WorldWideScience

Sample records for high resolution pet

  1. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  2. A Very High Spatial Resolution Detector for Small Animal PET

    International Nuclear Information System (INIS)

    Kanai Shah, M.S.

    2007-01-01

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated

  3. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    International Nuclear Information System (INIS)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-01

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 (micro)m or smaller will lead to an image resolution of 500 (micro)m when using 18F- or 64Cu-labeled radiotracers, giving a factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.

  4. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  5. Performance evaluation of a high resolution dedicated breast PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del [Department of Nuclear Medicine, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Roselló Ferrando, Joan [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Department of Physiology, University of Valencia, Valencia 46010 (Spain)

    2016-05-15

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good

  6. Performance evaluation of a high resolution dedicated breast PET scanner

    International Nuclear Information System (INIS)

    García Hernández, Trinitat; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo; Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del; Roselló Ferrando, Joan

    2016-01-01

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ("1"8F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good performance

  7. Poster - 01: LabPET II Pixelated APD-Based PET Scanner for High-Resolution Preclinical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, Roger; Arpin, Louis; Beaudoin, Jean-François; Bergeron, Mélanie; Bouchard, Jonathan; Bouziri, Haithem; Cadorette, Jules; Gaudin, Émilie; Jürgensen, Nadia; Koua, Konin Calliste; Trépanier, Pierre-Yves Lauzier; Leroux, Jean-Daniel; Loignon-Houle, Francis; Njejimana, Larissa; Paillé, Maxime; Paulin, Caroline; Pepin, Catherine; Pratte, Jean-François; Samson, Arnaud; Thibaudeau, Christian [Université de Sherbrooke, Université de Sherbrooke, CIMS/CRCHUS, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, CIMS/CRCHUS, Université de Sherbrooke, Université de Sherbrooke, 3IT, Université de Sherbrooke, Novalgo Inc., Université de Sherbrooke, Université de Sherbrooke, CIMS/CRCHUS, 3IT, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, Université de Sherbrooke, 3IT, Université de Sherbrooke (Canada); and others

    2016-08-15

    Purpose: LabPET II is a new generation APD-based PET scanner designed to achieve sub-mm spatial resolution using truly pixelated detectors and highly integrated parallel front-end processing electronics. Methods: The basic element uses a 4×8 array of 1.12×1.12 mm{sup 2} Lu{sub 1.9}Y{sub 0.1}SiO{sub 5}:Ce (LYSO) scintillator pixels with one-to-one coupling to a 4×8 pixelated monolithic APD array mounted on a ceramic carrier. Four detector arrays are mounted on a daughter board carrying two flip-chip, 64-channel, mixed-signal, application-specific integrated circuits (ASIC) on the backside interfacing to two detector arrays each. Fully parallel signal processing was implemented in silico by encoding time and energy information using a dual-threshold Time-over-Threshold (ToT) scheme. The self-contained 128-channel detector module was designed as a generic component for ultra-high resolution PET imaging of small to medium-size animals. Results: Energy and timing performance were optimized by carefully setting ToT thresholds to minimize the noise/slope ratio. ToT spectra clearly show resolved 511 keV photopeak and Compton edge with ToT resolution well below 10%. After correction for nonlinear ToT response, energy resolution is typically 24±2% FWHM. Coincidence time resolution between opposing 128-channel modules is below 4 ns FWHM. Initial imaging results demonstrate that 0.8 mm hot spots of a Derenzo phantom can be resolved. Conclusion: A new generation PET scanner featuring truly pixelated detectors was developed and shown to achieve a spatial resolution approaching the physical limit of PET. Future plans are to integrate a small-bore dedicated mouse version of the scanner within a PET/CT platform.

  8. New DOI identification approach for high-resolution PET detectors

    International Nuclear Information System (INIS)

    Choghadi, Amin; Takahashi, Hiroyuki; Shimazoe, Kenji

    2016-01-01

    Depth-of-interaction (DOI) Identification in positron emission tomography (PET) detectors is getting importance as it improves spatial resolution in both conventional and time-of-flight (TOF) PET, and coincidence time resolution (CTR) in TOF-PET. In both prototypes, spatial resolution is affected by parallax error caused by length of scintillator crystals. This long length also contributes substantial timing uncertainty to the time resolution of TOF-PET. Through DOI identification, both parallax error and the timing uncertainty caused by the length of crystal can be resolved. In this work, a novel approach to estimate DOI was investigated, enjoying the interference of absorbance spectrum of scintillator crystals with their emission spectrum. Because the absorption length is close to zero for shorter wavelengths of crystal emission spectrum, the counts in this range of spectrum highly depend on DOI; that is, higher counts corresponds to deeper interactions. The ratio of counts in this range to the total counts is a good measure to estimate DOI. In order to extract such ratio, two photodetectors for each crystal are used and an optical filter is mounted only on top of one of them. The ratio of filtered output to non-filtered output can be utilized as DOI estimator. For a 2×2×20 mm 3 GAGG:Ce scintillator, 8-mm DOI resolution achieved in our simulations. (author)

  9. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET

    Science.gov (United States)

    Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph

    2018-04-01

    This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.

  10. Preliminary report on the development of a high resolution PET camera using semiconductor detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Yamazaki, Hiromichi; Matsuyama, Shigeo; Yamaguchi, Takashi; Yamamoto, Yusuke; Sato, Takemi; Aoki, Yasushi; Aoki, Kenichi

    2005-01-01

    We are developing a PET camera using small semiconductor detectors, whose resolution is equivalent to the physical limit of spatial resolution. First, a coincidence system of 16 Schottky CdTe detectors of 0.5 mm width obtained a resolution of <1 mm and it was confirmed that the Schottky CdTe detector is suitable for high resolution PET. Next, the performance of a pair of 32 channel CdTe arrays (1.2 mm width per channel) was investigated for the development of the prototype of high resolution PET. The time resolution between opposing detector pair was 13 ns (FWHM) when high voltage (700 V) was applied. The image of a 0.6 mm diameter point source was obtained in an experiment with opposing detector arrays using four channels, indicating that, a higher resolution can be achieved with the 32 channel CdTe array

  11. Prototype of high resolution PET using resistive electrode position sensitive CdTe detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Matsuyama, Shigeo; Yamazaki, Hiromichi

    2008-01-01

    Downsizing detector elements makes it possible that spatial resolutions of positron emission tomography (PET) cameras are improved very much. From this point of view, semiconductor detectors are preferable. To obtain high resolution, the pixel type or the multi strip type of semiconductor detectors can be used. However, in this case, there is a low packing ratio problem, because a dead area between detector arrays cannot be neglected. Here, we propose the use of position sensitive semiconductor detectors with resistive electrode. The CdTe detector is promising as a detector for PET camera because of its high sensitivity. In this paper, we report development of prototype of high resolution PET using resistive electrode position sensitive CdTe detectors. We made 1-dimensional position sensitive CdTe detectors experimentally by changing the electrode thickness. We obtained 750 A as an appropriate thickness of position sensitive detectors, and evaluated the performance of the detector using a collimated 241 Am source. A good position resolution of 1.2 mm full width half maximum (FWHM) was obtained. On the basis of the fundamental development of resistive electrode position sensitive detectors, we constructed a prototype of high resolution PET which was a dual head type and was consisted of thirty-two 1-dimensional position sensitive detectors. In conclusion, we obtained high resolutions which are 0.75 mm (FWHM) in transaxial, and 1.5 mm (FWHM) in axial. (author)

  12. Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2010-12-28

    A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.

  13. High resolution reconstruction of PET images using the iterative OSEM algorithm

    International Nuclear Information System (INIS)

    Doll, J.; Bublitz, O.; Werling, A.; Haberkorn, U.; Semmler, W.; Adam, L.E.; Pennsylvania Univ., Philadelphia, PA; Brix, G.

    2004-01-01

    Aim: Improvement of the spatial resolution in positron emission tomography (PET) by incorporation of the image-forming characteristics of the scanner into the process of iterative image reconstruction. Methods: All measurements were performed at the whole-body PET system ECAT EXACT HR + in 3D mode. The acquired 3D sinograms were sorted into 2D sinograms by means of the Fourier rebinning (FORE) algorithm, which allows the usage of 2D algorithms for image reconstruction. The scanner characteristics were described by a spatially variant line-spread function (LSF), which was determined from activated copper-64 line sources. This information was used to model the physical degradation processes in PET measurements during the course of 2D image reconstruction with the iterative OSEM algorithm. To assess the performance of the high-resolution OSEM algorithm, phantom measurements performed at a cylinder phantom, the hotspot Jaszczack phantom, and the 3D Hoffmann brain phantom as well as different patient examinations were analyzed. Results: Scanner characteristics could be described by a Gaussian-shaped LSF with a full-width at half-maximum increasing from 4.8 mm at the center to 5.5 mm at a radial distance of 10.5 cm. Incorporation of the LSF into the iteration formula resulted in a markedly improved resolution of 3.0 and 3.5 mm, respectively. The evaluation of phantom and patient studies showed that the high-resolution OSEM algorithm not only lead to a better contrast resolution in the reconstructed activity distributions but also to an improved accuracy in the quantification of activity concentrations in small structures without leading to an amplification of image noise or even the occurrence of image artifacts. Conclusion: The spatial and contrast resolution of PET scans can markedly be improved by the presented image restauration algorithm, which is of special interest for the examination of both patients with brain disorders and small animals. (orig.)

  14. A high resolution TOF-PET concept with axial geometry and digital SiPM readout

    CERN Document Server

    Casella, C; Joram, C; Schneider, T

    2014-01-01

    The axial arrangement of long scintillation crystals is a promising concept in PET instrumentation to address the need for optimized resolution and sensitivity. Individual crystal readout and arrays of wavelength shifter strips placed orthogonally to the crystals lead to a 3D-detection of the annihilations photons. A fully operational demonstrator scanner, developed by the AX-PET collaboration, proved the potential of this concept in terms of energy and spatial resolution as well as sensitivity. This paper describes a feasibility study, performed on axial prototype detector modules with 100 mm long LYSO crystals, read out by the novel digital Silicon Photomultipliers (dSiPM) from Philips. With their highly integrated readout electronics and excellent intrinsic time resolution, dSiPMs allow for compact, axial detector modules which may extend the potential of the axial PET concept by time of fl ight capabilities (TOF-PET). A coincidence time resolution of 211 ps (FWHM) was achieved in the coincidence of two ax...

  15. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes

    International Nuclear Information System (INIS)

    Yang Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R

    2006-01-01

    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is ∼2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach

  16. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    Science.gov (United States)

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  17. Evaluation of a high resolution silicon PET insert module

    Energy Technology Data Exchange (ETDEWEB)

    Grkovski, Milan, E-mail: milan.grkovski@ijs.si [Jožef Stefan Institute, Ljubljana (Slovenia); Memorial Sloan Kettering Cancer Center, New York, NY (United States); Brzezinski, Karol [IFIC/CSIC, Valencia (Spain); Cindro, Vladimir [Jožef Stefan Institute, Ljubljana (Slovenia); Clinthorne, Neal H. [University of Michigan, Ann Arbor, MI (United States); Kagan, Harris [Ohio State University, Columbus, OH (United States); Lacasta, Carlos [IFIC/CSIC, Valencia (Spain); Mikuž, Marko [Jožef Stefan Institute, Ljubljana (Slovenia); Solaz, Carles [IFIC/CSIC, Valencia (Spain); Studen, Andrej [Jožef Stefan Institute, Ljubljana (Slovenia); Weilhammer, Peter [Ohio State University, Columbus, OH (United States); Žontar, Dejan [Jožef Stefan Institute, Ljubljana (Slovenia)

    2015-07-11

    Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm{sup 2} pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (2D) geometry with a Jaszczak phantom (rod diameters of 1.2–4.8 mm) filled with {sup 18}F-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm)

  18. Markerless 3D Head Tracking for Motion Correction in High Resolution PET Brain Imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter

    relying on markers. Data-driven motion correction is problematic due to the physiological dynamics. Marker-based tracking is potentially unreliable, and it is extremely hard to validate when the tracking information is correct. The motion estimation is essential for proper motion correction of the PET......This thesis concerns application specific 3D head tracking. The purpose is to improve motion correction in position emission tomography (PET) brain imaging through development of markerless tracking. Currently, motion correction strategies are based on either the PET data itself or tracking devices...... images. Incorrect motion correction can in the worst cases result in wrong diagnosis or treatment. The evolution of a markerless custom-made structured light 3D surface tracking system is presented. The system is targeted at state-of-the-art high resolution dedicated brain PET scanners with a resolution...

  19. Development of a Si-PM-based high-resolution PET system for small animals

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Imaizumi, Masao; Watabe, Tadashi; Shimosegawa, Eku; Hatazawa, Jun; Watabe, Hiroshi; Kanai, Yasukazu

    2010-01-01

    A Geiger-mode avalanche photodiode (Si-PM) is a promising photodetector for PET, especially for use in a magnetic resonance imaging (MRI) system, because it has high gain and is less sensitive to a static magnetic field. We developed a Si-PM-based depth-of-interaction (DOI) PET system for small animals. Hamamatsu 4 x 4 Si-PM arrays (S11065-025P) were used for its detector blocks. Two types of LGSO scintillator of 0.75 mol% Ce (decay time: ∼45 ns; 1.1 mm x 1.2 mm x 5 mm) and 0.025 mol% Ce (decay time: ∼31 ns; 1.1 mm x 1.2 mm x 6 mm) were optically coupled in the DOI direction to form a DOI detector, arranged in a 11 x 9 matrix, and optically coupled to the Si-PM array. Pulse shape analysis was used for the DOI detection of these two types of LGSOs. Sixteen detector blocks were arranged in a 68 mm diameter ring to form the PET system. Spatial resolution was 1.6 mm FWHM and sensitivity was 0.6% at the center of the field of view. High-resolution mouse and rat images were successfully obtained using the PET system. We confirmed that the developed Si-PM-based PET system is promising for molecular imaging research.

  20. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    OpenAIRE

    Kotasidis Fotis A.; Kotasidis Fotis A.; Angelis Georgios I.; Anton-Rodriguez Jose; Matthews Julian C.; Reader Andrew J.; Reader Andrew J.; Zaidi Habib; Zaidi Habib; Zaidi Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However due to the short half life of clinically used isotopes other long lived isotopes not used in clinical practice are used to perform the PSF measurements. As such non optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction usuall...

  1. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    NARCIS (Netherlands)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to

  2. Improving PET spatial resolution and detectability for prostate cancer imaging

    International Nuclear Information System (INIS)

    Bal, H; Guerin, L; Casey, M E; Conti, M; Eriksson, L; Michel, C; Fanti, S; Pettinato, C; Adler, S; Choyke, P

    2014-01-01

    Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%. (paper)

  3. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  4. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  5. Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pratx, Guillem; Levin, Craig S [Molecular Imaging Program at Stanford, Department of Radiology, Stanford, CA (United States)], E-mail: cslevin@stanford.edu

    2009-09-07

    Realizing the full potential of high-resolution positron emission tomography (PET) systems involves accurately positioning events in which the annihilation photon deposits all its energy across multiple detector elements. Reconstructing the complete sequence of interactions of each photon provides a reliable way to select the earliest interaction because it ensures that all the interactions are consistent with one another. Bayesian estimation forms a natural framework to maximize the consistency of the sequence with the measurements while taking into account the physics of {gamma}-ray transport. An inherently statistical method, it accounts for the uncertainty in the measured energy and position of each interaction. An algorithm based on maximum a posteriori (MAP) was evaluated for computer simulations. For a high-resolution PET system based on cadmium zinc telluride detectors, 93.8% of the recorded coincidences involved at least one photon multiple-interactions event (PMIE). The MAP estimate of the first interaction was accurate for 85.2% of the single photons. This represents a two-fold reduction in the number of mispositioned events compared to minimum pair distance, a simpler yet efficient positioning method. The point-spread function of the system presented lower tails and higher peak value when MAP was used. This translated into improved image quality, which we quantified by studying contrast and spatial resolution gains.

  6. Implementation and performance of an optical motion tracking system for high resolution brain PET imaging

    Science.gov (United States)

    Lopresti, B. J.; Russo, A.; Jones, W. F.; Fisher, T.; Crouch, D. G.; Altenburger, D. E.; Townsend, D. W.

    1999-12-01

    Head motion during PET scanning is widely regarded as a source of image degradation and resolution loss. Recent improvements in the spatial resolution of state-of-the-art tomographs may be compromised by patient motion during scanning, as these high resolution data will be increasingly susceptible to smaller movements of the head. The authors have developed an opto-electronic motion tracking system based on commercially-available technology that is capable of very accurate real-time measurements of the position and orientation of the patient's head. These positions are transformed to the reference frame of the PET scanner, and could potentially be used to provide motion correction of list-mode emission data on an event-by-event basis.

  7. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  8. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  9. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  10. A Movable Phantom Design for Quantitative Evaluation of Motion Correction Studies on High Resolution PET Scanners

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Svarer, C.; Sibomana, M.

    2010-01-01

    maximization algorithm with modeling of the point spread function (3DOSEM-PSF), and they were corrected for motions based on external tracking information using the Polaris Vicra real-time stereo motion-tracking system. The new automatic, movable phantom has a robust design and is a potential quality......Head movements during brain imaging using high resolution positron emission tomography (PET) impair the image quality which, along with the improvement of the spatial resolution of PET scanners, in general, raises the importance of motion correction. Here, we present a new design for an automatic...

  11. An ASIC implementation of digital front-end electronics for a high resolution PET scanner

    International Nuclear Information System (INIS)

    Newport, D.F.; Young, J.W.

    1993-01-01

    AN Application Specific Integrated Circuit (ASIC) has been designed and fabricated which implements many of the current functions found in the digital front-end electronics for a high resolution Positron Emission Tomography (PET) scanner. The ASIC performs crystal selection, energy qualification, time correction, and event counting functions for block technology high resolution PET scanners. Digitized x and y position, event energy, and time information are used by the ASIC to determine block crystal number, qualify the event based on energy, and correct the event time. In addition, event counting and block dead time calculations are performed for system dead time corrections. A loadable sequencer for controlling the analog front-end electronics is also implemented. The ASIC is implemented in a 37,000 gate, 1.0 micron CMOS gate-array and is capable of handling 4 million events/second while reducing parts count, cost, and power consumption over current board-level designs

  12. Maximum likelihood positioning algorithm for high-resolution PET scanners

    International Nuclear Information System (INIS)

    Gross-Weege, Nicolas; Schug, David; Hallen, Patrick; Schulz, Volkmar

    2016-01-01

    Purpose: In high-resolution positron emission tomography (PET), lightsharing elements are incorporated into typical detector stacks to read out scintillator arrays in which one scintillator element (crystal) is smaller than the size of the readout channel. In order to identify the hit crystal by means of the measured light distribution, a positioning algorithm is required. One commonly applied positioning algorithm uses the center of gravity (COG) of the measured light distribution. The COG algorithm is limited in spatial resolution by noise and intercrystal Compton scatter. The purpose of this work is to develop a positioning algorithm which overcomes this limitation. Methods: The authors present a maximum likelihood (ML) algorithm which compares a set of expected light distributions given by probability density functions (PDFs) with the measured light distribution. Instead of modeling the PDFs by using an analytical model, the PDFs of the proposed ML algorithm are generated assuming a single-gamma-interaction model from measured data. The algorithm was evaluated with a hot-rod phantom measurement acquired with the preclinical HYPERION II D PET scanner. In order to assess the performance with respect to sensitivity, energy resolution, and image quality, the ML algorithm was compared to a COG algorithm which calculates the COG from a restricted set of channels. The authors studied the energy resolution of the ML and the COG algorithm regarding incomplete light distributions (missing channel information caused by detector dead time). Furthermore, the authors investigated the effects of using a filter based on the likelihood values on sensitivity, energy resolution, and image quality. Results: A sensitivity gain of up to 19% was demonstrated in comparison to the COG algorithm for the selected operation parameters. Energy resolution and image quality were on a similar level for both algorithms. Additionally, the authors demonstrated that the performance of the ML

  13. Feasibility of a novel design of high resolution parallax-free Compton enhanced PET scanner dedicated to brain research

    CERN Document Server

    Braem, André; Chesi, Enrico Guido; Correia, J G; Garibaldi, F; Joram, C; Mathot, S; Nappi, E; Ribeiro da Silva, M; Schoenahl, F; Séguinot, Jacques; Weilhammer, P; Zaidi, H

    2004-01-01

    A novel concept for a positron emission tomography (PET) camera module is proposed, which provides full 3D reconstruction with high resolution over the total detector volume, free of parallax errors. The key components are a matrix of long scintillator crystals and hybrid photon detectors (HPDs) with matched segmentation and integrated readout electronics. The HPDs read out the two ends of the scintillator package. Both excellent spatial (x, y, z) and energy resolution are obtained. The concept allows enhancing the detection efficiency by reconstructing a significant fraction of events which underwent Compton scattering in the crystals. The proof of concept will first be demonstrated with yttrium orthoaluminate perovskite (YAP):Ce crystals, but the final design will rely on other scintillators more adequate for PET applications (e.g. LSO:Ce or LaBr /sub 3/:Ce). A promising application of the proposed camera module, which is currently under development, is a high resolution 3D brain PET camera with an axial fi...

  14. The simulation of a data acquisition system for a proposed high resolution PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Rotolo, C.; Larwill, M.; Chappa, S. [Fermi National Accelerator Lab., Batavia, IL (United States); Ordonez, C. [Chicago Univ., IL (United States)

    1993-10-01

    The simulation of a specific data acquisition (DAQ) system architecture for a proposed high resolution Positron Emission Tomography (PET) scanner is discussed. Stochastic processes are used extensively to model PET scanner signal timing and probable DAQ circuit limitations. Certain architectural parameters, along with stochastic parameters, are varied to quantatively study the resulting output under various conditions. The inclusion of the DAQ in the model represents a novel method of more complete simulations of tomograph designs, and could prove to be of pivotal importance in the optimization of such designs.

  15. The simulation of a data acquisition system for a proposed high resolution PET scanner

    International Nuclear Information System (INIS)

    Rotolo, C.; Larwill, M.; Chappa, S.; Ordonez, C.

    1993-10-01

    The simulation of a specific data acquisition (DAQ) system architecture for a proposed high resolution Positron Emission Tomography (PET) scanner is discussed. Stochastic processes are used extensively to model PET scanner signal timing and probable DAQ circuit limitations. Certain architectural parameters, along with stochastic parameters, are varied to quantatively study the resulting output under various conditions. The inclusion of the DAQ in the model represents a novel method of more complete simulations of tomograph designs, and could prove to be of pivotal importance in the optimization of such designs

  16. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    Science.gov (United States)

    Naidoo-Variawa, S.; Hey-Cunningham, A. J.; Lehnert, W.; Kench, P. L.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2007-11-01

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  17. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo-Variawa, S [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Hey-Cunningham, A J [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Lehnert, W [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Kench, P L [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Kassiou, M [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Banati, R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Meikle, S R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia)

    2007-11-21

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm{sup 3} FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm{sup 3}) and 3D reprojection (3DRP) (5.9-9.1 mm{sup 3}). A pilot {sup 18}F-2-fluoro-2-deoxy-d-glucose ([{sup 18}F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  18. Evaluation of PET Imaging Resolution Using 350 mu{m} Pixelated CZT as a VP-PET Insert Detector

    Science.gov (United States)

    Yin, Yongzhi; Chen, Ximeng; Li, Chongzheng; Wu, Heyu; Komarov, Sergey; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2014-02-01

    A cadmium-zinc-telluride (CZT) detector with 350 μm pitch pixels was studied in high-resolution positron emission tomography (PET) imaging applications. The PET imaging system was based on coincidence detection between a CZT detector and a lutetium oxyorthosilicate (LSO)-based Inveon PET detector in virtual-pinhole PET geometry. The LSO detector is a 20 ×20 array, with 1.6 mm pitches, and 10 mm thickness. The CZT detector uses ac 20 ×20 ×5 mm substrate, with 350 μm pitch pixelated anodes and a coplanar cathode. A NEMA NU4 Na-22 point source of 250 μm in diameter was imaged by this system. Experiments show that the image resolution of single-pixel photopeak events was 590 μm FWHM while the image resolution of double-pixel photopeak events was 640 μm FWHM. The inclusion of double-pixel full-energy events increased the sensitivity of the imaging system. To validate the imaging experiment, we conducted a Monte Carlo (MC) simulation for the same PET system in Geant4 Application for Emission Tomography. We defined LSO detectors as a scanner ring and 350 μm pixelated CZT detectors as an insert ring. GATE simulated coincidence data were sorted into an insert-scanner sinogram and reconstructed. The image resolution of MC-simulated data (which did not factor in positron range and acolinearity effect) was 460 μm at FWHM for single-pixel events. The image resolutions of experimental data, MC simulated data, and theoretical calculation are all close to 500 μm FWHM when the proposed 350 μm pixelated CZT detector is used as a PET insert. The interpolation algorithm for the charge sharing events was also investigated. The PET image that was reconstructed using the interpolation algorithm shows improved image resolution compared with the image resolution without interpolation algorithm.

  19. Performance of a high-resolution depth-encoding PET detector module using linearly-graded SiPM arrays

    Science.gov (United States)

    Du, Junwei; Bai, Xiaowei; Gola, Alberto; Acerbi, Fabio; Ferri, Alessandro; Piemonte, Claudio; Yang, Yongfeng; Cherry, Simon R.

    2018-02-01

    The goal of this study was to exploit the excellent spatial resolution characteristics of a position-sensitive silicon photomultiplier (SiPM) and develop a high-resolution depth-of-interaction (DOI) encoding positron emission tomography (PET) detector module. The detector consists of a 30  ×  30 array of 0.445  ×  0.445  ×  20 mm3 polished LYSO crystals coupled to two 15.5  ×  15.5 mm2 linearly-graded SiPM (LG-SiPM) arrays at both ends. The flood histograms show that all the crystals in the LYSO array can be resolved. The energy resolution, the coincidence timing resolution and the DOI resolution were 21.8  ±  5.8%, 1.23  ±  0.10 ns and 3.8  ±  1.2 mm, respectively, at a temperature of -10 °C and a bias voltage of 35.0 V. The performance did not degrade significantly for event rates of up to 130 000 counts s-1. This detector represents an attractive option for small-bore PET scanner designs that simultaneously emphasize high spatial resolution and high detection efficiency, important, for example, in preclinical imaging of the rodent brain with neuroreceptor ligands.

  20. Statistical dynamic image reconstruction in state-of-the-art high-resolution PET

    International Nuclear Information System (INIS)

    Rahmim, Arman; Cheng, J-C; Blinder, Stephan; Camborde, Maurie-Laure; Sossi, Vesna

    2005-01-01

    Modern high-resolution PET is now more than ever in need of scrutiny into the nature and limitations of the imaging modality itself as well as image reconstruction techniques. In this work, we have reviewed, analysed and addressed the following three considerations within the particular context of state-of-the-art dynamic PET imaging: (i) the typical average numbers of events per line-of-response (LOR) are now (much) less than unity (ii) due to the physical and biological decay of the activity distribution, one requires robust and efficient reconstruction algorithms applicable to a wide range of statistics and (iii) the computational considerations in dynamic imaging are much enhanced (i.e., more frames to be stored and reconstructed). Within the framework of statistical image reconstruction, we have argued theoretically and shown experimentally that the sinogram non-negativity constraint (when using the delayed-coincidence and/or scatter-subtraction techniques) is especially expected to result in an overestimation bias. Subsequently, two schemes are considered: (a) subtraction techniques in which an image non-negativity constraint has been imposed and (b) implementation of random and scatter estimates inside the reconstruction algorithms, thus enabling direct processing of Poisson-distributed prompts. Both techniques are able to remove the aforementioned bias, while the latter, being better conditioned theoretically, is able to exhibit superior noise characteristics. We have also elaborated upon and verified the applicability of the accelerated list-mode image reconstruction method as a powerful solution for accurate, robust and efficient dynamic reconstructions of high-resolution data (as well as a number of additional benefits in the context of state-of-the-art PET)

  1. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  2. Study of CT-based positron range correction in high resolution 3D PET imaging

    International Nuclear Information System (INIS)

    Cal-Gonzalez, J.; Herraiz, J.L.; Espana, S.; Vicente, E.; Herranz, E.; Desco, M.; Vaquero, J.J.; Udias, J.M.

    2011-01-01

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  3. High resolution laser patterning of ITO on PET substrate

    Science.gov (United States)

    Zhang, Tao; Liu, Di; Park, Hee K.; Yu, Dong X.; Hwang, David J.

    2013-03-01

    Cost-effective laser patterning of indium tin oxide (ITO) thin film coated on flexible polyethylene terephthalate (PET) film substrate for touch panel was studied. The target scribing width was set to the order of 10 μm in order to examine issues involved with higher feature resolution. Picosecond-pulsed laser and Q-switched nanosecond-pulsed laser at the wavelength of 532nm were applied for the comparison of laser patterning in picosecond and nanosecond regimes. While relatively superior scribing quality was achieved by picosecond laser, 532 nm wavelength showed a limitation due to weaker absorption in ITO film. In order to seek for cost-effective solution for high resolution ITO scribing, nanosecond laser pulses were applied and performance of 532nm and 1064nm wavelengths were compared. 1064nm wavelength shows relatively better scribing quality due to the higher absorption ratio in ITO film, yet at noticeable substrate damage. Through single pulse based scribing experiments, we inspected that reduced pulse overlapping is preferred in order to minimize the substrate damage during line patterning.

  4. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications.

    Science.gov (United States)

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-09-11

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.

  5. Characterization of a high resolution and high sensitivity pre-clinical PET scanner with 3D event reconstruction

    CERN Document Server

    Rissi, M; Bolle, E; Dorholt, O; Hines, K E; Rohne, O; Skretting, A; Stapnes, S; Volgyes, D

    2012-01-01

    COMPET is a preclinical PET scanner aiming towards a high sensitivity, a high resolution and MRI compatibility by implementing a novel detector geometry. In this approach, long scintillating LYSO crystals are used to absorb the gamma-rays. To determine the point of interaction (P01) between gamma-ray and crystal, the light exiting the crystals on one of the long sides is collected with wavelength shifters (WLS) perpendicularly arranged to the crystals. This concept has two main advantages: (1) The parallax error is reduced to a minimum and is equal for the whole field of view (FOV). (2) The P01 and its energy deposit is known in all three dimension with a high resolution, allowing for the reconstruction of Compton scattered gamma-rays. Point (1) leads to a uniform point source resolution (PSR) distribution over the whole FOV, and also allows to place the detector close to the object being imaged. Both points (1) and (2) lead to an increased sensitivity and allow for both high resolution and sensitivity at the...

  6. Noise and physical limits to maximum resolution of PET images

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L.; Espana, S. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Vicente, E.; Vaquero, J.J.; Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital GU ' Gregorio Maranon' , E-28007 Madrid (Spain); Udias, J.M. [Dpto. Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)], E-mail: jose@nuc2.fis.ucm.es

    2007-10-01

    In this work we show that there is a limit for the maximum resolution achievable with a high resolution PET scanner, as well as for the best signal-to-noise ratio, which are ultimately related to the physical effects involved in the emission and detection of the radiation and thus they cannot be overcome with any particular reconstruction method. These effects prevent the spatial high frequency components of the imaged structures to be recorded by the scanner. Therefore, the information encoded in these high frequencies cannot be recovered by any reconstruction technique. Within this framework, we have determined the maximum resolution achievable for a given acquisition as a function of data statistics and scanner parameters, like the size of the crystals or the inter-crystal scatter. In particular, the noise level in the data as a limitation factor to yield high-resolution images in tomographs with small crystal sizes is outlined. These results have implications regarding how to decide the optimal number of voxels of the reconstructed image or how to design better PET scanners.

  7. Noise and physical limits to maximum resolution of PET images

    International Nuclear Information System (INIS)

    Herraiz, J.L.; Espana, S.; Vicente, E.; Vaquero, J.J.; Desco, M.; Udias, J.M.

    2007-01-01

    In this work we show that there is a limit for the maximum resolution achievable with a high resolution PET scanner, as well as for the best signal-to-noise ratio, which are ultimately related to the physical effects involved in the emission and detection of the radiation and thus they cannot be overcome with any particular reconstruction method. These effects prevent the spatial high frequency components of the imaged structures to be recorded by the scanner. Therefore, the information encoded in these high frequencies cannot be recovered by any reconstruction technique. Within this framework, we have determined the maximum resolution achievable for a given acquisition as a function of data statistics and scanner parameters, like the size of the crystals or the inter-crystal scatter. In particular, the noise level in the data as a limitation factor to yield high-resolution images in tomographs with small crystal sizes is outlined. These results have implications regarding how to decide the optimal number of voxels of the reconstructed image or how to design better PET scanners

  8. Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)], E-mail: funis@nirs.go.jp; Tsuda, Tomoaki [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Yamaya, Taiga [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Takahashi, Kei [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Graduate School of Science and Technology, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba-shi, Chiba 263-8522 (Japan); Ohmura, Atsushi [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Graduate School of Advanced Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2008-01-01

    We are developing a small animal PET scanner, 'jPET-RD' to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32x32x4 crystal (4096 crystals, each 1.46 mmx1.46 mmx4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32x32x4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm.

  9. Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tsuda, Tomoaki; Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Yamaya, Taiga; Kitamura, Keishi; Takahashi, Kei; Ohmura, Atsushi; Murayama, Hideo

    2008-01-01

    We are developing a small animal PET scanner, 'jPET-RD' to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32x32x4 crystal (4096 crystals, each 1.46 mmx1.46 mmx4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32x32x4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm

  10. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Peng Hao; Levin, Craig S

    2010-01-01

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 x 15 cm 2 area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve ∼32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be ∼94.2 kcts s -1 (breast volume: 720 cm 3 and activity concentration: 3.7 kBq cm -3 ) for a ∼10% energy window around 511 keV and ∼8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity (σ rms /mean) ≤ 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres with a 5:1 activity concentration ratio within

  11. Prospective evaluation of solitary thyroid nodule on 18F-FDG PET/CT and high-resolution ultrasonography

    International Nuclear Information System (INIS)

    D'Souza, M.M.; Marwaha, R.K.; Sharma, R.

    2010-01-01

    The utility of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT in the assessment of thyroid nodules is unclear as there are several conflicting reports on the usefulness of standardized uptake value (SUV) as an indicator to distinguish benign from malignant thyroid lesions. This study incorporated an additional parameter, namely dual time point imaging, to determine the diagnostic accuracy of PET/CT imaging. The performance of 18F-FDG PET/CT was compared to that of high-resolution ultrasound which is routinely used for the evaluation of thyroid nodules. Two hundred patients with incidentally detected solitary thyroid nodules were included in the study. Each patient underwent ultrasound and PET/CT evaluation within 7 days of each other, reported by an experienced radiologist and nuclear medicine specialist, respectively, in a blinded manner. The PET/CT criteria employed were maximum SUV (SUV max ) at 60 min and change in SUV max at delayed (120 min) imaging. Final diagnosis was based on pathological evaluation and follow-up. Of the 200 patients, 26 had malignant and 174 had benign nodules. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of ultrasound were 80.8, 81.6, 39.6, 96.6 and 81.5%, respectively. Using SUV max at 60 min as the diagnostic criterion, the above indices were 80.8, 84.5, 43.8, 96.7 and 84%, respectively, for PET/CT. The SUV max of malignant thyroid lesions was significantly higher than benign lesions (16.2±10.6 vs. 4.5±3.1, respectively; p=0.0001). Incorporation of percentage change in SUV max at delayed imaging as the diagnostic criterion yielded a slightly improved sensitivity, specificity, PPV, NPV and accuracy of 84.6, 85.6, 46.8, 97.4 and 85.5%, respectively. There was a significant difference in percentage change in SUV max between malignant and benign thyroid lesions (14.9±11.4 vs. -1.6±13.7, respectively; p=0.0001). However, there was no statistically

  12. Spatial resolution of the HRRT PET scanner using 3D-OSEM PSF reconstruction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sibomana, Merence; Keller, Sune Høgild

    2009-01-01

    The spatial resolution of the Siemens High Resolution Research Tomograph (HRRT) dedicated brain PET scanner installed at Copenhagen University Hospital (Rigshospitalet) was measured using a point-source phantom with high statistics. Further, it was demonstrated how the newly developed 3D-OSEM PSF...

  13. Performance analysis of different PSF shapes for the quad-HIDAC PET submillimetre resolution recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Maynez, Leticia, E-mail: lortega@uacj.mx [Departamento de Ingenieria Eectrica y Computacion , Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte, C.P. 32310 Ciudad Juarez, Chihuahua (Mexico); Dominguez de Jesus Ochoa, Humberto; Villegas Osiris Vergara, Osslan; Gordillo, Nelly; Guadalupe Cruz Sanchez, Vianey; Gutierrez Casas, Efren David [Departamento de Ingenieria Eectrica y Computacion, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte, C.P. 32310 Ciudad Juarez, Chihuahua (Mexico)

    2011-10-01

    In pre-clinical applications, it is quite important to preserve the image resolution because it is necessary to show the details of structures of small animals. Therefore, small animal PET scanners require high spatial resolution and good sensitivity. For the quad-HIDAC PET scanner, which has virtually continuous spatial sampling; improvements in resolution, noise and contrast are obtained as a result of avoiding artifacts introduced by binning the data into sampled projections used during the reconstruction process. In order to reconstruct high-resolution images in 3D-PET, background correction and resolution recovery are included within the Maximum Likelihood list-mode Expectation Maximization reconstruction model. This paper, introduces the performance analysis of the Gaussian, Laplacian and Triangular kernels. The Full-Width Half-Maximum used for each kernel was varied from 0.8 to 1.6 mm. For each quality compartment within the phantom, transaxial middle slices from the 3D reconstructed images are shown. Results show that, according to the quantitative measures, the triangular kernel has the best performance.

  14. Development of continuous detectors for a high resolution animal PET system

    International Nuclear Information System (INIS)

    Siegel, S.; Cherry, S.R.; Ricci, A.R.; Shao, Y.; Phelps, M.E.

    1995-01-01

    The authors propose a design for a high resolution, gamma-camera style detector that is suitable for use in a positron emission tomograph dedicated to small animal research. Through Monte Carlo simulation the authors modeled the performance of a detector composed of one 76.2 x 76.2 x 8 mm thick LSO crystal coupled to a 3 in. square position sensitive photomultiplier tube (PS-PMT). The authors investigated the effect of optical coupling compounds, surface treatment and dept of interaction on the quantity (efficiency) and distribution (spread) of scintillation photons reaching the photocathode. They also investigated linearization of the position response. The authors propose a PET system consisting of fourteen of these detectors in 2 rings, yielding a 16 cm diameter by 15 cm long tomograph. It would operate in 3-D mode subtending a 68% solid angle to the center. The expected spatial resolution is (≤2 mm), with a system efficiency of ∼ 10% at the center (200 keV lower threshold) and a singles count rate capability of approximately 10 6 cps per detector

  15. SiliPET: An ultra high resolution design of a small animal PET scanner based on double sided silicon strip detector stacks

    International Nuclear Information System (INIS)

    Zavattini, G.; Cesca, N.; Di Domenico, G.; Moretti, E.; Sabba, N.

    2006-01-01

    We investigated the capabilities of a small animal PET scanner, named SiliPET, based on four stacks of double sided silicon strips detectors. Each stack consists of 40 silicon detectors with dimension 60x60x1mm 3 . These are arranged to form a box 5x5x6cm 3 with minor sides opened; the box represents the maximal FOV of the scanner. The performance parameters of SiliPET scanner have been estimated, giving an intrinsic spatial resolution of 0.52mm and a sensitivity of 5.1% at the center of the system

  16. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-11

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm{sup 3} uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm){sup 3} to (2 mm){sup 3} in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm){sup 3} to (9 mm){sup 3}. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm){sup 3} even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm){sup 3} cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial

  17. A High Resolution Clinical PET with Breast and Whole Body Transfigurations

    Science.gov (United States)

    2006-08-01

    random (acci- dental ) coincidence events were measured using a second de- layed coincidence window and then subtracted from the sino- grams measured in the...limits the coincidence timing resolution. For a PET camera with bismuth germinate crystals (BGO), like our HOTPET, the relatively wide timing gate is... germinate crystal) and a new synchronization process must also be set up between the delayed trigger and the energy/position signals before being passed

  18. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Kalinyak, Judith E. [Naviscan Inc., San Diego, CA (United States); Berg, Wendie A. [University of Pittsburgh School of Medicine, Magee-Womens Hospital, Pittsburgh, PA (United States); Schilling, Kathy [Boca Raton Regional Hospital, Boca Raton, FL (United States); Madsen, Kathleen S. [Certus International, Inc., St. Louis, MO (United States); Narayanan, Deepa [Naviscan Inc., San Diego, CA (United States); National Cancer Institute, Bethesda, MD (United States); Tartar, Marie [Scripps Clinic, Scripps Green Hospital, La Jolla, CA (United States)

    2014-02-15

    To compare the performance characteristics of positron emission mammography (PEM) with those of whole-body PET (WBPET) and PET/CT in women with newly diagnosed breast cancer. A total of 178 women consented to PEM for presurgical planning in an IRB-approved protocol and also underwent either WBPET (n = 69) or PET/CT (n = 109) imaging, as per usual care at three centers. Tumor detection sensitivity, positive predictive values, and {sup 18}F-fluorodeoxyglucose (FDG) uptake were compared between the modalities. The effects of tumor size, type, and grade on detection were examined. The chi-squared or Fisher's exact tests were used to compare distributions between groups, and McNemar's test was used to compare distributions for paired data within subject groups, i.e. PEM versus WBPET or PEM versus PET/CT. The mean age of the women was 59 ± 12 years (median 60 years, range 26-89 years), with a mean invasive index tumor size of 1.6 ± 0.8 cm (median 1.5 cm, range 0.5-4.0 cm). PEM detected more index tumors (61/66, 92 %) than WBPET (37/66, 56 %; p < 0.001) or PET/CT (95/109, 87 % vs. 104/109, 95 % for PEM; p < 0.029). Sensitivity for the detection of additional ipsilateral malignancies was also greater with PEM (7/15, 47 %) than with WBPET (1/15, 6.7 %; p = 0.014) or PET/CT (3/23, 13 % vs. 13/23, 57 % for PEM; p = 0.003). Index tumor detection decreased with decreasing invasive tumor size for both WBPET (p = 0.002) and PET/CT (p < 0.001); PEM was not significantly affected (p = 0.20). FDG uptake, quantified in terms of maximum PEM uptake value, was lowest in ductal carcinoma in situ (median 1.5, range 0.7-3.0) and invasive lobular carcinoma (median 1.5, range 0.7-3.4), and highest in grade III invasive ductal carcinoma (median 3.1, range 1.4-12.9). PEM was more sensitive than either WBPET or PET/CT in showing index and additional ipsilateral breast tumors and remained highly sensitive for tumors smaller than 1 cm. (orig.)

  19. Data-driven gating in PET: Influence of respiratory signal noise on motion resolution.

    Science.gov (United States)

    Büther, Florian; Ernst, Iris; Frohwein, Lynn Johann; Pouw, Joost; Schäfers, Klaus Peter; Stegger, Lars

    2018-05-21

    Data-driven gating (DDG) approaches for positron emission tomography (PET) are interesting alternatives to conventional hardware-based gating methods. In DDG, the measured PET data themselves are utilized to calculate a respiratory signal, that is, subsequently used for gating purposes. The success of gating is then highly dependent on the statistical quality of the PET data. In this study, we investigate how this quality determines signal noise and thus motion resolution in clinical PET scans using a center-of-mass-based (COM) DDG approach, specifically with regard to motion management of target structures in future radiotherapy planning applications. PET list mode datasets acquired in one bed position of 19 different radiotherapy patients undergoing pretreatment [ 18 F]FDG PET/CT or [ 18 F]FDG PET/MRI were included into this retrospective study. All scans were performed over a region with organs (myocardium, kidneys) or tumor lesions of high tracer uptake and under free breathing. Aside from the original list mode data, datasets with progressively decreasing PET statistics were generated. From these, COM DDG signals were derived for subsequent amplitude-based gating of the original list mode file. The apparent respiratory shift d from end-expiration to end-inspiration was determined from the gated images and expressed as a function of signal-to-noise ratio SNR of the determined gating signals. This relation was tested against additional 25 [ 18 F]FDG PET/MRI list mode datasets where high-precision MR navigator-like respiratory signals were available as reference signal for respiratory gating of PET data, and data from a dedicated thorax phantom scan. All original 19 high-quality list mode datasets demonstrated the same behavior in terms of motion resolution when reducing the amount of list mode events for DDG signal generation. Ratios and directions of respiratory shifts between end-respiratory gates and the respective nongated image were constant over all

  20. Denoising of high resolution small animal 3D PET data using the non-subsampled Haar wavelet transform

    International Nuclear Information System (INIS)

    Ochoa Domínguez, Humberto de Jesús; Máynez, Leticia O.; Vergara Villegas, Osslan O.; Mederos, Boris; Mejía, José M.; Cruz Sánchez, Vianey G.

    2015-01-01

    PET allows functional imaging of the living tissue. However, one of the most serious technical problems affecting the reconstructed data is the noise, particularly in images of small animals. In this paper, a method for high-resolution small animal 3D PET data is proposed with the aim to reduce the noise and preserve details. The method is based on the estimation of the non-subsampled Haar wavelet coefficients by using a linear estimator. The procedure is applied to the volumetric images, reconstructed without correction factors (plane reconstruction). Results show that the method preserves the structures and drastically reduces the noise that contaminates the image

  1. Denoising of high resolution small animal 3D PET data using the non-subsampled Haar wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa Domínguez, Humberto de Jesús, E-mail: hochoa@uacj.mx [Departamento de Ingeniería Eléctrica y computación, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico); Máynez, Leticia O. [Departamento de Ingeniería Eléctrica y computación, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico); Vergara Villegas, Osslan O. [Departamento de Ingeniería Industrial, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico); Mederos, Boris; Mejía, José M.; Cruz Sánchez, Vianey G. [Departamento de Ingeniería Eléctrica y computación, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico)

    2015-06-01

    PET allows functional imaging of the living tissue. However, one of the most serious technical problems affecting the reconstructed data is the noise, particularly in images of small animals. In this paper, a method for high-resolution small animal 3D PET data is proposed with the aim to reduce the noise and preserve details. The method is based on the estimation of the non-subsampled Haar wavelet coefficients by using a linear estimator. The procedure is applied to the volumetric images, reconstructed without correction factors (plane reconstruction). Results show that the method preserves the structures and drastically reduces the noise that contaminates the image.

  2. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT.

    Science.gov (United States)

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-08-08

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification.

  3. SiliPET: Design of an ultra-high resolution small animal PET scanner based on stacks of semi-conductor detectors

    International Nuclear Information System (INIS)

    Cesca, N.; Auricchio, N.; Di Domenico, G.; Zavattini, G.; Malaguti, R.; Andritschke, R.; Kanbach, G.; Schopper, F.

    2007-01-01

    We studied with Monte Carlo simulations, using the EGSnrc code, a new scanner for small animal positron emission tomography (PET), based on stacks of double-sided semiconductor detectors. Each stack is composed of planar detectors with dimension 70x60x1 mm 3 and orthogonal strips on both sides with 500 μm pitch to read the two interaction coordinates, the third being the detector number in the stack. Multiple interactions in a stack are discarded. In this way, we achieve a precise determination of the first interaction point of the two 511 keV photons. The reduced dimensions of the scanner also improve the solid angle coverage resulting in a high sensitivity. Preliminary results of scanners based on Si planar detectors are presented and the initial tomographic reconstructions demonstrate very good spatial resolution limited only by the positron range. This suggests that, this is a promising new approach for small animal PET imaging. We are testing some double-sided silicon detectors, equipped with 128 orthogonal p and n strips on opposite sides using VATAGP3 ASIC by IDEAS

  4. PET System Synchronization and Timing Resolution Using High-Speed Data Links

    OpenAIRE

    Aliaga Varea, Ramón José; Monzó Ferrer, José María; SPAGGIARI, MICHELE; Ferrando Jódar, Néstor; Gadea Gironés, Rafael; Colom Palero, Ricardo José

    2011-01-01

    Current PET systems with fully digital trigger rely on early digitization of detector signals and the use of digital processors, usually FPGAs, for recognition of valid gamma events on single detectors. Timestamps are assigned and later used for coincidence analysis. In order to maintain a decent timing resolution for events detected on different acquisition boards, it is necessary that local timestamps on different FPGAs be synchronized. Sub-nanosecond accuracy is mandatory if we want this e...

  5. A feasibility study of PETiPIX: an ultra high resolution small animal PET scanner

    Science.gov (United States)

    Li, K.; Safavi-Naeini, M.; Franklin, D. R.; Petasecca, M.; Guatelli, S.; Rosenfeld, A. B.; Hutton, B. F.; Lerch, M. L. F.

    2013-12-01

    PETiPIX is an ultra high spatial resolution positron emission tomography (PET) scanner designed for imaging mice brains. Four Timepix pixellated silicon detector modules are placed in an edge-on configuration to form a scanner with a field of view (FoV) 15 mm in diameter. Each detector module consists of 256 × 256 pixels with dimensions of 55 × 55 × 300 μm3. Monte Carlo simulations using GEANT4 Application for Tomographic Emission (GATE) were performed to evaluate the feasibility of the PETiPIX design, including estimation of system sensitivity, angular dependence, spatial resolution (point source, hot and cold phantom studies) and evaluation of potential detector shield designs. Initial experimental work also established that scattered photons and recoil electrons could be detected using a single edge-on Timepix detector with a positron source. Simulation results estimate a spatial resolution of 0.26 mm full width at half maximum (FWHM) at the centre of FoV and 0.29 mm FWHM overall spatial resolution with sensitivity of 0.01%, and indicate that a 1.5 mm thick tungsten shield parallel to the detectors will absorb the majority of non-coplanar annihilation photons, significantly reducing the rates of randoms. Results from the simulated phantom studies demonstrate that PETiPIX is a promising design for studies demanding high resolution images of mice brains.

  6. Positron flight in human tissues and its influence on PET image spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Crespo, Alejandro; Larsson, Stig A. [Section of Nuclear Medicine, Department of Hospital Physics, Karolinska Hospital, 176 76, Stockholm (Sweden); Medical Radiation Physics, Department of Oncology-Pathology, Stockholm University and Karolinska Institute, Stockholm (Sweden); Andreo, Pedro [Medical Radiation Physics, Department of Oncology-Pathology, Stockholm University and Karolinska Institute, Stockholm (Sweden)

    2004-01-01

    The influence of the positron distance of flight in various human tissues on the spatial resolution in positron emission tomography (PET) was assessed for positrons from carbon-11, nitrogen-13, oxygen-15, fluorine-18, gallium-68 and rubidium-82. The investigation was performed using the Monte Carlo code PENELOPE to simulate the transport of positrons within human compact bone, adipose, soft and lung tissue. The simulations yielded 3D distributions of annihilation origins that were projected on the image plane in order to assess their impact on PET spatial resolution. The distributions obtained were cusp-shaped with long tails rather than Gaussian shaped, thus making conventional full width at half maximum (FWHM) measures uncertain. The full width at 20% of the maximum amplitude (FW20M) of the annihilation distributions yielded more appropriate values for root mean square addition of spatial resolution loss components. Large differences in spatial resolution losses due to the positron flight in various human tissues were found for the selected radionuclides. The contribution to image blur was found to be up to three times larger in lung tissue than in soft tissue or fat and five times larger than in bone tissue. For {sup 18}F, the spatial resolution losses were 0.54 mm in soft tissue and 1.52 mm in lung tissue, compared with 4.10 and 10.5 mm, respectively, for {sup 82}Rb. With lung tissue as a possible exception, the image blur due to the positron flight in all human tissues has a minor impact as long as PET cameras with a spatial resolution of 5-7 mm are used in combination with {sup 18}F-labelled radiopharmaceuticals. However, when ultra-high spatial resolution PET cameras, with 3-4 mm spatial resolution, are applied, especially in combination with other radionuclides, the positron flight may enter as a limiting factor for the total PET spatial resolution - particularly in lung tissue. (orig.)

  7. Positron flight in human tissues and its influence on PET image spatial resolution

    International Nuclear Information System (INIS)

    Sanchez-Crespo, Alejandro; Larsson, Stig A.; Andreo, Pedro

    2004-01-01

    The influence of the positron distance of flight in various human tissues on the spatial resolution in positron emission tomography (PET) was assessed for positrons from carbon-11, nitrogen-13, oxygen-15, fluorine-18, gallium-68 and rubidium-82. The investigation was performed using the Monte Carlo code PENELOPE to simulate the transport of positrons within human compact bone, adipose, soft and lung tissue. The simulations yielded 3D distributions of annihilation origins that were projected on the image plane in order to assess their impact on PET spatial resolution. The distributions obtained were cusp-shaped with long tails rather than Gaussian shaped, thus making conventional full width at half maximum (FWHM) measures uncertain. The full width at 20% of the maximum amplitude (FW20M) of the annihilation distributions yielded more appropriate values for root mean square addition of spatial resolution loss components. Large differences in spatial resolution losses due to the positron flight in various human tissues were found for the selected radionuclides. The contribution to image blur was found to be up to three times larger in lung tissue than in soft tissue or fat and five times larger than in bone tissue. For 18 F, the spatial resolution losses were 0.54 mm in soft tissue and 1.52 mm in lung tissue, compared with 4.10 and 10.5 mm, respectively, for 82 Rb. With lung tissue as a possible exception, the image blur due to the positron flight in all human tissues has a minor impact as long as PET cameras with a spatial resolution of 5-7 mm are used in combination with 18 F-labelled radiopharmaceuticals. However, when ultra-high spatial resolution PET cameras, with 3-4 mm spatial resolution, are applied, especially in combination with other radionuclides, the positron flight may enter as a limiting factor for the total PET spatial resolution - particularly in lung tissue. (orig.)

  8. Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, J E; Kontaxakis, G; Rubio, J L; Santos, A [Departamento de Ingenieria Electronica (DIE), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Guerra, P [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain)], E-mail: juanen@die.upm.es

    2010-04-07

    A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

  9. A high resolution animal PET scanner using compact PS-PMT detectors

    International Nuclear Information System (INIS)

    Watanabe, M.; Okada, H.; Shimizu, K.; Omura, T.

    1996-01-01

    A new high resolution PET scanner dedicated to animal studies has been designed, built and tested. The system utilizes 240 block detectors, each of which consists of a new compact position-sensitive photomultiplier tube (PS-PMT) and an 8 x 4 BGO array. A total number of 7,680 crystals (480 per ring) are positioned to form a 508 mm diameter of 16 detector rings with 7.2 mm pitch and 114 mm axial field of view (FOV). The system is designed to perform activation studies using a monkey in a sitting position. The data can be acquired in either 2D or 3D mode, where the slice collimators are retracted in 3D mode. The transaxial resolution is 2.6 mm FWHM at the center of the FOV, and the average axial resolution on the axis of the ring is 3.3 mm FWHM in the direct slice and 3.2 mm FWHM in the cross slice. The scatter fraction, sensitivity and count rate performance were evaluated for a 10 cm diameter cylindrical phantom. The total system sensitivity is 2.3 kcps/kBq/ml in 2D mode and 22.8 kcps/kBq/ml in 3D mode. The noise equivalent count rate with 3D mode is equivalent to that with 2D mode at five times higher radioactivity level. The applicable imaging capabilities of the scanner was demonstrated by animal studies with a monkey

  10. Resolution improvement of brain PET images using prior information from MRI: clinical application on refractory epilepsy

    International Nuclear Information System (INIS)

    Silva-Rodríguez, Jesus; Tsoumpas, Charalampos; Aguiar, Pablo; Cortes, Julia; Urdaneta, Jesus Lopez

    2015-01-01

    An important counterpart of clinical Positron Emission Tomography (PET) for early diagnosis of neurological diseases is its low resolution. This is particularly important when evaluating diseases related to small hypometabolisms such as epilepsy. The last years, new hybrid systems combining PET with Magnetic Resonance (MR) has been increasingly used for several different clinical applications. One of the advantages of MR is the production of high spatial resolution images and a potential application of PET-MR imaging is the improvement of PET resolution using MR information. A potential advantage of resolution recovery of PET images is the enhancement of contrast delivering at the same time better detectability of small lesions or hypometabolic areas and more accurate quantification over these areas. Recently, Shidahara et al (2009) proposed a new method using wavelet transforms in order to produce PET images with higher resolution. We optimised Shidahara’s method (SFS-RR) to take into account possible shortcomings on the particular clinical datasets, and applied it to a group of patients diagnosed with refractory epilepsy. FDG-PET and MRI images were acquired sequentially and then co-registered using software tools. A complete evaluation of the PET/MR images was performed before and after the correction, including different parameters related with PET quantification, such as atlas-based metabolism asymmetry coefficients and Statistical Parametric Mapping results comparing to a database of 87 healthy subjects. Furthermore, an experienced physician analyzed the results of non-corrected and corrected images in order to evaluate improvements of detectability on a visual inspection. Clinical outcome was used as a gold standard. SFS-RR demonstrated to have a positive impact on clinical diagnosis of small hypometabolisms. New lesions were detected providing additional clinically relevant information on the visual inspection. SPM sensitivity for the detection of small

  11. Resolution improvement of brain PET images using prior information from MRI: clinical application on refractory epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Rodríguez, Jesus [Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela (Spain); Tsoumpas, Charalampos [University of Leeds, Leeds (United Kingdom); Aguiar, Pablo; Cortes, Julia [Nuclear Medicine Department, University Hospital (CHUS), Santiago de Compostela (Spain); Urdaneta, Jesus Lopez [Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela (Spain)

    2015-05-18

    An important counterpart of clinical Positron Emission Tomography (PET) for early diagnosis of neurological diseases is its low resolution. This is particularly important when evaluating diseases related to small hypometabolisms such as epilepsy. The last years, new hybrid systems combining PET with Magnetic Resonance (MR) has been increasingly used for several different clinical applications. One of the advantages of MR is the production of high spatial resolution images and a potential application of PET-MR imaging is the improvement of PET resolution using MR information. A potential advantage of resolution recovery of PET images is the enhancement of contrast delivering at the same time better detectability of small lesions or hypometabolic areas and more accurate quantification over these areas. Recently, Shidahara et al (2009) proposed a new method using wavelet transforms in order to produce PET images with higher resolution. We optimised Shidahara’s method (SFS-RR) to take into account possible shortcomings on the particular clinical datasets, and applied it to a group of patients diagnosed with refractory epilepsy. FDG-PET and MRI images were acquired sequentially and then co-registered using software tools. A complete evaluation of the PET/MR images was performed before and after the correction, including different parameters related with PET quantification, such as atlas-based metabolism asymmetry coefficients and Statistical Parametric Mapping results comparing to a database of 87 healthy subjects. Furthermore, an experienced physician analyzed the results of non-corrected and corrected images in order to evaluate improvements of detectability on a visual inspection. Clinical outcome was used as a gold standard. SFS-RR demonstrated to have a positive impact on clinical diagnosis of small hypometabolisms. New lesions were detected providing additional clinically relevant information on the visual inspection. SPM sensitivity for the detection of small

  12. High resolution and high speed positron emission tomography data acquisition

    International Nuclear Information System (INIS)

    Burgiss, S.G.; Byars, L.G.; Jones, W.F.; Casey, M.E.

    1986-01-01

    High resolution positron emission tomography (PET) requires many detectors. Thus, data collection systems for PET must have high data rates, wide data paths, and large memories to histogram the events. This design uses the VMEbus to cost effectively provide these features. It provides for several modes of operation including real time sorting, list mode data storage, and replay of stored list mode data

  13. Performance evaluation of a sub-millimeter spatial resolution PET detector module using a digital silicon photomultiplier coupled LGSO array

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Hyun Tae [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Choi, Yong, E-mail: ychoi@sogang.ac.kr [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Kim, Kyu Bom; Lee, Sangwon [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Yamamoto, Seiichi [Department of Medical Technology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yeom, Jung-Yeol, E-mail: jungyeol@korea.ac.kr [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of)

    2017-02-21

    In positron emission tomography (PET) for breast, brain and small animal imaging, the spatial resolution of a PET detector is crucial to obtain high quality PET images. In this study, a PET detector for sub-millimeter spatial resolution imaging purpose was assembled using 4×4 pixels of a digital silicon photomultiplier (dSiPM, DPC-3200-22-44, Philips) coupled with a 15×15 LGSO array with BaSO{sub 4} reflector, and a 1 mm thick acrylic light guide for light distribution between the dSiPM pixels. The active area of each dSiPM pixel was 3.2×3.9 mm{sup 2} and the size of each LGSO scintillator element was 0.7×0.7×6 mm{sup 3}. In this paper, we experimentally demonstrated the performance of the PET detector by measuring the energy resolution, 2D flood map, peak to valley (P/V) ratio, and coincidence resolving time (CRT). All measurements were performed at a temperature of 10±1 ℃. The average energy resolution was 15.6% (without correcting for saturation effects) at 511 keV and the best CRT was 242±5 ps. The 2D flood map obtained with an energy window of 400–600 keV demonstrated clear identification of all pixels, and the average P/V ratio of the X- and Y-directions were 7.31 and 7.81, respectively. This study demonstrated that the PET detector could be suitable for application in high resolution PET while achieving good timing resolution.

  14. Clinical evaluation of PET image reconstruction using a spatial resolution model

    DEFF Research Database (Denmark)

    Andersen, Flemming Littrup; Klausen, Thomas Levin; Loft, Annika

    2013-01-01

    PURPOSE: PET image resolution is variable across the measured field-of-view and described by the point spread function (PSF). When accounting for the PSF during PET image reconstruction image resolution is improved and partial volume effects are reduced. Here, we evaluate the effect of PSF......-based reconstruction on lesion quantification in routine clinical whole-body (WB) PET/CT imaging. MATERIALS AND METHODS: 41 oncology patients were referred for a WB-PET/CT examination (Biograph 40 TruePoint). Emission data were acquired at 2.5min/bed at 1hpi of 400 MBq [18F]-FDG. Attenuation-corrected PET images were...... reconstructed on 336×336-matrices using: (R1) standard AW-OSEM (4 iter, 8 subsets, 4mm Gaussian) and (R2) AW-OSEM with PSF (3 iter, 21 subsets, 2mm). Blinded and randomised reading of R1- and R2-PET images was performed. Individual lesions were located and counted independently on both sets of images...

  15. Time resolution deterioration with increasing crystal length in a TOF-PET system

    CERN Document Server

    Gundacker, S; Auffray, E; Jarron, P; Meyer, T; Lecoq, P

    2014-01-01

    Highest time resolution in scintillator based detectors is becoming more and more important. In medical detector physics L(Y)SO scintillators are commonly used for time of flight positron emission tomography (TOF-PET). Coincidence time resolutions (CTRs) smaller than 100 ps FWHM are desirable in order to improve the image signal to noise ratio and thus give benefit to the patient by shorter scanning times. Also in high energy physics there is the demand to improve the timing capabilities of calorimeters down to 10 ps. To achieve these goals it is important to study the whole chain, i.e. the high energy particle interaction in the crystal, the scintillation process itself, the scintillation light transfer in the crystal, the photodetector and the electronics. Time resolution measurements for a PET like system are performed with the time-over-threshold method in a coincidence setup utilizing the ultra-fast amplifier-discriminator NINO. With 2×2×3 mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially avai...

  16. Four-layer depth-of-interaction PET detector for high resolution PET using a multi-pixel S8550 avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko, E-mail: funis@nirs.go.j [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Inadama, Naoko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Oda, Ichiro [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Shibuya, Kengo; Yoshida, Eiji; Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-09-21

    Avalanche photodiodes (APDs) are being used as photodetectors in positron emission tomography (PET) because they have many advantages over photomultipliers (PMTs) typically used in PET detectors. We have developed a PET detector that consists of a multi-pixel APD and a 6x6x4 array of 1.46x1.46 mm{sup 2}x4.5 m LYSO crystals for a small animal PET scanner. The detector can identify four-layer depth of interaction (DOI) with a position-sensitive APD coupled to the backside of a crystal array by just an optimized reflector arrangement. Since scintillation lights are shared among many pixels by the method, weaker signals in APD pixels far from the interacting crystals are affected by noise. To evaluate the performance of the four-layer DOI detector with the APD and the influence of electrical noise on our method, we constructed a prototype DOI detector and tested its performance. We found, except for crystal elements on the edge of the crystal array, all crystal elements could be identified from the 2D position histogram. An energy resolution of 16.9% was obtained for the whole crystal array of the APD detector. The results of noise dependence of detector performances indicated that the DOI detector using the APD could achieve sufficient performance even when using application-specific integrated circuits.

  17. Four-layer depth-of-interaction PET detector for high resolution PET using a multi-pixel S8550 avalanche photodiode

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Inadama, Naoko; Oda, Ichiro; Shibuya, Kengo; Yoshida, Eiji; Yamaya, Taiga; Kitamura, Keishi; Murayama, Hideo

    2010-01-01

    Avalanche photodiodes (APDs) are being used as photodetectors in positron emission tomography (PET) because they have many advantages over photomultipliers (PMTs) typically used in PET detectors. We have developed a PET detector that consists of a multi-pixel APD and a 6x6x4 array of 1.46x1.46 mm 2 x4.5 m LYSO crystals for a small animal PET scanner. The detector can identify four-layer depth of interaction (DOI) with a position-sensitive APD coupled to the backside of a crystal array by just an optimized reflector arrangement. Since scintillation lights are shared among many pixels by the method, weaker signals in APD pixels far from the interacting crystals are affected by noise. To evaluate the performance of the four-layer DOI detector with the APD and the influence of electrical noise on our method, we constructed a prototype DOI detector and tested its performance. We found, except for crystal elements on the edge of the crystal array, all crystal elements could be identified from the 2D position histogram. An energy resolution of 16.9% was obtained for the whole crystal array of the APD detector. The results of noise dependence of detector performances indicated that the DOI detector using the APD could achieve sufficient performance even when using application-specific integrated circuits.

  18. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    International Nuclear Information System (INIS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE

  19. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    Science.gov (United States)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE

  20. High-performance electronics for time-of-flight PET systems

    International Nuclear Information System (INIS)

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.

  1. Detectors for high resolution dynamic pet

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1983-05-01

    This report reviews the motivation for high spatial resolution in dynamic positron emission tomography of the head and the technical problems in realizing this objective. We present recent progress in using small silicon photodiodes to measure the energy deposited by 511 keV photons in small BGO crystals with an energy resolution of 9.4% full-width at half-maximum. In conjunction with a suitable phototube coupled to a group of crystals, the photodiode signal to noise ratio is sufficient for the identification of individual crystals both for conventional and time-of-flight positron tomography

  2. Role of pharmacokinetic parameters derived with high temporal resolution DCE MRI using simultaneous PET/MRI system in breast cancer: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Amarnath, E-mail: drjena2002@gmail.com [Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India); Taneja, Sangeeta; Singh, Aru; Negi, Pradeep; Mehta, Shashi Bhushan [Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India); Sarin, Ramesh [Department of Surgical Oncology, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India)

    2017-01-15

    Highlights: • Simultaneous PET/MRI (with 3T MRI in the core) for quantitative pharmacokinetics. • Diagnostic accuracy of pharmacokinetic parameters like K{sup trans}, K{sub ep} and v{sub e} acquired through this system. • Incorporating high temporal resolution sequence with short acquisition time of 60 s within the routine DCE MRI in a simultaneous PET/MRI system. - Abstract: Purpose: To evaluate the reliability of pharmacokinetic parameters like K{sup trans}, Kep and v{sub e} derived through DCE MRI breast protocol using 3 T Simultaneous PET/MRI (3 Tesla Positron Emission Tomography/Magnetic Resonance Imaging) system in distinguishing benign and malignant lesions. Materials and methods: High temporal resolution DCE (Dynamic Contrast Enhancement) MRI performed as routine breast MRI for diagnosis or as a part of PET/MRI for cancer staging using a 3 T simultaneous PET/MRI system in 98 women having 109 breast lesions were analyzed for calculation of pharmacokinetic parameters (K{sup trans}, v{sub e}, and Kep) at 60 s time point using an in-house developed computation scheme. Results: Receiver operating characteristic (ROC) curve analysis revealed a cut off value for K{sup trans}, Kep, v{sub e} as 0.50, 2.59, 0.15 respectively which reliably distinguished benign and malignant breast lesions. Data analysis revealed an overall accuracy of 94.50%, 79.82% and 87.16% for K{sup trans}, Kep, v{sub e} respectively. Introduction of native T1 normalization with an externally placed phantom showed a higher accuracy (94.50%) than without native T1 normalization (93.50%) with an increase in specificity of 87% vs 84%. Conclusion: Overall the results indicate that reliable measurement of pharmacokinetic parameters with reduced acquisition time is feasible in a 3TMRI embedded PET/MRI system with reasonable accuracy and application may be extended to exploit the potential of simultaneous PET/MRI in further work on breast cancer.

  3. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    International Nuclear Information System (INIS)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-01-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability

  4. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    Science.gov (United States)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-07-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability.

  5. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters.

    Science.gov (United States)

    Mhlanga, Joyce C; Carrino, John A; Lodge, Martin; Wang, Hao; Wahl, Richard L

    2014-12-01

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with (18)F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological (18)F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p = 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted.

  6. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors

    Science.gov (United States)

    Watanabe, Mitsuo; Saito, Akinori; Isobe, Takashi; Ote, Kibo; Yamada, Ryoko; Moriya, Takahiro; Omura, Tomohide

    2017-09-01

    A high-resolution positron emission tomography (PET) scanner, dedicated to brain studies, was developed and its performance was evaluated. A four-layer depth of interaction detector was designed containing five detector units axially lined up per layer board. Each of the detector units consists of a finely segmented (1.2 mm) LYSO scintillator array and an 8  ×  8 array of multi-pixel photon counters. Each detector layer has independent front-end and signal processing circuits, and the four detector layers are assembled as a detector module. The new scanner was designed to form a detector ring of 430 mm diameter with 32 detector modules and 168 detector rings with a 1.2 mm pitch. The total crystal number is 655 360. The transaxial and axial field of views (FOVs) are 330 mm in diameter and 201.6 mm, respectively, which are sufficient to measure a whole human brain. The single-event data generated at each detector module were transferred to the data acquisition servers through optical fiber cables. The single-event data from all detector modules were merged and processed to create coincidence event data in on-the-fly software in the data acquisition servers. For image reconstruction, the high-resolution mode (HR-mode) used a 1.2 mm2 crystal segment size and the high-speed mode (HS-mode) used a 4.8 mm2 size by collecting 16 crystal segments of 1.2 mm each to reduce the computational cost. The performance of the brain PET scanner was evaluated. For the intrinsic spatial resolution of the detector module, coincidence response functions of the detector module pair, which faced each other at various angles, were measured by scanning a 0.25 mm diameter 22Na point source. The intrinsic resolutions were obtained with 1.08 mm full width at half-maximum (FWHM) and 1.25 mm FWHM on average at 0 and 22.5 degrees in the first layer pair, respectively. The system spatial resolutions were less than 1.0 mm FWHM throughout the whole FOV, using a

  7. cMiCE a high resolution animal PET using continuous LSO with a statistics based positioning scheme

    CERN Document Server

    Joung Jin Hun; Lewellen, T K

    2002-01-01

    Objective: Detector designs for small animal scanners are currently dominated by discrete crystal implementations. However, given the small crystal cross-sections required to obtain very high resolution, discrete designs are typically expensive, have low packing fraction, reduced light collection, and are labor intensive to build. To overcome these limitations we have investigated the feasibility of using a continuous miniature crystal element (cMiCE) detector module for high resolution small animal PET applications. Methods: The detector module consists of a single continuous slab of LSO, 25x25 mm sup 2 in exposed cross-section and 4 mm thick, coupled directly to a PS-PMT (Hamamatsu R5900-00-C12). The large area surfaces of the crystal were polished and painted with TiO sub 2 and the short surfaces were left unpolished and painted black. Further, a new statistics based positioning (SBP) algorithm has been implemented to address linearity and edge effect artifacts that are inherent with conventional Anger sty...

  8. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters

    International Nuclear Information System (INIS)

    Mhlanga, Joyce C.; Lodge, Martin; Carrino, John A.; Wang, Hao; Wahl, Richard L.

    2014-01-01

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with 18 F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological 18 F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p= 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted. (orig.)

  9. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.; Pichler, B. J. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen (Germany); Mantlik, F. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany and Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076 Tübingen (Germany); Lorenz, E. [Max Planck Institute for Physics, Föhringer Ring 6, 80805 München (Germany); Renker, D. [Department of Physics, Technische Universität München, 85748 Garching (Germany)

    2014-08-15

    Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90

  10. A High Resolution Monolithic Crystal, DOI, MR Compatible, PET Detector. Final-Report

    International Nuclear Information System (INIS)

    Miyaoka, Robert S.

    2012-01-01

    The principle objective of this proposal is to develop a positron emission tomography (PET) detector with depth-of-interaction (DOI) positioning capability that will achieve state of the art spatial resolution and sensitivity performance for small animal PET imaging. When arranged in a ring or box detector geometry, the proposed detector module will support 15% absolute detection efficiency. The detector will also be compatible with operation in a MR scanner to support simultaneous multi-modality imaging. The detector design will utilize a thick, monolithic crystal scintillator readout by a two-dimensional array of silicon photomultiplier (SiPM) devices using a novel sensor on the entrance surface (SES) design. Our hypothesis is that our single-ended readout SES design will provide an effective DOI positioning performance equivalent to more expensive dual-ended readout techniques and at a significantly lower cost. Our monolithic crystal design will also lead to a significantly lower cost system. It is our goal to design a detector with state of the art performance but at a price point that is affordable so the technology can be disseminated to many laboratories. A second hypothesis is that using SiPM arrays, the detector will be able to operate in a MR scanner without any degradation in performance to support simultaneous PET/MR imaging. Having a co-registered MR image will assist in radiotracer localization and may also be used for partial volume corrections to improve radiotracer uptake quantitation. The far reaching goal of this research is to develop technology for medical research that will lead to improvements in human health care.

  11. Study of DOI resolution and imaging resolution of a PET device

    International Nuclear Information System (INIS)

    Saha, Lipika; Saitoh, Kazumi; Kobayashi, Shigeharu

    2004-01-01

    As a recent trend of DOI measurement for the PET, a simple method of utilizing the light attenuation properties of scintillation materials has been paid attention. We have studied the DOI resolutions for less expensive materials as BGO in both the bench test and the simulation by GEANT4.0. By comparison with both the results, we have recognized the importance of removing the multiple Compton absorption events to obtain the better DOI information. The simulation results for the imaging resolution suggested that its deterioration attributes to the parallax error as well as the systematic displacement inherent in the present method of 3D-reconstruction

  12. {sup 18}F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mhlanga, Joyce C.; Lodge, Martin [Johns Hopkins University School of Medicine, Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Carrino, John A. [Johns Hopkins University School of Medicine, Division of Musculoskeletal Radiology, The Russell H. Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Wang, Hao [Johns Hopkins University School of Medicine, Department of Oncology Biostatistics Division, Baltimore, MD (United States); Wahl, Richard L. [Johns Hopkins University School of Medicine, Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Johns Hopkins University Hospitals, Division of Nuclear Medicine, Baltimore, MD (United States)

    2014-12-15

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with {sup 18}F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological {sup 18}F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p= 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted. (orig.)

  13. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction

    International Nuclear Information System (INIS)

    Liang, Yicheng; Peng, Hao

    2015-01-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity. (paper)

  14. Calculation of the time resolution of the J-PET tomograph using kernel density estimation

    Science.gov (United States)

    Raczyński, L.; Wiślicki, W.; Krzemień, W.; Kowalski, P.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kozik, T.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Rudy, Z.; Rundel, O.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2017-06-01

    In this paper we estimate the time resolution of the J-PET scanner built from plastic scintillators. We incorporate the method of signal processing using the Tikhonov regularization framework and the kernel density estimation method. We obtain simple, closed-form analytical formulae for time resolution. The proposed method is validated using signals registered by means of the single detection unit of the J-PET tomograph built from a 30 cm long plastic scintillator strip. It is shown that the experimental and theoretical results obtained for the J-PET scanner equipped with vacuum tube photomultipliers are consistent.

  15. Quantitative and Visual Assessments toward Potential Sub-mSv or Ultrafast FDG PET Using High-Sensitivity TOF PET in PET/MRI.

    Science.gov (United States)

    Behr, Spencer C; Bahroos, Emma; Hawkins, Randall A; Nardo, Lorenzo; Ravanfar, Vahid; Capbarat, Emily V; Seo, Youngho

    2018-06-01

    Newer high-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability to preserve diagnostic image quality with low count density, while maintaining a high raw photon detection sensitivity that would allow for a reduction in injected dose or rapid data acquisition. To assess this, we performed quantitative and visual assessments of the PET images acquired using a highly sensitive (23.3 cps/kBq) large field of view (25-cm axial) silicon photomultiplier (SiPM)-based TOF PET (400-ps timing resolution) integrated with 3 T-MRI in comparison to PET images acquired on non-TOF PET/x-ray computed tomography (CT) systems. Whole-body 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) PET/CT was acquired for 15 patients followed by whole body PET/magnetic resonance imaging (MRI) with an average injected dose of 325 ± 84 MBq. The PET list mode data from PET/MRI were reconstructed using full datasets (4 min/bed) and reduced datasets (2, 1, 0.5, and 0.25 min/bed). Qualitative assessment between PET/CT and PET/MR images were made. A Likert-type scale between 1 and 5, 1 for non-diagnostic, 3 equivalent to PET/CT, and 5 superior quality, was used. Maximum and mean standardized uptake values (SUV max and SUV mean ) of normal tissues and lesions detected were measured and compared. Mean visual assessment scores were 3.54 ± 0.32, 3.62 ± 0.38, and 3.69 ± 0.35 for the brain and 3.05 ± 0.49, 3.71 ± 0.45, and 4.14 ± 0.44 for the whole-body maximum intensity projections (MIPs) for 1, 2, and 4 min/bed PET/MR images, respectively. The SUV mean values for normal tissues were lower and statistically significant for images acquired at 4, 2, 1, 0.5, and 0.25 min/bed on the PET/MR, with values of - 18 ± 28 % (p PET/MR datasets. High-sensitivity TOF PET showed comparable but still better visual image quality even at a much reduced activity in comparison to lower-sensitivity non-TOF PET. Our data translates to a seven times

  16. Coincidence resolution time of two small scintillators coupled to high quantum-efficiency photomultipliers in a PET-like system

    Science.gov (United States)

    Galetta, G.; De Leo, R.; Garibaldi, F.; Grodzicka, M.; Lagamba, L.; Loddo, F.; Masiello, G.; Nappi, E.; Perrino, R.; Ranieri, A.; Szczęśniak, T.

    2014-03-01

    The lower limit of the time resolution for a positron emission tomography (PET) system has been measured for two scintillator types, LYSO:Ce and LuAG:Pr. Small dimension crystals and ultra bi-alkali phototubes have been used in order to increase the detected scintillation photons. Good timing resolutions of 118 ps and 223 ps FWHM have been obtained for two LYSO and two LuAG, respectively, exposed to a 22Na source.

  17. Optimization of the spatial resolution for the GE discovery PET/CT 710 by using NEMA NU 2-2007 standards

    Science.gov (United States)

    Yoon, Hyun Jin; Jeong, Young Jin; Son, Hye Joo; Kang, Do-Young; Hyun, Kyung-Yae; Lee, Min-Kyung

    2015-01-01

    The spatial resolution in positron emission tomography (PET) is fundamentally limited by the geometry of the detector element, the positron's recombination range with electrons, the acollinearity of the positron, the crystal decoding error, the penetration into the detector ring, and the reconstruction algorithms. In this paper, optimized parameters are suggested to produce high-resolution PET images by using an iterative reconstruction algorithm. A phantom with three point sources structured with three capillary tubes was prepared with an axial extension of less than 1 mm and was filled with 18F-fluorodeoxyglucose (18F-FDG) with concentrations above 200 MBq/cc. The performance measures of all the PET images were acquired according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standards procedures. The parameters for the iterative reconstruction were adjusted around the values recommended by General Electric GE, and the optimized values of the spatial resolution and the full width at half maximum (FWHM) or the full width at tenth of maximum (FWTM) values were found for the best PET resolution. The axial and the transverse spatial resolutions, according to the filtered back-projection (FBP) at 1 cm off-axis, were 4.81 and 4.48 mm, respectively. The axial and the transaxial spatial resolutions at 10 cm off-axis were 5.63 mm and 5.08 mm, respectively, and the trans-axial resolution at 10 cm was evaluated as the average of the radial and the tangential measurements. The recommended optimized parameters of the spatial resolution according to the NEMA phantom for the number of subsets, the number of iterations, and the Gaussian post-filter are 12, 3, and 3 mm for the iterative reconstruction VUE Point HD without the SharpIR algorithm (HD), and 12, 12, and 5.2 mm with SharpIR (HD.S), respectively, according to the Advantage Workstation Volume Share 5 (AW4.6). The performance measurements for the GE Discovery PET/CT 710 using the NEMA NU 2

  18. High-resolution imaging of pulmonary ventilation and perfusion with 68Ga-VQ respiratory gated (4-D) PET/CT

    International Nuclear Information System (INIS)

    Callahan, Jason; Hofman, Michael S.; Siva, Shankar; Kron, Tomas; Schneider, Michal E.; Binns, David; Eu, Peter; Hicks, Rodney J.

    2014-01-01

    Our group has previously reported on the use of 68 Ga-ventilation/perfusion (VQ) PET/CT scanning for the diagnosis of pulmonary embolism. We describe here the acquisition methodology for 68 Ga-VQ respiratory gated (4-D) PET/CT and the effects of respiratory motion on image coregistration in VQ scanning. A prospective study was performed in 15 patients with non-small-cell lung cancer. 4-D PET and 4-D CT images were acquired using an infrared marker on the patient's abdomen as a surrogate for breathing motion following inhalation of Galligas and intravenous administration of 68 Ga-macroaggregated albumin. Images were reconstructed with phase-matched attenuation correction. The lungs were contoured on CT and PET VQ images during free-breathing (FB) and at maximum inspiration (Insp) and expiration (Exp). The similarity between PET and CT volumes was measured using the Dice coefficient (DC) comparing the following groups; (1) FB-PET/CT, (2) InspPET/InspCT, (3) ExpPET/Exp CT, and (4) FB-PET/AveCT. A repeated measures one-way ANOVA with multiple comparison Tukey tests were performed to evaluate any difference between the groups. Diaphragmatic motion in the superior-inferior direction on the 4-D CT scan was also measured. 4-D VQ scanning was successful in all patients without additional acquisition time compared to the nongated technique. The highest volume overlap was between ExpPET and ExpCT and between FB-PET and AveCT with a DC of 0.82 and 0.80 for ventilation and perfusion, respectively. This was significantly better than the DC comparing the other groups (0.78-0.79, p 68 Ga-VQ 4-D PET/CT is feasible and the blurring caused by respiratory motion is well corrected with 4-D acquisition, which principally reduces artefact at the lung bases. The images with the highest spatial overlap were the combined expiration phase or FB PET and average CT. With higher resolution than SPECT/CT, the PET/CT technique has a broad range of potential clinical applications including

  19. High-resolution imaging of pulmonary ventilation and perfusion with {sup 68}Ga-VQ respiratory gated (4-D) PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, Jason [Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Hofman, Michael S. [The University of Melbourne, Department of Medicine, Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne, VIC (Australia); Siva, Shankar [The University of Melbourne, Peter MacCallum Cancer Centre, Department of Radiation Oncology, East Melbourne, VIC (Australia); The University of Melbourne, Sir Peter MacCallum Department of Oncology, East Melbourne, VIC (Australia); Kron, Tomas [The University of Melbourne, Sir Peter MacCallum Department of Oncology, East Melbourne, VIC (Australia); The University of Melbourne, Peter MacCallum Cancer Centre, Department of Physical Sciences, East Melbourne, VIC (Australia); Schneider, Michal E. [Monash University, Department of Medical Imaging and Radiation Science, Clayton, VIC (Australia); Binns, David; Eu, Peter [Peter MacCallum Cancer Centre, Centre for Cancer Imaging, East Melbourne, VIC (Australia); Hicks, Rodney J. [The University of Melbourne, Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne, VIC (Australia)

    2014-02-15

    Our group has previously reported on the use of {sup 68}Ga-ventilation/perfusion (VQ) PET/CT scanning for the diagnosis of pulmonary embolism. We describe here the acquisition methodology for {sup 68}Ga-VQ respiratory gated (4-D) PET/CT and the effects of respiratory motion on image coregistration in VQ scanning. A prospective study was performed in 15 patients with non-small-cell lung cancer. 4-D PET and 4-D CT images were acquired using an infrared marker on the patient's abdomen as a surrogate for breathing motion following inhalation of Galligas and intravenous administration of {sup 68}Ga-macroaggregated albumin. Images were reconstructed with phase-matched attenuation correction. The lungs were contoured on CT and PET VQ images during free-breathing (FB) and at maximum inspiration (Insp) and expiration (Exp). The similarity between PET and CT volumes was measured using the Dice coefficient (DC) comparing the following groups; (1) FB-PET/CT, (2) InspPET/InspCT, (3) ExpPET/Exp CT, and (4) FB-PET/AveCT. A repeated measures one-way ANOVA with multiple comparison Tukey tests were performed to evaluate any difference between the groups. Diaphragmatic motion in the superior-inferior direction on the 4-D CT scan was also measured. 4-D VQ scanning was successful in all patients without additional acquisition time compared to the nongated technique. The highest volume overlap was between ExpPET and ExpCT and between FB-PET and AveCT with a DC of 0.82 and 0.80 for ventilation and perfusion, respectively. This was significantly better than the DC comparing the other groups (0.78-0.79, p < 0.05). These values agreed with a visual inspection of the images with improved image coregistration around the lung bases. The diaphragmatic motion during the 4-D CT scan was highly variable with a range of 0.4-3.4 cm (SD 0.81 cm) in the right lung and 0-2.8 cm (SD 0.83 cm) in the left lung. Right-sided diaphragmatic nerve palsy was observed in 3 of 15 patients. {sup 68}Ga-VQ 4-D

  20. High performance detector head for PET and PET/MR with continuous crystals and SiPMs

    International Nuclear Information System (INIS)

    Llosá, G.; Barrillon, P.; Barrio, J.; Bisogni, M.G.; Cabello, J.; Del Guerra, A.; Etxebeste, A.; Gillam, J.E.; Lacasta, C.; Oliver, J.F.; Rafecas, M.; Solaz, C.; Stankova, V.; La Taille, C. de

    2013-01-01

    A high resolution PET detector head for small animal PET applications has been developed. The detector is composed of a 12mm×12mm continuous LYSO crystal coupled to a 64-channel monolithic SiPM matrix from FBK-irst. Crystal thicknesses of 5 mm and 10 mm have been tested, both yielding an intrinsic spatial resolution around 0.7 mm FWHM with a position determination algorithm that can also provide depth-of-interaction information. The detectors have been tested in a rotating system that makes it possible to acquire tomographic data and reconstruct images of 22 Na sources. An image reconstruction method specifically adapted for continuous crystals has been employed. The Full Width at Half Maximum measured from a point source reconstructed with ML–EM was 0.7 mm with the 5 mm crystal and 0.8 mm with the 10 mm crystal

  1. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  2. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  3. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  4. The Neuro-PET: a new high-resolution 7-slice positron emission tomograph

    International Nuclear Information System (INIS)

    Brooks, R.A.; Sank, V.J.; Di Chiro, G.; Friauf, W.S.; Leighton, S.B.; Cascio, H.E.

    1982-01-01

    The Neuro-PET consists of 4 circular rings of 128 BGO detectors providing 7 simultaneous slices. At present the scanner is operating with only one ring, pending delivery of three more electronic chassis. Inter-plane septa of depleted uranium are used to shield out-of-plane activity and scatter, without interfering with the cross-slice images. Preliminary measurements of in-plane resolution, using a 1 mm dia. Ge-68-filled steel rod in a plastic phantom, give 6 mm full-width-at-half-maximum at the center of the image and 7 mm at a point 9 cm off center. Axial resolution was measured to be 10 mm. Sensitivity, as measured with a 20 cm diameter uniform phantom, is 53000, 44000 or 31000 counts/s/μCi/cc, depending on the energy threshold, which is switch-selectable at the console. Scatter was measured with a cold spot phantom by taking the ratio of apparent activity at the center of the cold spot to that in the surrounding area. The result for a 1 cm cold spot located near the periphery of the phantom was 33%, without software correction, and less than 20% for a 5 cm cold spot

  5. High spatial resolution measurement of depth-of-interaction of a PET LSO crystal

    International Nuclear Information System (INIS)

    Simon, A.; Kalinka, G.; Novak, D.; Sipos, A.; Vegh, J.; Molnar, J.

    2004-01-01

    Complete text of publication follows. A new type of experimental technique to investigate the depth-of-interaction (DOI) dependence in small scintillator elements designed for high-resolution animal PET [1] has been introduced at our institute, recently. A lutetium oxyorthosilicate (LSO) crystal (2x2x10 mm 3 ) was irradiated with a highly focused 2 MeV He + beam at the ATOMKI nuclear microprobe laboratory. Pulse height spectra from a photomultiplier (PMT) attached to one end of the LSO crystal were collected in list mode. Sequential scans of 1000x1000 μm 2 areas along the 10 mm long crystal were made to get high lateral resolution images of pulse height spectra at different distances from the window of the PMT. A mean pulse height algorithm was applied to each pixel to generate two dimensional intensity images and the corresponding spectra of 100 μmx1 mm areas. Representative pulse height spectra are shown in Fig. 1 for different distances between the position of irradiation and the PMT. The mean value of the pulse height spectrum describing the position of the full energy peak is a way to measure DOI effects. It is seen that the closer the DOI to the PMT-end of the crystal the higher the energy of the peak. The centre of the detected peak varies about 30 % along the lateral side of the crystal. This effect is due to the increasing number of reflections with associated loss of light when the distance between the DOI position and the light collecting PMT grows. Further these results, no difference in the light intensity was found depending on which position across (perpendicular to the length of) the crystal was irradiated with the microbeam. The obtained results of the overall DOI dependence confirm previous measurements on LSO crystals with similar geometry and wrapping but based on collimated gamma-ray irradiation. Since the present experimental setup allows obtaining data with several orders of magnitude better spatial resolution (from μm up to mm) than with

  6. Bias in iterative reconstruction of low-statistics PET data: benefits of a resolution model

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M D; Asselin, M-C; Julyan, P J; Feldmann, M; Matthews, J C [School of Cancer and Enabling Sciences, Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Talbot, P S [Mental Health and Neurodegeneration Research Group, Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Jones, T, E-mail: matthew.walker@manchester.ac.uk [Academic Department of Radiation Oncology, Christie Hospital, University of Manchester, Manchester M20 4BX (United Kingdom)

    2011-02-21

    Iterative image reconstruction methods such as ordered-subset expectation maximization (OSEM) are widely used in PET. Reconstructions via OSEM are however reported to be biased for low-count data. We investigated this and considered the impact for dynamic PET. Patient listmode data were acquired in [{sup 11}C]DASB and [{sup 15}O]H{sub 2}O scans on the HRRT brain PET scanner. These data were subsampled to create many independent, low-count replicates. The data were reconstructed and the images from low-count data were compared to the high-count originals (from the same reconstruction method). This comparison enabled low-statistics bias to be calculated for the given reconstruction, as a function of the noise-equivalent counts (NEC). Two iterative reconstruction methods were tested, one with and one without an image-based resolution model (RM). Significant bias was observed when reconstructing data of low statistical quality, for both subsampled human and simulated data. For human data, this bias was substantially reduced by including a RM. For [{sup 11}C]DASB the low-statistics bias in the caudate head at 1.7 M NEC (approx. 30 s) was -5.5% and -13% with and without RM, respectively. We predicted biases in the binding potential of -4% and -10%. For quantification of cerebral blood flow for the whole-brain grey- or white-matter, using [{sup 15}O]H{sub 2}O and the PET autoradiographic method, a low-statistics bias of <2.5% and <4% was predicted for reconstruction with and without the RM. The use of a resolution model reduces low-statistics bias and can hence be beneficial for quantitative dynamic PET.

  7. A 3D HIDAC-PET camera with sub-millimeter resolution for imaging small animals

    International Nuclear Information System (INIS)

    Jeavons, A.P.; Chandler, R.A.; Dettmar, C.A.R.

    1999-01-01

    A HIDAC-PET camera consisting essentially of 5 million 0.5 mm gas avalanching detectors has been constructed for small-animal imaging. The particular HIDAC advantage--a high 3D spatial resolution--has been improved to 0.95 mm fwhm and to 0.7 mm fwhm when reconstructing with 3D-OSEM methods incorporating resolution recovery. A depth-of-interaction resolution of 2.5 mm is implicit, due to the laminar construction. Scatter-corrected sensitivity, at 8.9 cps/kBq (i.e. 0.9%) from a central point source, or 7.2 cps/kBq (543 cps/kBq/cm 3 ) from a distributed (40 mm diameter, 60 mm long) source is now much higher than previous, and other, work. A field-of-view of 100 mm (adjustable to 200 mm) diameter by 210 mm axially permits whole-body imaging of small animals, containing typically 4MBqs of activity, at 40 kcps of which 16% are random coincidences, with a typical scatter fraction of 44%. Throughout the field-of-view there are no positional distortions and relative quantitation is uniform to ± 3.5%, but some variation of spatial resolution is found. The performance demonstrates that HIDAC technology is quite appropriate for small-animal PET cameras

  8. Low-count PET image restoration using sparse representation

    Science.gov (United States)

    Li, Tao; Jiang, Changhui; Gao, Juan; Yang, Yongfeng; Liang, Dong; Liu, Xin; Zheng, Hairong; Hu, Zhanli

    2018-04-01

    In the field of positron emission tomography (PET), reconstructed images are often blurry and contain noise. These problems are primarily caused by the low resolution of projection data. Solving this problem by improving hardware is an expensive solution, and therefore, we attempted to develop a solution based on optimizing several related algorithms in both the reconstruction and image post-processing domains. As sparse technology is widely used, sparse prediction is increasingly applied to solve this problem. In this paper, we propose a new sparse method to process low-resolution PET images. Two dictionaries (D1 for low-resolution PET images and D2 for high-resolution PET images) are learned from a group real PET image data sets. Among these two dictionaries, D1 is used to obtain a sparse representation for each patch of the input PET image. Then, a high-resolution PET image is generated from this sparse representation using D2. Experimental results indicate that the proposed method exhibits a stable and superior ability to enhance image resolution and recover image details. Quantitatively, this method achieves better performance than traditional methods. This proposed strategy is a new and efficient approach for improving the quality of PET images.

  9. Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults

    International Nuclear Information System (INIS)

    Chow, Tiffany W; Mamo, David C; Uchida, Hiroyuki; Graff-Guerrero, Ariel; Houle, Sylvain; Smith, Gwenn S; Pollock, Bruce G; Mulsant, Benoit H

    2009-01-01

    Position emission tomography (PET) imaging using [ 18 F]-setoperone to quantify cortical 5-HT 2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT 2A receptor (5HT 2A R) binding potential. The purpose of this study was to assess the test-retest variability of [ 18 F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT 2A R availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [ 18 F]-setoperone PET scans on two separate occasions 5–16 weeks apart. The average difference in the binding potential (BP ND ) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. We conclude that the test-retest variability of [ 18 F]-setoperone PET in elderly subjects is comparable to that of [ 18 F]-setoperone and other 5HT 2A R radiotracers in younger subject samples

  10. Design and development of 1 mm resolution PET detectors with position-sensitive PMTs

    CERN Document Server

    Shao, Y; Chatziioannou, A F

    2002-01-01

    We report our investigation of a positron emission tomography (PET) detector with 1 m spatial resolution. The prototype detector consists of a 9x9 array of 1x1x10 mm sup 3 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to Hamamatsu R5900-M64 or R5900-C12 position sensitive PMT by either optical fibers or an optical fiber bundle. With a 511 eV gamma source, the intrinsic spatial resolution of this detector was measured to be 0.92 mm. All crystals were well resolved in the flood source histogram. The measured energy and coincidence timing resolutions were around 26% and 4 ns, respectively, demonstrating that sufficient light can be extracted from these small crystals for PET applications.

  11. High resolution PET breast imager with improved detection efficiency

    Science.gov (United States)

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  12. Estimation of position resolution for DOI-PET detector using diameter 0.2 mm WLS fibers [ANIMMA--2015-IO-x5

    International Nuclear Information System (INIS)

    Kaneko, Naomi; Ito, H.; Han, S.; Kawai, H.; Kodama, S.; Kobayashi, A.; Tabata, M.; Kamada, K.; Shoji, Y.; Yoshikawa, A.

    2015-01-01

    We have been developing a submillimeter resolution and low-cost DOI-PET detector using wavelength shifting fibers (WLSF), scintillating crystal plates and MPPCs (Hamamatsu Photonics). Conventional design of DOI-PET detectors had approximately mm 3 of resolution by using some scintillating blocks with a volume of 1 mm 3 , which detects gamma-ray. They are expensive due to difficulties in processing scintillating crystals and a large number of photo-detectors, and these technologies are likely to reach the limit of the resolution. Development of a lower cost DOI-PET detector with higher resolution is challenging to popularize the PET diagnosis. We propose two type of PET detector. One is a whole body PET system, and the other is a PET system for brain or small animals. Each PET system consists 6 blocks. The former consists of 6 layers of crystal plates with 300 mm x 300 mm x 4 mm. The latter consists of 16 crystal layers, forming 4 x 4 crystal arrays. The size of the crystal plate is 40 mm x 40 mm x 1 mm. Wavelength shifting fiber (WLSF) sheets are attached to above and up and down side of crystal planes. The whole PET system has 8 MPPCs attached on each side. For the brain PET detector, 9 WLSF fibers are attached on the each side. The expected position resolution would be less than 1 mm at the former system. We have performed an experimental performance estimation for the system component using 22 Na radioactive source. We achieved a collection efficiency of 10% using the WLSF sheet and Ce:Gd 3 (Al,Ga) 5 O 12 (GAGG) crystals at 511 keV. The linear relationship between reconstruction position and incident position was obtained, and a resolution of 0.7 mm (FWHM) for x-axis of DOI by the WLSF readout was achieved. (authors)

  13. Texture analysis of high-resolution dedicated breast {sup 18}F-FDG PET images correlates with immunohistochemical factors and subtype of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso, Alexis; Dominguez-Prado, Ines; Herranz, Michel; Argibay, Sonia; Silva-Rodriguez, Jesus [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Nuclear Medicine Department and Molecular Imaging Group, Santiago de Compostela (Spain); Ruibal, Alvaro [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Nuclear Medicine Department and Molecular Imaging Group, Santiago de Compostela (Spain); University of Santiago de Compostela (USC), Molecular Imaging Group, Department of Radiology, Faculty of Medicine, Santiago de Compostela (Spain); Fundacion Tejerina, Madrid (Spain); Fernandez-Ferreiro, Anxo [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Pharmacy Department and Pharmacology Group, Santiago de Compostela (Spain); Albaina, Luis [University Hospital A Coruna (SERGAS), Department of General Surgery, A Coruna (Spain); Pardo-Montero, Juan [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Nuclear Medicine Department and Molecular Imaging Group, Santiago de Compostela (Spain); Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Medical Physics Department, Santiago de Compostela (Spain); Aguiar, Pablo [Complexo Hospitalario Universitario de Santiago de Compostela CHUS-IDIS, Nuclear Medicine Department and Molecular Imaging Group, Santiago de Compostela (Spain); University of Santiago de Compostela (USC), Molecular Imaging Group, Department of Radiology, Faculty of Medicine, Santiago de Compostela (Spain)

    2018-02-15

    extracted from high-resolution dedicated breast PET images showed new and stronger correlations with immunohistochemical factors and immunohistochemical subtype of breast cancer compared to whole-body PET. (orig.)

  14. Regional cerebral blood flow and oxygen metabolism in patients with ischemic stroke studied with high resolution pet and the O-15 labelled gas steady-state method

    International Nuclear Information System (INIS)

    Uemura, K.; Shishido, F.; Inugami, A.; Yamaguchi, T.; Ogawa, T.; Murakami, M.; Kanno, I.; Tagawa, K.; Yasui, N.

    1986-01-01

    Although regional cerebral blood flow (rCBF) studies have considerably increased pathophysiological knowledge in ischemic cerebrovascular disease, sometimes the results of such studies do not correlate with neurological abnormalities observed in the subjects being examined. Because regional neuronal activities always couple to the regional energy metabolism of brain tissue, simultaneous observation of rCBF and regional energy metabolism, such as regional oxygen consumption (rCMRO/sub 2/) and regional glucose consumption (rCMRG1), will provide greater understanding of the pathophysiology of the disease than rCBF study alone. Positron emission tomography (PET) using the 0-15 labelled gas steady-state method offers simultaneous measurement of rCBF and rCMRO/sub 2/ in vivo, and demonstrates imbalance between rCBF and rCMRO/sub 2/ in an ischemic lesion in a human brain. However, clinical PET studies in ischemic cerebrovascular disease reported previously, have been carried out using low resolution (more than 15 mm in the full width at half maximum; FWHM) PET. This report presents preliminary results using a high resolution tomograph; Headtome III and 0-15 labelled gas steady state method to investigate ischemic cerebrovascular disease

  15. Fusion of PET and MRI for Hybrid Imaging

    Science.gov (United States)

    Cho, Zang-Hee; Son, Young-Don; Kim, Young-Bo; Yoo, Seung-Schik

    Recently, the development of the fusion PET-MRI system has been actively studied to meet the increasing demand for integrated molecular and anatomical imaging. MRI can provide detailed anatomical information on the brain, such as the locations of gray and white matter, blood vessels, axonal tracts with high resolution, while PET can measure molecular and genetic information, such as glucose metabolism, neurotransmitter-neuroreceptor binding and affinity, protein-protein interactions, and gene trafficking among biological tissues. State-of-the-art MRI systems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures including neuronal bundles in the pons, fine blood vessels (such as lenticulostriate arteries) without invasive contrast agents, in vivo hippocampal substructures, and substantia nigra with excellent image contrast. High-resolution PET, known as High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable of imaging minute changes of chemicals, such as neurotransmitters and -receptors, with high spatial resolution and sensitivity. The synergistic power of the two, i.e., ultra high-resolution anatomical information offered by a 7.0 T MRI system combined with the high-sensitivity molecular information offered by HRRT-PET, will significantly elevate the level of our current understanding of the human brain, one of the most delicate, complex, and mysterious biological organs. This chapter introduces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in detail.

  16. AX-PET: A novel PET concept with G-APD readout

    CERN Document Server

    Heller, M; Casella, C; Chesi, E; De Leo, R; Dissertori, G; Fanti, V; Gillam, J E; Joram, C; Lustermann, W; Nappi, E; Oliver, J F; Pauss, F; Rafecas, M; Rudge, A; Ruotsalainen, U; Schinzel, D; Schneider, T; Seguinot, J; Solevi, P; Stapnes, S; Tuna, U; Weilhammer, P

    2012-01-01

    The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 key and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-...

  17. Novel geometrical concept of a high-performance brain PET scanner. Principle, design and performance estimates

    International Nuclear Information System (INIS)

    Seguinot, J.; Braem, A.; Chesi, E.

    2006-01-01

    We present the principle, a possible implementation and performance estimates of a novel geometrical concept for a high-resolution positron emission tomograph. The concept, which can be for example implemented in a brain PET device, promises to lead to an essentially parallax-free 3D image reconstruction with excellent spatial resolution and contrast, uniform over the complete field of view. The key components are matrices of long axially oriented scintillator crystals which are read out at both extremities by segmented Hybrid Photon Detectors. We discuss the relevant design considerations for a 3D axial PET camera module, motivate parameter and material choices, and estimate its performance in terms of spatial and energy resolution. We support these estimates by Monte Carlo simulations and in some cases by first experimental results. From the performance of a camera module, we extrapolate to the reconstruction resolution of a 3D axial PET scanner in a semi-analytical way and compare it to an existing state-of-the art brain PET device. We finally describe a dedicated data acquisition system, capable to fully exploit the advantages of the proposed concept

  18. Novel Geometrical Concept of a High Performance Brain PET Scanner Principle, Design and Performance Estimates

    CERN Document Server

    Séguinot, Jacques; Chesi, Enrico Guido; Joram, C; Mathot, S; Weilhammer, P; Chamizo-Llatas, M; Correia, J G; Ribeiro da Silva, M; Garibaldi, F; De Leo, R; Nappi, E; Corsi, F; Dragone, A; Schoenahl, F; Zaidi, H

    2006-01-01

    We present the principle, a possible implementation and performance estimates of a novel geometrical concept for a high resolution positron emission tomograph. The concept, which can for example be implemented in a brain PET device, promisses to lead to an essentially parallax free 3D image reconstruction with excellent spatial resolution and constrast, uniform over the complete field of view. The key components are matrices of long axially oriented scintillator crystals which are read out at both extremities by segmented Hybrid Photon Detectors. We discuss the relevant design considerations for a 3D axial PET camera module, motivate parameter and material choices, and estimate its performance in terms of spatial and energy resolution. We support these estimates by Monte Carlo simulations and in some cases by first experimental results. From the performance of a camera module, we extrapolate to the reconstruction resolution of a 3D axial PET scanner in a semi-analytical way and compare it to an existing state...

  19. Study on a high resolution positron emission tomography scanner for brain study

    International Nuclear Information System (INIS)

    Nohara, N.; Tomitani, T.; Yamamoto, M.; Murayama, H.; Tanaka, E.

    1990-01-01

    The spatial resolution of positron emission tomography (PET) scanners is usually limited by the finite size of crystals such as bismuth germanate (BGO). To attain high resolution as well as high sensitivity, it is essential to use a large number of small BGO crystals arranged in close-packing on circular rings. In developing high resolution PET scanners, however, there are two physical factors limiting the spatial resolution. One is the finite range of positrons before annihilation and the other the deviation from 180 degrees of annihilation photons. The effect of the factors on the spatial resolution has been evaluated for positron-emitting sources as a function of detector ring radius. A high resolution PET scanner has been developed for brain study, aiming to have spatial resolutions as high as less than 4-mm FWHM in tomographic plane and less than 6-mm FWHM in axial direction at the detector ring center. For the goal of the high resolutions a multi-segment type of photomultiplier tubes has been specially designed and developed, which allows one tube to be directly coupled by four BGO crystals. The scanner consists of five detector rings of 47-cm in diameter, using all 1200 BGO crystals each measuring 5 mm x 12 mm x 30 mm. The scanner provides simultaneous 9 images by combination of in-plane and cross-plane, offering a 24-cm dia. x7.4-cm field-of-view. Physical performance of the scanner was investigated. At the ring center, the spatial resolution in the tomographic plane was measured to be 3.5-mm FWHM. The axial resolution was measured to be 5.7-mm FWHM for in-plane and 5.3-mm FWHM for cross-plane. Sensitivity for a 20-cm dia. uniform source was measured to be 9.5 kcps/μCi/ml for in-plane and 15.3 kcps/μCi/ml for cross-plane. (J.P.N.)

  20. Coincidence measurements on detectors for microPET II: A 1 mm3 resolution PET scanner for small animal imaging

    CERN Document Server

    Chatziioannou, A; Shao, Y; Doshi, N K; Silverman, B; Meadors, K; Cherry, SR

    2000-01-01

    We are currently developing a small animal PET scanner with a design goal of 1 mm3 image resolution. We have built three pairs of detectors and tested performance in terms of crystal identification, spatial, energy and timing resolution. The detectors consisted of 12 multiplied by 12 arrays of 1 multiplied by 1 multiplied by 10mm LSO crystals (1.15 mm pitch) coupled to Hamamatsu H7546 64 channel PMTs via 5cm long coherent glass fiber bundles. Optical fiber connection is necessary to allow high packing fraction in a ring geometry scanner. Fiber bundles with and without extramural absorber (EMA) were tested. The results demonstrated an intrinsic spatial resolution of 1.12 mm (direct coupled LSO array), 1.23 mm (bundle without EMA) and 1.27 mm (bundle with EMA) using a similar to 500 micron diameter Na-22 source. Using a 330 micron line source filled with F-18, intrinsic resolution for the EMA bundle improved to 1.05 mm. The respective timing and energy resolution values were 1.96 ns, 21% (direct coupled), 2.20 ...

  1. Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research

    International Nuclear Information System (INIS)

    Bergeron, Mélanie; Cadorette, Jules; Beaudoin, Jean-François; Lecomte, Roger; Tétrault, Marc-André; Leroux, Jean-Daniel; Fontaine, Réjean

    2014-01-01

    The LabPET is an avalanche photodiode (APD) based digital PET scanner with quasi-individual detector read-out and highly parallel electronic architecture for high-performance in vivo molecular imaging of small animals. The scanner is based on LYSO and LGSO scintillation crystals (2×2×12/14 mm 3 ), assembled side-by-side in phoswich pairs read out by an APD. High spatial resolution is achieved through the individual and independent read-out of an individual APD detector for recording impinging annihilation photons. The LabPET exists in three versions, LabPET4 (3.75 cm axial length), LabPET8 (7.5 cm axial length) and LabPET12 (11.4 cm axial length). This paper focuses on the systematic characterization of the three LabPET versions using two different energy window settings to implement a high-efficiency mode (250–650 keV) and a high-resolution mode (350–650 keV) in the most suitable operating conditions. Prior to measurements, a global timing alignment of the scanners and optimization of the APD operating bias have been carried out. Characteristics such as spatial resolution, absolute sensitivity, count rate performance and image quality have been thoroughly investigated following the NEMA NU 4-2008 protocol. Phantom and small animal images were acquired to assess the scanners' suitability for the most demanding imaging tasks in preclinical biomedical research. The three systems achieve the same radial FBP spatial resolution at 5 mm from the field-of-view center: 1.65/3.40 mm (FWHM/FWTM) for an energy threshold of 250 keV and 1.51/2.97 mm for an energy threshold of 350 keV. The absolute sensitivity for an energy window of 250–650 keV is 1.4%/2.6%/4.3% for LabPET4/8/12, respectively. The best count rate performance peaking at 362 kcps is achieved by the LabPET12 with an energy window of 250–650 keV and a mouse phantom (2.5 cm diameter) at an activity of 2.4 MBq ml −1 . With the same phantom, the scatter fraction for all scanners is about

  2. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data

    Science.gov (United States)

    Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P.; Marsden, Paul K.

    2014-02-01

    The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future

  3. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data

    International Nuclear Information System (INIS)

    Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P; Marsden, Paul K

    2014-01-01

    The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future

  4. EGS4CYL a Montecarlo simulation method of a PET or spect equipment at high spatial resolution

    International Nuclear Information System (INIS)

    Ferriani, S.; Galli, M.

    1995-11-01

    This report describes a Montecarlo simulation method for the simulation of a Pet or Spect equipment. The method is based on the Egs4cyl code. This work has been done in the framework of the Hirespet collaboration, for the developing of an high spatial resolution tomograph, the method will be used for the project of the tomograph. The treated geometry consists of a set of coaxial cylinders, surrounded by a ring of detectors. The detectors have a box shape, a collimator in front of each of them can be included, by means of geometrical constraints to the incident particles. An isotropic source is in the middle of the system. For the particles transport the Egs4code is used, for storing and plotting results the Cern packages Higz and Hbook are used

  5. Improving the singles rate method for modeling accidental coincidences in high-resolution PET

    International Nuclear Information System (INIS)

    Oliver, Josep F; Rafecas, Magdalena

    2010-01-01

    Random coincidences ('randoms') are one of the main sources of image degradation in PET imaging. In order to correct for this effect, an accurate method to estimate the contribution of random events is necessary. This aspect becomes especially relevant for high-resolution PET scanners where the highest image quality is sought and accurate quantitative analysis is undertaken. One common approach to estimate randoms is the so-called singles rate method (SR) widely used because of its good statistical properties. SR is based on the measurement of the singles rate in each detector element. However, recent studies suggest that SR systematically overestimates the correct random rate. This overestimation can be particularly marked for low energy thresholds, below 250 keV used in some applications and could entail a significant image degradation. In this work, we investigate the performance of SR as a function of the activity, geometry of the source and energy acceptance window used. We also investigate the performance of an alternative method, which we call 'singles trues' (ST) that improves SR by properly modeling the presence of true coincidences in the sample. Nevertheless, in any real data acquisition the knowledge of which singles are members of a true coincidence is lost. Therefore, we propose an iterative method, STi, that provides an estimation based on ST but which only requires the knowledge of measurable quantities: prompts and singles. Due to inter-crystal scatter, for wide energy windows ST only partially corrects SR overestimations. While SR deviations are in the range 86-300% (depending on the source geometry), the ST deviations are systematically smaller and contained in the range 4-60%. STi fails to reproduce the ST results, although for not too high activities the deviation with respect to ST is only a few percent. For conventional energy windows, i.e. those without inter-crystal scatter, the ST method corrects the SR overestimations, and deviations from

  6. Simultaneous whole-body {sup 18}F-PSMA-1007-PET/MRI with integrated high-resolution multiparametric imaging of the prostatic fossa for comprehensive oncological staging of patients with prostate cancer. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Martin T.; Bonekamp, David; Schlemmer, Heinz-Peter [German Cancer Research Center, Department of Radiology, Heidelberg (Germany); Kesch, Claudia; Radtke, Jan P.; Hohenfellner, Markus [University Hospital Heidelberg, Department of Urology, Heidelberg (Germany); Cardinale, Jens; Kopka, Klaus [German Cancer Research Center, Division of Radiopharmaceutical Chemistry, Heidelberg (Germany); Flechsig, Paul; Kratochwil, Clemens; Giesel, Frederik [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); Floca, Ralf [German Cancer Research Center, Medical Image Computing Group, Heidelberg (Germany); Eiber, Matthias [Technical University Hospital Munich, Department of Nuclear Medicine, Munich (Germany); Stenzinger, Albrecht [University Hospital Heidelberg, Institute of Pathology, Heidelberg (Germany); Haberkorn, Uwe [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); German Cancer Research Center, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany)

    2018-03-15

    The aim of the present study was to explore the clinical feasibility and reproducibility of a comprehensive whole-body {sup 18}F-PSMA-1007-PET/MRI protocol for imaging prostate cancer (PC) patients. Eight patients with high-risk biopsy-proven PC underwent a whole-body PET/MRI (3 h p.i.) including a multi-parametric prostate MRI after {sup 18}F-PSMA-1007-PET/CT (1 h p.i.) which served as reference. Seven patients presented with non-treated PC, whereas one patient presented with biochemical recurrence. SUV{sub mean}-quantification was performed using a 3D-isocontour volume-of-interest. Imaging data was consulted for TNM-staging and compared with histopathology. PC was confirmed in 4/7 patients additionally by histopathology after surgery. PET-artifacts, co-registration of pelvic PET/MRI and MRI-data were assessed (PI-RADS 2.0). The examinations were well accepted by patients and comprised 1 h. SUV{sub mean}-values between PET/CT (1 h p.i.) and PET/MRI (3 h p.i.) were significantly correlated (p < 0.0001, respectively) and similar to literature of {sup 18}F-PSMA-1007-PET/CT 1 h vs 3 h p.i. The dominant intraprostatic lesion could be detected in all seven patients in both PET and MRI. T2c, T3a, T3b and T4 features were detected complimentarily by PET and MRI in five patients. PET/MRI demonstrated moderate photopenic PET-artifacts surrounding liver and kidneys representing high-contrast areas, no PET-artifacts were observed for PET/CT. Simultaneous PET-readout during prostate MRI achieved optimal co-registration results. The presented {sup 18}F-PSMA-1007-PET/MRI protocol combines efficient whole-body assessment with high-resolution co-registered PET/MRI of the prostatic fossa for comprehensive oncological staging of patients with PC. (orig.)

  7. SiliPET: An ultra-high resolution design of a small animal PET scanner based on stacks of double-sided silicon strip detector

    International Nuclear Information System (INIS)

    Di Domenico, Giovanni; Zavattini, Guido; Cesca, Nicola; Auricchio, Natalia; Andritschke, Robert; Schopper, Florian; Kanbach, Gottfried

    2007-01-01

    We investigated with Monte Carlo simulations, using the EGSNrcMP code, the capabilities of a small animal PET scanner based on four stacks of double-sided silicon strip detectors. Each stack consists of 40 silicon detectors with dimension of 60x60x1 mm 3 and 128 orthogonal strips on each side. Two coordinates of the interaction are given by the strips, whereas the third coordinate is given by the detector number in the stack. The stacks are arranged to form a box of 5x5x6 cm 3 with minor sides opened; the box represents the minimal FOV of the scanner. The performance parameters of the SiliPET scanner have been estimated giving a (positron range limited) spatial resolution of 0.52 mm FWHM, and an absolute sensitivity of 5.1% at the center of system. Preliminary results of a proof of principle measurement done with the MEGA advanced Compton imager using a ∼1 mm diameter 22 Na source, showed a focal ray tracing FWHM of 1 mm

  8. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    International Nuclear Information System (INIS)

    Song, Tae Yong; Wu Heyu; Komarov, Sergey; Tai, Yuan-Chuan; Siegel, Stefan B

    2010-01-01

    among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications.

  9. SmartPET: Applying HPGe and pulse shape analysis to small-animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool (United Kingdom)], E-mail: rjc@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool (United Kingdom); Hall, C.J.; Lazarus, I. [CCLRC Daresbury Laboratory, Warrington, Cheshire (United Kingdom); Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R.A. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-08-21

    The SmartPET project is the development of a prototype small-animal imaging system based on the use of Hyperpure Germanium (HPGe) detectors. The use of digital electronics and application of Pulse Shape Analysis (PSA) techniques provide fine spatial resolution, while the excellent intrinsic energy resolution of HPGe detectors makes the system ideal for multi-nuclide imaging. As a result, the SmartPET system has the potential to function as a dual modality imager, operating as a dual-head Positron Emission Tomography (PET) camera or in a Compton Camera configuration for Single Photon Emission Computed Tomography (SPECT) imaging. In this paper, we discuss how the use of simple PSA techniques greatly improves the position sensitivity of the detector yielding improved spatial resolution in reconstructed images. The PSA methods presented have been validated by comparison to data from high-precision scanning of the detectors. Results from this analysis are presented along with initial images from the SmartPET system, which demonstrates the impact of these techniques on PET images.

  10. A novel adaptive discrete cosine transform-domain filter for gap-inpainting of high resolution PET scanners

    International Nuclear Information System (INIS)

    Shih, Cheng-Ting; Lin, Hsin-Hon; Chuang, Keh-Shih; Wu, Jay; Chang, Shu-Jun

    2014-01-01

    Purpose: Several positron emission tomography (PET) scanners with special detector block arrangements have been developed in recent years to improve the resolution of PET images. However, the discontinuous detector blocks cause gaps in the sinogram. This study proposes an adaptive discrete cosine transform-based (aDCT) filter for gap-inpainting. Methods: The gap-corrupted sinogram was morphologically closed and subsequently converted to the DCT domain. A certain number of the largest coefficients in the DCT spectrum were identified to determine the low-frequency preservation region. The weighting factors for the remaining coefficients were determined by an exponential weighting function. The aDCT filter was constructed and applied to two digital phantoms and a simulated phantom introduced with various levels of noise. Results: For the Shepp-Logan head phantom, the aDCT filter filled the gaps effectively. For the Jaszczak phantom, no secondary artifacts were induced after aDCT filtering. The percent mean square error and mean structure similarity of the aDCT filter were superior to those of the DCT2 filter at all noise levels. For the simulated striatal dopamine innervation study, the aDCT filter recovered the shape of the striatum and restored the striatum to reference activity ratios to the ideal value. Conclusions: The proposed aDCT filter can recover the missing gap data in the sinogram and improve the image quality and quantitative accuracy of PET images

  11. A novel adaptive discrete cosine transform-domain filter for gap-inpainting of high resolution PET scanners

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Cheng-Ting; Lin, Hsin-Hon; Chuang, Keh-Shih [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, Jay, E-mail: jwu@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan (China); Chang, Shu-Jun [Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China)

    2014-08-15

    Purpose: Several positron emission tomography (PET) scanners with special detector block arrangements have been developed in recent years to improve the resolution of PET images. However, the discontinuous detector blocks cause gaps in the sinogram. This study proposes an adaptive discrete cosine transform-based (aDCT) filter for gap-inpainting. Methods: The gap-corrupted sinogram was morphologically closed and subsequently converted to the DCT domain. A certain number of the largest coefficients in the DCT spectrum were identified to determine the low-frequency preservation region. The weighting factors for the remaining coefficients were determined by an exponential weighting function. The aDCT filter was constructed and applied to two digital phantoms and a simulated phantom introduced with various levels of noise. Results: For the Shepp-Logan head phantom, the aDCT filter filled the gaps effectively. For the Jaszczak phantom, no secondary artifacts were induced after aDCT filtering. The percent mean square error and mean structure similarity of the aDCT filter were superior to those of the DCT2 filter at all noise levels. For the simulated striatal dopamine innervation study, the aDCT filter recovered the shape of the striatum and restored the striatum to reference activity ratios to the ideal value. Conclusions: The proposed aDCT filter can recover the missing gap data in the sinogram and improve the image quality and quantitative accuracy of PET images.

  12. Comparison of 3D Maximum A Posteriori and Filtered Backprojection algorithms for high resolution animal imaging in microPET

    International Nuclear Information System (INIS)

    Chatziioannou, A.; Qi, J.; Moore, A.; Annala, A.; Nguyen, K.; Leahy, R.M.; Cherry, S.R.

    2000-01-01

    We have evaluated the performance of two three dimensional reconstruction algorithms with data acquired from microPET, a high resolution tomograph dedicated to small animal imaging. The first was a linear filtered-backprojection algorithm (FBP) with reprojection of the missing data and the second was a statistical maximum-aposteriori probability algorithm (MAP). The two algorithms were evaluated in terms of their resolution performance, both in phantoms and in vivo. Sixty independent realizations of a phantom simulating the brain of a baby monkey were acquired, each containing 3 million counts. Each of these realizations was reconstructed independently with both algorithms. The ensemble of the sixty reconstructed realizations was used to estimate the standard deviation as a measure of the noise for each reconstruction algorithm. More detail was recovered in the MAP reconstruction without an increase in noise relative to FBP. Studies in a simple cylindrical compartment phantom demonstrated improved recovery of known activity ratios with MAP. Finally in vivo studies also demonstrated a clear improvement in spatial resolution using the MAP algorithm. The quantitative accuracy of the MAP reconstruction was also evaluated by comparison with autoradiography and direct well counting of tissue samples and was shown to be superior

  13. Highly improved operation of monolithic BGO-PET blocks

    Science.gov (United States)

    Gonzalez-Montoro, A.; Sanchez, F.; Majewski, S.; Zanettini, S.; Benlloch, J. M.; Gonzalez, A. J.

    2017-11-01

    In PET scanners both scintillation crystals and photosensors are key components defining the system's performance and cost. Original PET systems used BGO or NaI(Tl) scintillators but achieved limited performance due to its slow decay and relatively low light output. Moreover, NaI(Tl) has low stopping power for 511 keV annihilation photons. In this study we report the possibility to reintroduce BGO crystals, and in particular in the form of monolithic blocks, especially suitable for low-dose large-size PET scanners, offering significantly improved sensitivity at a highly reduced cost compared to LYSO type fast scintillators. We have studied the performance of a monolithic BGO block as large as 50 × 50 × 15 mm3 with black-painted lateral walls to reduce lights spread, enabling accurate photon depth of interaction (DOI) measurements. A directional optical layer, called retro-reflector, was coupled to the entrance face bouncing back the scintillation light in the direction of the emission source and, therefore, adding to the light signal while preserving the narrow light cone distribution. Four configurations namely 12 × 12 and 16 × 16 SiPM arrays (3 mm × 3 mm each) as photosensors, with or without a nanopattern treatment at the crystal exit face, have been studied. This structure consisted of a thin layer of a specific high refractive index material shaped with a periodic nanopattern, increasing the scintillation light extraction. The readout returned information for each SiPM row and column, characterizing the X-Y light distribution projections. We have studied the detector spatial resolution using collimated 22Na sources at normal incidence. The DOI resolution was evaluated using collimated gamma beams with lateral incidence. The overall best detector performance was obtained for the 16× 16 SiPM array offering higher readout granularity. We have determined the spatial resolution for 3 separated DOI layers, obtaining the best results for the DOI region near to

  14. Sci-Sat AM(1): Imaging-08: Small animal APD PET detector with submillimetric resolution for molecular imaging.

    Science.gov (United States)

    Bérard, P; Bergeron, M; Pepin, C M; Cadorette, J; Tétrault, M-A; Viscogliosi, N; Fontaine, R; Dautet, H; Davies, M; Lecomte, R

    2008-07-01

    Visualization and quantification of biological processes in mice, the preferred animal model in most preclinical studies, require the best possible spatial resolution in positron emission tomography (PET). A new 64-channel avalanche photodiode (APD) detector module was developed to achieve submillimeter spatial resolution for this purpose. The module consists of dual 4 × 8 APD arrays mounted in a custom ceramic holder. Individual APD pixels having an active area of 1.1 × 1.1 mm2 at a 1.2 mm pitch can be fitted to an 8 × 8 LYSO scintillator block designed to accommodate one-to-one coupling. An analog test board with four 16-channel preamplifier ASICs was designed to be interfaced with the existing LabPET digital processing electronics. At a standard APD operating bias, a mean energy resolution of 27.5 ± 0.6% was typically obtained at 511 keV with a relative standard deviation of 13.8% in signal amplitude for the 64 individual pixels. Crosstalk between pixels was found to be well below the typical lower energy threshold used for PET imaging applications. With two modules in coincidence, a global timing resolution of 5.0 ns FWHM was measured. Finally, an intrinsic spatial resolution of 0.8 mm FWHM was measured by sweeping a 22Na point source between two detector arrays. The proposed detector module demonstrates promising characteristics for dedicated mouse PET imaging at submillimiter resolution. © 2008 American Association of Physicists in Medicine.

  15. A study of thermal decomposition and combustion products of disposable polyethylene terephthalate (PET) plastic using high resolution fourier transform infrared spectroscopy selected ion flow tube mass spectrometry...

    Czech Academy of Sciences Publication Activity Database

    Sovová, Kristýna; Ferus, Martin; Matulková, Irena; Španěl, Patrik; Dryahina, Kseniya; Dvořák, O.; Civiš, Svatopluk

    2009-01-01

    Roč. 106, 9-10 (2009), s. 1205-1214 ISSN 0026-8976 R&D Projects: GA AV ČR IAA400400705; GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : polyethylene terephthalate (PET) * coimbustion * high resolution FTIR spectroscopy * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.634, year: 2009

  16. The motivations and methodology for high-throughput PET imaging of small animals in cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Aide, Nicolas [Francois Baclesse Cancer Centre, Nuclear Medicine Department, Caen Cedex (France); Caen University, BioTICLA team, EA 4656, IFR 146, Caen (France); Visser, Eric P. [Radboud University Nijmegen Medical Center, Nuclear Medicine Department, Nijmegen (Netherlands); Lheureux, Stephanie [Caen University, BioTICLA team, EA 4656, IFR 146, Caen (France); Francois Baclesse Cancer Centre, Clinical Research Unit, Caen (France); Heutte, Natacha [Francois Baclesse Cancer Centre, Clinical Research Unit, Caen (France); Szanda, Istvan [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Hicks, Rodney J. [Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne (Australia)

    2012-09-15

    Over the last decade, small-animal PET imaging has become a vital platform technology in cancer research. With the development of molecularly targeted therapies and drug combinations requiring evaluation of different schedules, the number of animals to be imaged within a PET experiment has increased. This paper describes experimental design requirements to reach statistical significance, based on the expected change in tracer uptake in treated animals as compared to the control group, the number of groups that will be imaged, and the expected intra-animal variability for a given tracer. We also review how high-throughput studies can be performed in dedicated small-animal PET, high-resolution clinical PET systems and planar positron imaging systems by imaging more than one animal simultaneously. Customized beds designed to image more than one animal in large-bore small-animal PET scanners are described. Physics issues related to the presence of several rodents within the field of view (i.e. deterioration of spatial resolution and sensitivity as the radial and the axial offsets increase, respectively, as well as a larger effect of attenuation and the number of scatter events), which can be assessed by using the NEMA NU 4 image quality phantom, are detailed. (orig.)

  17. MRPC-PET: A new technique for high precision time and position measurements

    International Nuclear Information System (INIS)

    Doroud, K.; Hatzifotiadou, D.; Li, S.; Williams, M.C.S.; Zichichi, A.; Zuyeuski, R.

    2011-01-01

    The purpose of this paper is to consider a new technology for medical diagnosis: the MRPC-PET. This technology allows excellent time resolution together with 2-D position information thus providing a fundamental step in this field. The principle of this method is based on the Multigap Resistive Plate Chamber (MRPC) capable of high precision time measurements. We have previously found that the route to precise timing is differential readout (this requires matching anode and cathode strips); thus crossed strip readout schemes traditionally used for 2-D readout cannot be exploited. In this paper we consider the time difference from the two ends of the strip to provide a high precision measurement along the strip; the average time gives precise timing. The MRPC-PET thus provides a basic step in the field of medical technology: excellent time resolution together with 2-D position measurement.

  18. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    International Nuclear Information System (INIS)

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  19. Geo-PET: A novel generic organ-pet for small animal organs and tissues

    Science.gov (United States)

    Sensoy, Levent

    Reconstructed tomographic image resolution of small animal PET imaging systems is improving with advances in radiation detector development. However the trend towards higher resolution systems has come with an increase in price and system complexity. Recent developments in the area of solid-state photomultiplication devices like silicon photomultiplier arrays (SPMA) are creating opportunities for new high performance tools for PET scanner design. Imaging of excised small animal organs and tissues has been used as part of post-mortem studies in order to gain detailed, high-resolution anatomical information on sacrificed animals. However, this kind of ex-vivo specimen imaging has largely been limited to ultra-high resolution muCT. The inherent limitations to PET resolution have, to date, excluded PET imaging from these ex-vivo imaging studies. In this work, we leverage the diminishing physical size of current generation SPMA designs to create a very small, simple, and high-resolution prototype detector system targeting ex-vivo tomographic imaging of small animal organs and tissues. We investigate sensitivity, spatial resolution, and the reconstructed image quality of a prototype small animal PET scanner designed specifically for imaging of excised murine tissue and organs. We aim to demonstrate that a cost-effective silicon photomultiplier (SiPM) array based design with thin crystals (2 mm) to minimize depth of interaction errors might be able to achieve sub-millimeter resolution. We hypothesize that the substantial decrease in sensitivity associated with the thin crystals can be compensated for with increased solid angle detection, longer acquisitions, higher activity and wider acceptance energy windows (due to minimal scatter from excised organs). The constructed system has a functional field of view (FoV) of 40 mm diameter, which is adequate for most small animal specimen studies. We perform both analytical (3D-FBP) and iterative (ML-EM) methods in order to

  20. Methods for Motion Correction Evaluation Using 18F-FDG Human Brain Scans on a High-Resolution PET Scanner

    DEFF Research Database (Denmark)

    Keller, Sune H.; Sibomana, Merence; Olesen, Oline Vinter

    2012-01-01

    Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias in the reconstr......Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias...... in the reconstructed emission images. The purpose of this work was the development of quality control (QC) methods for MC procedures based on external motion tracking (EMT) for human scanning using an optical motion tracking system. Methods: Two scans with minor motion and 5 with major motion (as reported...... (automated image registration) software. The following 3 QC methods were used to evaluate the EMT and AIR MC: a method using the ratio between 2 regions of interest with gray matter voxels (GM) and white matter voxels (WM), called GM/WM; mutual information; and cross correlation. Results: The results...

  1. Compton scatter and X-ray crosstalk and the use of very thin intercrystal septa in high-resolution PET detectors

    International Nuclear Information System (INIS)

    Levin, C.S.; Tornai, M.P.; Cherry, S.R.; MacDonald, L.R.; Hoffman, E.J.

    1997-01-01

    To improve spatial resolution, positron emission tomography (PET) systems are being developed with finer detector elements. Unfortunately, using a smaller crystal size increases intercrystal Compton scatter and X-ray escape crosstalk, causing positioning errors that can lead to degradation of image contrast. The authors investigated the use of extremely thin lead strips for passive shielding of this intercrystal crosstalk. Using annihilation gamma rays and small Bismuth Germanate (BGO) crystal detectors in coincidence, crosstalk studies were performed with either two small adjacent crystals [(one-dimensional) (1-D)] or one crystal inside a volume of BGO [(two-dimensional) (2-D)]. The fraction of Compton scattered events from one crystal into an adjacent one was reduced, on average, by a factor of 3.2 (2.2) in the 1-D experiment and by a factor of 3.0 (2.1) in 2-D one, with a 300 (150)-microm-thick lead strip in between the crystals and a 300--700-keV energy window in both crystals. The authors could not measure a reduction in bismuth X-ray crosstalk with the sue of lead septa due to the production of lead X-rays of similar energy. The full-width at half-maximum (FWHM) of the coincident point-spread function (CPSF) was not significantly different for the 1- and 2-D studies, with or without the different septa in place. However, the FWTM was roughly 20% smaller with the 300-microm lead shielding in place. These results indicate that intercrystal crosstalk does not affect the positioning resolution at FWHM, but does affect the tails of the CPSF. Thus, without introducing any additional dead area, an insertion of very thin lead strips can reduce the extent of positioning errors. Reducing the intercrystal crosstalk in a high-resolution PET detector array could potentially improve tomographic image contrast in situations where intercrystal crosstalk plays a significant role in event mispositioning

  2. Evaluation of PET performance and MR compatibility of a preclinical PET/MR insert with digital silicon photomultiplier technology

    Energy Technology Data Exchange (ETDEWEB)

    Hallen, Patrick; Schug, David; Wehner, Jakob [Department of Physics of Molecular Imaging Systems, RWTH Aachen University (Germany); Weissler, Bjorn [Department of Chemical Application Research, Philips Research (Germany); Gebhardt, Pierre [Division of Imaging Sciences and Biomedical Engineering, King’s College London (United Kingdom); Goldschmidt, Benjamin [Department of Physics of Molecular Imaging Systems, RWTH Aachen University (Germany); Salomon, Andre [Department of Oncology Solutions, Philips Research (Germany); Duppenbecker, Peter [Department of Physics of Molecular Imaging Systems, RWTH Aachen University (Germany); Kiessling, Fabian [Institute for Experimental Molecular Imaging, RWTH Aachen University (Germany); Schultz, Volkmar [Department of Physics of Molecular Imaging Systems, RWTH Aachen University (Germany)

    2015-05-18

    In this work we present detailed characterizations of our preclinical high resolution PET/MR insert based on the Hyperion-IID platform. The PET/MR insert consists of a ring of 10 singles detection modules, each comprising 2x3 scintillation detector stacks. Each detector stack features a 30x30 pixelated LYSO crystal array with a height of 12 mm and a pitch of 1 mm, coupled via a slit 2 mm light guide to a digital SiPM tile. The PET performance is stable under a wide range of operating points. The spatial resolution is below 1Ä,mm and the CRT reaches 260 or 450 ps depending on trigger settings. The energy resolution is 12.6% FWHM. The characterization of the MR compatibility showed no relevant degradation in PET performance during MRI operation. On the MRI side, we observe a degradation in B0 homogeneity from a VRMS of 0.03 ppm to 0.08 ppm with active shimming, while observing only minor degradations in the B0 field. The noise floor is slightly increased by 2-15% without any observable dependence on the activity. The Z gradients induces an observable eddy current inside the PET inserts which can lead to ghosting artifacts for EPI sequences. However, we don't observe any visible image degradation for widely used anatomical imaging sequences such as gradient echo and turbo spin echo sequences. To prove the viability of our PET/MR insert for in vivo small animal studies, we successfully performed a longitudinal mouse study with subcutaneously injected tumor model cells. The simultaneously acquired PET/MR images provide a high level of anatomical information and soft tissue contrast in the MR layer together with a high resolution image of the FDG tracer distribution in the PET layer.

  3. 'PET -Compton' system. Comparative evaluation with PET system using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Diaz Garcia, Angelina; Arista Romeu, Eduardo; Abreu Alfonso, Yamiel; Leyva Fabelo, Antonio; Pinnera Hernandez, Ibrahin; Bolannos Perez, Lourdes; Rubio Rodriguez, Juan A; Perez Morales, Jose M.; Arce Dubois, Pedro; Vela Morales, Oscar; Willmott Zappacosta, Carlos

    2011-01-01

    Positron Emission Tomography (PET) in small animals has actually achieved spatial resolution round about 1 mm and currently there are under study different approaches to improve this spatial resolution. One of them combines PET technology with Compton Cameras. This paper presents the idea of the so called 'PET-Compton' systems and includes comparative evaluation of spatial resolution and global efficiency in both PET and PET-Compton system by means of Monte Carlo simulations using Geant4 code. Simulation is done on a PET-Compton system consisting of LYSO-LuYAP scintillating detectors of particular small animal PET scanner named 'Clear-PET' and for Compton detectors based on CdZnTe semiconductor. A group of radionuclides that emits a positron (e + ) and γ quantum almost simultaneously and fulfills some selection criteria for their possible use in PET-Compton systems for medical and biological applications were studied under simulation conditions. (Author)

  4. PET-COMPTON System. Comparative evaluation with PET System using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Diaz Garcia, Angelina; Arista Romeu, Eduardo; Abreu Alfonso, Yamiel; Leyva Fabelo, Antonio; Pinnera HernAndez, Ibrahin; Bolannos Perez, Lourdes; Rubio Rodriguez, Juan A.; Perez Morales, Jose M.; Arce Dubois, Pedro; Vela Morales, Oscar; Willmott Zappacosta, Carlos

    2012-01-01

    Positron Emission Tomography (PET) in small animals has actually achieved spatial resolution round about 1 mm and currently there are under study different approaches to improve this spatial resolution. One of them combines PET technology with Compton Cameras. This paper presents the idea of the so called PET-Compton systems and has included comparative evaluation of spatial resolution and global efficiency in both PET and PET-Compton system by means of Monte Carlo simulations using Geant4 code. Simulation was done on a PET-Compton system made-up of LYSO-LuYAP scintillating detectors of particular small animal PET scanner named Clear-PET and for Compton detectors based on CdZnTe semiconductor. A group of radionuclides that emits a positron (e+) and quantum almost simultaneously and fulfills some selection criteria for their possible use in PET-Compton systems for medical and biological applications were studied under simulation conditions. By means of analytical reconstruction using SSRB (Single Slide Rebinning) method were obtained superior spatial resolution in PET-Compton system for all tested radionuclides (reaching sub-millimeter values of for 22Na source). However this analysis done by simulation have shown limited global efficiency values in PET-Compton system (in the order of 10 -5 -10 -6 %) instead of values around 5*10 -1 % that have been achieved in PET system. (author)

  5. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yiping; Sun, Xishan [University of Texas MD Anderson Cancer Center (United States); Lou, Kai [Rice University (United States)

    2015-05-18

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  6. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    International Nuclear Information System (INIS)

    Shao, Yiping; Sun, Xishan; Lou, Kai

    2015-01-01

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  7. A modular data acquisition system for high resolution clinical PET scanners

    OpenAIRE

    Sportelli, Giancarlo

    2011-01-01

    En las últimas dos décadas, la Tomografía por Emisión de Positrones (PET) ha demostrado ser una modalidad clave para el estudio de la biología del cúncer y trastornos cardíacos, y para la realizaciún imágenes moleculares, una tecnica que permite la terapia individualizada de la enfermedad [Weissleder01]. La mejor característica de la PET es su sensibilidad: es la tecnica que proporciona imúagenes moleculares con la mayor sensibilidad, y las imúagenes de cuerpo entero que produce no pueden ser...

  8. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI

  9. Thermal regulation of tightly packed solid-state photodetectors in a 1 mm{sup 3} resolution clinical PET system

    Energy Technology Data Exchange (ETDEWEB)

    Freese, D. L.; Vandenbroucke, A.; Innes, D.; Lau, F. W. Y.; Hsu, D. F. C.; Reynolds, P. D.; Levin, Craig S., E-mail: cslevin@stanford.edu [Departments of Electrical Engineering, Radiology, Physics, and BioEngineering, Stanford University, Stanford, California 94305-5128 (United States)

    2015-01-15

    Purpose: Silicon photodetectors are of significant interest for use in positron emission tomography (PET) systems due to their compact size, insensitivity to magnetic fields, and high quantum efficiency. However, one of their main disadvantages is fluctuations in temperature cause strong shifts in gain of the devices. PET system designs with high photodetector density suffer both increased thermal density and constrained options for thermally regulating the devices. This paper proposes a method of thermally regulating densely packed silicon photodetectors in the context of a 1 mm{sup 3} resolution, high-sensitivity PET camera dedicated to breast imaging. Methods: The PET camera under construction consists of 2304 units, each containing two 8 × 8 arrays of 1 mm{sup 3} LYSO crystals coupled to two position sensitive avalanche photodiodes (PSAPD). A subsection of the proposed camera with 512 PSAPDs has been constructed. The proposed thermal regulation design uses water-cooled heat sinks, thermoelectric elements, and thermistors to measure and regulate the temperature of the PSAPDs in a novel manner. Active cooling elements, placed at the edge of the detector stack due to limited access, are controlled based on collective leakage current and temperature measurements in order to keep all the PSAPDs at a consistent temperature. This thermal regulation design is characterized for the temperature profile across the camera and for the time required for cooling changes to propagate across the camera. These properties guide the implementation of a software-based, cascaded proportional-integral-derivative control loop that controls the current through the Peltier elements by monitoring thermistor temperature and leakage current. The stability of leakage current, temperature within the system using this control loop is tested over a period of 14 h. The energy resolution is then measured over a period of 8.66 h. Finally, the consistency of PSAPD gain between independent

  10. Study on the performance of large area MRPC with high position resolution

    Energy Technology Data Exchange (ETDEWEB)

    Yue Qian, E-mail: yueq@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education (China); Wu Yucheng; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education (China)

    2012-01-01

    Multi-gap resistive plate chamber (MRPC), which is mostly developed in high energy physics domain with excellent time resolution, is also highlighted in imaging applications. A set of 50 cm Multiplication-Sign 50 cm large area MRPC with high position resolution was successfully developed by our group and different experiments have been done to test its performances. Cosmic ray muons were used to do the test and proper high voltage and working gas were chosen. Data analysis indicates its good detection efficiency and good position resolution, which encourages further study of its application in RPC-PET and muon tomography.

  11. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph

    Science.gov (United States)

    Moskal, P.; Rundel, O.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Giergiel, K.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Słomski, A.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Witkowski, P.; Zieliński, M.; Zoń, N.

    2016-03-01

    Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2× 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2× 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of ≈ 0.170 ns for 15 cm axial field-of-view (AFOV) and ≈ 0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.

  12. Silicon Detectors for PET and SPECT

    Science.gov (United States)

    Cochran, Eric R.

    Silicon detectors use state-of-the-art electronics to take advantage of the semiconductor properties of silicon to produce very high resolution radiation detectors. These detectors have been a fundamental part of high energy, nuclear, and astroparticle physics experiments for decades, and they hold great potential for significant gains in both PET and SPECT applications. Two separate prototype nuclear medicine imaging systems have been developed to explore this potential. Both devices take advantage of the unique properties of high resolution pixelated silicon detectors, designed and developed as part of the CIMA collaboration and built at The Ohio State University. The first prototype is a Compton SPECT imaging system. Compton SPECT, also referred to as electronic collimation, is a fundamentally different approach to single photon imaging from standard gamma cameras. It removes the inherent coupling of spatial resolution and sensitivity in mechanically collimated systems and provides improved performance at higher energies. As a result, Compton SPECT creates opportunities for the development of new radiopharmaceuticals based on higher energy isotopes as well as opportunities to expand the use of current isotopes such as 131I due to the increased resolution and sensitivity. The Compton SPECT prototype consists of a single high resolution silicon detector, configured in a 2D geometry, in coincidence with a standard NaI scintillator detector. Images of point sources have been taken for 99mTc (140 keV), 131I (364keV), and 22Na (511 keV), demonstrating the performance of high resolution silicon detectors in a Compton SPECT system. Filtered back projection image resolutions of 10 mm, 7.5 mm, and 6.7 mm were achieved for the three different sources respectively. The results compare well with typical SPECT resolutions of 5-15 mm and validate the claims of improved performance in Compton SPECT imaging devices at higher source energies. They also support the potential of

  13. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System.

    Science.gov (United States)

    Beliveau, Vincent; Ganz, Melanie; Feng, Ling; Ozenne, Brice; Højgaard, Liselotte; Fisher, Patrick M; Svarer, Claus; Greve, Douglas N; Knudsen, Gitte M

    2017-01-04

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT 1A , 5-HT 1B , 5-HT 2A , and 5-HT 4 ) and the 5-HT transporter (5-HTT). The atlas is created from molecular and structural high-resolution neuroimaging data consisting of positron emission tomography (PET) and magnetic resonance imaging (MRI) scans acquired in a total of 210 healthy individuals. Comparison of the regional PET binding measures with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system of the human brain. We present a high-resolution positron emission tomography (PET)- and magnetic resonance imaging-based human brain atlas of important serotonin receptors and the transporter. The regional PET-derived binding measures correlate strongly with the corresponding autoradiography protein levels. The strong correlation enables the transformation of the PET-derived human brain atlas into a protein density map of the serotonin (5-hydroxytryptamine, 5-HT) system. Next, we compared the regional receptor/transporter protein densities with mRNA levels and uncovered unique associations between protein expression and density at high detail. This new in vivo neuroimaging atlas of the 5-HT system not only provides insight in the human brain's regional protein

  14. MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC

  15. PET motion correction using PRESTO with ITK motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Melissa [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Caldeira, Liliana; Scheins, Juergen [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany); Matela, Nuno [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Kops, Elena Rota; Shah, N Jon [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany)

    2014-07-29

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  16. PET motion correction using PRESTO with ITK motion estimation

    International Nuclear Information System (INIS)

    Botelho, Melissa; Caldeira, Liliana; Scheins, Juergen; Matela, Nuno; Kops, Elena Rota; Shah, N Jon

    2014-01-01

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  17. Qualification test of a MPPC-based PET module for future MRI-PET scanners

    Science.gov (United States)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Funamoto, H.; Tsujikawa, T.; Yamamoto, S.

    2014-11-01

    We have developed a high-resolution, compact Positron Emission Tomography (PET) module for future use in MRI-PET scanners. The module consists of large-area, 4×4 ch MPPC arrays (Hamamatsu S11827-3344MG) optically coupled with Ce:LYSO scintillators fabricated into 12×12 matrices of 1×1 mm2 pixels. At this stage, a pair of module and coincidence circuits was assembled into an experimental prototype gantry arranged in a ring of 90 mm in diameter to form the MPPC-based PET system. The PET detector ring was then positioned around the RF coil of the 4.7 T MRI system. We took an image of a point 22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure interference between the MPPC-based PET and the MRI. We only found a slight degradation in the spatial resolution of the PET image from 1.63 to 1.70 mm (FWHM; x-direction), or 1.48-1.55 mm (FWHM; y-direction) when operating with the MRI, while the signal-to-noise ratio (SNR) of the MRI image was only degraded by 5%. These results encouraged us to develop a more advanced version of the MRI-PET gantry with eight MPPC-based PET modules, whose detailed design and first qualification test are also presented in this paper.

  18. Initial evaluation of a practical PET respiratory motion correction method in clinical simultaneous PET/MRI

    International Nuclear Information System (INIS)

    Manber, Richard; Thielemans, Kris; Hutton, Brian; Barnes, Anna; Ourselin, Sebastien; Arridge, Simon; O’Meara, Celia; Atkinson, David

    2014-01-01

    Respiratory motion during PET acquisitions can cause image artefacts, with sharpness and tracer quantification adversely affected due to count ‘smearing’. Motion correction by registration of PET gates becomes increasingly difficult with shorter scan times and less counts. The advent of simultaneous PET/MRI scanners allows the use of high spatial resolution MRI to capture motion states during respiration [1, 2]. In this work, we use a respiratory signal derived from the PET list-mode data [3, ], with no requirement for an external device or MR sequence modifications.

  19. A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Kim, Byung-Tae, E-mail: ychoi.image@gmail.com [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of)

    2011-08-15

    Positron emission tomography (PET) employing Geiger-mode avalanche photodiodes (GAPDs) and charge signal transmission approach was developed for small animal imaging. Animal PET contained 16 LYSO and GAPD detector modules that were arranged in a 70 mm diameter ring with an axial field of view of 13 mm. The GAPDs charge output signals were transmitted to a preamplifier located remotely using 300 cm flexible flat cables. The position decoder circuits (PDCs) were used to multiplex the PET signals from 256 to 4 channels. The outputs of the PDCs were digitized and further-processed in the data acquisition unit. The cross-compatibilities of the PET detectors and MRI were assessed outside and inside the MRI. Experimental studies of the developed full ring PET were performed to examine the spatial resolution and sensitivity. Phantom and mouse images were acquired to examine the imaging performance. The mean energy and time resolution of the PET detector were 17.6% and 1.5 ns, respectively. No obvious degradation on PET and MRI was observed during simultaneous PET-MRI data acquisition. The measured spatial resolution and sensitivity at the CFOV were 2.8 mm and 0.7%, respectively. In addition, a 3 mm diameter line source was clearly resolved in the hot-sphere phantom images. The reconstructed transaxial PET images of the mouse brain and tumor displaying the glucose metabolism patterns were imaged well. These results demonstrate GAPD and the charge signal transmission approach can allow the development of high performance small animal PET with improved MR compatibility.

  20. The influence of photon depth of interaction and non-collinear spread of annihilation photons on PET image spatial resolution

    International Nuclear Information System (INIS)

    Sanchez-Crespo, Alejandro; Larsson, Stig A.

    2006-01-01

    The quality of PET imaging is impaired by parallax errors. These errors produce misalignment between the projected location of the true origin of the annihilation event and the line of response determined by the coincidence detection system. Parallax errors are due to the varying depths of photon interaction (DOI) within the scintillator and the non-collinear (NC) emission of the annihilation photons. The aim of this work was to address the problems associated with the DOI and the NC spread of annihilation photons and to develop a quantitative model to assess their impact on image spatial resolution losses for various commonly used scintillators and PET geometries. A theoretical model based on Monte Carlo simulations was developed to assess the relative influence of DOI and the NC spread of annihilation photons on PET spatial resolution for various scintillator materials (BGO, LSO, LuAP, GSO, NaI) and PET geometries. The results demonstrate good agreement between simulated, experimental and published overall spatial resolution for some commercial systems, with maximum differences around 1 mm in both 2D and 3D mode. The DOI introduces an impairment of non-stationary spatial resolution along the radial direction, which can be very severe at peripheral positions. As an example, the radial spatial resolution loss due to DOI increased from 1.3 mm at the centre to 6.7 mm at 20 cm from the centre of a BGO camera with a 412-mm radius in 2D mode. Including the NC, the corresponding losses were 3.0 mm at the centre and 7.3 mm 20 cm from the centre. Without a DOI detection technique, it seems difficult to improve PET spatial resolution and increase sensitivity by reducing the detector ring radius or by extending the detector in the axial direction. Much effort is expended on the design and configuration of smaller detector elements but more effort should be devoted to the DOI complexity. (orig.)

  1. 18F-FDG PET and high-resolution MRI co-registration for pre-surgical evaluation of patients with conventional MRI-negative refractory extra-temporal lobe epilepsy.

    Science.gov (United States)

    Ding, Yao; Zhu, Yuankai; Jiang, Biao; Zhou, Yongji; Jin, Bo; Hou, Haifeng; Wu, Shuang; Zhu, Junming; Wang, Zhong Irene; Wong, Chong H; Ding, Meiping; Zhang, Hong; Wang, Shuang; Tian, Mei

    2018-04-18

    Epilepsy that originates outside of the temporal lobe can present some of the most challenging problems for surgical therapy, especially for patients with conventional magnetic resonance imaging (MRI)-negative refractory extra-temporal lobe epilepsy (ETLE). This study aimed to evaluate the clinical value of pre-surgical 18 F-fluoro-deoxy-glucose positron emission tomography ( 18 F-FDG PET) and high-resolution MRI (HR-MRI) co-registration in patients with conventional MRI-negative refractory ETLE, and compare their surgical outcomes. Sixty-seven patients with conventional MRI-negative refractory ETLE were prospectively included for pre-surgical 18 F-FDG PET and HR-MRI examinations. Under the guidance of 18 F-FDG PET and HR-MRI co-registration, HR-MRI images were re-read. Based on the image result changes from first reading to re-reading, patients were divided into three groups: Change-1 (lesions of subtle abnormality could be identified in re-read), Change-2 (non-specific abnormalities reported in the first reading were considered as lesions on HR-MRI re-read) and No-change. Post-surgical follow-ups were conducted for up to 59 months. Visual analysis of 18 F-FDG PET showed focal or regional abnormality in 46 patients (68.6%), while the abnormal rate increased to 94.0% (P evaluation by co-registration of 18 F-FDG PET and HR-MRI could improve the identification of the epileptogenic onset zone (EOZ), and may further guide the surgical decision-making and improve the outcome of the refractory ETLE with normal conventional MRI; therefore, it should be recommended as a standard procedure for pre-surgical evaluation of these patients.

  2. Progress on dedicated animal PET

    International Nuclear Information System (INIS)

    Liu Wei

    2002-01-01

    Positron emission tomography, as the leading technology providing molecular imaging of biological processes, is widely used on living laboratory animals. High-resolution dedicated animal PET scanners have been developed. Although the dedicated animal PET faces obstacles and challenges, this advanced technology would play an important role in molecular biomedicine researches, such as diseases study, medicine development, and gene therapy

  3. Simultaneous PET and MR imaging

    International Nuclear Information System (INIS)

    Yiping Shao; Cherry, Simon R.; Meadors, Ken; Siegel, Stefan; Silverman, Robert W.; Farahani, Keyvan; Marsden, Paul K.

    1997-01-01

    We have developed a prototype PET detector which is compatible with a clinical MRI system to provide simultaneous PET and MR imaging. This single-slice PET system consists of 48 2x2x10mm 3 LSO crystals in a 38 mm diameter ring configuration that can be placed inside the receiver coil of the MRI system, coupled to three multi-channel photomultipliers housed outside the main magnetic field via 4 m long and 2 mm diameter optical fibres. The PET system exhibits 2 mm spatial resolution, 41% energy resolution at 511 keV and 20 ns timing resolution. Simultaneous PET and MR phantom images were successfully acquired. (author)

  4. Structured light 3D tracking system for measuring motions in PET brain imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Jørgensen, Morten Rudkjær; Paulsen, Rasmus Reinhold

    2010-01-01

    Patient motion during scanning deteriorates image quality, especially for high resolution PET scanners. A new proposal for a 3D head tracking system for motion correction in high resolution PET brain imaging is set up and demonstrated. A prototype tracking system based on structured light with a ...

  5. cMiCE: a high resolution animal PET using continuous LSO with a statistics based positioning scheme

    International Nuclear Information System (INIS)

    Joung Jinhun; Miyaoka, R.S.; Lewellen, T.K.

    2002-01-01

    Objective: Detector designs for small animal scanners are currently dominated by discrete crystal implementations. However, given the small crystal cross-sections required to obtain very high resolution, discrete designs are typically expensive, have low packing fraction, reduced light collection, and are labor intensive to build. To overcome these limitations we have investigated the feasibility of using a continuous miniature crystal element (cMiCE) detector module for high resolution small animal PET applications. Methods: The detector module consists of a single continuous slab of LSO, 25x25 mm 2 in exposed cross-section and 4 mm thick, coupled directly to a PS-PMT (Hamamatsu R5900-00-C12). The large area surfaces of the crystal were polished and painted with TiO 2 and the short surfaces were left unpolished and painted black. Further, a new statistics based positioning (SBP) algorithm has been implemented to address linearity and edge effect artifacts that are inherent with conventional Anger style positioning schemes. To characterize the light response function (LRF) of the detector, data were collected on a coarse grid using a highly collimated coincidence setup. The LRF was then estimated using cubic spline interpolation. Detector performance has been evaluated for both SBP and Anger based decoding using measured data and Monte Carlo simulations. Results: Using the SBP scheme, edge artifacts were successfully handled. Simulation results show that the useful field of view (UFOV) was extended to ∼22x22 mm 2 with an average point spread function of ∼0.5 mm full width of half maximum (FWHM PSF ). For the same detector with Anger decoding the UFOV of the detector was ∼16x16 mm 2 with an average FWHM PSP of ∼0.9 mm. Experimental results yielded similar differences between FOV and resolution performance. FWHM PSF for the SBP and Anger based method was 1.4 and 2.0 mm, uncorrected for source size, with a 1 mm diameter point source, respectively. Conclusion

  6. Timing resolution improvement using DOI information in a four-layer scintillation detector for TOF-PET

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Kengo [jPET Project Team, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-0024 (Japan)], E-mail: shibuken@gakushikai.jp; Nishikido, Fumihiko [jPET Project Team, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-0024 (Japan); Tsuda, Tomoaki [Technology Research Laboratory, Shimadzu Corporation, Hikaridai 3-9-4, Seika-cho, Kyoto 619-0237 (Japan); Kobayashi, Tetsuya [Department of Medical System Engineering, Graduate School of Engineering, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522 (Japan); Lam, Chihfung; Yamaya, Taiga; Yoshida, Eiji; Inadama, Naoko; Murayama, Hideo [jPET Project Team, Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-0024 (Japan)

    2008-08-11

    Depth-of-interaction (DOI) detectors are considered to be advantageous for time-of-flight positron emission tomography (TOF-PET) because they can correct timing errors arising in the scintillation crystals due to a propagation speed difference between annihilation radiation and scintillation photons. We experimentally measured this timing error, using our four-layer DOI encoding method. The upper layers exhibited the larger timing delays due to the longer path lengths after conversion from annihilation radiation into scintillation photons that traveled by zigzag paths at a speed decreased by a factor of the refractive index (n). The maximum timing delay between the uppermost and the lowermost layers was evaluated as 164 ps when n=1.47. A TOF error correction was demonstrated to improve the timing resolution of the four-layer DOI detector by 10.3%, which would increase the effective sensitivity of the scanner by about 12% comparison with a non-DOI TOF-PET scanner. This is the first step towards combining these two important fields in PET instrumentation, namely DOI and TOF, for the purpose of achieving a higher sensitivity as well as a more uniform spatial resolution.

  7. Self-transcendence trait and its relationship with in vivo serotonin transporter availability in brainstem raphe nuclei: An ultra-high resolution PET-MRI study.

    Science.gov (United States)

    Kim, Jong-Hoon; Son, Young-Don; Kim, Jeong-Hee; Choi, Eun-Jung; Lee, Sang-Yoon; Joo, Yo-Han; Kim, Young-Bo; Cho, Zang-Hee

    2015-12-10

    Self-transcendence is an inherent human personality trait relating to the experience of spiritual aspects of the self. We examined the relationship between self-transcendence and serotonin transporter (SERT) availability in brainstem raphe nuclei, which are collections of five different serotonergic nuclei with rostro-caudal extension, using ultra-high resolution magnetic resonance imaging (MRI) and positron emission tomography (PET) with (11)C-3-amino-4-(2-dimethylaminomethylphenylthio)benzonitrile ([(11)C]DASB) to elucidate potential roles of serotonergic neuronal activities in this personality trait. Sixteen healthy subjects completed 7.0T MRI and High Resolution Research Tomograph (HRRT) PET. The regions of interest (ROIs) included the dorsal raphe nucleus (R1), median raphe nucleus (R2), raphe pontis (R3), and the caudal raphe nuclei (R4 and R5). For the estimation of SERT availability, the binding potential (BPND) was derived using the simplified reference tissue model (SRTM2). The Temperament and Character Inventory was used to measure self-transcendence. The analysis revealed that the self-transcendence total score had a significant negative correlation with the [(11)C]DASB BPND in the caudal raphe (R5). The subscale score for spiritual acceptance was significantly negatively correlated with the [(11)C]DASB BPND in the median raphe nucleus (R2). The results indicate that the self-transcendence trait is associated with SERT availability in specific raphe subnuclei, suggesting that the serotonin system may serve as an important biological basis for human self-transcendence. Based on the connections of these nuclei with cortico-limbic and visceral autonomic structures, the functional activity of these nuclei and their related neural circuitry may play a crucial role in the manifestation of self-transcendence. Copyright © 2015. Published by Elsevier B.V.

  8. 4-D PET-MR with Volumetric Navigators and Compressed Sensing

    DEFF Research Database (Denmark)

    Pedemonte, Stefano; Catana, Ciprian; Van Leemput, Koen

    2015-01-01

    Hybrid PET-MR scanners acquire multi-modal signals simultaneously, eliminating the requirement of software alignment between the MR and PET imaging data. However, the acquisition of high-resolution MR and PET images requires long scanning times, therefore movement of the subject during the acquis...

  9. A Systematic Study to Optimize SiPM Photo-Detectors for Highest Time Resolution in PET

    CERN Document Server

    Gundacker, S.; Frisch, B.; Hillemanns, H.; Jarron, P.; Meyer, T.; Pauwels, K.; Lecoq, P.

    2012-01-01

    We report on a systematic study of time resolution made with three different commercial silicon photomultipliers (SiPMs) (Hamamatsu MPPC S10931-025P, S10931-050P, and S10931-100P) and two LSO scintillating crystals. This study aimed to determine the optimum detector conditions for highest time resolution in a prospective time-of-flight positron emission tomography (TOF-PET) system. Measurements were based on the time over threshold method in a coincidence setup using the ultrafast amplifier-discriminator NINO and a fast oscilloscope. Our tests with the three SiPMs of the same area but of different SPAD sizes and fill factors led to best results with the Hamamatsu type of 50×50×μm2 single-pixel size. For this type of SiPM and under realistic geometrical PET scanner conditions, i.e., with 2×2×10×mm3 LSO crystals, a coincidence time resolution of 220 ±4 ps FWHM could be achieved. The results are interpreted in terms of SiPM photon detection efficiency (PDE), dark noise, and photon yield.

  10. 2D imaging simulations of a small animal PET scanner with DOI measurement. jPET-RD

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Hagiwara, Naoki

    2005-01-01

    We present a preliminary study on the design of a high sensitivity small animal depth of interaction (DOI)-PET scanner: jPET-RD (for Rodents with DOI detectors), which will contribute to molecular imaging. The 4-layer DOI block detector for the jPET-RD that consists of scintillation crystals (1.4 mm x 1.4 mm x 4.5 mm) and a flat panel position-sensitive photomultiplier tube (52 mm x 52 mm) was previously proposed. In this paper, we investigate imaging performance of the jPET-RD through numerical simulations. The scanner has a hexagonal geometry with a small diameter and a large axial aperture. Therefore DOI information is expected to improve resolution uniformity in the whole field of view (FOV). We simulate the scanner for various parameters of the number of DOI channels and the crystal length. Simulated data are reconstructed using the maximum likelihood expectation maximization with accurate system modeling. The trade-off results between background noise and spatial resolution show that only shortening the length of crystal does not improve the trade-off at all, and that 4-layer DOI information improves uniformity of spatial resolution in the whole FOV. Excellent performance of the jPET-RD can be expected based on the numerical simulation results. (author)

  11. Dedicated brain PET system of PET/MR for brain research

    International Nuclear Information System (INIS)

    Cheng, Li; Liu, Yaqiang; Ma, Tianyu; Wang, Shi; Wei, Qingyang; Xu, Tianpeng

    2015-01-01

    This work is to replace PET ring in human brain PET/MR system with a dedicated wearable PET insert, aimed at improving both patient feasibility and system performance for brain imaging. The designed PET/MR system includes two parts: the inside parts, including a radio frequency (RF) coil and PET ring, are mounted on patient’s head, and the outside part, a MR imager, is dependent of patient. The RF coil is the innermost layer, surrounded by an outer PET-ring layer. They are supported by a MRcompatible structure. And both RF coil and PET detectors are placed inside a standard clinical 3-T MR imager. From the design of the system we can infer that some advantages can be achieved. First, high sensitivity will be achieved with the same amount crystals as the PET ring is more close to region-of-interest area, at a reduced cost. Second, by using a 2-layer depth of interaction (DOI) detector, the parallax effect can be minimized. The resolution will benefit from short positron range caused by magnetic field and smaller ring diameter will also reduce the effect of non-collinearity. Thirdly, as the PET ring is mounted on head, impact of patient motion will be reduced.

  12. Dedicated brain PET system of PET/MR for brain research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li; Liu, Yaqiang; Ma, Tianyu; Wang, Shi; Wei, Qingyang; Xu, Tianpeng [Institute of Medical Physics, Department of Engineering Physics, Tsinghua University, Beijing (China)

    2015-05-18

    This work is to replace PET ring in human brain PET/MR system with a dedicated wearable PET insert, aimed at improving both patient feasibility and system performance for brain imaging. The designed PET/MR system includes two parts: the inside parts, including a radio frequency (RF) coil and PET ring, are mounted on patient’s head, and the outside part, a MR imager, is dependent of patient. The RF coil is the innermost layer, surrounded by an outer PET-ring layer. They are supported by a MRcompatible structure. And both RF coil and PET detectors are placed inside a standard clinical 3-T MR imager. From the design of the system we can infer that some advantages can be achieved. First, high sensitivity will be achieved with the same amount crystals as the PET ring is more close to region-of-interest area, at a reduced cost. Second, by using a 2-layer depth of interaction (DOI) detector, the parallax effect can be minimized. The resolution will benefit from short positron range caused by magnetic field and smaller ring diameter will also reduce the effect of non-collinearity. Thirdly, as the PET ring is mounted on head, impact of patient motion will be reduced.

  13. Comparative timing measurements of LYSO and LFS-3 to achieve the best time resolution for TOF-PET

    CERN Document Server

    Doroud, K; Zichichi, A; Zuyeuski, R

    2015-01-01

    The best Coincidence Time Resolution (CTR) obtained so far – with very short crystals of 3–5 mm in length – reach values between 100 and 150 ps. Such crystals are not really practical for a TOF PET imaging device, since the sensitivity is quite small for the detection of the 511 keV gammas resulting from a positron annihilation. We present our setup and measurements using 15 mm length crystals; a length we regard as reasonable for a TOF-PET scanner. We have used a new series of Silicon Photo-Multipliers (SiPM) manufactured by Hamamatsu. These are the High Fill Factor (HFF) and Low Cross-Talk (LCT) Multi-Pixel Photon Counters (MPPC). We have compared three different crystals, LFS-3 (supplied by Zecotek) and two samples of LYSO (manufactured by Saint Gobain and CPI). We have obtained an excellent value of 148 ps for the Coincidence Time Resolution (CTR) with two LFS-3 crystals (15 mm long) mounted on each side of a 22Na radioactive source with the HFF-MPPCs at 3.3 V over-voltage. Our results are148 ps obt...

  14. Algebraic 2D PET image reconstruction using depth-of-interaction information

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Obi, Takashi; Yamaguchi, Masahiro; Kita, Kouichi

    2001-01-01

    Recently a high-performance PET scanner, which measures depth-of-interaction (DOI) information, is being developed for molecular imaging. DOI measurement of multi-layered thin crystals can improve spatial resolution and scanner sensitivity simultaneously. In this paper, we apply an algebraic image reconstruction method to 2-dimensional (2D) DOI-PET scanners using accurate system modeling, in order to evaluate the effects of using DOI information on PET image quality. Algebraic image reconstruction methods have been successfully used to improve PET image quality, compared with the conventional filtered backprojection method. The proposed method is applied to simulated data for a small 2D DOI-PET scanner. The results show that accurate system modeling improves spatial resolution without noise emphasis, and that DOI information improves uniformity of spatial resolution. (author)

  15. Analysis of time resolution in a dual head LSO+PSPMT PET system using low pass filter interpolation and digital constant fraction discriminator techniques

    International Nuclear Information System (INIS)

    Monzo, Jose M.; Lerche, Christoph W.; Martinez, Jorge D.; Esteve, Raul; Toledo, Jose; Gadea, Rafael; Colom, Ricardo J.; Herrero, Vicente; Ferrando, Nestor; Aliaga, Ramon J.; Mateo, Fernando; Sanchez, Filomeno; Mora, Francisco J.; Benlloch, Jose M.; Sebastia, Angel

    2009-01-01

    PET systems need good time resolution to improve the true event rate, random event rejection, and pile-up rejection. In this study we propose a digital procedure for this task using a low pass filter interpolation plus a Digital Constant Fraction Discriminator (DCFD). We analyzed the best way to implement this algorithm on our dual head PET system and how varying the quality of the acquired signal and electronic noise analytically affects timing resolution. Our detector uses two continuous LSO crystals with a position sensitive PMT. Six signals per detector are acquired using an analog electronics front-end and these signals are processed using an in-house digital acquisition board. The test bench developed simulates the electronics and digital algorithms using Matlab. Results show that electronic noise and other undesired effects have a significant effect on the timing resolution of the system. Interpolated DCFD gives better results than non-interpolated DCFD. In high noise environments, differences are reduced. An optimum delay selection, based on the environment noise, improves time resolution.

  16. Analysis of time resolution in a dual head LSO+PSPMT PET system using low pass filter interpolation and digital constant fraction discriminator techniques

    Energy Technology Data Exchange (ETDEWEB)

    Monzo, Jose M. [Digital Systems Design (DSD) Group, ITACA Institute, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)], E-mail: jmonfer@aaa.upv.es; Lerche, Christoph W.; Martinez, Jorge D.; Esteve, Raul; Toledo, Jose; Gadea, Rafael; Colom, Ricardo J.; Herrero, Vicente; Ferrando, Nestor; Aliaga, Ramon J.; Mateo, Fernando [Digital Systems Design (DSD) Group, ITACA Institute, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Sanchez, Filomeno [Nuclear Medical Physics Group, IFIC Institute, Consejo Superior de Investigaciones Cientificas (CSIC), 46980 Paterna (Spain); Mora, Francisco J. [Digital Systems Design (DSD) Group, ITACA Institute, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Benlloch, Jose M. [Nuclear Medical Physics Group, IFIC Institute, Consejo Superior de Investigaciones Cientificas (CSIC), 46980 Paterna (Spain); Sebastia, Angel [Digital Systems Design (DSD) Group, ITACA Institute, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-01

    PET systems need good time resolution to improve the true event rate, random event rejection, and pile-up rejection. In this study we propose a digital procedure for this task using a low pass filter interpolation plus a Digital Constant Fraction Discriminator (DCFD). We analyzed the best way to implement this algorithm on our dual head PET system and how varying the quality of the acquired signal and electronic noise analytically affects timing resolution. Our detector uses two continuous LSO crystals with a position sensitive PMT. Six signals per detector are acquired using an analog electronics front-end and these signals are processed using an in-house digital acquisition board. The test bench developed simulates the electronics and digital algorithms using Matlab. Results show that electronic noise and other undesired effects have a significant effect on the timing resolution of the system. Interpolated DCFD gives better results than non-interpolated DCFD. In high noise environments, differences are reduced. An optimum delay selection, based on the environment noise, improves time resolution.

  17. MR-guided PET motion correction in LOR space using generic projection data for image reconstruction with PRESTO

    International Nuclear Information System (INIS)

    Scheins, J.; Ullisch, M.; Tellmann, L.; Weirich, C.; Rota Kops, E.; Herzog, H.; Shah, N.J.

    2013-01-01

    The BrainPET scanner from Siemens, designed as hybrid MR/PET system for simultaneous acquisition of both modalities, provides high-resolution PET images with an optimum resolution of 3 mm. However, significant head motion often compromises the achievable image quality, e.g. in neuroreceptor studies of human brain. This limitation can be omitted when tracking the head motion and accurately correcting measured Lines-of-Response (LORs). For this purpose, we present a novel method, which advantageously combines MR-guided motion tracking with the capabilities of the reconstruction software PRESTO (PET Reconstruction Software Toolkit) to convert motion-corrected LORs into highly accurate generic projection data. In this way, the high-resolution PET images achievable with PRESTO can also be obtained in presence of severe head motion

  18. Study of continuous DOI positioning for solid-state PET detectors

    International Nuclear Information System (INIS)

    Lee, Chae Hun

    2007-02-01

    PET is a nuclear imaging technique that measures the spatial and temporal distribution of compounds labeled with a positron emitting radionuclide introduced into a subject to be determined non-invasively. Spatial resolution degradation occurs at the edge of Field Of View (FOV) due to parallax error. To improve spatial resolution at the edge of FOV, Depth-Of-Interaction (DOI) PET has been investigated and there are several methods for DOI positioning. Among DOI positioning methods, sharing scintillation light output is the cost-effective and accurate method while solid-state photosensors such as Avalanche Photodiodes have been well developed. Avalanche photodiodes have internal gain by impact ionizations in high electric field. High gain and low noise are good characteristics for use in PET. In this thesis, DOI-PET detector using two APD with LSO scintillation crystal was designed and evaluated, and parameter to affect DOI positioning was investigated. Energy resolution of the designed detector was 12 % in 662 keV photopeak. Comparing photopeak channels of two APD output, DOI position was measured. DOI positioning error was ±2.5 mm. DOI resolution in current DOI-PET systems is still ∼ cm. Minimum 4 step positions can be obtained with 2 cm long LSO crystal in this result

  19. Particle identification with Polyethylene Terephthalate (PET) detector with high detection threshold

    Science.gov (United States)

    Dey, S.; Maulik, A.; Raha, Sibaji; Saha, Swapan K.; Syam, D.

    2014-10-01

    In the present work we describe the results of studies, using accelerator data, to determine the accuracy with which particles can be identified and their energies determined with a commercially available polymer (PET) used as a Nuclear Track Detector (NTD). The achieved charge resolution was ± 1 . The initial energy of stopping particle in PET was determined with an accuracy of 10 % for ion energies above the Bragg peak.

  20. Particle identification with Polyethylene Terephthalate (PET) detector with high detection threshold

    Energy Technology Data Exchange (ETDEWEB)

    Dey, S. [Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700 091 (India); Maulik, A., E-mail: atanu.maulik@gmail.com [Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700 091 (India); Raha, Sibaji; Saha, Swapan K. [Centre for Astroparticle Physics and Space Science, Bose Institute, Kolkata 700 091 (India); Department of Physics, Bose Institute, Kolkata 700 009 (India); Syam, D. [Department of Physics, Barasat Government College, Kolkata 700 124 (India)

    2014-10-01

    In the present work we describe the results of studies, using accelerator data, to determine the accuracy with which particles can be identified and their energies determined with a commercially available polymer (PET) used as a Nuclear Track Detector (NTD). The achieved charge resolution was ±1. The initial energy of stopping particle in PET was determined with an accuracy of 10% for ion energies above the Bragg peak.

  1. High-precision position estimation in PET using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mateo, F. [Digital Systems Design Group (DSD), Instituto de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas (ITACA), Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)], E-mail: fermaji@upvnet.upv.es; Aliaga, R.J.; Ferrando, N.; Martinez, J.D.; Herrero, V.; Lerche, Ch.W.; Colom, R.J.; Monzo, J.M.; Sebastia, A.; Gadea, R. [Digital Systems Design Group (DSD), Instituto de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas (ITACA), Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-01

    Traditionally, the most popular technique to predict the impact position of gamma photons on a PET detector has been Anger's logic. However, it introduces nonlinearities that compress the light distribution, reducing the useful field of view and the spatial resolution, especially at the edges of the scintillator crystal. In this work, we make use of neural networks to address a bias-corrected position estimation from real stimulus obtained from a 2D PET system setup. The preprocessing and data acquisition were performed by separate custom boards, especially designed for this application. The results show that neural networks yield a more uniform field of view while improving the systematic error and the spatial resolution. Therefore, they stand as a better performing and readily available alternative to classic positioning methods.

  2. High-precision position estimation in PET using artificial neural networks

    International Nuclear Information System (INIS)

    Mateo, F.; Aliaga, R.J.; Ferrando, N.; Martinez, J.D.; Herrero, V.; Lerche, Ch.W.; Colom, R.J.; Monzo, J.M.; Sebastia, A.; Gadea, R.

    2009-01-01

    Traditionally, the most popular technique to predict the impact position of gamma photons on a PET detector has been Anger's logic. However, it introduces nonlinearities that compress the light distribution, reducing the useful field of view and the spatial resolution, especially at the edges of the scintillator crystal. In this work, we make use of neural networks to address a bias-corrected position estimation from real stimulus obtained from a 2D PET system setup. The preprocessing and data acquisition were performed by separate custom boards, especially designed for this application. The results show that neural networks yield a more uniform field of view while improving the systematic error and the spatial resolution. Therefore, they stand as a better performing and readily available alternative to classic positioning methods.

  3. PET-MRI and multimodal cancer imaging

    International Nuclear Information System (INIS)

    Wang Taisong; Zhao Jinhua; Song Jianhua

    2011-01-01

    Multimodality imaging, specifically PET-CT, brought a new perspective into the fields of clinical imaging. Clinical cases have shown that PET-CT has great value in clinical diagnosis and experimental research. But PET-CT still bears some limitations. A major drawback is that CT provides only limited soft tissue contrast and exposes the patient to a significant radiation dose. MRI overcome these limitations, it has excellent soft tissue contrast, high temporal and spatial resolution and no radiation damage. Additionally, since MRI provides also functional information, PET-MRI will show a new direction of multimodality imaging in the future. (authors)

  4. Comparison of different tube-of-response (TOR) models for resolution recovery in PET image reconstruction for the Philips Ingenuity TF PET/MR

    International Nuclear Information System (INIS)

    Lougovski, Alexandr; Hofheinz, Frank; Van Den Hoff, Jorg

    2015-01-01

    Recently, we have proposed a method for on-the-fly system matrix computation where the tube-of-response (TOR) is approximated as a cylinder with constant density (TORCD) and the cubic voxels are replaced by spheres. We could show that with this model the PET image quality can be notably improved compared to the vendor provided image reconstruction of our Philips Ingenuity-TF PET/MR. In this work we address the question whether image quality can be further improved by using a variable density TOR (TOR-VD). The radial variability of TOR-VD was modelled by a Kaiser-Bessel function. Free parameters of this density model were used to optimize image properties regarding resolution, noise, and Gibbs artifacts. Additional, a TOR-VD model accounting for position dependent effects along the TOR caused by the finite solid angles of the detectors is under investigation. Phantom measurement were performed with a Philips Ingenuity-TF PET/MR scanner. Listmode data were reconstructed using TOR-CD and TORVD, respectively on two different grids with cubic voxel size of 2 mm and 4 mm. Image quality was assessed with resolution-noise curves and investigation of the radial position dependence of the spatial resolution. For 2 mm voxels, TOR-VD consistently yields a slight improvement of the investigated image quality measures compared to TOR-CD. For 4 mm voxels both models lead essentially to the same results. These findings can be understood as a consequence of the relative size of voxel and TOR. For typical whole body studies (4 mm voxel size) a variable TOR does not improve image quality beyond what is achievable with a constant density TOR. For smaller voxel size the image quality can indeed be somewhat improved with a variable TOR but at the expense of drastically increased computation time.

  5. Comparison of different tube-of-response (TOR) models for resolution recovery in PET image reconstruction for the Philips Ingenuity TF PET/MR

    Energy Technology Data Exchange (ETDEWEB)

    Lougovski, Alexandr; Hofheinz, Frank; Van Den Hoff, Jorg [Helmholtz-Center Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, PET Center, Dresden (Germany)

    2015-05-18

    Recently, we have proposed a method for on-the-fly system matrix computation where the tube-of-response (TOR) is approximated as a cylinder with constant density (TORCD) and the cubic voxels are replaced by spheres. We could show that with this model the PET image quality can be notably improved compared to the vendor provided image reconstruction of our Philips Ingenuity-TF PET/MR. In this work we address the question whether image quality can be further improved by using a variable density TOR (TOR-VD). The radial variability of TOR-VD was modelled by a Kaiser-Bessel function. Free parameters of this density model were used to optimize image properties regarding resolution, noise, and Gibbs artifacts. Additional, a TOR-VD model accounting for position dependent effects along the TOR caused by the finite solid angles of the detectors is under investigation. Phantom measurement were performed with a Philips Ingenuity-TF PET/MR scanner. Listmode data were reconstructed using TOR-CD and TORVD, respectively on two different grids with cubic voxel size of 2 mm and 4 mm. Image quality was assessed with resolution-noise curves and investigation of the radial position dependence of the spatial resolution. For 2 mm voxels, TOR-VD consistently yields a slight improvement of the investigated image quality measures compared to TOR-CD. For 4 mm voxels both models lead essentially to the same results. These findings can be understood as a consequence of the relative size of voxel and TOR. For typical whole body studies (4 mm voxel size) a variable TOR does not improve image quality beyond what is achievable with a constant density TOR. For smaller voxel size the image quality can indeed be somewhat improved with a variable TOR but at the expense of drastically increased computation time.

  6. Evaluation of Dixon Sequence on Hybrid PET/MR Compared with Contrast-Enhanced PET/CT for PET-Positive Lesions

    International Nuclear Information System (INIS)

    Jeong, Ju Hye; Cho, Ihn Ho; Kong, Eun Jung; Chun, Kyung Ah

    2014-01-01

    Hybrid positron emission tomography and magnetic resonance (PET/MR) imaging performs a two-point Dixon MR sequence for attenuation correction. However, MR data in hybrid PET/MR should provide anatomic and morphologic information as well as an attenuation map. We evaluated the Dixon sequence of hybrid PET/MR for anatomic correlation of PET-positive lesions compared with contrast-enhanced PET/computed tomography (CT) in patients with oncologic diseases. Twelve patients underwent a single injection, dual imaging protocol. PET/CT was performed with an intravenous contrast agent (85±13 min after 18 F-FDG injection of 403± 45 MBq) and then (125±19 min after injection) PET/MR was performed. Attenuation correction and anatomic allocation of PET were performed using contrast-enhanced CT for PET/CT and Dixon MR sequence for hybrid PET/MR. The Dixon MR sequence and contrast-enhanced CT were compared for anatomic correlation of PET-positive lesions (scoring scale ranging from 0 to 3 for visual ratings). Additionally, standardized uptake values (SUVs) for the detected lesions were assessed for quantitative comparison. Both hybrid PET/MR and contrast-enhanced PET/CT identified 55 lesions with increased FDG uptake in ten patients. In total, 28 lymph nodes, 11 bone lesions, 3 dermal nodules, 3 pleural thickening lesions, 2 thyroid nodules, 1 pancreas, 1 liver, 1 ovary, 1 uterus, 1 breast, 1 soft tissue and 2 lung lesions were present. The best performance was observed for anatomic correlation of PET findings by the contrast-enhanced CT scans (contrast-enhanced CT, 2.64± 0.70; in-phase, 1.29±1.01; opposed-phase, 1.29±1.15; water-weighted, 1.71±1.07; fat weighted, 0.56±1.03). A significant difference was observed between the scores obtained from the contrast-enhanced CT and all four coregistered Dixon MR images. Quantitative evaluation revealed a high correlation between the SUVs measured with hybrid PET/MR (SUVmean, 2.63±1.62; SUVmax, 4.30±2.88) and contrast-enhanced PET

  7. Evaluation of Dixon Sequence on Hybrid PET/MR Compared with Contrast-Enhanced PET/CT for PET-Positive Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ju Hye; Cho, Ihn Ho; Kong, Eun Jung; Chun, Kyung Ah [Yeungnam Univ. Hospital, Daegu (Korea, Republic of)

    2014-03-15

    Hybrid positron emission tomography and magnetic resonance (PET/MR) imaging performs a two-point Dixon MR sequence for attenuation correction. However, MR data in hybrid PET/MR should provide anatomic and morphologic information as well as an attenuation map. We evaluated the Dixon sequence of hybrid PET/MR for anatomic correlation of PET-positive lesions compared with contrast-enhanced PET/computed tomography (CT) in patients with oncologic diseases. Twelve patients underwent a single injection, dual imaging protocol. PET/CT was performed with an intravenous contrast agent (85±13 min after {sup 18}F-FDG injection of 403± 45 MBq) and then (125±19 min after injection) PET/MR was performed. Attenuation correction and anatomic allocation of PET were performed using contrast-enhanced CT for PET/CT and Dixon MR sequence for hybrid PET/MR. The Dixon MR sequence and contrast-enhanced CT were compared for anatomic correlation of PET-positive lesions (scoring scale ranging from 0 to 3 for visual ratings). Additionally, standardized uptake values (SUVs) for the detected lesions were assessed for quantitative comparison. Both hybrid PET/MR and contrast-enhanced PET/CT identified 55 lesions with increased FDG uptake in ten patients. In total, 28 lymph nodes, 11 bone lesions, 3 dermal nodules, 3 pleural thickening lesions, 2 thyroid nodules, 1 pancreas, 1 liver, 1 ovary, 1 uterus, 1 breast, 1 soft tissue and 2 lung lesions were present. The best performance was observed for anatomic correlation of PET findings by the contrast-enhanced CT scans (contrast-enhanced CT, 2.64± 0.70; in-phase, 1.29±1.01; opposed-phase, 1.29±1.15; water-weighted, 1.71±1.07; fat weighted, 0.56±1.03). A significant difference was observed between the scores obtained from the contrast-enhanced CT and all four coregistered Dixon MR images. Quantitative evaluation revealed a high correlation between the SUVs measured with hybrid PET/MR (SUVmean, 2.63±1.62; SUVmax, 4.30±2.88) and contrast

  8. High-resolution PET studies in Alzheimer's disease

    International Nuclear Information System (INIS)

    Kumar, A.; Schapiro, M.B.; Grady, C.; Haxby, J.V.; Wagner, E.; Salerno, J.A.; Friedland, R.P.; Rapoport, S.I.

    1991-01-01

    Forty-seven patients with probable dementia of the Alzheimer type (DAT) and 30 healthy age-matched controls were scanned using [18F]-2-fluoro-2-deoxy-D-glucose on a Scanditronix PC 1024-7B tomograph (inplane resolution = 6 mm, axial resolution = 10 mm). Patients and controls were scanned in the resting state with their eyes patched and ears occluded. The regional cerebral metabolic rates for glucose (rCMRglc) in most major neocortical and subcortical gray matter regions, and certain metabolic ratios (rCMRglc/ calcarine rCMRglc), quantitatively discriminated even the mildly demented patients from healthy controls. The association neocortices showed metabolic abnormalities that were more severe than those in the sensorimotor and calcarine regions. All demented groups showed significant neuropsychological disturbances when compared to healthy controls. These data demonstrated widespread metabolic disturbances, particularly in the association areas, relatively early in Alzheimer's disease, and more profound involvement with disease progression

  9. Performance evaluation of neuro-PET using silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jiwoong; Choi, Yong, E-mail: ychoi@sogang.ac.kr; Jung, Jin Ho, E-mail: jinho1115@gmail.com; Kim, Sangsu; Im, Ki Chun

    2016-05-21

    Recently, we have developed the second prototype Silicon photomultiplier (SiPM) based positron emission tomography (PET) scanner for human brain imaging. The PET system was comprised of detector block which consisted of 4×4 SiPMs and 4×4 Lutetium Yttrium Orthosilicate arrays, charge signal transmission method, high density position decoder circuit and FPGA-embedded ADC boards. The purpose of this study was to evaluate the performance of the newly developed neuro-PET system. The energy resolution, timing resolution, spatial resolution, sensitivity, stability of the photo-peak position and count rate performance were measured. Tomographic image of 3D Hoffman brain phantom was also acquired to evaluate imaging capability of the neuro-PET. The average energy and timing resolutions measured for 511 keV gamma rays were 17±0.1% and 3±0.3 ns, respectively. Spatial resolution and sensitivity at the center of field of view (FOV) were 3.1 mm and 0.8%, respectively. The average scatter fraction was 0.4 with an energy window of 350–650 keV. The maximum true count rate and maximum NECR were measured as 43.3 kcps and 6.5 kcps at an activity concentration of 16.7 kBq/ml and 5.5 kBq/ml, respectively. Long-term stability results show that there was no significant change in the photo-peak position, energy resolution and count rate for 60 days. Phantom imaging studies were performed and they demonstrated the feasibility for high quality brain imaging. The performance tests and imaging results indicate that the newly developed PET is useful for brain imaging studies, if the axial FOV is extended to improve the system sensitivity.

  10. RESOLUTE PET/MRI Attenuation Correction for O-(2-18F-fluoroethyl-L-tyrosine (FET in Brain Tumor Patients with Metal Implants

    Directory of Open Access Journals (Sweden)

    Claes N. Ladefoged

    2017-08-01

    Full Text Available Aim: Positron emission tomography (PET imaging is a useful tool for assisting in correct differentiation of tumor progression from reactive changes, and the radiolabeled amino acid analog tracer O-(2-18F-fluoroethyl-L-tyrosine (FET-PET is amongst the most frequently used. The FET-PET images need to be quantitatively correct in order to be used clinically, which require accurate attenuation correction (AC in PET/MRI. The aim of this study was to evaluate the use of the subject-specific MR-derived AC method RESOLUTE in post-operative brain tumor patients.Methods: We analyzed 51 post-operative brain tumor patients (68 examinations, 200 MBq [18F]-FET investigated in a PET/MRI scanner. MR-AC maps were acquired using: (1 the Dixon water fat separation sequence, (2 the ultra short echo time (UTE sequences, (3 calculated using our new RESOLUTE methodology, and (4 a same day low-dose CT used as reference “gold standard.” For each subject and each AC method the tumor was delineated by isocontouring tracer uptake above a tumor(T-to-brain background (B activity ratio of 1.6. We measured B, tumor mean and maximal activity (TMEAN, TMAX, biological tumor volume (BTV, and calculated the clinical metrics TMEAN/B and TMAX/B.Results: When using RESOLUTE 5/68 studies did not meet our predefined acceptance criteria of TMAX/B difference to CT-AC < ±0.1 or 5%, TMEAN/B < ±0.05 or 5%, and BTV < ±2 mL or 10%. In total, 46/68 studies failed our acceptance criteria using Dixon, and 26/68 using UTE. The 95% limits of agreement for TMAX/B was for RESOLUTE (−3%; 4%, Dixon (−9%; 16%, and UTE (−7%; 10%. The absolute error when measuring BTV was 0.7 ± 1.9 mL (N.S with RESOLUTE, 5.3 ± 10 mL using Dixon, and 1.7 ± 3.7 mL using UTE. RESOLUTE performed best in the identification of the location of peak activity and in brain tumor follow-up monitoring using clinical FET PET metrics.Conclusions: Overall, we found RESOLUTE to be the AC method that most robustly

  11. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging

    International Nuclear Information System (INIS)

    Magota, Keiichi; Kubo, Naoki; Kuge, Yuji; Nishijima, Ken-ichi; Zhao, Songji; Tamaki, Nagara

    2011-01-01

    We investigated the performance of the Inveon small-animal PET/SPECT/CT system and compared the imaging capabilities of the SPECT and PET components. For SPECT, the energy resolution, tomographic spatial resolution and system sensitivity were evaluated with a 99m Tc solution using a single pinhole collimator. For PET, the spatial resolution, absolute sensitivity, scatter fraction and peak noise equivalent count were evaluated. Phantoms and a normal rat were scanned to compare the imaging capabilities of SPECT and PET. The SPECT spatial resolution was 0.84 mm full-width at half-maximum (FWHM) at a radius of rotation of 25 mm using a 0.5-mm pinhole aperture collimator, while the PET spatial resolution was 1.63 mm FWHM at the centre. The SPECT system sensitivity at a radius of rotation of 25 mm was 35.3 cps/MBq (4 x 10 -3 %) using the 0.5-mm pinhole aperture, while the PET absolute sensitivity was 3.2% for 350-650 keV and 3.432 ns. Accordingly, the volume sensitivity of PET was three orders of magnitude higher than that of SPECT. This integrated PET/SPECT/CT system showed high performance with excellent spatial resolution for SPECT and sensitivity for PET. Based on the tracer availability and system performance, SPECT and PET have complementary roles in multimodality small-animal imaging. (orig.)

  12. High-resolution(18)F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease.

    Science.gov (United States)

    Chittiboina, Prashant; Montgomery, Blake K; Millo, Corina; Herscovitch, Peter; Lonser, Russell R

    2015-04-01

    OBJECT High-resolution PET (hrPET) performed using a high-resolution research tomograph is reported as having a resolution of 2 mm and could be used to detect corticotroph adenomas through uptake of(18)F-fluorodeoxyglucose ((18)F-FDG). To determine the sensitivity of this imaging modality, the authors compared(18)F-FDG hrPET and MRI detection of pituitary adenomas in Cushing disease (CD). METHODS Consecutive patients with CD who underwent preoperative(18)F-FDG hrPET and MRI (spin echo [SE] and spoiled gradient recalled [SPGR] sequences) were prospectively analyzed. Standardized uptake values (SUVs) were calculated from hrPET and were compared with MRI findings. Imaging findings were correlated to operative and histological findings. RESULTS Ten patients (7 females and 3 males) were included (mean age 30.8 ± 19.3 years; range 11-59 years). MRI revealed a pituitary adenoma in 4 patients (40% of patients) on SE and 7 patients (70%) on SPGR sequences.(18)F-FDG hrPET demonstrated increased(18)F-FDG uptake consistent with an adenoma in 4 patients (40%; adenoma size range 3-14 mm). Maximum SUV was significantly higher for(18)F-FDG hrPET-positive tumors (difference = 5.1, 95% CI 2.1-8.1; p = 0.004) than for(18)F-FDG hrPET-negative tumors.(18)F-FDG hrPET positivity was not associated with tumor volume (p = 0.2) or dural invasion (p = 0.5). Midnight and morning ACTH levels were associated with(18)F-FDG hrPET positivity (p = 0.01 and 0.04, respectively) and correlated with the maximum SUV (R = 0.9; p = 0.001) and average SUV (R = 0.8; p = 0.01). All(18)F-FDG hrPET-positive adenomas had a less than a 180% ACTH increase and(18)F-FDG hrPET-negative adenomas had a greater than 180% ACTH increase after CRH stimulation (p = 0.03). Three adenomas were detected on SPGR MRI sequences that were not detected by(18)F-FDG hrPET imaging. Two adenomas not detected on SE (but no adenomas not detected on SPGR) were detected on(18)F-FDG hrPET. CONCLUSIONS While(18)F-FDG hrPET imaging can

  13. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  14. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-01-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a 22 Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm 3 ) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors

  15. Validation of GEANT3 simulation studies with a dual-head PMT ClearPET TM prototype

    CERN Document Server

    Ziemons, K; Streun, M; Pietrzyk, U

    2004-01-01

    The ClearPET TM project is proposed by working groups of the Crystal Clear Collaboration (CCC) to develop a 2/sup nd/ generation high performance small animal positron emission tomograph (PET). High sensitivity and high spatial resolution is foreseen for the ClearPET TM camera by using a phoswich arrangement combining mixed lutetium yttrium aluminum perovskite (LuYAP:Ce) and lutetium oxyorthosilicate (LSO) scintillating crystals. Design optimizations for the first photomultiplier tube (PMT) based ClearPET camera are done with a Monte-Carlo simulation package implemented on GEANT3 (CERN, Geneva, Switzerland). A dual-head prototype has been built to test the frontend electronics and was used to validate the implementation of the GEANT3 simulation tool. Multiple simulations were performed following the experimental protocols to measure the intrinsic resolution and the sensitivity profile in axial and radial direction. Including a mean energy resolution of about 27.0% the simulated intrinsic resolution is about (...

  16. Time resolution improvement of Schottky CdTe PET detectors using digital signal processing

    International Nuclear Information System (INIS)

    Nakhostin, M.; Ishii, K.; Kikuchi, Y.; Matsuyama, S.; Yamazaki, H.; Torshabi, A. Esmaili

    2009-01-01

    We present the results of our study on the timing performance of Schottky CdTe PET detectors using the technique of digital signal processing. The coincidence signals between a CdTe detector (15x15x1 mm 3 ) and a fast liquid scintillator detector were digitized by a fast digital oscilloscope and analyzed. In the analysis, digital versions of the elements of timing circuits, including pulse shaper and time discriminator, were created and a digital implementation of the Amplitude and Rise-time Compensation (ARC) mode of timing was performed. Owing to a very fine adjustment of the parameters of timing measurement, a good time resolution of less than 9.9 ns (FWHM) at an energy threshold of 150 keV was achieved. In the next step, a new method of time pickoff for improvement of timing resolution without loss in the detection efficiency of CdTe detectors was examined. In the method, signals from a CdTe detector are grouped by their rise-times and different procedures of time pickoff are applied to the signals of each group. Then, the time pickoffs are synchronized by compensating the fixed time offset, caused by the different time pickoff procedures. This method leads to an improved time resolution of ∼7.2 ns (FWHM) at an energy threshold of as low as 150 keV. The methods presented in this work are computationally fast enough to be used for online processing of data in an actual PET system.

  17. Influence of detector pixel size, TOF resolution and DOI on image quality in MR-compatible whole-body PET.

    Science.gov (United States)

    Thoen, Hendrik; Keereman, Vincent; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan

    2013-09-21

    The optimization of a whole-body PET system remains a challenging task, as the imaging performance is influenced by a complex interaction of different design parameters. However, it is not always clear which parameters have the largest impact on image quality and are most eligible for optimization. To determine this, we need to be able to assess their influence on image quality. We performed Monte-Carlo simulations of a whole-body PET scanner to predict the influence on image quality of three detector parameters: the TOF resolution, the transverse pixel size and depth-of-interaction (DOI)-correction. The inner diameter of the PET scanner was 65 cm, small enough to allow physical integration into a simultaneous PET-MR system. Point sources were used to evaluate the influence of transverse pixel size and DOI-correction on spatial resolution as function of radial distance. To evaluate the influence on contrast recovery and pixel noise a cylindrical phantom of 35 cm diameter was used, representing a large patient. The phantom contained multiple hot lesions with 5 mm diameter. These lesions were placed at radial distances of 50, 100 and 150 mm from the center of the field-of-view, to be able to study the effects at different radial positions. The non-prewhitening (NPW) observer was used for objective analysis of the detectability of the hot lesions in the cylindrical phantom. Based on this analysis the NPW-SNR was used to quantify the relative improvements in image quality due to changes of the variable detector parameters. The image quality of a whole-body PET scanner can be improved significantly by reducing the transverse pixel size from 4 to 2.6 mm and improving the TOF resolution from 600 to 400 ps and further from 400 to 200 ps. Compared to pixel size, the TOF resolution has the larger potential to increase image quality for the simulated phantom. The introduction of two layer DOI-correction only leads to a modest improvement for the spheres at radial

  18. Influence of detector pixel size, TOF resolution and DOI on image quality in MR-compatible whole-body PET

    International Nuclear Information System (INIS)

    Thoen, Hendrik; Keereman, Vincent; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan

    2013-01-01

    The optimization of a whole-body PET system remains a challenging task, as the imaging performance is influenced by a complex interaction of different design parameters. However, it is not always clear which parameters have the largest impact on image quality and are most eligible for optimization. To determine this, we need to be able to assess their influence on image quality. We performed Monte-Carlo simulations of a whole-body PET scanner to predict the influence on image quality of three detector parameters: the TOF resolution, the transverse pixel size and depth-of-interaction (DOI)-correction. The inner diameter of the PET scanner was 65 cm, small enough to allow physical integration into a simultaneous PET-MR system. Point sources were used to evaluate the influence of transverse pixel size and DOI-correction on spatial resolution as function of radial distance. To evaluate the influence on contrast recovery and pixel noise a cylindrical phantom of 35 cm diameter was used, representing a large patient. The phantom contained multiple hot lesions with 5 mm diameter. These lesions were placed at radial distances of 50, 100 and 150 mm from the center of the field-of-view, to be able to study the effects at different radial positions. The non-prewhitening (NPW) observer was used for objective analysis of the detectability of the hot lesions in the cylindrical phantom. Based on this analysis the NPW-SNR was used to quantify the relative improvements in image quality due to changes of the variable detector parameters. The image quality of a whole-body PET scanner can be improved significantly by reducing the transverse pixel size from 4 to 2.6 mm and improving the TOF resolution from 600 to 400 ps and further from 400 to 200 ps. Compared to pixel size, the TOF resolution has the larger potential to increase image quality for the simulated phantom. The introduction of two layer DOI-correction only leads to a modest improvement for the spheres at radial distance of

  19. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using 18F-FDG

    International Nuclear Information System (INIS)

    Kim, J.H.; Son, Y.D.; Kim, H.K.; Oh, C.H.; Kim, J.M.; Kim, Y.B.; Lee, C.

    2018-01-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using 18 F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using 18 F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  20. Development of scintillation materials for PET scanners

    CERN Document Server

    Korzhik, Mikhail; Annenkov, Alexander N; Borissevitch, Andrei; Dossovitski, Alexei; Missevitch, Oleg; Lecoq, Paul

    2007-01-01

    The growing demand on PET methodology for a variety of applications ranging from clinical use to fundamental studies triggers research and development of PET scanners providing better spatial resolution and sensitivity. These efforts are primarily focused on the development of advanced PET detector solutions and on the developments of new scintillation materials as well. However Lu containing scintillation materials introduced in the last century such as LSO, LYSO, LuAP, LuYAP crystals still remain the best PET species in spite of the recent developments of bright, fast but relatively low density lanthanum bromide scintillators. At the same time Lu based materials have several drawbacks which are high temperature of crystallization and relatively high cost compared to alkali-halide scintillation materials. Here we describe recent results in the development of new scintillation materials for PET application.

  1. A depth-of-interaction PET detector using mutual gain-equalized silicon photomultiplier

    International Nuclear Information System (INIS)

    Xi, W.; Weisenberger, A.G.; Dong, H.; Kross, Brian; Lee, S.; McKisson, J.; Zorn, Carl

    2012-01-01

    We developed a prototype high resolution, high efficiency depth-encoding detector for PET applications based on dual-ended readout of LYSO array with two silicon photomultipliers (SiPMs). Flood images, energy resolution, and depth-of-interaction (DOI) resolution were measured for a LYSO array - 0.7 mm in crystal pitch and 10 mm in thickness - with four unpolished parallel sides. Flood images were obtained such that individual crystal element in the array is resolved. The energy resolution of the entire array was measured to be 33%, while individual crystal pixel elements utilizing the signal from both sides ranged from 23.3% to 27%. By applying a mutual-gain equalization method, a DOI resolution of 2 mm for the crystal array was obtained in the experiments while simulations indicate ∼1 mm DOI resolution could possibly be achieved. The experimental DOI resolution can be further improved by obtaining revised detector supporting electronics with better energy resolutions. This study provides a detailed detector calibration and DOI response characterization of the dual-ended readout SiPM-based PET detectors, which will be important in the design and calibration of a PET scanner in the future.

  2. EGS4CYL a Montecarlo simulation method of a PET or spect equipment at high spatial resolution; EGS4CYL : un codice per simulazioni Montecarlo di un apparato PET ad alta risoluzione spaziale

    Energy Technology Data Exchange (ETDEWEB)

    Ferriani, S; Galli, M [ENEA, Centro Ricerche ` E. Clementel` , Bologna (Italy). Dip. Innovazione; Bollini, D [Bologna Univ. (Italy). Ist. di Fisica; [Istituto Nazionale di Fisica Nucleare, Bologna (Italy)

    1995-11-01

    This report describes a Montecarlo simulation method for the simulation of a Pet or Spect equipment. The method is based on the Egs4cyl code. This work has been done in the framework of the Hirespet collaboration, for the developing of an high spatial resolution tomograph, the method will be used for the project of the tomograph. The treated geometry consists of a set of coaxial cylinders, surrounded by a ring of detectors. The detectors have a box shape, a collimator in front of each of them can be included, by means of geometrical constraints to the incident particles. An isotropic source is in the middle of the system. For the particles transport the Egs4code is used, for storing and plotting results the Cern packages Higz and Hbook are used.

  3. Performance characteristics of 3D GSO PET/CT scanner (Philips GEMINI PET/CT)

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Jae Sung; Lee, Byeong Il; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul

    2004-01-01

    from the center. Scatter fraction was 40.6%, and peak true count rate and NECR were 88.9 kcps 12.9 kBq/mL and 34.3 kcps 8.84 kBq/mL. These characteristics are better than that of ECAT EXACT PET scanner with BGO crystal. The results of this field test demonstrate high resolution, sensitivity and count rate performance of the 3D PET/CT scanner with GSO crystal. The data provided here will be useful for the comparative study with other 3D PET/CT scanners using BGO or LSO crystals

  4. WE-G-209-03: PET

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, B. [Mayo Clinic (United States)

    2016-06-15

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This course will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.

  5. WE-G-209-03: PET

    International Nuclear Information System (INIS)

    Kemp, B.

    2016-01-01

    Digital radiography, CT, PET, and MR are complicated imaging modalities which are composed of many hardware and software components. These components work together in a highly coordinated chain of events with the intent to produce high quality images. Acquisition, processing and reconstruction of data must occur in a precise way for optimum image quality to be achieved. Any error or unexpected event in the entire process can produce unwanted pixel intensities in the final images which may contribute to visible image artifacts. The diagnostic imaging physicist is uniquely qualified to investigate and contribute to resolution of image artifacts. This course will teach the participant to identify common artifacts found clinically in digital radiography, CT, PET, and MR, to determine the causes of artifacts, and to make recommendations for how to resolve artifacts. Learning Objectives: Identify common artifacts found clinically in digital radiography, CT, PET and MR. Determine causes of various clinical artifacts from digital radiography, CT, PET and MR. Describe how to resolve various clinical artifacts from digital radiography, CT, PET and MR.

  6. Advances in hybrid MR–PET at 3 T and 9.4 T in humans

    Energy Technology Data Exchange (ETDEWEB)

    Jon Shah, N., E-mail: n.j.shah@fz-juelich.de [Institute of Neuroscience and Medicine-4, Research Centre Jülich, 52425 Jülich (Germany); Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University Aachen (Germany); Mauler, Jörg [Institute of Neuroscience and Medicine-4, Research Centre Jülich, 52425 Jülich (Germany); Neuner, Irene [Institute of Neuroscience and Medicine-4, Research Centre Jülich, 52425 Jülich (Germany); Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen (Germany); Oros-Peusquens, Ana-Maria; Romanzetti, Sandro; Vahedipour, Kaveh; Felder, Jörg; Celik, Avdo [Institute of Neuroscience and Medicine-4, Research Centre Jülich, 52425 Jülich (Germany); Iida, Hidehiro [Department of Investigative Radiology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita, Osaka, 565-8565 (Japan); Langen, Karl-Josef; Herzog, Hans [Institute of Neuroscience and Medicine-4, Research Centre Jülich, 52425 Jülich (Germany)

    2013-02-21

    Hybrid MR–PET data acquisition in simultaneous mode confers a number of advantages at 3 T and 9.4 T. From an MR perspective, the potential for ultra-high resolution structural imaging is discussed and example images of the cerebellum with an isotropic resolution of 320 μm are presented. Further, metabolic imaging is discussed and high-resolution images of the sodium distribution are demonstrated. Examples of tumour imaging on a 3 T MR–PET system are included and discussed.

  7. Advances in hybrid MR–PET at 3 T and 9.4 T in humans

    International Nuclear Information System (INIS)

    Jon Shah, N.; Mauler, Jörg; Neuner, Irene; Oros-Peusquens, Ana-Maria; Romanzetti, Sandro; Vahedipour, Kaveh; Felder, Jörg; Celik, Avdo; Iida, Hidehiro; Langen, Karl-Josef; Herzog, Hans

    2013-01-01

    Hybrid MR–PET data acquisition in simultaneous mode confers a number of advantages at 3 T and 9.4 T. From an MR perspective, the potential for ultra-high resolution structural imaging is discussed and example images of the cerebellum with an isotropic resolution of 320 μm are presented. Further, metabolic imaging is discussed and high-resolution images of the sodium distribution are demonstrated. Examples of tumour imaging on a 3 T MR–PET system are included and discussed

  8. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests.

    Science.gov (United States)

    Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H Sezer; Yeyin, Nami; Sönmezoğlu, Kerim

    2018-02-01

    The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated aspects were spatial resolution, sensitivity, scatter fraction, count rate performance, image quality, count loss and random events correction accuracy. The findings of this study demonstrated superior sensitivity (~ 4 folds) of PET scanner in PET/MR compared to PET/CT system. Image quality test exhibited higher contrast in PET/MR (~ 9%) compared with PET/CT. The scatter fraction of PET/MR was 43.4% at noise equivalent count rate (NECR) peak of 218 kcps and the corresponding activity concentration was 17.7 kBq/cc. Whereas the scatter fraction of PET/CT was found as 39.2% at NECR peak of 72 kcps and activity concentration of 24.3 kBq/cc. The percentage error of the random event correction accuracy was 3.4% and 3.1% in PET/MR and PET/CT, respectively. It was concluded that PET/MR system is about 4 times more sensitive than PET/CT, and the contrast of hot lesions in PET/MR was ~ 9% higher than PET/CT. These outcomes also emphasize the possibility to achieve excellent clinical PET images with low administered dose and/or a short acquisition time in PET/MR.

  9. RESOLUTE PET/MRI Attenuation Correction for O-(2-F-fluoroethyl)-L-tyrosine (FET) in Brain Tumor Patients with Metal Implants

    DEFF Research Database (Denmark)

    Ladefoged, Claes N; Andersen, Flemming L; Kjær, Andreas

    2017-01-01

    of agreement for TMAX/B was for RESOLUTE (-3%; 4%), Dixon (-9%; 16%), and UTE (-7%; 10%). The absolute error when measuring BTV was 0.7 ± 1.9 mL (N.S) with RESOLUTE, 5.3 ± 10 mL using Dixon, and 1.7 ± 3.7 mL using UTE. RESOLUTE performed best in the identification of the location of peak activity and in brain...... to be quantitatively correct in order to be used clinically, which require accurate attenuation correction (AC) in PET/MRI. The aim of this study was to evaluate the use of the subject-specific MR-derived AC method RESOLUTE in post-operative brain tumor patients.Methods:We analyzed 51 post-operative brain tumor...... patients (68 examinations, 200 MBq [18F]-FET) investigated in a PET/MRI scanner. MR-AC maps were acquired using: (1) the Dixon water fat separation sequence, (2) the ultra short echo time (UTE) sequences, (3) calculated using our new RESOLUTE methodology, and (4) a same day low-dose CT used as reference...

  10. Feasibility study of a highly sensitive LaBr{sub 3} PET scanner based on the DOI-dependent extended-energy window

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji [Naitonal Institute of Radiological Sciences, Chiba (Japan)], E-mail: rush@nirs.go.jp; Kitamura, Keishi [Shimadzu Corporation, Kyoto (Japan); Nishikido, Fumihiko; Shibuya, Kengo [Naitonal Institute of Radiological Sciences, Chiba (Japan); Hasegawa, Tomoyuki [Kitasato University, Kanagawa (Japan); Yamaya, Taiga; Inadama, Naoko; Murayama, Hideo [Naitonal Institute of Radiological Sciences, Chiba (Japan)

    2009-06-01

    Conventionally, positron emission tomograph (PET) scanners use scintillators which have a high effective atomic number. Recently, novel scintillators like LaBr{sub 3} have been developed which have excellent timing and energy resolutions. LaBr{sub 3} has a high performance for PET scanner use, but its effective atomic number is lower than that of lutetium oxyorthosilicate (LSO). As an alternative, we have developed a scatter reduction method using depth-of-interaction (DOI) information and energy information to increase the sensitivity. The sensitivity of the PET scanner with LaBr{sub 3} can be improved using the DOI-dependent extended-energy window (DEEW) method. In this work, our method is applied to the whole-body LSO/LaBr{sub 3} PET scanner using the GATE simulation toolkit. Simulation results show the number of true coincidences can be increased while minimizing the scatter and random coincidences by using the DEEW method. Noise equivalent count rate (NECR) can be improved by 20-70% for the whole-body DOI-PET scanner. Sensitivity of the PET scanner with a scintillator of low-effective atomic number can be improved by the DEEW method.

  11. PET performance and MRI compatibility evaluation of a digital, ToF-capable PET/MRI insert equipped with clinical scintillators

    International Nuclear Information System (INIS)

    Schug, David; Wehner, Jakob; Dueppenbecker, Peter Michael; Weissler, Bjoern; Goldschmidt, Benjamin; Schulz, Volkmar; Gebhardt, Pierre; Salomon, Andre; Kiessling, Fabian

    2015-01-01

    We evaluate the MR compatibility of the Hyperion-II D positron emission tomography (PET) insert, which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. In contrast to previous investigations, this work aims at the evaluation of a clinical crystal configuration. An imaging-capable demonstrator with an axial field-of-view of 32 mm and a crystal-to-crystal spacing of 217.6 mm was equipped with LYSO scintillators with a pitch of 4 mm which were read out in a one-to-one coupling scheme by sensor tiles composed of digital silicon photomultipliers from Philips Digital Photon Counting (DPC 3200-22). The PET performance degradation (energy resolution and coincidence resolution time (CRT)) was evaluated during simultaneous operation of the MRI scanner. We used clinically motivated imaging sequences as well as synthetic gradient stress test sequences. Without activity of the MRI scanner, we measured for trigger scheme 1 (first photon trigger) an energy resolution of 11.4% and a CRT of 213 ps for a narrow energy (NE) window using five 22 Na point-like sources. When applying the synthetic gradient sequences, we found worst-case relative degradations of the energy resolution by 5.1% and of the CRT by 33.9%. After identifying the origin of the degradations and implementing a fix to the read-out hardware, the same evaluation revealed no degradation of the PET performance anymore even when the most demanding gradient stress tests were applied. The PET performance of the insert was initially evaluated using the point sources, a high-activity phantom and hot-rod phantoms in order to assess the spatial resolution. Trigger schemes 2–4 delivered an energy resolution of 11.4% as well and CRTs of 279 ps, 333 ps and 557 ps for the NE window, respectively. An isocenter sensitivity of 0.41% using the NE window and 0.71% with a wide energy window was measured. Using a hot-rod phantom, a spatial resolution in the order of 2 mm was demonstrated and

  12. PET performance and MRI compatibility evaluation of a digital, ToF-capable PET/MRI insert equipped with clinical scintillators

    Science.gov (United States)

    Schug, David; Wehner, Jakob; Dueppenbecker, Peter Michael; Weissler, Bjoern; Gebhardt, Pierre; Goldschmidt, Benjamin; Salomon, Andre; Kiessling, Fabian; Schulz, Volkmar

    2015-09-01

    We evaluate the MR compatibility of the Hyperion-IID positron emission tomography (PET) insert, which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. In contrast to previous investigations, this work aims at the evaluation of a clinical crystal configuration. An imaging-capable demonstrator with an axial field-of-view of 32 mm and a crystal-to-crystal spacing of 217.6 mm was equipped with LYSO scintillators with a pitch of 4 mm which were read out in a one-to-one coupling scheme by sensor tiles composed of digital silicon photomultipliers from Philips Digital Photon Counting (DPC 3200-22). The PET performance degradation (energy resolution and coincidence resolution time (CRT)) was evaluated during simultaneous operation of the MRI scanner. We used clinically motivated imaging sequences as well as synthetic gradient stress test sequences. Without activity of the MRI scanner, we measured for trigger scheme 1 (first photon trigger) an energy resolution of 11.4% and a CRT of 213 ps for a narrow energy (NE) window using five 22Na point-like sources. When applying the synthetic gradient sequences, we found worst-case relative degradations of the energy resolution by 5.1% and of the CRT by 33.9%. After identifying the origin of the degradations and implementing a fix to the read-out hardware, the same evaluation revealed no degradation of the PET performance anymore even when the most demanding gradient stress tests were applied. The PET performance of the insert was initially evaluated using the point sources, a high-activity phantom and hot-rod phantoms in order to assess the spatial resolution. Trigger schemes 2-4 delivered an energy resolution of 11.4% as well and CRTs of 279 ps, 333 ps and 557 ps for the NE window, respectively. An isocenter sensitivity of 0.41% using the NE window and 0.71% with a wide energy window was measured. Using a hot-rod phantom, a spatial resolution in the order of 2 mm was demonstrated and the

  13. Inter regional correlations of glucose metabolism between the basal ganglia and different cortical areas: an ultra-high resolution PET/MRI fusion study using {sup 18}F-FDG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H. [Research Institute for Advanced Industrial Technology, Korea University, Sejong (Korea, Republic of); Son, Y.D.; Kim, H.K.; Oh, C.H., E-mail: ohch@korea.ac.kr [College of Health Science, Gachon University, Incheon, (Korea, Republic of); Kim, J.M. [College of Science and Technology, Korea University, Sejong (Korea, Republic of); Kim, Y.B. [Gachon University School of Medicine, Incheon (Korea, Republic of); Lee, C. [Bioimaging Research Team, Korea Basic Science Institute, Cheongju (Korea, Republic of)

    2018-02-01

    Basal ganglia have complex functional connections with the cerebral cortex and are involved in motor control, executive functions of the forebrain, such as the planning of movement, and cognitive behaviors based on their connections. The aim of this study was to provide detailed functional correlation patterns between the basal ganglia and cerebral cortex by conducting an inter regional correlation analysis of the {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET) data based on precise structural information. Fifteen participants were scanned with 7-Tesla magnetic resonance imaging (MRI) and high resolution research tomography (HRRT)-PET fusion system using {sup 18}F-FDG. For detailed inter regional correlation analysis, 24 subregions of the basal ganglia including pre-commissural dorsal caudate, post-commissural caudate, pre-commissural dorsal putamen, post-commissural putamen, internal globus pallidus, and external globus pallidus and 80 cerebral regions were selected as regions of interest on the MRI image and their glucose metabolism were calculated from the PET images. Pearson's product-moment correlation analysis was conducted for the inter regional correlation analysis of the basal ganglia. Functional correlation patterns between the basal ganglia and cerebral cortex were not only consistent with the findings of previous studies, but also showed new functional correlation between the dorsal striatum (i.e., caudate nucleus and putamen) and insula. In this study, we established the detailed basal ganglia subregional functional correlation patterns using {sup 18}F-FDG PET/MRI fusion imaging. Our methods and results could potentially be an important resource for investigating basal ganglia dysfunction as well as for conducting functional studies in the context of movement and psychiatric disorders. (author)

  14. Innovations in PET/CT

    DEFF Research Database (Denmark)

    Levin Klausen, T; Høgild Keller, S; Vinter Olesen, O

    2012-01-01

    especially as spatial resolution improves. Software based image fusion remains a complex issue outside the brain. State of the art image quality in a modern PET/CT system includes incorporation of point spread function (PSF) and time-of-flight (TOF) information into the reconstruction leading to the high...

  15. The journey: from X-rays to PET-MRI

    International Nuclear Information System (INIS)

    Sheikh, Tariq Hussain

    2010-01-01

    Full text: Medical imaging has undergone remarkable evolution over the past century. Since the discovery of the X-rays by (Wilhelm Conrad Roentgen), static emission tomography (Hal Anger) computed tomography (Godfrey Hounsfield and Alan Cormack), and magnetic resonance imaging (Paul Lauterbur and Peter Mansfield) there have been many other important discoveries and technical developments that have culminated in our current sophisticated multi-modality imaging systems. Nobel Prizes have been given for the discoveries of radioactivity (Marie Curie, Pierre Curie, and Henri Becquerel in 1903) and the positron (Carl Anderson in 1936) and for technical developments such as the radiotracer concept (George De Hevesy in 1943). Positron emission detection systems have developed since their first use in the 1950s to the high-resolution, high-sensitivity tomographic devices that we have today. In keeping pace with these milestones in the evolution of medical imaging, positron emission tomography (PET), and more recently integrated positron emission tomography-computed tomography (PET-CT), have now emerged not only as important research tools but also as significant diagnostic imaging systems in clinical medicine. The use of multi-modality imaging systems and 'smart' specific imaging agents will achieve the key task of accurate diagnosis, treatment evaluation, surveillance, and prognosis in individual patients. PET-CT instrumentation has continued to evolve rapidly, especially over the last decade A PET scanner is combined with a CT scanner into a single machine. The PET and CT components are mounted on the same aluminium support with the CT on the front and PET at the back. Metabolic information is obtained from the PET scanner (emission of annihilation photons) and anatomic information is obtained from the CT scan (transmission of X-Rays). In addition, the CT scan can be used to provide information needed for attenuation correction. The current generation of PET-CT scanners

  16. FIRST: Fast Iterative Reconstruction Software for (PET) tomography

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J L [Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S [Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Vaquero, J J [Unidad de Medicina y CirugIa Experimental, Hospital GU Gregorio Maranon, Madrid (Spain); Desco, M [Unidad de Medicina y CirugIa Experimental, Hospital GU Gregorio Maranon, Madrid (Spain); UdIas, J M [Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2006-09-21

    Small animal PET scanners require high spatial resolution and good sensitivity. To reconstruct high-resolution images in 3D-PET, iterative methods, such as OSEM, are superior to analytical reconstruction algorithms, although their high computational cost is still a serious drawback. The higher performance of modern computers could make iterative image reconstruction fast enough to be viable, provided we are able to deal with the large number of probability coefficients for the system response matrix in high-resolution PET scanners, which is a difficult task that prevents the algorithms from reaching peak computing performance. Considering all possible axial and in-plane symmetries, as well as certain quasi-symmetries, we have been able to reduce the memory requirements to store the system response matrix (SRM) well below 1 GB, which allows us to keep the whole response matrix of the system inside RAM of ordinary industry-standard computers, so that the reconstruction algorithm can achieve near peak performance. The elements of the SRM are stored as cubic spline profiles and matched to voxel size during reconstruction. In this way, the advantages of 'on-the-fly' calculation and of fully stored SRM are combined. The on-the-fly part of the calculation (matching the profile functions to voxel size) of the SRM accounts for 10-30% of the reconstruction time, depending on the number of voxels chosen. We tested our approach with real data from a commercial small animal PET scanner. The results (image quality and reconstruction time) show that the proposed technique is a feasible solution.

  17. FIRST: Fast Iterative Reconstruction Software for (PET) tomography

    International Nuclear Information System (INIS)

    Herraiz, J L; Espana, S; Vaquero, J J; Desco, M; UdIas, J M

    2006-01-01

    Small animal PET scanners require high spatial resolution and good sensitivity. To reconstruct high-resolution images in 3D-PET, iterative methods, such as OSEM, are superior to analytical reconstruction algorithms, although their high computational cost is still a serious drawback. The higher performance of modern computers could make iterative image reconstruction fast enough to be viable, provided we are able to deal with the large number of probability coefficients for the system response matrix in high-resolution PET scanners, which is a difficult task that prevents the algorithms from reaching peak computing performance. Considering all possible axial and in-plane symmetries, as well as certain quasi-symmetries, we have been able to reduce the memory requirements to store the system response matrix (SRM) well below 1 GB, which allows us to keep the whole response matrix of the system inside RAM of ordinary industry-standard computers, so that the reconstruction algorithm can achieve near peak performance. The elements of the SRM are stored as cubic spline profiles and matched to voxel size during reconstruction. In this way, the advantages of 'on-the-fly' calculation and of fully stored SRM are combined. The on-the-fly part of the calculation (matching the profile functions to voxel size) of the SRM accounts for 10-30% of the reconstruction time, depending on the number of voxels chosen. We tested our approach with real data from a commercial small animal PET scanner. The results (image quality and reconstruction time) show that the proposed technique is a feasible solution

  18. High value carbon materials from PET recycling

    International Nuclear Information System (INIS)

    Parra, J.B.; Ania, C.O.; Arenillas, A.; Rubiera, F.; Pis, J.J.

    2004-01-01

    Poly(ethylene) terephthalate (PET), has become one of the major post-consumer plastic waste. In this work special attention was paid to minimising PET residues and to obtain a high value carbon material. Pyrolysis and subsequent activation of PET from post-consumer soft-drink bottles was performed. Activation was carried out at 925 deg. C under CO 2 atmosphere to different burn-off degrees. Textural characterisation of the samples was carried out by performing N 2 adsorption isotherms at -196 deg. C. The obtained carbons materials were mainly microporous, presenting low meso and macroporosity, and apparent BET surface areas of upto 2500 m 2 g -1 . The capacity of these materials for phenol adsorption and PAHs removal from aqueous solutions was measured and compared with that attained with commercial active carbons. Preliminary tests also showed high hydrogen uptake values, as good as the results obtained with high-tech carbon materials

  19. Combining endoscopic ultrasound with Time-Of-Flight PET: The EndoTOFPET-US Project

    CERN Document Server

    Frisch, Benjamin

    2013-01-01

    The EndoTOFPET-US collaboration develops a multimodal imaging technique for endoscopic exams of the pancreas or the prostate. It combines the benefits of high resolution metabolic imaging with Time-Of-Flight Positron Emission Tomography (TOF PET) and anatomical imaging with ultrasound (US). EndoTOFPET-US consists of a PET head extension for a commercial US endoscope and a PET plate outside the body in coincidence with the head. The high level of miniaturization and integration creates challenges in fields such as scintillating crystals, ultra-fast photo-detection, highly integrated electronics, system integration and image reconstruction. Amongst the developments, fast scintillators as well as fast and compact digital SiPMs with single SPAD readout are used to obtain the best coincidence time resolution (CTR). Highly integrated ASICs and DAQ electronics contribute to the timing performances of EndoTOFPET. In view of the targeted resolution of around 1 mm in the reconstructed image, we present a prototype dete...

  20. Research of digital constant fraction discriminator in PET system

    International Nuclear Information System (INIS)

    Du Yaoyao; Hu Xuanhou; Wu Jianping; Wang Peilin; Li Xiaohui; Li Daowu; Li Ke; Wei Long

    2012-01-01

    The research on digital constant fraction discriminator of spike pulse signal in PET detector is introduced. Based on FPGA technique, rapid signal's time information is extracted via DCFD algorithm after a high-speed ADC digitization. Experiment results show that time resolution of DCFD is 772 ps, which meets the requirement of time measurement in PET system well. (authors)

  1. Characterization of Sensitivity Encoded Silicon Photomultiplier (SeSP) with 1-Dimensional and 2-Dimensional Encoding for High Resolution PET/MR

    Science.gov (United States)

    Omidvari, Negar; Schulz, Volkmar

    2015-06-01

    This paper evaluates the performance of a new type of PET detectors called sensitivity encoded silicon photomultiplier (SeSP), which allows a direct coupling of small-pitch crystal arrays to the detector with a reduction in the number of readout channels. Four SeSP devices with two separate encoding schemes of 1D and 2D were investigated in this study. Furthermore, both encoding schemes were manufactured in two different sizes of 4 ×4 mm2 and 7. 73 ×7. 9 mm2, in order to investigate the effect of size on detector parameters. All devices were coupled to LYSO crystal arrays with 1 mm pitch size and 10 mm height, with optical isolation between crystals. The characterization was done for the key parameters of crystal-identification, energy resolution, and time resolution as a function of triggering threshold and over-voltage (OV). Position information was archived using the center of gravity (CoG) algorithm and a least squares approach (LSQA) in combination with a mean light matrix around the photo-peak. The positioning results proved the capability of all four SeSP devices in precisely identifying all crystals coupled to the sensors. Energy resolution was measured at different bias voltages, varying from 12% to 18% (FWHM) and paired coincidence time resolution (pCTR) of 384 ps to 1.1 ns was obtained for different SeSP devices at about 18 °C room temperature. However, the best time resolution was achieved at the highest over-voltage, resulting in a noise ratio of 99.08%.

  2. High value carbon materials from PET recycling

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.B.; Ania, C.O.; Arenillas, A.; Rubiera, F.; Pis, J.J

    2004-11-15

    Poly(ethylene) terephthalate (PET), has become one of the major post-consumer plastic waste. In this work special attention was paid to minimising PET residues and to obtain a high value carbon material. Pyrolysis and subsequent activation of PET from post-consumer soft-drink bottles was performed. Activation was carried out at 925 deg. C under CO{sub 2} atmosphere to different burn-off degrees. Textural characterisation of the samples was carried out by performing N{sub 2} adsorption isotherms at -196 deg. C. The obtained carbons materials were mainly microporous, presenting low meso and macroporosity, and apparent BET surface areas of upto 2500 m{sup 2} g{sup -1}. The capacity of these materials for phenol adsorption and PAHs removal from aqueous solutions was measured and compared with that attained with commercial active carbons. Preliminary tests also showed high hydrogen uptake values, as good as the results obtained with high-tech carbon materials.

  3. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko; Tashima, Hideaki [National Institute of Radiological Sciences, Chiba (Japan); Suga, Mikio [Chiba University, Chiba (Japan); Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan)

    2015-05-18

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  4. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tashima, Hideaki; Suga, Mikio; Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga

    2015-01-01

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  5. National Electrical Manufacturers Association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT scanner.

    Science.gov (United States)

    Szanda, Istvan; Mackewn, Jane; Patay, Gergely; Major, Peter; Sunassee, Kavitha; Mullen, Gregory E; Nemeth, Gabor; Haemisch, York; Blower, Philip J; Marsden, Paul K

    2011-11-01

    of detector crystals, arranged with a fine pitch, results in excellent spatial resolution, which is the best reported for currently available commercial systems. The absolute sensitivity is high over the field of view. Combined with the excellent image quality, these features make the NanoPET/CT a powerful tool for preclinical research.

  6. Development of a multiplexed readout with high position resolution for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangwon; Choi, Yong [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107 (Korea, Republic of); Kang, Jihoon [Department of Biomedical Engineering, Chonnam National University, Yeosu 550-749 (Korea, Republic of); Jung, Jin Ho [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107 (Korea, Republic of)

    2017-04-01

    Detector signals for positron emission tomography (PET) are commonly multiplexed to reduce the number of digital processing channels so that the system can remain cost effective while also maintaining imaging performance. In this work, a multiplexed readout combining Anger position estimation algorithm and position decoder circuit (PDC) was developed to reduce the number of readout channels by a factor of 24, 96-to-4. The data acquisition module consisted of a TDC (50 ps resolution), 4-channel ADCs (12 bit, 105 MHz sampling rate), 2 GB SDRAM and USB3.0. The performance of the multiplexed readout was assessed with a high-resolution PET detector block composed of 2×3 detector modules, each consisting of an 8×8 array of 1.52×1.52×6 mm{sup 3} LYSO, a 4×4 array of 3×3 mm{sup 2} silicon photomultiplier (SiPM) and 13.4×13.4 mm{sup 2} light guide with 0.7 mm thickness. The acquired flood histogram showed that all 384 crystals could be resolved. The average energy resolution at 511 keV was 13.7±1.6% full-width-at-half-maximum (FWHM) and the peak-to-valley ratios of the flood histogram on the horizontal and vertical lines were 18.8±0.8 and 22.8±1.3, respectively. The coincidence resolving time of a pair of detector blocks was 6.2 ns FWHM. The reconstructed phantom image showed that rods down to a diameter of 1.6 mm could be resolved. The results of this study indicate that the multiplexed readout would be useful in developing a PET with a spatial resolution less than the pixel size of the photosensor, such as a SiPM array.

  7. High-resolution pulmonary ventilation and perfusion PET/CT allows for functionally adapted intensity modulated radiotherapy in lung cancer

    International Nuclear Information System (INIS)

    Siva, Shankar; Thomas, Roshini; Callahan, Jason; Hardcastle, Nicholas; Pham, Daniel; Kron, Tomas; Hicks, Rodney J.; MacManus, Michael P.; Ball, David L.; Hofman, Michael S.

    2015-01-01

    Background and purpose: To assess the utility of functional lung avoidance using IMRT informed by four-dimensional (4D) ventilation/perfusion (V/Q) PET/CT. Materials and methods: In a prospective clinical trial, patients with non-small cell lung cancer (NSCLC) underwent 4D-V/Q PET/CT scanning before 60 Gy of definitive chemoradiation. Both “highly perfused” (HPLung) and “highly ventilated” (HVLung) lung volumes were delineated using a 70th centile SUV threshold, and a “ventilated lung volume” (VLung) was created using a 50th centile SUV threshold. For each patient four IMRT plans were created, optimised to the anatomical lung, HPLung, HVLung and VLung volumes, respectively. Improvements in functional dose volumetrics when optimising to functional volumes were assessed using mean lung dose (MLD), V5, V10, V20, V30, V40, V50 and V60 parameters. Results: The study cohort consisted of 20 patients with 80 IMRT plans. Plans optimised to HPLung resulted in a significant reduction of functional MLD by a mean of 13.0% (1.7 Gy), p = 0.02. Functional V5, V10 and V20 were improved by 13.2%, 7.3% and 3.8% respectively (p-values < 0.04). There was no significant sparing of dose to functional lung when adapting to VLung or HVLung. Plan quality was highly consistent with a mean PTV D95 and D5 ranging from 60.8 Gy to 61.0 Gy and 63.4 Gy to 64.5 Gy, respectively, and mean conformity and heterogeneity index ranging from 1.11 to 1.17 and 0.94 to 0.95, respectively. Conclusion: IMRT plans adapted to perfused but not ventilated lung on 4D-V/Q PET/CT allowed for reduced dose to functional lung whilst maintaining consistent plan quality

  8. Clinical applications of PET/CT

    International Nuclear Information System (INIS)

    Le Ngoc Ha

    2011-01-01

    The purpose of this article is to review the evolution of PET, PET/CT focusing on the technical aspects, PET radiopharmaceutical developments and current clinical applications as well. The newest technologic advances have been reviewed, including improved crystal design, acquisition modes, reconstruction algorithms, etc. These advancements will continue to improve contrast, decrease noise, and increase resolution. Combined PET/CT system provides faster attenuation correction and useful anatomic correlation to PET functional information. A number of new radiopharmaceuticals used for PET imaging have been developed, however, FDG have been considered as the principal PET radiotracer. The current clinical applications of PET and PET/CT are widespread and include oncology, cardiology and neurology. (author)

  9. Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI

    International Nuclear Information System (INIS)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-01-01

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm 3 . For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0

  10. Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI

    Science.gov (United States)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-07-01

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm3. For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0

  11. Sensitivity encoded silicon photomultiplier--a new sensor for high-resolution PET-MRI.

    Science.gov (United States)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-07-21

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm(3). For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0

  12. Application of the compress sensing theory for improvement of the TOF resolution in a novel J-PET instrument

    Directory of Open Access Journals (Sweden)

    Raczyński Lech

    2016-03-01

    Full Text Available Nowadays, in positron emission tomography (PET systems, a time of flight (TOF information is used to improve the image reconstruction process. In TOF-PET, fast detectors are able to measure the difference in the arrival time of the two gamma rays, with the precision enabling to shorten significantly a range along the line-of-response (LOR where the annihilation occurred. In the new concept, called J-PET scanner, gamma rays are detected in plastic scintillators. In a single strip of J-PET system, time values are obtained by probing signals in the amplitude domain. Owing to compressive sensing (CS theory, information about the shape and amplitude of the signals is recovered. In this paper, we demonstrate that based on the acquired signals parameters, a better signal normalization may be provided in order to improve the TOF resolution. The procedure was tested using large sample of data registered by a dedicated detection setup enabling sampling of signals with 50-ps intervals. Experimental setup provided irradiation of a chosen position in the plastic scintillator strip with annihilation gamma quanta.

  13. 3D Surface Realignment Tracking for Medical Imaging: A Phantom Study with PET Motion Correction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Jensen, Rasmus Ramsbøl

    2011-01-01

    We present a complete system for motion correction in high resolution brain positron emission tomography (PET) imaging. It is based on a compact structured light scanner mounted above the patient tunnel of the Siemens High Resolution Research Tomograph PET brain scanner. The structured light system...... is equipped with a near infrared diode and uses phase-shift interferometry to compute 3D representations of the forehead of the patient. These 3D point clouds are progressively aligned to a reference surface and thereby giving the head pose changes. The estimated pose changes are used to reposition a sequence...... of recon- structed PET frames. To align the structured light system with the PET coordinate system a novel registration algorithm based on the PET trans- mission scan and an initial surface has been developed. The performance of the complete setup has been evaluated using a custom made phantom based...

  14. Optimization of super-resolution processing using incomplete image sets in PET imaging.

    Science.gov (United States)

    Chang, Guoping; Pan, Tinsu; Clark, John W; Mawlawi, Osama R

    2008-12-01

    Super-resolution (SR) techniques are used in PET imaging to generate a high-resolution image by combining multiple low-resolution images that have been acquired from different points of view (POVs). The number of low-resolution images used defines the processing time and memory storage necessary to generate the SR image. In this paper, the authors propose two optimized SR implementations (ISR-1 and ISR-2) that require only a subset of the low-resolution images (two sides and diagonal of the image matrix, respectively), thereby reducing the overall processing time and memory storage. In an N x N matrix of low-resolution images, ISR-1 would be generated using images from the two sides of the N x N matrix, while ISR-2 would be generated from images across the diagonal of the image matrix. The objective of this paper is to investigate whether the two proposed SR methods can achieve similar performance in contrast and signal-to-noise ratio (SNR) as the SR image generated from a complete set of low-resolution images (CSR) using simulation and experimental studies. A simulation, a point source, and a NEMA/IEC phantom study were conducted for this investigation. In each study, 4 (2 x 2) or 16 (4 x 4) low-resolution images were reconstructed from the same acquired data set while shifting the reconstruction grid to generate images from different POVs. SR processing was then applied in each study to combine all as well as two different subsets of the low-resolution images to generate the CSR, ISR-1, and ISR-2 images, respectively. For reference purpose, a native reconstruction (NR) image using the same matrix size as the three SR images was also generated. The resultant images (CSR, ISR-1, ISR-2, and NR) were then analyzed using visual inspection, line profiles, SNR plots, and background noise spectra. The simulation study showed that the contrast and the SNR difference between the two ISR images and the CSR image were on average 0.4% and 0.3%, respectively. Line profiles of

  15. Development of a Single Detector Ring Micro Crystal Element Scanner: QuickPET II

    Directory of Open Access Journals (Sweden)

    Robert S. Miyaoka

    2005-04-01

    Full Text Available This article describes a single ring version of the micro crystal element scanner (MiCES and investigation of its spatial resolution imaging characteristics for mouse positron emission tomography (PET imaging. This single ring version of the MiCES system, referred to as QuickPET II, consists of 18 MiCE detector modules mounted as a single ring in a vertical gantry. The system has a 5.76-cm transverse field of view and a 1.98-cm axial field of view. In addition to the scanner and data acquisition system, we have developed an iterative reconstruction that includes a model of the system's detector response function. Evaluation images of line sources and mice have been acquired. Using filtered backprojection, the resolution for a reconstructed line source has been measured at 1.2 mm full width at half maximum. F-18-2-fluoro-2-deoxyglucose mouse PET images are provided. The result shows that QuickPET II has the imaging characteristics to support high-resolution, static mouse PET studies using 18-F labeled compounds.

  16. Development of high-resolution detector module with depth of interaction identification for positron emission tomography

    International Nuclear Information System (INIS)

    Niknejad, Tahereh; Pizzichemi, Marco; Stringhini, Gianluca; Auffray, Etiennette; Bugalho, Ricardo; Da Silva, Jose Carlos; Di Francesco, Agostino; Ferramacho, Luis; Lecoq, Paul; Leong, Carlos; Paganoni, Marco; Rolo, Manuel; Silva, Rui; Silveira, Miguel; Tavernier, Stefaan; Varela, Joao; Zorraquino, Carlos

    2017-01-01

    We have developed a Time-of-flight high resolution and commercially viable detector module for the application in small PET scanners. A new approach to depth of interaction (DOI) encoding with low complexity for a pixelated crystal array using a single side readout and 4-to-1 coupling between scintillators and photodetectors was investigated. In this method the DOI information is estimated using the light sharing technique. The detector module is a 1.53×1.53×15 mm"3 matrix of 8×8 LYSO scintillator with lateral surfaces optically depolished separated by reflective foils. The crystal array is optically coupled to 4×4 silicon photomultipliers (SiPM) array and readout by a high performance front-end ASIC with TDC capability (50 ps time binning). The results show an excellent crystal identification for all the scintillators in the matrix, a timing resolution of 530 ps, an average DOI resolution of 5.17 mm FWHM and an average energy resolution of 18.29% FWHM. - Highlights: • A new method for DOI encoding for PET detectors based on light sharing is proposed. • A prototype module with LYSO scintillator matrix coupled to SiPMs array is produced. • The module has one side readout and 4-to-1 coupling between scintillators and SiPMs. • A compact TOF front-end ASIC is used. • Excellent performances are shown by the prototype module.

  17. Development of high-resolution detector module with depth of interaction identification for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Niknejad, Tahereh, E-mail: tniknejad@lip.pt [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Pizzichemi, Marco [University of Milano-Bicocca (Italy); Stringhini, Gianluca [University of Milano-Bicocca (Italy); CERN, Geneve (Switzerland); Auffray, Etiennette [CERN, Geneve (Switzerland); Bugalho, Ricardo; Da Silva, Jose Carlos; Di Francesco, Agostino [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Ferramacho, Luis [PETsys Electronics, Oeiras (Portugal); Lecoq, Paul [CERN, Geneve (Switzerland); Leong, Carlos [PETsys Electronics, Oeiras (Portugal); Paganoni, Marco [University of Milano-Bicocca (Italy); Rolo, Manuel [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); INFN, Turin (Italy); Silva, Rui [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Silveira, Miguel [PETsys Electronics, Oeiras (Portugal); Tavernier, Stefaan [PETsys Electronics, Oeiras (Portugal); Vrije Universiteit Brussel (Belgium); Varela, Joao [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); CERN, Geneve (Switzerland); Zorraquino, Carlos [Biomedical Image Technologies Lab, Universidad Politécnica de Madrid (Spain); CIBER-BBN, Universidad Politécnica de Madrid (Spain)

    2017-02-11

    We have developed a Time-of-flight high resolution and commercially viable detector module for the application in small PET scanners. A new approach to depth of interaction (DOI) encoding with low complexity for a pixelated crystal array using a single side readout and 4-to-1 coupling between scintillators and photodetectors was investigated. In this method the DOI information is estimated using the light sharing technique. The detector module is a 1.53×1.53×15 mm{sup 3} matrix of 8×8 LYSO scintillator with lateral surfaces optically depolished separated by reflective foils. The crystal array is optically coupled to 4×4 silicon photomultipliers (SiPM) array and readout by a high performance front-end ASIC with TDC capability (50 ps time binning). The results show an excellent crystal identification for all the scintillators in the matrix, a timing resolution of 530 ps, an average DOI resolution of 5.17 mm FWHM and an average energy resolution of 18.29% FWHM. - Highlights: • A new method for DOI encoding for PET detectors based on light sharing is proposed. • A prototype module with LYSO scintillator matrix coupled to SiPMs array is produced. • The module has one side readout and 4-to-1 coupling between scintillators and SiPMs. • A compact TOF front-end ASIC is used. • Excellent performances are shown by the prototype module.

  18. Investigation of the limitations of the highly pixilated CdZnTe detector for PET applications.

    Science.gov (United States)

    Komarov, Sergey; Yin, Yongzhi; Wu, Heyu; Wen, Jie; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2012-11-21

    We are investigating the feasibility of a high resolution positron emission tomography (PET) insert device based on the CdZnTe detector with 350 µm anode pixel pitch to be integrated into a conventional animal PET scanner to improve its image resolution. In this paper, we have used a simplified version of the multi pixel CdZnTe planar detector, 5 mm thick with 9 anode pixels only. This simplified 9 anode pixel structure makes it possible to carry out experiments without a complete application-specific integrated circuits readout system that is still under development. Special attention was paid to the double pixel (or charge sharing) detections. The following characteristics were obtained in experiment: energy resolution full-width-at-half-maximum (FWHM) is 7% for single pixel and 9% for double pixel photoelectric detections of 511 keV gammas; timing resolution (FWHM) from the anode signals is 30 ns for single pixel and 35 ns for double pixel detections (for photoelectric interactions only the corresponding values are 20 and 25 ns); position resolution is 350 µm in x,y-plane and ∼0.4 mm in depth-of-interaction. The experimental measurements were accompanied by Monte Carlo (MC) simulations to find a limitation imposed by spatial charge distribution. Results from MC simulations suggest the limitation of the intrinsic spatial resolution of the CdZnTe detector for 511 keV photoelectric interactions is 170 µm. The interpixel interpolation cannot recover the resolution beyond the limit mentioned above for photoelectric interactions. However, it is possible to achieve higher spatial resolution using interpolation for Compton scattered events. Energy and timing resolution of the proposed 350 µm anode pixel pitch detector is no better than 0.6% FWHM at 511 keV, and 2 ns FWHM, respectively. These MC results should be used as a guide to understand the performance limits of the pixelated CdZnTe detector due to the underlying detection processes, with the understanding of

  19. New cardiac cameras: single-photon emission CT and PET.

    Science.gov (United States)

    Slomka, Piotr J; Berman, Daniel S; Germano, Guido

    2014-07-01

    Nuclear cardiology instrumentation has evolved significantly in the recent years. Concerns about radiation dose and long acquisition times have propelled developments of dedicated high-efficiency cardiac SPECT scanners. Novel collimator designs, such as multipinhole or locally focusing collimators arranged in geometries that are optimized for cardiac imaging, have been implemented to enhance photon-detection sensitivity. Some of these new SPECT scanners use solid-state photon detectors instead of photomultipliers to improve image quality and to reduce the scanner footprint. These new SPECT devices allow dramatic up to 7-fold reduction in acquisition times or similar reduction in radiation dose. In addition, new hardware for photon attenuation correction allowing ultralow radiation doses has been offered by some vendors. To mitigate photon attenuation artifacts for the new SPECT scanners not equipped with attenuation correction hardware, 2-position (upright-supine or prone-supine) imaging has been proposed. PET hardware developments have been primarily driven by the requirements of oncologic imaging, but cardiac imaging can benefit from improved PET image quality and improved sensitivity of 3D systems. The time-of-flight reconstruction combined with resolution recovery techniques is now implemented by all major PET vendors. These new methods improve image contrast and image resolution and reduce image noise. High-sensitivity 3D PET without interplane septa allows reduced radiation dose for cardiac perfusion imaging. Simultaneous PET/MR hybrid system has been developed. Solid-state PET detectors with avalanche photodiodes or digital silicon photomultipliers have been introduced, and they offer improved imaging characteristics and reduced sensitivity to electromagnetic MR fields. Higher maximum count rate of the new PET detectors allows routine first-pass Rb-82 imaging, with 3D PET acquisition enabling clinical utilization of dynamic imaging with myocardial flow

  20. Multiphase contrast-enhanced CT with highly concentrated contrast agent can be used for PET attenuation correction in integrated PET/CT imaging

    International Nuclear Information System (INIS)

    Aschoff, Philip; Plathow, Christian; Lichy, Matthias P.; Claussen, Claus D.; Pfannenberg, Christina; Beyer, Thomas; Erb, Gunter; Oeksuez, Mehmet Oe.

    2012-01-01

    State-of-the-art positron emission tomography/computed tomography (PET/CT) systems incorporate multislice CT technology, thus facilitating the acquisition of multiphase, contrast-enhanced CT data as part of integrated PET/CT imaging protocols. We assess the influence of a highly concentrated iodinated contrast medium (CM) on quantification and image quality following CT-based attenuation correction (CT-AC) in PET/CT. Twenty-eight patients with suspected malignant liver lesions were enrolled prospectively. PET/CT was performed 60 min after injection of 400 MBq of 18 F-fluorodeoxyglucose (FDG) and following the biphasic administration of an intravenous CM (400 mg iodine/ml, Iomeron 400). PET images were reconstructed with CT-AC using any of four acquired CT image sets: non-enhanced, pre-contrast (n-PET), arterial phase (art-PET), portal venous phase (pv-PET) and late phase (late-PET). Normal tissue activity and liver lesions were assessed visually and quantitatively on each PET/CT image set. Visual assessment of PET following CT-AC revealed no noticeable difference in image appearance or quality when using any of the four CT data sets for CT-AC. A total of 44 PET-positive liver lesions was identified in 21 of 28 patients. There were no false-negative or false-positive lesions on PET. Mean standardized uptake values (SUV) in 36 evaluable lesions were: 5.5 (n-PET), 5.8 (art-PET), 5.8 (pv-PET) and 5.8 (late-PET), with the highest mean increase in mean SUV of 6%. Mean SUV changes in liver background increased by up to 10% from n-PET to pv-PET. Multiphase CT data acquired with the use of highly concentrated CM can be used for qualitative assessment of liver lesions in torso FDG PET/CT. The influence on quantification of FDG uptake is small and negligible for most clinical applications. (orig.)

  1. Evaluation of PeneloPET Simulations of Biograph PET/CT Scanners

    Science.gov (United States)

    Abushab, K. M.; Herraiz, J. L.; Vicente, E.; Cal-González, J.; España, S.; Vaquero, J. J.; Jakoby, B. W.; Udías, J. M.

    2016-06-01

    Monte Carlo (MC) simulations are widely used in positron emission tomography (PET) for optimizing detector design, acquisition protocols, and evaluating corrections and reconstruction methods. PeneloPET is a MC code based on PENELOPE, for PET simulations which considers detector geometry, acquisition electronics and materials, and source definitions. While PeneloPET has been successfully employed and validated with small animal PET scanners, it required a proper validation with clinical PET scanners including time-of-flight (TOF) information. For this purpose, we chose the family of Biograph PET/CT scanners: the Biograph True-Point (B-TP), Biograph True-Point with TrueV (B-TPTV) and the Biograph mCT. They have similar block detectors and electronics, but a different number of rings and configuration. Some effective parameters of the simulations, such as the dead-time and the size of the reflectors in the detectors, were adjusted to reproduce the sensitivity and noise equivalent count (NEC) rate of the B-TPTV scanner. These parameters were then used to make predictions of experimental results such as sensitivity, NEC rate, spatial resolution, and scatter fraction (SF), from all the Biograph scanners and some variations of them (energy windows and additional rings of detectors). Predictions agree with the measured values for the three scanners, within 7% (sensitivity and NEC rate) and 5% (SF). The resolution obtained for the B-TPTV is slightly better (10%) than the experimental values. In conclusion, we have shown that PeneloPET is suitable for simulating and investigating clinical systems with good accuracy and short computational time, though some effort tuning of a few parameters of the scanners modeled may be needed in case that the full details of the scanners studied are not available.

  2. PET/CT for the staging and follow-up of patients with malignancies

    International Nuclear Information System (INIS)

    Poeppel, T.D.; Krause, B.J.; Heusner, T.A.; Boy, C.; Bockisch, A.; Antoch, G.

    2009-01-01

    Positron emission tomography (PET) and computed tomography (CT) complement each other's strengths in integrated PET/CT. PET is a highly sensitive modality to depict the whole-body distribution of positron-emitting biomarkers indicating tumour metabolic activity. However, conventional PET imaging is lacking detailed anatomical information to precisely localise pathologic findings. CT imaging can readily provide the required morphological data. Thus, integrated PET/CT represents an efficient tool for whole-body staging and functional assessment within one examination. Due to developments in system technology PET/CT devices are continually gaining spatial resolution and imaging speed. Whole-body imaging from the head to the upper thighs is accomplished in less than 20 min. Spatial resolution approaches 2-4 mm. Most PET/CT studies in oncology are performed with 18 F-labelled fluoro-deoxy-D-glucose (FDG). FDG is a glucose analogue that is taken up and trapped within viable cells. An increased glycolytic activity is a characteristic in many types of cancers resulting in avid accumulation of FDG. These tumours excel as 'hot spots' in FDG-PET/CT imaging. FDG-PET/CT proved to be of high diagnostic value in staging and restaging of different malignant diseases, such as colorectal cancer, lung cancer, breast cancer, head and neck cancer, malignant lymphomas, and many more. The standard whole-body coverage simplifies staging and speeds up decision processes to determine appropriate therapeutic strategies. Further development and implementation of new PET-tracers in clinical routine will continually increase the number of PET/CT indications. This promotes PET/CT as the imaging modality of choice for working-up of the most common tumour entities as well as some of the rare malignancies.

  3. Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET

    Science.gov (United States)

    Harzmann, S.; Braun, F.; Zakhnini, A.; Weber, W. A.; Pietrzyk, U.; Mix, M.

    2014-02-01

    Small animal Positron Emission Tomography (PET) should provide accurate quantification of regional radiotracer concentrations and high spatial resolution. This is challenging for non-pure positron emitters with high positron endpoint energies, such as I-124: On the one hand the cascade gammas emitted from this isotope can produce coincidence events with the 511 keV annihilation photons leading to quantification errors. On the other hand the long range of the high energy positron degrades spatial resolution. This paper presents the implementation of a comprehensive correction technique for both of these effects. The established corrections include a modified sinogram-based tail-fitting approach to correct for scatter, random and cascade gamma coincidences and a compensation for resolution degradation effects during the image reconstruction. Resolution losses were compensated for by an iterative algorithm which incorporates a convolution kernel derived from line source measurements for the microPET Focus 120 system. The entire processing chain for these corrections was implemented, whereas previous work has only addressed parts of this process. Monte Carlo simulations with GATE and measurements of mice with the microPET Focus 120 show that the proposed method reduces absolute quantification errors on average to 2.6% compared to 15.6% for the ordinary Maximum Likelihood Expectation Maximization algorithm. Furthermore resolution was improved in the order of 11-29% depending on the number of convolution iterations. In summary, a comprehensive, fast and robust algorithm for the correction of small animal PET studies with I-124 was developed which improves quantitative accuracy and spatial resolution.

  4. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  5. Characterization of Ca co-doped LSO:Ce scintillators coupled to SiPM for PET applications

    International Nuclear Information System (INIS)

    Bisogni, M.G.; Collazuol, G.M.; Marcatili, S.; Melcher, C.L.; Del Guerra, A.

    2011-01-01

    Scintillators suitable for PET applications must be characterized by a high efficiency for gamma-ray detection, determined by a high density and atomic number of the crystal; a fast light signal that allows to achieve a good time resolution and to cope with high counting rates; a high light yield for a good energy and time resolution; a good linearity of the light output as a function of the energy to preserve the intrinsic energy resolution of the scintillator. Recently developed LSO:Ce scintillators, co-doped with Ca, have been produced by the University of Tennessee group. They are characterized by the improved performance of most the above-mentioned characteristics. The crystals, initially tested with PMTs, showed a higher light output, faster light pulse, improved energy resolution and reduced afterglow, as compared to the standard LSO:Ce crystals. Even though the PMTs still represent the gold standard photodetectors, the recently available SiPMs are now valid candidate to replace PMTs in the next generation of PET scanners thanks to their compactness, high spatial resolution performances, low bias operating voltage and, most important for combined PET/MRI systems, insensitivity to static and RF fields. In this work we present the performance of Ca co-doped LSO:Ce samples coupled to SiPMs and PMTs. In particular we have assessed their performances by evaluating the energy and time resolution.

  6. Monte Carlo simulation of second-generation open-type PET ''single-ring OpenPET'' implemented with DOI detectors

    International Nuclear Information System (INIS)

    Tashima, Hideaki; Yamaya, Taiga; Hirano, Yoshiyuki; Yoshida, Eiji; Kinouch, Shoko; Watanabe, Mitsuo; Tanaka, Eiichi

    2013-01-01

    At the National Institute of Radiological Sciences, we are developing OpenPET, an open-type positron emission tomography (PET) geometry with a physically open space, which allows easy access to the patient during PET studies. Our first-generation OpenPET system, dual-ring OpenPET, which consisted of two detector rings, could provide an extended axial field of view (FOV) including the open space. However, for applications such as in-beam PET to monitor the dose distribution in situ during particle therapy, higher sensitivity concentrated on the irradiation field is required rather than a wide FOV. In this report, we propose a second-generation OpenPET geometry, single-ring OpenPET, which can efficiently improve sensitivity while providing the required open space. When the proposed geometry was realized with block detectors, position-dependent degradation of the spatial resolution was expected because it was necessary to arrange the detector blocks in ellipsoidal rings stacked and shifted relative to one another. However, we found by Monte Carlo simulation that the use of depth-of-interaction (DOI) detectors made it feasible to achieve uniform spatial resolution in the FOV. (author)

  7. Accuracy of a clinical PET/CT vs. a preclinical μPET system for monitoring treatment effects in tumour xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Palmowski, Karin [Department of Experimental Molecular Imaging, RWTH-Aachen University, Aachen (Germany); Department of Pneumology and Critical Care Medicine, Thoraxklinik Heidelberg, University of Heidelberg, Heidelberg (Germany); Winz, Oliver [Department of Nuclear Medicine, RWTH-Aachen University, Aachen (Germany); Rix, Anne; Bzyl, Jessica [Department of Experimental Molecular Imaging, RWTH-Aachen University, Aachen (Germany); Behrendt, Florian F.; Verburg, Frederic A.; Mottaghy, Felix M. [Department of Nuclear Medicine, RWTH-Aachen University, Aachen (Germany); Palmowski, Moritz, E-mail: mpalmowski@ukaachen.de [Department of Experimental Molecular Imaging, RWTH-Aachen University, Aachen (Germany); Department of Nuclear Medicine, RWTH-Aachen University, Aachen (Germany); Academic Radiology Baden Baden, Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg (Germany)

    2013-08-15

    Purpose: Small animal imaging is of growing importance for preclinical research and drug development. Tumour xenografts implanted in mice can be visualized with a clinical PET/CT (cPET); however, it is unclear whether early treatment effects can be monitored. Thus, we investigated the accuracy of a cPET versus a preclinical μPET using {sup 18}F-FDG for assessing early treatment effects. Materials and methods: The spatial resolution and the quantitative accuracy of a clinical and preclinical PET were evaluated in phantom experiments. To investigate the sensitivity for assessing treatment response, A431 tumour xenografts were implanted in nude mice. Glucose metabolism was measured in untreated controls and in two therapy groups (either one or four days of antiangiogenic treatment). Data was validated by γ-counting of explanted tissues. Results: In phantom experiments, cPET enabled reliable separation of boreholes ≥ 5 mm whereas μPET visualized boreholes ≥ 2 mm. In animal studies, μPET provided significantly higher tumour-to-muscle ratios for untreated control tumours than cPET (3.41 ± 0.87 vs. 1.60 ± .0.28, respectively; p < 0.01). During treatment, cPET detected significant therapy effects at day 4 (p < 0.05) whereas μPET revealed highly significant therapy effects even at day one (p < 0.01). Correspondingly, γ-counting of explanted tumours indicated significant therapy effects at day one and highly significant treatment response at day 4. Correlation with γ-counting was good for cPET (r = 0.74; p < 0.01) and excellent for μPET (r = 0.85; p < 0.01). Conclusion: Clinical PET is suited to investigate tumour xenografts ≥ 5 mm at an advanced time-point of treatment. For imaging smaller tumours or for the sensitive assessment of very early therapy effects, μPET should be preferred.

  8. Simulation of time curves in small animal PET using GATE

    International Nuclear Information System (INIS)

    Simon, Luc; Strul, Daniel; Santin, Giovanni; Krieguer, Magalie; Morel, Christian

    2004-01-01

    The ClearPET project of the Crystal Clear Collaboration (CCC) is building spin-off technology for high resolution small animal Positron Emission Tomography (PET). Monte Carlo simulation is essential for optimizing the specifications of these systems with regards to their most important characteristics, such as spatial resolution, sensitivity, or count rate performance. GATE, the Geant4 Application for Tomographic Emission simulates the passing of time during real acquisitions, allowing to handle dynamic systems such as decaying source distributions or moving detectors. GATE output is analyzed on an event-by-event basis. The time associated with each single event allows to sort coincidences and to model dead-time. This leads to the study of time curves for a prospective small animal PET scanner design. The count rates of true, and random coincidences are discussed together with the corresponding Noise Equivalent Count (NEC) rates as a function of some PET scanner specifications such as detector dead time, or coincidence time window

  9. Wobbling and LSF-based maximum likelihood expectation maximization reconstruction for wobbling PET

    International Nuclear Information System (INIS)

    Kim, Hang-Keun; Son, Young-Don; Kwon, Dae-Hyuk; Joo, Yohan; Cho, Zang-Hee

    2016-01-01

    Positron emission tomography (PET) is a widely used imaging modality; however, the PET spatial resolution is not yet satisfactory for precise anatomical localization of molecular activities. Detector size is the most important factor because it determines the intrinsic resolution, which is approximately half of the detector size and determines the ultimate PET resolution. Detector size, however, cannot be made too small because both the decreased detection efficiency and the increased septal penetration effect degrade the image quality. A wobbling and line spread function (LSF)-based maximum likelihood expectation maximization (WL-MLEM) algorithm, which combined the MLEM iterative reconstruction algorithm with wobbled sampling and LSF-based deconvolution using the system matrix, was proposed for improving the spatial resolution of PET without reducing the scintillator or detector size. The new algorithm was evaluated using a simulation, and its performance was compared with that of the existing algorithms, such as conventional MLEM and LSF-based MLEM. Simulations demonstrated that the WL-MLEM algorithm yielded higher spatial resolution and image quality than the existing algorithms. The WL-MLEM algorithm with wobbling PET yielded substantially improved resolution compared with conventional algorithms with stationary PET. The algorithm can be easily extended to other iterative reconstruction algorithms, such as maximum a priori (MAP) and ordered subset expectation maximization (OSEM). The WL-MLEM algorithm with wobbling PET may offer improvements in both sensitivity and resolution, the two most sought-after features in PET design. - Highlights: • This paper proposed WL-MLEM algorithm for PET and demonstrated its performance. • WL-MLEM algorithm effectively combined wobbling and line spread function based MLEM. • WL-MLEM provided improvements in the spatial resolution and the PET image quality. • WL-MLEM can be easily extended to the other iterative

  10. Cardiac sympathetic neuronal imaging using PET

    International Nuclear Information System (INIS)

    Lautamaeki, Riikka; Tipre, Dnyanesh; Bengel, Frank M.

    2007-01-01

    Balance of the autonomic nervous system is essential for adequate cardiac performance, and alterations seem to play a key role in the development and progression of various cardiac diseases. PET imaging of the cardiac autonomic nervous system has advanced extensively in recent years, and multiple pre- and postsynaptic tracers have been introduced. The high spatial and temporal resolution of PET enables noninvasive quantification of neurophysiologic processes at the tissue level. Ligands for catecholamine receptors, along with radiolabeled catecholamines and catecholamine analogs, have been applied to determine involvement of sympathetic dysinnervation at different stages of heart diseases such as ischemia, heart failure, and arrhythmia. This review summarizes the recent findings in neurocardiological PET imaging. Experimental studies with several radioligands and clinical findings in cardiac dysautonomias are discussed. (orig.)

  11. Development of a PET/Cerenkov-light hybrid imaging system

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun; Watabe, Hiroshi

    2014-01-01

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm 3 GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a 22 Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that 18 F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging

  12. Simulation study comparing the helmet-chin PET with a cylindrical PET of the same number of detectors

    Science.gov (United States)

    Ahmed, Abdella M.; Tashima, Hideaki; Yoshida, Eiji; Nishikido, Fumihiko; Yamaya, Taiga

    2017-06-01

    There is a growing interest in developing brain PET scanners with high sensitivity and high spatial resolution for early diagnosis of neurodegenerative diseases and studies of brain functions. Sensitivity of the PET scanner can be improved by increasing the solid angle. However, conventional PET scanners are designed based on a cylindrical geometry, which may not be the most efficient design for brain imaging in terms of the balance between sensitivity and cost. We proposed a dedicated brain PET scanner based on a hemispheric shape detector and a chin detector (referred to as the helmet-chin PET), which is designed to maximize the solid angle by increasing the number of lines-of-response in the hemisphere. The parallax error, which PET scanners with a large solid angle tend to have, can be suppressed by the use of depth-of-interaction detectors. In this study, we carry out a realistic evaluation of the helmet-chin PET using Monte Carlo simulation based on the 4-layer GSO detector which consists of a 16  ×  16  ×  4 array of crystals with dimensions of 2.8  ×  2.8  ×  7.5 mm3. The purpose of this simulation is to show the gain in imaging performance of the helmet-chin PET compared with the cylindrical PET using the same number of detectors in each configuration. The sensitivity of the helmet-chin PET evaluated with a cylindrical phantom has a significant increase, especially at the top of the (field-of-view) FOV. The peak-NECR of the helmet-chin PET is 1.4 times higher compared to the cylindrical PET. The helmet-chin PET provides relatively low noise images throughout the FOV compared to the cylindrical PET which exhibits enhanced noise at the peripheral regions. The results show the helmet-chin PET can significantly improve the sensitivity and reduce the noise in the reconstructed images.

  13. Use of a clinical PET/MR scanner for preclinical research with first results

    International Nuclear Information System (INIS)

    Chary, Karthik; Teuho, Jarmo; Virta, Jenni; Sipilä, Hannu; Saunavaara, Virva; Roivainen, Anne; Teräs, Mika

    2014-01-01

    This study was performed to evaluate the feasibility of preclinical imaging in a clinical PET/MR system. Preliminary sequences were evaluated for establishing preclinical protocols for rat brain and rabbit knee. Rats were placed in a stereotactic holder, allowing a 30 minute scan time before re-administration of anesthesia. In-house developed warm-water heating system was used to maintain the body temperature at 37.5°C, monitored using an MR-compatible rectal probe. Brain imaging was performed with a dedicated 4 channel phased array receive coil (RAPID Biomedical GmbH, Germany). High resolution coronal images were acquired using conventional T1-SE (0.30x0.30x1.2mm) and T2-TSE (0.23x0.23x0.7mm) with a total scan time of 30 min. PET/MR imaging was performed on two white rabbits. The rabbits were imaged in a custom wooden holder. PET/MR protocol had a total duration of 45 minutes. No external heating was used. MR protocol consisted of anatomical T1, T2 and PDW of the knees, using a SENSE Flex-S coil. MR attenuation correction (MRAC) was acquired with 3D T1-FFE using three-class segmentation. A dynamic 30 minute PET acquisition was started on injection of 33.8MBq of Ga-68. Animal coils enabled high resolution images to be acquired in reasonable acquisition time with regards to animal handling and anesthesia. T1 and T2 images provided good differentiation of anatomy in the rat brain with high contrast. T1, T2 and PDW images of the rabbit knee had high resolution and differentiation of anatomical structures. MRAC was able to distinguish the knees and the body contour. Image fusion of PET and MR was able to localize the infection, which was confirmed by a physician. Pre-clinical imaging with the Ingenuity TF was deemed feasible, although PET imaging is limited by the resolution of the scanner. The preliminary sequences were successfully implemented for future studies on the Ingenuity TF.

  14. Use of a clinical PET/MR scanner for preclinical research with first results

    Energy Technology Data Exchange (ETDEWEB)

    Chary, Karthik; Teuho, Jarmo; Virta, Jenni; Sipilä, Hannu; Saunavaara, Virva; Roivainen, Anne; Teräs, Mika [Turku PET Centre, Turku University Hospital, Turku (Finland)

    2014-07-29

    This study was performed to evaluate the feasibility of preclinical imaging in a clinical PET/MR system. Preliminary sequences were evaluated for establishing preclinical protocols for rat brain and rabbit knee. Rats were placed in a stereotactic holder, allowing a 30 minute scan time before re-administration of anesthesia. In-house developed warm-water heating system was used to maintain the body temperature at 37.5°C, monitored using an MR-compatible rectal probe. Brain imaging was performed with a dedicated 4 channel phased array receive coil (RAPID Biomedical GmbH, Germany). High resolution coronal images were acquired using conventional T1-SE (0.30x0.30x1.2mm) and T2-TSE (0.23x0.23x0.7mm) with a total scan time of 30 min. PET/MR imaging was performed on two white rabbits. The rabbits were imaged in a custom wooden holder. PET/MR protocol had a total duration of 45 minutes. No external heating was used. MR protocol consisted of anatomical T1, T2 and PDW of the knees, using a SENSE Flex-S coil. MR attenuation correction (MRAC) was acquired with 3D T1-FFE using three-class segmentation. A dynamic 30 minute PET acquisition was started on injection of 33.8MBq of Ga-68. Animal coils enabled high resolution images to be acquired in reasonable acquisition time with regards to animal handling and anesthesia. T1 and T2 images provided good differentiation of anatomy in the rat brain with high contrast. T1, T2 and PDW images of the rabbit knee had high resolution and differentiation of anatomical structures. MRAC was able to distinguish the knees and the body contour. Image fusion of PET and MR was able to localize the infection, which was confirmed by a physician. Pre-clinical imaging with the Ingenuity TF was deemed feasible, although PET imaging is limited by the resolution of the scanner. The preliminary sequences were successfully implemented for future studies on the Ingenuity TF.

  15. Advances in PET-MRI technology

    International Nuclear Information System (INIS)

    Chen Xiang; Zhao Jinhua

    2011-01-01

    Multimodality imaging is the general trend of clinical imaging. PET-CT is one of the most classic and mature multimodality imaging methods and is widely used today. MRI is another kind of conventional imaging method, in contrast to CT, MRI can not only yield images with higher soft-tissue contrast and better spatial resolution resolution but also provide some functional information by special imaging techniques such as MRS. The combination of PET and MRI for simultaneous data acquisition should have far-reaching consequences for clinical and scientific study. This review describes the progress to date and talks about the problems met in the development of PET-MRI and look forward to its potential application. (authors)

  16. Current status and prospects of cardiac PET

    International Nuclear Information System (INIS)

    Yoshida, Katuya

    1999-01-01

    With positron emission tomography (PET), noninvasive measurements of myocardial blood flow and metabolism have now become possible. 1) Myocardial blood flow: We developed a high-resolution PET system for rabbits and showed that myocardial N-13 ammonnia uptake correlated well with flow measure with microspheres. We also demonstrated that a simplified PET protocol using N-13 ammonia or Rb-82 provide noninvasive measurement of coronary flow reserve in dog experiments. This protocol enables to produce estimates of myocardial blood flow in man and that are well correlated with the complex compartment model. 2) Myocardial glucose metabolism: We validated experimentally a simple method to quantify tissue glucose utilization with the brain reference index (BRI) using C-14 deoxyglucose and assessed its clinical feasibility for myocardial PET. 3) Membrane integrity: Loss of cell membrane integrity for trapping the potassium or it's analog is a market of myocardial necrosis/viability. We recently synthetized potassium-38 as a PET tracer and started an experimental study. (author)

  17. Instruments for radiation measurement in life sciences (5), ''Development of imaging technology in life sciences'' III. Development of small animal PET scanners

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Murayama, Hideo

    2006-01-01

    This paper summarizes the requisites for small animal PET scanners, present state of their market and of their development in National Institute of Radiological Sciences (NIRS). Relative to the apparatus clinically used, the requisites involve the high spatial resolution of 0.8-1.5 mm and high sensitivity of the equipment itself due to low dose of the tracer to be given to animals. At present, more than 20 institutions like universities, research facilities and companies are developing the PET equipment for small animals and about 10 machines are in the market. However, their resolution and sensitivity are not fully satisfactory and for their improvement, investigators are paying attention to the gamma ray measurement by depth-of-interaction (DOI) method. NIRS has been also developing the machine jPET-D4 and has proposed to manufacture jPET-RD having 4-layer DOI detectors with the absolute central sensitivity as high as 14.7%. jPET-RD is to have the spatial resolution as high as <1mm (central view) and -1.4 mm (periphery). (T.I.)

  18. A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer

    Science.gov (United States)

    Garibaldi, F.; Beging, S.; Canese, R.; Carpinelli, G.; Clinthorne, N.; Colilli, S.; Cosentino, L.; Finocchiaro, P.; Giuliani, F.; Gricia, M.; Lucentini, M.; Majewski, S.; Monno, E.; Musico, P.; Santavenere, F.; Tödter, J.; Wegener, H.; Ziemons, K.

    2017-09-01

    Prostate cancer is the most common disease in men and the second leading cause of death from cancer. Generic large imaging instruments used in cancer diagnosis have sensitivity, spatial resolution, and contrast which are inadequate for the task of imaging details of a small organ such as the prostate. In addition, multimodality imaging can play a significant role in merging anatomical and functional details coming from simultaneous PET and MRI. Indeed, multiparametric PET/MRI was demonstrated to improve diagnosis, but it suffers from too many false positives. In order to address the above limits of the current techniques, we have proposed, built and tested, thanks to the TOPEM project funded by Italian National Institute of Nuclear Phisics, a prototype of an endorectal PET-TOF/MRI probe. In the applied magnification PET geometry, performance is dominated by a high-resolution detector placed closer to the source. The expected spatial resolution in the selected geometry is about 1.5mm FWHM and efficiency of a factor 2 with respect to what was obtained with the conventional PET scanner. In our experimental studies, we have obtained a timing resolution of ˜ 320 ps FWHM and at the same time a Depth of Interaction (DOI) resolution of under 1mm. Tests also showed that mutual adverse PET-MR effects are minimal. In addition, the matching endorectal RF coil was designed, built and tested. In the next planned studies, we expect that benefiting from the further progress in scintillator crystal surface treatment, in SiPM technology and associated electronics would allow us to significantly improve TOF resolution.

  19. Use of a YAP:Ce matrix coupled to a position-sensitive photomultiplier for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Del Guerra, A.; Zavattini, G.; Notaristefani, F. de; Giganti, M.; Piffanelli, A.; Pani, R.; Turra, A.

    1996-01-01

    A new scintillation detector system has been designed for application in high resolution Positron Emission Tomography (PET). The detector is a bundle of small YAlO 3 :Ce (YAP) crystals closely packed (0.2 x 0.2 x 3.0 cm 3 ), coupled to a position sensitive photomultiplier tube (PSPMT). The preliminary results obtained for spatial resolution, time resolution, energy resolution and efficiency of two such detectors working in coincidence are presented. These are 1.2 mm for the FWHM spatial resolution, 2.0 ns for the FWHM time resolution and 20% for the FWHM energy resolution at 511 keV. The measured efficiency is (44 ± 3)% with a 150 keV threshold and (20 ± 2)% with a 300 keV threshold

  20. Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [11C]raclopride data

    International Nuclear Information System (INIS)

    Shidahara, M; Tamura, H; Tsoumpas, C; McGinnity, C J; Hammers, A; Turkheimer, F E; Kato, T; Watabe, H

    2012-01-01

    The objective of this study was to evaluate a resolution recovery (RR) method using a variety of simulated human brain [ 11 C]raclopride positron emission tomography (PET) images. Simulated datasets of 15 numerical human phantoms were processed by a wavelet-based RR method using an anatomical prior. The anatomical prior was in the form of a hybrid segmented atlas, which combined an atlas for anatomical labelling and a PET image for functional labelling of each anatomical structure. We applied RR to both 60 min static and dynamic PET images. Recovery was quantified in 84 regions, comparing the typical ‘true’ value for the simulation, as obtained in normal subjects, simulated and RR PET images. The radioactivity concentration in the white matter, striatum and other cortical regions was successfully recovered for the 60 min static image of all 15 human phantoms; the dependence of the solution on accurate anatomical information was demonstrated by the difficulty of the technique to retrieve the subthalamic nuclei due to mismatch between the two atlases used for data simulation and recovery. Structural and functional synergy for resolution recovery (SFS-RR) improved quantification in the caudate and putamen, the main regions of interest, from −30.1% and −26.2% to −17.6% and −15.1%, respectively, for the 60 min static image and from −51.4% and −38.3% to −27.6% and −20.3% for the binding potential (BP ND ) image, respectively. The proposed methodology proved effective in the RR of small structures from brain [ 11 C]raclopride PET images. The improvement is consistent across the anatomical variability of a simulated population as long as accurate anatomical segmentations are provided. (paper)

  1. PetIGA: A framework for high-performance isogeometric analysis

    KAUST Repository

    Dalcin, Lisandro; Collier, N.; Vignal, Philippe; Cortes, Adriano Mauricio; Calo, Victor M.

    2016-01-01

    We present PetIGA, a code framework to approximate the solution of partial differential equations using isogeometric analysis. PetIGA can be used to assemble matrices and vectors which come from a Galerkin weak form, discretized with Non-Uniform Rational B-spline basis functions. We base our framework on PETSc, a high-performance library for the scalable solution of partial differential equations, which simplifies the development of large-scale scientific codes, provides a rich environment for prototyping, and separates parallelism from algorithm choice. We describe the implementation of PetIGA, and exemplify its use by solving a model nonlinear problem. To illustrate the robustness and flexibility of PetIGA, we solve some challenging nonlinear partial differential equations that include problems in both solid and fluid mechanics. We show strong scaling results on up to 40964096 cores, which confirm the suitability of PetIGA for large scale simulations.

  2. PetIGA: A framework for high-performance isogeometric analysis

    KAUST Repository

    Dalcin, L.

    2016-05-25

    We present PetIGA, a code framework to approximate the solution of partial differential equations using isogeometric analysis. PetIGA can be used to assemble matrices and vectors which come from a Galerkin weak form, discretized with Non-Uniform Rational B-spline basis functions. We base our framework on PETSc, a high-performance library for the scalable solution of partial differential equations, which simplifies the development of large-scale scientific codes, provides a rich environment for prototyping, and separates parallelism from algorithm choice. We describe the implementation of PetIGA, and exemplify its use by solving a model nonlinear problem. To illustrate the robustness and flexibility of PetIGA, we solve some challenging nonlinear partial differential equations that include problems in both solid and fluid mechanics. We show strong scaling results on up to 40964096 cores, which confirm the suitability of PetIGA for large scale simulations.

  3. NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis.

    Science.gov (United States)

    Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien

    2018-01-01

    We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.

  4. New perspective in high tech radiotherapy planning using PET/CT images (Radiation oncologist's view on PET/CT usage)

    International Nuclear Information System (INIS)

    Hadjieva, T.; Bildirev, N.; Koleva, I.; Zahariev, Z.; Vasileva, V.; Encheva, E.; Sultanov, B.

    2010-01-01

    Biological images provided by 18F-FDG PET in combination with structural X ray picture currently offer the most accurate available information on tumour staging, curative antitumour effect for prognosis, impairment of organ function after treatment, as well as primary tumour detection in unknown primary metastatic disease. The authors as radiation oncologists critically have analyzed numerous clinical trials and two guidelines to prove PET/ CT benefit in radiotherapy practice. At present they found lack of scientific evidence to confirm that patient outcomes are superior as a result of the use of PET in RT planning. PET/CT offers a best image for tumour delineation only in some cases of lung cancer, mediastinal lymph nodes and malignant lymphomas. 11C methionin PET adds additional information on postoperative MRI image for brain tumours. Inflammation as postradiation phenomenon, as well as physiological organ movements leads to false-positive PET signal. High tech radiotherapy methods require delineation on precise images given after multidisciplinary team expertise - a practice that is possible only in clinical trials, These unsolved problems have raised many ethical challenges in medical, scientific and social aspect, if wide and routine use of FDG-PET u PET/CT is advocated. (authors)

  5. High-resolution PET studies in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Schapiro, M.B.; Grady, C.; Haxby, J.V.; Wagner, E.; Salerno, J.A.; Friedland, R.P.; Rapoport, S.I. (National Institutes of Health, Bethesda, MD (USA))

    1991-01-01

    Forty-seven patients with probable dementia of the Alzheimer type (DAT) and 30 healthy age-matched controls were scanned using (18F)-2-fluoro-2-deoxy-D-glucose on a Scanditronix PC 1024-7B tomograph (inplane resolution = 6 mm, axial resolution = 10 mm). Patients and controls were scanned in the resting state with their eyes patched and ears occluded. The regional cerebral metabolic rates for glucose (rCMRglc) in most major neocortical and subcortical gray matter regions, and certain metabolic ratios (rCMRglc/ calcarine rCMRglc), quantitatively discriminated even the mildly demented patients from healthy controls. The association neocortices showed metabolic abnormalities that were more severe than those in the sensorimotor and calcarine regions. All demented groups showed significant neuropsychological disturbances when compared to healthy controls. These data demonstrated widespread metabolic disturbances, particularly in the association areas, relatively early in Alzheimer's disease, and more profound involvement with disease progression.

  6. Software-based PET-MR image coregistration: combined PET-MRI for the rest of us

    International Nuclear Information System (INIS)

    Robertson, Matthew S.; Liu, Xinyang; Vyas, Pranav K.; Safdar, Nabile M.; Plishker, William; Zaki, George F.; Shekhar, Raj

    2016-01-01

    With the introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI), a new imaging option to acquire multimodality images with complementary anatomical and functional information has become available. Compared with hybrid PET/computed tomography (CT), hybrid PET/MRI is capable of providing superior anatomical detail while removing the radiation exposure associated with CT. The early adoption of hybrid PET/MRI, however, has been limited. To provide a viable alternative to the hybrid PET/MRI hardware by validating a software-based solution for PET-MR image coregistration. A fully automated, graphics processing unit-accelerated 3-D deformable image registration technique was used to align PET (acquired as PET/CT) and MR image pairs of 17 patients (age range: 10 months-21 years, mean: 10 years) who underwent PET/CT and body MRI (chest, abdomen or pelvis), which were performed within a 28-day (mean: 10.5 days) interval. MRI data for most of these cases included single-station post-contrast axial T1-weighted images. Following registration, maximum standardized uptake value (SUV max ) values observed in coregistered PET (cPET) and the original PET were compared for 82 volumes of interest. In addition, we calculated the target registration error as a measure of the quality of image coregistration, and evaluated the algorithm's performance in the context of interexpert variability. The coregistration execution time averaged 97±45 s. The overall relative SUV max difference was 7% between cPET-MRI and PET/CT. The average target registration error was 10.7±6.6 mm, which compared favorably with the typical voxel size (diagonal distance) of 8.0 mm (typical resolution: 0.66 mm x 0.66 mm x 8 mm) for MRI and 6.1 mm (typical resolution: 3.65 mm x 3.65 mm x 3.27 mm) for PET. The variability in landmark identification did not show statistically significant differences between the algorithm and a typical expert. We have presented a software

  7. Software-based PET-MR image coregistration: combined PET-MRI for the rest of us

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Matthew S.; Liu, Xinyang; Vyas, Pranav K.; Safdar, Nabile M. [Children' s National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC (United States); Plishker, William; Zaki, George F. [IGI Technologies, Inc., College Park, MD (United States); Shekhar, Raj [Children' s National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC (United States); IGI Technologies, Inc., College Park, MD (United States)

    2016-10-15

    With the introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI), a new imaging option to acquire multimodality images with complementary anatomical and functional information has become available. Compared with hybrid PET/computed tomography (CT), hybrid PET/MRI is capable of providing superior anatomical detail while removing the radiation exposure associated with CT. The early adoption of hybrid PET/MRI, however, has been limited. To provide a viable alternative to the hybrid PET/MRI hardware by validating a software-based solution for PET-MR image coregistration. A fully automated, graphics processing unit-accelerated 3-D deformable image registration technique was used to align PET (acquired as PET/CT) and MR image pairs of 17 patients (age range: 10 months-21 years, mean: 10 years) who underwent PET/CT and body MRI (chest, abdomen or pelvis), which were performed within a 28-day (mean: 10.5 days) interval. MRI data for most of these cases included single-station post-contrast axial T1-weighted images. Following registration, maximum standardized uptake value (SUV{sub max}) values observed in coregistered PET (cPET) and the original PET were compared for 82 volumes of interest. In addition, we calculated the target registration error as a measure of the quality of image coregistration, and evaluated the algorithm's performance in the context of interexpert variability. The coregistration execution time averaged 97±45 s. The overall relative SUV{sub max} difference was 7% between cPET-MRI and PET/CT. The average target registration error was 10.7±6.6 mm, which compared favorably with the typical voxel size (diagonal distance) of 8.0 mm (typical resolution: 0.66 mm x 0.66 mm x 8 mm) for MRI and 6.1 mm (typical resolution: 3.65 mm x 3.65 mm x 3.27 mm) for PET. The variability in landmark identification did not show statistically significant differences between the algorithm and a typical expert. We have presented a software

  8. Detector technology challenges for nuclear medicine and PET

    International Nuclear Information System (INIS)

    Marsden, P.K.

    2003-01-01

    The challenges facing the development of new detector technology for single photon imaging and positron emission tomography (PET) are considered. There is currently great interest in functional imaging with radionuclides, particularly PET, triggered by new clinical applications and developments in molecular and cell biology. Multi-modality systems that combine radionuclide imaging with CT present new challenges, as do very high resolution systems for imaging small animals. Whilst for PET there are some fairly well defined routes to improving performance, the basic design of single photon systems has remained unchanged for many years. This review outlines the challenges that must be addressed by detector physicists in order to obtain significant advances in performance, and indicates some of the approaches currently being adopted. Emphasis is given to PET which is where the greatest opportunities appear to lie

  9. Design and evaluation of the MAMMI dedicated breast PET

    International Nuclear Information System (INIS)

    Moliner, L.; González, A. J.; Soriano, A.; Sánchez, F.; Correcher, C.; Orero, A.; Carles, M.; Vidal, L. F.; Barberá, J.; Caballero, L.; Seimetz, M.; Vázquez, C.; Benlloch, J. M.

    2012-01-01

    Purpose: A breast dedicated positron emission tomography (PET) scanner has been developed based on monolithic LYSO crystals coupled to position sensitive photomultiplier tubes (PSPMTs). In this study, we describe the design of the PET system and report on its performance evaluation. Methods: MAMMI is a breast PET scanner based on monolithic LYSO crystals. It consists of 12 compact modules with a transaxial field of view (FOV) of 170 mm in diameter and 40 mm axial FOV that translates to cover up to 170 mm. The patient lies down in a prone position that facilitates maximum breast elongation. Quantitative performance analysis of the calculated method for the attenuation correction specifically developed for MAMMI, and based on PET image segmentation, has also been conducted in this evaluation. In order to fully determine the MAMMI prototype's performance, we have adapted the measurements suggested for National Electrical Manufacturers Association (NEMA) NU 2-2007 and NU 4-2008 protocol tests, as they are defined for whole-body and small animal PET scanners, respectively. Results: Spatial resolutions of 1.6, 1.8, and 1.9 mm were measured in the axial, radial, and tangential directions, respectively. A scatter fraction of 20.8% was obtained and the maximum NEC was determined to be 25 kcps at 44 MBq. The average sensitivity of the system was observed to be 1% for an energy window of (250 keV–750 keV) and a maximum absolute sensitivity of 1.8% was measured at the FOV center. Conclusions: The overall performance of the MAMMI reported on this evaluation quantifies its ability to produce high quality PET images. Spatial resolution values below 3 mm were measured in most of the FOV. Only the radial component of spatial resolution exceeds the 3 mm at radial positions larger than 60 mm. This study emphasizes the need for standardized testing methodologies for dedicated breast PET systems similar to NEMA standards for whole-body and small animal PET scanners.

  10. Radioembolization and the dynamic role of 90Y PET/CT

    Directory of Open Access Journals (Sweden)

    Alexander S Pasciak

    2014-02-01

    Full Text Available Before the advent of tomographic imaging, it was postulated that decay of 90Y to the 0+ excited state of 90Zr may result in emission of a positron-electron pair. While the branching ratio for pair production is small (~32x10-6, PET has been successfully used to image 90Y in numerous recent patient and phantom studies. 90Y PET imaging has been performed on a variety of PET/CT systems, with and without time-of-flight (TOF and/or resolution recovery capabilities as well as on both BGO and L(YSO based scanners. On all systems, resolution and contrast superior to bremsstrahlung SPECT has been reported. The intrinsic radioactivity present in L(YSO-based PET scanners is a potential limitation associated with accurate quantification of 90Y. However, intrinsic radioactivity has been shown to have a negligible effect at the high activity concentrations common in 90Y radioembolization. Accurate quantification is possible on a variety of PET scanner models, with or without TOF, although TOF improves accuracy at lower activity concentrations. Quantitative 90Y PET images can be transformed into 3D maps of absorbed dose based on the premise that the 90Y activity distribution does not change after infusion. This transformation has been accomplished primarily with the use of 3D dose point-kernel convolution. From a clinical standpoint, 90Y PET provides a superior post-infusion evaluation of treatment technical success owing to its improved resolution. Absorbed dose maps generated from quantitative PET data can be used to predict treatment efficacy and manage patient follow-up. For patients who receive multiple treatments, this information can also be used to provide patient-specific treatment planning for successive therapies, potentially improving response. The broad utilization of 90Y PET has the potential to provide a wealth of dose-response information, which may lead to development of improved radioembolization treatment-planning models in the future.

  11. Initial tests of a prototype MRI-compatible PET imager

    International Nuclear Information System (INIS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-01-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5x5x4 cm 3 . Each MRI-PET detector module consists of an array of LSO detector elements (2.5x2.5x15 mm 3 ) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ∼60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ∼85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy

  12. Novel design of a parallax free Compton enhanced PET scanner

    International Nuclear Information System (INIS)

    Braem, A.; Chamizo, M.; Chesi, E.; Colonna, N.; Cusanno, F.; De Leo, R.; Garibaldi, F.; Joram, C.; Marrone, S.; Mathot, S.; Nappi, E.; Schoenahl, F.; Seguinot, J.; Weilhammer, P.; Zaidi, H.

    2004-01-01

    Molecular imaging by PET is a powerful tool in modern clinical practice for cancer diagnosis. Nevertheless, improvements are needed with respect to the spatial resolution and sensitivity of the technique for its application to specific human organs (breast, prostate, brain, etc.), and to small animals. Presently, commercial PET scanners do not detect the depth of interaction of photons in scintillators, which results in a not negligible parallax error. We describe here a novel concept of PET scanner design that provides full three-dimensional (3D) gamma reconstruction with high spatial resolution over the total detector volume, free of parallax errors. It uses matrices of long scintillators read at both ends by hybrid photon detectors. This so-called 3D axial concept also enhances the gamma detection efficiency since it allows one to reconstruct a significant fraction of Compton scattered events. In this note, we describe the concept, a possible design and the expected performance of this new PET device. We also report about first characterization measurements of 10 cm long YAP:Ce scintillation crystals

  13. Molecular Imaging in Breast Cancer: From Whole-Body PET/CT to Dedicated Breast PET

    Directory of Open Access Journals (Sweden)

    B. B. Koolen

    2012-01-01

    Full Text Available Positron emission tomography (PET, with or without integrated computed tomography (CT, using 18F-fluorodeoxyglucose (FDG is based on the principle of elevated glucose metabolism in malignant tumors, and its use in breast cancer patients is frequently being investigated. It has been shown useful for classification, staging, and response monitoring, both in primary and recurrent disease. However, because of the partial volume effect and limited resolution of most whole-body PET scanners, sensitivity for the visualization of small tumors is generally low. To improve the detection and quantification of primary breast tumors with FDG PET, several dedicated breast PET devices have been developed. In this nonsystematic review, we shortly summarize the value of whole-body PET/CT in breast cancer and provide an overview of currently available dedicated breast PETs.

  14. SU-F-I-55: Performance Evaluation of Digital PET/CT: Medical Physics Basis for the Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Knopp, MV [The Ohio State University, Columbus, OH (United States); Miller, M [Philips Healthcare, Highland Heights, OH (United States)

    2016-06-15

    Purpose: Replacement of conventional PMT-based detector with next generation digital photon counting (DPC) detector is a technology leap for PET imaging. This study evaluated the performance and characteristics of the DPC system and its stability within a 1 year time window following its installation focusing on the medical physics basis for clinical applications. Methods: A digital PET/CT scanner using 1:1 coupling of 23,040 crystal: detector elements was introduced and became operational at OSU. We tested and evaluated system performance and characteristics using NEMA NU2-2012. System stabilities in timing resolution, energy resolution, detector temperature and humidity (T&H) were monitored over 1-yr. Timing, energy and spatial resolution were characterized across clinically relevant count rate range. CQIE uniformity PET and NEMA IEC-Body PET with hot spheres varying with sizes and contrasts were performed. PET reconstructed in standard(4mm), High(2mm) and Ultra-High(1mm) definitions were evaluated. Results: NEMA results showed PET spatial resolution (mm-FWHM) from 4.01&4.14 at 1cm to 5.82&6.17 at 20cm in transverse & axial. 322±3ps timing and 11.0% energy resolution were measured. 5.7kcps/MBq system sensitivity with 24kcps/MBq effective sensitivity was obtained. The peak-NECR was ∼171kcps with the effective peak-NECR >650kcps@50kBq/mL. Scatter fraction was ∼30%, and the maximum trues was >900kcps. NEMA IQ demonstrated hot sphere contrast ranging from ∼62%±2%(10mm) to ∼88%±2%(22mm), cold sphere contrast of ∼86%±2%(28mm) and ∼89%±3%(37mm) and excellent uniformity. Monitoring 1-yr stability, it revealed ∼1% change in timing, ±0.4% change in energy resolution, and <10% variations in T&H. CQIE PET gave <3% SUV variances in axial. 60%–100% recovery coefficients across sphere sizes and contrast levels were achieved. Conclusion: Characteristics and stability of the next generation DPC PET detector system over an 1-yr time window was excellent and

  15. SU-F-I-55: Performance Evaluation of Digital PET/CT: Medical Physics Basis for the Clinical Applications

    International Nuclear Information System (INIS)

    Zhang, J; Knopp, MV; Miller, M

    2016-01-01

    Purpose: Replacement of conventional PMT-based detector with next generation digital photon counting (DPC) detector is a technology leap for PET imaging. This study evaluated the performance and characteristics of the DPC system and its stability within a 1 year time window following its installation focusing on the medical physics basis for clinical applications. Methods: A digital PET/CT scanner using 1:1 coupling of 23,040 crystal: detector elements was introduced and became operational at OSU. We tested and evaluated system performance and characteristics using NEMA NU2-2012. System stabilities in timing resolution, energy resolution, detector temperature and humidity (T&H) were monitored over 1-yr. Timing, energy and spatial resolution were characterized across clinically relevant count rate range. CQIE uniformity PET and NEMA IEC-Body PET with hot spheres varying with sizes and contrasts were performed. PET reconstructed in standard(4mm), High(2mm) and Ultra-High(1mm) definitions were evaluated. Results: NEMA results showed PET spatial resolution (mm-FWHM) from 4.01&4.14 at 1cm to 5.82&6.17 at 20cm in transverse & axial. 322±3ps timing and 11.0% energy resolution were measured. 5.7kcps/MBq system sensitivity with 24kcps/MBq effective sensitivity was obtained. The peak-NECR was ∼171kcps with the effective peak-NECR >650kcps@50kBq/mL. Scatter fraction was ∼30%, and the maximum trues was >900kcps. NEMA IQ demonstrated hot sphere contrast ranging from ∼62%±2%(10mm) to ∼88%±2%(22mm), cold sphere contrast of ∼86%±2%(28mm) and ∼89%±3%(37mm) and excellent uniformity. Monitoring 1-yr stability, it revealed ∼1% change in timing, ±0.4% change in energy resolution, and <10% variations in T&H. CQIE PET gave <3% SUV variances in axial. 60%–100% recovery coefficients across sphere sizes and contrast levels were achieved. Conclusion: Characteristics and stability of the next generation DPC PET detector system over an 1-yr time window was excellent and

  16. Fast iterative segmentation of high resolution medical images

    International Nuclear Information System (INIS)

    Hebert, T.J.

    1996-01-01

    Various applications in positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) require segmentation of 20 to 60 high resolution images of size 256x256 pixels in 3-9 seconds per image. This places particular constraints on the design of image segmentation algorithms. This paper examines the trade-offs in segmenting images based on fitting a density function to the pixel intensities using curve-fitting versus the maximum likelihood method. A quantized data representation is proposed and the EM algorithm for fitting a finite mixture density function to the quantized representation for an image is derived. A Monte Carlo evaluation of mean estimation error and classification error showed that the resulting quantized EM algorithm dramatically reduces the required computation time without loss of accuracy

  17. Direct Patlak Reconstruction From Dynamic PET Data Using the Kernel Method With MRI Information Based on Structural Similarity.

    Science.gov (United States)

    Gong, Kuang; Cheng-Liao, Jinxiu; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2018-04-01

    Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.

  18. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography

    Science.gov (United States)

    Habte, F.; Foudray, A. M. K.; Olcott, P. D.; Levin, C. S.

    2007-07-01

    We are studying two new detector technologies that directly measure the three-dimensional coordinates of 511 keV photon interactions for high-resolution positron emission tomography (PET) systems designed for small animal and breast imaging. These detectors are based on (1) lutetium oxyorthosilicate (LSO) scintillation crystal arrays coupled to position-sensitive avalanche photodiodes (PSAPD) and (2) cadmium zinc telluride (CZT). The detectors have excellent measured 511 keV photon energy resolutions (oriented 'edge-on' with respect to incoming 511 keV annihilation photons and arranged to form a compact FOV with detectors very close to, or in contact with, the subject tissues. In this paper, we used Monte Carlo simulation to study various factors that limit the photon sensitivity of a high-resolution PET system dedicated to small animal imaging. To optimize the photon sensitivity, we studied several possible system geometries for a fixed 8 cm transaxial and 8 cm axial FOV. We found that using rectangular-shaped detectors arranged into a cylindrical geometry does not yield the best photon sensitivity. This is due to the fact that forming rectangular-shaped detectors into a ring produces significant wedge-shaped inter-module gaps, through which Compton-scattered photons in the detector can escape. This effect limits the center point source photon sensitivity to 8% photon sensitivity for the LSO-PSAPD box configuration and >15% for CZT box geometry, using a 350-650 keV energy window setting. These simulation results compare well with analytical estimations. The trend is different for a clinical whole-body PET system that uses conventional LSO-PMT block detectors with larger crystal elements. Simulations predict roughly the same sensitivity for both box and cylindrical detector configurations. This results from the fact that a large system diameter (>80 cm) results in relatively small inter-module gaps in clinical whole-body PET. In addition, the relatively large block

  19. Energy spectra analysis of the four-layer DOI detector for the brain PET scanner: jPET-D4

    International Nuclear Information System (INIS)

    Yoshida, Eiji; Kitamura, Keishi; Tsuda, Tomoaki; Shibuya, Kengo; Yamaya, Taiga; Inadama, Naoko; Hasegawa, Tomoyuki; Murayama, Hideo

    2006-01-01

    A depth of interaction (DOI) detector is being developed for the brain PET scanner, jPET-D4. We introduce a light output correction procedure to compensate for variations among the crystal elements in the DOI detector. Under uniform irradiation with 511 keV gamma rays, we estimate the light output of each crystal element by identifying each crystal element, and generate a look-up table (LUT) for light output correction. We evaluate the energy resolution of all crystal elements. The energy resolution of 16% is achieved after light output correction for all crystal elements. The DOI detector can correct light output variations that are related to the DOI. We analyze the crystal position dependence of the energy spectra due to inter-crystal scattering among the multiple crystal elements in the DOI detector. It is highly possible that gamma rays interacting with central crystal elements in the crystal array are absorbed by surrounding crystal elements and the Compton part of the energy spectrum is decreased. Inter-crystal scattering has less impact on the energy resolution of the DOI detector

  20. Towards time-of-flight PET with a semiconductor detector

    Science.gov (United States)

    Ariño-Estrada, Gerard; Mitchell, Gregory S.; Kwon, Sun Il; Du, Junwei; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.; Cherry, Simon R.

    2018-02-01

    The feasibility of using Cerenkov light, generated by energetic electrons following 511 keV photon interactions in the semiconductor TlBr, to obtain fast timing information for positron emission tomography (PET) was evaluated. Due to its high refractive index, TlBr is a relatively good Cerenkov radiator and with its wide bandgap, has good optical transparency across most of the visible spectrum. Coupling an SiPM photodetector to a slab of TlBr (TlBr-SiPM) yielded a coincidence timing resolution of 620 ps FWHM between the TlBr-SiPM detector and a LFS reference detector. This value improved to 430 ps FWHM by applying a high pulse amplitude cut based on the TlBr-SiPM and reference detector signal amplitudes. These results are the best ever achieved with a semiconductor PET detector and already approach the performance required for time-of-flight. As TlBr has higher stopping power and better energy resolution than the conventional scintillation detectors currently used in PET scanners, a hybrid TlBr-SiPM detector with fast timing capability becomes an interesting option for further development.

  1. PET/CT for diagnostics and therapy stratification of lung cancer

    International Nuclear Information System (INIS)

    Kratochwil, C.; Haberkorn, U.; Giesel, F.L.

    2010-01-01

    With the introduction of positron emission tomography (PET) and more recently the hybrid systems PET/CT, the management of cancer patients in the treatment strategy has changed tremendously. The combination of PET with multidetector CT scanning enables the integration of metabolic and high resolution morphological image information. PET/CT is nowadays an established modality for tumor detection, characterization, staging and response monitoring. The increased installation of PET/CT systems worldwide and also the increased scientific publications underline the importance of this imaging modality. PET/CT is particular the imaging modality of choice in lung cancer staging and re-staging (T, N and M staging). The possible increased success of surgery in lung cancer patients and also the expected reduction in additional invasive diagnostics lead to benefits for both the individual patient and the healthcare system. In this review article PET and PET/CT is presented for diagnostic and therapeutic stratification in lung cancer. The fundamentals of glucose metabolism, staging, tumor recurrence and therapeutic monitoring are presented. (orig.) [de

  2. Feasibility of a brain-dedicated PET-MRI system using four-layer DOI detectors integrated with an RF head coil

    International Nuclear Information System (INIS)

    Nishikido, F.; Obata, T.; Shimizu, K.; Suga, M.; Inadama, N.; Tachibana, A.; Yoshida, E.; Ito, H.; Yamaya, T.

    2014-01-01

    We are developing a PET-MRI system which consists of PET detectors integrated with the head coil of the MRI in order to realize high spatial resolution and high sensitivity in simultaneous measurements. In the PET-MRI system, the PET detectors which consist of a scintillator block, photo-detectors and front-end circuits with four-layer depth-of-interaction (DOI) encoding capability are placed close to the measured object. Therefore, the proposed system can achieve high sensitivity without degradation of spatial resolution at the edge of the field-of-view due to parallax error thanks to the four-layer DOI capability. In this paper, we fabricated a prototype system which consists of a prototype four-layer DOI-PET detector, a dummy PET detector and a prototype birdcage type head coil. Then we used the prototype system to evaluate the performance of the four-layer DOI-PET detector and the reciprocal influence between the PET detectors and MRI images. The prototype DOI-PET detector consists of six monolithic multi-pixel photon counter (MPPC) arrays (S11064-050P), a readout circuit board, two scintillator blocks and a copper shielding box. Each scintillator block consists of four layers of Lu 1.8 Gd 0.2 SiO 5 :Ce (LGSO) scintillators and reflectors are inserted between the scintillation crystals. The dummy detector has all these components except the two scintillator blocks. The head coil is dedicated to a 3.0 T MRI (MAGNETOM Verio, Siemens) and the two detectors are mounted in gaps between head coil elements. Energy resolution and crystal identification performance of the prototype four-layer DOI-PET detector were evaluated with and without MRI measurements by the gradient echo and spin echo methods. We identified crystal elements in all four layers from a 2D flood histogram and energy resolution of 15–18% was obtained for single crystal elements in simultaneous measurements. The difference between the average energy resolutions and photo-peak positions with and

  3. Limits of Tumor Detectability in Nuclear Medicine and PET

    Directory of Open Access Journals (Sweden)

    Yusuf Emre Erdi

    2012-04-01

    Full Text Available Objective: Nuclear medicine is becoming increasingly important in the early detection of malignancy. The advantage of nuclear medicine over other imaging modalities is the high sensitivity of the gamma camera. Nuclear medicine counting equipment has the capability of detecting levels of radioactivity which exceed background levels by as little as 2.4 to 1. This translates to only a few hundred counts per minute on a regular gamma camera or as few as 3 counts per minute when using coincidence detection on a positron emission tomography (PET camera. Material and Methods: We have experimentally measured the limits of detectability using a set of hollow spheres in a Jaszczak phantom at various tumor-to-background ratios. Imaging modalities for this work were (1 planar, (2 SPECT, (3 PET, and (4 planar camera with coincidence detection capability (MCD. Results: When there is no background (infinite contrast activity present, the detectability of tumors is similar for PET and planar imaging. With the presence of the background activity , PET can detect objects in an order of magnitude smaller in size than that can be seen by conventional planar imaging especially in the typical clinical low (3:1 T/B ratios. The detection capability of the MCD camera lies between a conventional nuclear medicine (planar / SPECT scans and the detection capability of a dedicated PET scanner Conclusion: Among nuclear medicine’s armamentarium, PET is the closest modality to CT or MR imaging in terms of limits of detection. Modern clinical PET scanners have a resolution limit of 4 mm, corresponding to the detection of tumors with a volume of 0.2 ml (7 mm diameter in 5:1 T/B ratio. It is also possible to obtain better resolution limits with dedicated brain and animal scanners. The future holds promise in development of new detector materials, improved camera design, and new reconstruction algorithms which will improve sensitivity, resolution, contrast, and thereby further

  4. Automatic delineation of brain regions on MRI and PET images from the pig

    DEFF Research Database (Denmark)

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M

    2018-01-01

    : Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. NEW METHOD: A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer....... RESULTS: MRI and [11C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same...... the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [11C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames...

  5. Dual-Modality PET/Ultrasound imaging of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.

  6. Dual-Modality PET/Ultrasound imaging of the Prostate

    International Nuclear Information System (INIS)

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-01-01

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems

  7. Motion compensation for fully 4D PET reconstruction using PET superset data

    Energy Technology Data Exchange (ETDEWEB)

    Verhaeghe, J; Gravel, P; Mio, R; Fukasawa, R; Rosa-Neto, P; Soucy, J-P; Thompson, C J; Reader, A J, E-mail: jeroen.verhaeghe@mcgill.c [Montreal Neurological Institute, McGill University, Montreal (Canada)

    2010-07-21

    Fully 4D PET image reconstruction is receiving increasing research interest due to its ability to significantly reduce spatiotemporal noise in dynamic PET imaging. However, thus far in the literature, the important issue of correcting for subject head motion has not been considered. Specifically, as a direct consequence of using temporally extensive basis functions, a single instance of movement propagates to impair the reconstruction of multiple time frames, even if no further movement occurs in those frames. Existing 3D motion compensation strategies have not yet been adapted to 4D reconstruction, and as such the benefits of 4D algorithms have not yet been reaped in a clinical setting where head movement undoubtedly occurs. This work addresses this need, developing a motion compensation method suitable for fully 4D reconstruction methods which exploits an optical tracking system to measure the head motion along with PET superset data to store the motion compensated data. List-mode events are histogrammed as PET superset data according to the measured motion, and a specially devised normalization scheme for motion compensated reconstruction from the superset data is required. This work proceeds to propose the corresponding time-dependent normalization modifications which are required for a major class of fully 4D image reconstruction algorithms (those which use linear combinations of temporal basis functions). Using realistically simulated as well as real high-resolution PET data from the HRRT, we demonstrate both the detrimental impact of subject head motion in fully 4D PET reconstruction and the efficacy of our proposed modifications to 4D algorithms. Benefits are shown both for the individual PET image frames as well as for parametric images of tracer uptake and volume of distribution for {sup 18}F-FDG obtained from Patlak analysis.

  8. Initial tests of a prototype MRI-compatible PET imager

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R. [Center for Advanced Imaging, Department of Radiology, West Virginia University, HSB Box 9236, Morgantown, WV (United States)]. E-mail: rraylman@wvu.edu; Majewski, Stan [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lemieux, Susan [Center for Advanced Imaging, Department of Radiology, West Virginia University, HSB Box 9236, Morgantown, WV (United States); Velan, S. Sendhil [Center for Advanced Imaging, Department of Radiology, West Virginia University, HSB Box 9236, Morgantown, WV (United States); Kross, Brain [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Popov, Vladimir [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Smith, Mark F. [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weisenberger, Andrew G. [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wojcik, Randy [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2006-12-20

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5x5x4 cm{sup 3}. Each MRI-PET detector module consists of an array of LSO detector elements (2.5x2.5x15 mm{sup 3}) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of {approx}60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to {approx}85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy.

  9. Improved resolution and reliability in dynamic PET using Bayesian regularization of MRTM2

    DEFF Research Database (Denmark)

    Agn, Mikael; Svarer, Claus; Frokjaer, Vibe G.

    2014-01-01

    This paper presents a mathematical model that regularizes dynamic PET data by using a Bayesian framework. We base the model on the well known two-parameter multilinear reference tissue method MRTM2 and regularize on the assumption that spatially close regions have similar parameters. The developed...... model is compared to the conventional approach of improving the low signal-to-noise ratio of PET data, i.e., spatial filtering of each time frame independently by a Gaussian kernel. We show that the model handles high levels of noise better than the conventional approach, while at the same time...

  10. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation

    International Nuclear Information System (INIS)

    Wang, Yan; Zhou, Jiliu; Zhang, Pei; An, Le; Ma, Guangkai; Kang, Jiayin; Shi, Feng; Shen, Dinggang; Wu, Xi; Lalush, David S; Lin, Weili

    2016-01-01

    Positron emission tomography (PET) has been widely used in clinical diagnosis for diseases and disorders. To obtain high-quality PET images requires a standard-dose radionuclide (tracer) injection into the human body, which inevitably increases risk of radiation exposure. One possible solution to this problem is to predict the standard-dose PET image from its low-dose counterpart and its corresponding multimodal magnetic resonance (MR) images. Inspired by the success of patch-based sparse representation (SR) in super-resolution image reconstruction, we propose a mapping-based SR (m-SR) framework for standard-dose PET image prediction. Compared with the conventional patch-based SR, our method uses a mapping strategy to ensure that the sparse coefficients, estimated from the multimodal MR images and low-dose PET image, can be applied directly to the prediction of standard-dose PET image. As the mapping between multimodal MR images (or low-dose PET image) and standard-dose PET images can be particularly complex, one step of mapping is often insufficient. To this end, an incremental refinement framework is therefore proposed. Specifically, the predicted standard-dose PET image is further mapped to the target standard-dose PET image, and then the SR is performed again to predict a new standard-dose PET image. This procedure can be repeated for prediction refinement of the iterations. Also, a patch selection based dictionary construction method is further used to speed up the prediction process. The proposed method is validated on a human brain dataset. The experimental results show that our method can outperform benchmark methods in both qualitative and quantitative measures. (paper)

  11. New horizons with PET/CT in high-tech radiotherapy planning

    International Nuclear Information System (INIS)

    Hadjieva, T.

    2009-01-01

    Full text:The precise delineation of exposed volumes in the high-tech radiotherapy is a major problem. The malignoma imaging was revolutionized by PET. PET became one of the routine imaging methods in developed countries in Europe and USA. PET with 18-FDG, combined with structural and topographic representation of images by CT, currently provides the most reliable information about the location and spread of tumor. Three dimensional radiotherapy planning is a challenge in today's practice and requires the most accurate visualization of the tumor, with its functional characteristics (proliferation activity, hypoxic cells, apoptosis, neoangiogenesis) and surrounding radiosensitive normal tissue and organs. The collected information about the main indications for radiotherapy planning using PET / CT in head and neck cancers , small cell lung carcinoma and some malignant lymphomas has been discussed. The problem of false positive and false negative findings has been also considered. The protocol for 18-FDG PET / CT conducting according to the agreed consensus of the IAEA expert meeting held in 2006 is presented

  12. PET reconstruction

    International Nuclear Information System (INIS)

    O'Sullivan, F.; Pawitan, Y.; Harrison, R.L.; Lewellen, T.K.

    1990-01-01

    In statistical terms, filtered backprojection can be viewed as smoothed Least Squares (LS). In this paper, the authors report on improvement in LS resolution by: incorporating locally adaptive smoothers, imposing positivity and using statistical methods for optimal selection of the resolution parameter. The resulting algorithm has high computational efficiency relative to more elaborate Maximum Likelihood (ML) type techniques (i.e. EM with sieves). Practical aspects of the procedure are discussed in the context of PET and illustrations with computer simulated and real tomograph data are presented. The relative recovery coefficients for a 9mm sphere in a computer simulated hot-spot phantom range from .3 to .6 when the number of counts ranges from 10,000 to 640,000 respectively. The authors will also present results illustrating the relative efficacy of ML and LS reconstruction techniques

  13. PET in cerebrovascular disease; PET bei zerebrovaskulaeren Erkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Herholz, K. [Neurologische Universitaetsklinik der Univ. Koeln (Germany)]|[Max-Planck-Institut fuer Neurologische Forschung, Koeln (Germany)

    1997-03-01

    Tissue viability is of particular interest in acute cerebral ischemia because it may be preserved if reperfusion can be achieved rapidly, e.g. by acute thrombolysis. Measurements of regional cerebral blood flow (CBF) and oxygen consumption by PET can assess tissue viability, and they have substantially increased our knowledge of th pathophysiology of ischemic stroke and the associated penumbra. Widerspread clinical application in acute stroke, however, is unlikely because of the large logistic and personnel resources required. In chronic cerebrovascular disease, measurement of regional CBF and glucose metabolism, which is usually coupled, provide detailed insights in disturbance of cortical function, e.g. due to deafferentiation, and contribute to differentiation of dementia types. Chronic misery perfusion, i.e. reduced perfusion that does not match the metabolic demand of the tissue, can be demonstrated by PET. It may be found in some patients with high-grade arterial stenoses. Less severe impairment of brain perfusion can be demonstrated by measurement of the cerebrovascular reserve capacity. The most frequent clinical situations can be assessed by less demanding procedures, e.g. by SPECT. In conclusion, PET has its role in cerebrovascular disease primarily within scientific studies, where high resolution and absolute quantitation of physiological variables are essential. (orig.). 65 refs. [Deutsch] Beim akuten ischaemischen Insult ist die Vitalitaet des Gewebes von besonderem Interesse, da sie durch rasche Reperfusion, z.B. durch Thrombolyse, erhalten bleiben kann. Messungen der zerebralen Durchblutung und des Sauerstoffumsatzes mittels PET geben darueber wesentliche Aufschluesse, und sie sind wichtig fuer das Verstaendnis der Pathophysiologie ischaemischer Infarkte und der Penumbra mit kritischer Perfusion beim Menschen. Ihre breitere Anwendung in der klinischen Patientenversorgung kommt allerdings wegen des hohen Aufwandes derzeit kaum in Betracht. Bei

  14. Innovative multimodal DOTA/NODA nanoparticles for MRI and PET imaging for tumor detection

    International Nuclear Information System (INIS)

    Truillet, Charles; Bouziotis, Penelope; Tsoukalas, Charalambos; Sancey, Lucie; Denat, Franck; Boschetti, Frédéric; Stellas, Dimitris; Anagnostopoulos, Constantinos D; Koutoulidis, Vassilis; Moulopoulos, Lia A; Lux, François; Perriat, P; Tillement, Olivier

    2014-01-01

    The knowledge of the exact tumor stage is essential to adapt therapeutic strategies or to follow the evolution of the tumor after therapy in order to increase the survival chance. The multi-tasking diagnostics that combine techniques such as PET and MRI could really improve imaging tumor stage. PET mainly offers functional information about the disease with high sensitivity. MRI offers predominantly morphological information, able to provide an excellent soft tissue contrasts due to its high resolution.

  15. Innovative multimodal DOTA/NODA nanoparticles for MRI and PET imaging for tumor detection

    Energy Technology Data Exchange (ETDEWEB)

    Truillet, Charles [ILM, UMR 5306, University of Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Matériaux Ingénierie et Science, INSA Lyon, CNRS, University of Lyon, 69622 Villeurbanne (France); Bouziotis, Penelope; Tsoukalas, Charalambos [Radiochemistry Studies Laboratory, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research “Demokritos”, Athens (Greece); Sancey, Lucie [ILM, UMR 5306, University of Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Denat, Franck [Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS 6302, University of Bourgogne, 21078 Dijon Cedex (France); Boschetti, Frédéric [CheMatech, 21000 Dijon (France); Stellas, Dimitris [Department of Cancer Biology, Biomedical Research Foundation, Academy of Athens, Athens (Greece); Anagnostopoulos, Constantinos D [Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens (Greece); Koutoulidis, Vassilis; Moulopoulos, Lia A [Department of Radiology, University of Athens Medical School, Areteion Hospital, Athens (Greece); Lux, François [ILM, UMR 5306, University of Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Perriat, P [Matériaux Ingénierie et Science, INSA Lyon, CNRS, University of Lyon, 69622 Villeurbanne (France); Tillement, Olivier [ILM, UMR 5306, University of Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)

    2014-07-29

    The knowledge of the exact tumor stage is essential to adapt therapeutic strategies or to follow the evolution of the tumor after therapy in order to increase the survival chance. The multi-tasking diagnostics that combine techniques such as PET and MRI could really improve imaging tumor stage. PET mainly offers functional information about the disease with high sensitivity. MRI offers predominantly morphological information, able to provide an excellent soft tissue contrasts due to its high resolution.

  16. PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner

    Science.gov (United States)

    Omidvari, Negar; Cabello, Jorge; Topping, Geoffrey; Schneider, Florian R.; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.

    2017-11-01

    MADPET4 is the first small animal PET insert with two layers of individually read out crystals in combination with silicon photomultiplier technology. It has a novel detector arrangement, in which all crystals face the center of field of view transaxially. In this work, the PET performance of MADPET4 was evaluated and compared to other preclinical PET scanners using the NEMA NU 4 measurements, followed by imaging a mouse-size hot-rod resolution phantom and two in vivo simultaneous PET/MRI scans in a 7 T MRI scanner. The insert had a peak sensitivity of 0.49%, using an energy threshold of 350 keV. A uniform transaxial resolution was obtained up to 15 mm radial offset from the axial center, using filtered back-projection with single-slice rebinning. The measured average radial and tangential resolutions (FWHM) were 1.38 mm and 1.39 mm, respectively. The 1.2 mm rods were separable in the hot-rod phantom using an iterative image reconstruction algorithm. The scatter fraction was 7.3% and peak noise equivalent count rate was 15.5 kcps at 65.1 MBq of activity. The FDG uptake in a mouse heart and brain were visible in the two in vivo simultaneous PET/MRI scans without applying image corrections. In conclusion, the insert demonstrated a good overall performance and can be used for small animal multi-modal research applications.

  17. Study and development of a PET device dedicated to cancer monitoring

    International Nuclear Information System (INIS)

    Vandenbussche, Vincent

    2014-01-01

    Medical imaging first began at the end of the 19. century with the discover of X-rays by Roentgen. Then, numerous imaging modalities have been developed and are used now for a wide range of cases. Positron Emission Tomography (PET) has a high sensitivity, is functional and quantitative, thus being of high interest in cancer monitoring. Nevertheless, PET is not as much spread in hospitals as magnetic resonance imaging and scanner. In this context, this work aims to prove the feasibility of PET dedicated for cancer monitoring. Thanks to instrumental developments such as light sharing in scintillating crystals, use of Silicon Photomultipliers, and an original geometry, cost is expected to be reduced while having same performances as commercial devices. An extensive study of light sharing within scintillating barrels has been made, through many parameters (crystal length, coating, data analysis...). An intrinsic spatial resolution of 4 mm has been measured over a 75 mm long crystal of LYSO, coated with teflon. From such a configuration, a first image has been reconstructed using two modules in coincidence. A spatial resolution of 5 mm has been measured in the image. Finally, Monte Carlo simulations has been made with experimental data as input, in order to measure the performances of the final PET device. Thanks to NEMA standard protocol, performances has been measured and compared to other systems. A spatial resolution of 4 mm has been reached, for a sensitivity of 2.5 cps/kBq. Quantification problem has been assessed, providing results similar to existing devices. (author) [fr

  18. Scintillator studies for the HPD-PET concept

    CERN Document Server

    Braem, D; Ciocia, F; De Leo, R; Joram, C; Lagamba, L; Nappi, E; Séguinot, Jacques; Vilardi, I; Weilhammer, P

    2007-01-01

    The spatial, energy, and time resolutions of 10 cm long polished YAP:Ce and LYSO:Ce crystals have been measured. The work is part of the novel HPD-PET concept, based on a full three-dimensional, free of parallax errors, reconstruction of the γ-ray interaction point in 10–15 cm long scintillators. The effective light attenuation length, a key parameter of the HPD-PET concept, and the resolutions have been measured for various wrappings and coatings of the crystal lateral surfaces. Even if the final HPD-PET prototype could use scintillators and/or wrappings different from those tested, the results here presented prove the feasibility of the concept and provide hints on its potential capabilities.

  19. MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects.

    Science.gov (United States)

    Chen, Kevin T; Salcedo, Stephanie; Chonde, Daniel B; Izquierdo-Garcia, David; Levine, Michael A; Price, Julie C; Dickerson, Bradford C; Catana, Ciprian

    2018-03-08

    Subject motion in positron emission tomography (PET) studies leads to image blurring and artifacts; simultaneously acquired magnetic resonance imaging (MRI) data provides a means for motion correction (MC) in integrated PET/MRI scanners. To assess the effect of realistic head motion and MR-based MC on static [ 18 F]-fluorodeoxyglucose (FDG) PET images in dementia patients. Observational study. Thirty dementia subjects were recruited. 3T hybrid PET/MR scanner where EPI-based and T 1 -weighted sequences were acquired simultaneously with the PET data. Head motion parameters estimated from high temporal resolution MR volumes were used for PET MC. The MR-based MC method was compared to PET frame-based MC methods in which motion parameters were estimated by coregistering 5-minute frames before and after accounting for the attenuation-emission mismatch. The relative changes in standardized uptake value ratios (SUVRs) between the PET volumes processed with the various MC methods, without MC, and the PET volumes with simulated motion were compared in relevant brain regions. The absolute value of the regional SUVR relative change was assessed with pairwise paired t-tests testing at the P = 0.05 level, comparing the values obtained through different MR-based MC processing methods as well as across different motion groups. The intraregion voxelwise variability of regional SUVRs obtained through different MR-based MC processing methods was also assessed with pairwise paired t-tests testing at the P = 0.05 level. MC had a greater impact on PET data quantification in subjects with larger amplitude motion (higher than 18% in the medial orbitofrontal cortex) and greater changes were generally observed for the MR-based MC method compared to the frame-based methods. Furthermore, a mean relative change of ∼4% was observed after MC even at the group level, suggesting the importance of routinely applying this correction. The intraregion voxelwise variability of regional SUVRs

  20. Characterisation of the SmartPET planar Germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.C. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom)], E-mail: H.C.Boston@liverpool.ac.uk; Boston, A.J.; Cooper, R.J.; Cresswell, J.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Hall, C.J.; Lazarus, I. [CCLRC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-08-21

    Small Animal Reconstruction PET (SmartPET) is a project funded by the UK medical research council (MRC) to demonstrate proof of principle that Germanium can be utilised in Positron Emission Tomography (PET). The SmartPET demonstrator consists of two orthogonal strip High Purity Germanium (HPGe) planar detectors manufactured by ORTEC. The aim of the project is to produce images of an internal source with sub mm{sup 3} spatial resolution. Before this image can be achieved the detectors have to be fully characterised to understand the response at any given location to a {gamma}-ray interaction. This has been achieved by probing the two detectors at a number of specified points with collimated sources of various energies and strengths. A 1 mm diameter collimated beam of photons was raster scanned in 1 mm steps across the detector. Digital pulse shape data were recorded from all the detector channels and the performance of the detector for energy and position determination has been assessed. Data will be presented for the first SmartPET detector.

  1. Performance of a YSO/LSO detector block for use in a PET/SPECT system

    International Nuclear Information System (INIS)

    Dahlbom, M.; MacDonald, L.R.; Eriksson, L.

    1996-01-01

    In recent years, there has been an increased interest in using conventional SPECT scintillation cameras for PET imaging, however, the count rate performance is a limiting factor. The modular block detectors used in modem PET systems do not have this limitation. In this work, the performance of a detector block design which would have high resolution and high count rate capabilities in both detection modes is studied. The high light output of LSO (∼5-6 times BGO) would allow the construction of a detector block that would have similar intrinsic resolution characteristics at 140 keV as a conventional high resolution BGO block detector at 511 keV (∼4 mm FWHM). However, the intrinsic radioactivity of LSO prevents the use of this scintillator in single photon counting mode. YSO is a scintillator with higher light output than LSO but worse absorption characteristics than LSO. YSO and LSO could be combined in a phoswich detector block, where YSO is placed in a front layer and is used for low energy (SPECT) imaging and LSO in a second layer is used for PET imaging. Events in the two detector materials can be separated by pulse shape discrimination, since the decay times of the light in YSO and LSO are different (70 and 40 ns, respectively). Although the intrinsic resolution of the block detector with discrete elements is worse than for a NaI camera, this would not be a limiting factor. Simulations of a 20 cm diameter hot spot phantom imaged at different collimator distances using a high resolution collimator and scintillation camera system was compared to a block detector camera. No appreciable difference in resolution was seen in the reconstructed images between the two camera systems, including the ideal situation of zero distance between collimator and phantom

  2. High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography.

    Science.gov (United States)

    Hondred, John A; Stromberg, Loreen R; Mosher, Curtis L; Claussen, Jonathan C

    2017-10-24

    Solution-phase printing of nanomaterial-based graphene inks are rapidly gaining interest for fabrication of flexible electronics. However, scalable manufacturing techniques for high-resolution printed graphene circuits are still lacking. Here, we report a patterning technique [i.e., inkjet maskless lithography (IML)] to form high-resolution, flexible, graphene films (line widths down to 20 μm) that significantly exceed the current inkjet printing resolution of graphene (line widths ∼60 μm). IML uses an inkjet printed polymer lacquer as a sacrificial pattern, viscous spin-coated graphene, and a subsequent graphene lift-off to pattern films without the need for prefabricated stencils, templates, or cleanroom technology (e.g., photolithography). Laser annealing is employed to increase conductivity on thermally sensitive, flexible substrates [polyethylene terephthalate (PET)]. Laser annealing and subsequent platinum nanoparticle deposition substantially increases the electroactive nature of graphene as illustrated by electrochemical hydrogen peroxide (H 2 O 2 ) sensing [rapid response (5 s), broad linear sensing range (0.1-550 μm), high sensitivity (0.21 μM/μA), and low detection limit (0.21 μM)]. Moreover, high-resolution, complex graphene circuits [i.e., interdigitated electrodes (IDE) with varying finger width and spacing] were created with IML and characterized via potassium chloride (KCl) electrochemical impedance spectroscopy (EIS). Results indicated that sensitivity directly correlates to electrode feature size as the IDE with the smallest finger width and spacing (50 and 50 μm) displayed the largest response to changes in KCl concentration (∼21 kΩ). These results indicate that the developed IML patterning technique is well-suited for rapid, solution-phase graphene film prototyping on flexible substrates for numerous applications including electrochemical sensing.

  3. Revolutionary impact of PET and PET-CT on the day-to-day practice of medicine and its great potential for improving future health care

    International Nuclear Information System (INIS)

    Basu, S.; Alavi, A.

    2009-01-01

    In this communication, we present an overview of the impact and advantages of PET and PET-CT fusion imaging in the practice of medicine. We also discuss the evolution of this promising molecular imaging technique since its inception and the future prospects of the combined structure-function approach. Superior contrast resolution, accurate quantification and above all optimal image quality aid in improved diagnosis of many serious disorders including cancer. We speculate that this powerful imaging approach will almost completely replace most other conventional methods in the future. Currently, 18[F]-fluorodeoxyglucose (FDG) is the main radiopharmaceutical employed for PET studies around the globe. With the availability of high quality PET images on a routine basis in most centres around the world and the likelihood that several other useful PET tracers will be approved in the near future for routine clinical applications, this technique will likely become essential in almost any medical disorder. (authors)

  4. Brain {sup 18}F-FDG PET-MRI co registration: iconographic essay;PET-RM neurologico com FDG-{sup 18}F: ensaio iconografico

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti Filho, Jose Leite Gondim; Machado Neto, Luiz de Souza, E-mail: leite_jose@yahoo.co [Multi Imagem PET, Rio de Janeiro, RJ (Brazil); Fonseca, Lea Mirian Barbosa da; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Domingues, Romeu Cortes; Domingues, Roberto Cortes [Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro, RJ (Brazil)

    2010-05-15

    The combination of positron emission tomography (PET) with magnetic resonance imaging (MRI) has been the subject of several studies in recent years. Positron emission tomography is the most sensitive and specific imaging modality in the detection of metabolic changes, but presents limited spatial resolution. On the other hand, MRI presents a significant spatial resolution, besides evaluating soft tissues signal intensity with excellent contrast resolution. The present iconographic essay is aimed at demonstrating the potential clinical application of PET/MRI co registration. The studies were performed in a dedicated PET unit with {sup 18}F-fluorodeoxyglucose (FDG) as radiopharmaceutical and co registered with 1.5 T or 3 T brain MRI. The brain images fusion software presents an already well-established accuracy, so a significant synergy between a functional PET study and an excellent MRI anatomical detail is achieved. The most attractive clinical applications of this approach are the following: epileptogenic zone assessment in patients refractory to drug therapy, identification of patients with cognitive impairment at higher risk for progression to dementia and differentiation of dementias and Parkinsonian syndromes. (author)

  5. MO-G-17A-01: Innovative High-Performance PET Imaging System for Preclinical Imaging and Translational Researches

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X [University of Texas MD Anderson Cancer Center, Houston, TX (United States); Lou, K [University of Texas MD Anderson Cancer Center, Houston, TX (United States); Rice University, Houston, TX (United States); Deng, Z [Tsinghua University, Beijing (China); Shao, Y

    2014-06-15

    Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm{sup 3} LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm{sup 2} Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface and reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate

  6. MO-G-17A-01: Innovative High-Performance PET Imaging System for Preclinical Imaging and Translational Researches

    International Nuclear Information System (INIS)

    Sun, X; Lou, K; Deng, Z; Shao, Y

    2014-01-01

    Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm 3 LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm 2 Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface and reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate capability

  7. Development of a MPPC-based prototype gantry for future MRI-PET scanners

    Science.gov (United States)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.

    2014-12-01

    We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.

  8. Recovery and normalization of triple coincidences in PET.

    Science.gov (United States)

    Lage, Eduardo; Parot, Vicente; Moore, Stephen C; Sitek, Arkadiusz; Udías, Jose M; Dave, Shivang R; Park, Mi-Ae; Vaquero, Juan J; Herraiz, Joaquin L

    2015-03-01

    Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. To recover triple coincidences, the authors' method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. The addition of triple-coincidence events with the authors' method increased peak

  9. Recovery and normalization of triple coincidences in PET

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Eduardo, E-mail: elage@mit.edu; Parot, Vicente; Dave, Shivang R.; Herraiz, Joaquin L. [Madrid-MIT M+Visión Consortium, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Moore, Stephen C.; Sitek, Arkadiusz; Park, Mi-Ae [Division of Nuclear Medicine, Department of Radiology, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts 02115 (United States); Udías, Jose M. [Grupo de Física Nuclear, Departamento de Física Atómica Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Madrid 28040 (Spain); Vaquero, Juan J. [Departamento de Ingeniería Biomédica e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés 28911 (Spain)

    2015-03-15

    Purpose: Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. Methods: To recover triple coincidences, the authors’ method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. Results: The addition of triple-coincidence events with the

  10. Simulation study of LYSO crystal pixels for In-Beam TOF-PET prototype

    International Nuclear Information System (INIS)

    Chen Ze; Hu Zhengguo; Chen Jinda; Zhang Xiuling

    2014-01-01

    In-beam TOF-PET is currently the only feasible method implemented for in-situ and noninvasive monitoring of the precision of the treatment in highly conformal ion radiotherapy. It ensures the safety of patient and accurate implementation of treatment plan. Therefore, we intent to carry out the development of In-beam TOF-PET prototype, which is made of LYSO crystal, for ion radiotherapy. LYSO crystal has perfect properties such as high light yield, fast decay time, good energy and time resolution, which makes it a good candidate. In the development of positron emission tomography (PET) detectors, understanding and optimizing scintillator light collection and energy resolution is critical for achieving high performance, particularly when the design incorporates depth-of-interaction (DOI) encoding or time-of-flight information. Monte Carlo simulations play an important role in guiding research in detector designs and popular software such as Gate now include models of light transport in scintillators. This study uses Gate software to investigate the influence of crystal length and wrapping materials to the light collection. Accurate physical modeling of scintillation detection process, from scintillation light generation through detection, is devised and performed for varying detector attributes, such as the crystal pixel length, light yield, decay time, attenuation length and surface treatment. The dependence of light output and energy resolution is studied and compared with experiment results. The results show that LYSO pixel with length of 5 mm has better light yield and energy resolution, meanwhile prove that it is possible to accurately simulate the light output using Gate. (authors)

  11. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring

    DEFF Research Database (Denmark)

    Jødal, Lars; Le Loirec, Cindy; Champion, Christophe

    2012-01-01

    Background: Positron range impairs resolution in PET imaging, especially for high-energy emitters and for small-animal PET. De-blurring in image reconstruction is possible if the blurring distribution is known. Further, the percentage of annihilation events within a given distance from the point...... on allowed-decay isotopes. Methods: It is argued that blurring at the detection level should not be described by positron range r, but instead the 2D-projected distance δ (equal to the closest distance between decay and line-of-response). To determine these 2D distributions, results from a dedicated positron...... is important for improved resolution in PET imaging. Relevant distributions for positron range have been derived for seven isotopes. Distributions for other allowed-decay isotopes may be estimated with the above formulas....

  12. Simulating effects of brain atrophy in longitudinal PET imaging with an anthropomorphic brain phantom

    DEFF Research Database (Denmark)

    Jonasson, L S; Axelsson, J; Riklund, K

    2017-01-01

    In longitudinal positron emission tomography (PET), the presence of volumetric changes over time can lead to an overestimation or underestimation of the true changes in the quantified PET signal due to the partial volume effect (PVE) introduced by the limited spatial resolution of existing PET...... cameras and reconstruction algorithms. Here, a 3D-printed anthropomorphic brain phantom with attachable striata in three sizes was designed to enable controlled volumetric changes. Using a method to eliminate the non-radioactive plastic wall, and manipulating BP levels by adding different number of events...... from list-mode acquisitions, we investigated the artificial volume dependence of BP due to PVE, and potential bias arising from varying BP. Comparing multiple reconstruction algorithms we found that a high-resolution ordered-subsets maximization algorithm with spatially variant point-spread function...

  13. Geometric calibration between PET scanner and structured light scanner

    DEFF Research Database (Denmark)

    Kjer, Hans Martin; Olesen, Oline Vinter; Paulsen, Rasmus Reinhold

    2011-01-01

    Head movements degrade the image quality of high resolution Positron Emission Tomography (PET) brain studies through blurring and artifacts. Manny image reconstruction methods allows for motion correction if the head position is tracked continuously during the study. Our method for motion tracking...... is a structured light scanner placed just above the patient tunnel on the High Resolution Research Tomograph (HRRT, Siemens). It continuously registers point clouds of a part of the patient's face. The relative motion is estimated as the rigid transformation between frames. A geometric calibration between...

  14. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Alexander M. [Department of Bioengineering, Stanford University, Stanford, California 94305-5128 and Department of Radiology, Stanford University, Stanford, California 94305-5128 (United States); Deller, Timothy W.; Maramraju, Sri Harsha [GE Healthcare, Waukesha, Wisconsin 53188-1678 (United States); Khalighi, Mohammad Mehdi [GE Healthcare, Applied Science Lab, Menlo Park, California 94025-3493 (United States); Delso, Gaspar [GE Healthcare and University Hospital of Zurich, Zurich 8006 (Switzerland); Levin, Craig S., E-mail: cslevin@stanford.edu [Department of Bioengineering, Stanford University, Stanford, California 94305-5128 (United States); Department of Radiology, Stanford University, Stanford, California 94305-5128 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305-5128 (United States); Department of Physics, Stanford University, Stanford, California 94305-5128 (United States)

    2016-05-15

    Purpose: The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. Methods: The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. Results: The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. Conclusions: Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.

  15. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system

    International Nuclear Information System (INIS)

    Grant, Alexander M.; Deller, Timothy W.; Maramraju, Sri Harsha; Khalighi, Mohammad Mehdi; Delso, Gaspar; Levin, Craig S.

    2016-01-01

    Purpose: The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. Methods: The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. Results: The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. Conclusions: Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.

  16. Effect of filters and reconstruction algorithms on I-124 PET in Siemens Inveon PET scanner

    Science.gov (United States)

    Ram Yu, A.; Kim, Jin Su

    2015-10-01

    Purpose: To assess the effects of filtering and reconstruction on Siemens I-124 PET data. Methods: A Siemens Inveon PET was used. Spatial resolution of I-124 was measured to a transverse offset of 50 mm from the center FBP, 2D ordered subset expectation maximization (OSEM2D), 3D re-projection algorithm (3DRP), and maximum a posteriori (MAP) methods were tested. Non-uniformity (NU), recovery coefficient (RC), and spillover ratio (SOR) parameterized image quality. Mini deluxe phantom data of I-124 was also assessed. Results: Volumetric resolution was 7.3 mm3 from the transverse FOV center when FBP reconstruction algorithms with ramp filter was used. MAP yielded minimal NU with β =1.5. OSEM2D yielded maximal RC. SOR was below 4% for FBP with ramp, Hamming, Hanning, or Shepp-Logan filters. Based on the mini deluxe phantom results, an FBP with Hanning or Parzen filters, or a 3DRP with Hanning filter yielded feasible I-124 PET data.Conclusions: Reconstruction algorithms and filters were compared. FBP with Hanning or Parzen filters, or 3DRP with Hanning filter yielded feasible data for quantifying I-124 PET.

  17. Detector normalization and scatter correction for the jPET-D4: A 4-layer depth-of-interaction PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Keishi [Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan)]. E-mail: kitam@shimadzu.co.jp; Ishikawa, Akihiro [Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Mizuta, Tetsuro [Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Yamaya, Taiga [National Institute of Radiological Sciences, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Yoshida, Eiji [National Institute of Radiological Sciences, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, 9-1 Anagawa-4, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2007-02-01

    The jPET-D4 is a brain positron emission tomography (PET) scanner composed of 4-layer depth-of-interaction (DOI) detectors with a large number of GSO crystals, which achieves both high spatial resolution and high scanner sensitivity. Since the sensitivity of each crystal element is highly dependent on DOI layer depth and incidental {gamma} ray energy, it is difficult to estimate normalization factors and scatter components with high statistical accuracy. In this work, we implemented a hybrid scatter correction method combined with component-based normalization, which estimates scatter components with a dual energy acquisition using a convolution subtraction-method for an estimation of trues from an upper energy window. In order to reduce statistical noise in sinograms, the implemented scheme uses the DOI compression (DOIC) method, that combines deep pairs of DOI layers into the nearest shallow pairs of DOI layers with natural detector samplings. Since the compressed data preserve the block detector configuration, as if the data are acquired using 'virtual' detectors with high {gamma}-ray stopping power, these correction methods can be applied directly to DOIC sinograms. The proposed method provides high-quality corrected images with low statistical noise, even for a multi-layer DOI-PET.

  18. PET/CT in staging of the high risk prostate cancer

    International Nuclear Information System (INIS)

    Bergero, M.A.; David, C.; Dipatto, F.; Popeneciu, V.; Ríos, L.; Faccio, F.

    2016-01-01

    Objectives: In the last decade multimodal management of the high risk prostate cancer (HRPC) is a therapeutic option in selected patients and the staging of these patients depends on the current diagnostic methods (DM) which have low diagnostic accuracy for detecting metastasis (MTS). The positron emission tomography/computed tomography (PET/CT) would have a greater diagnostic accuracy and it is presented as a better DM for staging prostate cancer (PC). The aim of this article is present 2 patients in whom PET/CT modified the therapeutic decision and conduct a literature review. Materials and methods: 2 patients with HRPC who performed PET/CT and it modified the therapeutic behavior were described and a systematic review of the literature was conducted using PubMed, Embase, SciELO and Cochrane answering the question: has PET/CT a place in HRPC staging? Results: TPET/CT has a sensitivity and specificity between 19% to 100% and 67% to 98,5 %, respectively, in assessing nodal involvement by PC and between 84% to 96% and 92.3% to 100%, respectively, in assessing bone involvement by PC. Besides PET/CT allowed to modify the therapeutic behavior between 20% to 40% of the patients with PC. Conclusions: PET/CT has good specificity and moderate sensitivity for detecting lymph node MTS and good sensitivity and specificity for detecting bone MTS. Besides PET/CT modified the therapeutic behavior in 1/3 of cases and it allowed us to modify the therapeutic behavior in our series. (authors) [es

  19. Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET

    International Nuclear Information System (INIS)

    Tsoumpas, C.; Mackewn, J.E.; Halsted, P.; King, A.P.; Buerger, C.; Totman, J.J.; Schaeffter, T.; Marsden, P.K.

    2010-01-01

    Positron emission tomography (PET) provides an accurate measurement of radiotracer concentration in vivo, but performance can be limited by subject motion which degrades spatial resolution and quantitative accuracy. This effect may become a limiting factor for PET studies in the body as PET scanner technology improves. In this work, we propose a new approach to address this problem by employing motion information from images measured simultaneously using a magnetic resonance (MR) scanner. The approach is demonstrated using an MR-compatible PET scanner and PET-MR acquisition with a purpose-designed phantom capable of non-rigid deformations. Measured, simultaneously acquired MR data were used to correct for motion in PET, and results were compared with those obtained using motion information from PET images alone. Motion artefacts were significantly reduced and the PET image quality and quantification was significantly improved by the use of MR motion fields, whilst the use of PET-only motion information was less successful. Combined PET-MR acquisitions potentially allow PET motion compensation in whole-body acquisitions without prolonging PET acquisition time or increasing radiation dose. This, to the best of our knowledge, is the first study to demonstrate that simultaneously acquired MR data can be used to estimate and correct for the effects of non-rigid motion in PET. (author)

  20. High-resolution tomography of positron emitters with clustered pinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Goorden, Marlies C; Beekman, Freek J [Section of Radiation Detection and Medical Imaging, Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)], E-mail: m.c.goorden@tudelft.nl

    2010-03-07

    State-of-the-art small-animal single photon emission computed tomography (SPECT) enables sub-half-mm resolution imaging of radio-labelled molecules. Due to severe photon penetration through pinhole edges, current multi-pinhole SPECT is not suitable for high-resolution imaging of photons with high energies, such as the annihilation photons emitted by positron emitting tracers (511 keV). To deal with this edge penetration, we introduce here clustered multi-pinhole SPECT (CMP): each pinhole in a cluster has a narrow opening angle to reduce photon penetration. Using simulations, CMP is compared with (i) a collimator with traditional pinholes that is currently used for sub-half-mm imaging of SPECT isotopes (U-SPECT-II), and (ii), like (i) but with collimator thickness adapted to image high-energy photons (traditional multi-pinhole SPECT, TMP). At 511 keV, U-SPECT-II is able to resolve the 0.9 mm rods of an iteratively reconstructed Jaszczak-like capillary hot rod phantom, and while TMP only leads to small improvements, CMP can resolve rods as small as 0.7 mm. Using a digital tumour phantom, we show that CMP resolves many details not assessable with standard USPECT-II and TMP collimators. Furthermore, CMP makes it possible to visualize uptake of positron emitting tracers in sub-compartments of a digital mouse striatal brain phantom. This may open up unique possibilities for analysing processes such as those underlying the function of neurotransmitter systems. Additional potential of CMP may include (i) the imaging of other high-energy single-photon emitters (e.g. I-131) and (ii) localized imaging of positron emitting tracers simultaneously with single photon emitters, with an even better resolution than coincidence PET.

  1. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  2. PET Performance Evaluation of an MR-Compatible PET Insert

    Science.gov (United States)

    Wu, Yibao; Catana, Ciprian; Farrell, Richard; Dokhale, Purushottam A.; Shah, Kanai S.; Qi, Jinyi; Cherry, Simon R.

    2010-01-01

    A magnetic resonance (MR) compatible positron emission tomography (PET) insert has been developed in our laboratory for simultaneous small animal PET/MR imaging. This system is based on lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiode (PSAPD) photodetectors. The PET performance of this insert has been measured. The average reconstructed image spatial resolution was 1.51 mm. The sensitivity at the center of the field of view (CFOV) was 0.35%, which is comparable to the simulation predictions of 0.40%. The average photopeak energy resolution was 25%. The scatter fraction inside the MRI scanner with a line source was 12% (with a mouse-sized phantom and standard 35 mm Bruker 1H RF coil), 7% (with RF coil only) and 5% (without phantom or RF coil) for an energy window of 350–650 keV. The front-end electronics had a dead time of 390 ns, and a trigger extension dead time of 7.32 μs that degraded counting rate performance for injected doses above ~0.75 mCi (28 MBq). The peak noise-equivalent count rate (NECR) of 1.27 kcps was achieved at 290 μCi (10.7 MBq). The system showed good imaging performance inside a 7-T animal MRI system; however improvements in data acquisition electronics and reduction of the coincidence timing window are needed to realize improved NECR performance. PMID:21072320

  3. A depth-encoding PET detector that uses light sharing and single-ended readout with silicon photomultipliers

    Science.gov (United States)

    Kuang, Zhonghua; Yang, Qian; Wang, Xiaohui; Fu, Xin; Ren, Ning; Sang, Ziru; Wu, San; Zheng, Yunfei; Zhang, Xianming; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2018-02-01

    Detectors with depth-encoding capability and good timing resolution are required to develop high-performance whole-body or total-body PET scanners. In this work, depth-encoding PET detectors that use light sharing between two discrete crystals and single-ended readout with silicon photomultipliers (SiPMs) were manufactured and evaluated. The detectors consisted of two unpolished 3  ×  3  ×  20 mm3 LYSO crystals with different coupling materials between them and were read out by Hamamatsu 3  ×  3 mm2 SiPMs with one-to-one coupling. The ratio of the energy of one SiPM to the total energy of two SiPMs was used to measure the depth of interaction (DOI). Detectors with different coupling materials in-between the crystals were measured in the singles mode in an effort to obtain detectors that can provide good DOI resolution. The DOI resolution and energy resolution of three types of detector were measured and the timing resolution was measured for the detector with the best DOI and energy resolution. The optimum detector, with 5 mm optical glue, a 9 mm triangular ESR and a 6 mm rectangular ESR in-between the unpolished crystals, provides a DOI resolution of 2.65 mm, an energy resolution of 10.0% and a timing resolution of 427 ps for events of E  >  400 keV. The detectors simultaneously provide good DOI and timing resolution, and show great promise for the development of high-performance whole-body and total-body PET scanners.

  4. When are false-positive and false-negative 18F'FDG PET scans really false?

    International Nuclear Information System (INIS)

    Binns, D.S.; Hicks, R.J.; Fawcett, M.E.

    1999-01-01

    Full text: A 61-year-old male presented with locally advanced squamous cell carcinoma of the base of tongue. In the absence of wider metastatic disease on conventional staging, he was enrolled in a phase I, dose escalation chemoradiotherapy trial. In this study, therapeutic response to radiotherapy combined with cisplatin and a chemotherapeutic agent which specifically targets hypoxic cells (tirapazamine) was evaluated with serial 18 F-FDG PET scans. Baseline 18 F-FDG PET confirmed locally advanced disease, although a previously undetected lower cervical lymph node was identified and included in the radiotherapy portal. Whole-body PET revealed a small metabolically active area adjacent to the right hemidiaphragm. Respiratory gated, high-resolution helical CT failed to find structural evidence of disease and, as a result, the patient was enrolled in the 7 week therapy regime on the assumption that the PET finding was a false-positive result. Repeat 18 F-FDG PET scans at the middle, end and 12 weeks post-treatment showed excellent therapeutic response in the head and neck which was discordant with clinical and CT findings, and resolution of the metabolically active chest lesion. Despite the negative PET scan, persistent clinical and CT evidence of a residual tumour mass suggested a false-negative result and resulted in a neck lymph node dissection. This showed no evidence of malignant cells. Five months following treatment, the patient presented with pleural effusion at the base on the right lung. Subsequent CT scanning showed a small pleural lesion at the site of initial 18 F-FDG uptake. Biopsy confirmed metastatic disease. The apparent transient resolution of 18 F-FDG uptake in the pleural lesion with treatment presumably reflected a combination of reduced metabolic activity and size due to the partial, but not complete, cytotoxic effects of cisplatin. In conclusion, this case emphasizes the importance of pathological review and clinical follow-up in reconciling

  5. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections.

    Science.gov (United States)

    Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas

    2017-12-01

    Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.

  6. Recent developments in time-of-flight PET

    International Nuclear Information System (INIS)

    Vandenberghe, S.; Mikhaylova, E.; D’Hoe, E.; Mollet, P.; Karp, J. S.

    2016-01-01

    While the first time-of-flight (TOF)-positron emission tomography (PET) systems were already built in the early 1980s, limited clinical studies were acquired on these scanners. PET was still a research tool, and the available TOF-PET systems were experimental. Due to a combination of low stopping power and limited spatial resolution (caused by limited light output of the scintillators), these systems could not compete with bismuth germanate (BGO)-based PET scanners. Developments on TOF system were limited for about a decade but started again around 2000. The combination of fast photomultipliers, scintillators with high density, modern electronics, and faster computing power for image reconstruction have made it possible to introduce this principle in clinical TOF-PET systems. This paper reviews recent developments in system design, image reconstruction, corrections, and the potential in new applications for TOF-PET. After explaining the basic principles of time-of-flight, the difficulties in detector technology and electronics to obtain a good and stable timing resolution are shortly explained. The available clinical systems and prototypes under development are described in detail. The development of this type of PET scanner also requires modified image reconstruction with accurate modeling and correction methods. The additional dimension introduced by the time difference motivates a shift from sinogram- to listmode-based reconstruction. This reconstruction is however rather slow and therefore rebinning techniques specific for TOF data have been proposed. The main motivation for TOF-PET remains the large potential for image quality improvement and more accurate quantification for a given number of counts. The gain is related to the ratio of object size and spatial extent of the TOF kernel and is therefore particularly relevant for heavy patients, where image quality degrades significantly due to increased attenuation (low counts) and high scatter fractions. The

  7. Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System.

    Science.gov (United States)

    Hsu, David F C; Ilan, Ezgi; Peterson, William T; Uribe, Jorge; Lubberink, Mark; Levin, Craig S

    2017-09-01

    This article presents system performance studies for the Discovery MI PET/CT system, a new time-of-flight system based on silicon photomultipliers. System performance and clinical imaging were compared between this next-generation system and other commercially available PET/CT and PET/MR systems, as well as between different reconstruction algorithms. Methods: Spatial resolution, sensitivity, noise-equivalent counting rate, scatter fraction, counting rate accuracy, and image quality were characterized with the National Electrical Manufacturers Association NU-2 2012 standards. Energy resolution and coincidence time resolution were measured. Tests were conducted independently on two Discovery MI scanners installed at Stanford University and Uppsala University, and the results were averaged. Back-to-back patient scans were also performed between the Discovery MI, Discovery 690 PET/CT, and SIGNA PET/MR systems. Clinical images were reconstructed using both ordered-subset expectation maximization and Q.Clear (block-sequential regularized expectation maximization with point-spread function modeling) and were examined qualitatively. Results: The averaged full widths at half maximum (FWHMs) of the radial/tangential/axial spatial resolution reconstructed with filtered backprojection at 1, 10, and 20 cm from the system center were, respectively, 4.10/4.19/4.48 mm, 5.47/4.49/6.01 mm, and 7.53/4.90/6.10 mm. The averaged sensitivity was 13.7 cps/kBq at the center of the field of view. The averaged peak noise-equivalent counting rate was 193.4 kcps at 21.9 kBq/mL, with a scatter fraction of 40.6%. The averaged contrast recovery coefficients for the image-quality phantom were 53.7, 64.0, 73.1, 82.7, 86.8, and 90.7 for the 10-, 13-, 17-, 22-, 28-, and 37-mm-diameter spheres, respectively. The average photopeak energy resolution was 9.40% FWHM, and the average coincidence time resolution was 375.4 ps FWHM. Clinical image comparisons between the PET/CT systems demonstrated the high

  8. In-beam PET at high-energy photon beams: a feasibility study

    Science.gov (United States)

    Müller, H.; Enghardt, W.

    2006-04-01

    For radiation therapy with carbon ion beams, either for the stable isotope 12C or for the radioactive one 11C, it has been demonstrated that the β+-activity distribution created or deposited, respectively, within the irradiated volume can be visualized by means of positron emission tomography (PET). The PET images provide valuable information for quality assurance and precision improvement of ion therapy. Dedicated PET scanners have been integrated into treatment sites at the Heavy Ion Medical Accelerator at Chiba (HIMAC), Japan, and the Gesellschaft für Schwerionenforschung (GSI), Germany, to make PET imaging feasible during therapeutic irradiation (in-beam PET). A similar technique may be worthwhile for radiotherapy with high-energy bremsstrahlung. In addition to monitoring the dose delivery process which in-beam PET has been primarily developed for, it may be expected that radiation response of tissue can be detected by means of in-beam PET. We investigate the applicability of PET for treatment control in the case of using bremsstrahlung spectra produced by 15-50 MeV electrons. Target volume activation due to (γ, n) reactions at energies above 20 MeV yields moderate β+-activity levels, which can be employed for imaging. The radiation from positrons produced by pair production is not presently usable because the detectors are overloaded due to the low duty factor of medical electron linear accelerators. However, the degradation of images caused by positron motion between creation and annihilation seems to be tolerable.

  9. Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation

    International Nuclear Information System (INIS)

    Surti, S; Karp, J S; Muehllehner, G

    2004-01-01

    The main thrust for this work is the investigation and design of a whole-body PET scanner based on new lanthanum bromide scintillators. We use Monte Carlo simulations to generate data for a 3D PET scanner based on LaBr 3 detectors, and to assess the count-rate capability and the reconstructed image quality of phantoms with hot and cold spheres using contrast and noise parameters. Previously we have shown that LaBr 3 has very high light output, excellent energy resolution and fast timing properties which can lead to the design of a time-of-flight (TOF) whole-body PET camera. The data presented here illustrate the performance of LaBr 3 without the additional benefit of TOF information, although our intention is to develop a scanner with TOF measurement capability. The only drawbacks of LaBr 3 are the lower stopping power and photo-fraction which affect both sensitivity and spatial resolution. However, in 3D PET imaging where energy resolution is very important for reducing scattered coincidences in the reconstructed image, the image quality attained in a non-TOF LaBr 3 scanner can potentially equal or surpass that achieved with other high sensitivity scanners. Our results show that there is a gain in NEC arising from the reduced scatter and random fractions in a LaBr 3 scanner. The reconstructed image resolution is slightly worse than a high-Z scintillator, but at increased count-rates, reduced pulse pileup leads to an image resolution similar to that of LSO. Image quality simulations predict reduced contrast for small hot spheres compared to an LSO scanner, but improved noise characteristics at similar clinical activity levels

  10. Evaluation of moderately cooled pure NaI as a scintillator for position-sensitive PET detectors

    International Nuclear Information System (INIS)

    Wear, J.A.; Karp, J.S.; Haigh, A.T.; Freifelder, R.

    1996-01-01

    A new evaluation of pure NaI has been performed to determine if moderate cooling would lead to better performance than that of existing, activated NaI(Tl) position-sensitive detectors, particularly at high countrates. Using a freezer, an initial effort was performed to cool the crystal assembly to -90 C (183 K). At this temperature, pure NaI has a decay constant of 35 nsec, a light output which is about 20% that of room temperature NaI(Tl), and an energy resolution of 15%. For the PET applications the signal of room temperature (25 C) NaI(Tl) is normally pulse clipped, reducing the light output to 40% of the unclipped signal and yielding an energy resolution of 10.5%. Since the long decay of NaI(Tl) causes it to suffer more significantly than pure NaI from pre-pulse pileup, the difference in energy resolution between the two crystals at high countrates will be reduced. Also, a significantly shorter trigger deadtime with pure NaI will lead to a reduction in coincidence deadtime losses in PET. Computer simulations of large-area crystals operating at high countrates have been performed to quantify their trigger deadtime behavior and position resolution as a function of light output and pulse decay time. Having gained experience with the practical issues of cooling large crystals, measurements of position resolution have been performed with a NaI bar detector of similar geometry to the NaI(Tl) detectors in use in the PENN-PET scanner

  11. Positron range in tissue-equivalent materials: experimental microPET studies

    Science.gov (United States)

    Alva-Sánchez, H.; Quintana-Bautista, C.; Martínez-Dávalos, A.; Ávila-Rodríguez, M. A.; Rodríguez-Villafuerte, M.

    2016-09-01

    In this work an experimental investigation was carried out to study the effect that positron range has over positron emission tomography (PET) scans through measurements of the line spread function (LSF) in tissue-equivalent materials. Line-sources consisted of thin capillary tubes filled with 18F, 13N or 68Ga water-solution inserted along the axis of symmetry of cylindrical phantoms constructed with the tissue-equivalent materials: lung (inhale and exhale), adipose tissue, solid water, trabecular and cortical bone. PET scans were performed with a commercial small-animal PET scanner and image reconstruction was carried out with filtered-backprojection. Line-source distributions were analyzed using radial profiles taken on axial slices from which the spatial resolution was determined through the full-width at half-maximum, tenth-maximum, twentieth-maximum and fiftieth-maximum. A double-Gaussian model of the LSFs was used to fit experimental data which can be incorporated into iterative reconstruction methods. In addition, the maximum activity concentration in the line-sources was determined from reconstructed images and compared to the known values for each case. The experimental data indicates that positron range in different materials has a strong effect on both spatial resolution and activity concentration quantification in PET scans. Consequently, extra care should be taken when computing standard-uptake values in PET scans, in particular when the radiopharmaceutical is taken up by different tissues in the body, and more even so with high-energy positron emitters.

  12. Compensation Methods for Non-uniform and Incomplete Data Sampling in High Resolution PET with Multiple Scintillation Crystal Layers

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Kim, Soo Mee; Lee, Dong Soo; Hong, Jong Hong; Sim, Kwang Souk; Rhee, June Tak

    2008-01-01

    To establish the methods for sinogram formation and correction in order to appropriately apply the filtered backprojection (FBP) reconstruction algorithm to the data acquired using PET scanner with multiple scintillation crystal layers. Formation for raw PET data storage and conversion methods from listmode data to histogram and sinogram were optimized. To solve the various problems occurred while the raw histogram was converted into sinogram, optimal sampling strategy and sampling efficiency correction method were investigated. Gap compensation methods that is unique in this system were also investigated. All the sinogram data were reconstructed using 2D filtered backprojection algorithm and compared to estimate the improvements by the correction algorithms. Optimal radial sampling interval and number of angular samples in terms of the sampling theorem and sampling efficiency correction algorithm were pitch/2 and 120, respectively. By applying the sampling efficiency correction and gap compensation, artifacts and background noise on the reconstructed image could be reduced. Conversion method from the histogram to sinogram was investigated for the FBP reconstruction of data acquired using multiple scintillation crystal layers. This method will be useful for the fast 2D reconstruction of multiple crystal layer PET data

  13. Philips Gemini TF64 PET/CT Acceptance Testing

    International Nuclear Information System (INIS)

    González Gonzalez, Joaquín J.; Calderón Marin, Carlos F.; Varela Corona, Consuelo; Machado Tejeda, Adalberto; González Correa, Héctor J.

    2016-01-01

    The Philips Gemini TF64 is the first PET/CT scanner installed in Cuba at the Institute of Oncology and Radiobiology in 2014. It is a third generation fully tridimensional whole body PET scanner with time-of-flight (TOF) technology combined with a 64-slice Brilliance CT scanner. The CT detector module contains 672x64 solid state detector, incorporating GOS scintillators, optical diodes and electronic signal channels arranged in 64 side by side arcs, with 672 detectors in each arc. There are sixteen 0.75 mm individual detector elements around the center and four 1.5 mm elements at each end, resulting in a 24 mm total detection length. The PET detector consists of 28 pixelar modules of a 23x44 array of 4x4x22 mm3 of LYSO crystals arranged in an Anger-logic detector design. The hardware coincidence-timing window for this scanner is set at 4 ns and delayed coincidence window technique is used to estimate the random coincidences in collected data. In this study the performance characteristics of PET/CT scanner were measured as part of the program tests of acceptance for clinical use.Methodology. The performance characteristics of CT scanner were evaluated by manufacturer protocol using Philips system performance phantom. Some additional geometrical tests were performed by the user. The intrinsic measurements of energy resolution as well as timing resolution, which define the TOF performance of PET scanner, were performed following the recommendations of manufacturer using 18 F. Spatial resolution, sensitivity, scatter fraction, counting rate performance, image quality and accuracy were measured according to the NEMA NU-2 2007 procedures. Additionally, to characterize the effect of TOF reconstruction on lesion contrast and noise, the standard NEMA torso phantom was reconstructed with and without TOF capability. The accuracy of PET/CT image registration was tested according to the manufacturer protocol using an image alignment calibration holder with 6 point sources of 22

  14. Temporal lobe dysfunction in childhood autism: a PET study

    International Nuclear Information System (INIS)

    Boddaert, N.; Poline, J.B.; Brunelle, F.; Zilbovicius, M.; Boddaert, N.; Brunelle, F.; Chabane, N.; Barthelemy, C.; Zilbovicius, M.; Bourgeois, M.; Samson, Y.

    2002-01-01

    Childhood autism is a severe developmental disorder that impairs the acquisition of some of the most important skills in human life. Progress in understanding the neural basis of childhood autism requires clear and reliable data indicating specific neuro-anatomical or neuro-physiological abnormalities. The purpose of the present study was to research localized brain dysfunction in autistic children using functional brain imaging. Regional cerebral blood flow (rCBF) was measured with positron emission tomography (PET) in 21 primary autistic children and 10 age-matched non autistic children. A statistical parametric analysis of rCBF images revealed significant bilateral temporal hypoperfusion in the associative auditory cortex (superior temporal gyrus) and in the multimodal cortex (superior temporal sulcus) in the autistic group (p<0.001). In addition, temporal hypoperfusion was detected individually in 77% of autistic children. These findings provide robust evidence of well localized functional abnormalities in autistic children located in the superior temporal lobe. Such localized abnormalities were not detected with the low resolution PET camera (14-22). This study suggests that high resolution PET camera combined with statistical parametric mapping is useful to understand developmental disorders. (authors)

  15. PET image reconstruction with rotationally symmetric polygonal pixel grid based highly compressible system matrix

    International Nuclear Information System (INIS)

    Yu Yunhan; Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Chen Jing; Hong Baoyu

    2013-01-01

    To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction. (authors)

  16. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience

    International Nuclear Information System (INIS)

    Afshar-Oromieh, A.; Haberkorn, U.; Schlemmer, H.P.; Fenchel, M.; Roethke, M.; Eder, M.; Eisenhut, M.; Hadaschik, B.A.; Kopp-Schneider, A.

    2014-01-01

    68 Ga-labelled HBED-CC-PSMA is a highly promising tracer for imaging recurrent prostate cancer (PCa). The intention of this study was to evaluate the feasibility of PET/MRI with this tracer. Twenty patients underwent PET/CT 1 h after injection of the 68 Ga-PSMA ligand followed by PET/MRI 3 h after injection. Data from the two investigations were first analysed separately and then compared with respect to tumour detection rate and radiotracer uptake in various tissues. To evaluate the quantification accuracy of the PET/MRI system, differences in SUVs between PET/CT and corresponding PET/MRI were compared with differences in SUVs between PET/CT 1 h and 3 h after injection in another patient cohort. This cohort was investigated using the same PET/CT system. With PET/MRI, different diagnostic sequences, higher contrast of lesions and higher resolution of MRI enabled a subjectively easier evaluation of the images. In addition, four unclear findings on PET/CT could be clarified as characteristic of PCa metastases by PET/MRI. However, in PET images of the PET/MRI, a reduced signal was observed at the level of the kidneys (in 11 patients) and around the urinary bladder (in 15 patients). This led to reduced SUVs in six lesions. SUV mean values provided by the PET/MRI system were different in muscles, blood pool, liver and spleen. PCa was detected more easily and more accurately with Ga-PSMA PET/MRI than with PET/CT and with lower radiation exposure. Consequently, this new technique could clarify unclear findings on PET/CT. However, scatter correction was challenging when the specific 68 Ga-PSMA ligand was used. Moreover, direct comparison of SUVs from PET/CT and PET/MR needs to be conducted carefully. (orig.)

  17. Evaluation of the efficiency of FDG PET/CT in detection and characterization of skeletal metastases

    Directory of Open Access Journals (Sweden)

    Ahmed Wafaie

    2014-03-01

    Conclusion: Fused PET/CT was highly efficient in evaluation of skeletal metastases with superior performance in: detection of early bone marrow infiltration not apparent on CT, resolution of metabolic activity before definite signs of complete healing on CT, detection of missed sclerotic metastases on PET due to their relatively low metabolic activity, detection of intra and extra osseous recurrence and differentiation of benign from malignant bone lesions.

  18. Development of the fast and efficient gamma detector using Cherenkov light for TOF-PET

    Science.gov (United States)

    Canot, C.; Alokhina, M.; Abbon, P.; Bard, J. P.; Tauzin, G.; Yvon, D.; Sharyy, V.

    2017-12-01

    In this paper we present two configurations of innovative gamma detectors using Cherenkov light for time-of-flight—Positron Emission Tomography (PET). The first uses heavy crystals as a Cherenkov radiator to develop a demonstrator for a whole body PET scanner with high detection efficiency. We demonstrated a 30% detection efficiency and a 180 ps (FWHM) time resolution, mainly limited by the time transit spread of the photomultiplier. The second configuration uses an innovative liquid, the TriMethyl Bismuth, to develop a high precision brain-scanning PET device with time-of-flight capability. According to Geant4 simulation, we expect to reach a precision of 150 ps (FWHM) and an efficiency of about 25%.

  19. Performance evaluation and calibration of the neuro-pet scanner

    International Nuclear Information System (INIS)

    Sank, V.J.; Brooks, R.A.; Cascio, H.E.; Di Chiro, G.; Friauf, W.S.; Leighton, S.B.

    1983-01-01

    The Neuro-PET is a circular ring seven-slice positron emission tomograph designed for imaging human heads and small animals. The scanner uses 512 bismuth germanate detectors 8.25 mm wide packed tightly together in four layers to achieve high spatial resolution (6-7 mm FWHM) without the use of beam blockers. Because of the small 38 cm ring diameter, the sensitivity is also very high: 70,000 c/s per true slice with medium energy threshold (375 keV) for a 20 cm diameter phantom containing 1 μCi/cc of positron-emitting activity, according to a preliminary measurement. There are three switch-selectable thresholds, and the sensitivity will be higher in the low threshold setting. The Neuro-PET is calibrated with a round or elliptical phantom that approximates a patient's head; this method eliminates the effects of scatter and self-attenuation to first order. Further software corrections for these artifacts are made in the reconstruction program, which reduce the measured scatter to zero, as determined with a 5 cm cold spot. With a 1 cm cold spot, the apparent activity at the center of the cold spot is 18% of the surrounding activity, which is clearly a consequence of the limits of spatial resolution, rather than scatter. The Neuro-PET has been in clinical operation since June 1982, and approximately 30 patients have been scanned to date

  20. Performance evaluation of SiPM photodetectors for PET imaging in the presence of magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Espana, S., E-mail: samuel@nuclear.fis.ucm.e [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Fraile, L.M.; Herraiz, J.L.; Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M.; Vaquero, J.J. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain)

    2010-02-01

    The multi-pixel photon counter (MPPC) or silicon photomultiplier (SiPM), recently introduced as a solid-state photodetector, consists of an array of Geiger-mode photodiodes (microcells). It is a promising device for PET due to its potential for high photon detection efficiency (PDE) and its foreseeable immunity to magnetic fields. It is also easy to use with simple read-outs, has a high gain and a small size. In this work we evaluate the in field performance of three 1x1 mm{sup 2} (with 100, 400 and 1600 microcells, respectively) and one 6x6 mm{sup 2} (arranged as a 2x2 array) Hamamatsu MPPCs for their use in PET imaging. We examine the dependence of the energy resolution and the gain of these devices on the temperature and reverse bias voltage, when coupled to LYSO scintillator crystals under conditions that one would find in a PET system. We find that the 400 and 1600 microcells models and the 2x2 array are suitable for small-size crystals, like those employed in high resolution small animal scanners. We have confirmed the good performance of these devices up to magnetic fields of 7 T as well as their suitability for performing PET acquisitions in the presence of fast switching gradients and high duty radiofrequency MRI sequences.

  1. Value of a dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions

    International Nuclear Information System (INIS)

    Eiber, Matthias; Holzapfel, Konstantin; Rummeny, Ernst J.; Martinez-Moeller, Axel; Souvatzoglou, Michael; Ziegler, Sibylle; Schwaiger, Markus; Nekolla, Stephan G.; Beer, Ambros J.; Pickhard, Anja; Loeffelbein, Dennys; Santi, Ivan

    2011-01-01

    In this study, the potential contribution of Dixon-based MR imaging with a rapid low-resolution breath-hold sequence, which is a technique used for MR-based attenuation correction (AC) for MR/positron emission tomography (PET), was evaluated for anatomical correlation of PET-positive lesions on a 3T clinical scanner compared to low-dose CT. This technique is also used in a recently installed fully integrated whole-body MR/PET system. Thirty-five patients routinely scheduled for oncological staging underwent 18 F-fluorodeoxyglucose (FDG) PET/CT and a 2-point Dixon 3-D volumetric interpolated breath-hold examination (VIBE) T1-weighted MR sequence on the same day. Two PET data sets reconstructed using attenuation maps from low-dose CT (PET AC C T ) or simulated MR-based segmentation (PET AC M R ) were evaluated for focal PET-positive lesions. The certainty for the correlation with anatomical structures was judged in the low-dose CT and Dixon-based MRI on a 4-point scale (0-3). In addition, the standardized uptake values (SUVs) for PET AC C T and PET AC M R were compared. Statistically, no significant difference could be found concerning anatomical localization for all 81 PET-positive lesions in low-dose CT compared to Dixon-based MR (mean 2.51 ± 0.85 and 2.37 ± 0.87, respectively; p = 0.1909). CT tended to be superior for small lymph nodes, bone metastases and pulmonary nodules, while Dixon-based MR proved advantageous for soft tissue pathologies like head/neck tumours and liver metastases. For the PET AC C T - and PET AC M R -based SUVs (mean 6.36 ± 4.47 and 6.31 ± 4.52, respectively) a nearly complete concordance with a highly significant correlation was found (r = 0.9975, p < 0.0001). Dixon-based MR imaging for MR AC allows for anatomical allocation of PET-positive lesions similar to low-dose CT in conventional PET/CT. Thus, this approach appears to be useful for future MR/PET for body regions not fully covered by diagnostic MRI due to potential time

  2. Evaluation of static physics performance of the jPET-D4 by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Tomoyuki [Allied Health Sciences, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa, 228-8555 (Japan); Yoshida, Eiji [Molecular Imaging Centre, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555 (Japan); Kobayashi, Ayako [Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, 116-8551 (Japan); Shibuya, Kengo [Molecular Imaging Centre, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555 (Japan); Nishikido, Fumihiko [Molecular Imaging Centre, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555 (Japan); Kobayashi, Tetsuya [Graduate School of Science and Technology, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Suga, Mikio [Graduate School of Science and Technology, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Yamaya, Taiga [Molecular Imaging Centre, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, 1 Nishinokyo-kuwabara-cho, Nakagyo-ku, Kyoto, 604-8511 (Japan); Maruyama, Koichi [Allied Health Sciences, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa, 228-8555 (Japan); Murayama, Hideo [Molecular Imaging Centre, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555 (Japan)

    2007-01-07

    The jPET-D4 is the first PET scanner to introduce a unique four-layer depth-of-interaction (DOI) detector scheme in order to achieve high sensitivity and uniform high spatial resolution. This paper compares measurement and Monte Carlo simulation results of the static physics performance of this prototype research PET scanner. Measurement results include single and coincidence energy spectra, point and line source sensitivities, axial sensitivity profile (slice profile) and scatter fraction. We use GATE (Geant4 application for tomographic emission) as a Monte Carlo radiation transport model. Experimental results are reproduced well by the simulation model with reasonable assumptions on characteristic responses of the DOI detectors. In a previous study, the jPET-D4 was shown to provide a uniform spatial resolution as good as 3 mm (FHWM). In the present study, we demonstrate that a high sensitivity, 11.3 {+-} 0.5%, is provided at the FOV centre. However, about three-fourths of this sensitivity is related to multiple-crystal events, for which some misidentification of the crystal cannot be avoided. Therefore, it is crucial to develop a more efficient way to identify the crystal of interaction and to reduce misidentification in order to make use of these high performance values simultaneously. We expect that effective sensitivity can be improved by replacing the GSO crystals with more absorptive crystals such as BGO and LSO. The results we describe here are essential to take full advantage of the next generation PET systems that have DOI recognition capability.

  3. Development of a circular shape Si-PM-based detector ring for breast-dedicated PET system

    Science.gov (United States)

    Nakanishi, Kouhei; Yamamoto, Seiichi; Watabe, Hiroshi; Abe, Shinji; Fujita, Naotoshi; Kato, Katsuhiko

    2018-02-01

    In clinical situations, various breast-dedicated positron emission tomography (PET) systems have been used. However, clinical breast-dedicated PET systems have polygonal detector ring. Polygonal detector ring sometimes causes image artifact, so complicated reconstruction algorithm is needed to reduce artifact. Consequently, we developed a circular detector ring for breast-dedicated PET to obtain images without artifact using a simple reconstruction algorithm. We used Lu1.9Gd0.1SiO5 (LGSO) scintillator block which was made of 1.5 x 1.9 x 15 mm pixels that were arranged in an 8 x 24 matrix. As photodetectors, we used silicon photomultiplier (Si-PM) arrays whose channel size was 3 x 3 mm. A detector unit was composed of four scintillator blocks, 16 Si-PM arrays and a light guide. The developed detector unit had angled configuration since the light guide was bending. A detector unit had three gaps with an angle of 5.625° between scintillator blocks. With these configurations, we could arrange 64 scintillator blocks in nearly circular shape (regular 64-sided polygon) using 16 detector units. The use of the smaller number of detector units could reduce the size of the front-end electronics circuits. The inner diameter of the developed detector ring was 260 mm. This size was similar to those of brain PET systems, so our breast-dedicated PET detector ring can measure not only breast but also brain. Measured radial, tangential and axial spatial resolution of the detector ring reconstructed by the filtered back-projection (FBP) algorithm were 2.1 mm FWHM, 2.0 mm FWHM and 1.7 mm FWHM at center of field of view (FOV), respectively. The sensitivity was 2.0% at center of the axial FOV. With the developed detector ring, we could obtain high resolution image of the breast phantom and the brain phantom. We conclude that our developed Si-PM-based detector ring is promising for a high resolution breast-dedicated PET system that can also be used for brain PET system.

  4. Assessment of disease activity of idiopathic pulmonary fibrosis (IPF) using FDG PET and high-resolution computed tomography (HRCT)

    International Nuclear Information System (INIS)

    Kim, Bom Sahn; Kang, Won Jun; Oh, So Won; Lee, Jeong Won; Kang, Ji Yeon; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul

    2007-01-01

    Idiopathic pulmonary fibrosis (lPF) is induced by an uncontrolled accumulation and an activation of fibroblasts. The activity of IPF can be assessed according to the degrees of fibrosis and ground glass opacity (GGO) on HRCT. However, it has been thought that FDG PET reflects activity of inflammatory disease. The aim of this study was to compare the HRCT score and FDG uptake in patients with IPF. Six patients with IPF (M: F=4: 2, age 66.513.8 y) who underwent both FDG PET-CT and HRCT were enrolled (interval=33.042.6 d). The activity of IPF was scored at the level of the 1 cm above the diaphragm on HRCT, which was thought to be standard level of lower lobe. The degree of fibrosis was scored from 0 to 5 (0: no fibrosis, 1: interlobular septal wall thickening, 2: 75%). GGO was quantified from 0 to 5 (0: no GGO, 1: = 5 % of the lobe, 2: 5- 75%). Total score of HRCT was defined as the summed score of fibrosis and GGO. Standardized uptake value (SUV) was measured on same plane of FDG PET-CT by manual drawing of region of interest (ROI). SUV ratio of lung to liver was used as a metabolic marker of IPF activity. SUV ratio had a positive correlation with fibrosis score of HRCT (r=0.727, p=0.027), but did not have a significant correlation with GGO score (r=0.228, p=0.556). SUV ratio had a better correlation with total score of HRCT (r=0.895 and p<0.001). We demonstrated that SUV ratio might reflect disease activity of IPF. SUV ratio had a positive correlation with fibrosis score or total score on HRCT. FDG PET could be used to assess disease activity of IPF

  5. A study on development of fast silicon photomultipliers for TOF-PET Application

    International Nuclear Information System (INIS)

    Lee, Chae Hun

    2011-02-01

    The PET technique is based on the fact that the radioisotopes introduced to the body as labels tracer molecules emitting positrons. To improve the image quality of PET, the Time-Of-Flight (TOF) technique was proposed, so it reduces the statistical noise by confining the Line-Of-Response using the information measuring the time difference between two opposite PET detectors. Nowadays, the components of PET detectors such as scintillation crystals, photo-sensors, and their readout electronics were well developed. Despite major improvement in imaging detector technologies, solid- state photo-sensors have not been replaced instead of the vacuum type PM tubes whose performance is still superior to others, even though they have some disadvantages such as mal-function in magnetic field, high operating bias, bulkiness, and high cost. One of the candidates for the photo-sensor in TOF-PET detectors to replace the PMTs is 'Silicon Photomultiplier (SiPM)' which has high gain comparable to PMTs, high photon detection efficiency, non-sensitive to MR, low operating bias about 30 V, and low cost. To apply the SiPM in TOF-PET, the timing characteristics should be improved more. In this study, SiPM was studied to improve the timing performance. In PET detectors, the timing resolution is directly related to the amplitude to the rise time ratio. As the ratio increases, the timing performance can be enhanced. PDE of SiPM was modeled to increase the amplitude of PET detectors based on SiPM with dynamic range consideration. The optimum micro-pixel size, consequently the number of micro-pixels for TOF-PET detectors were calculated from PDE modeling. To shorten the rise time of PET detector, the single photon pulse shape of SiPM is needed to modify. To do this, a quenching capacitor in a micro-pixel of SiPM was integrated. Circuit modeling was done in order to know how it affects the pulse shape. SiPM was fabricated at National NanoFab Center with the modeling results. A SiPM pixel has 1912

  6. List-Mode PET Motion Correction Using Markerless Head Tracking: Proof-of-Concept With Scans of Human Subject

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sullivan, Jenna M.; Mulnix, Tim

    2013-01-01

    A custom designed markerless tracking system was demonstrated to be applicable for positron emission tomography (PET) brain imaging. Precise head motion registration is crucial for accurate motion correction (MC) in PET imaging. State-of-the-art tracking systems applied with PET brain imaging rely...... on markers attached to the patient's head. The marker attachment is the main weakness of these systems. A healthy volunteer participating in a cigarette smoking study to image dopamine release was scanned twice for 2 h with $^{11}{\\rm C}$-racolopride on the high resolution research tomograph (HRRT) PET...... in contrast recovery of small structures....

  7. Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma

    International Nuclear Information System (INIS)

    Ponisio, Maria Rosana; Laforest, Richard; Khanna, Geetika; McConathy, Jonathan

    2016-01-01

    Whole-body 18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is the standard of care for lymphoma. Simultaneous PET/MRI (magnetic resonance imaging) is a promising new modality that combines the metabolic information of PET with superior soft-tissue resolution and functional imaging capabilities of MRI while decreasing radiation dose. There is limited information on the clinical performance of PET/MRI in the pediatric setting. This study evaluated the feasibility, dosimetry, and qualitative and quantitative diagnostic performance of simultaneous whole-body FDG-PET/MRI in children with lymphoma compared to PET/CT. Children with lymphoma undergoing standard of care FDG-PET/CT were prospectively recruited for PET/MRI performed immediately after the PET/CT. Images were evaluated for quality, lesion detection and anatomical localization of FDG uptake. Maximum and mean standardized uptake values (SUV max/mean ) of normal organs and SUV max of the most FDG-avid lesions were measured for PET/MRI and PET/CT. Estimation of radiation exposure was calculated using specific age-related factors. Nine PET/MRI scans were performed in eight patients (mean age: 15.3 years). The mean time interval between PET/CT and PET/MRI was 51 ± 10 min. Both the PET/CT and PET/MRI exams had good image quality and alignment with complete (9/9) concordance in response assessment. The SUVs from PET/MRI and PET/CT were highly correlated for normal organs (SUV mean r 2 : 0.88, P<0.0001) and very highly for FDG-avid lesions (SUV max r 2 : 0.94, P=0.0002). PET/MRI demonstrated an average percent radiation exposure reduction of 39% ± 13% compared with PET/CT. Simultaneous whole-body PET/MRI is clinically feasible in pediatric lymphoma. PET/MRI performance is comparable to PET/CT for lesion detection and SUV measurements. Replacement of PET/CT with PET/MRI can significantly decrease radiation dose from diagnostic imaging in children. (orig.)

  8. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    International Nuclear Information System (INIS)

    Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang

    2015-01-01

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance

  9. The MINDView brain PET detector, feasibility study based on SiPM arrays

    Energy Technology Data Exchange (ETDEWEB)

    González, Antonio J., E-mail: agonzalez@i3m.upv.es [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain); Majewski, Stan [Radiology Research, Department of Radiology, University of Virginia, VA 22903 (United States); Sánchez, Filomeno [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain); Aussenhofer, Sebastian [NORAS MRI products GmbH, Hochberg (Germany); Aguilar, Albert; Conde, Pablo; Hernández, Liczandro; Vidal, Luis F. [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain); Pani, Roberto; Bettiol, Marco; Fabbri, Andrea [Department of Molecular Medicine, Sapienza University of Rome (Italy); Bert, Julien; Visvikis, Dimitris [Université de Bretagne Occidentale, Brest (France); Jackson, Carl; Murphy, John; O’Neill, Kevin [SensL Technologies, Cork (Ireland); Benlloch, Jose M. [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain)

    2016-05-11

    The Multimodal Imaging of Neurological Disorders (MINDView) project aims to develop a dedicated brain Positron Emission Tomography (PET) scanner with sufficient resolution and sensitivity to visualize neurotransmitter pathways and their disruptions in mental disorders for diagnosis and follow-up treatment. The PET system should be compact and fully compatible with a Magnetic Resonance Imaging (MRI) device in order to allow its operation as a PET brain insert in a hybrid imaging setup with most MRI scanners. The proposed design will enable the currently-installed MRI base to be easily upgraded to PET/MRI systems. The current design for the PET insert consists of a 3-ring configuration with 20 modules per ring and an axial field of view of ~15 cm and a geometrical aperture of ~33 cm in diameter. When coupled to the new head Radio Frequency (RF) coil, the inner usable diameter of the complete PET-RF coil insert is reduced to 26 cm. Two scintillator configurations have been tested, namely a 3-layer staggered array of LYSO with 1.5 mm pixel size, with 35×35 elements (6 mm thickness each) and a black-painted monolithic LYSO block also covering about 50×50 mm{sup 2} active area with 20 mm thickness. Laboratory test results associated with the current MINDView PET module concept are presented in terms of key parameters' optimization, such as spatial and energy resolution, sensitivity and Depth of Interaction (DOI) capability. It was possible to resolve all pixel elements from the three scintillator layers with energy resolutions as good as 10%. The monolithic scintillator showed average detector resolutions varying from 3.5 mm in the entrance layer to better than 1.5 mm near the photosensor, with average energy resolutions of about 17%.

  10. Comparison of PET/CT and PET/MRI hybrid systems using a {sup 68}Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Afshar-Oromieh, A. [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); German Cancer Research Center (DKFZ), Department of Radiology, Heidelberg (Germany); Haberkorn, U. [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); German Cancer Research Center (DKFZ), Clinical Cooperation Unit of Nuclear Medicine, Heidelberg (Germany); Schlemmer, H.P.; Fenchel, M.; Roethke, M. [German Cancer Research Center (DKFZ), Department of Radiology, Heidelberg (Germany); Eder, M.; Eisenhut, M. [German Cancer Research Center (DKFZ), Department of Radiopharmaceutical Chemistry, Heidelberg (Germany); Hadaschik, B.A. [University Hospital Heidelberg, Department of Urology, Heidelberg (Germany); Kopp-Schneider, A. [German Cancer Research Center (DKFZ), Department of Biostatistics, Heidelberg (Germany)

    2014-05-15

    {sup 68}Ga-labelled HBED-CC-PSMA is a highly promising tracer for imaging recurrent prostate cancer (PCa). The intention of this study was to evaluate the feasibility of PET/MRI with this tracer. Twenty patients underwent PET/CT 1 h after injection of the {sup 68}Ga-PSMA ligand followed by PET/MRI 3 h after injection. Data from the two investigations were first analysed separately and then compared with respect to tumour detection rate and radiotracer uptake in various tissues. To evaluate the quantification accuracy of the PET/MRI system, differences in SUVs between PET/CT and corresponding PET/MRI were compared with differences in SUVs between PET/CT 1 h and 3 h after injection in another patient cohort. This cohort was investigated using the same PET/CT system. With PET/MRI, different diagnostic sequences, higher contrast of lesions and higher resolution of MRI enabled a subjectively easier evaluation of the images. In addition, four unclear findings on PET/CT could be clarified as characteristic of PCa metastases by PET/MRI. However, in PET images of the PET/MRI, a reduced signal was observed at the level of the kidneys (in 11 patients) and around the urinary bladder (in 15 patients). This led to reduced SUVs in six lesions. SUV{sub mean} values provided by the PET/MRI system were different in muscles, blood pool, liver and spleen. PCa was detected more easily and more accurately with Ga-PSMA PET/MRI than with PET/CT and with lower radiation exposure. Consequently, this new technique could clarify unclear findings on PET/CT. However, scatter correction was challenging when the specific {sup 68}Ga-PSMA ligand was used. Moreover, direct comparison of SUVs from PET/CT and PET/MR needs to be conducted carefully. (orig.)

  11. Physical and technical basis of positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Bauer, R.

    1994-01-01

    Positron emission tomography utilizes the annihilation of positrons, generating pairs of gamma quanta which are emitted in opposing directions. 'Electronic collimation' is performed by coincident detection of both quanta. Thus, there is no need for mechanical collimators and no limiting connection between sensitivity and spatial resolution. Transversal tomograms are reconstructed from the projection data by means of highly sophisticated data processing. The half life of the most positron emitters used in medical applications is short and of the order of some minutes. Therefore, many positron emitters have to be produced on-side by means of a cyclotron. PET is superior to SPECT with respect to physical and technical aspects, but the high costs of PET limit its wide-spread use up to now. (orig.) [de

  12. A useful PET probe [11C]BU99008 with ultra-high specific radioactivity for small animal PET imaging of I2-imidazoline receptors in the hypothalamus

    International Nuclear Information System (INIS)

    Kawamura, Kazunori; Shimoda, Yoko; Yui, Joji; Zhang, Yiding; Yamasaki, Tomoteru; Wakizaka, Hidekatsu; Hatori, Akiko; Xie, Lin; Kumata, Katsushi; Fujinaga, Masayuki; Ogawa, Masanao; Kurihara, Yusuke; Nengaki, Nobuki; Zhang, Ming-Rong

    2017-01-01

    Introduction: A positron emission tomography (PET) probe with ultra-high specific radioactivity (SA) enables measuring high receptor specific binding in brain regions by avoiding mass effect of the PET probe itself. It has been reported that PET probe with ultra-high SA can detect small change caused by endogenous or exogenous ligand. Recently, Kealey et al. developed [ 11 C]BU99008, a more potent PET probe for I 2 -imidazoline receptors (I 2 Rs) imaging, with a conventional SA (mean 76 GBq/μmol) showed higher specific binding in the brain. Here, to detect small change of specific binding for I 2 Rs caused by endogenous or exogenous ligand in an extremely small region, such as hypothalamus in the brain, we synthesized and evaluated [ 11 C]BU99008 with ultra-high SA as a useful PET probe for small-animal PET imaging of I 2 Rs. Methods: [ 11 C]BU99008 was prepared by [ 11 C]methylation of N-desmethyl precursor with [ 11 C]methyl iodide. Biodistribution, metabolite analysis, and brain PET studies were conducted in rats. Results: [ 11 C]BU99008 with ultra-high SA in the range of 5400–16,600 GBq/μmol were successfully synthesized (n = 7), and had appropriate radioactivity for in vivo study. In the biodistribution study, the mean radioactivity levels in all investigated tissues except for the kidney did not show significant difference between [ 11 C]BU99008 with ultra-high SA and that with conventional SA. In the metabolite analysis, the percentage of unchanged [ 11 C]BU99008 at 30 min after the injection of probes with ultra-high and conventional SA was similar in rat brain and plasma. In the PET study of rats' brain, radioactivity level (AUC 30–60 min ) in the hypothalamus of rats injected with [ 11 C]BU99008 with ultra-high SA (64 [SUV ∙ min]) was significantly higher than that observed for that with conventional SA (50 [SUV ∙ min]). The specific binding of [ 11 C]BU99008 with ultra-high SA (86% of total binding) for I 2 R was higher than that of

  13. FDG-PET identification of intraperitoneal metastases

    International Nuclear Information System (INIS)

    Gamez, C.; Jimenez-Hoyuelam, J.M.; Rebollo, A.C.; Gonzalez, P.; Rico, J.M.; Alba, E.; Sacchetti, A.; Lopez-Rueda, B.

    2002-01-01

    Aim: Peritoneal metastases (PM) are usually from intra-abdominal primary neoplasms, such as carcinoma of the stomach, colon, ovary, and pancreas, or from intra-abdominal lymphoma. Metastases disseminate throughout the peritoneum in four ways: 1) direct spread along peritoneal ligaments, mesenteries and omenta; 2) via the flow of ascitis fluid. 3) lymphatic extension, and 4) embolic hematogenous spread. Although CT is quite specific in identifying PM it is not very sensitive, and peritoneal lavage or biopsy can be very useful but have sampling errors. This study assessed the clinical value of FDG-PET for the detection of PM of malignant diseases. Materials and Methods: 15 FDG-PET scans of patients referred for recurrence (mean age = 54 y/o, sex = 6M, 9F), with metabolic abnormalities suspicious findings of PM from carcinoma of the colon (7), ovary (3), lymphoma (2), pancreas (1), gastrointestinal stromal tumor (1) and melanoma (1) were reviewed. The whole-body studies were performed 50 min following the intravenous administration of 370 MBq of 18F-FDG, in a high resolution dedicated PET scanner (Advance, GEMS), with images reconstructed using a iterative algorithm with segmented attenuation correction. Visual interpretation and SUV values were correlated with CT/MRI findings and biopsy/follow-up. Results: Of the 15 patients, 7 showed <3 sites of focal uptake and 8 presented multiple foci or a diffuse hypermetabolism in the abdomen (SUVmax3.04-18.83 g/ml). 6 patients had biopsy confirmation by PET-directed surgery (6 proven PM, 0 negative biopsies). 11 FDG-PET scans had correspondence with the CT/MRI findings and 4 showed discrepancies (PET positive-CT/MRI negative in patients with isolated raising tumor markers levels or unsuspected PM). FDG-PET influenced the therapeutic management in 2 patients as presented multiple metastases leading them from surgery to chemotherapy. Conclusion: When used as a complementary imaging tool to the conventional work up, FDG-PET is

  14. Compensation for photon attenuation in PET

    International Nuclear Information System (INIS)

    Chintu Chen; Ordonez, C.E.; Xiaolin Yu.

    1992-01-01

    CT/MR and PET images usually are not in registration spatially because of differences in the imaging setup. CT, MR and PET imaging parameters that are used regularly for brain studies in their institution are compared, in addition, because the patient orientations in CT/MR and PET scanners are not the same, slice centers are positioned differently relative to the patients anatomy. For application of the new idea of using structural information from CT or MR images in PET image reconstruction for attenuation correction, image registration is required as a first step so that one can obtain a corresponding anatomic map for any selected PET image plane. The authors chose to use the surface-matching technique developed in their laboratories for image registration because this method is retrospective and accurate. After the PET and CT/MR scans are registered, they reslice the CT/MR images along the planes of the PET images. The differences in slice thickness and slice separation, as well as in image resolution between various image modalities are to be considered

  15. PetIGA-MF: a multi-field high-performance toolbox for structure-preserving B-splines spaces

    KAUST Repository

    Sarmiento, Adel; Cô rtes, A.M.A.; Garcia, D.A.; Dalcin, Lisandro; Collier, N.; Calo, V.M.

    2016-01-01

    We describe a high-performance solution framework for isogeometric discrete differential forms based on B-splines: PetIGA-MF. Built on top of PetIGA, an open-source library we have built and developed over the last decade, PetIGA-MF is a general

  16. The role of FGD PET in malignant lymphoma

    International Nuclear Information System (INIS)

    Yun, Mi Jin

    2002-01-01

    FDG PET is a functional imaging modality whose ability to detect lesions is directly based on a change of the glycolytic metabolism of targeted tissues, may be advantageous over other techniques. Combined with excellent image quality, high spatial resolution, and whole body imaging capability, it has become popular as a new approach in the evaluation of patients with various malignancies. Initial staging of nodal and extranodal lymphoma using FDG PET has been proven to be at least equal or superior to conventional imaging modalities. For the assessment of treatment responsiveness, FDG PET has a major impact on the management of patients in differentiating residual lymphoma from treatment related benign changes. Residual FDG uptake after the completion of chemotherapy is a good predictor of early relapse. However, it seems that the absence of FDG uptake in tumor mass may not exclude minimal residual disease causing later relapse. In the early evaluation of treatment response only after a few cycles of chemotherapy, FDG PET may have a promising role in identifying non-responders who could benefit from a different treatment strategy. At present, FDG PET appears to be the cost-effective, diagnostic modality of choice in the management of lymphoma patients. The role of FDG PET based-systems in terms of affecting long-term prognosis and survival benefit should be further elucidated in future prospective studies

  17. Imaging results and TOF studies with axial PET detectors

    Science.gov (United States)

    Joram, Christian

    2013-12-01

    We have developed a fully operational PET demonstrator setup which allows true 3D reconstruction of the 511 keV photons and therefore leads to practically parallax free images. The AX-PET concept is based on thin 100 mm long scintillation crystals (LYSO), axially oriented and arranged in layers around the field of view. Layers of wavelength shifting plastic strips mounted in between the crystal layers give the axial coordinate. Both crystals and WLS strips are individually read out by G-APD (SiPM) photodetectors. The fully scalable concept overcomes the dilemma of sensitivity versus spatial resolution which is inherent to classical PET designs. A demonstrator set-up based on two axial modules was exhaustively characterized using point-like sources, phantoms filled with radiotracer and finally rats and a mouse. The results entirely meet the performance expectations (PET concept making use of the novel digital SiPM detectors by Philips. After reproducing comparable energy and spatial resolution on a small digital AX-PET set-up with 100 mm long crystals, we demonstrated a coincidence resolving time of about 210 ps FWHM.

  18. Thoracic cavity definition for 3D PET/CT analysis and visualization.

    Science.gov (United States)

    Cheirsilp, Ronnarit; Bascom, Rebecca; Allen, Thomas W; Higgins, William E

    2015-07-01

    X-ray computed tomography (CT) and positron emission tomography (PET) serve as the standard imaging modalities for lung-cancer management. CT gives anatomical details on diagnostic regions of interest (ROIs), while PET gives highly specific functional information. During the lung-cancer management process, a patient receives a co-registered whole-body PET/CT scan pair and a dedicated high-resolution chest CT scan. With these data, multimodal PET/CT ROI information can be gleaned to facilitate disease management. Effective image segmentation of the thoracic cavity, however, is needed to focus attention on the central chest. We present an automatic method for thoracic cavity segmentation from 3D CT scans. We then demonstrate how the method facilitates 3D ROI localization and visualization in patient multimodal imaging studies. Our segmentation method draws upon digital topological and morphological operations, active-contour analysis, and key organ landmarks. Using a large patient database, the method showed high agreement to ground-truth regions, with a mean coverage=99.2% and leakage=0.52%. Furthermore, it enabled extremely fast computation. For PET/CT lesion analysis, the segmentation method reduced ROI search space by 97.7% for a whole-body scan, or nearly 3 times greater than that achieved by a lung mask. Despite this reduction, we achieved 100% true-positive ROI detection, while also reducing the false-positive (FP) detection rate by >5 times over that achieved with a lung mask. Finally, the method greatly improved PET/CT visualization by eliminating false PET-avid obscurations arising from the heart, bones, and liver. In particular, PET MIP views and fused PET/CT renderings depicted unprecedented clarity of the lesions and neighboring anatomical structures truly relevant to lung-cancer assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Basic performance of Mg co-doped new scintillator used for TOF-DOI-PET systems

    International Nuclear Information System (INIS)

    Kobayashi, Takahiro; Yamamoto, Seiichi; Okumura, Satoshi; Yeom, Jung Yeol; Kamada, Kei; Yoshikawa, Akira

    2017-01-01

    Phoswich depth-of-interaction (DOI) detectors utilizing multiple scintillators with different decay time are a useful device for developing a high spatial resolution, high sensitivity PET scanner. However, in order to apply pulse shape discrimination (PSD), there are not many combinations of scintillators for which phoswich technique can be implemented. Ce doped Gd_3Ga_3Al_2O_1_2 (GFAG) is a recently developed scintillator with a fast decay time. This scintillator is similar to Ce doped Gd_3Al_2Ga_3O_1_2 (GAGG), which is a promising scintillator for PET detector with high light yield. By stacking these scintillators, it may be possible to realize a high spatial resolution and high timing resolution phoswich DOI detector. Such phoswich DOI detector may be applied to time-of-flight (TOF) systems with high timing performance. Therefore, in this study, we tested the basic performance of the new scintillator –GFAG for use in a TOF phoswich detector. The measured decay time of a GFAG element of 2.9 mmx2.9 mmx10 mm in dimension, which was optically coupled to a photomultiplier tube (PMT), was faster (66 ns) than that of same sized GAGG (103 ns). The energy resolution of the GFAG element was 5.7% FWHM which was slightly worse than that of GAGG with 4.9% FWHM for 662 keV gamma photons without saturation correction. Then we assembled the GFAG and the GAGG crystals in the depth direction to form a 20 mm long phoswich element (GFAG/GAGG). By pulse shape analysis, the two types of scintillators were clearly resolved. Measured timing resolution of a pair of opposing GFAG/GAGG phoswich scintillator coupled to Silicon Photomultipliers (Si-PM) was good with coincidence resolving time of 466 ps FWHM. These results indicate that the GFAG combined with GAGG can be a candidate for TOF-DOI-PET systems.

  20. The biological application of small animal PET imaging

    International Nuclear Information System (INIS)

    Myers, Ralph

    2001-01-01

    The short history of small animal PET is reviewed in the context of its application in the laboratory. Early work has demonstrated a role for the technique in both drug development and in the in vivo monitoring of neuroreceptor function with time. As spatial resolution approaches 1 mm, challenges in quantification remain. However, the ability to carry out animal PET studies that are analogous to human PET will form an important bridge between laboratory and clinical sciences

  1. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  2. Clinical Application of 18F-FDG PET in Gastric Cancer

    International Nuclear Information System (INIS)

    Yun, Mi Jin; Kim, Tae Sung; Hwang, Hee Sung

    2008-01-01

    PET or PET/CT detects only less than 50% of early gastric cancer and 62-98% of advanced gastric cancer. Therefore, mass screening programs are recommended for all adults over the age of 40 for early detection and early treatment of gastric cancer through endoscopy or various radiological tests. The most important step after diagnosis of gastric cancer is accurate staging, which mainly evaluates tumor resectability to avoid unnecessary surgery. Important factors that affect tumor resectability are whether the tumor can be separated from adjacent organs or important blood vessels, the extent of lymph node metastasis, presence of peritoneal metastasis, or distant organ metastasis. To evaluate the extent of local tumor invasion, anatomical imaging that has superior spatial resolution is essential. There are a few studies on prognostic significance of FDG uptake with inconsistent results between them. In spite of lower sensitivity for lymph node staging, the specificity of CT and PET are very high, and the specificity for PET tends to be higher than that for CT. Limited data published so far show that PET seems less useful in the detection of lung and bone metastasis. In the evaluation of pleural or peritoneal metastasis, PET seems very specific but insensitive as well. When FDG uptake of primary tumor is low, distant metastasis also tends to show low FDG uptake reducing its detection on PET. There are only a few data available in the evaluation of recurrence detection and treatment response using FDG PET or PET/CT

  3. Simultaneous PET/MRI: Impact on cancer management-A comprehensive review of cases

    Directory of Open Access Journals (Sweden)

    Amarnath Jena

    2014-01-01

    Full Text Available The metabolic mapping of malignancy in whole body in a single examination by PET/CT has gained widespread acceptance where the CT provides an anatomical correlate for the PET. MRI offers advantage over CT in providing better anatomical information owing to its high soft tissue resolution especially in brain, liver, neck, pelvis and bone marrow. Simultaneous PET/MRI is a new multimodal imaging modality that is expected to improve the diagnostic performance of imaging wherein better anatomical and metabolic information can be acquired at the same time and space during a single examination time. Also, MR attributes like diffusion, perfusion and spectroscopy may further add to its diagnostic potential. In this article, we present our initial experience in illustrated cases done with simultaneous PET/MRI and outline its potential for several clinical applications in oncology.

  4. Multi-modality image reconstruction for dual-head small-animal PET

    International Nuclear Information System (INIS)

    Huang, Chang-Han; Chou, Cheng-Ying

    2015-01-01

    The hybrid positron emission tomography/computed tomography (PET/CT) or positron emission tomography/magnetic resonance imaging (PET/MRI) has become routine practice in clinics. The applications of multi-modality imaging can also benefit research advances. Consequently, dedicated small-imaging system like dual-head small-animal PET (DHAPET) that possesses the advantages of high detection sensitivity and high resolution can exploit the structural information from CT or MRI. It should be noted that the special detector arrangement in DHAPET leads to severe data truncation, thereby degrading the image quality. We proposed to take advantage of anatomical priors and total variation (TV) minimization methods to reconstruct PET activity distribution form incomplete measurement data. The objective is to solve the penalized least-squares function consisted of data fidelity term, TV norm and medium root priors. In this work, we employed the splitting-based fast iterative shrinkage/thresholding algorithm to split smooth and non-smooth functions in the convex optimization problems. Our simulations studies validated that the images reconstructed by use of the proposed method can outperform those obtained by use of conventional expectation maximization algorithms or that without considering the anatomical prior information. Additionally, the convergence rate is also accelerated.

  5. Assessment of disease activity of idiopathic pulmonary fibrosis (IPF) using FDG PET and high-resolution computed tomography (HRCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sahn; Kang, Won Jun; Oh, So Won; Lee, Jeong Won; Kang, Ji Yeon; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Idiopathic pulmonary fibrosis (lPF) is induced by an uncontrolled accumulation and an activation of fibroblasts. The activity of IPF can be assessed according to the degrees of fibrosis and ground glass opacity (GGO) on HRCT. However, it has been thought that FDG PET reflects activity of inflammatory disease. The aim of this study was to compare the HRCT score and FDG uptake in patients with IPF. Six patients with IPF (M: F=4: 2, age 66.513.8 y) who underwent both FDG PET-CT and HRCT were enrolled (interval=33.042.6 d). The activity of IPF was scored at the level of the 1 cm above the diaphragm on HRCT, which was thought to be standard level of lower lobe. The degree of fibrosis was scored from 0 to 5 (0: no fibrosis, 1: interlobular septal wall thickening, 2: <25 % of the lobe, 3: 25-49 %, 4: 50-75 %, 5: >75%). GGO was quantified from 0 to 5 (0: no GGO, 1: = 5 % of the lobe, 2: 5-<25 %, 3: 25-49 %, 4: 50-75%, 5: >75%). Total score of HRCT was defined as the summed score of fibrosis and GGO. Standardized uptake value (SUV) was measured on same plane of FDG PET-CT by manual drawing of region of interest (ROI). SUV ratio of lung to liver was used as a metabolic marker of IPF activity. SUV ratio had a positive correlation with fibrosis score of HRCT (r=0.727, p=0.027), but did not have a significant correlation with GGO score (r=0.228, p=0.556). SUV ratio had a better correlation with total score of HRCT (r=0.895 and p<0.001). We demonstrated that SUV ratio might reflect disease activity of IPF. SUV ratio had a positive correlation with fibrosis score or total score on HRCT. FDG PET could be used to assess disease activity of IPF.

  6. Pinhole SPECT: high resolution imaging of brain tumours in small laboratory animals

    International Nuclear Information System (INIS)

    Franceschim, M.; Bokulic, T.; Kusic, Z.; Strand, S.E.; Erlandsson, K.

    1994-01-01

    The performance properties of pinhole SPECT and the application of this technology to evaluate radionuclide uptake in brain in small laboratory animals were investigated. System sensitivity and spatial resolution measurements of a rotating scintillation camera system were made for a low energy pinhole collimator equipped with 2.0 mm aperture pinhole insert. Projection data were acquired at 4 degree increments over 360 degrees in the step and shoot mode using a 4.5 cm radius of rotation. Pinhole planar and SPECT imaging were obtained to evaluate regional uptake of Tl-201, Tc-99m-MIBI, Tc-99m-HMPAO and Tc-99m-DTPA in tumor and control regions of the brain in a primary brain tumor model in Fisher 344 rats. Pinhole SPECT images were reconstructed using a modified cone- beam algorithm developed from a two dimensional fan-beam filtered backprojection algorithm. The reconstructed transaxial resolution of 2.8 FWHM and system sensitivity of 0.086 c/s/kBq with the 2.0 mm pinhole collimator aperture were measured. Tumor to non-tumor uptake ratios at 19-28 days post tumor cell inoculation varied by a factor > 20:1 on SPECT images. Pinhole SPECT provides an important new approach for performing high resolution imaging: the resolution properties of pinhole SPECT are superior to those which have been achieved with conventional SPECT or PET imaging technologies. (author)

  7. Sub-millimetre DOI detector based on monolithic LYSO and digital SiPM for a dedicated small-animal PET system

    International Nuclear Information System (INIS)

    Marcinkowski, Radosław; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan

    2016-01-01

    The mouse model is widely used in a vast range of biomedical and preclinical studies. Thanks to the ability to detect and quantify biological processes at the molecular level in vivo, PET has become a well-established tool in these investigations. However, the need to visualize and quantify radiopharmaceuticals in anatomic structures of millimetre or less requires good spatial resolution and sensitivity from small-animal PET imaging systems. In previous work we have presented a proof-of-concept of a dedicated high-resolution small-animal PET scanner based on thin monolithic scintillator crystals and Digital Photon Counter photosensor. The combination of thin monolithic crystals and MLE positioning algorithm resulted in an excellent spatial resolution of 0.7 mm uniform in the entire field of view (FOV). However, the limitation of the scanner was its low sensitivity due to small thickness of the lutetium-yttrium oxyorthosilicate (LYSO) crystals (2 mm). Here we present an improved detector design for a small-animal PET system that simultaneously achieves higher sensitivity and sustains a sub-millimetre spatial resolution. The proposed detector consists of a 5 mm thick monolithic LYSO crystal optically coupled to a Digital Photon Counter. Mean nearest neighbour (MNN) positioning combined with depth of interaction (DOI) decoding was employed to achieve sub-millimetre spatial resolution. To evaluate detector performance the intrinsic spatial resolution, energy resolution and coincidence resolving time (CRT) were measured. The average intrinsic spatial resolution of the detector was 0.60 mm full-width-at-half-maximum (FWHM). A DOI resolution of 1.66 mm was achieved. The energy resolution was 23% FWHM at 511 keV and CRT of 529 ps were measured. The improved detector design overcomes the sensitivity limitation of the previous design by increasing the nominal sensitivity of the detector block and retains an excellent intrinsic spatial resolution. (paper)

  8. Performance measurement of PSF modeling reconstruction (True X) on Siemens Biograph TruePoint TrueV PET/CT.

    Science.gov (United States)

    Lee, Young Sub; Kim, Jin Su; Kim, Kyeong Min; Kang, Joo Hyun; Lim, Sang Moo; Kim, Hee-Joung

    2014-05-01

    The Siemens Biograph TruePoint TrueV (B-TPTV) positron emission tomography (PET) scanner performs 3D PET reconstruction using a system matrix with point spread function (PSF) modeling (called the True X reconstruction). PET resolution was dramatically improved with the True X method. In this study, we assessed the spatial resolution and image quality on a B-TPTV PET scanner. In addition, we assessed the feasibility of animal imaging with a B-TPTV PET and compared it with a microPET R4 scanner. Spatial resolution was measured at center and at 8 cm offset from the center in transverse plane with warm background activity. True X, ordered subset expectation maximization (OSEM) without PSF modeling, and filtered back-projection (FBP) reconstruction methods were used. Percent contrast (% contrast) and percent background variability (% BV) were assessed according to NEMA NU2-2007. The recovery coefficient (RC), non-uniformity, spill-over ratio (SOR), and PET imaging of the Micro Deluxe Phantom were assessed to compare image quality of B-TPTV PET with that of the microPET R4. When True X reconstruction was used, spatial resolution was RC with True X reconstruction was higher than that with the FBP method and the OSEM without PSF modeling method on the microPET R4. The non-uniformity with True X reconstruction was higher than that with FBP and OSEM without PSF modeling on microPET R4. SOR with True X reconstruction was better than that with FBP or OSEM without PSF modeling on the microPET R4. This study assessed the performance of the True X reconstruction. Spatial resolution with True X reconstruction was improved by 45 % and its % contrast was significantly improved compared to those with the conventional OSEM without PSF modeling reconstruction algorithm. The noise level was higher than that with the other reconstruction algorithm. Therefore, True X reconstruction should be used with caution when quantifying PET data.

  9. Positron Emission Tomography (PET): Towards Time of Flight

    International Nuclear Information System (INIS)

    Karp, Joel

    2004-01-01

    PET is a powerful imaging tool that is being used to study cancer, using a variety of tracers to measure physiological processes including glucose metabolism, cell proliferation, and hypoxia in tumor cells. As the utilization of PET has grown in the last several years, it has become clear that improved lesion detection and quantification are critical goals for cancer studies. Although physical performance of the current generation of PET scanners has improved recently, there are limitations especially for heavy patients where attenuation and scatter effects are increased. We are investigating new scintillation detectors, scanner designs, and image processing algorithms in order to overcome these limitations and improve performance. In particular, we are studying scanner designs that would incorporate scintillators with improved energy and timing resolution. Improved energy resolution helps to reduce scattered radiation, and improved timing resolution makes it feasible to incorporate the time-of-flight information between the two coincident gamma rays into the image reconstruction algorithm, a technique that improves signal-to-noise. Results of recent experiments and computer simulations will be shown to demonstrate these potential improvements.

  10. The performance characteristics of the Philips Gemini PET/CT scanner

    International Nuclear Information System (INIS)

    O'Keefe, G.J.; Papenfuss, A.T.; Scott, A.M.; Rowe, C.C.

    2002-01-01

    Full text: The Department of Nuclear Medicine, Centre for PET at the ARMC is commissioning a next generation PET/CT scanner based on gadolinium silicic dioxide (GSO) crystal technology to replace the BGO crystal PET scanner that has been in operation since 1992. The Gemini PET/CT scanner is a fully 3D PET system which offers significantly increased resolution and sensitivity allowing wholebody scans in under 30 minutes. Until the late 90's, PET scanners were largely used with septa for neurological imaging and the performance characteristics of PET scanners were presented according to the NEMA-NU2-94 standard which specifically addresses the performance of PET scanners for neurological applications. PET is now largely used without septa for oncological imaging and as such, the NEMA-NU2-94 standard does not adequately reflect performance. The NEMA-NU2-2001 standard was designed to incorporate the effects of out-of-FOV activity and its contribution to performance by virtue of the increased scatter and randoms that result when performing wholebody scans without the use of septa. As part of the acceptance program of the Allegro/Gemini systems, the NEMA-NU2-2001 standard will be used to characterise the spatial resolution, sensitivity, randoms and scatter contributions and the Noise Equivalent Count rate (NECr). These results will be presented and compared with the ECAT 951/31R performance characteristics. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  11. Evaluation of Matrix9 silicon photomultiplier array for small-animal PET

    Science.gov (United States)

    Du, Junwei; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S.; Buckley, Steve; Jackson, Carl; Cherry, Simon R.

    2015-01-01

    high-resolution scintillator arrays common in small-animal PET with adequate energy resolution and timing resolution over a large detector area. The modular design of the Matrix9 detector allows it to be used as a building block for simple, low channel-count, yet high performance, small animal PET or PET/MRI systems. PMID:25652479

  12. Evaluation of Matrix9 silicon photomultiplier array for small-animal PET

    International Nuclear Information System (INIS)

    Du, Junwei; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S.; Buckley, Steve; Jackson, Carl; Cherry, Simon R.

    2015-01-01

    resolve high-resolution scintillator arrays common in small-animal PET with adequate energy resolution and timing resolution over a large detector area. The modular design of the Matrix9 detector allows it to be used as a building block for simple, low channel-count, yet high performance, small animal PET or PET/MRI systems

  13. DOI resolution measurement and error analysis with LYSO and APDs

    International Nuclear Information System (INIS)

    Lee, Chae-hun; Cho, Gyuseong

    2008-01-01

    Spatial resolution degradation in PET occurs at the edge of Field Of View (FOV) due to parallax error. To improve spatial resolution at the edge of FOV, Depth-Of-Interaction (DOI) PET has been investigated and several methods for DOI positioning were proposed. In this paper, a DOI-PET detector module using two 8x4 array avalanche photodiodes (APDs) (Hamamatsu, S8550) and a 2 cm long LYSO scintillation crystal was proposed and its DOI characteristics were investigated experimentally. In order to measure DOI positions, signals from two APDs were compared. Energy resolution was obtained from the sum of two APDs' signals and DOI positioning error was calculated. Finally, an optimum DOI step size in a 2 cm long LYSO were suggested to help to design a DOI-PET

  14. A Case of Esophageal Leiomyoma Showing High FDG Uptake on F-18 FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Hyuen [College of Medicine, Cheonan (Korea, Republic of); Ryu, Jin Sook [Asan Medical Center, University of Ulsan College of Medicine (Korea, Republic of)

    2008-08-15

    An esophageal leiomyoma is the most common benign tumor of the esophagus mainly occurred in intramural portion. Occasionally, it is difficult to discriminate esophageal malignancy from large leiomyoma. Although F-18 FDG PET has been used for differentiating malignant from benign disease, false-positive cases have been reported. Recently, uterine leiomyoma has been reported to have relatively high F-18 FDG uptake in some patients but little is known about how an esophageal leiomyoma might be showed on F-18 FDG PET. We report a case of esophageal leiomyoma that showed high FDG uptake on PET images.

  15. A Case of Esophageal Leiomyoma Showing High FDG Uptake on F-18 FDG PET

    International Nuclear Information System (INIS)

    Lee, Jai Hyuen; Ryu, Jin Sook

    2008-01-01

    An esophageal leiomyoma is the most common benign tumor of the esophagus mainly occurred in intramural portion. Occasionally, it is difficult to discriminate esophageal malignancy from large leiomyoma. Although F-18 FDG PET has been used for differentiating malignant from benign disease, false-positive cases have been reported. Recently, uterine leiomyoma has been reported to have relatively high F-18 FDG uptake in some patients but little is known about how an esophageal leiomyoma might be showed on F-18 FDG PET. We report a case of esophageal leiomyoma that showed high FDG uptake on PET images

  16. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Cherry, Simon R

    2006-12-01

    PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.

  17. Layer-by-Layer Assembly of Polyelectrolyte Multilayer onto PET Fabric for Highly Tunable Dyeing with Water Soluble Dyestuffs

    Directory of Open Access Journals (Sweden)

    Shili Xiao

    2017-12-01

    Full Text Available Poly(ethyleneterephthalate (PET is a multi-purpose and widely used synthetic polymer in many industrial fields because of its remarkable advantages such as low cost, light weight, high toughness and resistance to chemicals, and high abrasion resistance. However, PET suffers from poor dyeability due to its non-polar nature, benzene ring structure as well as high crystallinity. In this study, PET fabrics were firstly treated with an alkaline solution to produce carboxylic acid functional groups on the surface of the PET fabric, and then was modified by polyelectrolyte polymer through the electrostatic layer-by-layer self-assembly technology. The polyelectrolyte multilayer-deposited PET fabric was characterized using scanning electron microscopy SEM, contact angle, Fourier transform infrared (FTIR and X-ray photoelectron spectroscopy (XPS. The dyeability of PET fabrics before and after surface modification was systematically investigated. It showed that the dye-uptake of the polyelectrolyte multilayer-deposited PET fabric has been enhanced compared to that of the pristine PET fabric. In addition, its dyeability is strongly dependent on the surface property of the polyelectrolyte multilayer-deposited PET fabric and the properties of dyestuffs.

  18. Comparison of performance among three systems of Clinical PET by computerized simulation; Comparacao de desempenho entre tres sistemas de PET clinico por simulacao computacional

    Energy Technology Data Exchange (ETDEWEB)

    Franze, Daniel L.; Bertolo, Antonio C.N.; Gama, Andressa F.; Moraes, Eder R. [Universidade de Sao Paulo (GIMN/USP), Ribeirao Preto, SP (Brazil). Grupo de Imagens em Medicina Nuclear

    2016-07-01

    Whereas sensitivity and spatial resolution of PET images formed in coincidence systems may exhibit improvements with reduction of the distance between the detectors. Furthermore, since the human cross section not be a circle three different detection geometries of a PET system have been simulated; a circular and two ellipticals. The performance comparison was performed by the sensitivity, resolution and the Noise Equivalent Count Rate curve. The results show that elliptical systems may experience 25% lower cost detectors, increased sensitivity to 63%. The resolution improvements introduced in X direction, large loss in the Y direction, although the use of iterative reconstruction can reduce the loss in resolution. The reduction of peak NEC curve indicates the image with better quality is achieved with lower activity of the source. (author)

  19. Combined 18F-Fluciclovine PET/MRI Shows Potential for Detection and Characterization of High-Risk Prostate Cancer.

    Science.gov (United States)

    Elschot, Mattijs; Selnæs, Kirsten M; Sandsmark, Elise; Krüger-Stokke, Brage; Størkersen, Øystein; Giskeødegård, Guro F; Tessem, May-Britt; Moestue, Siver A; Bertilsson, Helena; Bathen, Tone F

    2018-05-01

    The objective of this study was to investigate whether quantitative imaging features derived from combined 18 F-fluciclovine PET/multiparametric MRI show potential for detection and characterization of primary prostate cancer. Methods: Twenty-eight patients diagnosed with high-risk prostate cancer underwent simultaneous 18 F-fluciclovine PET/MRI before radical prostatectomy. Volumes of interest (VOIs) for prostate tumors, benign prostatic hyperplasia (BPH) nodules, prostatitis, and healthy tissue were delineated on T2-weighted images, using histology as a reference. Tumor VOIs were marked as high-grade (≥Gleason grade group 3) or not. MRI and PET features were extracted on the voxel and VOI levels. Partial least-squared discriminant analysis (PLS-DA) with double leave-one-patient-out cross-validation was performed to distinguish tumors from benign tissue (BPH, prostatitis, or healthy tissue) and high-grade tumors from other tissue (low-grade tumors or benign tissue). The performance levels of PET, MRI, and combined PET/MRI features were compared using the area under the receiver-operating-characteristic curve (AUC). Results: Voxel and VOI features were extracted from 40 tumor VOIs (26 high-grade), 36 BPH VOIs, 6 prostatitis VOIs, and 37 healthy-tissue VOIs. PET/MRI performed better than MRI and PET alone for distinguishing tumors from benign tissue (AUCs of 87%, 81%, and 83%, respectively, at the voxel level and 96%, 93%, and 93%, respectively, at the VOI level) and high-grade tumors from other tissue (AUCs of 85%, 79%, and 81%, respectively, at the voxel level and 93%, 93%, and 91%, respectively, at the VOI level). T2-weighted MRI, diffusion-weighted MRI, and PET features were the most important for classification. Conclusion: Combined 18 F-fluciclovine PET/multiparametric MRI shows potential for improving detection and characterization of high-risk prostate cancer, in comparison to MRI and PET alone. © 2018 by the Society of Nuclear Medicine and Molecular

  20. Prototype design of singles processing unit for the small animal PET

    Science.gov (United States)

    Deng, P.; Zhao, L.; Lu, J.; Li, B.; Dong, R.; Liu, S.; An, Q.

    2018-05-01

    Position Emission Tomography (PET) is an advanced clinical diagnostic imaging technique for nuclear medicine. Small animal PET is increasingly used for studying the animal model of disease, new drugs and new therapies. A prototype of Singles Processing Unit (SPU) for a small animal PET system was designed to obtain the time, energy, and position information. The energy and position is actually calculated through high precison charge measurement, which is based on amplification, shaping, A/D conversion and area calculation in digital signal processing domian. Analysis and simulations were also conducted to optimize the key parameters in system design. Initial tests indicate that the charge and time precision is better than 3‰ FWHM and 350 ps FWHM respectively, while the position resolution is better than 3.5‰ FWHM. Commination tests of the SPU prototype with the PET detector indicate that the system time precision is better than 2.5 ns, while the flood map and energy spectra concored well with the expected.

  1. Clinical Application of F-18 FDG PET (PET/CT) in Malignancy of Unknown Origin

    International Nuclear Information System (INIS)

    Kim, Byung Il

    2008-01-01

    Diagnosis of primary origin site in the management of malignancy of unknown origin (MUO) is the most important issue. According to the histopathologic subtype of primary lesion, specialized treatment can be given and survival gain is expected. F-18 FDG PET (PET/CT) has been estimated as useful in detection of primary lesion with high sensitivity and moderate specificity. F-18 FDG PET (PET/CT) study before conventional studies is also recommended because it has high diagnostic performance compared to conventional studies. Although there has few data, F-18 FDG PET (PET/CT) is expected to be useful in diagnosis of recurrence, restaging, evaluation of treatment effect, considering that PET (PET/CT) has been reported as useful in other malignancies

  2. Proof-of-principle study of a small animal PET/field-cycled MRI combined system using conventional PMT technology

    International Nuclear Information System (INIS)

    Peng Hao; Handler, William B.; Scholl, Timothy J.; Simpson, P.J.; Chronik, Blaine A.

    2010-01-01

    There are currently several approaches to the development of combined PET/MRI systems, all of which need to address adverse interactions between the two systems. Of particular relevance to the majority of proposed PET/MRI systems is the effect that static and dynamic magnetic fields have on the performance of PET detection systems based on photomultiplier tubes (PMTs). In the work reported in this paper, performance of two conventional PMTs has been systematically investigated and characterized as a function of magnetic field exposure conditions. Detector gain, energy resolution, time resolution, and efficiency were measured for static field exposures between 0 and 6.3 mT. Additionally, the short-term recovery and long-term stability of gain and energy resolution were measured in the presence of repeatedly applied dynamic magnetic fields changing at 4 T/s. It was found that the detectors recovered normal operation within several milliseconds following the end of large pulsed magnetic fields. In addition, the repeated applications of large pulsed magnetic fields did not significantly affect detector stability. Based on these results, we implemented a proof-of-principle PET/field-cycled MRI (FCMRI) system for small animal imaging using commercial PMT-based PET detectors. The first PET images acquired within the PET/FCMRI system are presented. The image quality, in terms of spatial resolution, was compared between standalone PET and the PET/FCMRI system. Finally, the relevance of these results to various aspects of PET/MRI system design is discussed.

  3. Clinical Application of F-18 FDG PET (PET/CT) in Colo-rectal and Anal Cancer

    International Nuclear Information System (INIS)

    Kim, Byung Il

    2008-01-01

    In the management of colo-retal and anal cancer, accurate staging, treatment evaluation, early detection of recurrence are main clinical problems. F-18 FDG PET (PET/CT) has been reported as useful in the management of colo-rectal and anal cancer because that PET has high diagnostic performance comparing to conventional studies. In case of liver metastases, for confirmation of no extrahepatic metastases, in case of high risk of metastasis, for avoiding unnecessary operation, PET (PET/CT) is expected more useful. In anal cancer, PET is expected useful in lymph node staging. For the early prediction of chemotherapy or radiation therapy effect PET has been reported as useful, also. In early detection of recurrence by PET, cost-benefit advantages has been suggested, also. PET/CT is expected to have higher diagnostic performance than PET alone

  4. F-FDG PET/CT (PET/CT) influences management in patients with known or suspected pancreatic cancer

    International Nuclear Information System (INIS)

    Barber, Thomas W.; Kalff, Victor; Cherk, Martin H.; Yap, Kenneth SK.; Evans, Peter; Kelly, Michael J.

    2009-01-01

    Full text: Objective: To assess the impact on clinical management of PET/CT in patients with known or suspected pancreatic cancer. Methods: Between April 2006 and September 2008,25 PET/CT scans were performed using a dedicated PET/CT (22 scans) or a coincidence hybrid PET/CT camera (3 scans) in 23 patients with known or suspected pancreatic cancer. 17 scans were performed for initial evaluation and 8 for restaging of disease. The pre-PET/CT management plan and for intent were prospectively recorded in all cases. The post-PET/CT management plan was determined from the medical record and for discussions with treating clinicians. The impact of PET/CT on management was classified as High, Medium, Low or None, defined using ANZAPNM PET data collection project criteria. Follow-up was used to reconcile any discordance between PET/CT and conventional imaging. Results: Overall, PET/CT management impact was classified as high (n equal 7), medium (n equal 4), low (n equal 10) or none (n equal 4). Impact was either high or medium in l l/25 patients (44%) (95% confidence interval; 24 - 64%). Impact was high in 4/17 patients imaged for initial evaluation, predominantly by clarifying equivocal lesions on conventional imaging. In restaged patients, PET/CT impact was high in 3/8, and it correctly modified disease extent in 5/8. In the 16 discordant studies, PET/CT assessment was correct in 10, conventional imaging in 4 and there was insufficient information in 2. Conclusion: PET/CT has high or medium management impact in 44% of patients imaged for known or suspected pancreatic cancer, more commonly during restaging. Discordant PET/CT results were usually correct.

  5. The usefulness of the combined PET-CT scanner

    International Nuclear Information System (INIS)

    Yoshikawa, Kyosan

    2003-01-01

    Recently, combined PET-CT scanners that simultaneously reveal both anatomical and metabolic images within the body have been developed. The Siemens Biograph was the first PET-CT used in Japan and was installed at National Institute of Radiological Sciences (NIRS) at the end of March 2002. The Biograph system integrates Siemens PET (HR+) and spiral CT (SOMATOM Emotion Duo) technologies with a multimodality computer platform. The CT data obtained with PET-CT is also used for attenuation corrections of the PET images. The advantages of PET-CT for clinical use are much shorter study time for each patient, easy and precise alignment of the patient's lesion within the PET field of view, an increase in PET image quality due to the CT attenuation correction system which gives a higher spatial resolution and produces much less noise in the attenuation correction data, and an improvement in diagnostic accuracy provided by both functional and anatomic imaging. The Japanese government has not yet approved the marketing of PET-CT. We are continuing to investigate its usefulness. We expect that PET-CT will be a major diagnostic tool for oncology imaging in the near future. (authors)

  6. PET/MRI in Oncological Imaging: State of the Art

    Science.gov (United States)

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J.

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  7. PET/MRI in Oncological Imaging: State of the Art

    Directory of Open Access Journals (Sweden)

    Usman Bashir

    2015-07-01

    Full Text Available Positron emission tomography (PET combined with magnetic resonance imaging (MRI is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging.

  8. Compton scatter tomography in TOF-PET

    Science.gov (United States)

    Hemmati, Hamidreza; Kamali-Asl, Alireza; Ay, Mohammadreza; Ghafarian, Pardis

    2017-10-01

    Scatter coincidences contain hidden information about the activity distribution on the positron emission tomography (PET) imaging system. However, in conventional reconstruction, the scattered data cause the blurring of images and thus are estimated and subtracted from detected coincidences. List mode format provides a new aspect to use time of flight (TOF) and energy information of each coincidence in the reconstruction process. In this study, a novel approach is proposed to reconstruct activity distribution using the scattered data in the PET system. For each single scattering coincidence, a scattering angle can be determined by the recorded energy of the detected photons, and then possible locations of scattering can be calculated based on the scattering angle. Geometry equations show that these sites lie on two arcs in 2D mode or the surface of a prolate spheroid in 3D mode, passing through the pair of detector elements. The proposed method uses a novel and flexible technique to estimate source origin locations from the possible scattering locations, using the TOF information. Evaluations were based on a Monte-Carlo simulation of uniform and non-uniform phantoms at different resolutions of time and detector energy. The results show that although the energy uncertainties deteriorate the image spatial resolution in the proposed method, the time resolution has more impact on image quality than the energy resolution. With progress of the TOF system, the reconstruction using the scattered data can be used in a complementary manner, or to improve image quality in the next generation of PET systems.

  9. A comparison of high and low degree of freedom alignment techniques in functional PET brain activation experiments)

    International Nuclear Information System (INIS)

    Sonkkila, C.P.; Egan, G.F.; Watson, J.D.G.; Wenderoth, P.

    1998-01-01

    Full text: Cognitive activation studies in PET commonly utilise intersubject alignment as a preprocessing stage before images are compared. The accepted technique included in statistical parametric mapping (SPM) an analysis package developed by Friston et al, uses a 12 'degree of freedom' (d.o.f.) affine transformation, while a more complicated non-linear approach has recently been developed by Woods et al, but it necessitates the use of higher resolution magnetic resonance images to give sufficient information to use the high degree of freedom nonlinear alignment. This study seeks to show the differences between using the low degree of freedom alignment approach in SPM compared to that of Woods. As an example, a group of 8 normal subjects are asked to perform a complex visual paradigm during a series of PET scans designed to be sensitive to changes in blood flow. Structural MR images are also acquired for each subject. The resulting scans are then analysed with two methods: One where all images are aligned using SPM and the PET images. The second method utilises Woods' algorithm (a 5th order polynomial fit with 168 d.o.f.) and the MR images. SPM is then used to assess regions of significant change in blood flow across the group for both methods, and the results compared. When using the PET images for alignment purposes, the maximal probability for rejecting the null hypothesis of no change in regional blood flow was p = 0.471 (Talairach atlas coordinate 10 -74 -8) while utilising the MR images gives p = 0.913 for the same region. Note that to reach higher statistical significance ( eg p > 0.95 ) more subjects would be included in the study. It was concluded that there is considerable evidence to show that using MR images and Woods' nonlinear alignment gives higher statistical power than using PET images only and a low degree of freedom alignment method for resolving changes in regional blood flow in cognitive activation experiments

  10. A custom-built PET phantom design for quantitative imaging of printed distributions

    International Nuclear Information System (INIS)

    Markiewicz, P J; Angelis, G I; Kotasidis, F; Green, M; Matthews, J C; Lionheart, W R; Reader, A J

    2011-01-01

    This note presents a practical approach to a custom-made design of PET phantoms enabling the use of digital radioactive distributions with high quantitative accuracy and spatial resolution. The phantom design allows planar sources of any radioactivity distribution to be imaged in transaxial and axial (sagittal or coronal) planes. Although the design presented here is specially adapted to the high-resolution research tomograph (HRRT), the presented methods can be adapted to almost any PET scanner. Although the presented phantom design has many advantages, a number of practical issues had to be overcome such as positioning of the printed source, calibration, uniformity and reproducibility of printing. A well counter (WC) was used in the calibration procedure to find the nonlinear relationship between digital voxel intensities and the actual measured radioactive concentrations. Repeated printing together with WC measurements and computed radiography (CR) using phosphor imaging plates (IP) were used to evaluate the reproducibility and uniformity of such printing. Results show satisfactory printing uniformity and reproducibility; however, calibration is dependent on the printing mode and the physical state of the cartridge. As a demonstration of the utility of using printed phantoms, the image resolution and quantitative accuracy of reconstructed HRRT images are assessed. There is very good quantitative agreement in the calibration procedure between HRRT, CR and WC measurements. However, the high resolution of CR and its quantitative accuracy supported by WC measurements made it possible to show the degraded resolution of HRRT brain images caused by the partial-volume effect and the limits of iterative image reconstruction. (note)

  11. Fever of unknown origin: A value of 18F-FDG-PET/CT with integrated full diagnostic isotropic CT imaging

    International Nuclear Information System (INIS)

    Ferda, Jiri; Ferdova, Eva; Zahlava, Jan; Matejovic, Martin; Kreuzberg, Boris

    2010-01-01

    Aim: The aim of presented work is to evaluate the clinical value of 18 F-FDG-PET/CT in patients with fever of unknown origin (FUO) and to compare PET/CT finding with the results of the following investigation. Material and method: 48 patients (24 men, 24 women, mean age 57.6 years with range 15-89 years) underwent 18 F-FDG-PET/CT due to the fever of unknown origin. All examinations were performed using complex PET/CT protocol combined PET and whole diagnostic contrast enhanced CT with sub-millimeter spatial resolution (except patient with history of iodine hypersensitivity or sever renal impairment). CT data contained diagnostic images reconstructed with soft tissue and high-resolution algorithm. PET/CT finding were compared with results of biopsies, immunology, microbiology or autopsy. Results: The cause of FUO was explained according to the PET/CT findings and followed investigations in 44 of 48 cases-18 cases of microbial infections, nine cases of autoimmune inflammations, four cases of non-infectious granulomatous diseases, eight cases of malignancies and five cases of proved immunity disorders were found. In 46 cases, the PET/CT interpretation was correct. Only in one case, the cause was overlooked and the uptake in atherosclerotic changes of arteries was misinterpreted as vasculitis in the other. The reached sensitivity was 97% (43/44), and specificity 75% (3/4) respectively. Conclusion: In patients with fever of unknown origin, 18 F-FDG-PET/CT might enable the detection of its cause.

  12. Development of a SiPM-based PET imaging system for small animals

    International Nuclear Information System (INIS)

    Lu, Yanye; Yang, Kun; Zhou, Kedi; Zhang, Qiushi; Pang, Bo; Ren, Qiushi

    2014-01-01

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development

  13. Development of a SiPM-based PET imaging system for small animals

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanye [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Kun, E-mail: yangkun9999@hotmail.com [Department of Control Technology and Instrumentation, College of Quality and Technical Supervision, Hebei University, Baoding, 071000 (China); Zhou, Kedi; Zhang, Qiushi; Pang, Bo [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2014-04-11

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development.

  14. Optimization of PET system design for lesion detection

    International Nuclear Information System (INIS)

    Qi, Jinyi

    2000-01-01

    Traditionally, the figures of merit used in designing a PET scanner are spatial resolution, noise equivalent count rate, noise equivalent sensitivity, etc. These measures, however, do not directly reflect the lesion detectability using the PET scanner. Here we propose to optimize PET scanner design directly for lesion detection. The signal-to-noise ratio (SNR) of lesion detection can be easily computed using the theoretical expressions that we have previously derived. Because no time consuming Monte Carlo simulation is needed, the theoretical expressions allow evaluation of a large range of parameters. The PET system parameters can then be chosen to achieve the maximum SNR for lesion detection. The simulation study shown in this paper was focused a single ring PET scanner without depth of interaction measurement. Randoms and scatters were also ignored

  15. CYBPET: a cylindrical PET system for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Karimian, A. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) and Nuclear Research Center for Agriculture and Medicine (NRCAM-AEOI), P.O. BOX. (31485-498), Karaj, Iran, Islamic Republic of and Department of Experimental Medicine and Pathology, University of Rome, La Sapienza, Rome (Italy)]. E-mail: akarimian@nrcam.org; Thompson, C.J. [Montreal Neurological Institute, McGill University, Montreal QC (Canada); Sarkar, S. [Medical physics Department of Tehran University of Medical Sciences and (RCSTIM), Tehran (Iran, Islamic Republic of); Raisali, G. [Nuclear Research Center for Agriculture and Medicine (NRCAM-AEOI), P.O. BOX. (31485-498), Karaj (Iran, Islamic Republic of); Pani, R. [Department of Experimental Medicine and Pathology, University of Rome La Sapienza, Rome (Italy); Davilu, H. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sardari, D. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2005-06-11

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 {mu}Ci/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET.

  16. CYBPET: a cylindrical PET system for breast imaging

    International Nuclear Information System (INIS)

    Karimian, A.; Thompson, C.J.; Sarkar, S.; Raisali, G.; Pani, R.; Davilu, H.; Sardari, D.

    2005-01-01

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 μCi/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET

  17. Cherenkov TOF PET with silicon photomultipliers

    Science.gov (United States)

    Dolenec, R.; Korpar, S.; Križan, P.; Pestotnik, R.

    2015-12-01

    As previously demonstrated, an excellent timing resolution below 100 ps FWHM is possible in time-of-flight positron emission tomography (TOF PET) if the detection method is based on the principle of detecting photons of Cherenkov light, produced in a suitable material and detected by microchannel plate photomultipliers (MCP PMTs). In this work, the silicon photomultipliers (SiPMs) were tested for the first time as the photodetectors in Cherenkov TOF PET. The high photon detection efficiency (PDE) of SiPMs led to a large improvement in detection efficiency. On the other hand, the time response of currently available SiPMs is not as good as that of MCP PMTs. The SiPM dark counts introduce a new source of random coincidences in Cherenkov method, which would be overwhelming with present SiPM technology at room temperature. When the apparatus was cooled, its performance significantly improved.

  18. Establishment of the method of surface shaded display for brain PET imaging

    International Nuclear Information System (INIS)

    Zhang Xiangsong; Tang Anwu; He Zuoxiang

    2003-01-01

    Objective: To establish the method of surface shaded display (SSD) for brain PET imaging. Methods: The original brain PET images volume data were transferred to the personal computer by the local area network, and scaled into 256 grayscale values between 0 and 255. An appropriate threshold could be selected with three differential methods: depended on the histogram or maximum percentage of the volume data and the opposite value percentage of the lesion. The list of vertices and triangles describing the contour surface was produced with a high resolution three dimensional (3D) surface construction algorithm. Results: The final software of SSD for brain PET imaging with interactive user interface can produce 3D brain PET images which can be rotated, scaled, and saved or outputted with several image formats. Conclusion: The method of SSD for brain PET imaging can directly and integrally reflect the surface of brain cortex, and be helpful to locate lesions and display the range of lesions, but can not reflect the severity of lesions, nor can display the structure under brain cortex

  19. The KFA TierPET: Performance characteristics and measurements

    International Nuclear Information System (INIS)

    Weber, S.; Herzog, H.; Mueller-Gaertner, H.W.

    1996-01-01

    We will present first results of the KFA Tier-PET, a positron emission tomograph with flexible geometry dedicated to in vivo studies of small animals. The flexible geometry allows us to change between measurements with high spatial resolution and measurements with increased sensitivity at the cost of resolution. The detectors consist of yttrium aluminum perovskit scintillator arrays which are glued together from 20 x 20 optically isolated crystals, coupled to position sensitive photomultiplier tubes. The fundamental design features concerning crystal dimensions and detector arrangement have been simulated. Based on this data, the definite dimensional outline of the crystals was determined. The YAP:Ce matrix in combination with a position sensitive photomultiplier leads to a detector block with a high spatial resolution. In first measurements a system sensitivity of 1.8 kcps/μCi/ml has been evaluated for a detector-to-detector distance of 16 cm

  20. Evaluation of PET/CT combined with HRCT in differentiating malignant from benign solitary pulmonary nodules

    International Nuclear Information System (INIS)

    Ge Quanxu; Zhu Renjuan; Liu Qingwei; Lv Shouchen; Yao Shuzhan; Li Xin

    2005-01-01

    Objective: To investigate the clinical value of 18 F-fluorodeoxyglucose (FDG) PET/CT combined with high resolution CT (HRCT) to differentiate solitary pulmonary nodule (SPN). Methods: 25 patients with 27 SPN were examined with 18 F-FDG PET/CT and HRCT, all of them were proved pathologically or by follow-up. The differential diagnosis of SPN were made using visual method and semi-quantitative method on PET/CT and morphological characteristics on HRCT. The results of 18 F-FDG PET/CT and 18 F-FDG PET/CT combined with HRCT were compared with pathological results. Results: 15 were malignant and 12 benign among the 27 SPN. 14 SPN were positive on PET/CT among 15 malignant SPN with only one negative less than 10 mm in size. 3 benign were positive on PET/CT, but 2 of them were correctly diagnosed as benign by PET/CT combined with HRCT. The specificity, negative predictive value and accuracy of 18 F-FDG PET/CT combined with HRCT were higher than that of PET/CT (91.7%, 93.3%, 91.7% and 93.7% vs 75.0%, 82.4%, 90.0% and 85.2% ). The sensitivity of PET/CT combined with HRCT and PET/CT alone was same (93.3%). Conclusion: 18 F-FDG PET/CT combined with HRCT is a effective no-invasive method in differentiating malignant SPN from benign. (authors)

  1. Evaluation of Position Resolution for a Prototype Whole-Body PET Detector Based on Suppressing Backgrounds by Compton Scattering

    Science.gov (United States)

    Fujihara, Kento; Emoto, Yusaku; Ito, Hiroshi; Kaneko, Naomi; Kaneko, Hideyuki; Kawai, Hideyuki; Kobayashi, Atsushi; Mizuno, Takahiro

    2018-01-01

    Existing PET (Positron Emission Tomography) systems make clear images in demonstration (measuring small PET reagent in pure water), however images in real diagnosis become unclear. The authors suspected that this problem was caused by Compton scattering in a detector. When PET systems observe plural photomultiplier tube outputs, an original emission point is regarded as centroid of the outputs. However, even if plural emission in Compton scattering occur, these systems calculate original point in the same way as single emission. Therefore, the authors considered that rejecting Compton scattering events makes PET systems much better, and made prototype counter. Main components of the prototype counter are plate-like high-growth-rate (HGR) La-GPS scintillators and wavelength shifting fibers (WLSF). HGR crystals grow 10 times as fast as a mono-crystal (a normal mono-crystal grows at 2 - 3 mm an hour). Thus, it includes microbubble and its transparency get worth. Consequently, HGR crystals usually are not used in radiation measuring instruments. However, this time they are used on the purpose. Because of their low transparency, scintillation lights come out right above and right under of emission position. Therefore, Compton scattering events is rejected easily. The prototype detector has an effective area of 300 by 300 square mm. The detector consists of 24 layers. One layer consists of HGR La-GPS scintillator of 1 mm thickness. Top and bottom surface of scintillator were covered by dual sheets of WLSF with a diameter of 0.2 mm. Sheets of WLSF on top and bottom of the scintillator make a right angle with each other, and measure X- and Y-components. Z-component is measured by difference of WLSF outputs between top and bottom. If plural layers output signals, this counter regards the event as Compton scattering event, and reject the event. Even if only a layer output signals, the event is rejected when number output signals from WLSF is more than 1.5 times of single

  2. jQC-PET, an ImageJ macro to analyse the quality control of a PET/CT; jQC-PET, una macro de ImageJ para el analisis del control de calidad de un PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Cortes-Rodicio, J.; Sanchez-Merino, G.; Garcia-Fidalgo, A.

    2015-07-01

    An ImageJ macro has been developed to facilitate the analysis of three PET/CT quality control procedures included in the documents from the National Electrical Manufacturers Association (NU2-2007) and the International Atomic Energy Agency (Pub-1393): image quality, uniformity and spatial resolution. In them, the generation of the regions of interest and the analysis are automatized. The results obtained with the software have been compared with those of the commercial software and the literature. The use of jQC-PET allows a standard analysis and the independence of the commercial software. (Author)

  3. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.

    Science.gov (United States)

    Wang, Yan; Yu, Biting; Wang, Lei; Zu, Chen; Lalush, David S; Lin, Weili; Wu, Xi; Zhou, Jiliu; Shen, Dinggang; Zhou, Luping

    2018-07-01

    Positron emission tomography (PET) is a widely used imaging modality, providing insight into both the biochemical and physiological processes of human body. Usually, a full dose radioactive tracer is required to obtain high-quality PET images for clinical needs. This inevitably raises concerns about potential health hazards. On the other hand, dose reduction may cause the increased noise in the reconstructed PET images, which impacts the image quality to a certain extent. In this paper, in order to reduce the radiation exposure while maintaining the high quality of PET images, we propose a novel method based on 3D conditional generative adversarial networks (3D c-GANs) to estimate the high-quality full-dose PET images from low-dose ones. Generative adversarial networks (GANs) include a generator network and a discriminator network which are trained simultaneously with the goal of one beating the other. Similar to GANs, in the proposed 3D c-GANs, we condition the model on an input low-dose PET image and generate a corresponding output full-dose PET image. Specifically, to render the same underlying information between the low-dose and full-dose PET images, a 3D U-net-like deep architecture which can combine hierarchical features by using skip connection is designed as the generator network to synthesize the full-dose image. In order to guarantee the synthesized PET image to be close to the real one, we take into account of the estimation error loss in addition to the discriminator feedback to train the generator network. Furthermore, a concatenated 3D c-GANs based progressive refinement scheme is also proposed to further improve the quality of estimated images. Validation was done on a real human brain dataset including both the normal subjects and the subjects diagnosed as mild cognitive impairment (MCI). Experimental results show that our proposed 3D c-GANs method outperforms the benchmark methods and achieves much better performance than the state

  4. High resolution detectors based on continuous crystals and SiPMs for small animal PET

    International Nuclear Information System (INIS)

    Cabello, J.; Barrillon, P.; Barrio, J.; Bisogni, M.G.; Del Guerra, A.; Lacasta, C.; Rafecas, M.; Saikouk, H.; Solaz, C.; Solevi, P.; La Taille, C. de; Llosá, G.

    2013-01-01

    Sensitivity and spatial resolution are the two main factors to maximize in emission imaging. The improvement of one factor deteriorates the other with pixelated crystals. In this work we combine SiPM matrices with monolithic crystals, using an accurate γ-ray interaction position determination algorithm that provides depth of interaction. Continuous crystals provide higher sensitivity than pixelated crystals, while an accurate interaction position determination does not degrade the spatial resolution. Monte Carlo simulations and experimental data show good agreement both demonstrating sub-millimetre intrinsic spatial resolution. A system consisting in two rotating detectors in coincidence is currently under operation already producing tomographic images

  5. Incremental value of PET and MRI in the evaluation of cardiovascular abnormalities.

    Science.gov (United States)

    Chalian, Hamid; O'Donnell, James K; Bolen, Michael; Rajiah, Prabhakar

    2016-08-01

    The cardiovascular system is affected by a wide range of pathological processes, including neoplastic, inflammatory, ischemic, and congenital aetiology. Magnetic resonance imaging (MRI) and positron emission tomography (PET) are state-of-the-art imaging modalities used in the evaluation of these cardiovascular disorders. MRI has good spatial and temporal resolutions, tissue characterization and multi-planar imaging/reconstruction capabilities, which makes it useful in the evaluation of cardiac morphology, ventricular and valvar function, disease characterization, and evaluation of myocardial viability. FDG-PET provides valuable information on the metabolic activity of the cardiovascular diseases, including ischemia, inflammation, and neoplasm. MRI and FDG-PET can provide complementary information on the evaluation of several cardiovascular disorders. For example, in cardiac masses, FDG-PET provides the metabolic information for indeterminate cardiac masses. MRI can be used for localizing and characterizing abnormal hypermetabolic foci identified incidentally on PET scan and also for local staging. A recent advance in imaging technology has been the development of integrated PET/MRI systems that utilize the advantages of PET and MRI in a single examination. The goal of this manuscript is to provide a comprehensive review on the incremental value of PET and MRI in the evaluation of cardiovascular diseases. • MRI has good spatial and temporal resolutions, tissue characterization, and multi-planar reconstruction • FDG-PET provides valuable information on the metabolic activity of cardiovascular disorders • PET and MRI provide complementary information on the evaluation of cardiovascular disorders.

  6. Performance Evaluation of a Dedicated Preclinical PET/CT System for the Assessment of Mineralization Process in a Mouse Model of Atherosclerosis.

    Science.gov (United States)

    Rucher, Guillaume; Cameliere, Lucie; Fendri, Jihene; Abbas, Ahmed; Dupont, Kevin; Kamel, Said; Delcroix, Nicolas; Dupont, Axel; Berger, Ludovic; Manrique, Alain

    2018-04-30

    The purpose of this study was to assess the impact of positron emission tomography/X-ray computed tomography (PET/CT) acquisition and reconstruction parameters on the assessment of mineralization process in a mouse model of atherosclerosis. All experiments were performed on a dedicated preclinical PET/CT system. CT was evaluated using five acquisition configurations using both a tungsten wire phantom for in-plane resolution assessment and a bar pattern phantom for cross-plane resolution. Furthermore, the radiation dose of these acquisition configurations was calculated. The PET system was assessed using longitudinal line sources to determine the optimal reconstruction parameters by measuring central resolution and its coefficient of variation. An in vivo PET study was performed using uremic ApoE -/- , non-uremic ApoE -/- , and control mice to evaluate optimal PET reconstruction parameters for the detection of sodium [ 18 F]fluoride (Na[ 18 F]F) aortic uptake and for quantitative measurement of Na[ 18 F]F bone influx (Ki) with a Patlak analysis. For CT, the use of 1 × 1 and 2 × 2 binning detector mode increased both in-plane and cross-plane resolution. However, resolution improvement (163 to 62 μm for in-plane resolution) was associated with an important radiation dose increase (1.67 to 32.78 Gy). With PET, 3D-ordered subset expectation maximization (3D-OSEM) algorithm increased the central resolution compared to filtered back projection (1.42 ± 0.35 mm vs. 1.91 ± 0.08, p PET resolution for preclinical study (FWHM = 0.98 mm). These PET reconstruction parameters allowed the detection of Na[ 18 F]F aortic uptake in 3/14 ApoE -/- mice and demonstrated a decreased Ki in uremic ApoE -/- compared to non-uremic ApoE -/- and control mice (p PET. In addition, improving the CT resolution was associated with a dramatic radiation dose increase.

  7. PET/CT and vascular disease: Current concepts

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti Filho, Jose Leite Gondim; Souza Leao Lima, Ronaldo de [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Department of Radiology, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro (Brazil); Souza Machado Neto, Luiz de [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Kayat Bittencourt, Leonardo, E-mail: lkayat@terra.com.br [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Department of Radiology, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro (Brazil); Cortes Domingues, Romeu [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Fonseca, Lea Mirian Barbosa da [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Department of Radiology, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro (Brazil)

    2011-10-15

    Since its introduction in 2001, positron emission tomography associated to computed tomography (PET/CT) has been established as a standard tool in cancer evaluation. Being a multimodality imaging method, it combines in a single session the sensitivity granted by PET for detection of molecular targets within the picomolar range, with an underlying submilimetric resolution inherent to CT, that can precisely localize the PET findings. In this last decade, there have been new insights regarding the pathophysiology of atherosclerosis, particularly about plaque rupture and vascular remodeling. This has increased the interest for research on PET/CT in vascular diseases as a potential new diagnostic tool, since some PET molecular targets could identify diseases before the manifestation of gross anatomic features. In this review, we will describe the current applications of PET/CT in vascular diseases, emphasizing its usefulness in the settings of vasculitis, aneurysms, vascular graft infection, aortic dissection, and atherosclerosis/plaque vulnerability. Although not being properly peripheral vascular conditions, ischemic cardiovascular disease and cerebrovascular disease will be briefly addressed as well, due to their widespread prevalence and importance.

  8. Clinical application of PET in abdominal cancers

    International Nuclear Information System (INIS)

    Choi, Chang Woon

    2002-01-01

    Clinical application of positron emission tomography (PET) is rapidly increasing for the detection and staging of cancer at whole-body studies performed with the glucose analogue tracer 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FG). Although FDG PET cannot match the anatomic resolution of conventional imaging techniques in the liver and the other abdominal organs, it is particularly useful for identification and characterization of the entire body simultaneously. FDG PET can show foci of metastatic disease that may not be apparent at conventional anatomic imaging and can aid in the characterizing of indeterminate soft-tissue masses. Most abdominal cancer requires surgical management. FGD PET can improve the selection of patients for surgical treatment and thereby reduce the morbidity and mortality associated with inappropriate surgery. FDG PET is also useful for the early detection of recurrence and the monitoring of therapeutic effect. The abdominal cancers, such as gastroesophageal cancer, colorectal cancer, liver cancer and pancreatic cancer, are common malignancies in Korea, and PET is one of the most promising and useful methodologies for the management of abdominal cancers

  9. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  10. Performance of a DOI-encoding small animal PET system with monolithic scintillators

    International Nuclear Information System (INIS)

    Carles, M.; Lerche, Ch.W.; Sánchez, F.; Orero, A.; Moliner, L.; Soriano, A.; Benlloch, J.M.

    2012-01-01

    PET systems designed for specific applications require high resolution and sensitivity instrumentation. In dedicated system design smaller ring diameters and deeper crystals are widely used in order to increase the system sensitivity. However, this design increases the parallax error, which degrades the spatial image resolution gradually from the center to the edge of the field-of-view (FOV). Our group has designed a depth of interaction(DOI)-encoding small animal PET system based on monolithic crystals. In this work we investigate the restoration of radial resolution for transaxially off-center sources using the DOI information provided by our system. For this purpose we have designed a support for point like sources adapted to our system geometry that allows a spatial compression and resolution response study. For different point source radial positions along vertical and horizontal axes of a FOV transaxial plane we compare the results obtained by three methods: without DOI information, with the DOI provided by our system and with the assumption that all the γ-rays interact at half depth of the crystal thickness. Results show an improvement of the mean resolution of 10% with the half thickness assumption and a 16% achieved using the DOI provided by the system. Furthermore, a 10% restoration of the resolution uniformity is obtained using the half depth assumption and an 18% restoration using measured DOI.

  11. Simultaneous maximum a posteriori longitudinal PET image reconstruction

    Science.gov (United States)

    Ellis, Sam; Reader, Andrew J.

    2017-09-01

    Positron emission tomography (PET) is frequently used to monitor functional changes that occur over extended time scales, for example in longitudinal oncology PET protocols that include routine clinical follow-up scans to assess the efficacy of a course of treatment. In these contexts PET datasets are currently reconstructed into images using single-dataset reconstruction methods. Inspired by recently proposed joint PET-MR reconstruction methods, we propose to reconstruct longitudinal datasets simultaneously by using a joint penalty term in order to exploit the high degree of similarity between longitudinal images. We achieved this by penalising voxel-wise differences between pairs of longitudinal PET images in a one-step-late maximum a posteriori (MAP) fashion, resulting in the MAP simultaneous longitudinal reconstruction (SLR) method. The proposed method reduced reconstruction errors and visually improved images relative to standard maximum likelihood expectation-maximisation (ML-EM) in simulated 2D longitudinal brain tumour scans. In reconstructions of split real 3D data with inserted simulated tumours, noise across images reconstructed with MAP-SLR was reduced to levels equivalent to doubling the number of detected counts when using ML-EM. Furthermore, quantification of tumour activities was largely preserved over a variety of longitudinal tumour changes, including changes in size and activity, with larger changes inducing larger biases relative to standard ML-EM reconstructions. Similar improvements were observed for a range of counts levels, demonstrating the robustness of the method when used with a single penalty strength. The results suggest that longitudinal regularisation is a simple but effective method of improving reconstructed PET images without using resolution degrading priors.

  12. Monte Carlo simulations in small animal PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)

    2007-10-01

    This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.

  13. History and current status of PET development based on time of flight

    International Nuclear Information System (INIS)

    Yun Mingkai; Li Ting; Zhang Zhiming; Zhang Yubao; Shan Baoci; Wei Long

    2012-01-01

    The principle of time of flight (TOF) positron emission tomography (PET) and a brief review of the history of TOF-PET are introduced. The factors influencing the time resolution of a TOF-PET scanner are presented, especially focus on the intrinsic properties of scintillators and front-end electronics. Challenges and achievements of the structure of data organization and image reconstruction are reviewed. Finally, the benefits of TOF-PET on image quality improvement and tumor detection are emphasized. (authors)

  14. Development of PET insert for simultaneous PET/MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jiwoong; Choi, Yong; Jung, Jin Ho; Kim, Sangsu; Im, Ki Chun; Lim, Hyun Keong [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Oh, Changheun; Park, HyunWook; Cho, Gyuseong [Departments of Electrical Engineering and Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2014-07-29

    Recently, there has been great interest on the development of combined PET/MR, which is a useful tool for both functional and anatomic imaging. The purpose of this study was to develop a MR compatible PET insert for simultaneous PET and MR imaging of human brain and to evaluate the performance of the hybrid PET-MRI. The PET insert consisted of 18 detector blocks arranged in a ring of 390 mm diameter with 60 mm axial FOV. Each detector block was composed of 4 × 4 matrix of detector modules, each of which consisted of a 4 × 4 array LYSO coupled to a 4 × 4 GAPD array. The PET gantry was shielded with gold-plated conductive fabric tapes. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuits (PDCs) and then transferred to FPGA-embedded DAQ modules. The PDCs and DAQ modules were enclosed in an aluminum box and located at the rear of the MR bore inside MRI room. 3-T human MRIs of two different vendors were used to evaluate the MR compatibility of developed PET insert. No significant changes of the PET performance and the homogeneity of MR images caused by the non-compatibility of PET-MRI were observed with the 2 different MRIs. The signal intensities of MR images were slightly degraded (<3.6%) with the both MRI systems. The difference between independently and simultaneously acquired PET images of brain phantom was negligibly small (<4.3%). High quality simultaneous brain PET and MRI of 3 normal volunteers were successfully acquired. Experimental results indicate that the high performance compact and lightweight PET insert for hybrid PET/MRI, which could be utilized with the MRI from various manufactures, can be developed using GAPD arrays and charge signal transmission method proposed in this study.

  15. Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Yamaya, Taiga

    2014-11-01

    In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate

  16. Application of PET and PET/CT imaging for cancer screening

    International Nuclear Information System (INIS)

    Chen Yenkung; Hu Fenglan; Shen Yehyou; Liao, A.C.; Hung, T.Z.; Su, Chentau; Chen Liangkuang

    2004-01-01

    The aim of this study was to evaluate the potential application of 18F-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) and PET/CT for cancer screening in asymptomatic individuals. Methods: The subjects consisted of 3631 physical check up examinees (1947 men, 1684 women; mean age ±SD, 52.1±8.2 y) with non-specific medical histories. Whole-body FDG PET (or PET/CT), ultrasound and tumor markers were performed on all patients. Focal hypermetabolic areas with intensities equal to or exceeding the level of FDG uptake in the brain and bladder were considered abnormal and interpreted as neoplasia. Follow-up periods were longer than one year. Results: Among the 3631 FDG PET (including 1687 PET/CT), ultrasound and tumor markers examinations, malignant tumors were discovered in 47 examinees (1.29%). PET findings were true-positive in 38 of the 47 cancers (80.9%). In addition, 32 of the 47 cancers were performed with the PET-CT scan. PET detected cancer lesions in 28 of the 32 examinees. However, the CT detected cancer lesions in only 15 of 32 examinees. Conclusion: The sensitivity of FDG PET in the detection of a wide variety of cancers is high. Most cancer can be detected with FDG PET in a resectable stage. CT of the PET/CT for localization and characteristics of the lesion shows an increased specificity of the PET scan. Using ultrasound and tumor markers may complement the PET scan in cancer screening for hepatic and urologic neoplasms. (authors)

  17. A comprehensive & systematic study of coincidence time resolution and light yield using scintillators of different size, wrapping and doping

    CERN Document Server

    Auffray, E.; Geraci, F.; Ghezzi, A.; Gundacker, S.; Hillemanns, H.; Jarron, P.; Meyer, T.; Paganoni, M.; Pauwels, K.; Pizzichemi, M.; Lecoq, P.

    2011-01-01

    Over the last years interest in using time-of-flight-based Positron Emission Tomography (TOF-PET) systems has significantly increased. High time resolution in such PET systems is a powerful tool to improve signal to noise ratio and therefore to allow smaller exposure rates for patients as well as faster image reconstruction. Improvement in coincidence time resolution (CTR) in PET systems to the level of 200ps FWHM requires the optimization of all parameters in the photon detection chain influencing the time resolution: crystal, photodetector and readout electronics. After reviewing the factors influencing the time resolution of scintillators, we will present in this paper the light yield and CTR obtained for different scintillator types (LSO:Ce, LYSO:Ce, LGSO:Ce, LSO:Ce:0.4Ca, LuAG:Ce, LuAG:Pr) with different cross-sections, lengths and reflectors. Whereas light yield measurements were made with a classical PMT, all CTR tests were performed with Hamamatsu-MPPCs or SiPMs S10931-050P. The CTR measurements were ...

  18. Indeterminate findings on oncologic PET/CT: What difference dose PET/MRI make?

    Energy Technology Data Exchange (ETDEWEB)

    Fraum, Tyler J.; Fowler, Kathryn J.; McConathy, Jonathan; Dehdashti, Farokh [Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis (United States)

    2016-12-15

    Positron emission tomography/computed tomography (PET/CT) with 2-deoxy-2-[{sup 18}F]fluoro-D-glucose (FDG) has become the standard of care for the initial staging and subsequent treatment response assessment of many different malignancies. Despite this success, PET/CT is often supplemented by MRI to improve assessment of local tumor invasion and to facilitate detection of lesions in organs with high background FDG uptake. Consequently, PET/MRI has the potential to expand the clinical value of PET examinations by increasing reader certainty and reducing the need for subsequent imaging. This study evaluates the ability of FDG-PET/MRI to clarify findings initially deemed indeterminate on clinical FDG-PET/CT studies. A total of 190 oncology patients underwent whole-body PET/CT, immediately followed by PET/MRI utilizing the same FDG administration. Each PET/CT was interpreted by our institution's nuclear medicine service as a standard-of-care clinical examination. Review of these PET/CT reports identified 31 patients (16 %) with indeterminate findings. Two readers evaluated all 31 PET/CT studies, followed by the corresponding PET/MRI studies. A consensus was reached for each case, and changes in interpretation directly resulting from PET/MRI review were recorded. Interpretations were then correlated with follow-up imaging, pathology results, and other diagnostic studies. In 18 of 31 cases with indeterminate findings on PET/CT, PET/MRI resulted in a more definitive interpretation by facilitating the differentiation of infection/inflammation from malignancy (15/18), the accurate localization of FDG-avid lesions (2/18), and the characterization of incidental non-FDG-avid solid organ lesions (1/18). Explanations for improved reader certainty with PET/MRI included the superior soft tissue contrast of MRI and the ability to assess cellular density with diffusion-weighted imaging. The majority (12/18) of such cases had an appropriate standard of reference; in all 12 cases

  19. Indeterminate findings on oncologic PET/CT: What difference dose PET/MRI make?

    International Nuclear Information System (INIS)

    Fraum, Tyler J.; Fowler, Kathryn J.; McConathy, Jonathan; Dehdashti, Farokh

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) with 2-deoxy-2-["1"8F]fluoro-D-glucose (FDG) has become the standard of care for the initial staging and subsequent treatment response assessment of many different malignancies. Despite this success, PET/CT is often supplemented by MRI to improve assessment of local tumor invasion and to facilitate detection of lesions in organs with high background FDG uptake. Consequently, PET/MRI has the potential to expand the clinical value of PET examinations by increasing reader certainty and reducing the need for subsequent imaging. This study evaluates the ability of FDG-PET/MRI to clarify findings initially deemed indeterminate on clinical FDG-PET/CT studies. A total of 190 oncology patients underwent whole-body PET/CT, immediately followed by PET/MRI utilizing the same FDG administration. Each PET/CT was interpreted by our institution's nuclear medicine service as a standard-of-care clinical examination. Review of these PET/CT reports identified 31 patients (16 %) with indeterminate findings. Two readers evaluated all 31 PET/CT studies, followed by the corresponding PET/MRI studies. A consensus was reached for each case, and changes in interpretation directly resulting from PET/MRI review were recorded. Interpretations were then correlated with follow-up imaging, pathology results, and other diagnostic studies. In 18 of 31 cases with indeterminate findings on PET/CT, PET/MRI resulted in a more definitive interpretation by facilitating the differentiation of infection/inflammation from malignancy (15/18), the accurate localization of FDG-avid lesions (2/18), and the characterization of incidental non-FDG-avid solid organ lesions (1/18). Explanations for improved reader certainty with PET/MRI included the superior soft tissue contrast of MRI and the ability to assess cellular density with diffusion-weighted imaging. The majority (12/18) of such cases had an appropriate standard of reference; in all 12 cases, the

  20. jQC-PET, an ImageJ macro to analyse the quality control of a PET/CT

    International Nuclear Information System (INIS)

    Cortes-Rodicio, J.; Sanchez-Merino, G.; Garcia-Fidalgo, A.

    2015-01-01

    An ImageJ macro has been developed to facilitate the analysis of three PET/CT quality control procedures included in the documents from the National Electrical Manufacturers Association (NU2-2007) and the International Atomic Energy Agency (Pub-1393): image quality, uniformity and spatial resolution. In them, the generation of the regions of interest and the analysis are automatized. The results obtained with the software have been compared with those of the commercial software and the literature. The use of jQC-PET allows a standard analysis and the independence of the commercial software. (Author)

  1. Development of a single-ring OpenPET prototype

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Wakizaka, Hidekatsu; Nishikido, Fumihiko; Hirano, Yoshiyuki; Inadama, Naoko; Murayama, Hideo; Ito, Hiroshi; Yamaya, Taiga

    2013-11-21

    One of the challenging applications of PET is implementing it for in-beam PET, which is an in situ monitoring method for charged particle therapy. For this purpose, we have previously proposed an open-type PET scanner, OpenPET. The original OpenPET had a physically opened field-of-view (FOV) between two detector rings through which irradiation beams pass. This dual-ring OpenPET (DROP) had a wide axial FOV including the gap. This geometry was not necessarily the most efficient for application to in-beam PET in which only a limited FOV around the irradiation field is required. Therefore, we have proposed a new single-ring OpenPET (SROP) geometry which can provide an accessible and observable open space with higher sensitivity and a reduced number of detectors than the DROP. The proposed geometry was a cylinder shape with its ends cut at a slant, in which the shape of each cut end became an ellipse. In this work, we developed and evaluated a small prototype of the SROP geometry for proof-of-concept. The SROP prototype was designed with 2 ellipse-shaped detector rings of 16 depth-of-interaction (DOI) detectors each. The DOI detectors consisted of 1024 GSOZ scintillator crystals which were arranged in 4 layers of 16×16 arrays, coupled to a 64-channel FP-PMT. Each ellipse-shaped detector ring had a major axis of 281.6 mm and a minor axis of 207.5 mm. For the slant mode, the rings were placed at a 45-deg slant from the axial direction and for the non-slant mode (used as a reference) they were at 90 deg from the axial direction with no gap. The system sensitivity measured from a {sup 22}Na point source was 5.0% for the slant mode. The average spatial resolutions of major and minor axis directions were calculated as 3.8 mm FWHM and 4.9 mm FWHM, respectively for the slant mode. This difference resulted from the ellipsoidal ring geometry and the spatial resolution of the minor axis direction degraded by the parallax error. Comparison between the slant mode and the non

  2. A dual layer DOI GSO block detector for a small animal PET

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi

    2009-01-01

    For a high resolution animal positron emission tomography (PET), depth-of-interaction (DOI) is a useful method to improve both spatial resolution and sensitivity. Gd 2 SiO 5 (GSO) with different amounts of Ce can provide different decay times and is ideal for DOI detector using pulse shape analysis. Dual layer DOI GSO block detectors using different amounts of Ce were developed for a new animal PET. The DOI GSO block detector employed two types of GSOs; one with 1.5 mol% Ce concentration (decay time: 35 ns) and the other with 0.5 mol% (decay time: 60 ns). These two GSO types were optically coupled in the DOI direction. The sizes of single GSOs were 1.9 mmx1.9 mmx6 mm and 1.9 mmx1.9 mmx9 mm, for 1.5 and 0.5 mol%, respectively. These GSO were arranged by 11x37 matrix and optically coupled to three position sensitive photomultiplier tubes (PSPMTs), where the PSPMTs used were Hamamatsu R8520U-00-C12. Different lengths of reflectors were used between crystals to increase the useful field-of-view (FOV) of the PSPMT and to avoid the dead areas between PSPMTs. With this configuration, almost all islands in a 2-D position histogram corresponding to GSO cells could be separated. The width of the GSO block was 22 mm in the transaxial direction and 74 mm in axial direction with no gaps. Also, two types of GSO of different decay time could be separated using dual integration method for pulse shape analysis. These results indicate that developed block detectors might be useful for a high resolution and high sensitivity animal PET with dual layer DOI detection capability, with no gaps in transaxial or axial directions.

  3. 18F-FDG PET and PET/CT in Burkitt's lymphoma

    International Nuclear Information System (INIS)

    Karantanis, Dimitrios; Durski, Jolanta M.; Lowe, Val J.; Nathan, Mark A.; Mullan, Brian P.; Georgiou, Evangelos; Johnston, Patrick B.; Wiseman, Gregory A.

    2010-01-01

    Objective: To explore the value of 18 F fluorodeoxy-glucose (FDG) positron emission tomography (PET) in Burkitt's lymphoma. Methods: All Burkitt's lymphoma patients referred for FDG PET or FDG PET/computed tomography (CT) exams at our institution from June 2003 to June 2006 were included. Selected patients were followed and clinical information was reviewed retrospectively. Results from FDG PET-PET/CT, as blindly reviewed by a consensus of two experienced readers, were compared with the status of the disease as determined by other laboratory, clinical and imaging exams and clinical follow-up. FDG PET-PET/CT results were classified as true positive or negative and false positive or negative. The degree of FDG uptake in the positive lesions was semiquantified as maximum standard uptake value (SUVmax). Results: Fifty-seven FDG PET-PET/CT exams were done in 15 patients. Seven exams were done for initial staging, 8 during and 14 after the completion of therapy, and 28 for disease surveillance. For nodal disease FDG PET-PET/CT was true positive in 8, true negative in 47 and false positive in 2 exams (sensitivity 100%, specificity 96%). For extranodal disease FDG PET-PET/CT was true positive in 6, true negative in 48 and false positive in 3 exams (sensitivity 100%, specificity 94%). The mean SUVmax for the positive nodal lesions was 15.7 (range 6.9-21.7, median 18.5) and for extranodal lesions was 14.2 (range 6.2-24.3, median 12.4). Conclusions: FDG PET-PET/CT is sensitive for the detection of viable disease in Burkitt's lymphoma. Affected areas demonstrated high degree of uptake that was reversible upon successful implementation of treatment.

  4. Non-target activity detection by post-radioembolization yttrium-90 PET/CT: Image assessment technique and case examples

    Directory of Open Access Journals (Sweden)

    Yung Hsiang eKao

    2014-02-01

    Full Text Available High-resolution yttrium-90 (90Y imaging of post-radioembolization microsphere biodistribution may be achieved by conventional positron emission tomography with integrated computed tomography (PET/CT scanners that have time-of-flight capability. However, reconstructed 90Y PET/CT images have high background noise, making non-target activity detection technically challenging. This educational article describes our image assessment technique for non-target activity detection by 90Y PET/CT which qualitatively overcomes the problem of background noise. We present selected case examples of non-target activity in untargeted liver, stomach, gallbladder, chest wall and kidney, supported by angiography and 90Y bremsstrahlung single photon emission computed tomography with integrated computed tomography (SPECT/CT or technetium-99m macroaggregated albumin SPECT/CT.

  5. PET-MRI: the likely future of molecular imaging

    International Nuclear Information System (INIS)

    Chen Xiang; Zhao Jinhua; Zhao Jun

    2008-01-01

    PET-CT is a successful combination of functional and morphologic information, and it has already been shown to have great value both in clinics and in scientific research. MRI is another kind of morphologic imaging method, in contrast to CT, MRI can yield images with higher soft-tissue contrast and better spatial resolution. The combination of PET and MRI for simultaneous data acquisition should have far- reaching consequences for molecular imaging. This review will talk about the problems met in the development of PET-MRI and describe the progress to date and look forward to its potential application. (authors)

  6. 64Cu-PSMA-617 PET/CT Imaging of Prostate Adenocarcinoma: First In-Human Studies.

    Science.gov (United States)

    Grubmüller, Bernhard; Baum, Richard P; Capasso, Enza; Singh, Aviral; Ahmadi, Yasaman; Knoll, Peter; Floth, Andreas; Righi, Sergio; Zandieh, Shahin; Meleddu, Carlo; Shariat, Shahrokh F; Klingler, Hans Christoph; Mirzaei, Siroos

    2016-10-07

    The prostate-specific membrane antigen (PSMA) is a cell surface protein, which is overexpressed in nearly all cases of prostate cancer (PCa). PET imaging with 68 Ga-PSMA-HBED-CC has recently found widespread application in the diagnosis of recurrent PCa. In this study, the diagnostic potential of 64 Cu-labeled PSMA ligand (PSMA-617) PET in patients with PCa has been investigated. The study was conducted simultaneously at two nuclear medicine centers, Austria (Vienna, Center 1) and Germany (Bad Berka, Center 2). The patients (n = 29) included in this study were referred for PET (Center 1, 21 patients) or PET/CT (Center 2, 8 patients) imaging with either a high suspicion of recurrent disease or for possible surgical or PSMA radioligand therapy planning. PET images of the whole body were performed at 1 hour p.i. and additional images of the pelvis at 2 hours p.i. In 23 of 29 patients, at least one focus of pathological tracer uptake suspicious for primary disease in the prostate lobe or recurrent disease was detected. Among healthy organs, the salivary glands, kidneys, and liver showed the highest radiotracer uptake. Lesions suspicious for PCa were detected with excellent contrast as early as 1 hour p.i. with high detection rates even at low prostate-specific antigen (PSA) levels. The preliminary results of this study demonstrate the high potential of 64 Cu-PSMA ligand PET/CT imaging in patients with recurrent disease and in the primary staging of selected patients with progressive local disease. The acquired PET images showed an excellent resolution of the detected lesions with very high lesion-to- background contrast. Furthermore, the long half-life of 64 Cu allows distribution of the tracer to clinical PET centers that lack radiochemistry facilities for the preparation of 68 Ga-PSMA ligand (satellite concept).

  7. Evaluation of patient absorbed dose in a PET-CT test

    International Nuclear Information System (INIS)

    Guerra P, F.; Mourao F, A. P.; Santana, P. C.

    2017-10-01

    Images of PET-CT has important diagnostic applications, especially in oncology. This equipment allows overlapping of functional images obtained from the administration of radionuclides and anatomical, generated by X-rays. The PET-CT technique may generate higher doses in patients due to the fact that two diagnostic modalities are used in a single examination. A whole body CT scan is performed and in sequence, a capture of the signal generated by the photons emitted is done. In this study, the absorbed and effective doses generated by the CT scan and incorporated by the administration of the radionuclide were evaluated in 19 organs. To evaluate the CT dose, 32 radiochromic film strips were correctly positioned into the anthropomorphic male phantom. The CT protocol performed was whole-body scanning and a high-resolution lung scan. This protocol is currently used in most services. The calculation of the effective dose from the injected activity in the patient was performed using the ICRP 106 Biokinetic model (ICRP 106, 2008). The activity to be injected may vary according to the patients body mass and with the sensitivity of the detector. The mass of the simulator used is 73.5 kg, then the simulation with and injected activity of 244.76 MBq was used. It was observed that 87.4% of the effective dose in examination PET/CT comes from the CT scans, being 63.8% of the whole body scan and 23.6% of high resolution lung scan. Using activity of 0.09 mCi x kg 18 F-FDG radiopharmaceutical contributes only 12.6% of the final effective dose. As a conclusion, it was observed that the dose in patients submitted to the 18 F-FDG PET-CT examination is high, being of great value efforts for its reduction, such as the use of appropriate image acquisition techniques and promoting the application of the principle of optimization of practice. (Author)

  8. Evaluation of patient absorbed dose in a PET-CT test

    Energy Technology Data Exchange (ETDEWEB)

    Guerra P, F.; Mourao F, A. P. [Federal University of Minas Gerais, Department of Nuclear Engineering, Av. Antonio Carlos 6627, CEP 31270-901, Pampulha, Belo Horizonte, Minas Gerais (Brazil); Santana, P. C., E-mail: fgpaiva92@gmail.com [Federal University of Minas Gerais, Medical School, Av. Prof. Alfredo Balena 190, CEP 30123970, Santa Efigenia, Belo Horizonte, Minas Gerais (Brazil)

    2017-10-15

    Images of PET-CT has important diagnostic applications, especially in oncology. This equipment allows overlapping of functional images obtained from the administration of radionuclides and anatomical, generated by X-rays. The PET-CT technique may generate higher doses in patients due to the fact that two diagnostic modalities are used in a single examination. A whole body CT scan is performed and in sequence, a capture of the signal generated by the photons emitted is done. In this study, the absorbed and effective doses generated by the CT scan and incorporated by the administration of the radionuclide were evaluated in 19 organs. To evaluate the CT dose, 32 radiochromic film strips were correctly positioned into the anthropomorphic male phantom. The CT protocol performed was whole-body scanning and a high-resolution lung scan. This protocol is currently used in most services. The calculation of the effective dose from the injected activity in the patient was performed using the ICRP 106 Biokinetic model (ICRP 106, 2008). The activity to be injected may vary according to the patients body mass and with the sensitivity of the detector. The mass of the simulator used is 73.5 kg, then the simulation with and injected activity of 244.76 MBq was used. It was observed that 87.4% of the effective dose in examination PET/CT comes from the CT scans, being 63.8% of the whole body scan and 23.6% of high resolution lung scan. Using activity of 0.09 mCi x kg {sup 18}F-FDG radiopharmaceutical contributes only 12.6% of the final effective dose. As a conclusion, it was observed that the dose in patients submitted to the {sup 18}F-FDG PET-CT examination is high, being of great value efforts for its reduction, such as the use of appropriate image acquisition techniques and promoting the application of the principle of optimization of practice. (Author)

  9. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  10. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  11. Anatomically guided voxel-based partial volume effect correction in brain PET : Impact of MRI segmentation

    NARCIS (Netherlands)

    Gutierrez, Daniel; Montandon, Marie-Louise; Assal, Frederic; Allaoua, Mohamed; Ratib, Osman; Loevblad, Karl-Olof; Zaidi, Habib

    2012-01-01

    Partial volume effect is still considered one of the main limitations in brain PET imaging given the limited spatial resolution of current generation PET scanners. The accuracy of anatomically guided partial volume effect correction (PVC) algorithms in brain PET is largely dependent on the

  12. Highly conductive and low cost Ni-PET flexible substrate for efficient dye-sensitized solar cells.

    Science.gov (United States)

    Su, Haijun; Zhang, Mingyang; Chang, Ya-Huei; Zhai, Peng; Hau, Nga Yu; Huang, Yu-Ting; Liu, Chang; Soh, Ai Kah; Feng, Shien-Ping

    2014-04-23

    The highly conductive and flexible nickel-polyethylene terephthalate (Ni-PET) substrate was prepared by a facile way including electrodeposition and hot-press transferring. The effectiveness was demonstrated in the counter electrode of dye-sensitized solar cells (DSSCs). The Ni film electrodeposition mechanism, microstructure, and DSSC performance for the Ni-PET flexible substrate were investigated. The uniform and continuous Ni film was first fabricated by electroplating metallic Ni on fluorine-doped tin oxide (FTO) and then intactly transferred onto PET via hot-pressing using Surlyn as the joint adhesive. The obtained flexible Ni-PET substrate shows low sheet resistance of 0.18Ω/□ and good chemical stability for the I(-)/I(3-) electrolyte. A high light-to-electric energy conversion efficiency of 7.89% was demonstrated in DSSCs system based on this flexible electrode substrate due to its high conductivity, which presents an improvement of 10.4% as compared with the general ITO-PEN flexible substrate. This method paves a facile and cost-effective way to manufacture various metals on a plastic nonconducive substrate beneficial for the devices toward flexible and rollable.

  13. Improving PET Quantification of Small Animal [68Ga]DOTA-Labeled PET/CT Studies by Using a CT-Based Positron Range Correction.

    Science.gov (United States)

    Cal-Gonzalez, Jacobo; Vaquero, Juan José; Herraiz, Joaquín L; Pérez-Liva, Mailyn; Soto-Montenegro, María Luisa; Peña-Zalbidea, Santiago; Desco, Manuel; Udías, José Manuel

    2018-01-19

    Image quality of positron emission tomography (PET) tracers that emits high-energy positrons, such as Ga-68, Rb-82, or I-124, is significantly affected by positron range (PR) effects. PR effects are especially important in small animal PET studies, since they can limit spatial resolution and quantitative accuracy of the images. Since generators accessibility has made Ga-68 tracers wide available, the aim of this study is to show how the quantitative results of [ 68 Ga]DOTA-labeled PET/X-ray computed tomography (CT) imaging of neuroendocrine tumors in mice can be improved using positron range correction (PRC). Eighteen scans in 12 mice were evaluated, with three different models of tumors: PC12, AR42J, and meningiomas. In addition, three different [ 68 Ga]DOTA-labeled radiotracers were used to evaluate the PRC with different tracer distributions: [ 68 Ga]DOTANOC, [ 68 Ga]DOTATOC, and [ 68 Ga]DOTATATE. Two PRC methods were evaluated: a tissue-dependent (TD-PRC) and a tissue-dependent spatially-variant correction (TDSV-PRC). Taking a region in the liver as reference, the tissue-to-liver ratio values for tumor tissue (TLR tumor ), lung (TLR lung ), and necrotic areas within the tumors (TLR necrotic ) and their respective relative variations (ΔTLR) were evaluated. All TLR values in the PRC images were significantly different (p DOTA-labeled PET/CT imaging of mice with neuroendocrine tumors, hence demonstrating that these techniques could also ameliorate the deleterious effect of the positron range in clinical PET imaging.

  14. Automatic delineation of brain regions on MRI and PET images from the pig.

    Science.gov (United States)

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M; Keller, Sune H; Andersen, Flemming L; Petersen, Ida N; Knudsen, Gitte M; Svarer, Claus

    2018-01-15

    The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer. MRI and [ 11 C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same space. We developed an automatic procedure for spatial normalization of the averaged PET template to new PET images and hereby facilitated transfer of the atlas regional parcellation. Evaluation of the automatic spatial normalization procedure found the median voxel displacement to be 0.22±0.08mm using the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [ 11 C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames. We here present an automatic procedure for accurate and reproducible spatial normalization and parcellation of pig PET images of any radiotracer with reasonable blood-brain barrier penetration. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems.

    Science.gov (United States)

    Jentzen, Walter; Weise, Reiner; Kupferschläger, Jürgen; Freudenberg, Lutz; Brandau, Wolfgang; Bares, Ronald; Burchert, Wolfgang; Bockisch, Andreas

    2008-03-01

    This study evaluated the absolute quantification of iodine-124 ((124)I) activity concentration with respect to the use of this isotope for dosimetry before therapies with (131)I or (131)I-labeled radiotherapeuticals. The recovery coefficients of positron emission tomography(/computed tomography) PET(/CT) systems using (124)I were determined using phantoms and then validated under typical conditions observed in differentiated thyroid cancer (DTC) patients. Transversal spatial resolution and recovery measurements with (124)I and with fluorine-18 ((18)F) as the reference were performed using isotope-containing line sources embedded in water and six isotope-containing spheres 9.7 to 37.0 mm in diameter placed in water-containing body and cylinder phantoms. The cylinder phantom spheres were filled with (18)F only. Measurements in two-dimensional (2D) and three-dimensional (3D) modes were performed using both stand-alone PET (EXACT HR(+)) and combined PET/CT (BIOGRAPH EMOTION DUO) systems. Recovery comparison measurements were additionally performed on a GE ADVANCE PET system using the cylinder phantom. The recovery coefficients were directly determined using the activity concentration of circular regions of interest divided by the prepared activity concentration determined by the dose calibrator. The recovery correction method was validated using three consecutive scans of the body phantom under our (124)I PET(/CT) protocol for DTC patients. Compared with that of (18)F, transversal spatial resolution of (124)I was slightly, but statistically significantly degraded (7.4 mm vs. 8.3 mm, P or =12.6 mm in diameter. Recovery correction is mandatory for (124)I PET quantification, even for large structures. To ensure accurate dosimetry, thorough absolute recovery measurements must be individually established for the particular PET scanner and radionuclide to be used.

  16. Timing Calibration for Time-of-Flight PET Using Positron-Emitting Isotopes and Annihilation Targets

    Science.gov (United States)

    Li, Xiaoli; Burr, Kent C.; Wang, Gin-Chung; Du, Huini; Gagnon, Daniel

    2016-06-01

    Adding time-of-flight (TOF) technology has been proven to improve image quality in positron emission tomography (PET). In order for TOF information to significantly reduce the statistical noise in reconstructed PET images, good timing resolution is needed across the scanner field of view (FOV). This work proposes an accurate, robust, and practical crystal-based timing calibration method using 18F - FDG positron-emitting sources together with a spatially separated annihilation target. We calibrated a prototype Toshiba TOF PET scanner using this method and then assessed its timing resolution at different locations in the scanner FOV.

  17. Imaging Microglial Activation in Untreated First-Episode Psychosis: A PET Study With [18F]FEPPA.

    Science.gov (United States)

    Hafizi, Sina; Tseng, Huai-Hsuan; Rao, Naren; Selvanathan, Thiviya; Kenk, Miran; Bazinet, Richard P; Suridjan, Ivonne; Wilson, Alan A; Meyer, Jeffrey H; Remington, Gary; Houle, Sylvain; Rusjan, Pablo M; Mizrahi, Romina

    2017-02-01

    Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [ 18 F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [ 18 F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (V T ) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [ 18 F]FEPPA V T , in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [ 18 F]FEPPA V T and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. The lack of significant differences in [ 18 F]FEPPA V T between groups suggests that microglial activation is not present in first-episode psychosis.

  18. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  19. FDG-PET status following chemoradiotherapy provides high management impact and powerful prognostic stratification in oesophageal cancer

    International Nuclear Information System (INIS)

    Duong, Cuong P.; Thomas, Robert J.S.; Hicks, Rodney J.; Drummond, Elizabeth; Weih, LeAnn; Leong, Trevor; Michael, Michael

    2006-01-01

    The purpose of this study was to evaluate the impact of FDG-PET following chemoradiotherapy (CRT) on treatment planning and survival in patients with oesophageal cancer (OC). Fifty-three consecutive OC patients had a post-treatment PET scan to evaluate tumour response to CRT prior to possible surgery. Baseline pre-CRT PET was performed in 33 patients. Prospectively recorded post-CRT management plans were compared with post-PET treatment. High impact was defined as a change in treatment intent or modality. Survival was analysed using the Kaplan-Meier product limit method and Cox proportional hazards regression model. After completion of CRT, 23/53 patients (43%) achieved complete metabolic response (CMR), as compared with only four (8%) with complete response on computed tomography. High PET impact was observed in 19 patients (36%). CMR was strongly predictive of survival (p<0.008) on multivariate analysis. CMR patients in whom resection was not performed had comparable survival to those (CMR and non-CMR) who underwent resection. The use of post-treatment FDG-PET for assessment of tumour response after CRT changed the clinical management of more than one-third of OC patients. CMR status as assessed by PET powerfully stratified prognosis. Even in the absence of a baseline study, normalisation of uptake at all sites of known tumoral involvement carries a good medium-term prognosis. (orig.)

  20. Evaluation and optimization of the High Resolution Research Tomograph (HRRT)

    International Nuclear Information System (INIS)

    Knoess, C.

    2004-01-01

    Positron Emission Tomography (PET) is an imaging technique used in medicine to determine qualitative and quantitative metabolic parameters in vivo. The High Resolution Research Tomograph (HRRT) is a new high resolution tomograph that was designed for brain studies (312 mm transaxial field-of-view (FOV), 252 mm axial FOV). The detector blocks are arranged in a quadrant sharing design and consist of two crystal layers with dimensions of 2.1 mm x 2.1 mm x 7.5 mm. The main detector material is the newly developed scintillator lutetium oxyorthosilicate (LSO). Events from the different crystal layers are distinguished by Pulse Shape Discrimination (PSD) to gain Depth of Interaction (DOI) information. This will improve the spatial resolution, especially at the edges of the FOV. A prototype of the tomograph was installed at the Max-Planck Institute for Neurological Research in Cologne, Germany in 1999 and was evaluated with respect to spatial resolution, sensitivity, scatter fraction, and count rate behavior. These performance measurements showed that this prototype provided a spatial resolution of around 2.5 mm in a volume big enough to contain the human brain. A comparison with a single layer HRRT prototype showed a 10% worsening of the resolution, despite the fact that DOI was used. Without DOI, the resolution decreased considerably. The sensitivity, as measured with a 22 Na point source, was 46.5 cps/kBq for an energy window of 350-650 keV and 37.9 cps/kBq for an energy window of 400-650 keV, while the scatter fractions were 56% for 350-650 keV and 51% for 400-650 keV, respectively. A daily quality check was developed and implemented that uses the uniform, natural radioactive background of the scintillator material LSO. In 2001, the manufacturer decided to build a series of additional HRRT scanners to try to improve the design (detector electronics, transmission source design, and shielding against out-of-FOV activity) and to eliminate problems (difficult detector

  1. easyPET: a novel concept for an affordable tomographic system

    International Nuclear Information System (INIS)

    Arosio, V.; Caccia, M.; Castro, I.F.; Correia, P.M.M.; Mattone, C.; Moutinho, L.M.; Santoro, R.; Silva, A.L.M.; Veloso, J.F.C.A.

    2017-01-01

    The easyPET concept described here aims to reduce complexity and cost of preclinical Positron Emission Tomography (PET) scanners. The system, original in its principle and realisation, is based on a single pair of detectors and a rotating mechanism with two degrees of freedom reproducing the functionalities of an entire PET ring. The characterisation of a 2D imaging prototype, realised to assess the easyPET concept, is presented in this paper. In particular, a spatial resolution of 1±0.1 mm and a sensitivity of 0.1% with an energy threshold of 80 keV have been measured. These encouraging results, compared to the performances of commercial preclinical PET, motivate the feasibility study of a 3D system.

  2. easyPET: a novel concept for an affordable tomographic system

    Energy Technology Data Exchange (ETDEWEB)

    Arosio, V., E-mail: varosio@studenti.uninsubria.it [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell' Insubria, Via Valleggio 11, 22100 Como (Italy); Caccia, M. [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell' Insubria, Via Valleggio 11, 22100 Como (Italy); Castro, I.F.; Correia, P.M.M. [i3n, Departamento de Fisica, Univerdisade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Mattone, C. [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell' Insubria, Via Valleggio 11, 22100 Como (Italy); Moutinho, L.M. [i3n, Departamento de Fisica, Univerdisade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Santoro, R. [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell' Insubria, Via Valleggio 11, 22100 Como (Italy); Silva, A.L.M.; Veloso, J.F.C.A. [i3n, Departamento de Fisica, Univerdisade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2017-02-11

    The easyPET concept described here aims to reduce complexity and cost of preclinical Positron Emission Tomography (PET) scanners. The system, original in its principle and realisation, is based on a single pair of detectors and a rotating mechanism with two degrees of freedom reproducing the functionalities of an entire PET ring. The characterisation of a 2D imaging prototype, realised to assess the easyPET concept, is presented in this paper. In particular, a spatial resolution of 1±0.1 mm and a sensitivity of 0.1% with an energy threshold of 80 keV have been measured. These encouraging results, compared to the performances of commercial preclinical PET, motivate the feasibility study of a 3D system.

  3. Fever of unknown origin: A value of {sup 18}F-FDG-PET/CT with integrated full diagnostic isotropic CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiri [Department of Nuclear Medicine, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Radiodiagnostic Clinic, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic)], E-mail: ferda@fnplzen.cz; Ferdova, Eva [Department of Nuclear Medicine, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Radiodiagnostic Clinic, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Zahlava, Jan [Department of Nuclear Medicine, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Matejovic, Martin [Ist Internal Department, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic); Kreuzberg, Boris [Radiodiagnostic Clinic, Charles University Medical School and Teaching Hospital, Plzen (Czech Republic)

    2010-03-15

    Aim: The aim of presented work is to evaluate the clinical value of {sup 18}F-FDG-PET/CT in patients with fever of unknown origin (FUO) and to compare PET/CT finding with the results of the following investigation. Material and method: 48 patients (24 men, 24 women, mean age 57.6 years with range 15-89 years) underwent {sup 18}F-FDG-PET/CT due to the fever of unknown origin. All examinations were performed using complex PET/CT protocol combined PET and whole diagnostic contrast enhanced CT with sub-millimeter spatial resolution (except patient with history of iodine hypersensitivity or sever renal impairment). CT data contained diagnostic images reconstructed with soft tissue and high-resolution algorithm. PET/CT finding were compared with results of biopsies, immunology, microbiology or autopsy. Results: The cause of FUO was explained according to the PET/CT findings and followed investigations in 44 of 48 cases-18 cases of microbial infections, nine cases of autoimmune inflammations, four cases of non-infectious granulomatous diseases, eight cases of malignancies and five cases of proved immunity disorders were found. In 46 cases, the PET/CT interpretation was correct. Only in one case, the cause was overlooked and the uptake in atherosclerotic changes of arteries was misinterpreted as vasculitis in the other. The reached sensitivity was 97% (43/44), and specificity 75% (3/4) respectively. Conclusion: In patients with fever of unknown origin, {sup 18}F-FDG-PET/CT might enable the detection of its cause.

  4. Evaluation of the PET component of simultaneous [18F]choline PET/MRI in prostate cancer: comparison with [18F]choline PET/CT

    International Nuclear Information System (INIS)

    Wetter, Axel; Lipponer, Christine; Nensa, Felix; Altenbernd, Jens-Christian; Schlosser, Thomas; Lauenstein, Thomas; Heusch, Philipp; Ruebben, Herbert; Bockisch, Andreas; Poeppel, Thorsten; Nagarajah, James

    2014-01-01

    The aim of this study was to evaluate the positron emission tomography (PET) component of [ 18 F]choline PET/MRI and compare it with the PET component of [ 18 F]choline PET/CT in patients with histologically proven prostate cancer and suspected recurrent prostate cancer. Thirty-six patients were examined with simultaneous [ 18 F]choline PET/MRI following combined [ 18 F]choline PET/CT. Fifty-eight PET-positive lesions in PET/CT and PET/MRI were evaluated by measuring the maximum and mean standardized uptake values (SUV max and SUV mean ) using volume of interest (VOI) analysis. A scoring system was applied to determine the quality of the PET images of both PET/CT and PET/MRI. Agreement between PET/CT and PET/MRI regarding SUV max and SUV mean was tested using Pearson's product-moment correlation and Bland-Altman analysis. All PET-positive lesions that were visible on PET/CT were also detectable on PET/MRI. The quality of the PET images was comparable in both groups. Median SUV max and SUV mean of all lesions were significantly lower in PET/MRI than in PET/CT (5.2 vs 6.1, p max of PET/CT and PET/MRI (R = 0.86, p mean of PET/CT and PET/MRI (R = 0.81, p max of PET/CT vs PET/MRI and -1.12 to +2.23 between SUV mean of PET/CT vs PET/MRI. PET image quality of PET/MRI was comparable to that of PET/CT. A highly significant correlation between SUV max and SUV mean was found. Both SUV max and SUV mean were significantly lower in [ 18 F]choline PET/MRI than in [ 18 F]choline PET/CT. Differences of SUV max and SUV mean might be caused by different techniques of attenuation correction. Furthermore, differences in biodistribution and biokinetics of [ 18 F]choline between the subsequent examinations and in the respective organ systems have to be taken into account. (orig.)

  5. Preliminary results of a prototype C-shaped PET designed for an in-beam PET system

    International Nuclear Information System (INIS)

    Kim, Hyun-Il; Chung, Yong Hyun; Lee, Kisung; Kim, Kyeong Min; Kim, Yongkwon; Joung, Jinhun

    2016-01-01

    Positron emission tomography (PET) can be utilized in particle beam therapy to verify the dose distribution of the target volume as well as the accuracy of the treatment. We present an in-beam PET scanner that can be integrated into a particle beam therapy system. The proposed PET scanner consisted of 14 detector modules arranged in a C-shape to avoid blockage of the particle beam line by the detector modules. Each detector module was composed of a 9×9 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals optically coupled to four 29-mm-diameter PMTs using the photomultiplier-quadrant-sharing (PQS) technique. In this study, a Geant4 Application for Tomographic Emission (GATE) simulation study was conducted to design a C-shaped PET scanner and then experimental evaluation of the proposed design was performed. The spatial resolution and sensitivity were measured according to NEMA NU2-2007 standards and were 6.1 mm and 5.61 cps/kBq, respectively, which is in good agreement with our simulation, with an error rate of 12.0%. Taken together, our results demonstrate the feasibility of the proposed C-shaped in-beam PET system, which we expect will be useful for measuring dose distribution in particle therapy.

  6. Prevalence of Neoplastic Diseases in Pet Birds Referred for Surgical Procedures

    Directory of Open Access Journals (Sweden)

    Patrícia F. Castro

    2016-01-01

    Full Text Available Neoplastic disease is common in pet birds, particularly in psittacines, and treatment should be primarily aimed at tumor eradication. Nineteen cases of pet birds submitted to diagnostic and/or therapeutic surgical procedures due to neoplastic disease characterized by the presence of visible masses were retrospectively analyzed; affected species, types of neoplasms and respective locations, and outcomes of surgical procedures were determined. All birds undergoing surgery belonged to the order Psittaciformes; the Blue-fronted parrot (Amazona aestiva was the prevalent species. Lipoma was the most frequent neoplasm in the sample studied. Most neoplasms affected the integumentary system, particularly the pericloacal area. Tumor resection was the most common surgical procedure performed, with high resolution and low recurrence rates.

  7. Prevalence of Neoplastic Diseases in Pet Birds Referred for Surgical Procedures

    Science.gov (United States)

    Castro, Patrícia F.; Fantoni, Denise T.; Miranda, Bruna C.; Matera, Julia M.

    2016-01-01

    Neoplastic disease is common in pet birds, particularly in psittacines, and treatment should be primarily aimed at tumor eradication. Nineteen cases of pet birds submitted to diagnostic and/or therapeutic surgical procedures due to neoplastic disease characterized by the presence of visible masses were retrospectively analyzed; affected species, types of neoplasms and respective locations, and outcomes of surgical procedures were determined. All birds undergoing surgery belonged to the order Psittaciformes; the Blue-fronted parrot (Amazona aestiva) was the prevalent species. Lipoma was the most frequent neoplasm in the sample studied. Most neoplasms affected the integumentary system, particularly the pericloacal area. Tumor resection was the most common surgical procedure performed, with high resolution and low recurrence rates. PMID:26981315

  8. Evaluation of New Inorganic Scintillators for Application in a Prototype Small Animal PET Scanner

    CERN Document Server

    Kuntner, C

    2003-01-01

    In the study of new pharmaceuticals as well as brain and genetic research, Positron Emission Tomography (PET) is a useful method. It has also recently entered the clinical domain in cardiology and particularly in oncology. Small animals such as mice, are often used to validate sophisticated models of human disease. High spatial resolution PET instrumentation is therefore necessary due to the reduced dimensions of the organs. Inorganic scintillators are employed in most of the diagnostic imaging devices. The ultimate performance of the PET scanner is tightly bound to the scintillation properties of the crystals. In the last years there has been an effort to develop new scintillating materials characterized by high light output, high detection efficiency and fast decay time. The most studied systems are mainly Ce3+-doped crystals such as LSO:Ce, YAP:Ce, LuAP:Ce, and recently also mixed Lux(RE3+)1-xAlO3:Ce crystals. These crystals are very attractive for medical application because of their high density (with th...

  9. Evaluating the purity of a (57)Co flood source by PET.

    Science.gov (United States)

    DiFilippo, Frank P

    2014-11-01

    Flood sources of (57)Co are commonly used for quality control of gamma cameras. Flood uniformity may be affected by the contaminants (56)Co and (58)Co, which emit higher energy photons. Although vendors specify a maximum combined (56)Co and (58)Co activity, a convenient test for flood source purity that is feasible in a clinical environment would be desirable. Both (56)Co and (58)Co emit positrons with branching 19.6% and 14.9%, respectively. As is known from (90)Y imaging, a positron emission tomography (PET) scanner is capable of quantitatively imaging very weak positron emission in a high single-photon background. To evaluate this approach, two (57)Co flood sources were scanned with a clinical PET/CT multiple times over a period of months. The (56)Co and (58)Co activity was clearly visible in the reconstructed PET images. Total impurity activity was quantified from the PET images after background subtraction of prompt gamma coincidences. Time-of-flight PET reconstruction was highly beneficial for accurate image quantification. Repeated measurements of the positron-emitting impurities showed excellent agreement with an exponential decay model. For both flood sources studied, the fit parameters indicated a zero intercept and a decay half-life consistent with a mixture of (56)Co and (58)Co. The total impurity activity at the reference date was estimated to be 0.06% and 0.07% for the two sources, which was consistent with the vendor's specification of <0.12%. The robustness of the repeated measurements and a thorough analysis of the detector corrections and physics suggest that the accuracy is acceptable and that the technique is feasible. Further work is needed to validate the accuracy of this technique with a calibrated high resolution gamma spectrometer as a gold standard, which was not available for this study, and for other PET detector models.

  10. TU-H-CAMPUS-IeP3-01: Simultaneous PET Restoration and PET/CT Co-Segmentation Using a Variational Method

    International Nuclear Information System (INIS)

    Li, L; Tan, S; Lu, W

    2016-01-01

    Purpose: PET images are usually blurred due to the finite spatial resolution, while CT images suffer from low contrast. Segment a tumor from either a single PET or CT image is thus challenging. To make full use of the complementary information between PET and CT, we propose a novel variational method for simultaneous PET image restoration and PET/CT images co-segmentation. Methods: The proposed model was constructed based on the Γ-convergence approximation of Mumford-Shah (MS) segmentation model for PET/CT co-segmentation. Moreover, a PET de-blur process was integrated into the MS model to improve the segmentation accuracy. An interaction edge constraint term over the two modalities were specially designed to share the complementary information. The energy functional was iteratively optimized using an alternate minimization (AM) algorithm. The performance of the proposed method was validated on ten lung cancer cases and five esophageal cancer cases. The ground truth were manually delineated by an experienced radiation oncologist using the complementary visual features of PET and CT. The segmentation accuracy was evaluated by Dice similarity index (DSI) and volume error (VE). Results: The proposed method achieved an expected restoration result for PET image and satisfactory segmentation results for both PET and CT images. For lung cancer dataset, the average DSI (0.72) increased by 0.17 and 0.40 than single PET and CT segmentation. For esophageal cancer dataset, the average DSI (0.85) increased by 0.07 and 0.43 than single PET and CT segmentation. Conclusion: The proposed method took full advantage of the complementary information from PET and CT images. This work was supported in part by the National Cancer Institute Grants R01CA172638. Shan Tan and Laquan Li were supported in part by the National Natural Science Foundation of China, under Grant Nos. 60971112 and 61375018.

  11. Characterization studies of Silicon Photomultipliers and crystals matrices for a novel time of flight PET detector

    CERN Document Server

    Auffray, Etiennette; Cortinovis, Daniele; Doroud, Katayoun; Garutti, Erika; Lecoq, Paul; Liu, Zheng; Martinez, Rosana; Paganoni, Marco; Pizzichemi, Marco; Silenzi, Alessandro; Xu, Chen; Zvolský, Milan

    2015-01-01

    This paper describes the characterization of crystal matrices and silicon photomultiplier arrays for a novel Positron Emission Tomography (PET) detector, namely the external plate of the EndoTOFPET-US system. The EndoTOFPET-US collaboration aims to integrate Time-Of-Flight PET with ultrasound endoscopy in a novel multimodal device, capable to support the development of new biomarkers for prostate and pancreatic tumors. The detector consists in two parts: a PET head mounted on an ultrasound probe and an external PET plate. The challenging goal of 1 mm spatial resolution for the PET image requires a detector with small crystal size, and therefore high channel density: 4096 LYSO crystals individually readout by Silicon Photomultipliers (SiPM) make up the external plate. The quality and properties of these components must be assessed before the assembly. The dark count rate, gain, breakdown voltage and correlated noise of the SiPMs are measured, while the LYSO crystals are evaluated in terms of light yield and en...

  12. Positron range in PET imaging: non-conventional isotopes

    International Nuclear Information System (INIS)

    Jødal, L; Le Loirec, C; Champion, C

    2014-01-01

    In addition to conventional short-lived radionuclides, longer-lived isotopes are becoming increasingly important to positron emission tomography (PET). The longer half-life both allows for circumvention of the in-house production of radionuclides, and expands the spectrum of physiological processes amenable to PET imaging, including processes with prohibitively slow kinetics for investigation with short-lived radiotracers. However, many of these radionuclides emit ‘high-energy’ positrons and gamma rays which affect the spatial resolution and quantitative accuracy of PET images. The objective of the present work is to investigate the positron range distribution for some of these long-lived isotopes. Based on existing Monte Carlo simulations of positron interactions in water, the probability distribution of the line of response displacement have been empirically described by means of analytic displacement functions. Relevant distributions have been derived for the isotopes 22 Na, 52 Mn, 89 Zr, 45 Ti, 51 Mn, 94m Tc, 52m Mn, 38 K, 64 Cu, 86 Y, 124 I, and 120 I. It was found that the distribution functions previously found for a series of conventional isotopes (Jødal et al 2012 Phys. Med. Bio. 57 3931–43), were also applicable to these non-conventional isotopes, except that for 120 I, 124 I, 89 Zr, 52 Mn, and 64 Cu, parameters in the formulae were less well predicted by mean positron energy alone. Both conventional and non-conventional range distributions can be described by relatively simple analytic expressions. The results will be applicable to image-reconstruction software to improve the resolution. (paper)

  13. Motion correction options in PET/MRI.

    Science.gov (United States)

    Catana, Ciprian

    2015-05-01

    Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Performance simulation of a MRPC-based PET imaging system

    Science.gov (United States)

    Roy, A.; Banerjee, A.; Biswas, S.; Chattopadhyay, S.; Das, G.; Saha, S.

    2014-10-01

    The less expensive and high resolution Multi-gap Resistive Plate Chamber (MRPC) opens up a new possibility to find an efficient alternative detector for the Time of Flight (TOF) based Positron Emission Tomography, where the sensitivity of the system depends largely on the time resolution of the detector. In a layered structure, suitable converters can be used to increase the photon detection efficiency. In this work, we perform a detailed GEANT4 simulation to optimize the converter thickness towards improving the efficiency of photon conversion. A Monte Carlo based procedure has been developed to simulate the time resolution of the MRPC-based system, making it possible to simulate its response for PET imaging application. The results of the test of a six-gap MRPC, operating in avalanche mode, with 22Na source have been discussed.

  15. Measurement of cardiovascular function using a novel view-sharing PET reconstruction method and tracer kinetic analysis

    Directory of Open Access Journals (Sweden)

    Paul R. Territo

    2016-10-01

    Full Text Available Abstract Recent advancements in PET instrumentation have made the non-invasive assessment of cardiovascular function in small animals a reality. The majority of small animal PET systems use stationary detector gantries, thus affording high temporal resolution imaging of cardiac function. Systems designed to maximize spatial resolution and detection sensitivity employing rotating gantry designs are suboptimal when high temporal resolution imaging is needed. To overcome this limitation, the current work developed a novel view-sharing data analysis scheme suitable for dynamic cardiac PET imaging using 18F-NaF as the tracer and tracer kinetic model analysis. This scheme was tested in a rat model of cardiovascular function where the relationship between direct transonic flow measures of cardiac output were highly correlated (f(x = 1.0216x − 24.233, R = 0.9158, p < 0.001 with the new model. Similarly, derived measures of stroke volume were also highly correlated (f(x = 0.9655x − 0.0428, R = 0.9453, p < 0.001 with the current approach. Administration of xylazine caused a statistically significant increase in stroke volume (0.32 ± 0.07 ml, p = 0.003, n = 4 and a significant decrease in both heart rate (−155 ± 7.1 beats/min, p < 0.001, n = 4 and cardiac output (−75.9 ± 23.0 ml/kg min, p = 0.01, n = 4. These findings suggest that the new sinogram binning and kinetic modeling methods produce reliable cardiac function measures suitable for longitudinal monitoring of cardiovascular function.

  16. The Road to the Common PET/CT Detector

    Science.gov (United States)

    Nassalski, Antoni; Moszynski, Marek; Szczesniak, Tomasz; Wolski, Dariusz; Batsch, Tadeusz

    2007-10-01

    Growing interest in the development of dual modality positron emission/X-rays tomography (PET/CT) systems prompts researchers to face a new challenge: to acquire both the anatomical and functional information in the same measurement, simultaneously using the same detection system and electronics. The aim of this work was to study a detector consisting of LaBr3, LSO or LYSO pixel crystals coupled to an avalanche photodiode (APD). The measurements covered tests of the detectors in PET and CT modes, respectively. The measurements included the determination of light output, energy resolution, the non-proportionality of the light yield and the time resolution for 511 keV annihilation quanta; analysis also included characterizing the PET detector, and determining the dependence of counting rate versus mean current of the APD in the X-ray detection. In the present experiment, the use of counting and current modes in the CT detection increases the dynamic range of the measured dose of X-rays by a factor of 20, compared to the counting mode alone.

  17. Use of scanner characteristics in iterative image reconstruction for high-resolution positron emission tomography studies of small animals

    Energy Technology Data Exchange (ETDEWEB)

    Brix, G. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Doll, J. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Bellemann, M.E. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Trojan, H. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Haberkorn, U. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schmidlin, P. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Ostertag, H. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    1997-07-01

    The purpose of this work was to improve of the spatial resolution of a whole-body PET system for experimental studies of small animals by incorporation of scanner characteristics into the process of iterative image reconstruction. The image-forming characteristics of the PET camera were characterized by a spatially variant line-spread function (LSF), which was determined from 49 activated copper-64 line sources positioned over a field of view (FOV) of 21.0 cm. During the course of iterative image reconstruction, the forward projection of the estimated image was blurred with the LSF at each iteration step before the estimated projections were compared with the measured projections. Moreover, imaging studies of a rat and two nude mice were performed to evaluate the imaging properties of our approach in vivo. The spatial resolution of the scanner perpendicular to the direction of projection could be approximated by a one-dimensional Gaussian-shaped LSF with a full-width at half-maximum increasing from 6.5 mm at the centre to 6.7 mm at a radial distance of 10.5 cm. The incorporation of this blurring kernel into the iteration formula resulted in a significantly improved spatial resolution of about 3.9 mm over the examined FOV. As demonstrated by the phantom and the animal experiments, the high-resolution algorithm not only led to a better contrast resolution in the reconstructed emission scans but also improved the accuracy for quantitating activity concentrations in small tissue structures without leading to an amplification of image noise or image mottle. The presented data-handling strategy incorporates the image restoration step directly into the process of algebraic image reconstruction and obviates the need for ill-conditioned ``deconvolution`` procedures to be performed on the projections or on the reconstructed image. In our experience, the proposed algorithm is of special interest in experimental studies of small animals. (orig./AJ). With 9 figs.

  18. Use of scanner characteristics in iterative image reconstruction for high-resolution positron emission tomography studies of small animals

    International Nuclear Information System (INIS)

    Brix, G.; Doll, J.; Bellemann, M.E.; Trojan, H.; Haberkorn, U.; Schmidlin, P.; Ostertag, H.

    1997-01-01

    The purpose of this work was to improve of the spatial resolution of a whole-body PET system for experimental studies of small animals by incorporation of scanner characteristics into the process of iterative image reconstruction. The image-forming characteristics of the PET camera were characterized by a spatially variant line-spread function (LSF), which was determined from 49 activated copper-64 line sources positioned over a field of view (FOV) of 21.0 cm. During the course of iterative image reconstruction, the forward projection of the estimated image was blurred with the LSF at each iteration step before the estimated projections were compared with the measured projections. Moreover, imaging studies of a rat and two nude mice were performed to evaluate the imaging properties of our approach in vivo. The spatial resolution of the scanner perpendicular to the direction of projection could be approximated by a one-dimensional Gaussian-shaped LSF with a full-width at half-maximum increasing from 6.5 mm at the centre to 6.7 mm at a radial distance of 10.5 cm. The incorporation of this blurring kernel into the iteration formula resulted in a significantly improved spatial resolution of about 3.9 mm over the examined FOV. As demonstrated by the phantom and the animal experiments, the high-resolution algorithm not only led to a better contrast resolution in the reconstructed emission scans but also improved the accuracy for quantitating activity concentrations in small tissue structures without leading to an amplification of image noise or image mottle. The presented data-handling strategy incorporates the image restoration step directly into the process of algebraic image reconstruction and obviates the need for ill-conditioned ''deconvolution'' procedures to be performed on the projections or on the reconstructed image. In our experience, the proposed algorithm is of special interest in experimental studies of small animals. (orig./AJ). With 9 figs

  19. Imaging system models for small-bore DOI-PET scanners

    International Nuclear Information System (INIS)

    Takahashi, Hisashi; Kobayashi, Tetsuya; Yamaya, Taiga; Murayama, Hideo; Kitamura, Keishi; Hasegawa, Tomoyuki; Suga, Mikio

    2006-01-01

    Depth-of-interaction (DOI) information, which improves resolution uniformity in the field of view (FOV), is expected to lead to high-sensitivity PET scanners with small-bore detector rings. We are developing small-bore PET scanners with DOI detectors arranged in hexagonal or overlapped tetragonal patterns for small animal imaging or mammography. It is necessary to optimize the imaging system model because these scanners exhibit irregular detector sampling. In this work, we compared two imaging system models: (a) a parallel sub-LOR model in which the detector response functions (DRFs) are assumed to be uniform along the line of responses (LORs) and (b) a sub-crystal model in which each crystal is divided into a set of smaller volumes. These two models were applied to the overlapped tetragonal scanner (FOV 38.1 mm in diameter) and the hexagonal scanner (FOV 85.2 mm in diameter) simulated by GATE. We showed that the resolution non-uniformity of system model (b) was improved by 40% compared with that of system model (a) in the overlapped tetragonal scanner and that the resolution non-uniformity of system model (a) was improved by 18% compared with that of system model (b) in the hexagonal scanner. These results indicate that system model (b) should be applied to the overlapped tetragonal scanner and system model (a) should be applied to the hexagonal scanner. (author)

  20. Neuronal pathology in deep grey matter structures: a multimodal imaging analysis combining PET and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Bosque-Freeman, L.; Leroy, C.; Galanaud, D.; Sureau, F.; Assouad, R.; Tourbah, A.; Papeix, C.; Comtat, C.; Trebossen, R.; Lubetzki, C.; Delforge, J.; Bottlaender, M.; Stankoff, B. [Serv. Hosp. Frederic Joliot, Orsay (France)

    2009-07-01

    Objective: To assess neuronal damage in deep gray matter structures by positron emission tomography (PET) using [{sup 11}C]-flumazenil (FMZ), a specific central benzodiazepine receptor antagonist, and [{sup 18}F]-fluorodeoxyglucose (FDG), which reflects neuronal metabolism. To compare results obtained by PET and those with multimodal magnetic resonance imaging (MRI). Background: It is now accepted that neuronal injury plays a crucial role in the occurrence and progression of neurological disability in multiple sclerosis (MS). To date, available MRI techniques do not specifically assess neuronal damage, but early abnormalities, such as iron deposition or atrophy, have been described in deep gray matter structures. Whether those MRI modifications correspond to neuronal damage remains to be further investigated. Materials and methods: Nine healthy volunteers were compared to 10 progressive and 9 relapsing remitting (RR) MS patients. Each subject performed two PET examinations with [{sup 11}C]-FMZ and [{sup 18}F]-FDG, on a high resolution research tomograph dedicated to brain imaging (Siemens Medical Solution, spatial resolution of 2.5 mm). Deep gray matter regions were manually segmented on T1-weighted MR images with the mutual information algorithm (www.brainvisa.info), and co-registered with PET images. A multimodal MRI including T1 pre and post gadolinium, T2-proton density sequences, magnetization transfer, diffusion tensor, and protonic spectroscopy was also performed for each subject. Results: On PET with [{sup 11}C]-FMZ, there was a pronounced decrease in receptor density for RR patients in all deep gray matter structures investigated, whereas the density was unchanged or even increased in the same regions for progressive patients. Whether the different patterns between RR and progressive patients reflect distinct pathogenic mechanisms is currently investigated by comparing PET and multimodal MRI results. Conclusion: Combination of PET and multimodal MR imaging

  1. Fluorine-18 NaF PET imaging of child abuse

    Energy Technology Data Exchange (ETDEWEB)

    Drubach, Laura A. [Children' s Hospital Boston and Harvard Medical School, Department of Radiology, Division of Nuclear Medicine/PET, Boston, MA (United States); Sapp, Mark.V. [School of Osteopathic Medicine, Child Abuse Research Education and Services (CARES) Institute University of Medicine and Dentistry of New Jersey, New Jersey (United States); Laffin, Stephen [Children' s Hospital Boston, Department of Radiology, Division of Nuclear Medicine/PET, Boston, MA (United States); Kleinman, Paul K. [Children' s Hospital Boston and Harvard Medical School, Department of Radiology, Division of Musculoskeletal Imaging, Boston, MA (United States)

    2008-07-15

    We describe the use of {sup 18}F-NaF positron emission tomography (PET) whole-body imaging for the evaluation of skeletal trauma in a case of suspected child abuse. To our knowledge, 18F NaF PET has not been used in the past for the evaluation of child abuse. In our patient, this technique detected all sites of trauma shown by initial and follow-up skeletal surveys, including bilateral metaphyseal fractures of the proximal humeri. Fluorine-18 NaF PET has potential advantage over Tc-99m-labeled methylene diphosphonate (MDP) based upon superior image contrast and spatial resolution. (orig.)

  2. Fluorine-18 NaF PET imaging of child abuse

    International Nuclear Information System (INIS)

    Drubach, Laura A.; Sapp, Mark V.; Laffin, Stephen; Kleinman, Paul K.

    2008-01-01

    We describe the use of 18 F-NaF positron emission tomography (PET) whole-body imaging for the evaluation of skeletal trauma in a case of suspected child abuse. To our knowledge, 18F NaF PET has not been used in the past for the evaluation of child abuse. In our patient, this technique detected all sites of trauma shown by initial and follow-up skeletal surveys, including bilateral metaphyseal fractures of the proximal humeri. Fluorine-18 NaF PET has potential advantage over Tc-99m-labeled methylene diphosphonate (MDP) based upon superior image contrast and spatial resolution. (orig.)

  3. Demonstration of an Axial PET concept for brain and small animal imaging

    CERN Document Server

    Beltrame, P; Clinthorne, N; Meddi, F; Kagan, H; Braem, A; Pauss, F; Djambazov, L; Lustermann, W; Weilhammer, P; Nessi-Tedaldi, F; Dissertori, G; Renker, D; Schneider, T; Schinzel, D; De Leo, R; Bolle, E; Fanti, V; Rafecas, M; Rudge, A; Stapnes, S; Casella, C; Chesi, E; Seguinot, J; Solevi, P; Joram, C; Oliver, J F

    2011-01-01

    Standard Positron Emission Tomography (PET) cameras need to reach a compromise between spatial resolution and sensitivity. To overcome this limitation we developed a novel concept of PET. Our AX-PET demonstrator is made of LYSO crystals aligned along the z coordinate (patient's axis) and WLS strips orthogonally placed with respect to the crystals. This concept offers full 3D localization of the photon interaction inside the camera. Thus the spatial resolution and the sensitivity can be simultaneously improved and the reconstruction of Compton interactions inside the detector is also possible. Moreover, by means of G-APDs for reading out the photons, both from LYSO and WLS, the detector is insensitive to magnetic fields and it is then suitable to be used in a combined PET/MRI apparatus. A complete Monte Carlo simulation and dedicated reconstruction software have been developed. The two final modules, each composed of 48 crystals and 156 WLS strips, have been built and fully characterized in a dedicated test se...

  4. Evaluation of 3D reconstruction algorithms for a small animal PET camera

    International Nuclear Information System (INIS)

    Johnson, C.A.; Gandler, W.R.; Seidel, J.

    1996-01-01

    The use of paired, opposing position-sensitive phototube scintillation cameras (SCs) operating in coincidence for small animal imaging with positron emitters is currently under study. Because of the low sensitivity of the system even in 3D mode and the need to produce images with high resolution, it was postulated that a 3D expectation maximization (EM) reconstruction algorithm might be well suited for this application. We investigated four reconstruction algorithms for the 3D SC PET camera: 2D filtered back-projection (FBP), 2D ordered subset EM (OSEM), 3D reprojection (3DRP), and 3D OSEM. Noise was assessed for all slices by the coefficient of variation in a simulated uniform cylinder. Resolution was assessed from a simulation of 15 point sources in the warm background of the uniform cylinder. At comparable noise levels, the resolution achieved with OSEM (0.9-mm to 1.2-mm) is significantly better than that obtained with FBP or 3DRP (1.5-mm to 2.0-mm.) Images of a rat skull labeled with 18 F-fluoride suggest that 3D OSEM can improve image quality of a small animal PET camera

  5. Small animal PET and its applications in biomedical research

    International Nuclear Information System (INIS)

    Qiu Feichan

    2004-01-01

    Positron emission tomography (PET) is a nuclear medical imaging technique that permits the use of positron-labeled molecular imaging probes for non-invasive assays of biochemical processes. As the leading technology in nuclear medicine, PET has extended its applications from the clinical field to the study of small laboratory animals. In recent years, the development of new detector technology has dramatically improved the spatial resolution and image quality of small animal PET scanner, which is being used increasingly as a basic tool in modern biomedical research. In particular, small animal PET will play an important role in drug discovery and development, in the study of small animal models of human diseases, in characterizing gene expression and in many other ways. (authors)

  6. 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging.

    Science.gov (United States)

    Reilhac, Anthonin; Charil, Arnaud; Wimberley, Catriona; Angelis, Georgios; Hamze, Hasar; Callaghan, Paul; Garcia, Marie-Paule; Boisson, Frederic; Ryder, Will; Meikle, Steven R; Gregoire, Marie-Claude

    2015-09-01

    Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  7. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  8. AX-PET A novel PET detector concept with full 3D reconstruction

    CERN Document Server

    Braem, A; Séguinot, J; Dissertori, G; Djambazov, L; Lustermann, W; Nessi-Tedaldi, F; Pauss, F; Schinzel, D; Solevi, P; Lacasta, C; Oliver, J F; Rafecas, M; De Leo, R; Nappi, E; Vilardi, I; Chesi, E; Cochran, E; Honscheid, K; Kagan, H; Rudge, A; Smith, S; Weilhammer, P; Johnson, I; Renker, D; Clinthorne, N; Huh, S; Bolle, E; Stapnes, S; Meddi, F

    2009-01-01

    We describe the concept and first experimental tests of a novel 3D axial Positron Emission Tomography (PET) geometry. It allows for a new way of measuring the interaction point in the detector with very high precision. It is based on a matrix of long Lutetium-Yttrium OxyorthoSilicate (LYSO) crystals oriented in the axial direction, each coupled to one Geiger Mode Avalanche Photodiode (G-APD) array. To derive the axial coordinate, Wave Length Shifter (WLS) strips are mounted orthogonally and interleaved between the crystals. The light from the WLS strips is read by custom-made G-APDs. The weighted mean of the signals in the WLS strips has proven to give very precise axial resolution. The achievable resolution along the three axes is mainly driven by the dimensions of the LYSO crystals and WLS strips. This concept is inherently free of parallax errors. Furthermore, it will allow identification of Compton interactions in the detector and for reconstruction of a fraction of them, which is expected to enhance imag...

  9. PetIGA-MF: a multi-field high-performance toolbox for structure-preserving B-splines spaces

    KAUST Repository

    Sarmiento, Adel

    2016-10-01

    We describe a high-performance solution framework for isogeometric discrete differential forms based on B-splines: PetIGA-MF. Built on top of PetIGA, an open-source library we have built and developed over the last decade, PetIGA-MF is a general multi-field discretization tool. To test the capabilities of our implementation, we solve different viscous flow problems such as Darcy, Stokes, Brinkman, and Navier-Stokes equations. Several convergence benchmarks based on manufactured solutions are presented assuring optimal convergence rates of the approximations, showing the accuracy and robustness of our solver.

  10. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    International Nuclear Information System (INIS)

    Janek, S; Svensson, R; Jonsson, C; Brahme, A

    2006-01-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11 C and 15 O but also 13 N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12 C, 16 O and 14 N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12 C, 16 O and 14 N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be

  11. [18F]FDG PET/CT outperforms [18F]FDG PET/MRI in differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Vrachimis, Alexis; Wenning, Christian; Weckesser, Matthias; Stegger, Lars; Burg, Matthias Christian; Allkemper, Thomas; Schaefers, Michael

    2016-01-01

    To evaluate the diagnostic potential of PET/MRI with [ 18 F]FDG in comparison to PET/CT in patients with differentiated thyroid cancer suspected or known to have dedifferentiated. The study included 31 thyroidectomized and remnant-ablated patients who underwent a scheduled [ 18 F]FDG PET/CT scan and were then enrolled for a PET/MRI scan of the neck and thorax. The datasets (PET/CT, PET/MRI) were rated regarding lesion count, conspicuity, diameter and characterization. Standardized uptake values were determined for all [ 18 F]FDG-positive lesions. Histology, cytology, and examinations before and after treatment served as the standards of reference. Of 26 patients with a dedifferentiated tumour burden, 25 were correctly identified by both [ 18 F]FDG PET/CT and PET/MRI. Detection rates by PET/CT and PET/MRI were 97 % (113 of 116 lesions) and 85 % (99 of 113 lesions) for malignant lesions, and 100 % (48 of 48 lesions) and 77 % (37 of 48 lesions) for benign lesions, respectively. Lesion conspicuity was higher on PET/CT for both malignant and benign pulmonary lesions and in the overall rating for malignant lesions (p < 0.001). There was a difference between PET/CT and PET/MRI in overall evaluation of malignant lesions (p < 0.01) and detection of pulmonary metastases (p < 0.001). Surgical evaluation revealed three malignant lesions missed by both modalities. PET/MRI additionally failed to detect 14 pulmonary metastases and 11 benign lesions. In patients with thyroid cancer and suspected or known dedifferentiation, [ 18 F]FDG PET/MRI was inferior to low-dose [ 18 F]FDG PET/CT for the assessment of pulmonary status. However, for the assessment of cervical status, [ 18 F]FDG PET/MRI was equal to contrast-enhanced neck [ 18 F]FDG PET/CT. Therefore, [ 18 F]FDG PET/MRI combined with a low-dose CT scan of the thorax may provide an imaging solution when high-quality imaging is needed and high-energy CT is undesirable or the use of a contrast agent is contraindicated. (orig.)

  12. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.

    Science.gov (United States)

    Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2012-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs).

  13. Dynamic Functional Imaging of Brain Glucose Utilization using fPET-FDG

    Science.gov (United States)

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-01-01

    Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis is straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism. PMID:24936683

  14. Evaluation of a video-based head motion tracking system for dedicated brain PET

    Science.gov (United States)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  15. A contactless approach for respiratory gating in PET using continuous-wave radar.

    Science.gov (United States)

    Ersepke, Thomas; Büther, Florian; Heß, Mirco; Schäfers, Klaus P

    2015-08-01

    Respiratory gating is commonly used to reduce motion artifacts in positron emission tomography (PET). Clinically established methods for respiratory gating in PET require contact to the patient or a direct optical line between the sensor and the patient's torso and time consuming preparation. In this work, a contactless method for capturing a respiratory signal during PET is presented based on continuous-wave radar. The proposed method relies on the principle of emitting an electromagnetic wave and detecting the phase shift of the reflected wave, modulated due to the respiratory movement of the patient's torso. A 24 GHz carrier frequency was chosen allowing wave propagation through plastic and clothing with high reflections at the skin surface. A detector module and signal processing algorithms were developed to extract a quantitative respiratory signal. The sensor was validated using a high precision linear table. During volunteer measurements and [(18)F] FDG PET scans, the radar sensor was positioned inside the scanner bore of a PET/computed tomography scanner. As reference, pressure belt (one volunteer), depth camera-based (two volunteers, two patients), and PET data-driven (six patients) signals were acquired simultaneously and the signal correlation was quantified. The developed system demonstrated a high measurement accuracy for movement detection within the submillimeter range. With the proposed method, small displacements of 25 μm could be detected, not considerably influenced by clothing or blankets. From the patient studies, the extracted respiratory radar signals revealed high correlation (Pearson correlation coefficient) to those derived from the external pressure belt and depth camera signals (r = 0.69-0.99) and moderate correlation to those of the internal data-driven signals (r = 0.53-0.70). In some cases, a cardiac signal could be visualized, due to the representation of the mechanical heart motion on the skin. Accurate respiratory signals were

  16. Initial clinical test of a breast-PET scanner

    International Nuclear Information System (INIS)

    Raylman, Raymond R.; Koren, Courtney; Schreiman, Judith S.; Majewski, Stan; Marano, Gary D.; Abraham, Jame; Kurian, Sobha; Hazard, Hannah; Filburn, Shannon

    2011-01-01

    The goal of this initial clinical study was to test a new positron emission/tomography imager and biopsy system (PEM/PET) in a small group of selected subjects to assess its clinical imaging capabilities. Specifically, the main task of this study is to determine whether the new system can successfully be used to produce images of known breast cancer and compare them to those acquired by standard techniques. The PEM/PET system consists of two pairs of rotating radiation detectors located beneath a patient table. The scanner has a spatial resolution of ∼2 mm in all three dimensions. The subjects consisted of five patients diagnosed with locally advanced breast cancer ranging in age from 40 to 55 years old scheduled for pre-treatment, conventional whole body PET imaging with F-18 Fluorodeoxyglucose (FDG). The primary lesions were at least 2 cm in diameter. The images from the PEM/PET system demonstrated that this system is capable of identifying some lesions not visible in standard mammograms. Furthermore, while the relatively large lesions imaged in this study where all visualised by a standard whole body PET/CT scanner, some of the morphology of the tumours (ductal infiltration, for example) was better defined with the PEM/PET system. Significantly, these images were obtained immediately following a standard whole body PET scan. The initial testing of the new PEM/PET system demonstrated that the new system is capable of producing good quality breast-PET images compared standard methods.

  17. Beyond 18F-FDG: Characterization of PET/CT and PET/MR Scanners for a Comprehensive Set of Positron Emitters of Growing Application--18F, 11C, 89Zr, 124I, 68Ga, and 90Y.

    Science.gov (United States)

    Soderlund, A Therese; Chaal, Jasper; Tjio, Gabriel; Totman, John J; Conti, Maurizio; Townsend, David W

    2015-08-01

    This study aimed to investigate image quality for a comprehensive set of isotopes ((18)F, (11)C, (89)Zr, (124)I, (68)Ga, and (90)Y) on 2 clinical scanners: a PET/CT scanner and a PET/MR scanner. Image quality and spatial resolution were tested according to NU 2-2007 of the National Electrical Manufacturers Association. An image-quality phantom was used to measure contrast recovery, residual bias in a cold area, and background variability. Reconstruction methods available on the 2 scanners were compared, including point-spread-function correction for both scanners and time of flight for the PET/CT scanner. Spatial resolution was measured using point sources and filtered backprojection reconstruction. With the exception of (90)Y, small differences were seen in the hot-sphere contrast recovery of the different isotopes. Cold-sphere contrast recovery was similar across isotopes for all reconstructions, with an improvement seen with time of flight on the PET/CT scanner. The lower-statistic (90)Y scans yielded substantially lower contrast recovery than the other isotopes. When isotopes were compared, there was no difference in measured spatial resolution except for PET/MR axial spatial resolution, which was significantly higher for (124)I and (68)Ga. Overall, both scanners produced good images with (18)F, (11)C, (89)Zr, (124)I, (68)Ga, and (90)Y. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Sci—Thur AM: YIS - 08: Constructing an Attenuation map for a PET/MR Breast coil

    International Nuclear Information System (INIS)

    Patrick, John C.; So, Aaron; Butler, John; Faul, David; Yartsev, Slav; Thompson, Terry; Prato, Frank S.; Gaede, Stewart

    2014-01-01

    In 2013, around 23000 Canadian women and 200 Canadian men were diagnosed with breast cancer. An estimated 5100 women and 55 men died from the disease. Using the sensitivity of MRI with the selectivity of PET, PET/MRI combines anatomical and functional information within the same scan and could help with early detection in high-risk patients. MRI requires radiofrequency coils for transmitting energy and receiving signal but the breast coil attenuates PET signal. To correct for this PET attenuation, a 3-dimensional map of linear attenuation coefficients (μ-map) of the breast coil must be created and incorporated into the PET reconstruction process. Several approaches have been proposed for building hardware μ-maps, some of which include the use of conventional kVCT and Dual energy CT. These methods can produce high resolution images based on the electron densities of materials that can be converted into μ-maps. However, imaging hardware containing metal components with photons in the kV range is susceptible to metal artifacts. These artifacts can compromise the accuracy of the resulting μ-map and PET reconstruction; therefore high-Z components should be removed. We propose a method for calculating μ-maps without removing coil components, based on megavoltage (MV) imaging with a linear accelerator that has been detuned for imaging at 1.0MeV. Containers of known geometry with F18 were placed in the breast coil for imaging. A comparison between reconstructions based on the different μ-map construction methods was made. PET reconstructions with our method show a maximum of 6% difference over the existing kVCT-based reconstructions

  19. Validating PET segmentation of thoracic lesions-is 4D PET necessary?

    DEFF Research Database (Denmark)

    Nielsen, M. S.; Carl, J.

    2017-01-01

    Respiratory-induced motions are prone to degrade the positron emission tomography (PET) signal with the consequent loss of image information and unreliable segmentations. This phantom study aims to assess the discrepancies relative to stationary PET segmentations, of widely used semiautomatic PET...... segmentation methods on heterogeneous target lesions influenced by motion during image acquisition. Three target lesions included dual F-18 Fluoro-deoxy-glucose (FDG) tracer concentrations as high-and low tracer activities relative to the background. Four different tracer concentration arrangements were...... segmented using three SUV threshold methods (Max40%, SUV40% and 2.5SUV) and a gradient based method (GradientSeg). Segmentations in static 3D-PET scans (PETsta) specified the reference conditions for the individual segmentation methods, target lesions and tracer concentrations. The motion included PET...

  20. Simulating effects of brain atrophy in longitudinal PET imaging with an anthropomorphic brain phantom

    Science.gov (United States)

    Jonasson, L. S.; Axelsson, J.; Riklund, K.; Boraxbekk, C. J.

    2017-07-01

    In longitudinal positron emission tomography (PET), the presence of volumetric changes over time can lead to an overestimation or underestimation of the true changes in the quantified PET signal due to the partial volume effect (PVE) introduced by the limited spatial resolution of existing PET cameras and reconstruction algorithms. Here, a 3D-printed anthropomorphic brain phantom with attachable striata in three sizes was designed to enable controlled volumetric changes. Using a method to eliminate the non-radioactive plastic wall, and manipulating BP levels by adding different number of events from list-mode acquisitions, we investigated the artificial volume dependence of BP due to PVE, and potential bias arising from varying BP. Comparing multiple reconstruction algorithms we found that a high-resolution ordered-subsets maximization algorithm with spatially variant point-spread function resolution modeling provided the most accurate data. For striatum, the BP changed by 0.08% for every 1% volume change, but for smaller volumes such as the posterior caudate the artificial change in BP was as high as 0.7% per 1% volume change. A simple gross correction for striatal volume is unsatisfactory, as the amplitude of the PVE on the BP differs depending on where in the striatum the change occurred. Therefore, to correctly interpret age-related longitudinal changes in the BP, we must account for volumetric changes also within a structure, rather than across the whole volume. The present 3D-printing technology, combined with the wall removal method, can be implemented to gain knowledge about the predictable bias introduced by the PVE differences in uptake regions of varying shape.

  1. Asymmetric Data Acquisition System for an Endoscopic PET-US Detector

    Science.gov (United States)

    Zorraquino, Carlos; Bugalho, Ricardo; Rolo, Manuel; Silva, Jose C.; Vecklans, Viesturs; Silva, Rui; Ortigão, Catarina; Neves, Jorge A.; Tavernier, Stefaan; Guerra, Pedro; Santos, Andres; Varela, João

    2016-02-01

    According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from time-of- flight (TOF) positron emission tomography (PET) with anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance data acquisition system (DAQ) able to control and readout data from different detectors. The system is composed of two novel detectors: a PET head extension for a commercial US endoscope placed internally close to the region-of-interest (ROI) and a PET plate placed over the patient's abdomen in coincidence with the PET head. These two detectors will send asymmetric data streams that need to be handled by the DAQ system. The approach chosen to cope with these needs goes through the implementation of a DAQ capable of performing multi-level triggering and which is distributed across two different on-detector electronics and the off-detector electronics placed inside the reconstruction workstation. This manuscript provides an overview on the design of this innovative DAQ system and, based on results obtained by means of final prototypes of the two detectors and DAQ, we conclude that a distributed multi-level triggering DAQ system is suitable for endoscopic PET detectors and it shows potential for its application in different scenarios with asymmetric sources of data.

  2. Characterization of polyethylene terephthalate (PET) detector to search for rare events in cosmic rays

    International Nuclear Information System (INIS)

    Dey, S.; Maulik, A.; Raha, Sibaji; Sara, Swapan; Syam, D.

    2015-01-01

    A particular brand of commercially available plastic, identified as polyethylene terephthalate (PET) has been used as a Nuclear Track Detector (NTD) to detect heavy charged particles. It was found that PET has a much higher detection threshold compared to other commercially available NTDs, making PET particularly suitable for detecting rare events in cosmic rays. To characterize and calibrate PET, systemetic studies were carried out using ions from various accelerators in India and Europe. Results of those studies have shown that PET can be effectively used as a charge particle detector with good energy and charge resolution. (author)

  3. Imaging and PET - PET/CT imaging

    International Nuclear Information System (INIS)

    Von Schulthess, G.K.; Hany, Th.F.

    2008-01-01

    PET/CT has grown because the lack of anatomic landmarks in PET makes 'hardware-fusion' to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. for this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several designed studies have demonstrated the benefits of PET-CT. (authors)

  4. Strategy of diagnosis and treatment for pediatric solid tumor patients using FDG-PET

    International Nuclear Information System (INIS)

    Hosono, Ako; Watanabe, Atsuko; Tsuji, Naoko; Kawamoto, Hiroshi; Makimoto, Atsushi; Tateishi, Ukihide; Terauthi, Takashi

    2006-01-01

    Usefulness of FDG-PET (18F-deoxyglucose PET) was investigated in diagnosis and therapeutic planning of childhood and adolescence malignant solid tumors. Evidence was based on 46 patients (25 males) of ages 5-30 y, involving those with rhabdomyosarcoma (17 cases), Ewing's sarcoma (13), osteosarcoma (5), neuroblastoma (4), Wilms' tumor (2), germinoma (2), and each 1 case of ganglioblastoma, retinoblastoma and hepatoblastoma. In total, they underwent 104 FDG-PET examinations for diagnosis before and during treatment in authors' hospital in the period from January 2005 to February 2006. Evaluations were done with the standard uptake value (SUV, 1 x 1 cm ROI of abnormally high distribution area of radioactivity in the lesion/FDG dose/kg body wt.), by recurrence, by early detection of exacerbation and by follow up of residual tumors, of which typical image findings were herein presented. From the aspects of the present purposes, it was concluded that FDG-PET had advantages of high resolution, short imaging time, quantitative diagnosis (SUV) as well as the tumor detection, and had defects of difficulty of detection of tumors of <1 cm size, of distribution to normal or benign tissues and of difficulty of central nervous system (CNS) imaging. (T.I.)

  5. Monte Carlo simulations of GeoPET experiments: 3D images of tracer distributions (18F, 124I and 58Co) in Opalinus clay, anhydrite and quartz

    Science.gov (United States)

    Zakhnini, Abdelhamid; Kulenkampff, Johannes; Sauerzapf, Sophie; Pietrzyk, Uwe; Lippmann-Pipke, Johanna

    2013-08-01

    Understanding conservative fluid flow and reactive tracer transport in soils and rock formations requires quantitative transport visualization methods in 3D+t. After a decade of research and development we established the GeoPET as a non-destructive method with unrivalled sensitivity and selectivity, with due spatial and temporal resolution by applying Positron Emission Tomography (PET), a nuclear medicine imaging method, to dense rock material. Requirements for reaching the physical limit of image resolution of nearly 1 mm are (a) a high-resolution PET-camera, like our ClearPET scanner (Raytest), and (b) appropriate correction methods for scatter and attenuation of 511 keV—photons in the dense geological material. The latter are by far more significant in dense geological material than in human and small animal body tissue (water). Here we present data from Monte Carlo simulations (MCS) reflecting selected GeoPET experiments. The MCS consider all involved nuclear physical processes of the measurement with the ClearPET-system and allow us to quantify the sensitivity of the method and the scatter fractions in geological media as function of material (quartz, Opalinus clay and anhydrite compared to water), PET isotope (18F, 58Co and 124I), and geometric system parameters. The synthetic data sets obtained by MCS are the basis for detailed performance assessment studies allowing for image quality improvements. A scatter correction method is applied exemplarily by subtracting projections of simulated scattered coincidences from experimental data sets prior to image reconstruction with an iterative reconstruction process.

  6. Development of TOF-PET using Compton scattering by plastic scintillators

    International Nuclear Information System (INIS)

    Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.

    2017-01-01

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  7. Development of TOF-PET using Compton scattering by plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, M., E-mail: kuramoto@maxwell.kj.yamagata-u.ac.jp [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Nakamori, T., E-mail: nakamori@maxwell.kj.yamagata-u.ac.jp [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Kimura, S.; Gunji, S.; Takakura, M. [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Kataoka, J. [Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan)

    2017-02-11

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  8. Development of TOF-PET using Compton scattering by plastic scintillators

    Science.gov (United States)

    Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.

    2017-02-01

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  9. The effect of intravenous contrast on SUV value in 18F-FDG PET/CT using diagnostic high energy CT

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Kang, Do Young

    2006-01-01

    According to the development of CT scanner in PET/CT system, the role of CT unit as a diagnostic tool has been more important. To improve the diagnostic ability of CT scanner, it is a key aspect that CT scanning has to be performed with high dose energy and intravenous (IV) contrast. So we investigated the effect of IV contrast media on the maximum SUV (maxSUV) of normal tissues and pathologic lesions using PET/CT scanner with high dose CT scanning. The study enrolled 13 patients who required PET/CT evaluation. At first, the patients were performed whole body non-contrast CT (NCCT - 120 kVp, 130 mAs) scan. Than contrast enhanced CT (CECT) scan was performed immediately. Finally PET scan was followed. The PET emission data were reconstructed twice, once with the NCCT and again with the CECT. We measured the maxSUV of 10 different body regions that were considered as normal in all patients. Also pathologic lesions were investigated. There were not seen focal artifacts in PET images based on CT with IV contrast agent. Firstly, 130 normal regions in 13 patients were evaluated. The maxSUV was significantly different between two PET images (p < 0.001). The maxSUV was 1.1 ± 0.5 in PET images with CECT-corrected attenuation and 1.0 ± 0.5 in PET images with NCCT-corrected attenuation. The limit of agreement was 0.1 ± 0.3 in Bland-Altman analysis. Especially there were significant differences in 6 of 10 regions, apex and base of the right lung, ascending aorta, segment 6 and segment 8 of the liver and spleen (p <0.05). Secondly, 39 pathologic lesions were evaluated. The maxSUV was significantly different between two PET images (p < 0.001). The maxSUV was 4.7 ± 2.0 in PET images with CECT-corrected attenuation and 4.4 ± 2.0 in PET images with NCCT- corrected attenuation. The limit of agreement was 0.4 ± 0.8 in Bland-Altman analysis. Although there were increases of maxSUVs in the PET images based on CT with IV contrast agent, it was very narrow in the range of limit of

  10. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  11. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  12. CT with a CMOS flat panel detector integrated on the YAP-(S)PET scanner for in vivo small animal imaging

    International Nuclear Information System (INIS)

    Di Domenico, Giovanni; Cesca, Nicola; Zavattini, Guido; Auricchio, Natalia; Gambaccini, Mauro

    2007-01-01

    Several research groups are pursuing multimodality simultaneous functional and morphological imaging. In this line of research the high resolution YAP-(S)PET small animal integrated PET-SPECT imaging system, constructed by our group of medical physics at the University of Ferrara, is being upgraded with a computed tomography (CT). In this way it will be possible to perform in vivo molecular and genomic imaging studies on small animals (such as mice and rats) and at the same time obtain morphological information necessary for both attenuation correction and accurate localization of the region under investigation. We have take simultaneous PET-CT and SPECT-CT images of phantoms obtained with a single scanner

  13. PET/MRI: a novel hybrid imaging technique: major clinical indications and preliminary experience in Brazil; PET/RM: um novo metodo de imagem hibrida: principais indicacoes clinicas e experiencia preliminar no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Vitor, Taise; Martins, Karine Minaif; Ionescu, Tudor Mihai and others, E-mail: taisevitor@gmail.com [Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil)

    2017-04-01

    In recent years, medical imaging with hybrid techniques has widely accepted and employed in clinical routine. PET/MRI offers significant advantages, including excellent contrast and resolution and reduced ionizing radiation, as compared to well-established PET/ CT. Therefore, PET/MRI is a promising modality for oncologic imaging of some regions, such as brain, head and neck, liver and pelvis. This article set out to analyze clinical conditions that could benefit from PET/MRI imaging based on our caseload. The potential of PET/MRI to become the imaging modality of choice for assessment of neurologic and oncologic conditions associated with soft tissues is highlighted. Clinical aspects of PET/MRI and its application to clinical cases are illustrated with examples extracted from the authors' preliminary experience. (author)

  14. Initial studies using the RatCAP conscious animal PET tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Woody, C. [Brookhaven National Laboratory, Upton, NY (United States)]. E-mail: woody@bnl.gov; Vaska, P. [Brookhaven National Laboratory, Upton, NY (United States); Schlyer, D. [Brookhaven National Laboratory, Upton, NY (United States); Pratte, J.-F. [Brookhaven National Laboratory, Upton, NY (United States); Junnarkar, S. [Brookhaven National Laboratory, Upton, NY (United States); Park, S.-J. [Brookhaven National Laboratory, Upton, NY (United States); Stoll, S. [Brookhaven National Laboratory, Upton, NY (United States); Purschke, M. [Brookhaven National Laboratory, Upton, NY (United States); Southekal, S. [Stony Brook University, Stony Brook, NY (United States); Kriplani, A. [Stony Brook University, Stony Brook, NY (United States); Krishnamoorthy, S. [Stony Brook University, Stony Brook, NY (United States); Maramraju, S. [Stony Brook University, Stony Brook, NY (United States); Lee, D. [Brookhaven National Laboratory, Upton, NY (United States); Schiffer, W. [Brookhaven National Laboratory, Upton, NY (United States); Dewey, S. [Brookhaven National Laboratory, Upton, NY (United States); Neill, J. [Long Island University, Brookville, NY (United States); Kandasamy, A. [Brookhaven National Laboratory, Upton, NY (United States); O' Connor, P. [Brookhaven National Laboratory, Upton, NY (United States); Radeka, V. [Brookhaven National Laboratory, Upton, NY (United States); Fontaine, R. [Sherbrooke University, Sherbrooke, Que. (Canada); Lecomte, R. [Sherbrooke University, Sherbrooke, Que. (Canada)

    2007-02-01

    The RatCAP is a small, head-mounted PET tomograph designed to image the brain of a conscious rat without the use of anesthesia. The detector is a complete, high-performance 3D tomograph consisting of a 3.8 cm inside-diameter ring containing 12 block detectors, each of which is comprised of a 4x8 array of 2.2x2.2x5 mm{sup 3} LSO crystals readout with a matching APD array and custom ASIC, and has a 1.8 cm axial field of view. Construction of the first working prototype detector has been completed and its performance characteristics have been measured. The results show an intrinsic spatial resolution of 2.1 mm, a time resolution of {approx}14 ns FWHM, and a sensitivity of 0.7% at an energy threshold of 150 keV. First preliminary images have been obtained using {sup 18}F-FDG and {sup 11}C-methamphetamine, which show comparable image quality to those obtained from a commercial MicroPET R4 scanner. Initial studies have also been carried out to study stress levels in rats wearing the RatCAP.

  15. Initial studies using the RatCAP conscious animal PET tomograph

    International Nuclear Information System (INIS)

    Woody, C.; Vaska, P.; Schlyer, D.; Pratte, J.-F.; Junnarkar, S.; Park, S.-J.; Stoll, S.; Purschke, M.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; Lee, D.; Schiffer, W.; Dewey, S.; Neill, J.; Kandasamy, A.; O'Connor, P.; Radeka, V.; Fontaine, R.; Lecomte, R.

    2007-01-01

    The RatCAP is a small, head-mounted PET tomograph designed to image the brain of a conscious rat without the use of anesthesia. The detector is a complete, high-performance 3D tomograph consisting of a 3.8 cm inside-diameter ring containing 12 block detectors, each of which is comprised of a 4x8 array of 2.2x2.2x5 mm 3 LSO crystals readout with a matching APD array and custom ASIC, and has a 1.8 cm axial field of view. Construction of the first working prototype detector has been completed and its performance characteristics have been measured. The results show an intrinsic spatial resolution of 2.1 mm, a time resolution of ∼14 ns FWHM, and a sensitivity of 0.7% at an energy threshold of 150 keV. First preliminary images have been obtained using 18 F-FDG and 11 C-methamphetamine, which show comparable image quality to those obtained from a commercial MicroPET R4 scanner. Initial studies have also been carried out to study stress levels in rats wearing the RatCAP

  16. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  17. Time of flight measurements based on FPGA using a breast dedicated PET

    International Nuclear Information System (INIS)

    Aguilar, A; García-Olcina, R; Martos, J; Soret, J; Torres, J; Benlloch, J M; González, A J; Sánchez, F

    2014-01-01

    In this work the implementation of a Time-to-Digital Converter (TDC) using a Nutt delay line FPGA-based and applied on a Positron Emission Tomography (PET) device is going to be presented in order to check the system's suitability for Time of Flight (TOF) measurements. In recent years, FPGAs have shown great advantages for precise time measurements in PET. The architecture employed for these measurements is described in detail. The system developed was tested on a dedicated breast PET prototype, composed of LYSO crystals and Positive Sensitive Photomultipliers (PSPMTs). Two distinct experiments were carried out for this purpose. In the first test, system linearity was evaluated in order to calibrate the time measurements, providing a linearity error of less than 2% and an average time resolution of 1.4 ns FWHM. The second set of measurements tested system resolution, resulting in a FWHM as good as 1.35 ns. The results suggest that the coincidence window for the current PET can be reduced in order to minimize the random events and thus, achieve better image quality

  18. Use of FDG PET/CT for investigation of febrile neutropenia: evaluation in high-risk cancer patients

    International Nuclear Information System (INIS)

    Guy, Stephen D.; Tramontana, Adrian R.; Worth, Leon J.; Thursky, Karin A.; Slavin, Monica A.; Lau, Eddie; Hicks, Rodney J.; Seymour, John F.

    2012-01-01

    Febrile neutropenia (FNP) is a frequent complication of cancer care and evaluation often fails to identify a cause. [ 18 F]FDG PET/CT has the potential to identify inflammatory and infectious foci, but its potential role as an investigation for persistent FNP has not previously been explored. The aim of this study was to prospectively evaluate the clinical utility of FDG PET/CT in patients with cancer and severe neutropenia and five or more days of persistent fever despite antibiotic therapy. Adult patients with a diagnosis of an underlying malignancy and persistent FNP (temperature ≥38 C and neutrophil count <500 cells/μl for 5 days) underwent FDG PET/CT as an adjunct to conventional evaluation and management. The study group comprised 20 patients with FNP who fulfilled the eligibility criteria and underwent FDG PET/CT in addition to conventional evaluation. The median neutrophil count on the day of the FDG PET/CT scan was 30 cells/μl (range 0-730 cells/μl). Conventional evaluation identified 14 distinct sites of infection, 13 (93 %) of which were also identified by FDG PET/CT, including all deep tissue infections. FDG PET/CT identified 9 additional likely infection sites, 8 of which were subsequently confirmed as ''true positives'' by further investigations. FDG PET/CT was deemed to be of 'high' clinical impact in 15 of the 20 patients (75 %). This study supports the utility of FDG PET/CT scanning in severely neutropenic patients with five or more days of fever. Further evaluation of the contribution of FDG PET/CT in the management of FNP across a range of underlying malignancies is required. (orig.)

  19. Use of FDG PET/CT for investigation of febrile neutropenia: evaluation in high-risk cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Guy, Stephen D.; Tramontana, Adrian R. [Western Health, Department of Infectious Diseases, Private Bag, Footscray, Victoria (Australia); University of Melbourne, Parkville, Victoria (Australia); Worth, Leon J.; Thursky, Karin A.; Slavin, Monica A. [University of Melbourne, Parkville, Victoria (Australia); Peter MacCallum Cancer Centre, Department of Infectious Diseases, Melbourne, Victoria (Australia); Lau, Eddie; Hicks, Rodney J. [University of Melbourne, Parkville, Victoria (Australia); Peter MacCallum Cancer Centre, Centre for Cancer Imaging, Melbourne, Victoria (Australia); Seymour, John F. [University of Melbourne, Parkville, Victoria (Australia); Peter MacCallum Cancer Centre, Department of Haematology, Melbourne, Victoria (Australia)

    2012-08-15

    Febrile neutropenia (FNP) is a frequent complication of cancer care and evaluation often fails to identify a cause. [{sup 18} F]FDG PET/CT has the potential to identify inflammatory and infectious foci, but its potential role as an investigation for persistent FNP has not previously been explored. The aim of this study was to prospectively evaluate the clinical utility of FDG PET/CT in patients with cancer and severe neutropenia and five or more days of persistent fever despite antibiotic therapy. Adult patients with a diagnosis of an underlying malignancy and persistent FNP (temperature {>=}38 C and neutrophil count <500 cells/{mu}l for 5 days) underwent FDG PET/CT as an adjunct to conventional evaluation and management. The study group comprised 20 patients with FNP who fulfilled the eligibility criteria and underwent FDG PET/CT in addition to conventional evaluation. The median neutrophil count on the day of the FDG PET/CT scan was 30 cells/{mu}l (range 0-730 cells/{mu}l). Conventional evaluation identified 14 distinct sites of infection, 13 (93 %) of which were also identified by FDG PET/CT, including all deep tissue infections. FDG PET/CT identified 9 additional likely infection sites, 8 of which were subsequently confirmed as ''true positives'' by further investigations. FDG PET/CT was deemed to be of 'high' clinical impact in 15 of the 20 patients (75 %). This study supports the utility of FDG PET/CT scanning in severely neutropenic patients with five or more days of fever. Further evaluation of the contribution of FDG PET/CT in the management of FNP across a range of underlying malignancies is required. (orig.)

  20. Readout and characterisation of new silicon pixel photodiode array for use in PET

    International Nuclear Information System (INIS)

    Hooper, P.; Ward, G.; Lerch, R.; Rozenfeld, A.

    2002-01-01

    Full text: Positron emission tomography (PET) is a functional imaging tool, which is able to quantify physiological, and biochemical processes in vivo using short-lived cyclotron-produced radiotracers. The main physical principle of PET is the simultaneous measurement of two 511 keV photons which are emitted in opposite directions following the annihilation of a positron in tissue. The accuracy of tracking these photons determines the accuracy of localising the radiotracer in the body, which is referred to as the spatial resolution of the system. Compared with conventional single photon imaging with gamma cameras, PET provides superior spatial resolution and sensitivity. However, compared with anatomical imaging techniques, the spatial resolution remains relatively poor at approximately 4-6 mm full width at half maximum (FWHM), compared with 1 mm FWHM for MRI. The Centre for Medical Radiation Physics at the University of Wollongong is developing a new Positron Emission Tomography (PET) detection sub-module that will significantly improve the spatial resolution of PET. The new sub-module design is simple and robust to minimise module assembly complications and is completely independent of photomultiplier tubes. The new sub-module has also been designed to maximise its flexibility for easy sub-module coupling so as to form a complete, customised, detection module to be used in PET scanners dedicated to human brain and breast, and small animal studies. A new computer controlled gantry allows the system to be used for PET and SPECT applications. Silicon 8x8 detector arrays have been developed by CMRP and will be optically coupled scintillation crystals and readout using the VIKING tM hybrid preamplifier chip to form the basis of the new module Characterisation of the pixel photodiode array has been performed to check the uniformity of the response of the array. This characterisation has been done using a pulsed, near infra-red laser diode system and alpha particles