hot shocked outflow, providing more realistic constraints on the amount of mass lost by different luminous stars in a variety of evolutionary stages. We discuss the impact that these joint observational studies have had on our understanding of dynamical mass outflows from massive stars, with particular emphasis on two important massive binaries, Delta Ori Aa, a linchpin of the mass luminosity relation for upper HRD main sequence stars, and the supermassive colliding wind binary Eta Carinae.

  8. COSMIC: somatic cancer genetics at high-resolution (United States)

    Forbes, Simon A.; Beare, David; Boutselakis, Harry; Bamford, Sally; Bindal, Nidhi; Tate, John; Cole, Charlotte G.; Ward, Sari; Dawson, Elisabeth; Ponting, Laura; Stefancsik, Raymund; Harsha, Bhavana; Kok, Chai Yin; Jia, Mingming; Jubb, Harry; Sondka, Zbyslaw; Thompson, Sam; De, Tisham; Campbell, Peter J.


    COSMIC, the Catalogue of Somatic Mutations in Cancer ( is a high-resolution resource for exploring targets and trends in the genetics of human cancer. Currently the broadest database of mutations in cancer, the information in COSMIC is curated by expert scientists, primarily by scrutinizing large numbers of scientific publications. Over 4 million coding mutations are described in v78 (September 2016), combining genome-wide sequencing results from 28 366 tumours with complete manual curation of 23 489 individual publications focused on 186 key genes and 286 key fusion pairs across all cancers. Molecular profiling of large tumour numbers has also allowed the annotation of more than 13 million non-coding mutations, 18 029 gene fusions, 187 429 genome rearrangements, 1 271 436 abnormal copy number segments, 9 175 462 abnormal expression variants and 7 879 142 differentially methylated CpG dinucleotides. COSMIC now details the genetics of drug resistance, novel somatic gene mutations which allow a tumour to evade therapeutic cancer drugs. Focusing initially on highly characterized drugs and genes, COSMIC v78 contains wide resistance mutation profiles across 20 drugs, detailing the recurrence of 301 unique resistance alleles across 1934 drug-resistant tumours. All information from the COSMIC database is available freely on the COSMIC website. PMID:27899578

  9. A high-resolution time-to-digital converter using a three-level resolution (United States)

    Dehghani, Asma; Saneei, Mohsen; Mahani, Ali


    In this article, a three-level resolution Vernier delay line time-to-digital converter (TDC) was proposed. The proposed TDC core was based on the pseudo-differential digital architecture that made it insensitive to nMOS and pMOS transistor mismatches. It also employed a Vernier delay line (VDL) in conjunction with an asynchronous read-out circuitry. The time interval resolution was equal to the difference of delay between buffers of upper and lower chains. Then, via the extra chain included in the lower delay line, resolution was controlled and power consumption was reduced. This method led to high resolution and low power consumption. The measurement results of TDC showed a resolution of 4.5 ps, 12-bit output dynamic range, and integral nonlinearity of 1.5 least significant bits. This TDC achieved the consumption of 68.43 µW from 1.1-V supply.

  10. Updating Maps Using High Resolution Satellite Imagery (United States)

    Alrajhi, Muhamad; Shahzad Janjua, Khurram; Afroz Khan, Mohammad; Alobeid, Abdalla


    Kingdom of Saudi Arabia is one of the most dynamic countries of the world. We have witnessed a very rapid urban development's which are altering Kingdom's landscape on daily basis. In recent years a substantial increase in urban populations is observed which results in the formation of large cities. Considering this fast paced growth, it has become necessary to monitor these changes, in consideration with challenges faced by aerial photography projects. It has been observed that data obtained through aerial photography has a lifecycle of 5-years because of delay caused by extreme weather conditions and dust storms which acts as hindrances or barriers during aerial imagery acquisition, which has increased the costs of aerial survey projects. All of these circumstances require that we must consider some alternatives that can provide us easy and better ways of image acquisition in short span of time for achieving reliable accuracy and cost effectiveness. The approach of this study is to conduct an extensive comparison between different resolutions of data sets which include: Orthophoto of (10 cm) GSD, Stereo images of (50 cm) GSD and Stereo images of (1 m) GSD, for map updating. Different approaches have been applied for digitizing buildings, roads, tracks, airport, roof level changes, filling stations, buildings under construction, property boundaries, mosques buildings and parking places.

  11. Sunspot Group Development in High Resolution

    CERN Document Server

    Muraközy, J; Ludmány, A


    The Solar and Heliospheric Obseratory/Michelson Doppler Imager--Debrecen Data (SDD) sunspot catalogue provides an opportunity to study the details and development of sunspot groups on a large statistical sample. The SDD data allow, in particular, the differential study of the leading and following parts with a temporal resolution of 1.5 hours. In this study, we analyse the equilibrium distance of sunspot groups as well as the evolution of this distance over the lifetime of the groups and the shifts in longitude associated with these groups. We also study the asymmetry between the compactness of the leading and following parts, as well as the time-profiles for the development of the area of sunspot groups. A logarithmic relationship has been found between the total area and the distance of leading-following parts of active regions (ARs) at the time of their maximum area. In the developing phase the leading part moves forward; this is more noticeable in larger ARs. The leading part has a higher growth rate than...

  12. Wide-field, high-resolution Fourier ptychographic microscopy

    CERN Document Server

    Zheng, Guoan; Yang, Changhuei


    In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope's depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 um, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM's successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system's optics to one that is solvable through computation.

  13. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter


    We present high resolution upconversion of incoherent infrared radiation by means of sum-frequency mixing with a laser followed by simple CCD Si-camera detection. Noise associated with upconversion is, in strong contrast to room temperature direct mid-IR detection, extremely small, thus very faint...... signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...

  14. Achieving High Resolution Timer Events in Virtualized Environment. (United States)

    Adamczyk, Blazej; Chydzinski, Andrzej


    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  15. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... to, for example, atmospheric research, combustion and gasification. Some high-temperature, high-resolution IR/UV absorption/transmission measurements gases (e.g. CO2, SO2, SO3 and phenol) are presented....

  16. Ultra-high resolution and high-brightness AMOLED (United States)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave


    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  17. Sensitivity study of reliable, high-throughput resolution metricsfor photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Christopher N.; Naulleau, Patrick P.


    The resolution of chemically amplified resists is becoming an increasing concern, especially for lithography in the extreme ultraviolet (EUV) regime. Large-scale screening and performance-based down-selection is currently underway to identify resist platforms that can support shrinking feature sizes. Resist screening efforts, however, are hampered by the absence of reliable resolution metrics that can objectively quantify resist resolution in a high-throughput fashion. Here we examine two high-throughput metrics for resist resolution determination. After summarizing their details and justifying their utility, we characterize the sensitivity of both metrics to two of the main experimental uncertainties associated with lithographic exposure tools, namely: limited focus control and limited knowledge of optical aberrations. For an implementation at EUV wavelengths, we report aberration and focus limited error bars in extracted resolution of {approx} 1.25 nm RMS for both metrics making them attractive candidates for future screening and down-selection efforts.

  18. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes. (United States)

    Yang, Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R


    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is approximately 2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach.

  19. High-resolution magnetic resonance imaging in study of the skin: Normal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Sans, Nicolas, E-mail: [Service de Radiologie et Imagerie Medicale, Centre Hospitalier Universitaire Purpan, Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9 (France); Faruch, Marie; Chiavassa-Gandois, Helene; Ribes, Catherine Lalande Champetier de [Service de Radiologie et Imagerie Medicale, Centre Hospitalier Universitaire Purpan, Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9 (France); Paul, Carle [Service de Dermatologie, Centre Hospitalier Universitaire Larrey, Toulouse (France); Railhac, Jean-Jacques [Service de Radiologie et Imagerie Medicale, Centre Hospitalier Universitaire Purpan, Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9 (France)


    Purpose: To validate quantitative and qualitative criteria of normal healthy skin using high-resolution MR imaging. Materials and methods: FIESTA and spin echo sequences of the skin of the heel, back and calf were obtained in 31 healthy volunteers. A dedicated 3-in. coil for study of the skin was used to optimize reception sensitivity. Quantitative analysis was performed to measure skin thickness in these three sites and qualititative analysis aimed to differentiate the various skin layers. Results: With both sequences, the stratum corneum appeared as a hyperintense layer. The epidermis was visualized appeared as a fine, homogeneous, hyperintense line. The dermoepidermal junction was clearer particularly in the calf. The dermis was also identified in each sequence and in each anatomic site. The signal was hypointense in both sequences, homogeneous with spin echo and more heterogeneous with FIESTA. Moreover the interface between the papillary and the reticular dermis could be distinguished. The hypodermis was visualized in both sequences and in all sites and hypodermal inclusions in the dermis were seen particularly in the back and calf. Lastly, the pilosebaceous follicles and the deep vascular network of the reticular dermis were more clearly seen with FIESTA sequence. Measures of overall skin thickness and for each layer according to site, sex and MRI sequence were performed. Statistical analysis was then performed to seek significant differences between the results according to these parameters. Conclusion: MR imaging provides global analysis with high resolution of the various skin layers down to the hypodermis and the muscular fascia.

  20. Targeted high-throughput sequencing of tagged nucleic acid samples


    M.; Meyer; Stenzel, U.; Myles, S.; Prüfer, K; Hofreiter, M.


    High-throughput 454 DNA sequencing technology allows much faster and more cost-effective sequencing than traditional Sanger sequencing. However, the technology imposes inherent limitations on the number of samples that can be processed in parallel. Here we introduce parallel tagged sequencing (PTS), a simple, inexpensive and flexible barcoding technique that can be used for parallel sequencing any number and type of double-stranded nucleic acid samples. We demonstrate that PTS is particularly...

  1. High Resolution CryoFESEM of Microbial Surfaces (United States)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol


    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  2. High Resolution Orthoimagery = Orthorectified Metro Areas: 2000 - Present (United States)

    U.S. Geological Survey, Department of the Interior — High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a...

  3. High-resolution SPECT for small-animal imaging

    Institute of Scientific and Technical Information of China (English)


    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency.

  4. Methodology of high-resolution photography for mural condition database (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.


    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  5. High Resolution Screening of biologically active compounds and metabolites

    NARCIS (Netherlands)

    Kool, J.


    High Resolution Screening of biologically active compounds and metabolites Jeroen Kool Biotransformation enzymes play a crucial role in the metabolism of both endogenous compounds and xenobiotics. Usually, the detoxication of these compounds by biotransformation enzymes results in harmless metab

  6. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  7. High Resolution, Range/Range-Rate Imager Project (United States)

    National Aeronautics and Space Administration — Visidyne proposes to develop a design for a small, lightweight, high resolution, in x, y, and z Doppler imager to assist in the guidance, navigation and control...

  8. Using High Spatial Resolution Digital Imagery (United States)


    frame and a bright area (hot spot) at the center. The same brightness shifts are present within most aerial photography , particularly the pronounced hot...the deciduous trees and shrubs were without leaves. In addition, the reed and grass species were fully senesced . The lack of photosynthetically...For example, high quality, large-scale aerial photography will provide adequate clarity and detail to accurately identify surface features that are

  9. High resolution survey for topographic surveying (United States)

    Luh, L. C.; Setan, H.; Majid, Z.; Chong, A. K.; Tan, Z.


    In this decade, terrestrial laser scanner (TLS) is getting popular in many fields such as reconstruction, monitoring, surveying, as-built of facilities, archaeology, and topographic surveying. This is due the high speed in data collection which is about 50,000 to 1,000,000 three-dimensional (3D) points per second at high accuracy. The main advantage of 3D representation for the data is that it is more approximate to the real world. Therefore, the aim of this paper is to show the use of High-Definition Surveying (HDS), also known as 3D laser scanning for topographic survey. This research investigates the effectiveness of using terrestrial laser scanning system for topographic survey by carrying out field test in Universiti Teknologi Malaysia (UTM), Skudai, Johor. The 3D laser scanner used in this study is a Leica ScanStation C10. Data acquisition was carried out by applying the traversing method. In this study, the result for the topographic survey is under 1st class survey. At the completion of this study, a standard of procedure was proposed for topographic data acquisition using laser scanning systems. This proposed procedure serves as a guideline for users who wish to utilize laser scanning system in topographic survey fully.

  10. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony


    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors...

  11. High resolution computed tomography for peripheral facial nerve paralysis

    Energy Technology Data Exchange (ETDEWEB)

    Koester, O.; Straehler-Pohl, H.J.


    High resolution computer tomographic examinations of the petrous bones were performed on 19 patients with confirmed peripheral facial nerve paralysis. High resolution CT provides accurate information regarding the extent, and usually regarding the type, of pathological process; this can be accurately localised with a view to possible surgical treatments. The examination also differentiates this from idiopathic paresis, which showed no radiological changes. Destruction of the petrous bone, without facial nerve symptoms, makes early suitable treatment mandatory.

  12. Geometric calibration of high-resolution remote sensing sensors

    Institute of Scientific and Technical Information of China (English)

    LIANG Hong-you; GU Xing-fa; TAO Yu; QIAO Chao-fei


    This paper introduces the applications of high-resolution remote sensing imagery and the necessity of geometric calibration for remote sensing sensors considering assurance of the geometric accuracy of remote sensing imagery. Then the paper analyzes the general methodology of geometric calibration. Taking the DMC sensor geometric calibration as an example, the paper discusses the whole calibration procedure. Finally, it gave some concluding remarks on geometric calibration of high-resolution remote sensing sensors.

  13. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan


    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, some...... of the computations we present have never before been carried out by standard desktop computers on data sets of comparable size....

  14. Dynamics of High-Resolution Networks

    DEFF Research Database (Denmark)

    Sekara, Vedran

    NETWORKS are everywhere. From the smallest confines of the cells within our bodies to the webs of social relations across the globe. Networks are not static, they constantly change, adapt, and evolve to suit new conditions. In order to understand the fundamental laws that govern networks we need...... the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...

  15. High-resolution noise radar using slow ADC (United States)

    Lukin, Konstantin; Vyplavin, Pavlo; Zemlyanyi, Oleg; Lukin, Sergiy; Palamarchuk, Volodymyr


    Conventional digital signal processing scheme in noise radars has some limitations related to combination of high resolution and high dynamic range. Those limitations are caused by a tradeoff in performance of currently available ADCs: the faster is ADC the smaller is its depth (number of bits) available. Depth of the ADC determines relation between the smallest and highest observable signals and thus limits its dynamic range. In noise radar with conventional processing the sounding and reference signals are to be digitized at intermediate frequency band and to be processed digitally. The power spectrum bandwidth of noise signal which can be digitized with ADC depends on its sampling rate. The bandwidth of radar signal defines range resolution of any radar: the wider the spectrum the better the resolution. Actually this is the main bottleneck of high resolution Noise Radars: conventional processing doesn't enable to get both high range resolution and high dynamic range. In the paper we present a way to go around this drawback by changing signal processing ideology in noise radar. We present results of our consideration and design of high resolution Noise Radar which uses slow ADCs. The design is based upon generation of both probing and reference signals digitally and realization of their cross-correlation in an analog correlator. The output of the correlator is a narrowband signal that requires rather slow ADC to be sampled which nowadays may give up to 130 dB dynamic range.

  16. High resolution 3-D wavelength diversity imaging (United States)

    Farhat, N. H.


    A physical optics, vector formulation of microwave imaging of perfectly conducting objects by wavelength and polarization diversity is presented. The results provide the theoretical basis for optimal data acquisition and three-dimensional tomographic image retrieval procedures. These include: (a) the selection of highly thinned (sparse) receiving array arrangements capable of collecting large amounts of information about remote scattering objects in a cost effective manner and (b) techniques for 3-D tomographic image reconstruction and display in which polarization diversity data is fully accounted for. Data acquisition employing a highly attractive AMTDR (Amplitude Modulated Target Derived Reference) technique is discussed and demonstrated by computer simulation. Equipment configuration for the implementation of the AMTDR technique is also given together with a measurement configuration for the implementation of wavelength diversity imaging in a roof experiment aimed at imaging a passing aircraft. Extension of the theory presented to 3-D tomographic imaging of passive noise emitting objects by spectrally selective far field cross-correlation measurements is also given. Finally several refinements made in our anechoic-chamber measurement system are shown to yield drastic improvement in performance and retrieved image quality.

  17. High-resolution gravity model of Venus (United States)

    Reasenberg, R. D.; Goldberg, Z. M.


    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  18. A Very High Spatial Resolution Detector for Small Animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Kanai Shah, M.S.


    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  19. High-resolution spectroscopy of gamma-ray transients

    Energy Technology Data Exchange (ETDEWEB)

    Cline, T.L.


    The first high-resolution spectrometer flown to observe gamma-ray bursts was launched on the ISEE-3 spacecraft over nine years ago. It recorded two events before instrument failure, giving results that were suggestive but marginal. Other studies, with coarser energy resolution, also show evidence for spectral features as well as for spectral evolution on short time scales. Absolute source strength calibration will be possible only with source identification, but understanding of the burst emission processes will surely come only from the measurements having the best spectral and temporal precision. The only high- resolution gamma-ray spectrometer now planned, here or abroad, for space flight is an instrument sequel to the ISEE-3 spectrometer, to be flown on the interplanetary 'GGS Wind' mission. Much larger and higher-sensitivity, high-resolution instruments may have their optimum opportunities in conjunction with studies of solar flares in the time frame of the solar maximum of 2002.

  20. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan


    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  1. Climatologies at high resolution for the Earth land surface areas

    CERN Document Server

    Karger, Dirk Nikolaus; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus; Linder, H Peter; Kessler, Michael


    High resolution information of climatic conditions is essential to many application in environmental sciences. Here we present the CHELSA algorithm to downscale temperature and precipitation estimates from the European Centre for Medium-Range Weather Forecast (ECMWF) climatic reanalysis interim (ERA-Interim) to a high resolution of 30 arc sec. The algorithm for temperature is based on a statistical downscaling of atmospheric temperature from the ERA-Interim climatic reanalysis. The precipitation algorithm incorporates orographic predictors such as wind fields, valley exposition, and boundary layer height, and a bias correction using Global Precipitation Climatology Center (GPCC) gridded and Global Historical Climate Network (GHCN) station data. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We present a comparison of data derived from the CHELSA algorithm with two other high resolution gridded products with overlapping temporal resolution (Tropical R...

  2. High resolution single particle refinement in EMAN2.1. (United States)

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J


    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods.

  3. High resolution temperature measurement technique for measuring marine heat flow

    Institute of Scientific and Technical Information of China (English)

    QIN; YangYang; YANG; XiaoQiu; WU; BaoZhen; SUN; ZhaoHua; SHI; XiaoBin


    High resolution temperature measurement technique is one of the key techniques for measuring marine heat flow. Basing on Pt1000 platinum resistance which has the characteristics of high accuracy and good stability, we designed a bridge reversal excitation circuit for high resolution temperature measurement. And the deep ocean floor in-situ test results show that: (1) temperature deviation and peak-to-peak resolution of the first version circuit board (V1) are 1.960-1.990 mK and 0.980-0.995 m Kat 1.2-2.7°C, respectively; and temperature deviation and peak-to-peak resolution of the second circuit board (V2) are 2.260mK and 1.130 mK at 1.2-1.3°C, respectively; (2) During the 2012NSFC-IndOcean cruise, seafloor geothermal gradient at Ind2012HF03,-07 and-12 stations (water depth ranges from 3841 to 4541 m) were successfully measured, the values are 59.1,75.1 and 71.6°C/km, respectively. And the measurement errors of geothermal gradient at these three stations are less than 3.0% in terms of the peak-to-peak resolution. These indicate that the high resolution temperature measurement technique based on Pt1000 platinum resistance in this paper can be applied to marine heat flow measurement to obtain high precision geothermal parameters.

  4. High resolution surface plasmon microscopy for cell imaging (United States)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.


    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  5. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.


    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  6. Developing a high-resolution regional atmospheric reanalysis for Australia (United States)

    White, Christopher; Fox-Hughes, Paul; Su, Chun-Hsu; Jakob, Dörte; Kociuba, Greg; Eisenberg, Nathan; Steinle, Peter; Harris, Rebecca; Corney, Stuart; Love, Peter; Remenyi, Tomas; Chladil, Mark; Bally, John; Bindoff, Nathan


    A dynamically consistent, long-term atmospheric reanalysis can be used to support high-quality assessments of environmental risk and likelihood of extreme events. Most reanalyses are presently based on coarse-scale global systems that are not suitable for regional assessments in fire risk, water and natural resources, amongst others. The Australian Bureau of Meteorology is currently working to close this gap by producing a high-resolution reanalysis over the Australian and New Zealand region to construct a sequence of atmospheric conditions at sub-hourly intervals over the past 25 years from 1990. The Australia reanalysis consists of a convective-scale analysis nested within a 12 km regional-scale reanalysis, which is bounded by a coarse-scale ERA-Interim reanalysis that provides the required boundary and initial conditions. We use an unchanging atmospheric modelling suite based on the UERRA system used at the UK Met Office and the more recent version of the Bureau of Meteorology's operational numerical prediction model used in ACCESS-R (Australian Community Climate and Earth-System Simulator-Regional system). An advanced (4-dimensional variational) data assimilation scheme is used to optimally combine model physics with multiple observations from aircrafts, sondes, surface observations and satellites to create a best estimate of state of the atmosphere over a 6-hour moving window. This analysis is in turn used to drive a higher-resolution (1.5 km) downscaling model over selected subdomains within Australia, currently eastern New South Wales and Tasmania, with the capability to support this anywhere in the Australia-New Zealand domain. The temporal resolution of the gridded analysis fields for both the regional and higher-resolution subdomains are generally one hour, with many fields such as 10 m winds and 2 m temperatures available every 10 minutes. The reanalysis also produces many other variables that include wind, temperature, moisture, pressure, cloud cover

  7. Identification of errors introduced during high throughput sequencing of the T cell receptor repertoire

    Directory of Open Access Journals (Sweden)

    Cheng Cheng


    Full Text Available Abstract Background Recent advances in massively parallel sequencing have increased the depth at which T cell receptor (TCR repertoires can be probed by >3log10, allowing for saturation sequencing of immune repertoires. The resolution of this sequencing is dependent on its accuracy, and direct assessments of the errors formed during high throughput repertoire analyses are limited. Results We analyzed 3 monoclonal TCR from TCR transgenic, Rag-/- mice using Illumina® sequencing. A total of 27 sequencing reactions were performed for each TCR using a trifurcating design in which samples were divided into 3 at significant processing junctures. More than 20 million complementarity determining region (CDR 3 sequences were analyzed. Filtering for lower quality sequences diminished but did not eliminate sequence errors, which occurred within 1-6% of sequences. Erroneous sequences were pre-dominantly of correct length and contained single nucleotide substitutions. Rates of specific substitutions varied dramatically in a position-dependent manner. Four substitutions, all purine-pyrimidine transversions, predominated. Solid phase amplification and sequencing rather than liquid sample amplification and preparation appeared to be the primary sources of error. Analysis of polyclonal repertoires demonstrated the impact of error accumulation on data parameters. Conclusions Caution is needed in interpreting repertoire data due to potential contamination with mis-sequence reads. However, a high association of errors with phred score, high relatedness of erroneous sequences with the parental sequence, dominance of specific nt substitutions, and skewed ratio of forward to reverse reads among erroneous sequences indicate approaches to filter erroneous sequences from repertoire data sets.

  8. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  9. High-resolution neutron microtomography with noiseless neutron counting detector

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Feller, W.B. [Nova Scientific Inc., 10 Picker Road, Sturbridge, MA 01566 (United States); Lehmann, E. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Butler, L.G. [Louisiana State University, Baton Rouge, LA 70803 (United States); Dawson, M. [Helmholtz Centre Berlin for Materials and Energy (Germany)


    The improved collimation and intensity of thermal and cold neutron beamlines combined with recent advances in neutron imaging devices enable high-resolution neutron radiography and microtomography, which can provide information on the internal structure of objects not achievable with conventional X-ray imaging techniques. Neutron detection efficiency, spatial and temporal resolution (important for the studies of dynamic processes) and low background count rate are among the crucial parameters defining the quality of radiographic images and tomographic reconstructions. The unique capabilities of neutron counting detectors with neutron-sensitive microchannel plates (MCPs) and with Timepix CMOS readouts providing high neutron detection efficiency ({approx}70% for cold neutrons), spatial resolutions ranging from 15 to 55 {mu}m and a temporal resolution of {approx}1 {mu}s-combined with the virtual absence of readout noise-make these devices very attractive for high-resolution microtomography. In this paper we demonstrate the capabilities of an MCP-Timepix detection system applied to microtomographic imaging, performed at the ICON cold neutron facility of the Paul Scherrer Institute. The high resolution and the absence of readout noise enable accurate reconstruction of texture in a relatively opaque wood sample, differentiation of internal tissues of a fly and imaging of individual {approx}400 {mu}m grains in an organic powder encapsulated in a {approx}700 {mu}m thick metal casing.

  10. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)


    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  11. High-resolution MRI encoding using radiofrequency phase gradients. (United States)

    Sharp, Jonathan C; King, Scott B; Deng, Qunli; Volotovskyy, Vyacheslav; Tomanek, Boguslaw


    Although MRI offers highly diagnostic medical imagery, patient access to this modality worldwide is very limited when compared with X-ray or ultrasound. One reason for this is the expense and complexity of the equipment used to generate the switched magnetic fields necessary for MRI encoding. These field gradients are also responsible for intense acoustic noise and have the potential to induce nerve stimulation. We present results with a new MRI encoding principle which operates entirely without the use of conventional B0 field gradients. This new approach--'Transmit Array Spatial Encoding' (TRASE)--uses only the resonant radiofrequency (RF) field to produce Fourier spatial encoding equivalent to conventional MRI. k-space traversal (image encoding) is achieved by spin refocusing with phase gradient transmit fields in spin echo trains. A transmit coil array, driven by just a single transmitter channel, was constructed to produce four phase gradient fields, which allows the encoding of two orthogonal spatial axes. High-resolution two-dimensional-encoded in vivo MR images of hand and wrist were obtained at 0.2 T. TRASE exploits RF field phase gradients, and offers the possibility of very low-cost diagnostics and novel experiments exploiting unique capabilities, such as imaging without disturbance of the main B0 magnetic field. Lower field imaging (imaging are favorable application domains as, in both cases, it is technically easier to achieve the short RF pulses desirable for long echo trains, and also to limit RF power deposition. As TRASE is simply an alternative mechanism (and technology) of moving through k space, there are many close analogies between it and conventional B0 -encoded techniques. TRASE is compatible with both B0 gradient encoding and parallel imaging, and so hybrid sequences containing all three spatial encoding approaches are possible.

  12. Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    CERN Document Server

    Arridge, Simon; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward


    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then...

  13. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    CERN Document Server

    Suerfu, Burkhant


    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pio...

  14. Performance of a high resolution cavity beam position monitor system (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen


    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  15. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system. (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza


    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively.

  16. Isotope specific resolution recovery image reconstruction in high resolution PET imaging. (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib


    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  17. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data. (United States)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W


    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis.

  18. Exoplanet transits enable high-resolution spectroscopy across spatially resolved stellar surfaces

    CERN Document Server

    Dravins, Dainis; Dahlén, Erik; Pazira, Hiva


    Observations of stellar surfaces - except for the Sun - are hampered by their tiny angular extent, while observed spectral lines are smeared by averaging over the stellar surface, and by stellar rotation. Exoplanet transits can be used to analyze stellar atmospheric structure, yielding high-resolution spectra across spatially highly resolved stellar surfaces, free from effects of spatial smearing and the rotational wavelength broadening present in full-disk spectra. During a transit, stellar surface portions successively become hidden, and differential spectroscopy between various transit phases provides spectra of those surface segments then hidden behind the planet. The small area subtended by even a large planet (about 1% of a main-sequence star) offers high spatial resolution but demands very precise observations. We demonstrate the reconstruction of photospheric FeI line profiles at a spectral resolution R=80,000 across the surface of the solar-type star HD209458. Any detailed understanding of stellar at...

  19. Study of Saturn electrostatic discharges with high time resolution (United States)

    Zakharenko, V.; Mylostna, K.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griessmeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.


    Ground-based observations of SED (Saturn Electrostatic Discharges) with high time resolution are the next stage of extraterrestrial atmospheric processes study. Due to extremely high intensity of Saturn's storm J (2010) [1] we have obtained the records with high signal-to-noise (S/N) ratio with the time resolution of 15 ns. It permitted us to investigate the microsecond structure of lightning and clearly distinguish SED in the presence of local interference in virtue of a dispersive delay of extraterrestrial planetary signals.

  20. Evacuee Compliance Behavior Analysis using High Resolution Demographic Information

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei [ORNL; Han, Lee [University of Tennessee, Knoxville (UTK); Liu, Cheng [ORNL; Tuttle, Mark A [ORNL; Bhaduri, Budhendra L [ORNL


    The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic traffic simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.

  1. Design and implementation of spaceborne high resolution infrared touch screen (United States)

    Li, Tai-guo; Li, Wen-xin; Dong, Yi-peng; Ma, Wen; Xia, Jia-gao


    For the consideration of the special application environment of the electronic products used in aerospace and to further more improve the human-computer interaction of the manned aerospace area. The research is based on the design and implementation way of the high resolution spaceborne infrared touch screen on the basis of FPGA and DSP frame structure. Beside the introduction of the whole structure for the high resolution spaceborne infrared touch screen system, this essay also gives the detail information about design of hardware for the high resolution spaceborne infrared touch screen system, FPGA design, GUI design and DSP algorithm design based on Lagrange interpolation. What is more, the easy makes a comprehensive research of the reliability design for the high resolution spaceborne infrared touch screen for the special purpose of it. Besides, the system test is done after installation of spaceborne infrared touch screen. The test result shows that the system is simple and reliable enough, which has a stable running environment and high resolution, which certainly can meet the special requirement of the manned aerospace instrument products.

  2. Sequence characteristics of T4-like bacteriophage IME08 benome termini revealed by high throughput sequencing

    Directory of Open Access Journals (Sweden)

    An Xiaoping


    Full Text Available Abstract Background T4 phage is a model species that has contributed broadly to our understanding of molecular biology. T4 DNA replication and packaging share various mechanisms with human double-stranded DNA viruses such as herpes virus. The literature indicates that T4-like phage genomes have permuted terminal sequences, and are generated by a DNA terminase in a sequence-independent manner; Methods genomic DNA of T4-like bacteriophage IME08 was subjected to high throughput sequencing, and the read sequences with extraordinarily high occurrences were analyzed; Results we demonstrate that both the 5' and 3' termini of the IME08 genome starts with base G or A. The presence of a consensus sequence TTGGA|G around the breakpoint of the high frequency read sequences suggests that the terminase cuts the branched pre-genome in a sequence-preferred manner. Our analysis also shows that terminal cleavage is asymmetric, with one end cut at a consensus sequence, and the other end generated randomly. The sequence-preferred cleavage may produce sticky-ends, but with each end being packaged with different efficiencies; Conclusions this study illustrates how high throughput sequencing can be used to probe replication and packaging mechanisms in bacteriophages and/or viruses.

  3. Generating barcoded libraries for multiplex high-throughput sequencing. (United States)

    Knapp, Michael; Stiller, Mathias; Meyer, Matthias


    Molecular barcoding is an essential tool to use the high throughput of next generation sequencing platforms optimally in studies involving more than one sample. Various barcoding strategies allow for the incorporation of short recognition sequences (barcodes) into sequencing libraries, either by ligation or polymerase chain reaction (PCR). Here, we present two approaches optimized for generating barcoded sequencing libraries from low copy number extracts and amplification products typical of ancient DNA studies.

  4. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony;


    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...

  5. Stars and planets at high spatial and spectral resolution

    NARCIS (Netherlands)

    Albrecht, Simon


    The work presented in this thesis involves the development of new instrumental techniques and analysing tools, combining high spectral resolution with high spatial information, with the aim to increase our understanding of the formation and evolution of stars and planets. First, a novel instrumental

  6. Achieving High Resolution Timer Events in Virtualized Environment.

    Directory of Open Access Journals (Sweden)

    Blazej Adamczyk

    Full Text Available Virtual Machine Monitors (VMM have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service. Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  7. High-resolution structure of viruses from random diffraction snapshots

    CERN Document Server

    Hosseinizadeh, A; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A


    The advent of the X-ray Free Electron Laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date, and provides a potentially powerful alternative route for analysis of data from crystalline and nanocrystalline objects.

  8. New high resolution synthetic stellar libraries for the Gaia Mission

    CERN Document Server

    Sordo, R; Bouret, J C; Brott, I; Edvardsson, B; Frémat, Y; Heber, U; Josselin, E; Kochukhov, O; Korn, A; Lanzafame, A; Martins, F; Schweitzer, A; Thévenin, F; Zorec, J


    High resolution synthetic stellar libraries are of fundamental importance for the preparation of the Gaia Mission. We present new sets of spectral stellar libraries covering two spectral ranges: 300 --1100 nm at 0.1 nm resolution, and 840 -- 890 nm at 0.001 nm resolution. These libraries span a large range in atmospheric parameters, from super-metal-rich to very metal-poor (-5.0 $<$[Fe/H]$<$+1.0), from cool to hot (\\teff=3000--50000 K) stars, including peculiar abundance variations. The spectral resolution, spectral type coverage and number of models represent a substantial improvement over previous libraries used in population synthesis models and in atmospheric analysis.

  9. Subcutaneous Cysticercosis: Role of High Resolution Ultrasound in Diagnosis

    Directory of Open Access Journals (Sweden)

    Sachin Lohra


    Full Text Available BACKGROUND: Though the commonest site of extraintestinal infestation with Taenia solium is brain, Subcutaneous cysticercosis is fairly common in asia. The advent of high resolution ultrasound, FNAC, and a heightened clinician awareness of the existence of isolated soft tissue cysticerci has probably supplanted the need for surgical intervention and excision biopsy in asymptomatic subcutaneous cysts, as cysts have high rate of spontaneous resolution. OBJECTIVES: - To observe role of high resolution ultrasound in diagnosis and need of surgical intervention in treatment of subcutaneous cysticercosis. MATERIALS and METHODS: retrospective study of seven cases of extraneural cysticercosis, all involving the subcutaneous tissues or muscles over the arms and torso. Either high resolution ultrasound, FNAC, or excision biopsy, or a combination of these were used to arrive at a diagnosis. All patients were followed up with serial ultrasounds. All patients received oral nitazoxanide for autoinfection. Surgical excision was resorted to in two patients, in whom it was possible to obtain a histopathologic diagnosis. RESULTS: of the seven cases of subcutaneous cysticercosis all have rural background, most of the patients (6 were vegetarian and one was non vegetarian. Age and gender of patient, size and duration of lesion were insignificant in establishing the diagnosis. High resolution ultrasound was highly significant in establishing the diagnosis over FNAC and histopathology. Five of the cases resolved spontaneously and surgical intervention was required only in two cases. INTERPRETATION and CONCLUSIONS: With heightened clinician awareness of the existence of isolated subcutaneous cysticercosis in patients with close animal contact, and the widespread availability of high resolution ultrasound and FNAC, subcutaneous cysticercosis can be diagnosed readily. Surgery can be avoided in the great majority of these patients, as the cysts mostly resolve on their own

  10. High-resolution DEM Effects on Geophysical Flow Models (United States)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.


    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  11. Vehicle Detection and Classification from High Resolution Satellite Images (United States)

    Abraham, L.; Sasikumar, M.


    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  12. High resolution SPM imaging of organic molecules with functionalized tips (United States)

    Jelínek, Pavel


    One of the most remarkable and exciting achievements in the field of scanning probe microscopy (SPM) in the last years is the unprecedented sub-molecular resolution of both atomic and electronic structures of single molecules deposited on solid state surfaces. Despite its youth, the technique has already brought many new possibilities to perform different kinds of measurements, which cannot be accomplished by other techniques. This opens new perspectives in advanced characterization of physical and chemical processes and properties of molecular structures on surfaces. Here, we discuss the history and recent progress of the high resolution imaging with a functionalized probe by means of atomic force microscopy (AFM), scanning tunnelling microscopy (STM) and inelastic electron tunneling spectroscopy (IETS). We describe the mechanisms responsible for the high-resolution AFM, STM and IETS-STM contrast. The complexity of this technique requires new theoretical approaches, where a relaxation of the functionalized probe is considered. We emphasise the similarities of the mechanism driving high-resolution SPM with other imaging methods. We also summarise briefly significant achievements and progress in different branches. Finally we provide brief perspectives and remaining challenges of the further refinement of these high-resolution methods.

  13. High resolution magnetic imaging: MicroSQUID Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hasselbach, K; Ladam, C; Dolocan, V O; Hykel, D; Crozes, T [Institut Neel, CNRS et Universite Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Schuster, K [Institut de RadioAstronomie Millimetrique 300 rue de la Piscine, Domaine Universitaire F-38406 Saint Martin d' Heres (France); Mailly, D [Laboratoire de Photonique et de Nanostructures, CNRS, Site Alcatel de Marcoussis Route de Nozay F-91460 Marcoussis (France)], E-mail:


    Magnetic imaging at the micrometer scale with high sensitivity is a challenge difficult to be met. Magnetic force microscopy has a very high spatial resolution but is limited in magnetic resolution. Hall probe microscopy is very powerful but sensor fabrication at the one micron scale is difficult and effects due to discreteness of charge appear in the form of significant 1/f noise. SQUID microscopy is very powerful, having high magnetic resolution, but spatial resolution is usually of the order of 10 {mu}m. The difficulties lay mostly in an efficient way to couple flux to the sensor. The only way to improve spatial resolution is to place the probe close to the very edge of the support, thus maximising coupling and spatial resolution. If there has been found a way to bring close the tip, there must be also found a reliable a way to maintain distance during scanning. We want to present recent improvements on scanning microsquid microscopy: Namely the improved fabrication of microSQUID tips using silicon micro machining and the precise positioning of the micrometer diameter microSQUID loop by electron beam lithography. The microSQUID is a microbridge DC SQUID, with two opposite microbridges. The constrictions are patterned by high-resolution e-beam lithography and have a width of 20 nm and a length of about 100 nm. The distance control during scanning is obtained by integrating the microSQUID sensor with a piezoelectric tuning fork acting as a force sensor allowing to control height and even topographic imaging. The detector is placed in a custom built near field microscope and the sample temperature can be varied between 0.1 Kelvin and 10 K. The microscope is used to study magnetic flux structures in unconventional superconductors and will be used to observe thermal domains in superconducting detectors in the voltage state.

  14. High-resolution Image Reconstruction by Neural Network and Its Application in Infrared Imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nan; JIN Wei-qi; SU Bing-hua


    As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.

  15. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony;


    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit hi...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors......In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...

  16. A high resolution powder diffractometer using focusing optics

    Indian Academy of Sciences (India)

    V Siruguri; P D Babu; M Gupta; A V Pimpale; P S Goyal


    In this paper, we describe the design, construction and performance of a new high resolution neutron powder diffractometer that has been installed at the Dhruva reactor, Trombay, India. The instrument employs novel design concepts like the use of bent, perfect crystal monochromator and open beam geometry, enabling the use of smaller samples. The resolution curve of the instrument was found to have little variation over a wide angular region and a / ∼ 0.3% has been achieved. The instrument provides sample environment of very low temperatures and high magnetic fields using a 7 Tesla cryogen-free superconducting magnet with a VTI having a temperature range of 1.5–320 K. The special sample environment and high resolution make this neutron powder diffractometer a very powerful facility for studying magnetic properties of materials.

  17. High-throughput, high-fidelity HLA genotyping with deep sequencing. (United States)

    Wang, Chunlin; Krishnakumar, Sujatha; Wilhelmy, Julie; Babrzadeh, Farbod; Stepanyan, Lilit; Su, Laura F; Levinson, Douglas; Fernandez-Viña, Marcelo A; Davis, Ronald W; Davis, Mark M; Mindrinos, Michael


    Human leukocyte antigen (HLA) genes are the most polymorphic in the human genome. They play a pivotal role in the immune response and have been implicated in numerous human pathologies, especially autoimmunity and infectious diseases. Despite their importance, however, they are rarely characterized comprehensively because of the prohibitive cost of standard technologies and the technical challenges of accurately discriminating between these highly related genes and their many allelles. Here we demonstrate a high-resolution, and cost-effective methodology to type HLA genes by sequencing, which combines the advantage of long-range amplification, the power of high-throughput sequencing platforms, and a unique genotyping algorithm. We calibrated our method for HLA-A, -B, -C, and -DRB1 genes with both reference cell lines and clinical samples and identified several previously undescribed alleles with mismatches, insertions, and deletions. We have further demonstrated the utility of this method in a clinical setting by typing five clinical samples in an Illumina MiSeq instrument with a 5-d turnaround. Overall, this technology has the capacity to deliver low-cost, high-throughput, and accurate HLA typing by multiplexing thousands of samples in a single sequencing run, which will enable comprehensive disease-association studies with large cohorts. Furthermore, this approach can also be extended to include other polymorphic genes.

  18. Standard high-resolution pelvic MRI vs. low-resolution pelvic MRI in the evaluation of deep infiltrating endometriosis

    Energy Technology Data Exchange (ETDEWEB)

    Scardapane, Arnaldo; Lorusso, Filomenamila; Ferrante, Annunziata; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe [University Hospital ' ' Policlinico' ' of Bari, Interdisciplinary Department of Medicine, Bari (Italy); Scioscia, Marco [Sacro Cuore Don Calabria General Hospital, Department of Obstetrics and Gynecology, Negrar, Verona (Italy)


    To compare the capabilities of standard pelvic MRI with low-resolution pelvic MRI using fast breath-hold sequences to evaluate deep infiltrating endometriosis (DIE). Sixty-eight consecutive women with suspected DIE were studied with pelvic MRI. A double-acquisition protocol was carried out in each case. High-resolution (HR)-MRI consisted of axial, sagittal, and coronal TSE T2W images, axial TSE T1W, and axial THRIVE. Low-resolution (LR)-MRI was acquired using fast single shot (SSH) T2 and T1 images. Two radiologists with 10 and 2 years of experience reviewed HR and LR images in two separate sessions. The presence of endometriotic lesions of the uterosacral ligament (USL), rectovaginal septum (RVS), pouch of Douglas (POD), and rectal wall was noted. The accuracies of LR-MRI and HR-MRI were compared with the laparoscopic and histopathological findings. Average acquisition times were 24 minutes for HR-MRI and 7 minutes for LR-MRI. The more experienced radiologist achieved higher accuracy with both HR-MRI and LR-MRI. The values of sensitivity, specificity, PPV, NPV, and accuracy did not significantly change between HR and LR images or interobserver agreement for all of the considered anatomic sites. LR-MRI performs as well as HR-MRI and is a valuable tool for the detection of deep endometriosis extension. (orig.)

  19. High-resolution low-dose scanning transmission electron microscopy. (United States)

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning


    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  20. Novel techniques in VUV high-resolution spectroscopy

    CERN Document Server

    Ubachs, W; Eikema, K S E; de Oliveira, N; Nahon, L


    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies. While the ns and ps pulsed laser sources, at Fourier-transform limited bandwidths, are used in wavelength scanning spectroscopy, the fs laser source is used in a two-pulse time delayed mode. In addition a Fourier-transform spectrometer for high resolution gas-phase spectroscopic studies in the VUV is described, exhibiting the multiplex advantage to measure many resonances simultaneously.

  1. High-resolution second harmonic optical coherence tomography (United States)

    Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping


    A high-resolution Second Harmonic Optical Coherence Tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti:sapphire laser. An axial resolution of 4.2 μm at the second harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second harmonic generation signals that strongly depend on the orientation, polarization and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues like the rat-tail tendon. Images of highly organized collagen fibrils in the rat-tail tendon have been demonstrated.

  2. Sequencing of Gag/Env association with HIV genotyping resolution and HIV-related epidemiologic studies of HIV in China. (United States)

    Ren, L; Wang, H W; Xu, Y; Feng, Y; Zhang, H F; Wang, K H


    HIV genotyping has led to conflicting results between laboratories. Therefore, identifying the most accurate gene combinations to sequence remains a priority. Datasets of Chinese HIV subtypes based on several markers and deposited in PubMed, Metstr, CNKI, and VIP databases between 2000 and 2015 were studied. In total, 9177 cases of amplification-positive samples from 26 provinces of China were collected and used to classify HIV subtypes based on eight individual genes or a combination thereof. CRF01_AE, CRF07_BC, CRF08_BC and B were the prevalent HIV subtypes in China, accounting for 84.07% of all genotypes. Gag/Env sequencing classified a greater number of HIV subtypes compared to other genes or combination of gene fragments. The geographical distribution of Gag and Gag/Env genotypes was similar to that observed with all genetic markers. Further principal component analysis showed a significantly different geographical distribution pattern of HIV in China for HIV genotypes detected with Gag/Env, which was in line with the distribution of all HIV genotypes in China. Gag/Env sequences had the highest diversity of the eight markers studied, followed by Gag and Gag/Pol/Env; Pol/Env polymorphisms were the least divergent. Gag/Env can serve as a high-resolution marker for HIV genotyping.

  3. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.


    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  4. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG). (United States)

    Gavaret, M; Maillard, L; Jung, J


    High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) allow the recording of spontaneous or evoked electromagnetic brain activity with excellent temporal resolution. Data must be recorded with high temporal resolution (sampling rate) and high spatial resolution (number of channels). Data analyses are based on several steps with selection of electromagnetic signals, elaboration of a head model and use of algorithms in order to solve the inverse problem. Due to considerable technical advances in spatial resolution, these tools now represent real methods of ElectroMagnetic Source Imaging. HR-EEG and MEG constitute non-invasive and complementary examinations, characterized by distinct sensitivities according to the location and orientation of intracerebral generators. In the presurgical assessment of drug-resistant partial epilepsies, HR-EEG and MEG can characterize and localize interictal activities and thus the irritative zone. HR-EEG and MEG often yield significant additional data that are complementary to other presurgical investigations and particularly relevant in MRI-negative cases. Currently, the determination of the epileptogenic zone and functional brain mapping remain rather less well-validated indications. In France, in 2014, HR-EEG is now part of standard clinical investigation of epilepsy, while MEG remains a research technique.

  5. Monitoring Genomic Sequences during SELEX Using High-Throughput Sequencing: Neutral SELEX (United States)

    Chen, Doris; Lorenz, Christina; Schroeder, Renée


    Background SELEX is a well established in vitro selection tool to analyze the structure of ligand-binding nucleic acid sequences called aptamers. Genomic SELEX transforms SELEX into a tool to discover novel, genomically encoded RNA or DNA sequences binding a ligand of interest, called genomic aptamers. Concerns have been raised regarding requirements imposed on RNA sequences undergoing SELEX selection. Methodology/Principal Findings To evaluate SELEX and assess the extent of these effects, we designed and performed a Neutral SELEX experiment omitting the selection step, such that the sequences are under the sole selective pressure of SELEX's amplification steps. Using high-throughput sequencing, we obtained thousands of full-length sequences from the initial genomic library and the pools after each of the 10 rounds of Neutral SELEX. We compared these to sequences obtained from a Genomic SELEX experiment deriving from the same initial library, but screening for RNAs binding with high affinity to the E. coli regulator protein Hfq. With each round of Neutral SELEX, sequences became less stable and changed in nucleotide content, but no sequences were enriched. In contrast, we detected substantial enrichment in the Hfq-selected set with enriched sequences having structural stability similar to the neutral sequences but with significantly different nucleotide selection. Conclusions/Significance Our data indicate that positive selection in SELEX acts independently of the neutral selective requirements imposed on the sequences. We conclude that Genomic SELEX, when combined with high-throughput sequencing of positively and neutrally selected pools, as well as the gnomic library, is a powerful method to identify genomic aptamers. PMID:20161784

  6. Monitoring genomic sequences during SELEX using high-throughput sequencing: neutral SELEX.

    Directory of Open Access Journals (Sweden)

    Bob Zimmermann

    Full Text Available BACKGROUND: SELEX is a well established in vitro selection tool to analyze the structure of ligand-binding nucleic acid sequences called aptamers. Genomic SELEX transforms SELEX into a tool to discover novel, genomically encoded RNA or DNA sequences binding a ligand of interest, called genomic aptamers. Concerns have been raised regarding requirements imposed on RNA sequences undergoing SELEX selection. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate SELEX and assess the extent of these effects, we designed and performed a Neutral SELEX experiment omitting the selection step, such that the sequences are under the sole selective pressure of SELEX's amplification steps. Using high-throughput sequencing, we obtained thousands of full-length sequences from the initial genomic library and the pools after each of the 10 rounds of Neutral SELEX. We compared these to sequences obtained from a Genomic SELEX experiment deriving from the same initial library, but screening for RNAs binding with high affinity to the E. coli regulator protein Hfq. With each round of Neutral SELEX, sequences became less stable and changed in nucleotide content, but no sequences were enriched. In contrast, we detected substantial enrichment in the Hfq-selected set with enriched sequences having structural stability similar to the neutral sequences but with significantly different nucleotide selection. CONCLUSIONS/SIGNIFICANCE: Our data indicate that positive selection in SELEX acts independently of the neutral selective requirements imposed on the sequences. We conclude that Genomic SELEX, when combined with high-throughput sequencing of positively and neutrally selected pools, as well as the gnomic library, is a powerful method to identify genomic aptamers.

  7. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry (United States)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek


    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  8. High-resolution MR imaging of the cutis and subcutis. Histological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Krug, B.; Kugel, H.; Krahe, T.; Lackner, K. [Koeln Univ. (Germany). Radiologisches Inst. und Poliklinik; Schulze, H.J. [Koeln Univ. (Germany). Klinik und Poliklinik fuer Dermatologie und Venerologie; Gieseke, J. [Philips Medical Systems, Hamburg (Germany)


    Objective: To determine whether the spatial resolution that can be achieved with currently available MR devices is adequate for the evaluation of skin disease. Material and Methods: We correlated high-resolution MR images of the skin with dermatohistopathology in 26 patients. The examinations were carried out on a 1.0 T imager using a commercially available surface coil (ID 7.5 cm) and optimized SE and GE sequences. Image quality was assessed by four readers on a questionnaire. Results: The visualization of the dermis, subcutaneous tissue, and muscle fascia allowed a pattern analysis that gave findings identical to those at dermatohistopathology. It was possible to distinguish septal from lobular panniculitis, and lipatrophia from sclerodermia. Images with contrast media infusion were useful in the differential diagnosis. Conclusion: High-resolution MR imaging may narrow down the differential diagnosis of various skin diseases and may help to reduce the number of skin biopsies on certain indications. (orig.)

  9. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model (United States)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.


    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  10. High resolution spectroscopy in the microwave and far infrared (United States)

    Pickett, Herbert M.


    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  11. High resolution map of light pollution over Poland (United States)

    Netzel, Henryka; Netzel, Paweł


    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  12. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús


    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  13. High-resolution TFT-LCD for spatial light modulator (United States)

    Lee, JaeWon; Kim, Yong-Hae; Byun, Chun-Won; Pi, Jae-Eun; Oh, Himchan; Kim, GiHeon; Lee, Myung-Lae; Chu, Hye-Yong; Hwang, Chi-Sun


    SLM with very fine pixel pitch is needed for the holographic display system. Among various kinds of SLMs, commercially available high resolution LCoS has been widely used as a spatial light modulator. But the size of commercially available LCoS SLM is limited because the manufacturing technology of LCoS is based on the semiconductor process developed on small size Si wafer. Recently very high resolution flat panel display panel (~500ppi) was developed as a "retina display". Until now, the pixel pitch of flat panel display is several times larger than the pixel pitch of LCoS. But considering the possibility of shrink down the pixel pitch with advanced lithographic tools, the application of flat panel display will make it possible to build a SLM with high spatial bandwidth product. We simulated High resolution TFT-LCD panel on glass substrate using oxide semiconductor TFT with pixel pitch of 20um. And we considered phase modulation behavior of LC(ECB) mode. The TFT-LCD panel is reflective type with 4-metal structure with organic planarization layers. The technical challenge for high resolution large area SLM will be discussed with very fine pixel.

  14. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. (United States)

    Yang, Jun-Bo; Li, De-Zhu; Li, Hong-Tao


    Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle-scale barcodes. Next-generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high-quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long-range PCR and sequenced using next-generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early-diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome-scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms. © 2014 John Wiley & Sons Ltd.

  15. High resolution multiplexed functional imaging in live embryos (Conference Presentation) (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei


    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  16. Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution (United States)

    Booth, Michael J.; Marsico, Giovanni; Bachman, Martin; Beraldi, Dario; Balasubramanian, Shankar


    Recently, the cytosine modifications 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were found to exist in the genomic deoxyribonucleic acid (DNA) of a wide range of mammalian cell types. It is now important to understand their role in normal biological function and disease. Here we introduce reduced bisulfite sequencing (redBS-Seq), a quantitative method to decode 5fC in DNA at single-base resolution, based on a selective chemical reduction of 5fC to 5hmC followed by bisulfite treatment. After extensive validation on synthetic and genomic DNA, we combined redBS-Seq and oxidative bisulfite sequencing (oxBS-Seq) to generate the first combined genomic map of 5-methylcytosine, 5hmC and 5fC in mouse embryonic stem cells. Our experiments revealed that in certain genomic locations 5fC is present at comparable levels to 5hmC and 5mC. The combination of these chemical methods can quantify and precisely map these three cytosine derivatives in the genome and will help provide insights into their function.

  17. High-throughput sequence alignment using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Trapnell Cole


    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  18. Immersion Gratings for Infrared High-resolution Spectroscopy (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo


    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  19. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope (United States)

    Wakabayashi, Fumitaka; Hamada, Kiyohito


    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  20. High-resolution kinetic energy distributions via doppler shift measurements (United States)

    Xu, Z.; Koplitz, B.; Buelow, S.; Baugh, D.; Wittig, C.


    In photolysis/probe experiments using pulsed sources, time delay produces both spatial and directional bias in the fragment distributions, thus enabling well-resolved kinetic energy distributions to be obtained from Doppler shift measurements. Data are presented for H-atoms detected using two-photon ionization, and high S/N and laser-limited kinetic energy resolution are demonstrated.

  1. High resolution ultraviolet imaging spectrometer for latent image analysis. (United States)

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin


    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

  2. A Large Scale, High Resolution Agent-Based Insurgency Model (United States)


    2007). HSCB Models can be employed for simulating mission scenarios, determining optimal strategies for disrupting terrorist networks, or training and...High Resolution Agent-Based Insurgency Model ∑ = ⎜ ⎜ ⎝ ⎛ − −− = desired 1 move,desired, desired,,desired, desired,, N j ij jmoveij moveiD rp prp

  3. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)


    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  4. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel


    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  5. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima


    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  6. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm


    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  7. Signal Processing for High Resolution FMCW SAR and Moving Target

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.


    The combination of Frequency Modulated ContinuousWave (FMCW) technology and Synthetic Aperture Radar (SAR) leads to lightweight, cost-effective imaging sensors of high resolution. In FMCW SAR applications the conventional stop-and-go approximation used in pulse radar algorithms cannot be considered

  8. High Resolution Digital Imaging of Paintings: The Vasari Project. (United States)

    Martinez, Kirk


    Describes VASARI (the Visual Art System for Archiving and Retrieval of Images), a project funded by the European Community to show the feasibility of high resolution colormetric imaging directly from paintings. The hardware and software used in the system are explained, storage on optical disks is described, and initial results are reported. (five…

  9. Ultra-high-resolution small-animal SPECT imaging

    NARCIS (Netherlands)

    Have, F. van der


    The main subject of this thesis is the development of the first two in a series of dedicated ultra-high resolution Single Photon Emission Computed Tomography (SPECT) systems (U-SPECT-I and II) for the imaging of distributions of radio-isotope labeled tracers in small laboratory animals such as mice


    Energy Technology Data Exchange (ETDEWEB)



    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  11. High resolution ultrasonography in isolated soft tissue and intramuscular cysticercosis

    Directory of Open Access Journals (Sweden)

    Gaurav Sharma


    Conclusions: With the advent of high resolution ultrasonography and increased clinical awareness of the isolated soft tissue-intramuscular cysticercosis especially in endemic zone, a more conservative non-invasive approach can be applied both in diagnosis and treatment of these isolated cases of cysticercosis. [Int J Res Med Sci 2016; 4(1.000: 42-46

  12. Development of high accuracy and resolution geoid and gravity maps (United States)

    Gaposchkin, E. M.


    Precision satellite to satellite tracking can be used to obtain high precision and resolution maps of the geoid. A method is demonstrated to use data in a limited region to map the geopotential at the satellite altitude. An inverse method is used to downward continue the potential to the Earth surface. The method is designed for both satellites in the same low orbit.

  13. Systematic high-resolution assessment of global hydropower potential

    NARCIS (Netherlands)

    Hoes, Olivier A C; Meijer, Lourens J J; Van Der Ent, Ruud J.; Van De Giesen, Nick C.


    Population growth, increasing energy demand and the depletion of fossil fuel reserves necessitate a search for sustainable alternatives for electricity generation. Hydropower could replace a large part of the contribution of gas and oil to the present energy mix. However, previous high-resolution

  14. High-resolution radio imaging of young supernovae

    CERN Document Server

    Pérez-Torres, M A; Alberdi, A; Ros, E; Guirado, J C; Lara, L; Mantovani, F; Stockdale, C J; Weiler, K W; Diamond, P J; Van Dyk, S D; Lundqvist, P; Panagia, N; Shapiro, I I; Sramek, R


    The high resolution obtained through the use of VLBI gives an unique opportunity to directly observe the interaction of an expanding radio supernova with its surrounding medium. We present here results from our VLBI observations of the young supernovae SN 1979C, SN 1986J, and SN 2001gd.

  15. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics


    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  16. High-resolution palaeoclimatology of the last millennium

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Jones, P.D.; Briffa, K.R.


    Palaeoclimatology • high-resolution • last millennium • tree rings • dendroclimatology • chronology • uncertainty • corals • ice-cores • speleothems • documentary evidence • instrumental records • varves • borehole temperature • marine sediments • composite plus scaling • CPS • climate field...

  17. Resolution of RNA using high-performance liquid chromatography

    NARCIS (Netherlands)

    Mclaughlin, L.W.; Bischoff, Rainer


    High-performance liquid chromatographic techniques can be very effective for the resolution and isolation of nucleic acids. The characteristic ionic (phosphodiesters) and hydrophobic (nucleobases) properties of RNAs can be exploited for their separation. In this respect anion-exchange and reversed-p

  18. Five Micron High Resolution MALDI Mass Spectrometry Imaging with Simple, Interchangeable, Multi-Resolution Optical System (United States)

    Feenstra, Adam D.; Dueñas, Maria Emilia; Lee, Young Jin


    High-spatial resolution mass spectrometry imaging (MSI) is crucial for the mapping of chemical distributions at the cellular and subcellular level. In this work, we improved our previous laser optical system for matrix-assisted laser desorption ionization (MALDI)-MSI, from 9 μm practical laser spot size to a practical laser spot size of 4 μm, thereby allowing for 5 μm resolution imaging without oversampling. This is accomplished through a combination of spatial filtering, beam expansion, and reduction of the final focal length. Most importantly, the new laser optics system allows for simple modification of the spot size solely through the interchanging of the beam expander component. Using 10×, 5×, and no beam expander, we could routinely change between 4, 7, and 45 μm laser spot size, in less than 5 min. We applied this multi-resolution MALDI-MSI system to a single maize root tissue section with three different spatial resolutions of 5, 10, and 50 μm and compared the differences in imaging quality and signal sensitivity. We also demonstrated the difference in depth of focus between the optical systems with 10× and 5× beam expanders.

  19. High-resolution metagenomics targets major functional types in complex microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, Marina G.; Lapidus, Alla; Ivanova, Natalia; Copeland, Alex C.; McHardy, Alice C.; Szeto, Ernest; Salamov, Asaf; Grigoriev, Igor V.; Suciu, Dominic; Levine, Samuel R.; Markowitz, Victor M.; Rigoutsos, Isidore; Tringe, Susannah G.; Bruce, David C.; Richardson, Paul M.; Lidstrom, Mary E.; Chistoserdova, Ludmila


    Most microbes in the biosphere remain uncultured and unknown. Whole genome shotgun (WGS) sequencing of environmental DNA (metagenomics) allows glimpses into genetic and metabolic potentials of natural microbial communities. However, in communities of high complexity metagenomics fail to link specific microbes to specific ecological functions. To overcome this limitation, we selectively targeted populations involved in oxidizing single-carbon (C{sub 1}) compounds in Lake Washington (Seattle, USA) by labeling their DNA via stable isotope probing (SIP), followed by WGS sequencing. Metagenome analysis demonstrated specific sequence enrichments in response to different C{sub 1} substrates, highlighting ecological roles of individual phylotypes. We further demonstrated the utility of our approach by extracting a nearly complete genome of a novel methylotroph Methylotenera mobilis, reconstructing its metabolism and conducting genome-wide analyses. This approach allowing high-resolution genomic analysis of ecologically relevant species has the potential to be applied to a wide variety of ecosystems.

  20. Topography improvements in MEMS DMs for high-contrast, high-resolution imaging Project (United States)

    National Aeronautics and Space Administration — This project will develop and demonstrate an innovative microfabrication process to substantially improve the surface quality achievable in high-resolution...

  1. High-resolution 3D T2-weighted fast spin echo: new applications in the orbit

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Erin M. [Department of Radiology, University of California San Francisco, San Francisco, CA (United States); Department of Radiology, Children' s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104-4399 (United States); McCaffery, Sharon; O' Brien, Joan M. [Department of Ophthalmology, University of California San Francisco, San Francisco, CA (United States); Rowley, Howard A. [Department of Radiology, University of California San Francisco, San Francisco, CA (United States); University of Wisconsin Medical School, Madison, WI (United States); Fischbein, Nancy J. [Department of Radiology, University of California San Francisco, San Francisco, CA (United States); Shimikawa, Ann [General Electric Medical Systems, Milwaukee, WI (United States)


    Recent developments have made available for ophthalmologic MR imaging a very high-resolution 3D fast spin echo T2 (3D FSE T2) sequence, which runs in a standard head coil. A modification of this technique, 3D FSEz T2, uses a zero-filled slice interpolation method during post-processing to further improve spatial resolution. We describe the technique and share our early clinical observations in patients with ocular masses. Briefly, the additional information from the 3D FSEz T2 resulted in a change in diagnosis from the conventional imaging series in 11 of (41%) 27 studies, usually through the identification of previously treated retinoblastoma lesions. The new sequence significantly increased diagnostic confidence in six (38%) of the remaining 16 cases, usually through better anatomical detail and lesion conspicuity, and did not change interpretation in 10 cases. Such an approach improves diagnostic confidence and may eliminate the need for a dedicated surface coil examination. (orig.)

  2. High resolution cross strip anodes for photon counting detectors (United States)

    Siegmund, O. H. W.; Tremsin, A. S.; Vallerga, J. V.; Abiad, R.; Hull, J.


    A new photon counting, imaging readout for microchannel plate sensors, the cross strip (XS) anode, has been investigated. Charge centroiding of signals detected on two orthogonal layers of sense strip sets are used to derive photon locations. The XS anode spatial resolution (<3 μm FWHM) exceeds the spatial resolution of most direct charge sensing anodes, and does so at low gain (<2×10 6). The image linearity and fidelity are high enough to resolve and map 7 μm MCP pores, offering new possibilities for astronomical and other applications.

  3. High resolution atomic force microscopy of double-stranded RNA (United States)

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M.; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando


    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to

  4. Design for a focusing high-resolution neutron crystal diffractometer

    CERN Document Server

    Ionita, I; Popovici, M; Popa, N C


    A new concept of high-resolution focusing configuration begins to be accepted as an alternative solution to the existing conventional configurations. Among the earliest work performed in this direction is that performed at the Institute for Nuclear Research, Pitesti. These results are presented below. The experimentally determined resolution properties for two focusing configurations obtained at TRIGA reactor Pitesti and at VVRS reactor Bucharest are given in order to be compared with those obtained for the conventional ones. The principles to get focusing in crystal neutron diffractometry are presented. The main characteristics for a focusing instrument are given. (author)

  5. High resolution full-spectrum water Raman lidar

    Institute of Scientific and Technical Information of China (English)

    LIU FuChao; YI Fan; JIA JingYu; ZHANG YunPeng; ZHANG ShaoDong; YU ChangMing; TAN Ying


    Knowledge of the temporal-spatial distribution of water content in atmosphere and water phase change in cloud is important for atmospheric study.For this purpose,we have developed a high resolution full-spectrum water Raman lidar that can collect Raman signals from ice,water droplets and water vapor simultaneously.A double-grating polychromator and a 32-channel photomultiplier-tube detector are used to obtain a spectral resolution of ~0.19 nm in the full Raman spectrum range of water.Preliminary observations present the water Raman spectrum characteristics of both the mixed-phase cloud and humid air under cloudless condition.

  6. High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics. (United States)

    Cormier, M; Ferré, J; Mougin, A; Cromières, J-P; Klein, V


    A new high resolution polar magneto-optical (MO) Kerr magnetometer, devoted to the study of nanometer sized elements with perpendicular magnetic anisotropy, is described. The unique performances of this setup in terms of sensitivity (1.2x10(-15) emu), stability (lateral drift +/-35 nm over 3 h), and resolution (laser spot full width at half maximum down to 470 nm) are demonstrated, and illustrated by Kerr hysteresis loop measurements on a unique ultrathin magnetic nanodot, and over small segments of ultranarrow magnetic tracks. Large scanning MO Kerr microscopy images were also obtained with the same performances.

  7. Feasibility of high-resolution pituitary MRI at 7.0 tesla

    Energy Technology Data Exchange (ETDEWEB)

    Rotte, Alexandra A.J. de; Kolk, Anja G. van der; Rutgers, Dik; Luijten, Peter R.; Hendrikse, Jeroen [University Medical Center Utrecht, Department of Radiology, Heidelberglaan 100, Postbox 85500, Utrecht (Netherlands); Zelissen, Pierre M.J. [University Medical Center Utrecht, Department of Internal Medicine (Section of Endocrinology), Utrecht (Netherlands); Visser, Fredy [University Medical Center Utrecht, Department of Radiology, Heidelberglaan 100, Postbox 85500, Utrecht (Netherlands); Philips Healthcare, Best (Netherlands)


    Since the pituitary gland measures 3-8 mm, imaging with the highest possible spatial resolution is important for the detection of even smaller lesions such as those seen in Cushing's disease. In the current feasibility study, we tested a multi-sequence MRI protocol to visualize the pituitary gland in high resolution at 7.0 Tesla (7.0 T). Ten healthy volunteers were examined with a 7.0 T pituitary gland protocol. The protocol consisted of a T1-weighted magnetization-prepared inversion recovery (MPIR) turbo spin-echo (TSE) sequence and a T2-weighted TSE sequence. Additionally, this protocol was tested in five patients with clinical and biochemical suspicion of a microadenoma. The dedicated protocol was successful in visualizing normal pituitary anatomy. At 7.0 T compared to 1.5 T, four times as many slices covered the pituitary gland in sagittal and coronal direction. In three patients, a lesion was diagnosed at 7.0 T, and was confirmed by histopathology to be a microadenoma. Head-to-head comparisons of 7.0 T with 1.5 T and 3.0 T are needed with larger samples of patients and with imaging times feasible for clinical settings. However, the current study suggests that high-resolution 7.0 T MRI of the pituitary gland may provide new perspectives when used as a second-line diagnostic examination in the specific context of Cushing's disease. (orig.)

  8. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo


    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  9. Spatial resolution effects on the assessment of evapotranspiration in olive orchards using high resolution thermal imagery (United States)

    Santos, Cristina; Zarco-Tejada, Pablo J.; Lorite, Ignacio J.; Allen, Richard G.


    The use of remote sensing techniques for estimating surface energy balance and water consumption has significantly improved the characterization of the agricultural systems by determining accurate information about crop evapotranspiration and stress, mainly for extensive crops. However the use of these methodologies for woody crops has been low due to the difficulty in the accurate characterization of these crops, mainly caused by a coarse resolution of the imagery provided by the most widely used satellites (such as Landsat 5 and 7). The coarse spatial resolution provided by these satellite sensors aggregates into a single pixel the tree crown, sunlit and shaded soil components. These surfaces can each exhibit huge differences in temperature, albedo and vegetation indexes calculated in the visible, near infrared and short-wave infrared regions. Recent studies have found that the use of energy balance approaches can provide useful results for non-homogeneous crops (Santos et al., 2012) but detailed analysis is required to determine the effect of the spatial resolution and the aggregation of the scene components in these heterogeneous canopies. In this study a comparison between different spatial resolutions has been conducted using images from Landsat 7 (with thermal resolution of 60m) and from an airborne thermal (with resolution of 80 cm) flown over olive orchards at different dates coincident with the Landsat overpass. The high resolution thermal imagery was resampled at different scales to generate images with spatial resolution ranging from 0.8 m up to 120m (thermal resolution for Landsat 5 images). The selection of the study area was made to avoid those areas with missing Landsat 7 data caused by SLC-off gaps. The selected area has a total area of around 2500 ha and is located in Southern Spain, in the province of Malaga. The selected area is mainly cultivated with olive orchards with different crop practices (rainfed, irrigated, high density, young and adult

  10. Automated cleaning and pre-processing of immunoglobulin gene sequences from high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Miri eMichaeli


    Full Text Available High throughput sequencing (HTS yields tens of thousands to millions of sequences that require a large amount of pre-processing work to clean various artifacts. Such cleaning cannot be performed manually. Existing programs are not suitable for immunoglobulin (Ig genes, which are variable and often highly mutated. This paper describes Ig-HTS-Cleaner (Ig High Throughput Sequencing Cleaner, a program containing a simple cleaning procedure that successfully deals with pre-processing of Ig sequences derived from HTS, and Ig-Indel-Identifier (Ig Insertion – Deletion Identifier, a program for identifying legitimate and artifact insertions and/or deletions (indels. Our programs were designed for analyzing Ig gene sequences obtained by 454 sequencing, but they are applicable to all types of sequences and sequencing platforms. Ig-HTS-Cleaner and Ig-Indel-Identifier have been implemented in Java and saved as executable JAR files, supported on Linux and MS Windows. No special requirements are needed in order to run the programs, except for correctly constructing the input files as explained in the text. The programs' performance has been tested and validated on real and simulated data sets.

  11. SAGA GIS based processing of spatial high resolution temperature data

    Energy Technology Data Exchange (ETDEWEB)

    Gerlitz, Lars; Bechtel, Benjamin; Kawohl, Tobias; Boehner, Juergen [Hamburg Univ. (Germany). Inst. of Geography; Zaksek, Klemen [Hamburg Univ. (Germany). Inst. of Geophysics


    Many climate change impact studies require surface and near surface temperature data with high spatial and temporal resolution. The resolution of state of the art climate models and remote sensing data is often by far to coarse to represent the meso- and microscale distinctions of temperatures. This is particularly the case for regions with a huge variability of topoclimates, such as mountainous or urban areas. Statistical downscaling techniques are promising methods to refine gridded temperature data with limited spatial resolution, particularly due to their low demand for computer capacity. This paper presents two downscaling approaches - one for climate model output and one for remote sensing data. Both are methodically based on the FOSS-GIS platform SAGA. (orig.)

  12. Overview on high-resolution ocean modeling in JAMSTEC

    Institute of Scientific and Technical Information of China (English)

    Michio Kawamiya


    In view of the importance of ocean component for representing climate change,efforts are underway to implement a high-resolution nesting model system in Model for Interdisciplinary Research on Climate (MI-ROC) for the North Pacific using the same ocean model as used in the coupled model MIROC5. By comparing double (10 km for the northwestern Pacific,50 km for the rest of the Pacific) and triple (double nesting plus 2 km resolution near Japan) nesting,it turns out that relative vorticity is drastically enhanced near Japan with 2 km resolution. It is hoped that such an elaborated nesting system will reveal detailed processes for the ocean heat uptake by,e.g.,intermediate water and mode water formation for which the“perturbed region”near Japan is the key region.

  13. Bendable X-ray Optics for High Resolution Imaging (United States)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.


    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  14. Advances toward high spectral resolution quantum X-ray calorimetry (United States)

    Moseley, S. H.; Kelley, R. L.; Schoelkopf, R. J.; Szymkowiak, A. E.; Mccammon, D.


    Thermal detectors for X-ray spectroscopy combining high spectral resolution and quantum efficiency have been developed. These microcalorimeters measure the energy released in the absorption of a single photon by sensing the rise in temperature of a small absorbing structure. The ultimate energy resolution of such a device is limited by the thermodynamic power fluctuations in the thermal link between the calorimeter and isothermal bath and can in principle be made as low as 1 eV. The performance of a real device is degraded due to noise contributions such as excess 1/f noise in the thermistor and incomplete conversion of energy into phonons. The authors report some recent advances in thermometry, X-ray absorption and thermalization, fabrication techniques, and detector optimization in the presence of noise. These improvements have resulted in a device with a spectral resolution of 17 eV FWHM, measured at 6 keV.

  15. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Edelstein, J; Erskine, D J


    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  16. On temporal correlations in high-resolution frequency counting

    CERN Document Server

    Dunker, Tim; Rønningen, Ole Petter


    We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic of random walk phase noise. Equally important, the CONT mode results in a frequency bias. In contrast, the counter's undocumented raw continuous mode (RCON) yields unbiased frequency stability estimates with white phase noise characteristics, and of a magnitude consistent with the counter's 20 ps single-shot resolution. Furthermore, we demonstrate that a 100-point running average filter in conjunction with the RCON mode yields resolution enhanced frequency estimates with flicker phase noise characteristics. For instance,...

  17. High Resolution Software Defined Radar System for Target Detection

    Directory of Open Access Journals (Sweden)

    S. Costanzo


    Full Text Available The Universal Software Radio Peripheral USRP NI2920, a software defined transceiver so far mainly used in Software Defined Radio applications, is adopted in this work to design a high resolution L-Band Software Defined Radar system. The enhanced available bandwidth, due to the Gigabit Ethernet interface, is exploited to obtain a higher slant-range resolution with respect to the existing Software Defined Radar implementations. A specific LabVIEW application, performing radar operations, is discussed, and successful validations are presented to demonstrate the accurate target detection capability of the proposed software radar architecture. In particular, outdoor and indoor test are performed by adopting a metal plate as reference structure located at different distances from the designed radar system, and results obtained from the measured echo are successfully processed to accurately reveal the correct target position, with the predicted slant-range resolution equal to 6 m.

  18. Photoacoustic lymphatic imaging with high spatial-temporal resolution (United States)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.


    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  19. High resolution imaging with impulse based thermoacoustic tomography (United States)

    Kellnberger, Stephan; Hajiaboli, Amir; Sergiadis, George; Razansky, Daniel; Ntziachristos, Vasilis


    Existing imaging modalities like microwave- or radiofrequency (RF) induced thermoacoustic tomography systems show the potential for resolving structures deep inside tissue due to the high penetration properties of RF. However, one of the major drawbacks of existing thermoacoustic tomography systems with pulse modulated carrier frequency excitation is the compromise between efficient signal generation and attainable spatial resolution. In order to overcome limitations of conventional thermoacoustic imaging methods, we herein present and experimentally validate our novel approach towards high resolution thermoacoustic tomography. Instead of carrier-frequency amplification, we utilize ultrahigh-energy electromagnetic impulses at nanosecond duration with near-field energy coupling, thus maintaining thermoacoustic signal strength without compromising spatial resolution. Preliminary experiments on highly absorbing objects, consisting of copper wires with characteristic sizes of ~100 μm, reveal the resolution performance which yields 160 μm. Furthermore, benefits like its cost effectiveness, simplicity and compactness with the potential application in small animal imaging as well as human body imaging show that thermoacoustic tomography with impulse excitation is a promising imaging modality which has a broad range of applications.

  20. High-resolution Imaging Techniques for the Assessment of Osteoporosis (United States)

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.


    Synopsis The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition Multidetector-CT has been used for high-resolution imaging of trabecular bone structure, however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements and recent developments in this emerging field. Details regarding imaging protocols as well as image post-processing methods for bone structure quantification are discussed. PMID:20609895

  1. Validation of AIRS high-resolution stratospheric temperature retrievals (United States)

    Meyer, Catrin I.; Hoffmann, Lars


    This paper focuses on stratospheric temperature observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite. We validate a nine-year record (2003 - 2011) of data retrieved with a scientific retrieval processor independent from the operational processor operated by NASA. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and has nine times better horizontal sampling than the operational data provided by NASA. The high-resolution temperature data are considered optimal for for gravity wave studies. For validation the high-resolution retrieval data are compared with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed statistical comparisons of monthly zonal mean cross-sections and time series. The comparisons show that the high-resolution temperature data are in good agreement with the validation data sets. The bias in the zonal averages is mostly within ±2K. The bias reaches a maximum of 7K to ERA-Interim and 4K to the AIRS operational data at the stratopause, it is related to the different resolutions of the data sets. Variability is nearly the same in all three data sets, having maximum standard deviations around the polar vortex in the mid and upper stratosphere. The validation presented here indicates that the high-resolution temperature retrievals are well-suited for scientific studies. In particular, we expect that they will become a valuable asset for future studies of stratospheric gravity waves.

  2. High Resolution Maps of the Moon Surface with AMIE/SMART-1 (United States)

    Despan, Daniela; Erard, S.; Barucci, A.; Josset, J. L.; Beauvivre, S.; Chevrel, S.; Pinet, P.; Koschny, D.; Almeida, M.; Grieger, B.; Foing, B.; AMIE Team


    The Advanced Moon micro-Imager Experiment (AMIE) on board the ESA lunar mission Smart-1 has performed colour imaging of the lunar surface using various filters in the visible and NIR range. This micro-camera provided high resolution images of selected parts of the lunar surface, including the North and South pole areas. Being give that the SMART-1 mission was in a 300km x 300km orbit with perilune over the South pole, the coverage between the North and the South regions is different. The AMIE images were obtained using a tele-objective with 5.3° x 5.3° field of view and a sensor of 1024 x 1024 pixels. The output images have resolution 45m/pixel at 500km, and are encoded with 10 bits/pixel. The data for the North pole were obtained at a much higher altitude than the South pole data. From the 300 Km pericenter altitude, the same field of view corresponds to a spatial resolution about 27 m/pixel. The high resolution imaging of the Moon surface makes possible detailed analysis of the morphological features and physical characteristics of the lunar surface. In order to construct AMIE data maps, systematic analysis and processing is being carried on using the whole data set. Geometrical analysis of AMIE images relies on the SPICE system: image coordinates are computed to get precise projection at the surface, and illumination angles are computed to analyze the photometric sequences. Using this method, high resolution mosaics were constructed then compared to lower resolution Clementine UV-Vis and NIR images. Maps of both North and South pole were obtained as well as other regions of interest. Eventually, this method will be applied in all areas where AMIE has provided high resolution observations of the surface, typically a factor of 3 higher than the Clementine UV-Vis camera. New results will be presented at the conference.

  3. The Gaia FGK Benchmark Stars - High resolution spectral library

    CERN Document Server

    Blanco-Cuaresma, S; Jofré, P; Heiter, U


    Context. An increasing number of high resolution stellar spectra is available today thanks to many past and ongoing spectroscopic surveys. Consequently, numerous methods have been developed in order to perform an automatic spectral analysis on a massive amount of data. When reviewing published results, biases arise and they need to be addressed and minimized. Aims. We are providing a homogeneous library with a common set of calibration stars (known as the Gaia FGK Benchmark Stars) that will allow to assess stellar analysis methods and calibrate spectroscopic surveys. Methods. High resolution and signal-to-noise spectra were compiled from different instruments. We developed an automatic process in order to homogenize the observed data and assess the quality of the resulting library. Results. We built a high quality library that will facilitate the assessment of spectral analyses and the calibration of present and future spectroscopic surveys. The automation of the process minimizes the human subjectivity and e...

  4. Design of UAV high resolution image transmission system (United States)

    Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng


    In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.

  5. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    There has been an almost explosive growth in performance and applications of Electrospray Ionization (ESI) Time of Flight (TOF) mass spectrometry, which today is one of the most efficient tools for screening of metabolites in complex bio-samples. Most efficiently ESI-MS can be used by directly...... infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... and mass axis on to a fixed one-dimensional array, we obtain a vector that can be used directly as input in multivariate statistics or library search methods. We demonstrate that both cluster- and discriminant analysis as well as PCA (and related methods) can be applied directly on mass spectra from direct...

  6. High Resolution Optical Spectra of HBC 722 after Outburst

    CERN Document Server

    Lee, Jeong-Eun; Lee, Sang-Gak; Sung, Hyun-Il; Lee, Byeong-Cheol; Sung, Hwankyung; Green, Joel D; Jeon, Young-Beom


    We report the results of our high resolution optical spectroscopic monitoring campaign ($\\lambda$ = 3800 -- 8800 A, R = 30000 -- 45000) of the new FU Orionis-type object HBC 722. We observed HBC 722 with the BOES 1.8-m telescope between 2010 November 26 and 2010 December 29 and FU Orionis itself on 2011 January 26. We detect a number of previously unreported high-resolution K I and Ca II lines beyond 7500 A. We resolve the H$\\alpha$ and Ca II line profiles into three velocity components, which we attribute to both disk and outflow. The increased accretion during outburst can heat the disk to produce the relatively narrow absorption feature and launch outflows appearing as high velocity blue and redshifted broad features.

  7. Application Research on High Resolution Radar Target Aggregation

    Directory of Open Access Journals (Sweden)

    Zhongzhi Li


    Full Text Available In high resolution radar system, the same target always has original data; so we need to merge multiple data from the same target as one target. Because of the system’s real-time requirement, we usually have to carry out target aggregation as quickly as possible. In this paper, we propose a quick target aggregation method based on clustering algorithm. The proposed method divides original data into subsets by single dimensional distance, and then merges subsets according to single dimensional distance and setdensity. At last we apply the proposed method to carry out target aggregation for airport scene surveillance radar system. Experimental result shows the proposed method has high execution efficiency and is not sensitive to noise data; it is useful for high resolution radar target aggregation.

  8. High Resolution X-ray-Induced Acoustic Tomography (United States)

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei


    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray.

  9. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution. (United States)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko


    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. High-resolution ionization detector and array of such detectors

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas S. (Ypsilanti, MI); Rojeski, Ronald A. (Pleasanton, CA)


    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature ( C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  11. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.


    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  12. High-resolution three-dimensional imaging with compress sensing (United States)

    Wang, Jingyi; Ke, Jun


    LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.

  13. Accelerated high-resolution photoacoustic tomography via compressed sensing (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward


    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  14. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)


    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  15. Statistical method evaluation for differentially methylated CpGs in base resolution next-generation DNA sequencing data. (United States)

    Zhang, Yun; Baheti, Saurabh; Sun, Zhifu


    High-throughput bisulfite methylation sequencing such as reduced representation bisulfite sequencing (RRBS), Agilent SureSelect Human Methyl-Seq (Methyl-seq) or whole-genome bisulfite sequencing is commonly used for base resolution methylome research. These data are represented either by the ratio of methylated cytosine versus total coverage at a CpG site or numbers of methylated and unmethylated cytosines. Multiple statistical methods can be used to detect differentially methylated CpGs (DMCs) between conditions, and these methods are often the base for the next step of differentially methylated region identification. The ratio data have a flexibility of fitting to many linear models, but the raw count data take consideration of coverage information. There is an array of options in each datatype for DMC detection; however, it is not clear which is an optimal statistical method. In this study, we systematically evaluated four statistic methods on methylation ratio data and four methods on count-based data and compared their performances with regard to type I error control, sensitivity and specificity of DMC detection and computational resource demands using real RRBS data along with simulation. Our results show that the ratio-based tests are generally more conservative (less sensitive) than the count-based tests. However, some count-based methods have high false-positive rates and should be avoided. The beta-binomial model gives a good balance between sensitivity and specificity and is preferred method. Selection of methods in different settings, signal versus noise and sample size estimation are also discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  16. Algorithms for mapping high-throughput DNA sequences

    DEFF Research Database (Denmark)

    Frellsen, Jes; Menzel, Peter; Krogh, Anders


    Abstract High-throughput sequencing (HTS) technologies revolutionized the field of molecular biology by enabling large scale whole genome sequencing as well as a broad range of experiments for studying the cell's inner workings directly on DNA or RNA level. Given the dramatically increased rate...

  17. An improved high throughput sequencing method for studying oomycete communities

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Nicolaisen, Mogens


    Culture-independent studies using next generation sequencing have revolutionizedmicrobial ecology, however, oomycete ecology in soils is severely lagging behind. The aimof this study was to improve and validate standard techniques for using high throughput sequencing as a tool for studying oomyce...

  18. The sequence of learning cycle activities in high school chemistry (United States)

    Abraham, Michael R.; Renner, John W.

    The sequence of the three phases of two high school learning cycles in chemistry was altered in order to: (I ) give insights into the factors which account for the success of the learning cycle, (2) serve as an indirect test of the association between Piaget's theory and the learning cycle, and (3) to compare the learning cycle with traditional instruction. Each of the six sequences (one n o d and five altered) was studied with content and atritudc measures. The outcomes of the study supported the contention that the normal learning cycle sequence is the optimum sequence for achievement of content knowledge.

  19. Adaptive optics with pupil tracking for high resolution retinal imaging. (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris


    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  20. High-resolution SIT TV tube for subnanosecond image shuttering (United States)

    Yates, G. J.; Vine, B. H.; Aeby, I.; Dunbar, D. L.; King, N. S. P.; Jaramillo, S. A.; Thayer, N. N.; Noel, B. W.


    A new ultrafast high-resolution image shutter tube with reasonable gain and shuttering efficiency has been designed and tested. The design uses a grid-gated silicon-intensified-target (SIT) image section and a high-speed focus projection and scan (FPS) vidicon read-out section in one envelope to eliminate resolution losses from external coupling. The design features low-gate-interface capacity, a high-conductivity shutter grid, and a segmented low-resistivity photocathode for optimum gating speed. Optical gate widths as short as 400 ps + or - 100 ps for full shuttering of the 25-mm-diam input window with spatial resolution as high as 15 1p/mm have been measured. Some design criteria, most of the electrical and optical performance data for several variations in the basic design, and a comparison (of several key response functions) with similarly tested 18- and 25-mm-diam proximity-focused microchannel-plate (MCP) image intensifier tubes (MCPTs) are included.

  1. Formation and evolution of planetary systems: the impact of high angular resolution optical techniques

    CERN Document Server

    Absil, Olivier; 10.1007/s00159-009-0028-y


    The direct images of giant extrasolar planets recently obtained around several main sequence stars represent a major step in the study of planetary systems. These high-dynamic range images are among the most striking results obtained by the current generation of high angular resolution instruments, which will be superseded by a new generation of instruments in the coming years. It is therefore an appropriate time to review the contributions of high angular resolution visible/infrared techniques to the rapidly growing field of extrasolar planetary science. During the last 20 years, the advent of the Hubble Space Telescope, of adaptive optics on 4- to 10-m class ground-based telescopes, and of long-baseline infrared stellar interferometry has opened a new viewpoint on the formation and evolution of planetary systems. By spatially resolving the optically thick circumstellar discs of gas and dust where planets are forming, these instruments have considerably improved our models of early circumstellar environments...

  2. High resolution inverse scattering in two dimensions using recursive linearization

    CERN Document Server

    Borges, Carlos; Greengard, Leslie


    We describe a fast, stable algorithm for the solution of the inverse acoustic scattering problem in two dimensions. Given full aperture far field measurements of the scattered field for multiple angles of incidence, we use Chen's method of recursive linearization to reconstruct an unknown sound speed at resolutions of thousands of square wavelengths in a fully nonlinear regime. Despite the fact that the underlying optimization problem is formally ill-posed and non-convex, recursive linearization requires only the solution of a sequence of linear least squares problems at successively higher frequencies. By seeking a suitably band-limited approximation of the sound speed profile, each least squares calculation is well-conditioned and involves the solution of a large number of forward scattering problems, for which we employ a recently developed, spectrally accurate, fast direct solver. For the largest problems considered, involving 19,600 unknowns, approximately one million partial differential equations were ...

  3. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others


    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  4. Precision cosmology with time delay lenses: high resolution imaging requirements

    CERN Document Server

    Meng, Xiao-Lei; Agnello, Adriano; Auger, Matthew W; Liao, Kai; Marshall, Philip J


    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as "Einstein Rings" in high resolution images. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope $\\gamma'$ of the...


    Directory of Open Access Journals (Sweden)

    E. K. Stathopoulou


    Full Text Available During the recent years it has become obvious that 3D technology, applied mainly with the use of terrestrial laser scanners (TLS is the most suitable technique for the complete geometric documentation of complex objects, whether they are monuments or architectural constructions in general. However, it is rather a challenging task to convert an acquired point cloud into a realistic 3D polygonal model that can simultaneously satisfy high resolution modeling and visualization demands. The aim of the visualization of a simple or complex object is to create a 3D model that best describes the reality within the computer environment. This paper is dedicated especially in the visualization of a complex object's 3D model, through high, as well as low resolution textured models. The object of interest for this study was the Almoina (Romanesque Door of the Cathedral of Valencia in Spain.

  6. Fabricating High-Resolution X-Ray Collimators (United States)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill


    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  7. High-resolution ultrasonographic findings in thyroid nodules

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Seob; Lee, Kwan Seh; Kim, Kun Sang; Park, Soo Soung [College of Medicine, Chung-Ang University, Seoul (Korea, Republic of)


    Ultrasonography, it's excellent ability of differentiating cystic from solid lesion and depicting detailed architecture, proved itself useful in the diagnosis of thyroid pathologies. Advanced high resolution equipment made hidden small lesion detected and finer structure clearly seen. They seemed to throw light on the histological diagnosis of thyroid diseases, especially differentiation of benignancy and malignancy. Author reviewed pictures of high-resolution ultrasonography of thyroid disease (24 cases) and correlated them with proven pathological findings. The results were as follows: 1. Multiplicity of lesion favors benignancy (4 cases). 2. Well defined margin favors benignancy (14/17), while ill defined margin favors malignancy (3/4), and lesion of no margin favors thyroiditis (3/3). 3. Surrounding halo favors benignancy (7 cases). 4. Hypoechogenicity were found in most of malignancy and thyroiditis. Cystic components in solid nodule were common findings in benign and malignant lesions. Calcification was not found in malignancy.

  8. Temperature-dependent high resolution absorption cross sections of propane (United States)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.


    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  9. High and Low Resolution Textured Models of Complex Architectural Surfaces (United States)

    Stathopoulou, E. K.; Valanis, A.; Lerma, J. L.; Georgopoulos, A.


    During the recent years it has become obvious that 3D technology, applied mainly with the use of terrestrial laser scanners (TLS) is the most suitable technique for the complete geometric documentation of complex objects, whether they are monuments or architectural constructions in general. However, it is rather a challenging task to convert an acquired point cloud into a realistic 3D polygonal model that can simultaneously satisfy high resolution modeling and visualization demands. The aim of the visualization of a simple or complex object is to create a 3D model that best describes the reality within the computer environment. This paper is dedicated especially in the visualization of a complex object's 3D model, through high, as well as low resolution textured models. The object of interest for this study was the Almoina (Romanesque) Door of the Cathedral of Valencia in Spain.

  10. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong


    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  11. High Resolution Aircraft Scanner Mapping of Geothermal and Volcanic Areas

    Energy Technology Data Exchange (ETDEWEB)

    Mongillo, M.A.; Cochrane, G.R.; Wood, C.P.; Shibata, Y.


    High spectral resolution GEOSCAN Mkll multispectral aircraft scanner imagery has been acquired, at 3-6 m spatial resolutions, over much of the Taupo Volcanic Zone as part of continuing investigations aimed at developing remote sensing techniques for exploring and mapping geothermal and volcanic areas. This study examined the 24-band: visible, near-IR (NIR), mid-IR (MIR) and thermal-IR (TIR) imagery acquired over Waiotapu geothermal area (3 m spatial resolution) and White Island volcano (6 m resolution). Results show that color composite images composed of visible and NIR wavelengths that correspond to color infrared (CIR) photographic wavelengths can be useful for distinguishing among bare ground, water and vegetation features and, in certain cases, for mapping various vegetation types. However, combinations which include an MIR band ({approx} 2.2 {micro}m) with either visible and NIR bands, or two NIR bands, are the most powerful for mapping vegetation types, water bodies, and bare and hydrothermally altered ground. Combinations incorporating a daytime TIR band with NIR and MIR bands are also valuable for locating anomalously hot features and distinguishing among different types of surface hydrothermal alteration.

  12. A high resolution cavity BPM for the CLIC Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chritin, N.; Schmickler, H.; Soby, L.; /CERN; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.; /Fermilab


    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  13. High-Resolution Wind Measurements for Offshore Wind Energy Development (United States)

    Nghiem, Son V.; Neumann, Gregory


    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  14. High resolution solar soft X-ray spectrometer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fei; WANG Huan-Yu; PENG Wen-Xi; LIANG Xiao-Hua; ZHANG Chun-Lei; CAO Xue-Lei; JIANG Wei-Chun; ZHANG Jia-Yu; CUI Xing-Zhu


    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed.A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer.The spectrometer consists of the detectors and their readout electronics,a data acquisition unit and a payload data handling unit.A ground test system is also developed to test SOX.The test results show that the design goals of the spectrometer system have been achieved.

  15. High resolution bathymetry of China seas and their surroundings

    Institute of Scientific and Technical Information of China (English)


    Based on the oceanic lithospheric flexure and the worldwide bathymetric data ETOPO5, the high resolu tion bathymetry of the China seas and their surroundings is computed from altimeter derived gravity anomalies. The new bathymetry obtained by this study is higher resolution and accuracy than the widely used ETOPO5 data, mean while it shows clearly the seafioor, the tectonic characteristics and the geodynamical processes in the China seas.

  16. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.


    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...

  17. High resolution inelastic electron scattering and nuclear structure (United States)

    Blok, H. B.; Heisenberg, J. H.

    Thanks to the improved characteristics of the experimental set-up electron scattering has become an excellent tool to study the structure of the nucleus. After describing globally how the nuclear structure enters in the formalism of (e,e') reactions and how the high experimental resolution is obtained, several examples of the use of electron scattering for the study of specific nuclear structure questions are discussed.

  18. Tuberculous otitis media: findings on high-resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Lungenschmid, D. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria)]|[Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Buchberger, W. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria)]|[Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Schoen, G. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria); Schoepf, R. [Radiologic Inst., Landeck (Austria); Mihatsch, T. [Dept. of Oto-Rhino-Laryngology, University Hospital of Innsbruck (Austria); Birbamer, G. [Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Wicke, K. [Inst. of Computed Tomography, University Hospital of Innsbruck (Austria)


    We describe two cases of tuberculous otitis media studied with high-resolution computed tomography (CT). Findings included extensive soft tissue densities with fluid levels in the tympanic cavity, the antrum, the mastoid and petrous air cells. Multifocal bony erosions and reactive bone sclerosis were seen as well. CT proved valuable for planning therapy by accurately displaying the involvement of the various structures of the middle and inner ear. However, the specific nature of the disease could only be presumed. (orig.)

  19. Fusion Experiments of HSI and High Resolution Panchromatic Imagery (United States)


    map derived from the unsharpened HSI. The classification is performed with an unsupervised feature extraction using principal component analysis (PCA... Classification of Hyperspectral Data in Urban Area", P. 169-172, SPIE Vol.3502 8. R. C. Gonzalez, P. Wintz, Digital Image Processing, Addison-Wesley...MA 02420-9185 Abstract In this paper, the fusion of hyperspectral imaging (HSI) sensor data and high-resolution panchromatic imagery (HPI) is

  20. Optical alignment of high resolution Fourier transform spectrometers (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.


    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  1. A high resolution cavity BPM for the CLIC Test Facility

    CERN Document Server

    Chritin, N; Soby, L; Lunin, A; Solyak, N; Wendt, M; Yakovlev, V


    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  2. Chronic pneumonitis of infancy: high-resolution CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Oeystein E.; Owens, Catherine M. [Radiology Department, Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, WC1N 3JH, London (United Kingdom); Sebire, Neil J. [Histopathology Department, Great Ormond Street Hospital for Children NHS Trust, London (United Kingdom); Jaffe, Adam [Portex Respiratory Medicine Unit, The Institute of Child Health, University College London, London (United Kingdom)


    Chronic pneumonitis of infancy (CPI) is a very rare entity. We report the chest radiography and high-resolution CT (HRCT) findings in an infant with histopathologically confirmed CPI. The child was admitted for intensive care 18 h after birth and died at 39 days of age. On HRCT there was diffuse ground-glass change, interlobular septal thickening and discrete centrilobular nodules. An accurate diagnosis is crucial for correct management; however, several entities with the same HRCT findings are recognized. (orig.)

  3. High-resolution CT of lesions of the optic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Peyster, R.G.; Hoover, E.D.; Hershey, B.L.; Haskin, M.E.


    The optic nerves are well demonstrated by high-resolution computed tomography. Involvement of the optic nerve by optic gliomas and optic nerve sheath meningiomas is well known. However, nonneoplastic processes such as increased intracranial pressure, optic neuritis, Grave ophthalmopathy, and orbital pseudotumor may also alter the appearance of the optic nerve/sheath on computed tomography. Certain clinical and computed tomographic features permit distinction of these nonneoplastic tumefactions from tumors.

  4. Yeast expression proteomics by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Walther, Tobias C; Olsen, Jesper Velgaard; Mann, Matthias


    -translational controls contribute majorly to regulation of protein abundance, for example in heat shock stress response. The development of new sample preparation methods, high-resolution mass spectrometry and novel bioinfomatic tools close this gap and allow the global quantitation of the yeast proteome under different...... conditions. Here, we provide background information on proteomics by mass-spectrometry and describe the practice of a comprehensive yeast proteome analysis....

  5. Progress Toward A Very High Angular Resolution Imaging Spectrometer (VERIS) (United States)

    Korendyke, Clarence M.; Vourlidas, A.; Landi, E.; Seely, J.; Klimchuck, J.


    Recent imaging at arcsecond (TRACE) and sub-arcsecond (VAULT) spatial resolution clearly show that structures with fine spatial scales play a key role in the physics of the upper solar atmosphere. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. Fundamental questions regarding the nature, structure, properties and dynamics of loops and filamentary structures in the upper atmosphere have been raised. To address these questions, we are developing a next generation, VEry high angular Resolution Imaging Spectrometer (VERIS) as a sounding rocket instrument. VERIS will obtain the necessary high spatial resolution, high fidelity measurements of plasma temperatures, densities and velocities. With broad simultaneous temperature coverage, the VERIS observations will directly address unresolved issues relating to interconnections of various temperature solar plasmas. VERIS will provide the first ever subarcsecond spectra of transition region and coronal structures. It will do so with a sufficient spectral resolution of to allow centroided Doppler velocity determinations to better than 3 km/s. VERIS uses a novel two element, normal incidence optical design with highly reflective EUV coatings to access a spectral range with broad temperature coverage (0.03-15 MK) and density-sensitive line ratios. Finally, in addition to the spectra, VERIS will simultaneously obtain spectrally pure slot images (10x150 arcsec) in the +/-1 grating orders, which can be combined to make instantaneous line-of-sight velocity maps with 8km/s accuracy over an unprecedented field of view. The VERIS program is beginning the second year of its three year development cycle. All design activities and reviews are complete. Fabrication of all major components has begun. Brassboard electronics cards have been fabricated, assembled and tested. The paper presents the essential scientific

  6. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  7. A high-resolution record of Greenland mass balance (United States)

    McMillan, Malcolm; Leeson, Amber; Shepherd, Andrew; Briggs, Kate; Armitage, Thomas W. K.; Hogg, Anna; Kuipers Munneke, Peter; Broeke, Michiel; Noël, Brice; Berg, Willem Jan; Ligtenberg, Stefan; Horwath, Martin; Groh, Andreas; Muir, Alan; Gilbert, Lin


    We map recent Greenland Ice Sheet elevation change at high spatial (5 km) and temporal (monthly) resolution using CryoSat-2 altimetry. After correcting for the impact of changing snowpack properties associated with unprecedented surface melting in 2012, we find good agreement (3 cm/yr bias) with airborne measurements. With the aid of regional climate and firn modeling, we compute high spatial and temporal resolution records of Greenland mass evolution, which correlate (R = 0.96) with monthly satellite gravimetry and reveal glacier dynamic imbalance. During 2011-2014, Greenland mass loss averaged 269 ± 51 Gt/yr. Atmospherically driven losses were widespread, with surface melt variability driving large fluctuations in the annual mass deficit. Terminus regions of five dynamically thinning glaciers, which constitute less than 1% of Greenland's area, contributed more than 12% of the net ice loss. This high-resolution record demonstrates that mass deficits extending over small spatial and temporal scales have made a relatively large contribution to recent ice sheet imbalance.

  8. High resolution ultrasonic spectroscopy system for nondestructive evaluation (United States)

    Chen, C. H.


    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  9. Multimodal microscopy with high resolution spectral focusing CARS (United States)

    Baldacchini, Tommaso; Zadoyan, Ruben


    In this work we describe a device that extends capabilities of multiphoton microscopes based on dual wavelength output femtosecond laser sources. CARS with 17cm-1 spectral resolution is experimentally demonstrated. Our approach is based on spectral focusing CARS. For pulse shaping of the pump and Stokes beams we utilize transmission gratings based stretcher. It allows the dispersion of the stretcher to be continuously adjusted in wide range. The best spectral resolution is achieved when the chirp rates in both pump and Stokes beam are matched. The device is automated. Any change in the beam path lengths due to the stretcher adjustment or wavelength tuning is compensated by the delay line. We incorporated into the device a computer controlled beam pointing stabilization system that compensates the beam pointing deviation due to dispersion in the system. High level of automation and computer control makes the operation of the device easy. We present CARS images of several samples that demonstrate high spectral resolution, high contrast and chemical selectivity.

  10. Development of a high resolution module for PET scanners (United States)

    Stringhini, G.; Pizzichemi, M.; Ghezzi, A.; Stojkovic, A.; Tavernier, S.; Niknejad, T.; Varela, J.; Paganoni, M.; Auffray, E.


    Positron Emission Tomography (PET) scanners require high performances in term of spatial resolution and sensitivity to allow early detection of cancer masses. In small animal and organ dedicated PET scanners the Depth of Interaction (DOI) information has to be obtained to avoid parallax errors and to reconstruct high resolution images. In the whole body PET, the DOI information can be useful to correct for the time jitter of the optical photons along the main axis of the scintillator, improving the time performances. In this work we present the development of PET module designed to reach high performance as compared to the current scanners while keeping the complexity of the system reasonably low. The module presented is based on a 64 LYSO (Lutetium-yttrium oxyorthosilicate) crystals matrix and on a 4×4 MPPC (Multi Pixels Photon Counter) array as detector in a 4 to 1 coupling between the crystals and the detector and a single side readout. The lateral surfaces of the crystals are optically treated to be unpolished. The DOI and the energy resolution of the PET module are presented and a fast method to obtain the DOI calibration is discussed.

  11. High Resolution CO Observations of Massive Star Forming Regions

    CERN Document Server

    Klaassen, P D; Keto, E R; Zhang, Q; Galván-Madrid, R; Liu, H-Y B


    Context. To further understand the processes involved in the formation of massive stars, we have undertaken a study of the gas dynamics surrounding three massive star forming regions. By observing the large scale structures at high resolution, we are able to determine properties such as driving source, and spatially resolve the bulk dynamical properties of the gas such as infall and outflow. Aims. With high resolution observations, we are able to determine which of the cores in a cluster forming massive stars is responsible for the large scale structures. Methods. We present CO observations of three massive star forming regions with known HII regions and show how the CO traces both infall and outflow. By combining data taken in two SMA configurations with JCMT observations, we are able to see large scale structures at high resolution. Results. We find large (0.26-0.40 pc), massive (2-3 M_sun) and energetic (13-17 \\times 10^44 erg) outflows emanating from the edges of two HII regions suggesting they are being ...

  12. High resolution, MRI-based, segmented, computerized head phantom

    Energy Technology Data Exchange (ETDEWEB)

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P. [Yale Univ., New Haven, CT (United States). Dept. of Diagnostic Radiology


    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 byte array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.

  13. High-Resolution CH Observations of Two Translucent Molecular Clouds (United States)

    Chastain, Raymond J.; Cotten, David; Magnani, Loris


    We present high-resolution (1farcm3 × 1farcm6) observations of the CH 2Π1/2 (F = 1-1) emission line at 3335 MHz in two high-latitude translucent clouds, MBM 3 and 40. At the assumed cloud distances, the angular resolution corresponds to ~0.05 pc, nearly an order of magnitude better than previous studies. Comparisons of the CH emission with previously obtained CO(1-0) data are difficult to interpret: the CO and CH line emission correlates in MBM 40 but not in MBM 3. In both clouds, there is a spatial offset in the peak emission, and perhaps in velocity for MBM 40. The difference in emission characteristics for the two tracers are noticeable in these two nearby clouds because of the high spatial resolution. Since both CH and CO are deemed to be reliable tracers of H2, our results indicate that more care should be taken when using one of these tracers to determine the mass of a nearby molecular cloud.

  14. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5 (United States)

    Putman, William P.


    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  15. High resolution detection and analysis of CpG dinucleotides methylation using MBD-Seq technology.

    Directory of Open Access Journals (Sweden)

    Xun Lan

    Full Text Available Methyl-CpG binding domain protein sequencing (MBD-seq is widely used to survey DNA methylation patterns. However, the optimal experimental parameters for MBD-seq remain unclear and the data analysis remains challenging. In this study, we generated high depth MBD-seq data in MCF-7 cell and developed a bi-asymmetric-Laplace model (BALM to perform data analysis. We found that optimal efficiency of MBD-seq experiments was achieved by sequencing ∼100 million unique mapped tags from a combination of 500 mM and 1000 mM salt concentration elution in MCF-7 cells. Clonal bisulfite sequencing results showed that the methylation status of each CpG dinucleotides in the tested regions was accurately detected with high resolution using the proposed model. These results demonstrated the combination of MBD-seq and BALM could serve as a useful tool to investigate DNA methylome due to its low cost, high specificity, efficiency and resolution.

  16. High-resolution MRI of cranial nerves in posterior fossa at 3.0 T

    Institute of Scientific and Technical Information of China (English)

    Zi-Yi Guo; Jing Chen; Qi-Zhou Liang; Hai-Yan Liao; Qiong-Yue Cheng; Shui-Xi Fu; Cai-Xiang Chen; Dan Yu


    Objective:To evaluate the influence of high-resolution imaging obtainable with the higher field strength of3.0T on the visualization of the brain nerves in the posterior fossa.Methods:In total,20 nerves were investigated onMRI of12 volunteers each and selected for comparison, respectively, with theFSE sequences with5 mm and2 mm section thicknesses and gradient recalled echo(GRE) sequences acquired with a3.0-T scanner.TheMR images were evaluated by three independent readers who rated image quality according to depiction of anatomic detail and contrast with use of a rating scale.Results:In general, decrease of the slice thickness showed a significant increase in the detection of nerves as well as in the image quality characteristics. ComparingFSE andGRE imaging, the course of brain nerves and brainstem vessels was visualized best with use of the three-dimensional(3D) pulse sequence.Conclusions:The comparison revealed the clear advantage of a thin section.The increased resolution enabled immediate identification of all brainstem nerves.GRE sequence most distinctly and confidently depicted pertinent structures and enables3D reconstruction to illustrate complex relations of the brainstem.

  17. High Resolution Real Time Sonography of the Thyroid Gland

    Directory of Open Access Journals (Sweden)

    A. Honarbakhsh


    Full Text Available Background/Objective: High-resolution sonography equipment permits for visualization of normal and abnormal thyroid gland with or without gel pad or water bath. This study prospectively presents surgically and pathologically proved patients with thyroid disease by direct ultrasound with or without Doppler (pulse, color, power Doppler."nPatients and Methods: This study was performed by 7.5-10 MHz frequency linear probe transducer with axial resolution of 0.7mm and lateral resolution of 1-2 mm (Aloka 650 and super SG 140 Toshiba unit assembly with color, power Doppler. Patient's neck was extended as a supine position."nResults: Pathologic proof was obtained in 45 patients with benign and five patients with malignant thyroid disease. Benign lesions were follicular adenoma in 30 patients, goiter in 10 patients, as hashimoto thyroiditis in two patients, hemorrhagic cyst in two patients and simple cyst in one patient. Malignant lesions were follicular, papillary, and medulary carcinoma which seen in two, two, and one patients respectively. Echopatterns were as follow: Most of them showed decreades echo when we compare to normal thyroid tissue, some malignant lesions showed increased echo and some isoecho, in the last group we need other work up for example Doppler (pulse, color, power for evaluation vascularity. We did not have metastasis to thyroid gland."nConclusion: With advace in technology in crystal and design overall probe as a result creat broadband width probe and also full digital sonography unit inclding (beam forming - CPU in images resolution is with high grade than semi digital unit that before used for thytoid gland. When With any reason resolution is increased we sould be able to diagnosed very small and smallest lesion (for example mest to thyroid or reccurency after total Lobectomy: there is three primay uses of sonography, 1 detection of mutionodular gland when only one nodule is suspected clinically and by isotop scan.2 High

  18. High resolution modeling of a small urban catchment (United States)

    Skouri-Plakali, Ilektra; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel


    Flooding is one of the most complex issues that urban environments have to deal with. In France, flooding remains the first natural risk with 72% of decrees state of natural disaster issued between October 1982 and mid-November 2014. Flooding is a result of meteorological extremes that are usually aggravated by the hydrological behavior of urban catchments and human factors. The continuing urbanization process is indeed changing the whole urban water cycle by limiting the infiltration and promoting runoff. Urban environments are very complex systems due to their extreme variability, the interference between human activities and natural processes but also the effect of the ongoing urbanization process that changes the landscape and hardly influences their hydrologic behavior. Moreover, many recent works highlight the need to simulate all urban water processes at their specific temporal and spatial scales. However, considering urban catchments heterogeneity still challenging for urban hydrology, even after advances noticed in term of high-resolution data collection and computational resources. This issue is more to be related to the architecture of urban models being used and how far these models are ready to take into account the extreme variability of urban catchments. In this work, high spatio-temporal resolution modeling is performed for a small and well-equipped urban catchment. The aim of this work is to identify urban modeling needs in terms of spatial and temporal resolution especially for a very small urban area (3.7 ha urban catchment located in the Perreux-sur-Marne city at the southeast of Paris) MultiHydro model was selected to carry out this work, it is a physical based and fully distributed model that interacts four existing modules each of them representing a portion of the water cycle in urban environments. MultiHydro was implemented at 10m, 5m and 2m resolution. Simulations were performed at different spatio-temporal resolutions and analyzed with

  19. DNA fiber mapping techniques for the assembly of high-resolution physical maps. (United States)

    Weier, H U


    High-resolution physical maps are indispensable for directed sequencing projects or the finishing stages of shotgun sequencing projects. These maps are also critical for the positional cloning of disease genes and genetic elements that regulate gene expression. Typically, physical maps are based on ordered sets of large insert DNA clones from cosmid, P1/PAC/BAC, or yeast artificial chromosome (YAC) libraries. Recent technical developments provide detailed information about overlaps or gaps between clones and precisely locate the position of sequence tagged sites or expressed sequences, and thus support efforts to determine the complete sequence of the human genome and model organisms. Assembly of physical maps is greatly facilitated by hybridization of non-isotopically labeled DNA probes onto DNA molecules that were released from interphase cell nuclei or recombinant DNA clones, stretched to some extent and then immobilized on a solid support. The bound DNA, collectively called "DNA fibers," may consist of single DNA molecules in some experiments or bundles of chromatin fibers in others. Once released from the interphase nuclei, the DNA fibers become more accessible to probes and detection reagents. Hybridization efficiency is therefore increased, allowing the detection of DNA targets as small as a few hundred base pairs. This review summarizes different approaches to DNA fiber mapping and discusses the detection sensitivity and mapping accuracy as well as recent achievements in mapping expressed sequence tags and DNA replication sites.

  20. Distributed Modeling with Parflow using High Resolution LIDAR Data (United States)

    Barnes, M.; Welty, C.; Miller, A. J.


    Urban landscapes provide a challenging domain for the application of distributed surface-subsurface hydrologic models. Engineered water infrastructure and altered topography influence surface and subsurface flow paths, yet these effects are difficult to quantify. In this work, a parallel, distributed watershed model (ParFlow) is used to simulate urban watersheds using spatial data at the meter and sub-meter scale. An approach using GRASS GIS (Geographic Resources Analysis Support System) is presented that incorporates these data to construct inputs for the ParFlow simulation. LIDAR topography provides the basis for the fully coupled overland flow simulation. Methods to address real discontinuities in the urban land-surface for use with the grid-based kinematic wave approximation used in ParFlow are presented. The spatial distribution of impervious surface is delineated accurately from high-resolution land cover data; hydrogeological properties are specified from literature values. An application is presented for part of the Dead Run subwatershed of the Gwynns Falls in Baltimore County, MD. The domain is approximately 3 square kilometers, and includes a highly impacted urban stream, a major freeway, and heterogeneous urban development represented at a 10-m horizontal resolution and 1-m vertical resolution. This resolution captures urban features such as building footprints and highways at an appropriate scale. The Dead Run domain provides an effective test case for ParFlow application at the fine scale in an urban environment. Preliminary model runs employ a homogeneous subsurface domain with no-flow boundaries. Initial results reflect the highly articulated topography of the road network and the combined influence of surface runoff from impervious surfaces and subsurface flux toward the channel network. Subsequent model runs will include comparisons of the coupled surface-subsurface response of alternative versions of the Dead Run domain with and without impervious

  1. High resolution OCT image generation using super resolution via sparse representation (United States)

    Asif, Muhammad; Akram, Muhammad Usman; Hassan, Taimur; Shaukat, Arslan; Waqar, Razi


    In this paper we propose a technique for obtaining a high resolution (HR) image from a single low resolution (LR) image -using joint learning dictionary - on the basis of image statistic research. It suggests that with an appropriate choice of an over-complete dictionary, image patches can be well represented as a sparse linear combination. Medical imaging for clinical analysis and medical intervention is being used for creating visual representations of the interior of a body, as well as visual representation of the function of some organs or tissues (physiology). A number of medical imaging techniques are in use like MRI, CT scan, X-rays and Optical Coherence Tomography (OCT). OCT is one of the new technologies in medical imaging and one of its uses is in ophthalmology where it is being used for analysis of the choroidal thickness in the eyes in healthy and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies. We have proposed a technique for enhancing the OCT images which can be used for clearly identifying and analyzing the particular diseases. Our method uses dictionary learning technique for generating a high resolution image from a single input LR image. We train two joint dictionaries, one with OCT images and the second with multiple different natural images, and compare the results with previous SR technique. Proposed method for both dictionaries produces HR images which are comparatively superior in quality with the other proposed method of SR. Proposed technique is very effective for noisy OCT images and produces up-sampled and enhanced OCT images.

  2. Directed PCR-free engineering of highly repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Preissler Steffen


    Full Text Available Abstract Background Highly repetitive nucleotide sequences are commonly found in nature e.g. in telomeres, microsatellite DNA, polyadenine (poly(A tails of eukaryotic messenger RNA as well as in several inherited human disorders linked to trinucleotide repeat expansions in the genome. Therefore, studying repetitive sequences is of biological, biotechnological and medical relevance. However, cloning of such repetitive DNA sequences is challenging because specific PCR-based amplification is hampered by the lack of unique primer binding sites resulting in unspecific products. Results For the PCR-free generation of repetitive DNA sequences we used antiparallel oligonucleotides flanked by restriction sites of Type IIS endonucleases. The arrangement of recognition sites allowed for stepwise and seamless elongation of repetitive sequences. This facilitated the assembly of repetitive DNA segments and open reading frames encoding polypeptides with periodic amino acid sequences of any desired length. By this strategy we cloned a series of polyglutamine encoding sequences as well as highly repetitive polyadenine tracts. Such repetitive sequences can be used for diverse biotechnological applications. As an example, the polyglutamine sequences were expressed as His6-SUMO fusion proteins in Escherichia coli cells to study their aggregation behavior in vitro. The His6-SUMO moiety enabled affinity purification of the polyglutamine proteins, increased their solubility, and allowed controlled induction of the aggregation process. We successfully purified the fusions proteins and provide an example for their applicability in filter retardation assays. Conclusion Our seamless cloning strategy is PCR-free and allows the directed and efficient generation of highly repetitive DNA sequences of defined lengths by simple standard cloning procedures.

  3. A high resolution RH map of the bovine major histocompatibility complex

    Directory of Open Access Journals (Sweden)

    Womack James E


    Full Text Available Abstract Background The cattle MHC is termed the bovine leukocyte antigen (BoLA and, along with the MHCs of other ruminants, is unique in its genomic organization. Consequently, correct and reliable gene maps and sequence information are critical to the study of the BoLA region. The bovine genome sequencing project has produced two assemblies (Btau_3.1 and 4.0 that differ substantially from each other and from conventional gene maps in the BoLA region. To independently compare the accuracies of the different sequence assemblies, we have generated a high resolution map of BoLA using a 12,000rad radiation hybrid panel. Seventy-seven unique sequence tagged site (STS markers chosen at approximately 50 kb intervals from the Btau 2.0 assembly and spanning the IIa-III-I and IIb regions of the bovine MHC were mapped on a 12,000rad bovine radiation hybrid (RH panel to evaluate the different assemblies of the bovine genome sequence. Results Analysis of the data generated a high resolution RH map of BoLA that was significantly different from the Btau_3.1 assembly of the bovine genome but in good agreement with the Btau_4.0 assembly. Of the few discordancies between the RH map and Btau_4.0, most could be attributed to closely spaced markers that could not be precisely ordered in the RH panel. One probable incorrectly-assembled sequence and three missing sequences were noted in the Btau_4.0 assembly. The RH map of BoLA is also highly concordant with the sequence-based map of HLA (NCBI build 36 when reordered to account for the ancestral inversion in the ruminant MHC. Conclusion These results strongly suggest that studies using Btau_3.1 for analyses of the BoLA region should be reevaluated in light of the Btau_4.0 assembly and indicate that additional research is needed to produce a complete assembly of the BoLA genomic sequences.

  4. High Resolution Continuous Flow Analysis System for Polar Ice Cores (United States)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa


    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  5. Precision glass molding of high-resolution diffractive optical elements (United States)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas


    The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.

  6. Calibration of a High Resolution Airborne 3-D SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Grinder-Pedersen, Jan; Madsen, S.N.


    (EMI). In order to achieve a high geodetic fidelity when using such systems operationally, calibration procedures must be applied. Inaccurate navigation data and system parameters as well as system imperfections must be accounted for. This paper presents theoretical models describing the impact of key......The potential of across-track interferometric (XTI) synthetic aperture radar (SAR) for producing high resolution 3D imagery has been demonstrated by several airborne systems including EMISAR, the dual frequency, polarimetric, and interferometric SAR developed at the Dept. of Electromagnetic Systems...

  7. Coverage Options for a Low cost, High Resolution Optical Constellation


    Price, M E; Levett, W.; Graham, K.


    This paper presents the range of coverage options available to TopSat like small satellites, both singly and in a small constellation. TopSat is a low-cost, high resolution and image quality, optical small satellite, due for launch in October 2004. In particular, the paper considers the use of tuned, repeat ground track orbits to improve coverage for selected ground targets, at the expense of global coverage. TopSat is designed to demonstrate the capabilities of small satellites for high valu...

  8. High resolution study of magnetic ordering at absolute zero. (United States)

    Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G


    High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.

  9. High-resolution protein structure determination by serial femtosecond crystallography. (United States)

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J; Barends, Thomas R M; Aquila, Andrew; Doak, R Bruce; Weierstall, Uwe; DePonte, Daniel P; Steinbrener, Jan; Shoeman, Robert L; Messerschmidt, Marc; Barty, Anton; White, Thomas A; Kassemeyer, Stephan; Kirian, Richard A; Seibert, M Marvin; Montanez, Paul A; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M; Philipp, Hugh T; Tate, Mark W; Hromalik, Marianne; Koerner, Lucas J; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y; Hunter, Mark S; Johansson, Linda C; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C H; Chapman, Henry N; Schlichting, Ilme


    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.

  10. High resolution upgrade of the ATF damping ring BPM system

    Energy Technology Data Exchange (ETDEWEB)

    Terunuma, N.; Urakawa, J.; /KEK, Tsukuba; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; /SLAC; Briegel, C.; Dysert, R.; /Fermilab


    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  11. Localized corrosion information using high resolution measurement devices

    DEFF Research Database (Denmark)

    Ambat, Rajan


    to control the solution flow at the tip. Through addition of reference and counter electrodes, the pipette system becomes a microscopic electrochemical cell, which can then be used with high precision to determine the electrochemical characteristics of the microstructural region of interest. The capability...... of the technique could be further enhanced by adding new features such as high resolution video visualization systems, fretting/tribo-corroson attachments, and also by integrating it with stress corrosion testing, corrosion investigation of concrete for a few to name with. The corrosion group in MPT, Technical...

  12. High-resolution multimodal clinical multiphoton tomography of skin (United States)

    König, Karsten


    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  13. Radiation length imaging with high-resolution telescopes (United States)

    Stolzenberg, U.; Frey, A.; Schwenker, B.; Wieduwilt, P.; Marinas, C.; Lütticke, F.


    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length X/X0 profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the X/X0 imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of X/X0 imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of 100 million tracks at 4 GeV has been collected, which is sufficient to resolve complex material profiles on the 30 μm scale.

  14. Spatial-temperature high resolution map for early cancer diagnosis (United States)

    Gavriloaia, Gheorghe V.; Hurduc, Anca; Ghimigean, Ana-Maria; Fumarel, Radu


    Heat is one of the most important parameters of living beings. Skin temperature is not the same on the entire body and so, a thermal signature can be got. Infrared map on serial imaging can constitute an early sign of an abnormality. Thermography detects changes in tissue that appear before and accompany many diseases including cancer. As this map has a better resolution an early cancer diagnosis can be done. The temperature of neoplasic tissue is different up to 1.5 °C than that of the healthy tissue as a result of the specific metabolic rate. The infrared camera images show very quickly the heat transferred by radiation. A lot of factors disturb the temperature conversion to pixel intensity. A sensitive temperature sensor with a 10 Mpixels video camera, showing its spatial position, and a computer fusion program were used for the map with high spatial-temperature resolution. A couple of minutes are necessary to get a high resolution map. The asymmetry and borders were the main parameters analyzed. The right cancer diagnosis was for about 78.4% of patients with thyroid cancer, and more than 89.6% from patients with breast cancer. In the near future, the medical prognosis will be improved by fractal analysis.

  15. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields (United States)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong


    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  16. Quantitative proteomics using the high resolution accurate mass capabilities of the quadrupole-orbitrap mass spectrometer. (United States)

    Gallien, Sebastien; Domon, Bruno


    High resolution/accurate mass hybrid mass spectrometers have considerably advanced shotgun proteomics and the recent introduction of fast sequencing capabilities has expanded its use for targeted approaches. More specifically, the quadrupole-orbitrap instrument has a unique configuration and its new features enable a wide range of experiments. An overview of the analytical capabilities of this instrument is presented, with a focus on its application to quantitative analyses. The high resolution, the trapping capability and the versatility of the instrument have allowed quantitative proteomic workflows to be redefined and new data acquisition schemes to be developed. The initial proteomic applications have shown an improvement of the analytical performance. However, as quantification relies on ion trapping, instead of ion beam, further refinement of the technique can be expected.

  17. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry (United States)

    Souda, Puneet; Ryan, Christopher M.; Cramer, William A.; Whitelegge, Julian


    Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein’s native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electroncapture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. PMID:21982782

  18. Polystyrene negative resist for high-resolution electron beam lithography

    Directory of Open Access Journals (Sweden)

    Ma Siqi


    Full Text Available Abstract We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern.

  19. A new matching algorithm for high resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Edberg; Smedsgaard, Jørn


    We present a new matching algorithm designed to compare high-resolution spectra. Whereas existing methods are bound to compare fixed intervals of ion masses, the accurate mass spectrum (AMS) distance method presented here is independent of any alignment. Based on the Jeffreys-Matusitas (JM......) distance, a difference between observed peaks across pairs of spectra can be calculated, and used to find a unique correspondence between the peaks. The method takes into account that there may be differences in resolution of the spectra. The algorithm is used for indexing in a database containing 80...... accurate mass spectra from an analysis of extracts of 80 isolates representing the nine closely related species in the Penicillium series Viridicata. Using this algorithm we can obtain a retrieval performance of approximate to97-98% that is comparable with the best of the existing methods (e.g., the dot...

  20. Observations of solar scattering polarization at high spatial resolution

    CERN Document Server

    Snik, F; Ichimoto, K; Fischer, C E; Keller, C U; Lites, B W


    The weak, turbulent magnetic fields that supposedly permeate most of the solar photosphere are difficult to observe, because the Zeeman effect is virtually blind to them. The Hanle effect, acting on the scattering polarization in suitable lines, can in principle be used as a diagnostic for these fields. However, the prediction that the majority of the weak, turbulent field resides in intergranular lanes also poses significant challenges to scattering polarization observations because high spatial resolution is usually difficult to attain. We aim to measure the difference in scattering polarization between granules and intergranules. We present the respective center-to-limb variations, which may serve as input for future models. We perform full Stokes filter polarimetry at different solar limb positions with the CN band filter of the Hinode-SOT Broadband Filter Imager, which represents the first scattering polarization observations with sufficient spatial resolution to discern the granulation. Hinode-SOT offer...