WorldWideScience

Sample records for high resolution color

  1. High resolution color band pyrometer ratioing

    Science.gov (United States)

    Bickler, Donald B. (Inventor); Henry, Paul K. (Inventor); LoGiurato, D. Daniel (Inventor)

    1989-01-01

    The sensing head of a two-color band ratioing pyrometer of a known type using a fiber optic cable to couple radiation to dual detector photodiodes is improved to have high spatial resolution by focusing the radiation received through an objective lens (i.e., by focusing the image of a target area) onto an opaque sheet spaced in front of the input end of the fiber optic cable. A two-mil hole in that sheet then passes radiation to the input end of the cable. The detector has two channels, one for each color band, with an electronic-chopper stabilized current amplifier as the input stage followed by an electronic-chopper stabilized voltage amplifier.

  2. Single sensor processing to obtain high resolution color component signals

    Science.gov (United States)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  3. High-resolution plasmonic structural colors from nanohole arrays with bottom metal disks.

    Science.gov (United States)

    Lu, Bing-Rui; Xu, Chen; Liao, Jianfeng; Liu, Jianpeng; Chen, Yifang

    2016-04-01

    We present transmissive plasmonic structural colors from subwavelength nanohole arrays with bottom metal disks for scaled-up manufacturing by nanoimprint lithography (NIL). Comprehensive theoretical and experimental studies are carried out to understand the specific extraordinary optical transmission behavior of the structures with such bottom metal disks. Distinctive colors covering the entire visible spectrum can be generated by changing the structural dimensions of hole arrays in Ag covered by the metal disks. The plasmonic energy hybridization theory is applied to explain the unstable color output with shallow holes so that a large processing window during NIL could be achieved for mass production. A high-resolution of 127,000 dots per inch is demonstrated with potential applications, including color filters and displays, high-resolution color printing, CMOS color imaging, and anti-counterfeiting.

  4. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    Science.gov (United States)

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-07-22

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.

  5. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2015-07-01

    Full Text Available This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC. The DSP is currently implemented on FPGA.

  6. High-Resolution Ceres HAMO Color Mosaics derived from Dawn FC Images

    Science.gov (United States)

    Matz, K. D.; Schroeder, S.; Roatsch, T.; Kersten, E.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C.

    2016-12-01

    Introduction: NASA's Dawn spacecraft orbited the dwarf planet Ceres from August to October 2015 in HAMO (High Altitude Mapping Orbit) with an altitude of about 1,500 km to characterize, among others, the geology, topography, and shape of Ceres. Data: The Dawn mission is equipped with a framing camera (FC) which has one broad band clear filter and seven narrow band color filters. The FC took about 4300 color filter images in HAMO with a resolution of about 140 m/pixel. Data Processing: The first steps of the processing chain towards the mosaics are: radiometric calibration and photometric correction of the images followed by ortho-rectification to the proper scale and map projection type. These steps require detailed information of the Dawn orbit, the orientation of the spacecraft, and of the topography of the target. Both, improved orientation and a high-resolution shape model, are provided by the stereo processing of the HAMO clear filter dataset. Ceres' HAMO shape model is used for the calculation of the ray intersection points and the orientation of the surface normals, while the map projection itself is done onto a reference sphere for Ceres. The final step is the controlled mosaicking of all color images to seven global mosaics of Ceres. True color: True color was achieved by scaling FC images acquired through the red, green, and blue filters (effective wavelength 653, 555, and 438 nm) to RGB values calculated from the CIE color matching functions and a Ceres reflectance spectrum. Color ratios: Color ratio image mosaics were calculated using the images of four different narrow band filters; Red channel: 965/749 nanometers (nm); Green channel: 555/749 nm; Blue channel: 438/749 nm. The color ratio image serves to cancel out the dominant brightness variations of the scene (caused by albedo variations and topographic shading) and enhances color differences related to soil mineralogy and, possibly, maturity. Download: All color mosaics will become available to the

  7. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    Science.gov (United States)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  8. High-resolution mobile optical 3D scanner with color mapping

    Science.gov (United States)

    Ramm, Roland; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Notni, Gunther

    2017-07-01

    A high-resolution mobile handheld scanning device suitable for 3D data acquisition and analysis for forensic investigations, rapid prototyping, design, quality management, and archaeology with a measurement volume of approximately 325 mm x 200 mm x 100mm and a lateral object resolution of 170 µm developed at our institute is introduced. The scanners weight is 4.4 kg with an optional color DLSR camera. The PC for measurement control and point calculation is included inside the housing. Power supply is realized by rechargeable batteries. Possible operation time is between 30 and 60 minutes. The object distance is between 400 and 500 mm, and the scan time for one 3D shot may vary between 0.1 and 0.5 seconds. The complete 3D result is obtained a few seconds after starting the scan. For higher quality 3D and color images the scanner is attachable to tripod use. Measurement objects larger than the measurement volume must be acquired partly. The different resulting datasets are merged using a suitable software module. The scanner has been successfully used in various applications.

  9. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    Science.gov (United States)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-01-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459

  10. Ultra-high resolution color images of the surface of comet 67P acquired by ROLIS

    Science.gov (United States)

    Schröder, Stefan; Mottola, Stefano; Arnold, Gabriele; Grothues, Hans-Georg; Hamm, Maximilian; Jaumann, Ralf; Michaelis, Harald; Pelivan, Ivanka; Proffe, Gerrit; Bibring, Jean-Pierre

    2015-04-01

    On Nov 12, 2014, the Rosetta Philae lander descended towards comet 67P/Churyumov-Gerasimenko. The onboard ROLIS camera successfully acquired high resolution images of the surface looking down from its vantage point on the instrument platform. ROLIS is a compact CCD imager with a 1024×1024 pixel sensor and a 57° field of view (Mottola et al., 2007, SSR 128, 241). It is equipped with an infinity lens (IFL), without which the camera focus is 30 cm. At Philae's final landing site, ROLIS removed the IFL and initiated an imaging sequence that shows the surface at the highest resolution ever obtained for a cometary surface (~0.5 mm per pixel). Illumination of the scene was provided by an onboard array of LEDs in four different colors: red, green, blue, and near-IR. ROLIS acquired one image for each color and a single dark exposure. The images show a unique, almost fractal morphology for the surface below the landing site that defies easy interpretation. However, there are similarities with some structures seen by the CIVA camera. Color and albedo variations over the surface are minor, and individual grains cannot be distinguished. The images are out-of-focus, indicating the surface was further away than the nominal 30 cm. The location of the illumination spot and the change of focus over the image are consistent with an inclined surface, indicating that Philae's final resting position is strongly tilted. In fact, it was inclined so much that we see the local horizon, even though ROLIS is downward-looking. Remarkably, the scene beyond the horizon is illuminated by the Sun, and out-of-focus particles can be seen to travel in the sky. The images suggest the environment of the lander is laden with fine dust, but a final assessment requires careful consideration of possible sources of stray light. Just before Philae went to sleep, ROLIS acquired an additional exposure with the IFL and the red LED. The resulting image is fully in focus. Because Philae had rotated and lifted

  11. Variable high-resolution color CCD camera system with online capability for professional photo studio application

    Science.gov (United States)

    Breitfelder, Stefan; Reichel, Frank R.; Gaertner, Ernst; Hacker, Erich J.; Cappellaro, Markus; Rudolf, Peter; Voelk, Ute

    1998-04-01

    Digital cameras are of increasing significance for professional applications in photo studios where fashion, portrait, product and catalog photographs or advertising photos of high quality have to be taken. The eyelike is a digital camera system which has been developed for such applications. It is capable of working online with high frame rates and images of full sensor size and it provides a resolution that can be varied between 2048 by 2048 and 6144 by 6144 pixel at a RGB color depth of 12 Bit per channel with an also variable exposure time of 1/60s to 1s. With an exposure time of 100 ms digitization takes approx. 2 seconds for an image of 2048 by 2048 pixels (12 Mbyte), 8 seconds for the image of 4096 by 4096 pixels (48 Mbyte) and 40 seconds for the image of 6144 by 6144 pixels (108 MByte). The eyelike can be used in various configurations. Used as a camera body most commercial lenses can be connected to the camera via existing lens adaptors. On the other hand the eyelike can be used as a back to most commercial 4' by 5' view cameras. This paper describes the eyelike camera concept with the essential system components. The article finishes with a description of the software, which is needed to bring the high quality of the camera to the user.

  12. Fusion of lens-free microscopy and mobile-phone microscopy images for high-color-accuracy and high-resolution pathology imaging

    Science.gov (United States)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2017-03-01

    Digital pathology and telepathology require imaging tools with high-throughput, high-resolution and accurate color reproduction. Lens-free on-chip microscopy based on digital in-line holography is a promising technique towards these needs, as it offers a wide field of view (FOV >20 mm2) and high resolution with a compact, low-cost and portable setup. Color imaging has been previously demonstrated by combining reconstructed images at three discrete wavelengths in the red, green and blue parts of the visible spectrum, i.e., the RGB combination method. However, this RGB combination method is subject to color distortions. To improve the color performance of lens-free microscopy for pathology imaging, here we present a wavelet-based color fusion imaging framework, termed "digital color fusion microscopy" (DCFM), which digitally fuses together a grayscale lens-free microscope image taken at a single wavelength and a low-resolution and low-magnification color-calibrated image taken by a lens-based microscope, which can simply be a mobile phone based cost-effective microscope. We show that the imaging results of an H&E stained breast cancer tissue slide with the DCFM technique come very close to a color-calibrated microscope using a 40x objective lens with 0.75 NA. Quantitative comparison showed 2-fold reduction in the mean color distance using the DCFM method compared to the RGB combination method, while also preserving the high-resolution features of the lens-free microscope. Due to the cost-effective and field-portable nature of both lens-free and mobile-phone microscopy techniques, their combination through the DCFM framework could be useful for digital pathology and telepathology applications, in low-resource and point-of-care settings.

  13. Primate genotyping via high resolution melt analysis: rapid and reliable identification of color vision status in wild lemurs.

    Science.gov (United States)

    Jacobs, Rachel L; Spriggs, Amanda N; MacFie, Tammie S; Baden, Andrea L; Irwin, Mitchell T; Wright, Patricia C; Louis, Edward E; Lawler, Richard R; Mundy, Nicholas I; Bradley, Brenda J

    2016-10-01

    Analyses of genetic polymorphisms can aid our understanding of intra- and interspecific variation in primate sociality, ecology, and behavior. Studies of primate opsin genes are prime examples of this, as single nucleotide variants (SNVs) in the X-linked opsin gene underlie variation in color vision. For primate species with polymorphic trichromacy, genotyping opsin SNVs can generally indicate whether individual primates are red-green color-blind (denoted homozygous M or homozygous L) or have full trichromatic color vision (heterozygous ML). Given the potential influence of color vision on behavior and fitness, characterizing the color vision status of study subjects is becoming commonplace for many primate field projects. Such studies traditionally involve a multi-step sequencing-based method that can be costly and time-consuming. Here we present a new reliable, rapid, and relatively inexpensive method for characterizing color vision in primate populations using high resolution melt analysis (HRMA). Using lemurs as a case study, we characterized variation at exons 3 and/or 5 of the X-linked opsin gene for 87 individuals representing nine species. We scored opsin genotypes and color vision status using both traditional sequencing-based methods as well as our novel melting-curve based HRMA protocol. For each species, the melting curves of varying genotypes (homozygous M, homozygous L, heterozygous ML) differed in melting temperature and/or shape. Melting curves for each sample were consistent across replicates, and genotype-specific melting curves were consistent across DNA sources (blood vs. feces). We show that opsin genotypes can be quickly and reliably scored using HRMA once lab-specific reference curves have been developed based on known genotypes. Although the protocol presented here focuses on genotyping lemur opsin loci, we also consider the larger potential for applying this approach to various types of genetic studies of primate populations.

  14. PC-SEAPAK - ANALYSIS OF COASTAL ZONE COLOR SCANNER AND ADVANCED VERY HIGH RESOLUTION RADIOMETER DATA

    Science.gov (United States)

    Mcclain, C. R.

    1994-01-01

    PC-SEAPAK is a user-interactive satellite data analysis software package specifically developed for oceanographic research. The program is used to process and interpret data obtained from the Nimbus-7/Coastal Zone Color Scanner (CZCS), and the NOAA Advanced Very High Resolution Radiometer (AVHRR). PC-SEAPAK is a set of independent microcomputer-based image analysis programs that provide the user with a flexible, user-friendly, standardized interface, and facilitates relatively low-cost analysis of oceanographic satellite data. Version 4.0 includes 114 programs. PC-SEAPAK programs are organized into categories which include CZCS and AVHRR level-1 ingest, level-2 analyses, statistical analyses, data extraction, remapping to standard projections, graphics manipulation, image board memory manipulation, hardcopy output support and general utilities. Most programs allow user interaction through menu and command modes and also by the use of a mouse. Most programs also provide for ASCII file generation for further analysis in spreadsheets, graphics packages, etc. The CZCS scanning radiometer aboard the NIMBUS-7 satellite was designed to measure the concentration of photosynthetic pigments and their degradation products in the ocean. AVHRR data is used to compute sea surface temperatures and is supported for the NOAA 6, 7, 8, 9, 10, 11, and 12 satellites. The CZCS operated from November 1978 to June 1986. CZCS data may be obtained free of charge from the CZCS archive at NASA/Goddard Space Flight Center. AVHRR data may be purchased through NOAA's Satellite Data Service Division. Ordering information is included in the PC-SEAPAK documentation. Although PC-SEAPAK was developed on a COMPAQ Deskpro 386/20, it can be run on most 386-compatible computers with an AT bus, EGA controller, Intel 80387 coprocessor, and MS-DOS 3.3 or higher. A Matrox MVP-AT image board with appropriate monitor and cables is also required. Note that the authors have received some reports of

  15. REMOVING SHADOWS FROM HIGH-RESOLUTION URBAN AERIAL IMAGES BASED ON COLOR CONSTANCY

    Directory of Open Access Journals (Sweden)

    Q. Ye

    2012-08-01

    Full Text Available A method is explored to remove tall building shadows in true color and color infrared urban aerial images based on the theory of color constancy. This paper first uses the specthem ratio and Otsu threshold segmentation methods to detect building shadows on urban aerial true color and color infrared aerial images. Then, based on the shadow detection result, one of the color constancy algorithms SoG (Shades of Gray is used to remove the shadows in aerial images with different p values of the Minkowski norm. Finally, the shadow removal results with different p values have been compared by brightness, contrast and average gradients. The experiments show that the result of this method based on color constancy has a good visual effect, and different from general scene image shadow removal, the aerial images get the best shadow removal result when p is 2. It means the two types of aerial images should not be simply regarded as gray world images.

  16. Two color multichannel heterodyne interferometer set up for high spatial resolution electron density profile measurements in TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Pedreira, P.; Criado, A. R.; Acedo, P. [Department of Electronics Technology, Universidad Carlos III de Madrid, Leganes, Madrid 28911 (Spain); Esteban, L.; Sanchez, M.; Sanchez, J. [Laboratorio Nacional de Fusion por ConfinamientoMagnetico-CIEMAT, Madrid 28040 (Spain)

    2010-10-15

    A high spatial resolution two color [CO{sub 2}, {lambda}=10.6 {mu}m/Nd:YAG (Nd:YAG denotes neodymium-doped yttrium aluminum garnet), and {lambda}=1.064 {mu}m] expanded-beam multichannel heterodyne interferometer has been installed on the TJ-II stellarator. Careful design of the optical system has allowed complete control on the evolution of both Gaussian beams along the interferometer, as well as the evaluation and optimization of the spatial resolution to be expected in the measurements. Five CO{sub 2} (measurement) channels and three Nd:YAG (vibration compensation) channels have been used to illuminate the plasma with a probe beam of 100 mm size. An optimum interpolation method has been applied to recover both interferometric phasefronts prior to mechanical vibration subtraction. The first results of the installed diagnostic are presented in this paper.

  17. High Spatial Resolution Visible Color Units on Mars from the Mars Odyssey THEMIS/VIS Instrument

    Science.gov (United States)

    Bell, J. F., III; McConnochie, T.; Savransky, D.; Stiglitz, B.; Wolff, M. J.; Christensen, P. R.; Mehall, G.; James, P. B.; Malin, M.; Caplinger, M.; Ravine, M.; Cherednik, L. L.; Bender, K. C.; Murray, K.; Themis Science Team

    2003-07-01

    This presentation describes the calibration and new results from the Mars Odyssey THEMIS/VIS instrument, which is obtaining five-color visible wavelength images from Mars orbit at scales of 18 72 m/pixel.

  18. Companions in Color: High-Resolution Imaging of Kepler’s Sub-Neptune Host Stars

    Science.gov (United States)

    Ware, Austin; Wolfgang, Angie; Kannan, Deepti

    2018-01-01

    A current problem in astronomy is determining how sub-Neptune-sized exoplanets form in planetary systems. These kinds of planets, which fall between 1 and 4 times the size of Earth, were discovered in abundance by the Kepler Mission and were typically found with relatively short orbital periods. The combination of their size and orbital period make them unusual in relation to the Solar System, leading to the question of how these exoplanets form and evolve. One possibility is that they have been influenced by distant stellar companions. To help assess the influence of these objects on the present-day, observed properties of exoplanets, we conduct a NIR search for visual stellar companions to the stars around which the Kepler Mission discovered planets. We use high-resolution images obtained with the adaptive optics systems at the Lick Observatory Shane-3m telescope to find these companion stars. Importantly, we also determine the effective brightness and distance from the planet-hosting star at which it is possible to detect these companions. Out of the 200 KOIs in our sample, 42 KOIs (21%) have visual companions within 3”, and 90 (46%) have them within 6”. These findings are consistent with recent high-resolution imaging from Furlan et al. 2017 that found at least one visual companion within 4” for 31% of sampled KOIs (37% within 4" for our sample). Our results are also complementary to Furlan et al. 2017, with only 17 visual companions commonly detected in the same filter. As for detection limits, our preliminary results indicate that we can detect companion stars < 3-5 magnitudes fainter than the planet-hosting star at a separation of ~ 1”. These detection limits will enable us to determine the probability that possible companion stars could be hidden within the noise around the planet-hosting star, an important step in determining the frequency with which these short-period, sub-Neptune-sized planets occur within binary star systems.

  19. Ocean color measurements onboard a jet ski: consistency for calval exercise of high-resolution satellite imagery?

    Science.gov (United States)

    Martiny, Nadège; Dehouck, Aurélie; Froidefond, Jean-Marie; Sénéchal, Nadia

    2009-01-01

    An original data set has been acquired on the 5th of April 2008 during the international field experiment ECORS-Truc Vert 2008 (SW France) in the nearshore zone over a complex bathymetry and in moderate turbid waters (SPM ski, bathymetric surveys and a Formosat-2 high-resolution satellite acquisition. The jet-ski provides an interesting mean to gather optical data in shallow waters and in environments hard to sample with traditional coastal ships. An experimental device has been implemented on the jet-ski, equipped with two TRIOS RAMSES sensors which measure simultaneous atmospheric downwelling irradiances Ed and in-water upwelling radiances Lu in the 350-950nm range. Water samples have also been collected at different stages of the jet-ski trajectory (3-25m water depth) in order to assess the concentrations of the ocean constituents (SPM and Chl-a). In the current study we present a methodology to validate FORMOSAT-2 high-resolution ocean color data using "jetski" reflectance measurements, which first require a detailed analysis. The reflectance spectra measurements are shown to be consistent: (i) they are typical of the presence of mineral particles with light absorption at short wavelengths; (ii) their shape and magnitude depend on the depth and the water type (turbidity); (iii) some of them, especially in low turbid waters, are similar to other reflectance spectra measured northward from a ship (Gironde mouth). Thus, the use of "jet-ski" ocean color measurements appears to be adequate for remote sensing calval activities in shallow case-2 waters.

  20. An approach for combining airborne LiDAR and high-resolution aerial color imagery using Gaussian processes

    Science.gov (United States)

    Liu, Yansong; Monteiro, Sildomar T.; Saber, Eli

    2015-10-01

    Changes in vegetation cover, building construction, road network and traffic conditions caused by urban expansion affect the human habitat as well as the natural environment in rapidly developing cities. It is crucial to assess these changes and respond accordingly by identifying man-made and natural structures with accurate classification algorithms. With the increase in use of multi-sensor remote sensing systems, researchers are able to obtain a more complete description of the scene of interest. By utilizing multi-sensor data, the accuracy of classification algorithms can be improved. In this paper, we propose a method for combining 3D LiDAR point clouds and high-resolution color images to classify urban areas using Gaussian processes (GP). GP classification is a powerful non-parametric classification method that yields probabilistic classification results. It makes predictions in a way that addresses the uncertainty of real world. In this paper, we attempt to identify man-made and natural objects in urban areas including buildings, roads, trees, grass, water and vehicles. LiDAR features are derived from the 3D point clouds and the spatial and color features are extracted from RGB images. For classification, we use the Laplacian approximation for GP binary classification on the new combined feature space. The multiclass classification has been implemented by using one-vs-all binary classification strategy. The result of applying support vector machines (SVMs) and logistic regression (LR) classifier is also provided for comparison. Our experiments show a clear improvement of classification results by using the two sensors combined instead of each sensor separately. Also we found the advantage of applying GP approach to handle the uncertainty in classification result without compromising accuracy compared to SVM, which is considered as the state-of-the-art classification method.

  1. Dual-color high-resolution fiber-FISH analysis on lethal white syndrome carriers in sheep.

    Science.gov (United States)

    Pauciullo, A; Fleck, K; Lühken, G; Di Berardino, D; Erhardt, G

    2013-01-01

    Molecular defects occurring in the endothelin receptor type-B (EDNRB) gene are known to be associated with pigmentary anomalies and intestinal aganglionosis in humans, rodents and horses. We carried out a cytogenetic investigation in 2 ewes heterozygous for the deletion of the EDNRB gene and in 2 more females as control. The RBA-banding showed that all 4 ewes were karyologically normal. EDNRB gene-specific probes were produced by PCR and cloning. The application of the R-banding and propidium iodide-staining fluorescent in situ hybridization allowed mapping the gene to OAR 10q22 and confirmed the heterozygous status of the ewes investigated for the EDNRB gene deletion. For the fine estimation of the gene length in sheep and for the correct sizing of the chromosomal gap, a dual-color FISH was applied to high-resolution DNA fibers in combination with digital imaging microscopy. The comparison of the DNA fiber barcodes indicated a chromosomal deletion larger than the EDNRB gene itself. The length of the gene, not known for sheep until now, was estimated to be ∼21 kb, whereas the microchromosomal deletion was ∼100 kb. EDNRB is located in a chromosomal region previously shown to be a fragile site. The applied method allowed locating the potential breakpoints, thus permitting further interesting prospective investigations also in the field of the fragile sites in sheep. Copyright © 2013 S. Karger AG, Basel.

  2. Calibration of a high spatial resolution laser two-color heterodyne interferometer for density profile measurements in the TJ-II stellarator.

    Science.gov (United States)

    Acedo, Pablo; Pedreira, P; Criado, A R; Lamela, Horacio; Sánchez, Miguel; Sánchez, Joaquín

    2008-10-01

    A high spatial resolution two-color (CO(2), lambda=10.6 microm, He-Ne, lambda=633 nm) interferometer for density profile measurements in the TJ-II stellarator is under development and installation, based in the currently operational single channel two-color heterodyne interferometer. To achieve the objectives of 32 channels, with 4-5 mm lateral separation between plasma chords, careful design and calibration of the interferometric waveforms for both the measurement and vibration compensation wavelengths are undertaken. The first step has been to set up in our laboratories an expanded-beam heterodyne/homodyne interferometer to evaluate the quality of both interferometric wavefronts, a reported source of poor vibration compensation and thus low resolution in the density profile measurements. This novel interferometric setup has allowed us to calibrate the spatial resolution in the profile measurements resulting in approximately 2 mm lateral resolution in the reconstruction of the interferometric wavefront.

  3. Digital data storage of core image using high resolution full color core scanner; Kokaizodo full color scanner wo mochiita core image no digital ka

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, W.; Ujo, S.; Osato, K.; Takasugi, S. [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper reports on digitization of core images by using a new type core scanner system. This system consists of a core scanner unit (equipped with a CCD camera), a personal computer and ancillary devices. This is a modification of the old type system, with measurable core length made to 100 cm/3 scans, and resolution enhanced to 5100 pixels/m (1024 pixels/m in the old type). The camera was changed to that of a color specification, and the A/D conversion was improved to 24-bit full color. As a result of carrying out a detail reproduction test on digital images of this core scanner, it was found that objects can be identified at a level of about the size of pixels constituting the image in the case when the best contrast is obtained between the objects and the background, and that in an evaluation test on visibility of concaves and convexes on core surface, reproducibility is not very good in large concaves and convexes. 2 refs., 6 figs.

  4. High-resolution in-situ thermal imaging of microbial mats at El Tatio Geyser, Chile shows coupling between community color and temperature

    Science.gov (United States)

    Dunckel, Anne E.; Cardenas, M. Bayani; Sawyer, Audrey H.; Bennett, Philip C.

    2009-12-01

    Microbial mats have spatially heterogeneous structured communities that manifest visually through vibrant color zonation often associated with environmental gradients. We report the first use of high-resolution thermal infrared imaging to map temperature at four hot springs within the El Tatio Geyser Field, Chile. Thermal images with millimeter resolution show drastic variability and pronounced patterning in temperature, with changes on the order of 30°C within a square decimeter. Paired temperature and visual images show that zones with specific coloration occur within distinct temperature ranges. Unlike previous studies where maximum, minimum, and optimal temperatures for microorganisms are based on isothermally-controlled laboratory cultures, thermal imaging allows for mapping thousands of temperature values in a natural setting. This allows for efficiently constraining natural temperature bounds for visually distinct mat zones. This approach expands current understanding of thermophilic microbial communities and opens doors for detailed analysis of biophysical controls on microbial ecology.

  5. Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This DS consists of the locally enhanced ALOS image mosaics for each of the 24 mineral project areas (referred to herein as areas of interest), whose locality names, locations, and main mineral occurrences are shown on the index map of Afghanistan (fig. 1). ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency, but the image processing has altered the original pixel structure and all image values of the JAXA

  6. [Rapid screening and confirming carcinogenic banned azo colorants in textiles by high performance liquid chromatography-linear ion trap/orbitrap high-resolution mass spectrometry].

    Science.gov (United States)

    Yun, Huan; Liu, Xin; Wang, Jing; Yan, Hua; Cui, Fengyun; Zhang, Zhaohui

    2013-09-01

    A method of high performance liquid chromatography-linear ion trap/orbitrap highresolution mass spectrometry (HPLC-LTP/Orbitrap MS) was ued to screen and confirm-banned azo colorants in textiles rapidly. The analytes were reduced to carcinogenic aromatic amines with sodium dithionite in citrate buffer solution. The reduced solution was extracted bydiatomite, and loadd onto an Acquity UPLC BEH C18 column (50 mm x 2.1 MM. 1.7 microm) with a gradient elution of methanol and 0.1% (v/v) methane acid aqueous solution, and finally detected by linear ion trap/orbitrap high-resolution mass spectrometry in positive ESI mode. In mass spectrometry method, the MS spectrum of high-resolution and the collision induced dissociation (CID) spectrum of data-dependent scan mode were used for screening analysis and conformation, respectively. The calibration curves showed a good linearity in the range of 0.05 -2.00 mg/b, and the correlation coefficients (r) were higher than 0.99. By detecting spiked samples, the limits of quantification were 0.08 mg/kg for all the residues and the recoveries were in the range of 65.5% - 111.5% with the relative standard deviations (RSDs) between 0.87% and 2.49%. The results indicate that the method is simple, rapid, sensitive and suitable for the qualitative and quantitative analysis of carcinogenic aromatic amines in textiles.

  7. Comparison of LiDAR-derived data and high resolution true color imagery for extracting urban forest cover

    Science.gov (United States)

    Aaron E. Maxwell; Adam C. Riley; Paul. Kinder

    2013-01-01

    Remote sensing has many applications in forestry. Light detection and ranging (LiDAR) and high resolution aerial photography have been investigated as means to extract forest data, such as biomass, timber volume, stand dynamics, and gap characteristics. LiDAR return intensity data are often overlooked as a source of input raster data for thematic map creation. We...

  8. Super-Resolution for Color Imagery

    Science.gov (United States)

    2017-09-01

    University of Maryland, College Park , MD S Susan Young Sensors and Electron Devices Directorate, ARL Approved for public...separately; however, it requires performing the super-resolution computation 3 times. We transform images in the default red, green, blue (RGB) color space...chrominance components based on ARL’s alias-free image upsampling using Fourier-based windowing methods. A reverse transformation is performed on

  9. HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver

    Science.gov (United States)

    Yeom, Yeon Soo; Jeong, Jong Hwi; Kim, Chan Hyeong; Han, Min Cheol; Ham, Bo Kyoung; Cho, Kun Woo; Hwang, Sung Bae

    2014-07-01

    In a previous study, we constructed a male reference Korean phantom; HDRK-Man (High-Definition Reference Korean-Man), to represent Korean adult males for radiation protection purposes. In the present study, a female phantom; HDRK-Woman (High-Definition Reference Korean-Woman), was constructed to represent Korean adult females. High-resolution color photographic images obtained by serial sectioning of a 26 year-old Korean adult female cadaver were utilized. The body height and weight, the skeletal mass, and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The phantom was then compared with the International Commission on Radiological Protection (ICRP) female reference phantom in terms of calculated organ doses and organ-depth distributions. Additionally, the effective doses were calculated using both the HDRK-Man and HDRK-Woman phantoms, and the values were compared with those of the ICRP reference phantoms.

  10. A simple and inexpensive high resolution color ratiometric planar optode imaging approach: application to oxygen and pH sensing

    DEFF Research Database (Denmark)

    Larsen, M.; Borisov, S. M.; Grunwald, B.

    2011-01-01

    commercial digital single lens reflex cameras to simultaneously record different colors (red, green, and blue) of luminophore emission light using only one excitation light source. Using the ratio between the intensity of the different colors recorded in a single image analyte concentrations can......) salt derivate for O-2 and pH measurements, respectively. The brightness of both indicators is dramatically enhanced by making use of energy transfer from a donor molecule (Macrolex yellow coumarin). Furthermore, the emission from the donor serves as an internal reference for the O-2 sensor...

  11. 100-Meter Resolution Color Shaded Relief of Hawaii - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Color Shaded Relief of Hawaii map layer is a 100-meter resolution color-sliced elevation image of Hawaii, with relief shading added to accentuate terrain...

  12. 100-Meter Resolution Color Shaded Relief of Alaska - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Color Shaded Relief of Alaska map layer is a 100-meter resolution color-sliced elevation image of Alaska, with relief shading added to accentuate terrain...

  13. 7 CFR 51.1827 - Highly colored.

    Science.gov (United States)

    2010-01-01

    ... Standards for Grades of Florida Tangerines Definitions § 51.1827 Highly colored. Highly colored means that the ground color of each fruit is a deep tangerine color, or characteristic color for the variety...

  14. HDRK-Man: a whole-body voxel model based on high-resolution color slice images of a Korean adult male cadaver

    Science.gov (United States)

    Kim, Chan Hyeong; Hyoun Choi, Sang; Jeong, Jong Hwi; Lee, Choonsik; Chung, Min Suk

    2008-08-01

    A Korean voxel model, named 'High-Definition Reference Korean-Man (HDRK-Man)', was constructed using high-resolution color photographic images that were obtained by serially sectioning the cadaver of a 33-year-old Korean adult male. The body height and weight, the skeletal mass and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The resulting model was then implemented into a Monte Carlo particle transport code, MCNPX, to calculate the dose conversion coefficients for the internal organs and tissues. The calculated values, overall, were reasonable in comparison with the values from other adult voxel models. HDRK-Man showed higher dose conversion coefficients than other models, due to the facts that HDRK-Man has a smaller torso and that the arms of HDRK-Man are shifted backward. The developed model is believed to adequately represent average Korean radiation workers and thus can be used for more accurate calculation of dose conversion coefficients for Korean radiation workers in the future.

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Uruzgan mineral district in Afghanistan: Chapter V in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Uruzgan mineral district, which has tin and tungsten deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  16. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dusar-Shaida mineral district in Afghanistan: Chapter I in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dusar-Shaida mineral district, which has copper and tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Baghlan mineral district in Afghanistan: Chapter P in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Baghlan mineral district, which has industrial clay and gypsum deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2006, 2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  18. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Panjsher Valley mineral district in Afghanistan: Chapter M in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Panjsher Valley mineral district, which has emerald and silver-iron deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2009, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  19. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Aynak mineral district in Afghanistan: Chapter E in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Aynak mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  20. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kundalyan mineral district in Afghanistan: Chapter H in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kundalyan mineral district, which has porphyry copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Parwan mineral district in Afghanistan: Chapter CC in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Parwan mineral district, which has gold and copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006, 2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  2. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Helmand mineral district in Afghanistan: Chapter O in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Helmand mineral district, which has travertine deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  3. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Farah mineral district in Afghanistan: Chapter FF in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Farah mineral district, which has spectral reflectance anomalies indicative of copper, zinc, lead, silver, and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Takhar mineral district in Afghanistan: Chapter Q in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Takhar mineral district, which has industrial evaporite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  5. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Tourmaline mineral district in Afghanistan: Chapter J in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Tourmaline mineral district, which has tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  6. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni2 mineral district in Afghanistan: Chapter EE in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni2 mineral district, which has spectral reflectance anomalies indicative of gold, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image

  7. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Zarkashan mineral district in Afghanistan: Chapter G in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Zarkashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  8. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Katawas mineral district in Afghanistan: Chapter N in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Katawas mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©AXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kunduz mineral district in Afghanistan: Chapter S in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kunduz mineral district, which has celestite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Khanneshin mineral district in Afghanistan: Chapter A in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Khanneshin mineral district, which has uranium, thorium, rare-earth-element, and apatite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Haji-Gak mineral district in Afghanistan: Chapter C in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Haji-Gak mineral district, which has iron ore deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Balkhab mineral district in Afghanistan: Chapter B in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Balkhab mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Bakhud mineral district in Afghanistan: Chapter U in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Bakhud mineral district, which has industrial fluorite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Takhar mineral district in Afghanistan: Chapter D in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Takhar mineral district, which has placer gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nalbandon mineral district in Afghanistan: Chapter L in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nalbandon mineral district, which has lead and zinc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  16. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kandahar mineral district in Afghanistan: Chapter Z in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kandahar mineral district, which has bauxite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kharnak-Kanjar mineral district in Afghanistan: Chapter K in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kharnak-Kanjar mineral district, which has mercury deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  18. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dudkash mineral district in Afghanistan: Chapter R in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dudkash mineral district, which has industrial mineral deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  19. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Herat mineral district in Afghanistan: Chapter T in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Herat mineral district, which has barium and limestone deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  20. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghunday-Achin mineral district in Afghanistan, in Davis, P.A, compiler, Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghunday-Achin mineral district, which has magnesite and talc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Badakhshan mineral district in Afghanistan: Chapter F in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Badakhshan mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  2. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni1 mineral district in Afghanistan: Chapter DD in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni1 mineral district, which has spectral reflectance anomalies indicative of clay, aluminum, gold, silver, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such

  3. Color camera pyrometry for high explosive detonations

    Science.gov (United States)

    Densmore, John; Biss, Matthew; Homan, Barrie; McNesby, Kevin

    2011-06-01

    Temperature measurements of high-explosive and combustion processes are difficult because of the speed and environment of the events. We have characterized and calibrated a digital high-speed color camera that may be used as an optical pyrometer to overcome these challenges. The camera provides both high temporal and spatial resolution. The color filter array of the sensor uses three color filters to measure the spectral distribution of the imaged light. A two-color ratio method is used to calculate a temperature using the color filter array raw image data and a gray-body assumption. If the raw image data is not available, temperatures may be calculated from processed images or movies depending on proper analysis of the digital color imaging pipeline. We analyze three transformations within the pipeline (demosaicing, white balance, and gamma-correction) to determine their effect on the calculated temperature. Using this technique with a Vision Research Phantom color camera, we have measured the temperature of exploded C-4 charges. The surface temperature of the resulting fireball rapidly increases after detonation and then decayed to a constant value of approximately 1980 K. Processed images indicates that the temperature remains constant until the light intensity decreased below the background value.

  4. Color Alaska Shaded Relief ? 200-Meter Resolution - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color Alaska shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Alaska at a resolution of 200 meters. The NED is...

  5. Color Hawaii Shaded Relief ? 200-Meter Resolution - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color Hawaii shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Hawaii at a resolution of 200 meters. The NED is...

  6. Characterization of the 3-Dimensional Mississippi River Plume Using a High Resolution Circulation Model Coupled with Ocean Color Imagery and Field Data

    Science.gov (United States)

    Soto Ramos, I. M.; Arnone, R.; Cambazoglu, M. K.; Jacobs, G. A.; Vandermeulen, R. A.; Howden, S. D.

    2016-02-01

    The Mississippi River Plume (MRP) is responsible for creating a highly dynamic environment in the northern Gulf of Mexico (nGoM). It is also responsible for the transport of rich-nutrient waters, physical and biological connectivity between the nGoM coastal waters to the deep ocean and other regions within the Gulf, and in cases of unfortunate events such as the Deep Horizon Oil Spill it may contribute to the transport and fate of hydrocarbons. The main objective of this work is to characterize the 3-Dimensional MRP using modeled salinity data from the 1 km resolution Navy Coastal Ocean Model (NCOM) and ocean color data (e.g., Chlorophyll-a) from the Visible Infrared Imaging Radiometer Suite (VIIRS). Field data from ships and gliders were used to validate the model and satellite data. An initial step for this study was to determine how to define a "river plume". We selected several study cases of 7 to 10 days in which the river plume was visible in the satellite imagery and examined the vertical salinity distribution at selected cross sections along the river plume. Different salinity thresholds were used to define a river plume and characterize the 3-D dilution and dispersion of the MRP during the study cases. The surface response as means of chlorophyll and light availability in relationship to the depth of the river plume was investigated. Our results improved understanding of the formation of the mixed layer depth in the MRP and how we can integrate model and satellite data to delineate the 3D structure of the river plume and better understand the biological surface response observed in the satellite imagery. The output of this study highlights how circulation models and satellite data can be integrated to better understand the connectivity, transport and fate of sediments, nutrients, and pollutants in the Gulf of Mexico.

  7. Ultrathin Nanostructured Metals for Highly Transmissive Plasmonic Subtractive Color Filters

    Science.gov (United States)

    Zeng, Beibei; Gao, Yongkang; Bartoli, Filbert J.

    2013-01-01

    Plasmonic color filters employing a single optically-thick nanostructured metal layer have recently generated considerable interest as an alternative to colorant-based color filtering technologies, due to their reliability, ease of fabrication, and high color tunability. However, their relatively low transmission efficiency (~30%) needs to be significantly improved for practical applications. The present work reports, for the first time, a novel plasmonic subtractive color filtering scheme that exploits the counter-intuitive phenomenon of extraordinary low transmission (ELT) through an ultrathin nanostructured metal film. This approach relies on a fundamentally different color filtering mechanism than that of existing plasmonic additive color filters, and achieves unusually high transmission efficiencies of 60 ~ 70% for simple architectures. Furthermore, owing to short-range interactions of surface plasmon polaritons at ELT resonances, our design offers high spatial resolution color filtering with compact pixel size close to the optical diffraction limit (~λ/2), creating solid applications ranging from imaging sensors to color displays. PMID:24100869

  8. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  9. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  10. Sparsity-Based Color Image Super Resolution via Exploiting Cross Channel Constraints

    Science.gov (United States)

    Mousavi, Hojjat Seyed; Monga, Vishal

    2017-11-01

    Sparsity constrained single image super-resolution (SR) has been of much recent interest. A typical approach involves sparsely representing patches in a low-resolution (LR) input image via a dictionary of example LR patches, and then using the coefficients of this representation to generate the high-resolution (HR) output via an analogous HR dictionary. However, most existing sparse representation methods for super resolution focus on the luminance channel information and do not capture interactions between color channels. In this work, we extend sparsity based super-resolution to multiple color channels by taking color information into account. Edge similarities amongst RGB color bands are exploited as cross channel correlation constraints. These additional constraints lead to a new optimization problem which is not easily solvable; however, a tractable solution is proposed to solve it efficiently. Moreover, to fully exploit the complementary information among color channels, a dictionary learning method is also proposed specifically to learn color dictionaries that encourage edge similarities. Merits of the proposed method over state of the art are demonstrated both visually and quantitatively using image quality metrics.

  11. MUSIC - Multifunctional stereo imaging camera system for wide angle and high resolution stereo and color observations on the Mars-94 mission

    Science.gov (United States)

    Oertel, D.; Jahn, H.; Sandau, R.; Walter, I.; Driescher, H.

    1990-10-01

    Objectives of the multifunctional stereo imaging camera (MUSIC) system to be deployed on the Soviet Mars-94 mission are outlined. A high-resolution stereo camera (HRSC) and wide-angle opto-electronic stereo scanner (WAOSS) are combined in terms of hardware, software, technology aspects, and solutions. Both HRSC and WAOSS are push-button instruments containing a single optical system and focal plates with several parallel CCD line sensors. Emphasis is placed on the MUSIC system's stereo capability, its design, mass memory, and data compression. A 1-Gbit memory is divided into two parts: 80 percent for HRSC and 20 percent for WAOSS, while the selected on-line compression strategy is based on macropixel coding and real-time transform coding.

  12. High Def Resolution

    CERN Multimedia

    2008-01-01

    According to the report, the Times Square Ball in New York scheduled to drop later that night had spent much of 2007 being renovated and remodeled so that it could now proudly display over 16 million colors. At the time, I didn't think much of it, but later on, my thoughts turned not to sex, like so many of my peers (and certain fruit flies I could mention), but back to this magic colorful ball.

  13. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  14. High-Resolution, Two-Wavelength Pyrometer

    Science.gov (United States)

    Bickler, Donald B.; Henry, Paul K.; Logiurato, D. Daniel

    1989-01-01

    Modified two-color pyrometer measures temperatures of objects with high spatial resolution. Image focused on hole 0.002 in. (0.05 mm) in diameter in brass sheet near end of bundle, causing image to be distributed so fibers covered by defocused radiation from target. Pinhole ensures radiation from only small part of target scene reaches detector, thus providing required spatial resolution. By spreading radiation over bundle, pinhole ensures entire active area of detectors utilized. Produces signal as quiet as conventional instruments but with only 1/64 input radiation.

  15. Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: a comparison with gradient-echo EPI using a color-word Stroop task.

    Science.gov (United States)

    Boyacioğlu, Rasim; Schulz, Jenni; Müller, Nils C J; Koopmans, Peter J; Barth, Markus; Norris, David G

    2014-08-15

    A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo (GE) EPI multiband sequence (TR of 1.4 s) using a color-word Stroop task. PINS RF pulses were used for refocusing to reduce RF amplitude requirements and SAR, summed and phase-optimized standard pulses were used for excitation enabling a transverse or oblique slice orientation. The distortions were minimized with the use of parallel imaging in the phase encoding direction and a post-acquisition distortion correction. In general, GE-EPI shows higher efficiency and higher CNR in most brain areas except in some parts of the visual cortex and superior frontal pole at both the group and individual-subject levels. Gradient-echo EPI was able to detect robust activation near the air/tissue interfaces such as the orbito-frontal and subcortical regions due to reduced intra-voxel dephasing because of the thin slices used and high in-plane resolution. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. USGS Small-scale Dataset - 100-Meter Resolution Color-Sliced Elevation of Alaska 201303 TIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map layer of Color-Sliced Elevation of Alaska is a 100-meter resolution elevation image of Alaska, in an Albers Equal-Area Conic projection. Each color tint...

  17. 100-Meter Resolution Color Shaded Relief of the Conterminous United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Color Shaded Relief of the Conterminous United States map layer is a 100-meter resolution color-sliced elevation image of the United States, with relief shading...

  18. USGS Small-scale Dataset - 100-Meter Resolution Color-Sliced Elevation of Hawaii 201303 TIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map layer of Color-Sliced Elevation of Hawaii is a 100-meter resolution elevation image of Hawaii, in an Albers Equal-Area Conic projection. Each color tint...

  19. 100-Meter Resolution Color-Sliced Elevation of Hawaii - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map layer of Color-Sliced Elevation of Hawaii is a 100-meter resolution elevation image of Hawaii, in an Albers Equal-Area Conic projection. Each color tint...

  20. Enhancing moderate-resolution ocean color products over coastal/inland waters (Conference Presentation)

    Science.gov (United States)

    Pahlevan, Nima; Schott, John R.; Zibordi, Giuseppe

    2016-10-01

    With the successful launch of Landsat-8 in 2013 followed by a very recent launch of Sentinel-2A, we are entering a new area where frequent moderate resolution water quality products over coastal/inland waters will be available to scientists and operational agencies. Although designed for land observations, the Operational Land Imager (OLI) has proven to provide high-fidelity products in these aquatic systems where coarse-resolution ocean color imagers fail to provide valid observations. High-quality, multi-scale ocean color products can give insights into the biogeochemical/physical processes from the upstream in watersheds, into near-shore regions, and further out in ocean basins. In this research, we describe a robust cross-calibration approach, which facilitates seamless ocean color products at multi scales. The top-of-atmosphere (TOA) OLI imagery is cross-calibrated against near-simultaneous MODIS and VIIRS ocean color observations in high-latitude regions. This allows for not only examining the overall relative performance of OLI but also for characterizing non-uniformity (i.e., banding) across its swath. The uncertainty of this approach is, on average, found to be less than 0.5% in the blue channels. The adjustments made for OLI TOA reflectance products are then validated against in-situ measurements of remote sensing reflectance collected in research cruises or at the AERONET-OC.

  1. A subjective evaluation of high-chroma color with wide color-gamut display

    Science.gov (United States)

    Kishimoto, Junko; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2009-01-01

    Displays tends to expand its color gamut, such as multi-primary color display, Adobe RGB and so on. Therefore displays got possible to display high chroma colors. However sometimes, we feel unnatural some for the image which only expanded chroma. Appropriate gamut mapping method to expand color gamut is not proposed very much. We are attempting preferred expanded color reproduction on wide color gamut display utilizing high chroma colors effectively. As a first step, we have conducted an experiment to investigate the psychological effect of color schemes including highly saturated colors. We used the six-primary-color projector that we have developed for the presentation of test colors. The six-primary-color projector's gamut volume in CIELAB space is about 1.8 times larger than the normal RGB projector. We conducted a subjective evaluation experiment using the SD (Semantic Differential) technique to find the quantitative psychological effect of high chroma colors.

  2. Multivariate curve resolution of spectrophotometric data for the determination of artificial food colors.

    Science.gov (United States)

    Lachenmeier, Dirk W; Kessler, Waltraud

    2008-07-23

    In the analysis of food additives, past emphasis was put on the development of chromatographic techniques to separate target components from a complex matrix. Especially in the case of artificial food colors, direct spectrophotometric measurement was seen to lack in specificity due to a high spectral overlap between different components. Multivariate curve resolution (MCR) may be used to overcome this limitation. MCR is able to (i) extract from a complex spectral feature the number of involved components, (ii) attribute the resulting spectra to chemical compounds, and (iii) quantify the individual spectral contributions with or without a priori knowledge. We have evaluated MCR for the routine analysis of yellow and blue food colors in absinthe spirits. Using calibration standards, we were able to show that MCR equally performs as compared to partial least-squares regression but with much improved chemical information contained in the predicted spectra. MCR was then applied to an authentic collective of different absinthes. As confirmed by reference analytics, the food colors were correctly assigned with a sensitivity of 0.93 and a specificity of 0.85. Besides the artificial colors, the algorithm detected a further component in some samples that could be assigned to natural coloring from chlorophyll.

  3. High resolution signal processing

    Science.gov (United States)

    Tufts, Donald W.

    1993-08-01

    Motivated by the goal of efficient, effective, high-speed integrated-circuit realization, we have discovered an algorithm for high speed Fourier analysis called the Arithmetic Fourier Transform (AFT). It is based on the number-theoretic method of Mobius inversion, a method that is well suited for integrated-circuit realization. The computation of the AFT can be carried out in parallel, pipelined channels, and the individual operations are very simple to execute and control. Except for a single scaling in each channel, all the operations are additions or subtractions. Thus, it can reduce the required power, volume, and cost. Also, analog switched-capacitor realizations of the AFT have been studied. We have also analyzed the performance of a broad and useful class of data adaptive signal estimation algorithms. This in turn has led to our proposed improvements in the methods. We have used perturbation analysis of the rank-reduced data matrix to calculate its statistical properties. The improvements made have been demonstrated by computer simulation as well as by comparison with the Cramer-Rao Bound.

  4. Enhanced High Resolution RBS System

    Science.gov (United States)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  5. Demosaiced pixel super-resolution in digital holography for multiplexed computational color imaging on-a-chip (Conference Presentation)

    Science.gov (United States)

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2017-03-01

    Digital holographic on-chip microscopy achieves large space-bandwidth-products (e.g., >1 billion) by making use of pixel super-resolution techniques. To synthesize a digital holographic color image, one can take three sets of holograms representing the red (R), green (G) and blue (B) parts of the spectrum and digitally combine them to synthesize a color image. The data acquisition efficiency of this sequential illumination process can be improved by 3-fold using wavelength-multiplexed R, G and B illumination that simultaneously illuminates the sample, and using a Bayer color image sensor with known or calibrated transmission spectra to digitally demultiplex these three wavelength channels. This demultiplexing step is conventionally used with interpolation-based Bayer demosaicing methods. However, because the pixels of different color channels on a Bayer image sensor chip are not at the same physical location, conventional interpolation-based demosaicing process generates strong color artifacts, especially at rapidly oscillating hologram fringes, which become even more pronounced through digital wave propagation and phase retrieval processes. Here, we demonstrate that by merging the pixel super-resolution framework into the demultiplexing process, such color artifacts can be greatly suppressed. This novel technique, termed demosaiced pixel super-resolution (D-PSR) for digital holographic imaging, achieves very similar color imaging performance compared to conventional sequential R,G,B illumination, with 3-fold improvement in image acquisition time and data-efficiency. We successfully demonstrated the color imaging performance of this approach by imaging stained Pap smears. The D-PSR technique is broadly applicable to high-throughput, high-resolution digital holographic color microscopy techniques that can be used in resource-limited-settings and point-of-care offices.

  6. High Resolution Global View of Io

    Science.gov (United States)

    1997-01-01

    Io, the most volcanic body in the solar system is seen in the highest resolution obtained to date by NASA's Galileo spacecraft. The smallest features that can be discerned are 2.5 kilometers in size. There are rugged mountains several kilometers high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters. The picture is centered on the side of Io that always faces away from Jupiter; north is to the top.Color images acquired on September 7, 1996 have been merged with higher resolution images acquired on November 6, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The color is composed of data taken, at a range of 487,000 kilometers, in the near-infrared, green, and violet filters and has been enhanced to emphasize the extraordinary variations in color and brightness that characterize Io's face. The high resolution images were obtained at ranges which varied from 245,719 kilometers to 403,100 kilometers.Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  7. High Spatiotemporal Resolution Prostate MRI

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0341 TITLE: High Spatiotemporal Resolution Prostate MRI PRINCIPAL INVESTIGATOR: Stephen J. Riederer, Ph.D...Resolution Prostate MRI 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0341 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Stephen J. Riederer E-Mail...overall purpose of this project is to develop improved means using MRI for detecting prostate cancer with the potential for differentiating disease

  8. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  9. USGS Small-scale Dataset - Color Hawaii Shaded Relief - 200-Meter Resolution 200512 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color Hawaii shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Hawaii at a resolution of 200 meters. The NED is...

  10. Color Alaska Shaded Relief ? 200-Meter Resolution, Albers projection - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color Alaska shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Alaska at a resolution of 200 meters. The NED is...

  11. USGS Small-scale Dataset - Color Alaska Shaded Relief - 200-Meter Resolution 200512 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color Alaska shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Alaska at a resolution of 200 meters. The NED is...

  12. 100-Meter Resolution Color-Sliced Elevation of the Conterminous United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map layer of Color-Sliced Elevation of the Conterminous United States is a 100-meter resolution elevation image of the United States, in an Albers Equal-Area...

  13. Color Hawaii Shaded Relief ? 200-Meter Resolution, Albers projection - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color Hawaii shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Hawaii at a resolution of 200 meters. The NED is...

  14. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  15. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  16. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  17. High-resolution multiphoton cryomicroscopy.

    Science.gov (United States)

    König, Karsten; Uchugonova, Aisada; Breunig, Hans Georg

    2014-03-15

    An ultracompact high-resolution multiphoton cryomicroscope with a femtosecond near infrared fiber laser has been utilized to study the cellular autofluorescence during freezing and thawing of cells. Cooling resulted in an increase of the intracellular fluorescence intensity followed by morphological modifications at temperatures below -10 °C, depending on the application of the cryoprotectant DMSO and the cooling rate. Furthermore, fluorescence lifetime imaging revealed an increase of the mean lifetime with a decrease in temperature. Non-destructive, label-free optical biopsies of biomaterial in ice can be obtained with sub-20 mW mean powers. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. USGS Small-scale Dataset - 100-Meter Resolution Color Shaded Relief of the Conterminous United States 201304 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Color Shaded Relief of the Conterminous United States map layer is a 100-meter resolution color-sliced elevation image of the United States, with relief shading...

  19. Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: a comparison with gradient-echo EPI using a color-word Stroop task

    NARCIS (Netherlands)

    Boyacioglu, R.; Schulz, J.; Müller, N.C.J.; Koopmans, P.J.; Barth, M.; Norris, D.G.

    2014-01-01

    A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo

  20. Whole brain, high resolution multiband spin-echo EPI fMRI at 7 T: A comparison with gradient-echo EPI using a color-word Stroop task

    NARCIS (Netherlands)

    Boyacioglu, R.; Schulz, J.; Müller, N.C.J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon

    2014-01-01

    A whole brain, multiband spin-echo (SE) echo planar imaging (EPI) sequence employing a high spatial (1.5 mm isotropic) and temporal (TR of 2 s) resolution was implemented at 7 T. Its overall performance (tSNR, sensitivity and CNR) was assessed and compared to a geometrically matched gradient-echo

  1. Solar corona at high resolution

    Science.gov (United States)

    Golub, L.; Rosner, R.; Zombeck, M. V. Z.; Vaiana, G. S.

    1982-01-01

    The earth's surface is shielded from solar X rays almost completely by the atmosphere. It is, therefore, necessary to place X-ray detectors on rockets or orbiting satellites. Solar rays were detected for the first time in the late 1940's, using V-2 rockets. In 1960, the first true X-ray images of the sun were obtained with the aid of a simple pinhole camera. The spatial resolution of the X-ray images could be considerably improved by making use of reflective optics, operating at grazing incidence. Aspects of X-ray mirror developments are discussed along with the results obtained in coronal studies utilizing the new devices for the observation of solar X-ray emission. It is pointed out that the major achievements of the Skylab missions were due primarily to the unique opportunity to obtain data over an extended period of time. Attention is given to normal incidence X-ray optics, achievements possible by making use of high spatial resolution optics, and details of improved mirror design.

  2. Complete sparing of high-contrast color input to motion perception in cortical color blindness.

    Science.gov (United States)

    Cavanagh, P; Hénaff, M A; Michel, F; Landis, T; Troscianko, T; Intriligator, J

    1998-07-01

    It is widely held that color and motion are processed by separate parallel pathways in the visual system, but this view is difficult to reconcile with the fact that motion can be detected in equiluminant stimuli that are defined by color alone. To examine the relationship between color and motion, we tested three patients who had lost their color vision following cortical damage (central achromatopsia). Despite their profound loss in the subjective experience of color and their inability to detect the motion of faint colors, all three subjects showed surprisingly strong responses to high-contrast, moving color stimuli--equal in all respects to the performance of subjects with normal color vision. The pathway from opponent-color detectors in the retina to the motion analysis areas must therefore be independent of the damaged color centers in the occipitotemporal area. It is probably also independent of the motion analysis area MT/V5, because the contribution of color to motion detection in these patients is much stronger than the color response of monkey area MT.

  3. Color Depth Modulation and Resolution in Phase-Change Material Nanodisplays.

    Science.gov (United States)

    Ríos, Carlos; Hosseini, Peiman; Taylor, Robert A; Bhaskaran, Harish

    2016-06-01

    The demonstration of non-volatile color-depth modulation in novel phase change nanodisplays allowing for continuous "grayscale" images with ultrahigh resolution and low dimensionality is described. These results hold promise for a new generation of bistable, ultrahigh-resolution, and flexible display technologies, while allowing for other potential applications in nanophotonics and optoelectronics. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evaluation of Advanced Bionics high resolution mode.

    Science.gov (United States)

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  5. High-resolution infrared imaging

    Science.gov (United States)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  6. VT Hydrography Dataset - High Resolution NHD

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Vermont Hydrography Dataset (VHD) is compliant with the local resolution (also known as High Resolution) National Hydrography Dataset (NHD)...

  7. High Resolution, High Frame Rate Video Technology

    Science.gov (United States)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  8. Cellular resolution multiplexed FLIM tomography with dual-color Bessel beam

    OpenAIRE

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-01-01

    Fourier multiplexed FLIM (FmFLIM) tomography enables multiplexed 3D lifetime imaging of whole embryos. In our previous FmFLIM system, the spatial resolution was limited to 25 ?m because of the trade-off between the spatial resolution and the imaging depth. In order to achieve cellular resolution imaging of thick specimens, we built a tomography system with dual-color Bessel beam. In combination with FmFLIM, the Bessel FmFLIM tomography system can perform parallel 3D lifetime imaging on multip...

  9. High-resolution neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mikerov, V.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Zhitnik, I.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Ignat`ev, A.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Isakov, A.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Korneev, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Krutov, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Kuzin, S.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Oparin, S.N. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Pertsov, A.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Podolyak, E.R. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Sobel`man, I.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tindo, I.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tukarev, B.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation)

    1995-12-31

    A neutron tomography technique with a coordinate resolution of several tens of micrometers has been developed. Our results indicate that the technique resolves details with dimensions less than 100 {mu}m and measures a linear attenuation of less than {approx} 0.1 cm{sup -1}. Tomograms can be reconstructed using incomplete data. Limits on the resolution of the restored pattern are analyzed, and ways to improve the sensitivity of the technique are discussed. (orig.).

  10. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  11. Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection.

    Science.gov (United States)

    Zhou, Jun; Gao, Peng Fei; Zhang, Hong Zhi; Lei, Gang; Zheng, Lin Ling; Liu, Hui; Huang, Cheng Zhi

    2017-03-30

    Imaging of light scattering plasmonic nanoparticles (PNPs) with the aid of the dark-field microscopy imaging (iDFM) technique has attracted wide attention owing to its high signal-to-noise ratio, but to improve the color resolution and contrast of dark-field microscopy (DFM) images of single light scattering PNPs in a small spectral variation environment is still a challenge. In this study, a new color analytical method for resolving the resolution and contrast in DFM images has been developed and further applied for colorimetric analysis using the digital image processing technique. The color of single light scattering PNP images is automatically coded at first with the hue values of the HSI color model, and then amplified using the MATLAB program even for marginal spectral changes, leading to significant improvement of the color resolution of DFM images and easy detection with the naked eye. As a proof of concept, this method is then applied to distinguish single PNPs with various sizes and to visually detect hepatocellular carcinoma-associated microRNA. As it greatly improved the color resolution of iDFM and its detection sensitivity, this method shows promise to serve as a better alternative for sensitive visual analysis and spectrometer-based spectral analysis.

  12. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope.

    Science.gov (United States)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  13. Cellular resolution multiplexed FLIM tomography with dual-color Bessel beam.

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed FLIM (FmFLIM) tomography enables multiplexed 3D lifetime imaging of whole embryos. In our previous FmFLIM system, the spatial resolution was limited to 25 μm because of the trade-off between the spatial resolution and the imaging depth. In order to achieve cellular resolution imaging of thick specimens, we built a tomography system with dual-color Bessel beam. In combination with FmFLIM, the Bessel FmFLIM tomography system can perform parallel 3D lifetime imaging on multiple excitation-emission channels at a cellular resolution of 2.8 μm. The image capability of the Bessel FmFLIM tomography system was demonstrated by 3D lifetime imaging of dual-labeled transgenic zebrafish embryos.

  14. High resolution, high bandwidth global shutter CMOS area scan sensors

    Science.gov (United States)

    Faramarzpour, Naser; Sonder, Matthias; Li, Binqiao

    2013-10-01

    Global shuttering, sometimes also known as electronic shuttering, enables the use of CMOS sensors in a vast range of applications. Teledyne DALSA Global shutter sensors are able to integrate light synchronously across millions of pixels with microsecond accuracy. Teledyne DALSA offers 5 transistor global shutter pixels in variety of resolutions, pitches and noise and full-well combinations. One of the recent generations of these pixels is implemented in 12 mega pixel area scan device at 6 um pitch and that images up to 70 frames per second with 58 dB dynamic range. These square pixels include microlens and optional color filters. These sensors also offer exposure control, anti-blooming and high dynamic range operation by introduction of a drain and a PPD reset gate to the pixel. The state of the art sense node design of Teledyne DALSA's 5T pixel offers exceptional shutter rejection ratio. The architecture is consistent with the requirements to use stitching to achieve very large area scan devices. Parallel or serial digital output is provided on these sensors using on-chip, column-wise analog to digital converters. Flexible ADC bit depth combined with windowing (adjustable region of interest, ROI) allows these sensors to run with variety of resolution/bandwidth combinations. The low power, state of the art LVDS I/O technology allows for overall power consumptions of less than 2W at full performance conditions.

  15. High Resolution Imaging with AEOS

    Energy Technology Data Exchange (ETDEWEB)

    Patience, J; Macintosh, B A; Max, C E

    2001-08-27

    The U. S. Air Force Advanced Electro-Optical System (AEOS) which includes a 941 actuator adaptive optics system on a 3.7m telescope has recently been made available for astronomical programs. Operating at a wavelength of 750 nm, the diffraction-limited angular resolution of the system is 0.04 inches; currently, the magnitude limit is V {approx} 7 mag. At the distances of nearby open clusters, diffraction-limited images should resolve companions with separations as small as 4-6 AU--comparable to the Sun-Jupiter distance. The ability to study such close separations is critical, since most companions are expected to have separations in the few AU to tens of AU range. With the exceptional angular resolution of the current AEOS setup, but restricted target magnitude range, we are conducting a companion search of a large, well-defined sample of bright early-type stars in nearby open clusters and in the field. Our data set will both characterize this relatively new adaptive optics system and answer questions in binary star formation and stellar X-ray activity. We will discuss our experience using AEOS, the data analysis involved, and our initial results.

  16. Submicrometer-resolution in situ imaging of the focus pattern of a soft x-ray laser by color center formation in LiF crystal.

    Science.gov (United States)

    Faenov, A Ya; Kato, Y; Tanaka, M; Pikuz, T A; Kishimoto, M; Ishino, M; Nishikino, M; Fukuda, Y; Bulanov, S V; Kawachi, T

    2009-04-01

    We demonstrate high quality, single-shot in situ imaging of the focused Ag x-ray laser (XRL) at 13.9 nm with 700 nm spatial resolution by color center formation in LiF. The flux and intensity for the color center formation in LiF are evaluated from the experimental data. Comparisons with previous reports show that the threshold x-ray flux for the color center formation in LiF for the 13.9 nm, 7 ps Ag XRL is 3 orders of magnitude less than that with the 46.9 nm, 2 ns capillary discharge Ar XRL.

  17. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  18. ROV seafloor surveys combining 5-cm lateral resolution multibeam bathymetry with color stereo photographic imagery

    Science.gov (United States)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Rock, S. M.; Risi, M.; Padial, J. A.

    2013-12-01

    The Monterey Bay Aquarium Research Institute is developing a low altitude, high-resolution seafloor mapping capability that combines multibeam sonar with stereo photographic imagery. The goal is to obtain spatially quantitative, repeatable renderings of the seafloor with fidelity at scales of 5 cm or better from altitudes of 2-3 m. The initial test surveys using this sensor system are being conducted from a remotely operated vehicle (ROV). Ultimately we intend to field this survey system from an autonomous underwater vehicle (AUV). This presentation focuses on the current sensor configuration, methods for data processing, and results from recent test surveys. Bathymetry data are collected using a 400-kHz Reson 7125 multibeam sonar. This configuration produces 512 beams across a 135° wide swath; each beam has a 0.5° acrosstrack by 1.0° alongtrack angular width. At a 2-m altitude, the nadir beams have a 1.7-cm acrosstrack and 3.5 cm alongtrack footprint. Dual Allied Vision Technology GX1920 2.8 Mpixel color cameras provide color stereo photography of the seafloor. The camera housings have been fitted with corrective optics achieving a 90° field of view through a dome port. Illumination is provided by dual 100J xenon strobes. Position, depth, and attitude data are provided by a Kearfott SeaDevil Inertial Navigation System (INS) integrated with a 300 kHz RDI Doppler velocity log (DVL). A separate Paroscientific pressure sensor is mounted adjacent to the INS. The INS Kalman filter is aided by the DVL velocity and pressure data, achieving navigational drift rates less than 0.05% of the distance traveled during surveys. The sensors are mounted onto a toolsled fitted below MBARI's ROV Doc Ricketts with the sonars, cameras and strobes all pointed vertically down. During surveys the ROV flies at a 2-m altitude at speeds of 0.1-0.2 m/s. During a four-day R/V Western Flyer cruise in June 2013, we successfully collected multibeam and camera survey data from a 2-m altitude

  19. High-Resolution Data for a Low-Resolution World

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Brendan Williams [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-10

    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated by a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.

  20. USGS Small-scale Dataset - Color Hawaii Shaded Relief - 200-Meter Resolution, Albers projection 200603 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color Hawaii shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Hawaii at a resolution of 200 meters. The NED is...

  1. USGS Small-scale Dataset - Color Alaska Shaded Relief - 200-Meter Resolution, Albers projection 200603 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color Alaska shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Alaska at a resolution of 200 meters. The NED is...

  2. USGS Small-scale Dataset - 100-Meter Resolution Color-Sliced Elevation of the Conterminous United States 201303 TIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map layer of Color-Sliced Elevation of the Conterminous United States is a 100-meter resolution elevation image of the United States, in an Albers Equal-Area...

  3. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  4. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  5. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  6. Radiation length imaging with high resolution telescopes

    OpenAIRE

    Stolzenberg, U.; Frey, A.; Schwenker, B; Wieduwilt, P.; Marinas, C; Lütticke, F.

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D imag...

  7. Visible Color Properties of Mars at Sub-100 m Resolutions from Mars Odyssey THEMIS/VIS

    Science.gov (United States)

    Bell, J. F., III; McConnochie, T. H.; Wolff, M. J.; Savransky, D.; Stiglitz, B.; Malin, M.; Christensen, P. R.; Mehall, G. L.; Cherednik, L. L.; Bender, K. C.; THEMIS Science Team

    2003-05-01

    The Mars Odyssey THEMIS instrument's Visible Imaging Subsystem (VIS) has been acquiring one to five color visible wavelength images of Mars at spatial scales of 18 to 72 m/pixel since February 2002. As of late-June 2003 VIS had acquired approximately 8600 image sequences covering approximately 9% of the Martian surface. Roughly two thirds of the VIS images acquired to date have been single-band images (mostly 654 nm); the remaining have been acquired in two or more bands, with most of those acquired through all five VIS filters (425, 540, 654, 749, and 860 nm). Nearly all of the two nominal MER landing ellipses have been imaged by VIS in at least the 654 nm band. We have developed a VIS calibration pipeline using pre-flight and in-flight calibration data to correct for instrumental effects and convert the images to radiance units. Five-color radiance data are also being used to generate true color composite views of VIS scenes. Work is also underway to quantify the surface vs. atmospheric components of the observed radiances using radiative transfer modeling and simultaneous MGS/TES and THEMIS/IRS observations. Initial analyses of the VIS multispectral data are focusing on the search for and identification of anomalous color units associated with intercrater deposits, dunes, wind streaks, and gullies. In general,we are finding that color variability is subtle on Mars even at the fine spatial scale of VIS observations. These results have important implications for testing of competing hypotheses dealing with weathering or alteration of the martian surface, as well as for planning of future MRO CRISM or HiRISE observations at higher spectral or spatial resolution. This work is supported by the NASA Mars Odyssey Participating Scientist Program.

  8. High resolution quantum metrology via quantum interpolation

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yixiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Cappellaro, Paola

    2016-05-01

    Nitrogen Vacancy (NV) centers in diamond are a promising platform for quantum metrology - in particular for nanoscale magnetic resonance imaging to determine high resolution structures of single molecules placed outside the diamond. The conventional technique for sensing of external nuclear spins involves monitoring the effects of the target nuclear spins on the NV center coherence under dynamical decoupling (the CPMG/XY8 pulse sequence). However, the nuclear spin affects the NV coherence only at precise free evolution times - and finite timing resolution set by hardware often severely limits the sensitivity and resolution of the method. In this work, we overcome this timing resolution barrier by developing a technique to supersample the metrology signal by effectively implementing a quantum interpolation of the spin system dynamics. This method will enable spin sensing at high magnetic fields and high repetition rate, allowing significant improvements in sensitivity and spectral resolution. We experimentally demonstrate a resolution boost by over a factor of 100 for spin sensing and AC magnetometry. The method is shown to be robust, versatile to sensing normal and spurious signal harmonics, and ultimately limited in resolution only by the number of pulses that can be applied.

  9. High resolution technology for FPD lithography tools

    Science.gov (United States)

    Yabu, Nobuhiko; Nagai, Yoshiyuki; Tomura, Satoshi; Yoshikawa, Tomohiro

    2013-06-01

    As the resolution of LCD panels adapted for Smartphone and Tablet PC rapidly becomes higher, the performance needed for lithography tools to produce them also becomes higher than ever. To respond to such needs, we have developed new lithography tools for mass production of high resolution LCD panels. We have executed various exposure tests to evaluate their performance. In this paper, we present the results of these tests. By employing higher NA projection optics, high resolution (2.0μm and under) has been achieved. We also present the effect of special illumination and the difference in profile between kinds of photoresist. Furthermore, we also refer what will be needed for masks and blanks in the next generation. To achieve even higher resolution, it is necessary for masks and blanks to have high flatness, low level of defects and small linewidth error.

  10. Ultra-high resolution and high-brightness AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  11. High-speed 3D profilometry employing HSI color model for color surface with discontinuities

    Science.gov (United States)

    Yin, Wei; Cheng, Xiaosheng; Xie, Jieru; Cui, Haihua; Chen, Yingying

    2017-11-01

    Structured-light projection methods are facing two remaining challenges. One is a high-speed optical metrology on objects with chromatic surfaces and the other one is avoiding phase errors caused by height steps or spatially isolated surfaces. To overcome them, this paper provides an effective profilometry with a single-shot image by employing the HSI color model to compose the colorful pattern. Three sinusoidal fringes with different phase steps are encoded in RGB channels respectively. The hue component of a deformed pattern is applied to reconstruct the 3D shape of an object. The saturation and the intensity are utilized to correct the hue demodulation. Besides, an effective color calibration procedure is developed to compensate the hue error. Experimental results verify the feasibility of the developed method.

  12. High-Resolution PET Detector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  13. Heterodyne high-spectral-resolution lidar.

    Science.gov (United States)

    Chouza, Fernando; Witschas, Benjamin; Reitebuch, Oliver

    2017-10-10

    In this work, a novel lidar technique to perform high-spectral-resolution measurements of the atmospheric backscatter is discussed and the first results are presented. The proposed method, which relies on a heterodyne detection receiver, allows us not only to separate the molecular and the aerosol component of the atmospheric backscatter, but also to investigate the spectral shape of the Rayleigh-Brillouin line. As in the case of the direct-detection high-spectral-resolution lidars, the separation of the different scattering processes would allow an independent system calibration and aerosol extinction measurements. The proposed retrieval technique was successfully tested on the Deutsches Zentrum für Luft- und Raumfahrt airborne Doppler wind lidar system with measurements conducted during different measurement campaigns and under different atmospheric conditions. In light of these results, further ideas for the implementation of a dedicated heterodyne high-spectral-resolution lidar are discussed.

  14. Robust super-resolution by fusion of interpolated frames for color and grayscale images

    Directory of Open Access Journals (Sweden)

    Barry eKarch

    2015-04-01

    Full Text Available Multi-frame super-resolution (SR processing seeks to overcome undersampling issues that can lead to undesirable aliasing artifacts. The key to effective multi-frame SR is accurate subpixel inter-frame registration. This accurate registration is challenging when the motion does not obey a simple global translational model and may include local motion. SR processing is further complicated when the camera uses a division-of-focal-plane (DoFP sensor, such as the Bayer color filter array. Various aspects of these SR challenges have been previously investigated. Fast SR algorithms tend to have difficulty accommodating complex motion and DoFP sensors. Furthermore, methods that can tolerate these complexities tend to be iterative in nature and may not be amenable to real-time processing. In this paper, we present a new fast approach for performing SR in the presence of these challenging imaging conditions. We refer to the new approach as Fusion of Interpolated Frames (FIF SR. The FIF SR method decouples the demosaicing, interpolation, and restoration steps to simplify the algorithm. Frames are first individually demosaiced and interpolated to the desired resolution. Next, FIF uses a novel weighted sum of the interpolated frames to fuse them into an improved resolution estimate. Finally, restoration is applied to deconvolve the modeled system PSF. The proposed FIF approach has a lower computational complexity than most iterative methods, making it a candidate for real-time implementation. We provide a detailed description of the FIF SR method and show experimental results using synthetic and real datasets in both constrained and complex imaging scenarios. The experiments include airborne grayscale imagery and Bayer color array images with affine background motion plus local motion.

  15. Color changes in pork in relation to high pressure treatment

    DEFF Research Database (Denmark)

    Bak, Kathrine Holmgaard

    that the critical limit of O2 is higher for dry-cured meat than for cooked, cured meat, possibly due to the reduced molecular mobility in the drier samples. HP treatment appeared to offer an additional protective effect to surface color stability in dry-cured meat, possibly by introducing intermolecular hydrogen......The color changes taking place in fresh as well as cured pork as a result of high pressure (HP) treatment were investigated, characterized, and explained. The effect of HP in the range from 200 through 800 MPa at 5 °C or 20°C on the color of fresh porcine longissimus dorsi (LD) immediately after HP...... treatment and during a six-day storage period was investigated via surface reflectance. Spectroscopic studies (in the form of surface reflectance, UV-vis, and circular dichroism) on the effect of HP treatment on the soluble protein fraction of porcine LD were conducted attempting to explain the color...

  16. Customized MFM probes with high lateral resolution

    Directory of Open Access Journals (Sweden)

    Óscar Iglesias-Freire

    2016-07-01

    Full Text Available Magnetic force microscopy (MFM is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm topographic (magnetic lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media by choosing tips mounted on hard (or soft cantilevers, a technology that is currently not available on the market.

  17. Qualitative interpretation of high resolution aeromagnetic (HRAM ...

    African Journals Online (AJOL)

    Qualitative interpretation of high resolution aeromagnetic (HRAM) data from some parts of offshore Niger delta, Nigeria. ... Open Access DOWNLOAD FULL TEXT ... The original raster map, obtained from the Nigeria Geological Survey Agency (NGSA) in half degree sheet, was subjected to qualitative data analysis using the ...

  18. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  19. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling

  20. Compact high-resolution spectral phase shaper

    NARCIS (Netherlands)

    Postma, S.; van der Walle, P.; Offerhaus, Herman L.; van Hulst, N.F.

    2005-01-01

    The design and operation of a high-resolution spectral phase shaper with a footprint of only 7×10 cm2 is presented. The liquid-crystal modulator has 4096 elements. More than 600 independent degrees of freedom can be positioned with a relative accuracy of 1 pixel. The spectral shaping of pulses from

  1. High resolution analysis of interphase chromosome domains

    NARCIS (Netherlands)

    Visser, A. E.; Jaunin, F.; Fakan, S.; Aten, J. A.

    2000-01-01

    Chromosome territories need to be well defined at high resolution before functional aspects of chromosome organization in interphase can be explored. To visualize chromosomes by electron microscopy (EM), the DNA of Chinese hamster fibroblasts was labeled in vivo with thymidine analogue BrdU. Labeled

  2. A Portable, High Resolution, Surface Measurement Device

    Science.gov (United States)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  3. High Resolution Regional Climate Simulations over Alaska

    Science.gov (United States)

    Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.

    2016-12-01

    In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.

  4. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  5. Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage.

    Science.gov (United States)

    Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P

    2017-02-01

    The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  7. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  8. High-Resolution Broadband Spectral Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  9. High-speed imaging using 3CCD camera and multi-color LED flashes

    Science.gov (United States)

    Hijazi, Ala; Friedl, Alexander; Cierpka, Christian; Kähler, Christian; Madhavan, Vis

    2017-11-01

    This paper demonstrates the possibility of capturing full-resolution, high-speed image sequences using a regular 3CCD color camera in conjunction with high-power light emitting diodes of three different colors. This is achieved using a novel approach, referred to as spectral-shuttering, where a high-speed image sequence is captured using short duration light pulses of different colors that are sent consecutively in very close succession. The work presented in this paper demonstrates the feasibility of configuring a high-speed camera system using low cost and readily available off-the-shelf components. This camera can be used for recording six-frame sequences at frame rates up to 20 kHz or three-frame sequences at even higher frame rates. Both color crosstalk and spatial matching between the different channels of the camera are found to be within acceptable limits. A small amount of magnification difference between the different channels is found and a simple calibration procedure for correcting the images is introduced. The images captured using the approach described here are of good quality to be used for obtaining full-field quantitative information using techniques such as digital image correlation and particle image velocimetry. A sequence of six high-speed images of a bubble splash recorded at 400 Hz is presented as a demonstration.

  10. High Resolution Spectra of HE Detonations

    Science.gov (United States)

    1980-07-07

    region. We shall assume for present purposes that the emissivity of the detonation products of a 50 to 100 lb HE explosion is also in the viciity of... speed . Incorporated in the emulsion layers are dye forming coup- lers which react simultaneously during I , developmentto produce a separate dye S...Best Available Cop 1~EV~ AFTAC-TR-80-24 HIGH RESOLUTION SPECTRA OF HE DETONATIONS HSS Inc 2 Alfred Circle Bedford, MA 01730 7 JULY 1980 AUG 4 9D

  11. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  12. High resolution measurement of the glycolytic rate

    Directory of Open Access Journals (Sweden)

    Carla X Bittner

    2010-09-01

    Full Text Available The glycolytic rate is sensitive to physiological activity, hormones, stress, aging and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently-developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

  13. Characterizing Pavement Surface Distress Conditions with Hyper-Spatial Resolution Natural Color Aerial Photography

    Directory of Open Access Journals (Sweden)

    Su Zhang

    2016-05-01

    Full Text Available Roadway pavement surface distress information is critical for effective pavement asset management, and subsequently, transportation management agencies at all levels (i.e., federal, state, and local dedicate a large amount of time and money to routinely evaluate pavement surface distress conditions as the core of their asset management programs. However, currently adopted ground-based evaluation methods for pavement surface conditions have many disadvantages, like being time-consuming and expensive. Aircraft-based evaluation methods, although getting more attention, have not been used for any operational evaluation programs yet because the acquired images lack the spatial resolution to resolve finer scale pavement surface distresses. Hyper-spatial resolution natural color aerial photography (HSR-AP provides a potential method for collecting pavement surface distress information that can supplement or substitute for currently adopted evaluation methods. Using roadway pavement sections located in the State of New Mexico as an example, this research explored the utility of aerial triangulation (AT technique and HSR-AP acquired from a low-altitude and low-cost small-unmanned aircraft system (S-UAS, in this case a tethered helium weather balloon, to permit characterization of detailed pavement surface distress conditions. The Wilcoxon Signed Rank test, Mann-Whitney U test, and visual comparison were used to compare detailed pavement surface distress rates measured from HSR-AP derived products (orthophotos and digital surface models generated from AT with reference distress rates manually collected on the ground using standard protocols. The results reveal that S-UAS based hyper-spatial resolution imaging and AT techniques can provide detailed and reliable primary observations suitable for characterizing detailed pavement surface distress conditions comparable to the ground-based manual measurement, which lays the foundation for the future application

  14. High Resolution Bathymetry Estimation Improvement with Single Image Super-Resolution Algorithm Super-Resolution Forests

    Science.gov (United States)

    2017-01-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate

  15. 100-Meter Resolution Color-Sliced Elevation of Puerto Rico and the U.S. Virgin Islands - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map layer of Color-Sliced Elevation of Puerto Rico and the U.S. Virgin Islands is a 100-meter resolution elevation image of Puerto Rico and the U.S. Virgin...

  16. Development of New High Resolution Neutron Detector

    Science.gov (United States)

    Mostella, L. D., III; Rajabali, M.; Loureiro, D. P.; Grzywacz, R.

    2017-09-01

    Beta-delayed neutron emission is a prevalent form of decay for neutron-rich nuclei. This occurs when an unstable nucleus undergoes beta decay, but produces a daughter nucleus in an excited state above the neutron separation energy. The daughter nucleus then de-excites by ejecting one or more neutrons. We wish to map the states from which these nuclei decay via neutron spectroscopy using NEXT, a new high resolution neutron detector. NEXT utilizes silicon photomultipliers and 6 mm thick pulse-shape discriminating plastic scintillators, allowing for smaller and more compact modular geometries in the NEXT array. Timing measurements for the detector were performed and a resolution of 893 ps (FWHM) has been achieved so far. Aspects of the detector that were investigated and will be presented here include scintillator geometry, wrapping materials, fitting functions for the digitized signals, and electronic components coupled to the silicon photomultipliers for signal shaping.

  17. High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF.

    Science.gov (United States)

    Men, Zhirong; Wang, Pengbo; Li, Chunsheng; Chen, Jie; Liu, Wei; Fang, Yue

    2017-07-25

    Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technique for acquiring high-spatial-resolution images of the Earth's surface. With the development of beam steering techniques, sliding spotlight and staring spotlight modes have been employed to support high-spatial-resolution applications. In addition to this strengthened high-spatial-resolution and wide-swath capability, high-temporal-resolution (short repeat-observation interval) represents a key capability for numerous applications. However, conventional SAR systems are limited in that the same patch can only be illuminated for several seconds within a single pass. This paper considers a novel high-squint-angle system intended to acquire high-spatial-resolution spaceborne SAR images with repeat-observation intervals varying from tens of seconds to several minutes within a single pass. However, an exponentially increased range cell migration would arise and lead to a conflict between the receive window and 'blind ranges'. An efficient data acquisition technique for high-temporal-resolution, high-spatial-resolution and high-squint-angle spaceborne SAR, in which the pulse repetition frequency (PRF) is continuously varied according to the changing slant range, is presented in this paper. This technique allows echo data to remain in the receive window instead of conflicting with the transmitted pulse or nadir echo. Considering the precision of hardware, a compromise and practical strategy is also proposed. Furthermore, a detailed performance analysis of range ambiguities is provided with respect to parameters of TerraSAR-X. For strong point-like targets, the range ambiguity of this technique would be better than that of uniform PRF technique. For this innovative technique, a resampling strategy and modified imaging algorithm have been developed to handle the non-uniformly sampled echo data. Simulations are performed to validate the efficiency of the proposed technique and the associated

  18. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  19. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  20. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  1. Detailed mitochondrial phenotyping by high resolution metabolomics.

    Directory of Open Access Journals (Sweden)

    James R Roede

    Full Text Available Mitochondrial phenotype is complex and difficult to define at the level of individual cell types. Newer metabolic profiling methods provide information on dozens of metabolic pathways from a relatively small sample. This pilot study used "top-down" metabolic profiling to determine the spectrum of metabolites present in liver mitochondria. High resolution mass spectral analyses and multivariate statistical tests provided global metabolic information about mitochondria and showed that liver mitochondria possess a significant phenotype based on gender and genotype. The data also show that mitochondria contain a large number of unidentified chemicals.

  2. Novel high resolution tactile robotic fingertips

    DEFF Research Database (Denmark)

    Drimus, Alin; Jankovics, Vince; Gorsic, Matija

    2014-01-01

    This paper describes a novel robotic fingertip based on piezoresistive rubber that can sense pressure tactile stimuli with a high spatial resolution over curved surfaces. The working principle is based on a three-layer sandwich structure (conductive electrodes on top and bottom and piezoresistive...... rubber in the middle). For the conductive layers we use ring patterns of silver epoxy and flex PCB electrode arrays. The proposed sensorised fingertip has 60 sensitive regions (taxels) arranged in 5 rings and 12 columns that have a smooth pressure to resistance characteristic. Using the sensor...

  3. High-resolution gamma imaging; Imagerie gamma haute resolution

    Energy Technology Data Exchange (ETDEWEB)

    Parmentier, M.; Pousse, A.; Tamba, N.; Chavanelle, J.; Bakkali, A.; Kastler, B. [Centre Hospitalier Universitaire, Lab. Imagerie et Ingenierie pour la Sante, Faculte de Medecine, 25 - Besancon (France)

    2004-01-01

    Gamma imaging involves two-dimensional images of the volume distribution of a radioactive tracer previously injected into the organ under functional exploration. Our Besancon laboratory developed a gamma imager with a spatial resolution three or four times higher than a classic device, which is very useful for functional explorations on small animal, as recently demonstrated by work on myocyte apoptosis and necrosis scintigraphy in the rat. We expect progress in this promising medical imaging technology to be driven by developments in scintillating crystals and position-sensitive photomultiplier tubes, and by medical demand in applications such as early detection of breast cancer. (authors)

  4. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  5. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  6. High-Resolution Scintimammography: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  7. High resolution multimodal clinical ophthalmic imaging system.

    Science.gov (United States)

    Mujat, Mircea; Ferguson, R Daniel; Patel, Ankit H; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X

    2010-05-24

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 microm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within approximately 0.5 deg (approximately 100-150 microm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.

  8. Facile Synthesis of Monodispersed Polysulfide Spheres for Building Structural Colors with High Color Visibility and Broad Viewing Angle.

    Science.gov (United States)

    Li, Feihu; Tang, Bingtao; Wu, Suli; Zhang, Shufen

    2017-01-01

    The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  10. A high-resolution microchip optomechanical accelerometer

    Science.gov (United States)

    Krause, Alexander G.; Winger, Martin; Blasius, Tim D.; Lin, Qiang; Painter, Oskar

    2012-11-01

    The monitoring of acceleration is essential for a variety of applications ranging from inertial navigation to consumer electronics. Typical accelerometer operation involves the sensitive displacement measurement of a flexibly mounted test mass, which can be realized using capacitive, piezo-electric, tunnel-current or optical methods. Although optical detection provides superior displacement resolution, resilience to electromagnetic interference and long-range readout, current optical accelerometers either do not allow for chip-scale integration or utilize relatively bulky test mass sensors of low bandwidth. Here, we demonstrate an optomechanical accelerometer that makes use of ultrasensitive displacement readout using a photonic-crystal nanocavity monolithically integrated with a nanotethered test mass of high mechanical Q-factor. This device achieves an acceleration resolution of 10 µg Hz-1/2 with submilliwatt optical power, bandwidth greater than 20 kHz and a dynamic range of greater than 40 dB. Moreover, the nanogram test masses used here allow for strong optomechanical backaction, setting the stage for a new class of motional sensors.

  11. Fast diffusion imaging with high angular resolution.

    Science.gov (United States)

    Chao, Tzu-Cheng; Chiou, Jr-Yuan George; Maier, Stephan E; Madore, Bruno

    2017-02-01

    High angular resolution diffusion imaging (HARDI) is a well-established method to help reveal the architecture of nerve bundles, but long scan times and geometric distortions inherent to echo planar imaging (EPI) have limited its integration into clinical protocols. A fast imaging method is proposed here that combines accelerated multishot diffusion imaging (AMDI), multiplexed sensitivity encoding (MUSE), and crossing fiber angular resolution of intravoxel structure (CFARI) to reduce spatial distortions and reduce total scan time. A multishot EPI sequence was used to improve geometrical fidelity as compared to a single-shot EPI acquisition, and acceleration in both k-space and diffusion sampling enabled reductions in scan time. The method is regularized and self-navigated for motion correction. Seven volunteers were scanned in this study, including four with volumetric whole brain acquisitions. The average similarity of microstructural orientations between undersampled datasets and their fully sampled counterparts was above 85%, with scan times below 5 min for whole-brain acquisitions. Up to 2.7-fold scan time acceleration along with four-fold distortion reduction was achieved. The proposed imaging strategy can generate HARDI results with relatively good geometrical fidelity and low scan duration, which may help facilitate the transition of HARDI from a successful research tool to a practical clinical one. Magn Reson Med 77:696-706, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Detection of proximal caries with high-resolution and standard resolution digital radiographic systems

    NARCIS (Netherlands)

    Berkhout, W.E.R.; Verheij, H.G.C.; Syriopoulos, K.; Li, G.; Sanderink, G.C.H.; van der Stelt, P.F.

    2007-01-01

    Aims: The aim of this study was to: (1) compare the diagnostic accuracy of the high-resolution and standard resolution settings of four digital imaging systems for caries diagnosis and (2) compare the effect on the diagnostic accuracy of reducing the high-resolution image sizes to the standard

  13. Classification of High Spatial Resolution, Hyperspectral ...

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  14. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  15. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  16. High-Resolution Movement EEG Classification

    Directory of Open Access Journals (Sweden)

    Jakub Štastný

    2007-01-01

    Full Text Available The aim of the contribution is to analyze possibilities of high-resolution movement classification using human EEG. For this purpose, a database of the EEG recorded during right-thumb and little-finger fast flexion movements of the experimental subjects was created. The statistical analysis of the EEG was done on the subject's basis instead of the commonly used grand averaging. Statistically significant differences between the EEG accompanying movements of both fingers were found, extending the results of other so far published works. The classifier based on hidden Markov models was able to distinguish between movement and resting states (classification score of 94–100%, but it was unable to recognize the type of the movement. This is caused by the large fraction of other (nonmovement related EEG activities in the recorded signals. A classification method based on advanced EEG signal denoising is being currently developed to overcome this problem.

  17. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  18. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  19. High-Resolution Transcriptome of Human Macrophages

    Science.gov (United States)

    Xue, Jia; Staratschek-Jox, Andrea; Vorholt, Daniela; Krebs, Wolfgang; Sommer, Daniel; Sander, Jil; Mertens, Christina; Nino-Castro, Andrea; Schmidt, Susanne V.; Schultze, Joachim L.

    2012-01-01

    Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq) of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like) and alternative (M2-like) polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7) as well as M2-associated (CD1a, CD1b, CD93, CD226) cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease. PMID:23029029

  20. High dynamic range algorithm based on HSI color space

    Science.gov (United States)

    Zhang, Jiancheng; Liu, Xiaohua; Dong, Liquan; Zhao, Yuejin; Liu, Ming

    2014-10-01

    This paper presents a High Dynamic Range algorithm based on HSI color space. To keep hue and saturation of original image and conform to human eye vision effect is the first problem, convert the input image data to HSI color space which include intensity dimensionality. To raise the speed of the algorithm is the second problem, use integral image figure out the average of every pixel intensity value under a certain scale, as local intensity component of the image, and figure out detail intensity component. To adjust the overall image intensity is the third problem, we can get an S type curve according to the original image information, adjust the local intensity component according to the S type curve. To enhance detail information is the fourth problem, adjust the detail intensity component according to the curve designed in advance. The weighted sum of local intensity component after adjusted and detail intensity component after adjusted is final intensity. Converting synthetic intensity and other two dimensionality to output color space can get final processed image.

  1. Museum lighting for golden artifacts, with low correlated color temperature, high color uniformity and high color rendering index, using diffusing color mixing of red, cyan, and white-light-emitting diodes

    DEFF Research Database (Denmark)

    Thorseth, Anders; Corell, Dennis Dan; Poulsen, Peter Behrensdorff

    2012-01-01

    at the Royal Danish Collection at Rosenborg Castle. Color mixing of red, cyan, and white LEDs was employed to achieve the spectral power distribution needed for the required CCT and a CRI above 90. Color uniformity is achieved by the use of a highly diffusing reflector. The system has shown energy saving above......Museum lighting presents challenges mainly due to the demand for precise color rendering and the damaging effects of radiation. Golden objects must normally be illuminated by the non-standard CCT of 2200 K. An LED system that conforms to these requirements has been developed and implemented...

  2. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  3. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  4. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  5. [Evaluation of image quality using the normalized-rank approach for primary class liquid-crystal display (LCD) monitors with different colors and resolution].

    Science.gov (United States)

    Kuroki, Hidefumi; Katayama, Reiji; Sakaguchi, Taro; Maeda, Takashi; Morishita, Junji; Hayabuchi, Naofumi

    2010-11-20

    The purposes of this study were to evaluate the image quality of five types of liquid-crystal display (LCD) monitors by utilizing the normalized-rank approach and to investigate the effect of LCD monitor specifications, such as display colors, luminance, and resolution, on the evaluators' ranking. The LCD monitors used in this study were 2, 3 and 5 mega-pixel monochrome LCD monitors, and 2 and 3 mega-pixel color LCD monitors (Eizo Nanao Corporation). All LCD monitors were calibrated to the grayscale standard display function (GSDF) with different maximum luminance (recommended luminance) settings. Also, four kinds of radiographs were used for observer study based on the normalized-rank approach: three adult chest radiographs, three pediatric chest radiographs, three ankle joint radiographs, and four double-contrasted upper gastrointestinal radiographs. Ten radiological technologists participated in the observer study. Monochrome LCD monitors exhibited superior ranking with statistically significant differences (pLCD monitors in all kinds of radiographs. The major difference between monochrome and color monitors was luminance. Therefore, it is considered that the luminance of LCD monitors affects observers' evaluations based on image quality. Moreover, in the case of radiographs that include high frequency image components, the monitor resolution also affects the evaluation. In clinical practice, it is necessary to optimize the luminance and choose appropriate LCD monitors for diagnostic images.

  6. High-intensity focused ultrasound ablation assisted using color Doppler imaging for the treatment of hepatocellular carcinomas.

    Science.gov (United States)

    Fukuda, Hiroyuki; Numata, Kazushi; Nozaki, Akito; Kondo, Masaaki; Morimoto, Manabu; Maeda, Shin; Tanaka, Katsuaki; Ohto, Masao; Ito, Ryu; Ishibashi, Yoshiharu; Oshima, Noriyoshi; Ito, Ayao; Zhu, Hui; Wang, Zhi-Biao

    2013-12-01

    We evaluated the usefulness of color Doppler flow imaging to compensate for the inadequate resolution of the ultrasound (US) monitoring during high-intensity focused ultrasound (HIFU) for the treatment of hepatocellular carcinoma (HCC). US-guided HIFU ablation assisted using color Doppler flow imaging was performed in 11 patients with small HCC (<3 lesions, <3 cm in diameter). The HIFU system (Chongqing Haifu Tech) was used under US guidance. Color Doppler sonographic studies were performed using an HIFU 6150S US imaging unit system and a 2.7-MHz electronic convex probe. The color Doppler images were used because of the influence of multi-reflections and the emergence of hyperecho. In 1 of the 11 patients, multi-reflections were responsible for the poor visualization of the tumor. In 10 cases, the tumor was poorly visualized because of the emergence of a hyperecho. In these cases, the ability to identify the original tumor location on the monitor by referencing the color Doppler images of the portal vein and the hepatic vein was very useful. HIFU treatments were successfully performed in all 11 patients with the assistance of color Doppler imaging. Color Doppler imaging is useful for the treatment of HCC using HIFU, compensating for the occasionally poor visualization provided by B-mode conventional US imaging.

  7. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  8. High resolution surface plasmon imaging of nanoparticles

    Science.gov (United States)

    Berguiga, Lotfi; Roland, Thibault; Fahys, Audrey; Elezgaray, Juan; Argoul, Françoise

    2010-05-01

    We report a technique of surface plasmon resonance imaging (SPRi) called SSPM (Scanning Surface Plasmon Microscopy) which pushes down the resolution limit to sub-micronic scales. To confirm the sensitivity and resolution of this non labeling microscopy we show images of gold and dielectric nanoparticules detected in air. The contrast mechanism is discussed versus the defocusing and versus the nature of the particules.

  9. The High Time Resolution Radio Sky

    Science.gov (United States)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  10. High Spectral Resolution Lidar (HSRL) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-04-01

    High Spectral Resolution Lidar (HSRL) systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are absolutely calibrated by reference to molecular scattering, which is measured at each point in the lidar profile. Like the Raman lidar but unlike simple backscatter lidars such as the micropulse lidar, the HSRL can measure backscatter cross-sections and optical depths without prior assumptions about the scattering properties of the atmosphere. The depolarization observations also allow robust discrimination between ice and water clouds. In addition, rigorous error estimates can be computed for all measurements. A very narrow, angular field of view reduces multiple scattering contributions. The small field of view, coupled with a narrow optical bandwidth, nearly eliminates noise due to scattered sunlight. There are two operational U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility HSRL systems, one at the Barrow North Slope of Alaska (NSA) site and the other in the second ARM Mobile Facility (AMF2) collection of instrumentation.

  11. AIRBORNE HIGH-RESOLUTION DIGITAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Prado-Molina, J.

    2006-04-01

    Full Text Available A low-cost airborne digital imaging system capable to perform aerial surveys with small-format cameras isintroduced. The equipment is intended to obtain high-resolution multispectral digital photographs constituting so aviable alternative to conventional aerial photography and satellite imagery. Monitoring software handles all theprocedures involved in image acquisition, including flight planning, real-time graphics for aircraft position updatingin a mobile map, and supervises the main variables engaged in the imaging process. This software also creates fileswith the geographical position of the central point of every image, and the flight path followed by the aircraftduring the entire survey. The cameras are mounted on a three-axis stabilized platform. A set of inertial sensorsdetermines platform's deviations independently from the aircraft and an automatic control system keeps thecameras at a continuous nadir pointing and heading, with a precision better than ± 1 arc-degree in three-axis. Thecontrol system is also in charge of saving the platform’s orientation angles when the monitoring software triggersthe camera. These external orientation parameters, together with a procedure for camera calibration give theessential elements for image orthocorrection. Orthomosaics are constructed using commercial GIS software.This system demonstrates the feasibility of large area coverage in a practical and economical way using smallformatcameras. Monitoring and automatization reduce the work while increasing the quality and the amount ofuseful images.

  12. High spatial resolution probes for neurobiology applications

    Science.gov (United States)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  13. Color Conterminous United States Shaded Relief ? 200-Meter Resolution - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color conterminous United States shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of the conterminous United...

  14. Color Conterminous United States Shaded Relief ? 200-Meter Resolution, Albers projection - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color conterminous United States shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of the conterminous United...

  15. Fundamental constants and high-resolution spectroscopy

    Science.gov (United States)

    Bonifacio, P.; Rahmani, H.; Whitmore, J. B.; Wendt, M.; Centurion, M.; Molaro, P.; Srianand, R.; Murphy, M. T.; Petitjean, P.; Agafonova, I. I.; D'Odorico, S.; Evans, T. M.; Levshakov, S. A.; Lopez, S.; Martins, C. J. A. P.; Reimers, D.; Vladilo, G.

    2014-01-01

    Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, α, and the proton-to-electron mass ratio, μ = m_p/m_e, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales which may reach a fractional level of ≈ 10 ppm (parts per million). We are conducting a Large Programme of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high-resolution ({R ≈ 60 000}) and high signal-to-noise ratio (S/N ≈ 100) spectra calibrated specifically to study the variations of the fundamental constants. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. (2013) and Rahmani et al. (2013). A stringent bound for Δα/α is obtained for the absorber at z_abs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in α in this system is +1.3± 2.4_stat ± 1.0_sys ppm if Al II λ 1670 Å and three Fe II transitions are used, and +1.1 ± 2.6_stat ppm in a slightly different analysis with only Fe II transitions used. This is one of the tightest bounds on α-variation from an individual absorber and reveals no evidence for variation in α at the 3-ppm precision level (1σ confidence). The expectation at this sky position of the recently-reported dipolar variation of α is (3.2-5.4)±1.7 ppm depending on dipole model used and this constraint of Δα/α at face value is not supporting this expectation but not inconsistent with it at the 3σ level. For the proton-to-electron mass ratio the analysis of the H_2 absorption lines of the z_abs ≈ 2.4018 damped Lyα system

  16. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images.

    Science.gov (United States)

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen

    2017-05-07

    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images.

  17. USGS Small-scale Dataset - 100-Meter Resolution Color Shaded Relief of Puerto Rico and the U.S. Virgin Islands 201304 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Color Shaded Relief of Puerto Rico and the U.S. Virgin Islands map layer is a 100-meter resolution color-sliced elevation image of Puerto Rico and the U.S....

  18. High efficiency green LEDs using II-VI color converters

    Science.gov (United States)

    Miller, Thomas J.; Haase, Michael A.; Sun, Xiaoguang; Hao, Bing; Zhang, Junying; Smith, Terry L.; Ballen, Todd; Xie, Junqing; Barnes, Amy S.; Kecman, Fedja; Yang, Joseph; Thielen, James; Leatherdale, Catherine A.; Wirth, Ralph; Biebersdorf, Andreas; Engl, Karl; Groetsch, Stefan

    2010-02-01

    II-VI semiconductors can exhibit strong photoluminescence throughout the visible spectrum and are excellent candidates for filling the so-called "green gap". We report on the performance of green color-converted LEDs fabricated by bonding CdMgZnSe multiple quantum well structures to high-efficiency blue-emitting GaInN LEDs. A device efficacy of 181 lm/W at 537 nm (dominant) is measured under room temperature, 350 mA/mm2 quasi-cw conditions, more than twice as efficient as typical commercial green LEDs today. The thermal roll-off is shown to be comparable to that of typical green GaInN LEDs. Finally, the implications of the availability of high-efficiency, narrow-band, green and yellow emitters in display applications will be discussed.

  19. High resolution CT findings of pseudoalveolar sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Eun; Park, Jun Gyun; Choe, Kyu Ok; Kim, Sang Jin [Yonsei University College of Medicine, Seoul (Korea, Republic of); Ryu, Young Hoon; Im, Jung Gi [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Kyoung Soo [Sungkunkwan University College of Medicine, Seoul (Korea, Republic of); Song, Koun Sik [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Hyae Young [National Cancer Centar, Seoul (Korea, Republic of)

    2002-08-01

    To determine the specific high-resolution CT features of sarcoidosis in which the observed pattern is predominantly pseudoalveolar. We retrospectively reviewed the HRCT findings in 15 cases in which chest radiography demonstrated pseudoalveolar consolidation. In all 15, sarcoidosis was pathologically proven. The distribution and characterization of the following CT features was meticulously scrutinized: distribution and characterization of pseudoalveolar lesions, air-bronchograms, micronodules, thickening of bronchovascular bundles and interlobular septa, lung distortion, ground-glass opacities and combined hilar and mediastinal lymphadenopathy. Follow-up CT scans were available in three cases after corticosteroid administration. Between one and 12 (mean, 5.6) pseudoalveolar lesions appeared as dense homogeneous or inhomogeneous opacities 1-4.5 cm in diameter and with an irregular margin located either at the lung periphery adjacent to the pleural surface or along the bronchovascular bundles, with mainly bilateral distribution (n=14, 93%). An air-bronchogram was observed in ten cases. Micronodules were observed at the periphery of the lesion or surrounding lung, which along with a thickened bronchovascular bundle was a consistent feature in all cases. Additional CT features included hilar and mediastinal lymphadenopathy (n=14, 93%), thickened interlobular septa (n=12, 80%), and ground-glass opacity (n=10, 67%). Lung distortion was noted in only one case (7%). After steroid administration pseudoalveolar lesions decreased in number and size in all three cases in which follow-up CT was available. The consistent HRCT features of pseudoalveolar sarcoidosis are bilateral multifocal dense homogenous or inhomogenous opacity and an irregular margin located either at the lung periphery adjacent to the pleural surface or along the bronchovascular bundles. Micronodules are present at the periphery of the lesion or surrounding lung. The features are reversible administration.

  20. High time-resolution sprite observations

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.; McHarg, G. G.

    2007-12-01

    Imaging sprites at 10,000 fps have revealed new details about their temporal development. TV observations show a highly structured central body with downward tendrils and upward branches. But rather than being leaders, as suggested by the long streaks in the TV recordings, tendrils and branches are actually formed by spatially compact streamer heads moving at velocities up to 0.3 c. In an individual sprite event the downward moving streamer heads start first forming the tendrils; later, and from a lower altitude and from existing luminous sprite structures, upward moving streamer heads may appear to form the branches. If there are no upward moving streamer heads the event would be classified as a C-sprite, otherwise it would be a carrot sprite. Following the streamer head activity we see afterglow in which little or no temporal and spatial activity is present. The streamer heads are very bright and they appear to be point sources, i.e. their spatial dimensions are less than our 100-200 m image resolution. Streamer head modeling indicates a scale size of ~25 m in which case the brightness would be in the range 1-100 GR. Other models predict volume emission rates leading to a streamer head spatial scale size in the 10 to 100 m range. Our observations conclusively show the downward and upward propagating streamer heads to be separated in time and space. This is in contrast to a number of models in which both down and up going streamer heads emanates from the origin of the process. We frequently see old sprites re-appear in response to new activity suggesting that sprite activity leaves some imprint on the background atmosphere. Given the very large brightness of the streamer heads it would not be surprising if sprite activity initiates chemical processes that could locally affect the composition of the atmosphere, but whether this affects the mesosphere on a larger scale remains uncertain.

  1. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM)

    Science.gov (United States)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  2. Searching for fast optical transients by means of a wide-field monitoring observations with high temporal resolution

    Science.gov (United States)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Bondar, S.; Ivanov, E.; Perkov, A.; Greco, G.; Guarnieri, A.; Bartolini, C.

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  3. MULTIPULSE - high resolution and high power in one TDEM system

    Science.gov (United States)

    Chen, Tianyou; Hodges, Greg; Miles, Philip

    2015-09-01

    An airborne time domain electromagnetic (TEM) system with high resolution and great depth of exploration is desired for geological mapping as well as for mineral exploration. The MULTIPULSE technology enables an airborne TEM system to transmit a high power pulse (a half-sine, for instance) and one or multiple low power pulse(s) (trapezoid or square) within a half-cycle. The high power pulse ensures good depth of exploration and the low power pulse allows a fast transmitter current turn off and earlier off-time measurement thus providing higher frequency signals, which allows higher near-surface resolution and better sensitivity to weak conductors. The power spectrum of the MULTIPULSE waveform comprising a half-sine and a trapezoid pulse clearly shows increased power in the higher frequency range (> ~2.3 kHz) compared to that of a single half-sine waveform. The addition of the low power trapezoid pulse extends the range of the sensitivity 10-fold towards the weak conductors, expanding the geological conductivity range of a system and increasing the scope of its applications. The MULTIPULSE technology can be applied to standard single-pulse airborne TEM systems on both helicopter and fixed-wing. We field tested the HELITEM MULTIPULSE system over a wire-loop in Iroquois Falls, demonstrating the different sensitivity of the high and low power pulses to the overburden and the wire-loop. We also tested both HELITEM and GEOTEM MULTIPULSE systems over a layered oil sand geologic setting in Fort McMurray, Alberta, Canada. The results show comparable shallow geologic resolution of the MULTIPULSE to that of the RESOLVE system while maintaining superior depth of exploration, confirming the increased geological conductivity range of a system employing MULTIPULSE compared to the standard single-pulse systems.

  4. High Resolution Sensor for Nuclear Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Kanai; Higgins, William; Van Loef, Edgar V

    2006-01-23

    Gamma ray spectrometers are an important tool in the characterization of radioactive waste. Important requirements for gamma ray spectrometers used in this application include good energy resolution, high detection efficiency, compact size, light weight, portability, and low power requirements. None of the available spectrometers satisfy all of these requirements. The goal of the Phase I research was to investigate lanthanum halide and related scintillators for nuclear waste clean-up. LaBr3:Ce remains a very promising scintillator with high light yield and fast response. CeBr3 is attractive because it is very similar to LaBr3:Ce in terms of scintillation properties and also has the advantage of much lower self-radioactivity, which may be important in some applications. CeBr3 also shows slightly higher light yield at higher temperatures than LaBr3 and may be easier to produce with high uniformity in large volume since it does not require any dopants. Among the mixed lanthanum halides, the light yield of LaBrxI3-x:Ce is lower and the difference in crystal structure of the binaries (LaBr3 and LaI3) makes it difficult to grow high quality crystals of the ternary as the iodine concentration is increased. On the other hand, LaBrxCl3-x:Ce provides excellent performance. Its light output is high and it provides fast response. The crystal structures of the two binaries (LaBr3 and LaCl3) are very similar. Overall, its scintillation properties are very similar to those for LaBr3:Ce. While the gamma-ray stopping efficiency of LaBrxCl3-x:Ce is lower than that for LaBr3:Ce (primarily because the density of LaCl3 is lower than that of LaBr3), it may be easier to grow large crystals of LaBrxCl3-x:Ce than LaBr3:Ce since in some instances (for example, CdxZn1-xTe), the ternary compounds provide increased flexibility in the crystal lattice. Among the new dopants, Eu2+ and Pr3+, tried in LaBr3 host crystals, the Eu2+ doped samples exhibited low light output. This was mostly because a

  5. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  6. Quantum interpolation for high-resolution sensing.

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-02-28

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

  7. Nanometer resolved single-molecule colocalization of nuclear factors by two-color super resolution microscopy imaging.

    Science.gov (United States)

    Georgieva, Mariya; Cattoni, Diego I; Fiche, Jean-Bernard; Mutin, Thibaut; Chamousset, Delphine; Nollmann, Marcelo

    2016-08-01

    In order to study the detailed assembly and regulation mechanisms of complex structures and machineries in the cell, simultaneous in situ observation of all the individual interacting components should be achieved. Multi-color Single-Molecule Localization Microscopy (SMLM) is ideally suited for these quantifications. Here, we build on previous developments and thoroughly discuss a protocol for two-color SMLM combining PALM and STORM, including sample preparation details, image acquisition and data postprocessing analysis. We implement and evaluate a recently proposed colocalization analysis method (aCBC) that allows single-molecule colocalization quantification with the potential of revealing fine, nanometer-scaled, structural details of multicomponent complexes. Finally, using a doubly-labeled nuclear factor (Beaf-32) in Drosophila S2 cells we experimentally validate the colocalization quantification algorithm, highlight its advantages and discuss how using high molecular weight fluorescently labeled tags compromises colocalization precision in two-color SMLM experiments. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Managing the explosion of high resolution topography in the geosciences

    Science.gov (United States)

    Crosby, Christopher; Nandigam, Viswanath; Arrowsmith, Ramon; Phan, Minh; Gross, Benjamin

    2017-04-01

    Centimeter to decimeter-scale 2.5 to 3D sampling of the Earth surface topography coupled with the potential for photorealistic coloring of point clouds and texture mapping of meshes enables a wide range of science applications. Not only is the configuration and state of the surface as imaged valuable, but repeat surveys enable quantification of topographic change (erosion, deposition, and displacement) caused by various geologic processes. We are in an era of ubiquitous point clouds that come from both active sources such as laser scanners and radar as well as passive scene reconstruction via structure from motion (SfM) photogrammetry. With the decreasing costs of high-resolution topography (HRT) data collection, via methods such as SfM and UAS-based laser scanning, the number of researchers collecting these data is increasing. These "long-tail" topographic data are of modest size but great value, and challenges exist to making them widely discoverable, shared, annotated, cited, managed and archived. Presently, there are no central repositories or services to support storage and curation of these datasets. The U.S. National Science Foundation funded OpenTopography (OT) Facility employs cyberinfrastructure including large-scale data management, high-performance computing, and service-oriented architectures, to provide efficient online access to large HRT (mostly lidar) datasets, metadata, and processing tools. With over 225 datasets and 15,000 registered users, OT is well positioned to provide curation for community collected high-resolution topographic data. OT has developed a "Community DataSpace", a service built on a low cost storage cloud (e.g. AWS S3) to make it easy for researchers to upload, curate, annotate and distribute their datasets. The system's ingestion workflow will extract metadata from data uploaded; validate it; assign a digital object identifier (DOI); and create a searchable catalog entry, before publishing via the OT portal. The OT Community

  9. High resolution IVEM tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Sedat, J.W.; Agard, D.A. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.

  10. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator ... observed by high-resolution electron microscopy in both ..... 1988 Nucl. Instrum. Meth. B34 228. Kato N 1992 J. Acta Crystallogr. A48 834. Kaur B, Bhat M, Licci F, Kumar R, Kotru P N and Bamzai K K. 2004 Nucl. Instrum. Meth ...

  11. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  12. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  13. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  14. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  15. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Science.gov (United States)

    de Groote, R. P.; Lynch, K. M.; Wilkins, S. G.

    2017-11-01

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  16. On the Design of High Resolution Imaging Systems

    Science.gov (United States)

    Eckardt, A.; Reulke, R.

    2017-05-01

    The design of high-resolution systems is always a consideration of many parameters. Technological parameter of the imaging system, e.g. diameter of the imaging system, mass and power, as well as storage and data transfer, have an direct impact on spacecraft size and design. The paper describes the essential design parameters for the description of high-resolution systems.

  17. Towards high resolution data assimilation and ensemble forecasting

    NARCIS (Netherlands)

    Stappers, R.J.J.

    2013-01-01

    Due the increase in computational power of supercomputers the grid resolution of high resolution numerical weather prediction models is now reaching the 1 km scale. As a result, mesoscale processes related to high impact weather (such as deep convection) can now explicitly be resolved by the models.

  18. High-resolution esophageal pressure topography for esophageal motility disorders

    Directory of Open Access Journals (Sweden)

    Hashem Fakhre Yaseri

    2016-04-01

    Full Text Available Background: High-resolution manometer (HRM of the esophagus has become the main diagnostic test in the evaluation of esophageal motility disorders. The development of high-resolution manometry catheters and software displays of manometry recordings in color-coded pressure plots have changed the diagnostic assessment of esophageal disease. The first step of the Chicago classification described abnormal esophagogastric junction deglutitive relaxation. The latest classification system, proposed by Pandolfino et al, includes contraction patterns and peristalsis integrity based on integrated relaxation pressure 4 (IRP4. It can be discriminating the achalasia from non-achalasia esophageal motility disorders. The aim of this study was to assessment of clinical findings in non-achalasia esophageal motility disorders based on the most recent Chicago classification. Methods: We conducted a prospective cross-sectional study of 963 patients that had been referred to manometry department of Gastrointestinal and Liver Research Center, Firozgar Hospital, Tehran, Iran, from April, 2012 to April, 2015. They had upper GI disorder (Dysphasia, non-cardiac chest pain, regurgitation, heartburn, vomiting and asthma and weight loss. Data were collected from clinical examinations as well as patient questionnaires. Manometry, water-perfused, was done for all patients. Manometry criteria of the patients who had integrated relaxation pressure 4 (IRP4 ≤ 15 mmHg were studied. Results: Our finding showed that the non-achalasia esophageal motility disorders (58% was more common than the achalasia (18.2%. Heartburn (68.5%, regurgitation (65.4% and non-cardiac chest pain (60.6% were the most common clinical symptoms. Although, vomiting (91.7% and weight loss (63% were the most common symptoms in referring patients but did not discriminate this disorders from each other’s. Borderline motor function (67.2% was the most common, absent peristalsis (97% and the hyper

  19. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, Dick M. A.; Schmitt, Thierry

    2017-04-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODnet is entering its 3rd phase with operational portals providing access to marine data for bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities, complemented by checkpoint projects, analysing the fitness for purpose of data provision. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a resolution of 1/8 arcminute * 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs from 27 European data providers from 15 countries. For areas without coverage use has been made of the latest GEBCO DTM. The catalogue services and the generated EMODnet DTM have been published at the dedicated EMODnet Bathymetry portal which includes a versatile DTM viewing service that also supports downloading in various formats. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM) as part of the third phase of EMODnet. This new project will continue gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry

  20. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Bamyan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Bamyan mineral district, which has areas with a spectral reflectance anomaly that require field investigation. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  2. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ahankashan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ahankashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008, 2009, 2010),but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this

  3. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Bamyan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Bamyan mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  4. The high spectral resolution (scanning) lidar (HSRL)

    Energy Technology Data Exchange (ETDEWEB)

    Eloranta, E. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Lidars enable the spatial resolution of optical depth variation in clouds. The optical depth must be inverted from the backscatter signal, a process which is complicated by the fact that both molecular and aerosol backscatter signals are present. The HSRL has the advantage of allowing these two signals to be separated. It has a huge dynamic range, allowing optical depth retrieval for t = 0.01 to 3. Depolarization is used to determine the nature of hydrometeors present. Experiments show that water clouds must almost always be taken into account during cirrus observations. An exciting new development is the possibility of measuring effective radius via diffraction peak width and variable field-of-view measurements. 2 figs.

  5. High Performance Paper White- and Full-Color Reflective Displays

    National Research Council Canada - National Science Library

    Fiske, Thomas

    2001-01-01

    This report documents work performed by a team led by dpiX LLC to develop fabrication technology for a paper-white, video-rate, full-color reflective display technology based on holographically formed...

  6. High-threshold decoding algorithms for the gauge color code

    Science.gov (United States)

    Zeng, William; Brown, Benjamin

    Gauge color codes are topological quantum error correcting codes on three dimensional lattices. They have garnered recent interest due to two important properties: (1) they admit a universal transversal gate set, and (2) their structure allows reliable error correction using syndrome data obtained from a measurement circuit of constant depth. Both of these properties make gauge color codes intriguing candidates for low overhead fault-tolerant quantum computation. Recent work by Brown et al. calculated a threshold of 0.31% for a particular gauge color code lattice using a simple clustering decoder and phenomenological noise. We show that we can achieve improved threshold error rates using the efficient Wootton and Loss Markov-chain Monte Carlo (MCMC) decoding. In the case of the surface code, the MCMC decoder produced a threshold close to that code's upper bound. While no upper bound is known for gauge color codes, the thresholds we present here may give a better estimate.

  7. A high-resolution vehicle emission inventory for China

    Science.gov (United States)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  8. High-pressure differential scanning calorimetry of colorant products.

    Science.gov (United States)

    Marsh, J M; Clarke, C J; Meinert, K; Dahlgren, R M

    2007-01-01

    High-pressure differential scanning calorimetry (HPDSC) can be used to gain information on both the degree of crystallinity in the intermediate filaments (IFs) and the structural rigidity of the surrounding matrix or intermediate filament associated proteins (IFAP) of the hair cortex (1-3). We have used HPDSC to measure changes in the denaturation temperature (T(D)) and enthalpy (DeltaH(D)) of the crystalline components after multiple treatments with permanent hair colorant products. We have observed that after three repeat treatments both the denaturation enthalpy and peak temperature are significantly decreased vs the untreated starting substrate. However, on dialysis of the fibers in deionized water this decrease is shown to be completely reversible, returning the enthalpy and temperature to that of the untreated hair. It is proposed that the decrease is due to the incorporation of formulation components such as the alkalizer and surfactants etc. and metal ions such as calcium and magnesium from the tap wash water. These components are predicted to have a non-permanent effect on the salt bridges and hydrogen bonds and hence the rigidity or viscosity of the matrix. We have compared the denaturation temperature with the tensile properties of the fiber after treatment both before and after removal of actives from the fiber.

  9. The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution.

    Science.gov (United States)

    Coto, Pedro B; Strambi, Angela; Ferré, Nicolas; Olivucci, Massimo

    2006-11-14

    We demonstrate that "brute force" quantum-mechanics/molecular-mechanics computations based on ab initio (i.e., first principles) multiconfigurational perturbation theory can reproduce the absorption maxima of a set of modified bovine rhodopsins with an accuracy allowing for the analysis of the factors determining their colors. In particular, we show that the theory accounts for the changes in excitation energy even when the proteins display the same charge distribution. Three color-tuning mechanisms, leading to changes of close magnitude, are demonstrated to operate in these conditions. The first is based on the change of the conformation of the conjugated backbone of the retinal chromophore. The second operates through the control of the distance between the positive charge residing on the chromophore and the carboxylate counterion. Finally, the third mechanism operates through the changes in orientation of the chromophore relative to the protein. These results offer perspectives for the unbiased computational design of mutants or chemically modified proteins with wanted optical properties.

  10. Resolution of multiple GFP color variants and dyes using two-photon microscopy and imaging spectroscopy

    Science.gov (United States)

    Lansford, Rusty; Bearman, Gregory H.; Fraser, Scott E.

    2001-07-01

    The imaging of living cells and tissues using laser-scanning microscopy is offering dramatic insights into the spatial and temporal controls of biological processes. The availability of genetically encoded labels such as green fluorescent protein (GFP) offers unique opportunities by which to trace cell movements, cell signaling or gene expression dynamically in developing embryos. Two-photon laser scanning microscopy (TPLSM) is ideally suited to imaging cells in vivo due to its deeper tissue penetration and reduced phototoxicity; however, in TPLSM the excitation and emission spectra of GFP and its color variants [e.g., CyanFP (CFP); yellowFP (YFP)] are insufficiently distinct to be uniquely imaged by conventional means. To surmount such difficulties, we have combined the technologies of TPLSM and imaging spectroscopy to unambiguously identify CFP, GFP, YFP, and redFP (RFP) as well as conventional dyes, and have tested the approach in cell lines. In our approach, a liquid crystal tunable filter was used to collect the emission spectrum of each pixel within the TPLSM image. Based on the fluorescent emission spectra, supervised classification and linear unmixing analysis algorithms were used to identify the nature and relative amounts of the fluorescent proteins expressed in the cells. In a most extreme case, we have used the approach to separate GFP and fluorescein, separated by only 7 nm, and appear somewhat indistinguishable by conventional techniques. This approach offers the needed ability to concurrently image multiple colored, spectrally overlapping marker proteins within living cells.

  11. Transforming Negative Emotions: A Case Study of Intergroup Conflict among Conflict Resolution Practitioners of Color.

    Science.gov (United States)

    Carvalho, Millicent

    2003-01-01

    Examined how conflict affected internalized oppression and conflict-handling methods utilized during a facilitated meeting that attempted to resolve or manage intergroup conflict. Data on diverse conflict-resolution practitioners and mentors at a training session on how to overcome the effects of oppression in the writing process illuminated how…

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nuristan mineral district in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nuristan mineral district, which has gem, lithium, and cesium deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  13. High-resolution interference with programmable classical incoherent light.

    Science.gov (United States)

    Zhang, Er-Feng; Liu, Wei-Tao; Chen, Ping-Xing

    2015-07-01

    A scheme of high-resolution interference with classical incoherent light is proposed. In this scheme, the classical incoherent light is programmable in the amplitude distribution and wavefront, and with the programmable classical incoherent light we improve the resolution of the interference pattern by a factor of 2 compared with the scheme by Erkmen [J. Opt. Soc. Am. A29, 782 (2012)JOAOD60740-323210.1364/JOSAA.29.000782]. Compared with other schemes for observing interference patterns, only single-pixel detection is needed in our proposal. Moreover, the high-resolution interference pattern can be inverted to obtain an image with better resolution compared with that of the scheme proposed by Erkmen. Furthermore, this scheme of high-resolution interference is verified in detail by theoretical analysis and numerical simulations.

  14. Achieving High Resolution Timer Events in Virtualized Environment.

    Science.gov (United States)

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  15. A high-resolution method for the localization of proanthocyanidins in plant tissues

    Directory of Open Access Journals (Sweden)

    Panter Stephen

    2011-05-01

    Full Text Available Abstract Background Histochemical staining of plant tissues with 4-dimethylaminocinnamaldehyde (DMACA or vanillin-HCl is widely used to characterize spatial patterns of proanthocyanidin accumulation in plant tissues. These methods are limited in their ability to allow high-resolution imaging of proanthocyanidin deposits. Results Tissue embedding techniques were used in combination with DMACA staining to analyze the accumulation of proanthocyanidins in Lotus corniculatus (L. and Trifolium repens (L. tissues. Embedding of plant tissues in LR White or paraffin matrices, with or without DMACA staining, preserved the physical integrity of the plant tissues, allowing high-resolution imaging that facilitated cell-specific localization of proanthocyanidins. A brown coloration was seen in proanthocyanidin-producing cells when plant tissues were embedded without DMACA staining and this was likely to have been due to non-enzymatic oxidation of proanthocyanidins and the formation of colored semiquinones and quinones. Conclusions This paper presents a simple, high-resolution method for analysis of proanthocyanidin accumulation in organs, tissues and cells of two plant species with different patterns of proanthocyanidin accumulation, namely Lotus corniculatus (birdsfoot trefoil and Trifolium repens (white clover. This technique was used to characterize cell type-specific patterns of proanthocyanidin accumulation in white clover flowers at different stages of development.

  16. Forest Cover Classification by Optimal Segmentation of High Resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Hyun-Kook Cho

    2011-02-01

    Full Text Available This study investigated whether high-resolution satellite imagery is suitable for preparing a detailed digital forest cover map that discriminates forest cover at the tree species level. First, we tried to find an optimal process for segmenting the high-resolution images using a region-growing method with the scale, color and shape factors in Definiens® Professional 5.0. The image was classified by a traditional, pixel-based, maximum likelihood classification approach using the spectral information of the pixels. The pixels in each segment were reclassified using a segment-based classification (SBC with a majority rule. Segmentation with strongly weighted color was less sensitive to the scale parameter and led to optimal forest cover segmentation and classification. The pixel-based classification (PBC suffered from the “salt-and-pepper effect” and performed poorly in the classification of forest cover types, whereas the SBC helped to attenuate the effect and notably improved the classification accuracy. As a whole, SBC proved to be more suitable for classifying and delineating forest cover using high-resolution satellite images.

  17. High-Resolution Stamp Fabrication by Edge Lithography

    NARCIS (Netherlands)

    Zhao, Yiping

    2010-01-01

    The aim of the project was to create high resolution stamps for thermal nanoimprint applications. The creation of nanoridges with sub-100 nm resolutions was explored by means of edge lithography via top-down routes, i.e. in combination with micromachining technology. Edge lithography is an add-on

  18. Impact of high resolution land surface initialization in Indian summer ...

    Indian Academy of Sciences (India)

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climatemodel in recent years over Indian summer monsoon region is investigated. Two sets of regional climatemodel simulations are performed, one with a coarse resolution land surface initial conditions and secondone used a ...

  19. Reproducible high-resolution multispectral image acquisition in dermatology

    Science.gov (United States)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  20. Lithium fluoride crystal as a novel high dynamic neutron imaging detector with microns scale spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, Anatoly; Pikuz, Tatiana [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); High Temperatures, Russian Academy of Sciences, Izhorskaja Street 13/19, Moscow (Russian Federation); Matsubayashi, Masahito; Yasuda, Ryo; Iikura, Hiroshi; Nojima, Takehiro; Sakai, Takuro [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Fukuda, Yuji; Kando, Masaki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Shiozawa, Masahiro [Nippon SOKEN, Inc., Iwaya 14, Shimohasumi, Nishio, Aichi 445-0012 (Japan); Kato, Yoshiaki [The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan)

    2012-12-15

    Recently, a new field of application of optically stimulated luminescence of color centers (CCs) in lithium fluoride (LiF) crystals was proposed - using them for high-performance neutron imaging - and promising results were obtained (Matsubayashi et al., Nucl. Instrum. Methods A 622, 637 (2010) and Matsubayashi et al., Nucl. Instrum. Methods A 651, 90 (2011)). Here we present the overview of main findings, which clearly demonstrated that the LiF crystal performs efficiently as neutron imaging detector in areas, where a high spatial resolution with a high image gradation resolution is needed. It was shown that the obtained neutron images are almost free from granular noises, have spatial resolution of {proportional_to} 6 {mu}m, and have practically linear response with the dynamic range of at least 10{sup 3}. It was also found that the LiF crystal detector offers a fairly good sensitivity. Moreover, detailed evaluation using a standard sensitivity indicator for neutron radiography showed that two holes with less than 2% transmittance differences could be distinguished. Additionally, we recently demonstrated that the high resolution neutron imaging with LiF crystals could be useful for quantitative characterizations of neutron sources and electric devices, comprising of low-Z elements, for example, such as fuel cells. All of this gives new opportunity for microns scale spatial resolution imaging by neutrons (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. High capacity color barcodes: per channel data encoding via orientation modulation in elliptical dot arrays.

    Science.gov (United States)

    Bulan, Orhan; Sharma, Gaurav

    2011-05-01

    We present a new high capacity color barcode. The barcode we propose uses the cyan, magenta, and yellow (C,M,Y) colorant separations available in color printers and enables high capacity by independently encoding data in each of these separations. In each colorant channel, payload data is conveyed by using a periodic array of elliptically shaped dots whose individual orientations are modulated to encode the data. The orientation based data encoding provides beneficial robustness against printer and scanner tone variations. The overall color barcode is obtained when these color separations are printed in overlay as is common in color printing. A reader recovers the barcode data from a conventional color scan of the barcode, using red, green, and blue (R,G,B) channels complementary, respectively, to the print C, M, and Y channels. For each channel, first the periodic arrangement of dots is exploited at the reader to enable synchronization by compensating for both global rotation/scaling in scanning and local distortion in printing. To overcome the color interference resulting from colorant absorptions in noncomplementary scanner channels, we propose a novel interference minimizing data encoding approach and a statistical channel model (at the reader) that captures the characteristics of the interference, enabling more accurate data recovery. We also employ an error correction methodology that effectively utilizes the channel model. The experimental results show that the proposed method works well, offering (error-free) operational rates that are comparable to or better than the highest capacity barcodes known in the literature.

  2. Resolution analysis of high-resolution marine seismic data acquired off Yeosu, Korea

    Science.gov (United States)

    Lee, Ho-Young; Kim, Wonsik; Koo, Nam-Hyung; Park, Keun-Pil; Yoo, Dong-Geun; Kang, Dong-Hyo; Kim, Young-Gun; Seo, Gab-Seok; Hwang, Kyu-Duk

    2014-05-01

    High-resolution marine seismic surveys have been conducted for the mineral exploration and engineering purpose survey. To improve the quality of high-resolution seismic data, small-scaled multi-channel seismic techniques are used. In this study, we designed high-resolution marine seismic survey using a small airgun and an 8-channel streamer cable and analyzed the resolution of the seismic data related to acquisition and processing parameters. The field survey was conducted off Yeosu, Korea where the stratified thin sedimentary layers are deposited. We used a 30 in3 airgun and an 8-channel streamer cable with a 5 m group interval. We shoot the airgun with a 5 m shot interval and recorded digital data with a 0.1 ms sample interval and 1 s record length. The offset between the source and the first channel was 20 m. We processed the acquired data with simple procedure such as gain recovery, deconvolution, digital filtering, CMP sorting, NMO correction, static correction and stacking. To understand the effect of the acquisition parameters on the vertical and horizontal resolution, we resampled the acquired data using various sample intervals and CMP intervals and produced seismic sections. The analysis results show that the detailed subsurface structures can be imaged with good resolution and continuity using acquisition parameters with a sample interval shorter than 0.2 ms and a CMP interval shorter than 2.5 m. A high-resolution marine 8-channel airgun seismic survey using appropriate acquisition and processing parameters can be effective in imaging marine subsurface structure with a high resolution. This study is a part of a National Research Laboratory (NRL) project and a part of an Energy Technology Innovation (ETI) Project of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Ministry of Trade, Industry and Energy (MOTIE). The authors thank the officers and crew of the R/V Tamhae II for their efforts in the field survey.

  3. Resonant laser printing of structural colors on high-index dielectric metasurfaces

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Levy, Uriel

    2017-01-01

    Man-made structural colors, which originate from resonant interactions between visible light and manufactured nanostructures, are emerging as a solution for ink-free color printing. We show that non-iridescent structural colors can be conveniently produced by nanostructures made from high......-dependent resonances. Strong on-resonance energy absorption under pulsed laser irradiation locally elevates the lattice temperature (exceeding 1200 K) in an ultrashort time scale (1 ns). This forms the basis for resonant laser printing, where rapid melting allows for surface energy-driven morphology changes...... with associated modification of color appearance. Laser-printable high-index dielectric color metasurfaces are scalable to a large area and open a new paradigm for printing and decoration with nonfading and vibrant colors....

  4. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution.

    Science.gov (United States)

    Masoudi, Ali; Newson, Trevor P

    2017-01-15

    A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.

  5. High Resolution, Range/Range-Rate Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Visidyne proposes to develop a design for a small, lightweight, high resolution, in x, y, and z Doppler imager to assist in the guidance, navigation and control...

  6. Hurricane Satellite (HURSAT) from Advanced Very High Resolution Radiometer (AVHRR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Huricane Satellite (HURSAT)-Advanced Very High Resolution Radiometer (AVHRR) is used to extend the HURSAT data set such that appling the Objective Dvorak technique...

  7. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  8. A Forward-Looking High-Resolution GPR System

    National Research Council Canada - National Science Library

    Kositsky, Joel; Milanfar, Peyman

    1999-01-01

    A high-resolution ground penetrating radar (GPR) system was designed to help define the optimal radar parameters needed for the efficient standoff detection of buried and surface-laid antitank mines...

  9. High Resolution Orthoimagery = Orthorectified Metro Areas: 2000 - Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a...

  10. Topological Data Analysis of High-Resolution Temporal Rainfall

    Science.gov (United States)

    Carsteanu, Alin Andrei; Fernández Méndez, Félix; Vásquez Aguilar, Raciel

    2017-04-01

    This study applies topological data analysis (TDA) to the state space representations of high-resolution temporal rainfall intensity data from Iowa City (IIHR, U of Iowa). Using a sufficient embedding dimension, topological properties of the underlying manifold are depicted.

  11. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  12. Image speculative: the new concept for obtaining digital terrain model with orbital color image high resolution (0,5m) - innovation, speed, accuracy and cost reduction; Imagem especulativa: um novo conceito para obtencao de modelo digital do terreno a partir de imagem orbital colorida de alta resolucao (0,5m) - inovacao, velocidade, precisao e reducao de custos

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Bruno Nogueira da [R3 Engenharia, Niteroi, RJ (Brazil)], E-mail: bruno.costa@r3engenharia.com.br

    2011-10-15

    In this article the reader will find methodology created to generate a geographic database from the use of remote sensing technology, which represents the minimization of time and cost savings in the production of inventory studies and basic design of Small Hydroelectric (HCP). In addition, you can evaluate the methods used to generate this basis that rely on the use of stereoscopic pairs of images from high resolution satellite and achievements, particularly in relation to the spatial resolution and accuracy of data generated. You can also check the timing of delivery of a database for a consulting firm active in the market of PCH and comparison with other technologies used to acquire spatial data such as aerial photogrammetric. (author)

  13. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    OpenAIRE

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is...

  14. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors...

  15. Dynamics of High-Resolution Networks

    DEFF Research Database (Denmark)

    Sekara, Vedran

    NETWORKS are everywhere. From the smallest confines of the cells within our bodies to the webs of social relations across the globe. Networks are not static, they constantly change, adapt, and evolve to suit new conditions. In order to understand the fundamental laws that govern networks we need...... the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...

  16. a Multi-Resolution Fusion Model Incorporating Color and Elevation for Semantic Segmentation

    Science.gov (United States)

    Zhang, W.; Huang, H.; Schmitz, M.; Sun, X.; Wang, H.; Mayer, H.

    2017-05-01

    In recent years, the developments for Fully Convolutional Networks (FCN) have led to great improvements for semantic segmentation in various applications including fused remote sensing data. There is, however, a lack of an in-depth study inside FCN models which would lead to an understanding of the contribution of individual layers to specific classes and their sensitivity to different types of input data. In this paper, we address this problem and propose a fusion model incorporating infrared imagery and Digital Surface Models (DSM) for semantic segmentation. The goal is to utilize heterogeneous data more accurately and effectively in a single model instead of to assemble multiple models. First, the contribution and sensitivity of layers concerning the given classes are quantified by means of their recall in FCN. The contribution of different modalities on the pixel-wise prediction is then analyzed based on visualization. Finally, an optimized scheme for the fusion of layers with color and elevation information into a single FCN model is derived based on the analysis. Experiments are performed on the ISPRS Vaihingen 2D Semantic Labeling dataset. Comprehensive evaluations demonstrate the potential of the proposed approach.

  17. A MULTI-RESOLUTION FUSION MODEL INCORPORATING COLOR AND ELEVATION FOR SEMANTIC SEGMENTATION

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2017-05-01

    Full Text Available In recent years, the developments for Fully Convolutional Networks (FCN have led to great improvements for semantic segmentation in various applications including fused remote sensing data. There is, however, a lack of an in-depth study inside FCN models which would lead to an understanding of the contribution of individual layers to specific classes and their sensitivity to different types of input data. In this paper, we address this problem and propose a fusion model incorporating infrared imagery and Digital Surface Models (DSM for semantic segmentation. The goal is to utilize heterogeneous data more accurately and effectively in a single model instead of to assemble multiple models. First, the contribution and sensitivity of layers concerning the given classes are quantified by means of their recall in FCN. The contribution of different modalities on the pixel-wise prediction is then analyzed based on visualization. Finally, an optimized scheme for the fusion of layers with color and elevation information into a single FCN model is derived based on the analysis. Experiments are performed on the ISPRS Vaihingen 2D Semantic Labeling dataset. Comprehensive evaluations demonstrate the potential of the proposed approach.

  18. Do high-resolution convection-permitting experiments on Europe need to be driven by high resolution global runs?

    Science.gov (United States)

    Berthou, Segolene; Chan, Steven; Kendon, Elizabeth; Roberts, Malcolm; Lee, Robert; Vanniere, Benoit

    2017-04-01

    Challenges of getting appropriate climate-change scenarios over Europe both come from having a good representation of the synoptic systems reaching Europe and having a good-enough representation of local and orographic processes in Europe. Therefore we perform both the evaluation of the driving global model and its dynamical downscaling with a 2.2km regional model on the present day period, in the perspective of using this configuration in a future climate scenario. 20-year long atmosphere-only simulations with the Unified Model of the Met Office were run at different global resolutions (130km, 60km and 25km) and the highest resolution was chosen to give the boundaries of a European-wide convection permitting simulation with a 2.2km resolution. The synoptic situation of the different global resolutions are comparable in terms of latitudinal distribution of the jets and weather regimes but there is consistent improvement in the frequency of storms reaching Europe at 25km resolution. High resolution global runs therefore mainly show added value in the high-frequency synoptic drivers. Compared to high resolution precipitation datasets, the 25km resolution is showing good representation of winter precipitation distribution, although with too many days of moderate precipitation in Western Europe. It shows a dry bias in summer, consistent with a mean jet too north.

  19. High-resolution simulations of turbidity currents

    Science.gov (United States)

    Biegert, Edward; Vowinckel, Bernhard; Ouillon, Raphael; Meiburg, Eckart

    2017-12-01

    We employ direct numerical simulations of the three-dimensional Navier-Stokes equations, based on a continuum formulation for the sediment concentration, to investigate the physics of turbidity currents in complex situations, such as when they interact with seafloor topography, submarine engineering infrastructure and stratified ambients. In order to obtain a more accurate representation of the dynamics of erosion and resuspension, we have furthermore developed a grain-resolving simulation approach for representing the flow in the high-concentration region near and within the sediment bed. In these simulations, the Navier-Stokes flow around each particle and within the pore spaces of the sediment bed is resolved by means of an immersed boundary method, with the particle-particle interactions being taken into account via a detailed collision model. [Figure not available: see fulltext.

  20. O-space with high resolution readouts outperforms radial imaging.

    Science.gov (United States)

    Wang, Haifeng; Tam, Leo; Kopanoglu, Emre; Peters, Dana C; Constable, R Todd; Galiana, Gigi

    2017-04-01

    While O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts. A sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging. Experimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image. High resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. High resolution spectroscopy of the new FU Orionis object BBW 76

    Science.gov (United States)

    Eisloeffel, J.; Hessman, F. V.; Mundt, R.

    1990-06-01

    High-resolution spectra of the new FU Orionis object BBW 76 are presented. Although the photometric outburst of this FU Orionis object could not be observed, its spectral characteristics clearly identify it as belonging to this class. BBW 76 shows Balmer line profiles typical for FU Orionis stars. Its absorption line spectrum and, in particular, the line widths are strikingly similar to that of FU Ori. Other similarities to FU Ori are the presence of an arclike nebula, and the FIR luminosities and color temperatures.

  2. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  3. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  4. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method

    DEFF Research Database (Denmark)

    Murthy, Swathi; Pranov, Henrik; Feidenhans'l, Nikolaj Agentoft

    2017-01-01

    Lab-scale plasmonic color printing using nano-structured and subsequently metallized surfaces have been demonstrated to provide vivid colors. However, upscaling these structures for large area manufacturing is extremely challenging due to the requirement of nanometer precision of metal thickness....... In this study, we have investigated a plasmonic color meta-surface design that can be easily upscaled. We have demonstrated the feasibility of fabrication of these plasmonic color surfaces by a high-speed roll-to-roll method, comprising roll-to-roll extrusion coating at 10 m min-1 creating a polymer foil having...... 100 nm deep pits of varying sub-wavelength diameter and pitch length. Subsequently this polymer foil was metallized and coated also by high-speed roll-to-roll methods. The perceived colors have high tolerance towards the thickness of the metal layer, when this thickness exceeds the depths of the pits...

  5. Transformation of a high-dimensional color space for material classification.

    Science.gov (United States)

    Liu, Huajian; Lee, Sang-Heon; Chahl, Javaan Singh

    2017-04-01

    Images in red-green-blue (RGB) color space need to be transformed to other color spaces for image processing or analysis. For example, the well-known hue-saturation-intensity (HSI) color space, which separates hue from saturation and intensity and is similar to the color perception of humans, can aid many computer vision applications. For high-dimensional images, such as multispectral or hyperspectral images, transformation images to a color space that can separate hue from saturation and intensity would be useful; however, the related works are limited. Some methods could interpret a set of high-dimensional images to hue, saturation, and intensity, but these methods need to reduce the dimension of original images to three images and then map them to the trichromatic color space of RGB. Generally, dimension reduction could cause loss or distortion of original data, and, therefore, the transformed color spaces could not be suitable for material classification in critical conditions. This paper describes a method that can transform high-dimensional images to a color space called hyper-hue-saturation-intensity (HHSI), which is analogous to HSI in high dimensions. The transformation does not need dimension reduction, and, therefore, it can preserve the original information. Experimental results indicate that the hyper-hue is independent of saturation and intensity and it is more suitable for material classification of proximal or remote sensing images captured in a natural environment where illumination usually cannot be controlled.

  6. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  7. High-resolution neutron microtomography with noiseless neutron counting detector

    Science.gov (United States)

    Tremsin, A. S.; McPhate, J. B.; Vallerga, J. V.; Siegmund, O. H. W.; Feller, W. B.; Lehmann, E.; Butler, L. G.; Dawson, M.

    2011-10-01

    The improved collimation and intensity of thermal and cold neutron beamlines combined with recent advances in neutron imaging devices enable high-resolution neutron radiography and microtomography, which can provide information on the internal structure of objects not achievable with conventional X-ray imaging techniques. Neutron detection efficiency, spatial and temporal resolution (important for the studies of dynamic processes) and low background count rate are among the crucial parameters defining the quality of radiographic images and tomographic reconstructions. The unique capabilities of neutron counting detectors with neutron-sensitive microchannel plates (MCPs) and with Timepix CMOS readouts providing high neutron detection efficiency (˜70% for cold neutrons), spatial resolutions ranging from 15 to 55 μm and a temporal resolution of ˜1 μs—combined with the virtual absence of readout noise—make these devices very attractive for high-resolution microtomography. In this paper we demonstrate the capabilities of an MCP-Timepix detection system applied to microtomographic imaging, performed at the ICON cold neutron facility of the Paul Scherrer Institute. The high resolution and the absence of readout noise enable accurate reconstruction of texture in a relatively opaque wood sample, differentiation of internal tissues of a fly and imaging of individual ˜400 μm grains in an organic powder encapsulated in a ˜700 μm thick metal casing.

  8. Dual camera system for acquisition of high resolution images

    Science.gov (United States)

    Papon, Jeremie A.; Broussard, Randy P.; Ives, Robert W.

    2007-02-01

    Video surveillance is ubiquitous in modern society, but surveillance cameras are severely limited in utility by their low resolution. With this in mind, we have developed a system that can autonomously take high resolution still frame images of moving objects. In order to do this, we combine a low resolution video camera and a high resolution still frame camera mounted on a pan/tilt mount. In order to determine what should be photographed (objects of interest), we employ a hierarchical method which first separates foreground from background using a temporal-based median filtering technique. We then use a feed-forward neural network classifier on the foreground regions to determine whether the regions contain the objects of interest. This is done over several frames, and a motion vector is deduced for the object. The pan/tilt mount then focuses the high resolution camera on the next predicted location of the object, and an image is acquired. All components are controlled through a single MATLAB graphical user interface (GUI). The final system we present will be able to detect multiple moving objects simultaneously, track them, and acquire high resolution images of them. Results will demonstrate performance tracking and imaging varying numbers of objects moving at different speeds.

  9. The High Resolution Stereo Camera (HRSC) Experiment onboard the European Mars Express (MEX) Mission

    Science.gov (United States)

    Neukum, G.; HRSC Team

    2003-04-01

    A major goal of the European Mars Express mission is to image the Martian surface at high spatial resolution, in stereo and in color. This task will be met by the High Resolution Stereo Camera (HRSC), a multiple-line pushbroom scanner. 9 CCD lines are mounted in parallel and simultaneously acquire images at high spatial resolution, in triple-stereo, in four colors and at five viewing angles. During the nominal mission, the HRSC will cover at least 50% of the Martian surface at 10-15 m/pixel, 70% at better than 30 m/pixel and 100% at better than 100 m/pixel resolution. The instrument is equipped with an additional super-resolution channel reaching a spatial resolution of up to 2 m/pixel. This channel is boresighted with the HRSC stereo scanner and will obtain nested-in images or image strips. Up to a few % of the Martian surface can be covered by the super-resolution channel during the mission. This channel will be of particular importance for highest-resolution coverage of landing sites such as planned for the Mars Express Beagle 2 site and the two Mars Surveyor 2003 rover sites. Scientifically, the HRSC experiment concentrates on the geological and climatological evolution of Mars with special emphasis on the role of water throughout the Martian history. An international team of 40 Co-Investigators from 28 scientific institutions and 10 countries will run the experiment and analyze the data over the two-year nominal mission with a possible extension over an additional two years. The data will be processed in such a way that they will be usable by the scientific community at large six months after receipt. The experiment hardware and software development is finished and the instrument is being assembled and tested at the ESA-MEX spacecraft. The launch of the mission is scheduled from Baikonur in late May 2003. First data from the cruise phase to Mars will be received in the June-July period of 2003.

  10. A Procedure for High Resolution Satellite Imagery Quality Assessment

    Directory of Open Access Journals (Sweden)

    Mattia Crespi

    2009-05-01

    Full Text Available Data products generated from High Resolution Satellite Imagery (HRSI are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF. This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites.

  11. Detection of proximal caries with high-resolution and standard resolution digital radiographic systems.

    Science.gov (United States)

    Berkhout, W E R; Verheij, J G C; Syriopoulos, K; Li, G; Sanderink, G C H; van der Stelt, P F

    2007-05-01

    The aim of this study was to: (1) compare the diagnostic accuracy of the high-resolution and standard resolution settings of four digital imaging systems for caries diagnosis and (2) compare the effect on the diagnostic accuracy of reducing the high-resolution image sizes to the standard resolution dimensions, and vice versa. 90 extracted human premolars were mounted in groups of 5 in plaster blocks, containing 4 test teeth and 1 non-test tooth. Two blocks at a time were placed in a jig to simulate a bitewing radiograph. Radiographs were taken using four digital systems (Planmeca Dixi 2; Gendex Visualix HDI; Dürr Vistascan; Digora Optime), each at two resolution settings. Next, the teeth were sectioned and a total of 65 surfaces were incorporated in the study. Additionally, the bicubic interpolation method was applied to reduce the high-resolution original images and to enlarge the standard resolution images. The original, reduced and enlarged images were randomly shown to five observers in two random sessions. The observers were asked to assess caries depth on a 4-point scale. The observers' scores were compared with the results from a histological examination. Data were analysed using the statistical theory for multivariate discrete data. Cohen's kappa was used to determine the agreement with the gold standard. None of the comparisons between the spatial resolution settings, or the comparisons between increased or reduced image size and the original image sizes, showed significant differences in the probability of caries detection (chi2=26.59, df=26, P approximately 0.50). The four digital systems used in this study differ significantly in the probability of caries detection (chi2=41.55, df=24, PCaries diagnosis does not improve when using high-resolution settings compared with the standard settings. The use of bicubic convolution interpolation for zooming has no detectable effect on caries diagnosis and therefore is recommended to use when enlarging or reducing

  12. Ocular Imaging Combining Ultrahigh Resolution and High Speed OCT

    Science.gov (United States)

    Schmoll, Tilman; Leitgeb, Rainer A.

    The impact of ultrahigh-resolution and ultrahigh-speed OCT technique on corneal and retinal imaging is shown. The capabilities of advanced OCT system for imaging of the cornea and the thickness determination of the tear film, corneal epithelium, and Bowman's layer over a wide field of view are demonstrated. The high transverse and axial resolution of OCT system allowing one to image individual nerve fiber bundles, the parafoveal capillary network, and individual cone photoreceptors is described.

  13. USGS Small-scale Dataset - 100-Meter Resolution Color-Sliced Elevation of Puerto Rico and the U.S. Virgin Islands 201303 TIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map layer of Color-Sliced Elevation of Puerto Rico and the U.S. Virgin Islands is a 100-meter resolution elevation image of Puerto Rico and the U.S. Virgin...

  14. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  15. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... of the massive amounts of data. We present an automated data processing method to quantitatively compare large numbers of spectra from the analysis of complex mixtures, exploiting the full quality of high-resolution mass spectra. By projecting all detected ions - within defined intervals on both the time...... infusion analyses of crude extract to find the relationship between species from several species terverticillate Penicillium, and also that the ions responsible for the segregation can be identified. Furthermore the process can automate the process of detecting unique species and unique metabolites....

  16. Lynx: A High-Resolution Synthetic Aperture Radar

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, A.W.; Hensley, W.H.; Pace, F.; Stence, J.; Tsunoda, S.I.; Walker, B.C.; Woodring, M.

    1999-03-08

    Lynx is a high resolution, synthetic aperture radar (SAR) that has been designed and built by Sandia National Laboratories in collaboration with General Atomics (GA). Although Lynx may be operated on a wide variety of manned and unmanned platforms, it is primarily intended to be fielded on unmanned aerial vehicles. In particular, it may be operated on the Predator, I-GNAT, or Prowler II platforms manufactured by GA Aeronautical Systems, Inc. The Lynx production weight is less than 120 lb. and has a slant range of 30 km (in 4 mm/hr rain). It has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode. In ground moving target indicator mode, the minimum detectable velocity is 6 knots with a minimum target cross-section of 10 dBsm. In coherent change detection mode, Lynx makes registered, complex image comparisons either of 0.1 m resolution (minimum) spotlight images or of 0.3 m resolution (minimum) strip images. The Lynx user interface features a view manager that allows it to pan and zoom like a video camera. Lynx was developed under corporate finding from GA and will be manufactured by GA for both military and commercial applications. The Lynx system architecture will be presented and some of its unique features will be described. Imagery at the finest resolutions in both spotlight and strip modes have been obtained and will also be presented.

  17. Three-dimensional integral television using extremely high-resolution video system with 4,000 scanning lines

    Science.gov (United States)

    Okano, Fumio; Kawakita, Masahiro; Arai, Jun; Sasaki, Hisayuki; Yamashita, Takayuki; Sato, Masahito; Suehiro, Koya; Haino, Yasuyuki

    2007-09-01

    The integral method enables observers to see 3D images like real objects. It requires extremely high resolution for both capture and display stages. We present an experimental 3D television system based on the integral method using an extremely high-resolution video system. The video system has 4,000 scanning lines using the diagonal offset method for two green channels. The number of elemental lenses in the lens array is 140 (vertical) × 182 (horizontal). The viewing zone angle is wider than 20 degrees in practice. This television system can capture 3D objects and provides full color and full parallax 3D images in real time.

  18. Comparison of High Resolution Negative Electron Beam Resists

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Schøler, Mikkel; Shi, Peixiong

    2006-01-01

    Four high resolution negative electron beam resists are compared: TEBN-1 from Tokuyama Corp. Japan, ma-N 2401XP and mr-L 6000AXP from microresist technology GmbH Germany, and SU-8 2000 series from MicroChem Corp., USA. Narrow linewidth high density patterns are defined by 100 kV electron beam...

  19. High-Resolution Broadband Spectroscopy Using an Externally Dispersed Interferometer

    Science.gov (United States)

    Erskine, David J.; Edelstein, Jerry; Feuerstein, W. Michael; Welsh, Barry

    2003-08-01

    An externally dispersed interferometer (EDI) is a series combination of a fixed delay interferometer and an external grating spectrograph. We describe how the EDI can boost the effective resolving power of an echelle or linear grating spectrograph by a factor of 2-3 or more over the spectrograph's full bandwidth. The interferometer produces spectral fringes over the entire spectrograph's bandwidth. The fringes heterodyne with spectral features to provide a low spatial frequency moiré pattern. The heterodyning is numerically reversed to recover highly detailed spectral information unattainable by the spectrograph alone. We demonstrate resolution boosting for stellar and solar measurements of two-dimensional echelle and linear grating spectra. An effective spectral resolution of ~100,000 has been obtained from the ~50,000 resolution Lick Observatory two-dimensional echelle spectrograph, and that of ~50,000 from an ~20,000 resolution linear grating spectrograph.

  20. High-resolution structure of viruses from random diffraction snapshots

    CERN Document Server

    Hosseinizadeh, A; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A

    2014-01-01

    The advent of the X-ray Free Electron Laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date, and provides a potentially powerful alternative route for analysis of data from crystalline and nanocrystalline objects.

  1. Achieving High Resolution Timer Events in Virtualized Environment.

    Directory of Open Access Journals (Sweden)

    Blazej Adamczyk

    Full Text Available Virtual Machine Monitors (VMM have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service. Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  2. Adaptive optics high resolution spectroscopy: present status and future direction

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  3. The theory and practice of high resolution scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Joy, D.C. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA))

    1990-01-01

    Recent advances in instrumentation have produced the first commercial examples of what can justifiably be called High Resolution Scanning Electron Microscopes. The key components of such instruments are a cold field emission gun, a small-gap immersion probe-forming lens, and a clean dry-pumped vacuum. The performance of these microscopes is characterized by several major features including a spatial resolution, in secondary electron mode on solid specimens, which can exceed 1nm on a routine basis; an incident probe current density of the order of 10{sup 6} amps/cm{sup 2}; and the ability to maintain these levels of performance over an accelerating voltage range of from 1 to 30keV. This combination of high resolution, high probe current, low contamination and flexible electron-optical conditions provides many new opportunitites for the application of the SEM to materials science, physics, and the life sciences. 27 refs., 14 figs.

  4. High spatial resolution diffusion tensor imaging and its applications

    CERN Document Server

    Wang, J J

    2002-01-01

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI...

  5. Spmk and Grabcut Based Target Extraction from High Resolution Remote Sensing Images

    Science.gov (United States)

    Cui, Weihong; Wang, Guofeng; Feng, Chenyi; Zheng, Yiwei; Li, Jonathan; Zhang, Yi

    2016-06-01

    Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT) descriptor and the histogram of oriented gradients (HOG) & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels' spatial pyramid (SP) to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  6. A new {beta}-diketone complex with high color purity

    Energy Technology Data Exchange (ETDEWEB)

    Adati, R.D. [Unesp, Sao Paulo State University, Instituto de Quimica C.P. 355, 14801-970 Araraquara-SP (Brazil); Lima, S.A.M. [Unesp, Sao Paulo State University, Instituto de Quimica C.P. 355, 14801-970 Araraquara-SP (Brazil); Davolos, M.R. [Unesp, Sao Paulo State University, Instituto de Quimica C.P. 355, 14801-970 Araraquara-SP (Brazil)]. E-mail: davolos@iq.unesp.br; Jafelicci, M. [Unesp, Sao Paulo State University, Instituto de Quimica C.P. 355, 14801-970 Araraquara-SP (Brazil)

    2006-07-20

    In this work a new europium (III) complex with the following formula NH{sub 4}[Eu(bmdm){sub 4}] was synthesized and characterized. The bmdm (butyl methoxy-dibenzoyl-methane) is a {beta}-diketone molecule used as UV radiation absorber in sunscreen formulations. Coordination of this ligand to the Eu{sup 3+} ion was confirmed by FT-IR, while the Raman spectrum suggests the presence of NH{sub 4} {sup +} ions. The photoluminescence spectra present narrow lines arising from f-f intra-configurational transitions {sup 5}D{sub 0}-{sup 7}F{sub 0,1,2,3,4}, dominated by the hypersensitive {sup 5}D{sub 0}-{sup 7}F{sub 2} transition. In the spectrum recorded at 77 K, all transitions split into 2J + 1 lines suggesting that there is just one symmetry site around Eu{sup 3+} ion. This symmetry is not centrosymmetric. The calculated intensity parameters are {omega} {sub 2} = 30.5 x 10{sup -20} cm{sup 2} and {omega} {sub 4} = 5.91 x 10{sup -20} cm{sup 2} for this complex. The CIE chromaticity coordinates (x = 0.67 and y = 0.32) show a dominant wavelength of 615 nm. The color gamut achieved by this complex is a 100% in the CIE color space.

  7. Advancing Atmosphere-Ocean Remote Sensing with Spaceborne High Spectral Resolution Lidar

    Science.gov (United States)

    Hostetler, C. A.; Behrenfeld, M. J.; Chepfer, H.; Hu, Y.; Hair, J. W.; Trepte, C. R.; Winker, D. M.; Ferrare, R. A.; Burton, S. P.; Scarino, A. J.; Powell, K. A.; Michaud, J.

    2016-12-01

    More than 1600 publications employing observations from the CALIOP lidar on CALIPSO testify to the value of spaceborne lidar for aerosol and cloud remote sensing. Recent publications have shown the value of CALIOP data for retrievals of key ocean carbon cycle stocks. In this presentation we focus on the advantages of a more advanced technique, High Spectral Resolution Lidar (HSRL), for aerosol, cloud, and ocean remote sensing. An atmosphere-ocean optimized HSRL achieves greater accuracy over the standard backscatter lidar technique for retrievals of aerosol and cloud extinction and backscatter profiles, provides additional capability to retrieve aerosol and cloud microphysical parameters, and enables vertically-resolved characterization of scattering and absorption properties of suspended and dissolved materials in the ocean. Numerous publications highlight the synergy of coincident CALIOP and passive A-train observations for studies of aerosol-cloud radiative effects and cloud-climate feedback. Less appreciated is the complementarity that would exist between an optimized spaceborne lidar and passive ocean color. An optimized HSRL flown in formation with the Plankton, Aerosol, and ocean Ecosystem (PACE) mission would provide phytoplankton vertical distribution, which is needed for accurately estimating net primary productivity but absent in the PACE ocean color data. The HSRL would also provide data needed to improve atmospheric correction schemes in ocean color retrievals. Because lidar provides measurements both night and day, through tenuous clouds and aerosol layers, and in holes between clouds, the sampling achieved is highly complementary to passive radiometry, providing data in important high latitude regions where ocean color data are sparse or nonexistent. In this presentation we will discuss 1) relevant aerosol, cloud, and ocean retrievals from airborne HSRL field missions; 2) the advantages of an optimized spaceborne HSRL for aerosol, cloud, and ocean

  8. High-resolution low-dose scanning transmission electron microscopy.

    Science.gov (United States)

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  9. Theoretical Problems in High Resolution Solar Physics, 2

    Science.gov (United States)

    Athay, G. (Editor); Spicer, D. S. (Editor)

    1987-01-01

    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.

  10. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile...... dynamics is followed in situ during varying loading conditions by reciprocal space mapping: during uninterrupted tensile deformation, formation of subgrains is observed concurrently with broadening of Bragg reflections shortly after the onset of plastic deformation. When the traction is terminated, stress...

  11. A fast high-spatial-resolution Raman distributed temperature sensor

    Science.gov (United States)

    Chen, Y.; Hartog, A. H.; Marsh, R. J.; Hilton, I. M.; Hadley, M. R.; Ross, P. A.

    2014-05-01

    Conventional high-spatial-resolution Raman distributed temperature sensing (DTS) systems are based on photoncounting techniques, which result in slow measurements over short sensing fibers. We describe an alternative approach that uses a high-power, short-pulse-width laser and provides fast measurements over fibers longer than 1 km. We demonstrate measurements with 1-s update times over fiber lengths greater than 1 km with better than 0.4-m spatial resolution. We introduce a figure of merit for DTS and we show a substantial improvement (x 100) over earlier results.

  12. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  13. Sharpening high resolution information in single particle electron cryomicroscopy.

    Science.gov (United States)

    Fernández, J J; Luque, D; Castón, J R; Carrascosa, J L

    2008-10-01

    Advances in single particle electron cryomicroscopy have made possible to elucidate routinely the structure of biological specimens at subnanometer resolution. At this resolution, secondary structure elements are discernable by their signature. However, identification and interpretation of high resolution structural features are hindered by the contrast loss caused by experimental and computational factors. This contrast loss is traditionally modeled by a Gaussian decay of structure factors with a temperature factor, or B-factor. Standard restoration procedures usually sharpen the experimental maps either by applying a Gaussian function with an inverse ad hoc B-factor, or according to the amplitude decay of a reference structure. EM-BFACTOR is a program that has been designed to widely facilitate the use of the novel method for objective B-factor determination and contrast restoration introduced by Rosenthal and Henderson [Rosenthal, P.B., Henderson, R., 2003. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721-745]. The program has been developed to interact with the most common packages for single particle electron cryomicroscopy. This sharpening method has been further investigated via EM-BFACTOR, concluding that it helps to unravel the high resolution molecular features concealed in experimental density maps, thereby making them better suited for interpretation. Therefore, the method may facilitate the analysis of experimental data in high resolution single particle electron cryomicroscopy.

  14. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    Science.gov (United States)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  15. Structural information, resolution, and noise in high-resolution atomic force microscopy topographs.

    Science.gov (United States)

    Fechner, Peter; Boudier, Thomas; Mangenot, Stéphanie; Jaroslawski, Szymon; Sturgis, James N; Scheuring, Simon

    2009-05-06

    AFM has developed into a powerful tool in structural biology, providing topographs of proteins under close-to-native conditions and featuring an outstanding signal/noise ratio. However, the imaging mechanism exhibits particularities: fast and slow scan axis represent two independent image acquisition axes. Additionally, unknown tip geometry and tip-sample interaction render the contrast transfer function nondefinable. Hence, the interpretation of AFM topographs remained difficult. How can noise and distortions present in AFM images be quantified? How does the number of molecule topographs merged influence the structural information provided by averages? What is the resolution of topographs? Here, we find that in high-resolution AFM topographs, many molecule images are only slightly disturbed by noise, distortions, and tip-sample interactions. To identify these high-quality particles, we propose a selection criterion based on the internal symmetry of the imaged protein. We introduce a novel feature-based resolution analysis and show that AFM topographs of different proteins contain structural information beginning at different resolution thresholds: 10 A (AqpZ), 12 A (AQP0), 13 A (AQP2), and 20 A (light-harvesting-complex-2). Importantly, we highlight that the best single-molecule images are more accurate molecular representations than ensemble averages, because averaging downsizes the z-dimension and "blurs" structural details.

  16. Spectral domain optical coherence tomography - Ultra-high speed, ultra-high resolution ophthalmic imaging

    NARCIS (Netherlands)

    Chen, T.; Cense, B.; Pierce, M. C.; Nassif, N. A.; Park, B. H.; Yun, S. H.; White, B.; Bouma, B. E.; Tearney, G. J.; de Boer, J.F.

    2005-01-01

    Objective: To introduce a new ophthalmic optical coherence tomography technology that allows unprecedented simultaneous ultra-high speed and ultra-high resolution. Methods: Using a superluminescent diode source, a clinically viable ultra-high speed, ultra-high resolution spectral domain optical

  17. Generating High-Temporal and Spatial Resolution TIR Image Data

    Science.gov (United States)

    Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.

    2017-09-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  18. GENERATING HIGH-TEMPORAL AND SPATIAL RESOLUTION TIR IMAGE DATA

    Directory of Open Access Journals (Sweden)

    M. Herrero-Huerta

    2017-09-01

    Full Text Available Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere collected by MODIS daily 1-km and Landsat – TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  19. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  20. Generating high-temporal and spatial resolution tir image data

    NARCIS (Netherlands)

    Herrero Huerta, M.; Lagüela, S.; Alfieri, S.M.; Menenti, M.; Lichti, D.; Weng, Q

    2017-01-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single

  1. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel

    2014-11-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  2. Input variable selection for interpolating high-resolution climate ...

    African Journals Online (AJOL)

    2010-10-20

    Oct 20, 2010 ... Accurate climate surfaces are vital for applications relating to groundwater recharge modelling, evapotranspiration estima- ... with distance to oceans and elevation to generate 8 sets of high-resolution (i.e. 3 arc second) climate surfaces of the Western .... ANUSPLIN, developed by the Australian National.

  3. High resolution numerical weather prediction over the Indian ...

    Indian Academy of Sciences (India)

    In this study, the Florida State University Global Spectral Model (FSUGSM), in association with a high-resolution nested regional spectral model (FSUNRSM), is used for short-range weather forecasts over the Indian domain. Three-day forecasts for each day of August 1998 were performed using different versions of the ...

  4. Track prediction of very severe cyclone 'Nargis' using high resolution ...

    Indian Academy of Sciences (India)

    In the present study, a detailed diagnostic analysis of the system 'Nargis' is carried out initially to investigate the features associated with this unusual movement and subsequently the real time forecast of VSCS 'Nargis' using high resolution advanced version weather research forecasting (WRF) model is presented.

  5. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  6. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  7. High-resolution seismic imaging of the Sohagpur Gondwana basin ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 6 ... In this study, we illustrate how Gondwana tectonics affected the Sohagpur Gondwana basin that occurs at the junction of the Mahanadi and Son–Narmada rift systems in the central India, through a high-resolution seismic reflection study along six ...

  8. Bombs at High Resolution. I. Morphological Evidence for Photospheric Reconnection

    NARCIS (Netherlands)

    Watanabe, H.; Vissers, G.; Kitai, R.; Rouppe van der Voort, L.H.M.; Rutten, R.J.|info:eu-repo/dai/nl/074143662

    2011-01-01

    High-resolution imaging-spectroscopy movies of solar active region NOAA 10998 obtained with the Crisp Imaging Spectropolarimeter at the Swedish 1-m Solar Telescope show very bright, rapidly flickering, flame-like features that appear intermittently in the wings of the Balmer Hα line in a region with

  9. Calibration of a High Resolution Airborne 3-D SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Grinder-Pedersen, Jan; Madsen, S.N.

    1997-01-01

    The potential of across-track interferometric (XTI) synthetic aperture radar (SAR) for producing high resolution 3D imagery has been demonstrated by several airborne systems including EMISAR, the dual frequency, polarimetric, and interferometric SAR developed at the Dept. of Electromagnetic Systems...

  10. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  11. High Resolution Digital Imaging of Paintings: The Vasari Project.

    Science.gov (United States)

    Martinez, Kirk

    1991-01-01

    Describes VASARI (the Visual Art System for Archiving and Retrieval of Images), a project funded by the European Community to show the feasibility of high resolution colormetric imaging directly from paintings. The hardware and software used in the system are explained, storage on optical disks is described, and initial results are reported. (five…

  12. Amplification of real-time high resolution melting analysis PCR ...

    African Journals Online (AJOL)

    In this study, we assessed the usefulness of eight common primers amplifying the respective genes in real-time high resolution melting analysis PCR (real-time HRMA PCR) in terms of time, cost and sensitivity with respect to PCR-SSCP method. We found that case sample can easily be differentiated from control sample by ...

  13. High resolution spectroscopy of the disk chromosphere. I - Observing procedures.

    Science.gov (United States)

    Beckers, J. M.; Mauter, H. A.; Mann, G. R.; Brown, D. R.

    1972-01-01

    Review of some of the main features of a high resolution spectroscopy program aimed at the precise photometric observation of chromospheric fine structures using the Sacramento Peak vacuum telescope. The observing procedures are described, and a sample of the first observational results is presented.

  14. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima

    2013-01-01

    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  15. High resolution ultraviolet imaging spectrometer for latent image analysis.

    Science.gov (United States)

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin

    2016-03-21

    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

  16. High resolution EPR applications to metalloenzymes and metals in medicine

    CERN Document Server

    Berliner, Lawrence

    2009-01-01

    EPR spectroscopy has an important role in the geometric structural characterization of the redox cofactors in metalloproteins and their electronic structure, as this is crucial for their reactivity. This title covers high-resolution EPR methods, iron proteins, nickel and copper enzymes, and metals in medicine.

  17. A high resolution powder diffractometer using focusing optics

    Indian Academy of Sciences (India)

    Research Centre, Mumbai 400 085, India. *Corresponding author. E-mail: siruguri@csr.ernet.in. Abstract. In this paper, we describe the design, construction and performance of a new high resolution neutron powder diffractometer that has been installed at the Dhruva reactor, Trombay, India. The instrument employs novel ...

  18. High resolution reflection seismic mapping of shallow coal seams

    CSIR Research Space (South Africa)

    Mngadi, SB

    2013-10-01

    Full Text Available Subsidence and collapse of unmapped shallow coal mine workings poses a risk to the public and hampers the development of valuable property. A high-resolution reflection seismic survey was conducted to determine whether it is possible to map...

  19. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the ...

  20. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    We present high resolution upconversion of incoherent infrared radiation by means of sum-frequency mixing with a laser followed by simple CCD Si-camera detection. Noise associated with upconversion is, in strong contrast to room temperature direct mid-IR detection, extremely small, thus very faint...

  1. Interpretation of high resolution aeromagnetic data over southern ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 2 ... High resolution airborne magnetic data of parts of the southern Benue Trough were digitally processed and analyzed in order to estimate the depth of magnetic sources and to map the distribution and orientation of subsurface structural features.

  2. Application of high-resolution melting for variant scanning in ...

    African Journals Online (AJOL)

    High-resolution melting (HRM) analysis is a rapid and sensitive method for single nucleotide polymorphism (SNP) analysis. In this study, a novel HRM assay was carried out to detect SNPs in the chloroplast gene atpB which encodes the beta subunit of the ATP synthase and atpB upstream intergenic region.

  3. High resolution resist-free lithography in the SEM

    NARCIS (Netherlands)

    Hari, S.

    2017-01-01

    Focussed Electron Beam Induced Processing is a high resolution direct-write nanopatterning technique. Its ability to fabricate sub-10 nm structures together with its versatility and ease of use, in that it is resist-free and implementable inside a Scanning Electron Microscope, make it attractive for

  4. A high-resolution record of Greenland mass balance

    NARCIS (Netherlands)

    McMillan, Malcolm; Leeson, Amber; Shepherd, Andrew; Briggs, Kate; Armitage, Thomas; Hogg, Anna; Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Noël, B.P.Y.|info:eu-repo/dai/nl/370612345; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Ligtenberg, S.R.M.|info:eu-repo/dai/nl/32821177X; Horwath, M.; Groh, Andreas; Muir, A.; Gilbert, Lin

    2016-01-01

    We map recent Greenland Ice Sheet elevation change at high spatial (5 km) and temporal (monthly) resolution using CryoSat-2 altimetry. After correcting for the impact of changing snowpack properties associated with unprecedented surface melting in 2012, we find good agreement (3 cm/yr bias) with

  5. Systematic high-resolution assessment of global hydropower potential

    NARCIS (Netherlands)

    Hoes, Olivier A C; Meijer, Lourens J J; Van Der Ent, Ruud J.; Van De Giesen, Nick C.

    2017-01-01

    Population growth, increasing energy demand and the depletion of fossil fuel reserves necessitate a search for sustainable alternatives for electricity generation. Hydropower could replace a large part of the contribution of gas and oil to the present energy mix. However, previous high-resolution

  6. Very high resolution satellite data: New challenges in image analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    Early years of coming century will see a large number of satellites with very high spatial resolution reaching beyond 1 m in the visible range of electromagnetic spectrum. Such images will come very close to giving a ground-based view of a terrain...

  7. pattern of interstitial lung disease as seen by high resolution

    African Journals Online (AJOL)

    2012-09-01

    Sep 1, 2012 ... Background: Diffuse lung diseases constitute a major cause of morbidity and mortality worldwide. High Resolution Computed Tomography (HRCT) is the recommended imaging technique in the diagnosis, assessment and followup of these diseases. Objectives: To describe the pattern of HRCT findings in ...

  8. FMC cameras, high resolution films and very large scale mapping

    Science.gov (United States)

    Tachibana, Kikuo; Hasegawa, Hiroyuki

    1988-06-01

    Very large scale mapping (1/250) was experimented on the basis of FMC camera, high resolution film and total station surveying. The future attractive combination of precision photogrammetry and personal computer assisted terrestrial surveying was investigated from the point of view of accuracy, time effectiveness and total procedures control.

  9. Signal Processing for High Resolution FMCW SAR and Moving Target

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.

    2005-01-01

    The combination of Frequency Modulated ContinuousWave (FMCW) technology and Synthetic Aperture Radar (SAR) leads to lightweight, cost-effective imaging sensors of high resolution. In FMCW SAR applications the conventional stop-and-go approximation used in pulse radar algorithms cannot be considered

  10. Plant respirometer enables high resolution of oxygen consumption rates

    Science.gov (United States)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  11. Sparse deconvolution of high-density super-resolution images

    NARCIS (Netherlands)

    S. Hugelier (Siewert); J.J. de Rooi (Johan); R. Bernex (Romain); S. Duwé (Sam); O. Devos (Olivier); M. Sliwa (Michel); P. Dedecker (Peter); P.H.C. Eilers (Paul); C. Ruckebusch (Cyril)

    2016-01-01

    textabstractIn wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms

  12. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    Science.gov (United States)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  13. Invited article: High resolution digital camera for infrared reflectography.

    Science.gov (United States)

    Falco, Charles M

    2009-07-01

    This paper describes the characteristics of a high resolution infrared (IR) imaging system operating over the wavelength range of 830-1100 nm, based on a modified 8 Mpixels commercial digital camera, with which nonspecialists can obtain IR reflectograms of works of art in situ in a museum environment. The relevant imaging properties of sensitivity, resolution, noise, and contrast are characterized and the capabilities of this system are illustrated with an example that has revealed important new information about the working practices of a 16th century artist.

  14. Topography improvements in MEMS DMs for high-contrast, high-resolution imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop and demonstrate an innovative microfabrication process to substantially improve the surface quality achievable in high-resolution...

  15. Evaluation of a High-Resolution Regional Reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  16. The high-resolution regional reanalysis COSMO-REA6

    Science.gov (United States)

    Ohlwein, C.

    2016-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  17. A High-resolution Reanalysis for the European CORDEX Region

    Science.gov (United States)

    Bentzien, Sabrina; Bollmeyer, Christoph; Crewell, Susanne; Friederichs, Petra; Hense, Andreas; Keller, Jan; Keune, Jessica; Kneifel, Stefan; Ohlwein, Christian; Pscheidt, Ieda; Redl, Stephanie; Steinke, Sandra

    2014-05-01

    A High-resolution Reanalysis for the European CORDEX Region Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on the regional reanalysis for Europe with a domain matching the CORDEX-EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). The COSMO reanalysis system comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-interim data. The reanalysis data set currently covers 6 years (2007-2012). The evaluation of the reanalyses is done using independent observations with special emphasis on precipitation and high-impact weather situations. The development and evaluation of the COSMO-based reanalysis for the CORDEX-Euro domain can be seen as a preparation for joint European activities on the development of an ensemble system of regional reanalyses for Europe.

  18. High-resolution axial MR imaging of tibial stress injuries

    Science.gov (United States)

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  19. High-resolution and LIDAR imaging support to the Haiti earthquake relief effort

    Science.gov (United States)

    Messinger, David W.; van Aardt, Jan; McKeown, Don; Casterline, May; Faulring, Jason; Raqueño, Nina; Basener, Bill; Velez-Reyes, Miguel

    2010-08-01

    The Wildfire Airborne Sensor Program (WASP) is an imaging system designed, built, and operated by the RIT Center for Imaging Science. The system consists of four cameras: a high resolution color camera and SWIR, MWIR, and LWIR cameras. When flown with our corporate partners, Kucera International, the imaging system is combined with a high-resolution LIDAR. This combination provides a full-spectrum, multimodal data collection platform unique to RIT. Under funding by the World Bank, the WASP system was used to image over 250 sq. mi. in Haiti (approximately 15,000 visible and 45,000 infrared frames) from January 21 - 27, 2010 in support of the earthquake relief efforts. Priorities of collection were the area surrounding Port au Prince, the city of Leogane, several other badly damaged towns, and, at the request of the USGS, a high resolution LIDAR collection over the fault line. The imagery was used in the field by disaster relief workers and by collaborators at the University of Buffalo and ImageCat, Inc. to perform building damage and road network trafficability assessments. Additionally, large area mosaics and semi-automatic processing algorithms were developed for value-added product development. In particular, a methodology was developed to extract the locations of blue tarps (indicative of displaced persons) from the images. All imagery was made available to the public through outlets such as Google Earth, the University of Buffalo, the US Geological Survey, the United Nations, and other sites.

  20. Scalable, flexible and high resolution patterning of CVD graphene.

    Science.gov (United States)

    Hofmann, Mario; Hsieh, Ya-Ping; Hsu, Allen L; Kong, Jing

    2014-01-07

    The unique properties of graphene make it a promising material for interconnects in flexible and transparent electronics. To increase the commercial impact of graphene in those applications, a scalable and economical method for producing graphene patterns is required. The direct synthesis of graphene from an area-selectively passivated catalyst substrate can generate patterned graphene of high quality. We here present a solution-based method for producing patterned passivation layers. Various deposition methods such as ink-jet deposition and microcontact printing were explored, that can satisfy application demands for low cost, high resolution and scalable production of patterned graphene. The demonstrated high quality and nanometer precision of grown graphene establishes the potential of this synthesis approach for future commercial applications of graphene. Finally, the ability to transfer high resolution graphene patterns onto complex three-dimensional surfaces affords the vision of graphene-based interconnects in novel electronics.

  1. A high resolution ion microscope for cold atoms

    Science.gov (United States)

    Stecker, Markus; Schefzyk, Hannah; Fortágh, József; Günther, Andreas

    2017-04-01

    We report on an ion-optical system that serves as a microscope for ultracold ground state and Rydberg atoms. The system is designed to achieve a magnification of up to 1000 and a spatial resolution in the 100 nm range, thereby surpassing many standard imaging techniques for cold atoms. The microscope consists of four electrostatic lenses and a microchannel plate in conjunction with a delay line detector in order to achieve single particle sensitivity with high temporal and spatial resolution. We describe the design process of the microscope including ion-optical simulations of the imaging system and characterize aberrations and the resolution limit. Furthermore, we present the experimental realization of the microscope in a cold atom setup and investigate its performance by patterned ionization with a structure size down to 2.7 μm. The microscope meets the requirements for studying various many-body effects, ranging from correlations in cold quantum gases up to Rydberg molecule formation.

  2. Bendable X-ray Optics for High Resolution Imaging

    Science.gov (United States)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  3. High Resolution Software Defined Radar System for Target Detection

    Directory of Open Access Journals (Sweden)

    S. Costanzo

    2013-01-01

    Full Text Available The Universal Software Radio Peripheral USRP NI2920, a software defined transceiver so far mainly used in Software Defined Radio applications, is adopted in this work to design a high resolution L-Band Software Defined Radar system. The enhanced available bandwidth, due to the Gigabit Ethernet interface, is exploited to obtain a higher slant-range resolution with respect to the existing Software Defined Radar implementations. A specific LabVIEW application, performing radar operations, is discussed, and successful validations are presented to demonstrate the accurate target detection capability of the proposed software radar architecture. In particular, outdoor and indoor test are performed by adopting a metal plate as reference structure located at different distances from the designed radar system, and results obtained from the measured echo are successfully processed to accurately reveal the correct target position, with the predicted slant-range resolution equal to 6 m.

  4. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    Science.gov (United States)

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    Synopsis The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition Multidetector-CT has been used for high-resolution imaging of trabecular bone structure, however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements and recent developments in this emerging field. Details regarding imaging protocols as well as image post-processing methods for bone structure quantification are discussed. PMID:20609895

  5. Photoacoustic lymphatic imaging with high spatial-temporal resolution

    Science.gov (United States)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.

    2014-11-01

    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  6. Exploring high-mass diphoton resonance without new colored states

    Science.gov (United States)

    Ahriche, Amine; Faisel, Gaber; Nasri, Salah; Tandean, Jusak

    2017-03-01

    A new heavy resonance may be observable at the LHC if it has a significant decay branching fraction into a pair of photons. We entertain this possibility by looking at the modest excess in the diphoton invariant mass spectrum around 750 GeV recently reported in the ATLAS and CMS experiments. Assuming that it is a spinless boson, dubbed s ˜ , we consider it within a model containing two weak scalar doublets having zero vacuum expectation values and a scalar singlet in addition to the doublet responsible for breaking the electroweak symmetry. The model also possesses three Dirac neutral singlet fermions, the lightest one of which can play the role of dark matter and which participate with the new doublet scalars in generating light neutrino masses radiatively. We show that the model is consistent with all phenomenological constraints and can yield a production cross section σ (pp → s ˜ → γγ) of roughly the desired size, mainly via the photon-fusion contribution, without involving extra colored fermions or bosons. We also discuss other major decay modes of s ˜ which are potentially testable in upcoming LHC measurements.

  7. Exploring high-mass diphoton resonance without new colored states

    Directory of Open Access Journals (Sweden)

    Amine Ahriche

    2017-03-01

    Full Text Available A new heavy resonance may be observable at the LHC if it has a significant decay branching fraction into a pair of photons. We entertain this possibility by looking at the modest excess in the diphoton invariant mass spectrum around 750 GeV recently reported in the ATLAS and CMS experiments. Assuming that it is a spinless boson, dubbed s˜, we consider it within a model containing two weak scalar doublets having zero vacuum expectation values and a scalar singlet in addition to the doublet responsible for breaking the electroweak symmetry. The model also possesses three Dirac neutral singlet fermions, the lightest one of which can play the role of dark matter and which participate with the new doublet scalars in generating light neutrino masses radiatively. We show that the model is consistent with all phenomenological constraints and can yield a production cross section σ(pp→s˜→γγ of roughly the desired size, mainly via the photon-fusion contribution, without involving extra colored fermions or bosons. We also discuss other major decay modes of s˜ which are potentially testable in upcoming LHC measurements.

  8. Simple single-emitting layer hybrid white organic light emitting with high color stability

    Science.gov (United States)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  9. Validation of AIRS high-resolution stratospheric temperature retrievals

    Science.gov (United States)

    Meyer, Catrin I.; Hoffmann, Lars

    2014-10-01

    This paper focuses on stratospheric temperature observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite. We validate a nine-year record (2003 - 2011) of data retrieved with a scientific retrieval processor independent from the operational processor operated by NASA. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and has nine times better horizontal sampling than the operational data provided by NASA. The high-resolution temperature data are considered optimal for for gravity wave studies. For validation the high-resolution retrieval data are compared with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed statistical comparisons of monthly zonal mean cross-sections and time series. The comparisons show that the high-resolution temperature data are in good agreement with the validation data sets. The bias in the zonal averages is mostly within ±2K. The bias reaches a maximum of 7K to ERA-Interim and 4K to the AIRS operational data at the stratopause, it is related to the different resolutions of the data sets. Variability is nearly the same in all three data sets, having maximum standard deviations around the polar vortex in the mid and upper stratosphere. The validation presented here indicates that the high-resolution temperature retrievals are well-suited for scientific studies. In particular, we expect that they will become a valuable asset for future studies of stratospheric gravity waves.

  10. Mapping Urban Ecosystem Services Using High Resolution Aerial Photography

    Science.gov (United States)

    Pilant, A. N.; Neale, A.; Wilhelm, D.

    2010-12-01

    Ecosystem services (ES) are the many life-sustaining benefits we receive from nature: e.g., clean air and water, food and fiber, cultural-aesthetic-recreational benefits, pollination and flood control. The ES concept is emerging as a means of integrating complex environmental and economic information to support informed environmental decision making. The US EPA is developing a web-based National Atlas of Ecosystem Services, with a component for urban ecosystems. Currently, the only wall-to-wall, national scale land cover data suitable for this analysis is the National Land Cover Data (NLCD) at 30 m spatial resolution with 5 and 10 year updates. However, aerial photography is acquired at higher spatial resolution (0.5-3 m) and more frequently (1-5 years, typically) for most urban areas. Land cover was mapped in Raleigh, NC using freely available USDA National Agricultural Imagery Program (NAIP) with 1 m ground sample distance to test the suitability of aerial photography for urban ES analysis. Automated feature extraction techniques were used to extract five land cover classes, and an accuracy assessment was performed using standard techniques. Results will be presented that demonstrate applications to mapping ES in urban environments: greenways, corridors, fragmentation, habitat, impervious surfaces, dark and light pavement (urban heat island). Automated feature extraction results mapped over NAIP color aerial photograph. At this scale, we can look at land cover and related ecosystem services at the 2-10 m scale. Small features such as individual trees and sidewalks are visible and mappable. Classified aerial photo of Downtown Raleigh NC Red: impervious surface Dark Green: trees Light Green: grass Tan: soil

  11. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    Science.gov (United States)

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  12. Sparse Recovery Analysis of High-Resolution Climate Data

    Science.gov (United States)

    Archibald, R.

    2013-12-01

    The field of compressed sensing is vast and currently very active, with new results, methods, and algorithms appearing almost daily. The first notions of compressed sensing began with Prony's method, which was designed by the French mathematician Gaspard Riche de Prony to extract signal information from a limited number of measurements. Since then, sparsity has been used empirically in a variety of applications, including geology and geophysics, spectroscopy, signal processing, radio astronomy, and medical ultrasound. High-resolution climate studies performed on large scale high performance computing have been producing large amounts of data that can benefit from unique mathematical methods for analysis. This work demonstrates how sparse recovery and L1 regularization can be used effectively on large datasets from high-resolution climate studies.

  13. Design of UAV high resolution image transmission system

    Science.gov (United States)

    Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng

    2017-02-01

    In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.

  14. High-resolution dynamical modelling of the Antarctic stratospheric vortex

    Science.gov (United States)

    Haynes, P. H.

    1988-01-01

    Progress is reported on the high-resolution three-dimensional numerical simulation of flows characteristic of the Antarctic wintertime stratosphere. The numerical model is a modified version of the Reading University sigma-coordinate used previously for tropospheric studies. Physical parameterizations are kept to a minimum in order to concentrate as much computing power as possible on simulating details of the dynamical processes. The major question addressed is whether the features observed in recent high-resolution two-dimensional simulations - namely: (1) the formation of a sharp edge to the vortex (seen in the potential vorticity field), (2) the survival of the polar vortex in a material entity, and (3) the formation of small-scale eddies rough the break-up of tongues of high potential vorticity drawn out from the polar vortex - are realized in three-dimensional simulations.

  15. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  16. High-resolution digital imaging with storage phosphors.

    Science.gov (United States)

    Fuhrman, C R; Gur, D; Schaetzing, R

    1990-01-01

    This article describes the current status and potential applications of high-resolution storage phosphor for imaging of the chest. Digital imaging that uses storage phosphor technology is easily adaptable to existing x-ray--generating equipment and can also be used with mobile equipment. The wide latitude of the storage phosphor technique permits satisfactory imaging in situations in which exposure factors cannot be accurately estimated or easily controlled. Early experience with an experimental Kodak high-resolution (4K x 4K) storage phosphor system suggests that standard and portal chest images of excellent quality can be obtained. Many issues must be resolved, however, before digital radiology with a storage phosphor can be advocated as being preferable to conventional film-screen systems. These issues, which include display modalities (film or television monitor), resolution requirements, and the effects of image processing, can only be resolved by further large-scale accuracy studies. The change to a digital imaging system will involve major expenditures for equipment and computers. Cost will be related largely to the level of spatial resolution required for primary radiographic diagnosis.

  17. High resolution neutron diffractometer HRND at research reactor CMRR

    Science.gov (United States)

    Zhang, J.; Xia, Y.; Wang, Y.; Xie, C.; Sun, G.; Liu, L.; Pang, B.; Li, J.; Huang, C.; Liu, Y.; Gong, J.

    2018-01-01

    The high resolution neutron diffractometer HRND is located at the 20 MW China Mianyang Research Reactor (CMRR), which is a neutron powder diffractometer especially dedicated to crystal and magnetic structure studies for polycrystalline powder samples. A vertical focusing Ge (511) monochromator produce a monochromatic neutron beam with a wavelength of 1.885 Å at a fixed take-off angle of 120o. An array of 64 equidistant 3He filled proportional counters can acquire diffraction patterns with a large-scale diffraction angle range over 160o. As all the Soller slit collimators of HRND have a collimation angle of 10' and the monochromator has an average mosaicity of 0.359o, HRND obtains a best resolution of about 1.6\\textperthousand based on experiments, which makes the resolution of HRND can compete with the mainstream-level high resolution neutron powder diffractometers in the world. Equipped with a cryostat and a furnace, HRND allows structural characterization in an extremely broad temperature range. The details of the configuration and performance of the instrument are reported along with its specifications and performance assessments in the present paper.

  18. Accelerated high-resolution photoacoustic tomography via compressed sensing.

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-21

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  19. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  20. A parallel nonlinear adaptive enhancement algorithm for low- or high-intensity color images

    Science.gov (United States)

    Zhou, Zhigang; Sang, Nong; Hu, Xinrong

    2014-12-01

    This article addresses the problem of color image enhancement for images with low or high intensity and poor contrast (LIPC or HIPC). A parallel nonlinear adaptive enhancement (PNAE) algorithm using information from local neighborhood is presented to resolve the problem in parallel. The PNAE algorithm consists of three steps. First, a red-green-blue (RGB) color image is converted to an intensity image, then an adaptive intensity adjustment with local contrast enhancement is parallelly performed, and finally, colors are restored. The PNAE algorithm can be adjusted to control the level of enhancement on the overall lightness and the contrast achieved at the output separately. Most of the parameters used in PNAE are robust for LIPC and HIPC color image enhancement. Experimental results show that PNAE outperforms two popular methods in both computational efficiency and overall content preservation of image while improving local contrast for LIPC and HIPC image enhancement.

  1. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)

    Science.gov (United States)

    1997-01-01

    The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leading side.The false-color composites use red, green and blue to represent the infrared brightnesses at 0.7, 1.51 and 1.82 microns respectively. Considerable variations are evident and are related to the composition and sizes of the surface grains.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  2. Three-dimensional high-resolution ultrasonic imaging of the eye

    Science.gov (United States)

    Silverman, Ronald H.; Lizzi, Frederick L.; Kalisz, Andrew; Coleman, D. J.

    2000-04-01

    Very high frequency (50 MHz) ultrasound provides spatial resolution on the order of 30 microns axially by 60 microns laterally. Our aim was to reconstruct the three-dimensional anatomy of the eye in the full detail permitted by this fine- scale transducer resolution. We scanned the eyes of human subjects and anesthetized rabbits in a sequence of parallel planes 50 microns apart. Within each scan plane, vectors were also spaced 50 microns apart. Radio-frequency data were digitized at a rate of 250 MHz or higher. A series of spectrum analysis and segmentation algorithms was applied to data acquired in each plane; the outputs of these procedures were used to produce color-coded 3-D representations of the sclera, iris and ciliary processes to enhance 3-D volume rendered presentation. We visualized the radial pattern of individual ciliary processes in humans and rabbits and the geodetic web of supporting connections between the ciliary processes and iris that exist only in the rabbit. By acquiring data such that adjacent vectors and planes are separated by less than the transducer's lateral resolution, we were able to visualize structures, such as the ciliary web, that had not been seen before in-vivo. Our techniques offer the possibility of high- precision imaging and measurement of anterior segment structures. This would be relevant in monitoring of glaucoma, tumors, foreign bodies and other clinical conditions.

  3. High resolution microphotonic needle for endoscopic imaging (Conference Presentation)

    Science.gov (United States)

    Tadayon, Mohammad Amin; Mohanty, Aseema; Roberts, Samantha P.; Barbosa, Felippe; Lipson, Michal

    2017-02-01

    GRIN (Graded index) lens have revolutionized micro endoscopy enabling deep tissue imaging with high resolution. The challenges of traditional GRIN lenses are their large size (when compared with the field of view) and their limited resolution. This is because of the relatively weak NA in standard graded index lenses. Here we introduce a novel micro-needle platform for endoscopy with much higher resolution than traditional GRIN lenses and a FOV that corresponds to the whole cross section of the needle. The platform is based on polymeric (SU-8) waveguide integrated with a microlens micro fabricated on a silicon substrate using a unique molding process. Due to the high index of refraction of the material the NA of the needle is much higher than traditional GRIN lenses. We tested the probe in a fluorescent dye solution (19.6 µM Alexa Flour 647 solution) and measured a numerical aperture of 0.25, focal length of about 175 µm and minimal spot size of about 1.6 µm. We show that the platform can image a sample with the field of view corresponding to the cross sectional area of the waveguide (80x100 µm2). The waveguide size can in principle be modified to vary size of the imaging field of view. This demonstration, combined with our previous work demonstrating our ability to implant the high NA needle in a live animal, shows that the proposed system can be used for deep tissue imaging with very high resolution and high field of view.

  4. High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene

    Science.gov (United States)

    Gruet, Sébastien; Goubet, Manuel; Pirali, Olivier

    2014-06-01

    Polycyclic Aromatic Hydrocarbons (PAHs) have long been suspected to be the carriers of so called Unidentified Infrared Bands (UIBs). Most of the results published in the literature report rotationally unresolved spectra of pure carbon as well as heteroatom-containing PAHs species. To date for this class of molecules, the principal source of rotational informations is ruled by microwave (MW) spectroscopy while high resolution measurements reporting rotational structure of the infrared (IR) vibrational bands are very scarce. Recently, some high resolution techniques provided interesting new results to rotationally resolve the IR and far-IR bands of these large carbonated molecules of astrophysical interest. One of them is to use the bright synchrotron radiation as IR continuum source of a high resolution Fourier transform (FTIR) spectrometer. We report the very complementary analysis of the [1,6] naphthyridine (a N-bearing PAH) for which we recorded the microwave spectrum at the PhLAM laboratory (Lille) and the high resolution far-infrared spectrum on the AILES beamline at synchrotron facility SOLEIL. MW spectroscopy provided highly accurate rotational constants in the ground state to perform Ground State Combinations Differences (GSCD) allowing the analysis of the two most intense FT-FIR bands in the 50-900 wn range. Moreover, during this presentation the negative value of the inertial defect in the GS of the molecule will be discussed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013).

  5. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  6. Glacial lake mapping with very high resolution satellite SAR data

    Science.gov (United States)

    Strozzi, T.; Wiesmann, A.; Kääb, A.; Joshi, S.; Mool, P.

    2012-08-01

    Floods resulting from the outbursts of glacial lakes are among the most far-reaching disasters in high mountain regions. Glacial lakes are typically located in remote areas and space-borne remote sensing data are an important source of information about the occurrence and development of such lakes. Here we show that very high resolution satellite Synthetic Aperture Radar (SAR) data can be employed for reliably mapping glacial lakes. Results in the Alps, Pamir and Himalaya using TerraSAR-X and Radarsat-2 data are discussed in comparison to in-situ information, and high-resolution satellite optical and radar imagery. The performance of the satellite SAR data is best during the snow- and ice-free season. In the broader perspective of hazard management, the detection of glacial lakes and the monitoring of their changes from very high-resolution satellite SAR intensity images contributes to the initial assessment of hazards related to glacial lakes, but a more integrated, multi-level approach needs also to include other relevant information such as glacier outlines and outline changes or the identification of unstable slopes above the lake and the surrounding area, information types to which SAR analysis techniques can also contribute.

  7. Tests of a High Resolution Beam Profile Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Norem, J.

    2004-10-28

    High energy linear colliders require very small beams at the interaction point to produce high luminosities, and these beams must be measured and monitored. We have developed and tested a technique where the profile can be obtained from an extension of pinhole camera optics using thick, single sided collimators and slits. Very high resolutions (a few nm) should be possible. Gamma beams can be obtained from bremsstrahlung, Compton or beamstrahlung radiation. We describe tests of the technique using bremsstrahlung from an 800 MeV electron beam at Bates/MIT, Compton scattered photons from 47 GeV Final Focus Test Beam (FFTB) at SLAC, and other applications, such as linear colliders.

  8. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  9. Object-Based Building Extraction from High Resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    R. Attarzadeh

    2012-07-01

    Full Text Available Automatic building extraction from high resolution satellite imagery is considered as an important field of research in remote sensing and machine vision. Many algorithms for extraction of buildings from satellite images have been presented so far. These algorithms mainly have considered radiometric, geometric, edge detection and shadow criteria approaches to perform the building extraction. In this paper, we propose a novel object based approach for automatic and robust detection and extraction of building in high spatial resolution images. To achieve this goal, we use stable and variable features together. Stable features are derived from inherent characteristics of building phenomenon and variable features are extracted using SEparability and THresholds analysis tool. The proposed method has been applied on a QuickBird imagery of an urban area in Isfahan city and visual validation demonstrates that the proposed method provides promising results.

  10. Fabricating High-Resolution X-Ray Collimators

    Science.gov (United States)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  11. Localized corrosion information using high resolution measurement devices

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2005-01-01

    High performance demand for several engineering alloys and components, and miniaturization of electronics and development of MEMS requires better understanding of local corrosion characteristics frequently down to µm scale. This is because in metallic materials corrosion is a sensitive function...... in conjunction with microstructural analysis, using advanced microscopic tools, becomes very important. Corrosion of microelectronics circuits and MEMs is also a recent problem, which demands measurement resolution down to few microns as the components are extremely small, and measurement needs to be carried out...... of the technique could be further enhanced by adding new features such as high resolution video visualization systems, fretting/tribo-corroson attachments, and also by integrating it with stress corrosion testing, corrosion investigation of concrete for a few to name with. The corrosion group in MPT, Technical...

  12. Automatic Matching of High Resolution Satellite Images Based on RFM

    Directory of Open Access Journals (Sweden)

    JI Shunping

    2016-02-01

    Full Text Available A matching method for high resolution satellite images based on RFM is presented.Firstly,the RFM parameters are used to predict the initial parallax of corresponding points and the prediction accuracy is analyzed.Secondly,the approximate epipolar equation is constructed based on projection tracking and its accuracy is analyzed.Thirdly,approximate 1D image matching is executed on pyramid images and least square matching on base images.At last RANSAC is imbedded to eliminate mis-matching points and matching results are obtained.Test results verified the method more robust and with higher matching rate,compared to 2D gray correlation method and the popular SIFT matching method,and the method preferably solved the question of high resolution satellite image matching with different stereo model,different time and large rotation images.

  13. High-Resolution Fluorescence Microscope Imaging of Erythroblast Structure.

    Science.gov (United States)

    Smith, Alyson S; Nowak, Roberta B; Fowler, Velia M

    2018-01-01

    During erythropoiesis, erythroblasts undergo dramatic morphological changes to produce mature erythrocytes. Many unanswered questions regarding the molecular mechanisms behind these changes can be addressed with high-resolution fluorescence imaging. Immunofluoresence staining enables localization of specific molecules, organelles, and membrane components in intact cells at different phases of erythropoiesis. Confocal laser scanning microscopy can provide high-resolution, three-dimensional images of stained structures, which can be used to dissect the molecular mechanisms driving erythropoiesis. The sample preparation, staining procedure, imaging parameters, and image analysis methods used directly affect the quality of the confocal images and the amount and accuracy of information that they can provide. Here, we describe methods to dissect erythropoietic tissues from mice, to perform immunofluorescence staining and confocal imaging of various molecules, organelles and structures of interest in erythroblasts, and to present and quantitatively analyze the data obtained in these fluorescence images.

  14. X-ray optics high-energy-resolution applications

    CERN Document Server

    Shvyd’ko, Yuri

    2004-01-01

    The generation of radiation with well-defined frequency and wavelength, and the ability to precisely determine these quantities, are of fundamental importance in physics and other natural sciences Monochromatic radiation enables both very accurate structure determinations and studies of the dynamics of living and non-living matter It is crucial for the realization of standards of time and length, for the determination of fundamental constants, and for many other aspects of basic research Bragg backscattering from perfect crystals is a tool for creating, manipulating, and analyzing x-rays with highest spectral purity It has the unique feature of selecting x-rays with narrow spectral bandwidth This book describes the theoretical foundations and principles of x-ray crystal optics with high spectral resolution Various experimental studies and applications are presented and the author also addresses the development of instrumentation, such as high-resolution x-ray monochromators, analyzers, wavelength meters, reso...

  15. Measuring large-scale social networks with high resolution.

    Science.gov (United States)

    Stopczynski, Arkadiusz; Sekara, Vedran; Sapiezynski, Piotr; Cuttone, Andrea; Madsen, Mette My; Larsen, Jakob Eg; Lehmann, Sune

    2014-01-01

    This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years-the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.

  16. Measuring large-scale social networks with high resolution.

    Directory of Open Access Journals (Sweden)

    Arkadiusz Stopczynski

    Full Text Available This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years-the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics for a densely connected population of 1000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.

  17. Space to Think: Large, High-Resolution Displays for Sensemaking

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Christopher P.; Endert, Alexander; North, Chris

    2010-05-05

    Space supports human cognitive abilities in a myriad of ways. The note attached to the side of the monitor, the papers spread out on the desk, diagrams scrawled on a whiteboard, and even the keys left out on the counter are all examples of using space to recall, reveal relationships, and think. Technological advances have made it possible to construct large display environments in which space has real meaning. This paper examines how increased space affects the way displays are regarded and used within the context of the cognitively demanding task of sensemaking. A study was conducted observing analysts using a prototype large, high-resolution display to solve an analytic problem. This paper reports on the results of this study and suggests a number of potential design criteria for future sensemaking tools developed for large, high-resolution displays.

  18. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    Science.gov (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  19. Regional High Resolution Reanalysis Covered European North East Shelf

    Science.gov (United States)

    Bourdalle-Badie, R.; Benkiran, M.; Chanut, J.; Drillet, Y.; Reffray, G.

    2011-12-01

    Mercator-Ocean has developed a regional forecasting system at 1/12° resolution over the North East Atlantic (IBI: Iberia, Biscay and Irish), taking advantage of the recent developments in NEMO. This regional forecasting system uses boundary conditions from the Mercator-Ocean global reanalysis (GLORYS: Global Ocean ReanalYses and Simulations). The assimilation component of the Mercator Ocean system, is based on a reduced-order Kalman filter (the SEEK or Singular Extended Evolutive Kalman filter). An IAU method (Incremental Analysis Updates) is used to apply the increments in the system. The error statistics are represented in a sub-space spanned by a small number of dominant 3D error directions. The data assimilation system allows to constrain the model in a multivariate way with Sea Surface Temperature (AVHRR + Multi-satellite High resolution), together with all available satellite Sea Level Anomalies, and with in situ observations from the CORA-03 data base, including ARGO floats temperature and salinity measurements. This reanalysis covers the period from January 2002 to December 2009. In this presentation, the results obtained with this reanalysis system (1/12°) are compared to the GLORYS ones. A special focus will be made on the gain thanks to the higher resolution of the model and higher resolution of the SST assimilated in this reanalysis.

  20. Astrophysical applications of high angular resolution array-telescopes

    Science.gov (United States)

    Linsley, J.

    1985-01-01

    The air shower array-telescopes which are currently being used to search for and study point sources of UHE gamma-rays have angular resolution similar to 1 deg, limited by either the small total area of particle detectors or poor timing resolution. As the signal to noise ratio depends sensitively on the angular resolution, it seems certain that this figure will quickly be surpassed when second generation instruments come into operation. Since the trajectories of galactic cosmic rays with E 100,000 GeV are practically straight lines on scales of 1 A.U. or less, these new instruments will be able to observe a shadow cast by the Moon (angular diameter 0.5 deg). Although the angular diameter of the Sun is practically the same, its shadow will be more complex because of its magnetic field. Thus, high angular resolution observations of the Sun afford a means of investigating the solar magnetic field, and also the charge composition of cosmic rays, including the ratio of antiprotons to protons.

  1. Very High Resolution SAR Tomography via Compressive Sensing

    Science.gov (United States)

    Zhu, Xiao Xiang; Bamler, Richard

    2010-03-01

    By using multi-pass SAR acquisitions, SAR tomography (TomoSAR) extends the synthetic aperture principle into the elevation direction for 3-D imaging. Since the orbits of modern space-borne SAR systems, like TerraSAR-X, are tightly controlled, the elevation resolution (depending on the elevation aperture size) is at least an order of magnitude lower than in range and azimuth. Hence, super- resolution algorithms are desired. The high anisotropic 3- D resolution element renders the signals sparse in elevation. This property suggests using compressive sensing (CS) methods. The paper presents the theory of 4- D (i.e. space-time) CS TomoSAR and compares it with classical tomographic methods. Super-resolution properties and point localization accuracies are demonstrated using simulations and real data. A CS reconstruction of a building complex from TerraSAR-X spotlight data is presented. In addition, the model based time warp method for differential tomographic non-linear motion monitoring is proposed and validated by reconstructing seasonal motion (caused by thermal expansion) of a building complex.

  2. Quantitative High-Resolution Transmission Electron Microscopy of Single Atoms

    OpenAIRE

    Gamm, B.; Popescu, R.; Blank, H.; Schneider, R; Beyer, A.; Gölzhäuser, A.; Gerthsen, D.

    2010-01-01

    Single atoms can be considered as basic objects for electron microscopy to test the microscope performance and basic concepts for modeling of image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate which induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weick...

  3. A high resolution cavity BPM for the CLIC Test Facility

    CERN Document Server

    Chritin, N.; Soby, L.; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.

    2012-01-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  4. Automatic Matching of High Resolution Satellite Images Based on RFM

    OpenAIRE

    JI Shunping; YUAN Xiuxiao

    2016-01-01

    A matching method for high resolution satellite images based on RFM is presented.Firstly,the RFM parameters are used to predict the initial parallax of corresponding points and the prediction accuracy is analyzed.Secondly,the approximate epipolar equation is constructed based on projection tracking and its accuracy is analyzed.Thirdly,approximate 1D image matching is executed on pyramid images and least square matching on base images.At last RANSAC is imbedded to eliminate mis-matching points...

  5. Progress Toward A Very High Angular Resolution Imaging Spectrometer (VERIS)

    Science.gov (United States)

    Korendyke, Clarence M.; Vourlidas, A.; Landi, E.; Seely, J.; Klimchuck, J.

    2007-07-01

    Recent imaging at arcsecond (TRACE) and sub-arcsecond (VAULT) spatial resolution clearly show that structures with fine spatial scales play a key role in the physics of the upper solar atmosphere. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. Fundamental questions regarding the nature, structure, properties and dynamics of loops and filamentary structures in the upper atmosphere have been raised. To address these questions, we are developing a next generation, VEry high angular Resolution Imaging Spectrometer (VERIS) as a sounding rocket instrument. VERIS will obtain the necessary high spatial resolution, high fidelity measurements of plasma temperatures, densities and velocities. With broad simultaneous temperature coverage, the VERIS observations will directly address unresolved issues relating to interconnections of various temperature solar plasmas. VERIS will provide the first ever subarcsecond spectra of transition region and coronal structures. It will do so with a sufficient spectral resolution of to allow centroided Doppler velocity determinations to better than 3 km/s. VERIS uses a novel two element, normal incidence optical design with highly reflective EUV coatings to access a spectral range with broad temperature coverage (0.03-15 MK) and density-sensitive line ratios. Finally, in addition to the spectra, VERIS will simultaneously obtain spectrally pure slot images (10x150 arcsec) in the +/-1 grating orders, which can be combined to make instantaneous line-of-sight velocity maps with 8km/s accuracy over an unprecedented field of view. The VERIS program is beginning the second year of its three year development cycle. All design activities and reviews are complete. Fabrication of all major components has begun. Brassboard electronics cards have been fabricated, assembled and tested. The paper presents the essential scientific

  6. Tuberculous otitis media: findings on high-resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Lungenschmid, D. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria)]|[Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Buchberger, W. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria)]|[Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Schoen, G. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria); Schoepf, R. [Radiologic Inst., Landeck (Austria); Mihatsch, T. [Dept. of Oto-Rhino-Laryngology, University Hospital of Innsbruck (Austria); Birbamer, G. [Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Wicke, K. [Inst. of Computed Tomography, University Hospital of Innsbruck (Austria)

    1993-12-01

    We describe two cases of tuberculous otitis media studied with high-resolution computed tomography (CT). Findings included extensive soft tissue densities with fluid levels in the tympanic cavity, the antrum, the mastoid and petrous air cells. Multifocal bony erosions and reactive bone sclerosis were seen as well. CT proved valuable for planning therapy by accurately displaying the involvement of the various structures of the middle and inner ear. However, the specific nature of the disease could only be presumed. (orig.)

  7. High-Resolution Wind Measurements for Offshore Wind Energy Development

    Science.gov (United States)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  8. Acute pulmonary injury: high-resolution CT and histopathological spectrum

    Science.gov (United States)

    Obadina, E T; Torrealba, J M

    2013-01-01

    Acute lung injury usually causes hypoxaemic respiratory failure and acute respiratory distress syndrome (ARDS). Although diffuse alveolar damage is the hallmark of ARDS, other histopathological patterns of injury, such as acute and fibrinoid organising pneumonia, can be associated with acute respiratory failure. Acute eosinophilic pneumonia can also cause acute hypoxaemic respiratory failure and mimic ARDS. This pictorial essay reviews the high-resolution CT findings of acute lung injury and the correlative histopathological findings. PMID:23659926

  9. High Resolution Analysis of Copy Number Mutation in Breast Cancer

    Science.gov (United States)

    2005-05-01

    Pon , in Polysaccharides in Medic- copy number at high resolution throughout the other diseases, we must distinguish abnormal inal Applications, S...was determined to in- leles . In all experiments, there were a total of silico from the human genome sequence as- volve an interchromosomal duplication...well (3), although we do not explore that approach here. PON ) = e -pb o#regular( - )#deviated [1] The negative log likelihood function satisfies an

  10. High Resolution Wavenumber Standards for the Infrared. (IUPAC Recommendations 1995)

    Science.gov (United States)

    Guelachvili, G.; Birk, M.; Bord, C.; Brault, J.; Brown, L.; Carli, B.; Cole, A.; Evenson, D.; Fayt, A.; Hausamann, D.; hide

    1995-01-01

    The calibration of high resolution infrared spectra is generally more precise than accurate even when they are recorded with Fourier interferometers. In order to improve the consistency of the spectral measurements, an IUPAC project has been undertaken. Its aim was to recommend a selection of spectral lines as wavenumber standards for absolute calibration in the infrared. This paper will report the final recommendations in the spectral range extending from about 4 to about 7000 cm(be).

  11. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.

    1976-01-01

    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...

  12. High Time Resolution Photon Counting 3D Imaging Sensors

    Science.gov (United States)

    Siegmund, O.; Ertley, C.; Vallerga, J.

    2016-09-01

    Novel sealed tube microchannel plate (MCP) detectors using next generation cross strip (XS) anode readouts and high performance electronics have been developed to provide photon counting imaging sensors for Astronomy and high time resolution 3D remote sensing. 18 mm aperture sealed tubes with MCPs and high efficiency Super-GenII or GaAs photocathodes have been implemented to access the visible/NIR regimes for ground based research, astronomical and space sensing applications. The cross strip anode readouts in combination with PXS-II high speed event processing electronics can process high single photon counting event rates at >5 MHz ( 80 ns dead-time per event), and time stamp events to better than 25 ps. Furthermore, we are developing a high speed ASIC version of the electronics for low power/low mass spaceflight applications. For a GaAs tube the peak quantum efficiency has degraded from 30% (at 560 - 850 nm) to 25% over 4 years, but for Super-GenII tubes the peak quantum efficiency of 17% (peak at 550 nm) has remained unchanged for over 7 years. The Super-GenII tubes have a uniform spatial resolution of MCP gain photon counting operation also permits longer overall sensor lifetimes and high local counting rates. Using the high timing resolution, we have demonstrated 3D object imaging with laser pulse (630 nm 45 ps jitter Pilas laser) reflections in single photon counting mode with spatial and depth sensitivity of the order of a few millimeters. A 50 mm Planacon sealed tube was also constructed, using atomic layer deposited microchannel plates which potentially offer better overall sealed tube lifetime, quantum efficiency and gain stability. This tube achieves standard bialkali quantum efficiency levels, is stable, and has been coupled to the PXS-II electronics and used to detect and image fast laser pulse signals.

  13. High-resolution CT findings in Streptococcus milleri pulmonary infection.

    Science.gov (United States)

    Okada, F; Ono, A; Ando, Y; Nakayama, T; Ishii, H; Hiramatsu, K; Sato, H; Kira, A; Otabe, M; Mori, H

    2013-06-01

    To assess pulmonary high-resolution computed tomography (CT) findings in patients with acute Streptococcus milleri pulmonary infection. Sixty consecutive patients with acute S. milleri pneumonia who had undergone high-resolution CT chest examinations between January 2004 and March 2010 were retrospectively identified. Twenty-seven patients with concurrent infections were excluded. The final study group comprised 33 patients (25 men, 8 women; aged 20-88 years, mean 63.1 years) with S. milleri infection. The patients' clinical findings were assessed. Parenchymal abnormalities, enlarged lymph nodes, and pleural effusion were evaluated on high-resolution CT. Underlying conditions included malignancy (n = 15), a smoking habit (n = 11), and diabetes mellitus (n = 8). CT images of all patients showed abnormal findings, including ground-glass opacity (n = 24), bronchial wall thickening (n = 23), consolidation (n = 17), and cavities (n = 7). Pleural effusion was found in 18 patients, and complex pleural effusions were found in seven patients. Pulmonary infection caused by S. milleri was observed mostly in male patients with underlying conditions such as malignancy or a smoking habit. The CT findings in patients with S. milleri consisted mainly of ground-glass opacity, bronchial wall thickening, pleural effusions, and cavities. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  14. Ultrathin high-resolution flexographic printing using nanoporous stamps.

    Science.gov (United States)

    Kim, Sanha; Sojoudi, Hossein; Zhao, Hangbo; Mariappan, Dhanushkodi; McKinley, Gareth H; Gleason, Karen K; Hart, A John

    2016-12-01

    Since its invention in ancient times, relief printing, commonly called flexography, has been used to mass-produce artifacts ranging from decorative graphics to printed media. Now, higher-resolution flexography is essential to manufacturing low-cost, large-area printed electronics. However, because of contact-mediated liquid instabilities and spreading, the resolution of flexographic printing using elastomeric stamps is limited to tens of micrometers. We introduce engineered nanoporous microstructures, comprising polymer-coated aligned carbon nanotubes (CNTs), as a next-generation stamp material. We design and engineer the highly porous microstructures to be wetted by colloidal inks and to transfer a thin layer to a target substrate upon brief contact. We demonstrate printing of diverse micrometer-scale patterns of a variety of functional nanoparticle inks, including Ag, ZnO, WO3, and CdSe/ZnS, onto both rigid and compliant substrates. The printed patterns have highly uniform nanoscale thickness (5 to 50 nm) and match the stamp features with high fidelity (edge roughness, ~0.2 μm). We derive conditions for uniform printing based on nanoscale contact mechanics, characterize printed Ag lines and transparent conductors, and achieve continuous printing at a speed of 0.2 m/s. The latter represents a combination of resolution and throughput that far surpasses industrial printing technologies.

  15. Development of a high resolution module for PET scanners

    Science.gov (United States)

    Stringhini, G.; Pizzichemi, M.; Ghezzi, A.; Stojkovic, A.; Tavernier, S.; Niknejad, T.; Varela, J.; Paganoni, M.; Auffray, E.

    2017-02-01

    Positron Emission Tomography (PET) scanners require high performances in term of spatial resolution and sensitivity to allow early detection of cancer masses. In small animal and organ dedicated PET scanners the Depth of Interaction (DOI) information has to be obtained to avoid parallax errors and to reconstruct high resolution images. In the whole body PET, the DOI information can be useful to correct for the time jitter of the optical photons along the main axis of the scintillator, improving the time performances. In this work we present the development of PET module designed to reach high performance as compared to the current scanners while keeping the complexity of the system reasonably low. The module presented is based on a 64 LYSO (Lutetium-yttrium oxyorthosilicate) crystals matrix and on a 4×4 MPPC (Multi Pixels Photon Counter) array as detector in a 4 to 1 coupling between the crystals and the detector and a single side readout. The lateral surfaces of the crystals are optically treated to be unpolished. The DOI and the energy resolution of the PET module are presented and a fast method to obtain the DOI calibration is discussed.

  16. High Resolution Observations of Escaping Ions in the Martian Magnetotail

    Science.gov (United States)

    Halekas, J. S.; Raman, C.; Brain, D.; DiBraccio, G. A.; Harada, Y.; McFadden, J. P.; Mitchell, D. L.; Connerney, J. E. P.; Jakosky, B. M.

    2016-12-01

    Ions escape from the Martian upper atmosphere via a number of channels, including the central plasmasheet of the magnetotail. Mars Express observations show that the heavy ions O+ and O2+ escaping through the central tail often have approximately the same energy, suggesting acceleration in a quasi-static electric field, which has been interpreted as a Hall electric field. The Solar Wind Ion Analyzer (SWIA) on MAVEN was designed to measure the upstream solar wind. However, during orbit segments with appropriate spacecraft attitude, SWIA can also make high resolution measurements of escaping ions in the tail. During the prime mission, these observations were only returned sporadically, during periods of intense escaping fluxes that fortuitously triggered a mode switch. Now, in the extended mission, we return high resolution observations from SWIA routinely. Some of these high resolution measurements reveal slight differences in both the direction and energy of escaping O+ and O2+ ions, which may help determine the acceleration process(es). We investigate the location and solar wind conditions for which the escaping ions separate in energy and angle and the systematics of their energies and flow vectors, and discuss the implications for ion acceleration and the overall picture of Martian atmospheric escape.

  17. High resolution, MRI-based, segmented, computerized head phantom

    Energy Technology Data Exchange (ETDEWEB)

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P. [Yale Univ., New Haven, CT (United States). Dept. of Diagnostic Radiology

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 byte array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.

  18. Improved design for high resolution electrospray ionization ion mobility spectrometry.

    Science.gov (United States)

    Jafari, M T

    2009-03-15

    An improved design for high resolution electrospray ionization ion mobility spectrometry (ESI-IMS) was developed by making some salient modifications to the IMS cell and its performance was investigated. To enhance desolvation of electrospray droplets at high sample flow rates in this new design, volume of the desolvation region was decreased by reducing its diameter and the entrance position of the desolvation gas was shifted to the end of the desolvation region (near the ion gate). In addition, the ESI source (both needle and counter electrode) was positioned outside of the heating oven of the IMS. This modification made it possible to use the instrument at higher temperatures, and preventing needle clogging in the electrospray process. The ion mobility spectra of different chemical compounds were obtained. The resolving power and resolution of the instrument were increased by about 15-30% relative to previous design. In this work, the baseline separation of the two adjacent ion peaks of morphine and those of codeine was achieved for the first time with resolutions of 1.5 and 1.3, respectively. These four ion peaks were well separated from each other using carbon dioxide (CO(2)) rather than nitrogen as the drift gas. Finally, the analytical parameters obtained for ethion, metalaxyl, and tributylamine indicated the high performance of the instrument for quantitative analysis.

  19. Climatologies at high resolution for the earth's land surface areas

    Science.gov (United States)

    Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael

    2017-09-01

    High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth's land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better.

  20. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5

    Science.gov (United States)

    Putman, William P.

    2012-01-01

    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  1. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  2. High resolution modeling of a small urban catchment

    Science.gov (United States)

    Skouri-Plakali, Ilektra; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    Flooding is one of the most complex issues that urban environments have to deal with. In France, flooding remains the first natural risk with 72% of decrees state of natural disaster issued between October 1982 and mid-November 2014. Flooding is a result of meteorological extremes that are usually aggravated by the hydrological behavior of urban catchments and human factors. The continuing urbanization process is indeed changing the whole urban water cycle by limiting the infiltration and promoting runoff. Urban environments are very complex systems due to their extreme variability, the interference between human activities and natural processes but also the effect of the ongoing urbanization process that changes the landscape and hardly influences their hydrologic behavior. Moreover, many recent works highlight the need to simulate all urban water processes at their specific temporal and spatial scales. However, considering urban catchments heterogeneity still challenging for urban hydrology, even after advances noticed in term of high-resolution data collection and computational resources. This issue is more to be related to the architecture of urban models being used and how far these models are ready to take into account the extreme variability of urban catchments. In this work, high spatio-temporal resolution modeling is performed for a small and well-equipped urban catchment. The aim of this work is to identify urban modeling needs in terms of spatial and temporal resolution especially for a very small urban area (3.7 ha urban catchment located in the Perreux-sur-Marne city at the southeast of Paris) MultiHydro model was selected to carry out this work, it is a physical based and fully distributed model that interacts four existing modules each of them representing a portion of the water cycle in urban environments. MultiHydro was implemented at 10m, 5m and 2m resolution. Simulations were performed at different spatio-temporal resolutions and analyzed with

  3. High resolution OCT image generation using super resolution via sparse representation

    Science.gov (United States)

    Asif, Muhammad; Akram, Muhammad Usman; Hassan, Taimur; Shaukat, Arslan; Waqar, Razi

    2017-02-01

    In this paper we propose a technique for obtaining a high resolution (HR) image from a single low resolution (LR) image -using joint learning dictionary - on the basis of image statistic research. It suggests that with an appropriate choice of an over-complete dictionary, image patches can be well represented as a sparse linear combination. Medical imaging for clinical analysis and medical intervention is being used for creating visual representations of the interior of a body, as well as visual representation of the function of some organs or tissues (physiology). A number of medical imaging techniques are in use like MRI, CT scan, X-rays and Optical Coherence Tomography (OCT). OCT is one of the new technologies in medical imaging and one of its uses is in ophthalmology where it is being used for analysis of the choroidal thickness in the eyes in healthy and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies. We have proposed a technique for enhancing the OCT images which can be used for clearly identifying and analyzing the particular diseases. Our method uses dictionary learning technique for generating a high resolution image from a single input LR image. We train two joint dictionaries, one with OCT images and the second with multiple different natural images, and compare the results with previous SR technique. Proposed method for both dictionaries produces HR images which are comparatively superior in quality with the other proposed method of SR. Proposed technique is very effective for noisy OCT images and produces up-sampled and enhanced OCT images.

  4. Feasibility of using high-resolution satellite imagery to assess vertebrate wildlife populations.

    Science.gov (United States)

    LaRue, Michelle A; Stapleton, Seth; Anderson, Morgan

    2017-02-01

    Although remote sensing has been used for >40 years to learn about Earth, use of very high-resolution satellite imagery (VHR) (<1-m resolution) has become more widespread over the past decade for studying wildlife. As image resolution increases, there is a need to understand the capabilities and limitations of this exciting new path in wildlife research. We reviewed studies that used VHR to examine remote populations of wildlife. We then determined characteristics of the landscape and the life history of species that made the studies amenable to use of satellite imagery and developed a list of criteria necessary for appropriate use of VHR in wildlife research. From 14 representative articles, we determined 3 primary criteria that must be met for a system and species to be appropriately studied with VHR: open landscape, target organism's color contrasts with the landscape, and target organism is of detectable size. Habitat association, temporal exclusivity, coloniality, landscape differentiation, and ground truthing increase the utility of VHR for wildlife research. There is an immediate need for VHR imagery in conservation research, particularly in remote areas of developing countries, where research can be difficult. For wildlife researchers interested in but unfamiliar with remote sensing resources and tools, understanding capabilities and current limitations of VHR imagery is critical to its use as a conservation and wildlife research tool. © 2016 Society for Conservation Biology.

  5. High spatial resolution diffusion tensor imaging and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiun-Jie

    2002-07-01

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI. The basic parameters used all through the projects will be presented. In Chapter 3, a reproducibility study on DTI with the single shot EPI sequence will be conducted. The single shot DT-EPI was carried out on a stroke patient. In Chapter 4, current techniques on high spatial resolution DTI will be explored. Sequences of Interleaved EPI of two segments and EPI with Half Fourier acquisition will be developed. The sources of artefacts which contaminate most DT images will be discussed with solution proposed. Chapter 5 proposed a new selective averaging algorithm for the data acquired by the sequences of interleaved EPI. It does not require cardiac gating during data acquisition period and thus increase the speed of data collection. A new ghost free segmented EPI sequence will be presented in Chapter 6: Half-FOV EPI. The technique will be tested on a phantom in vitro as well as in two normal male volunteers in vivo. A comparison study on diffusion tensor imaging

  6. High-speed digital color fringe projection technique for three-dimensional facial measurements

    Science.gov (United States)

    Liu, Cheng-Yang; Chang, Li-Jen; Wang, Chung-Yi

    2016-04-01

    Digital fringe projection techniques have been widely studied in industrial applications because of the advantages of high accuracy, fast acquisition and non-contact operation. In this study, a single-shot high-speed digital color fringe projection technique is proposed to measure three-dimensional (3-D) facial features. The light source used in the measurement system is structured light with color fringe patterns. A projector with digital light processing is used as light source to project color structured light onto face. The distorted fringe pattern image is captured by the 3-CCD color camera and encoded into red, green and blue channels. The phase-shifting algorithm and quality guided path unwrapping algorithm are used to calculate absolute phase map. The detecting angle of the color camera is adjusted by using a motorized stage. Finally, a complete 3-D facial feature is obtained by our technique. We have successfully achieved simultaneous 3-D phase acquisition, reconstruction and exhibition at a speed of 0.5 s. The experimental results may provide a novel, high accuracy and real-time 3-D shape measurement for facial recognition system.

  7. High-resolution multimodal clinical multiphoton tomography of skin

    Science.gov (United States)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  8. Radiation length imaging with high-resolution telescopes

    Science.gov (United States)

    Stolzenberg, U.; Frey, A.; Schwenker, B.; Wieduwilt, P.; Marinas, C.; Lütticke, F.

    2017-02-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length X/X0 profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the X/X0 imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of X/X0 imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of 100 million tracks at 4 GeV has been collected, which is sufficient to resolve complex material profiles on the 30 μm scale.

  9. Hyperresolution: an hyperspectral and high resolution imager for Earth observation

    Science.gov (United States)

    De Vidi, R.; Chiarantini, L.; Bini, A.

    2017-11-01

    Hyperspectral space imagery is an emerging technology that supports many scientific, civil, security and defence operational applications. The main advantage of this remote sensing technique is that it allows the so-called Feature Extraction: in fact the spectral signature allows the recognition of the materials composing the scene. Hyperspectral Products and their applications have been investigated in the past years by Galileo Avionica to direct the instrument characteristics design. Sample products have been identified in the civil / environment monitoring fields (such as coastal monitoring, vegetation, hot spot and urban classification) and in defense / security applications: their performances have been verified by means of airborne flight campaigns. The Hyperspectral and High Resolution Imager is a space-borne instrument that implement a pushbroom technique to get strip spectral images over the Hyperspectral VNIR and SWIR bands, with a ground sample distance at nadir of 20m in a 20 km wide ground swath, with 200 spectral channels, realizing an average spectral resolution of 10nm. The High Resolution Panchromatic Channel insists in the same swath to allow for multiresolution data fusion of hyperspectral imagery.

  10. The Color of Pluto from New Horizons

    Science.gov (United States)

    Olkin, Catherine; Spencer, John R.; Grundy, William M.; Parker, Alex; Beyer, Ross A.; Reuter, Dennis; Schenk, Paul M.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie; Ennico, Kimberly; Binzel, Richard P.; Buie, Marc W.; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa; Howett, Carly; Jennings, Donald E.; Singer, Kelsi N.; Linscott, Ivan; Lunsford, Allen; Protopapa, Silvia; Schmitt, Bernard; Weigle, Eddie; and the New Horizons Science Team

    2017-10-01

    The New Horizons flyby provided the first high-resolution color maps of Pluto. These maps show the color variegation across the surface from the very red terrain in the equatorial region, to the more neutral colors of the volatile ices in Sputnik Planitia, the blue terrain of east Tombaugh Regio and the yellow hue on Pluto's north pole. There are two distinct color mixing lines in the color-color diagrams derived from images of Pluto. Both mixing lines have an apparent starting point in common: the relatively neutral color volatile-ice covered terrain. One line extends to the dark red terrain exemplified by Cthulu Regio and the other extends to the yellow hue in the northern latitudes. The red color is consistent with a non-ice component on the surface and is consistent with tholins.

  11. 3D detectors with high space and time resolution

    Science.gov (United States)

    Loi, A.

    2018-01-01

    For future high luminosity LHC experiments it will be important to develop new detector systems with increased space and time resolution and also better radiation hardness in order to operate in high luminosity environment. A possible technology which could give such performances is 3D silicon detectors. This work explores the possibility of a pixel geometry by designing and simulating different solutions, using Sentaurus Tecnology Computer Aided Design (TCAD) as design and simulation tool, and analysing their performances. A key factor during the selection was the generated electric field and the carrier velocity inside the active area of the pixel.

  12. High resolution study of magnetic ordering at absolute zero.

    Science.gov (United States)

    Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G

    2004-05-07

    High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.

  13. High Resolution-Resonance Ionization Spectroscopy on uranium

    Energy Technology Data Exchange (ETDEWEB)

    Hakimi, Amin, E-mail: hakimi@uni-mainz.de; Fischbach, Thomas [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany); Raeder, Sebastian [TRIUMF (Canada); Trautmann, Norbert [Johannes Gutenberg-Universitaet Mainz, Institut fuer Kernchemie (Germany); Wendt, Klaus [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany)

    2013-04-15

    High Resolution-Resonance Ionization Spectroscopy (HR-RIS) allows for sensitive probing of atomic structures and energy level schemes even for highly complex systems. This work explores the applicability of commercial diode lasers for isotope selective spectroscopy of uranium. Using narrow bandwidth continuous-wave (cw) diode lasers, multi step excitation processes were investigated involving levels which could be populated with the radiation of 405 nm BluRay{sup Copyright-Sign} laser diodes as a first step for ultra trace analysis of uranium.

  14. Interplay between spin polarization and color superconductivity in high density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2013-01-01

    Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical...... potential. It follows that a transition from one to the other phase occurs, passing through true minima with both a spin polarization and a color superconducting gap. It is shown that the quark spin polarized phase is realized at rather high density, while the two-flavor color superconducting phase...

  15. Color-Based Image Retrieval from High-Similarity Image Databases

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...... a method for HSID retrieval using a similarity measure based on a linear combination of Jeffreys-Matusita (JM) distances between distributions of color (and color derivatives) estimated from a set of automatically extracted image regions. The weight coefficients are estimated based on optimal retrieval...

  16. Color-Based Image Retrieval from High-Similarity Image Databases

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Carstensen, Jens Michael

    2003-01-01

    Many image classification problems can fruitfully be thought of as image retrieval in a "high similarity image database" (HSID) characterized by being tuned towards a specific application and having a high degree of visual similarity between entries that should be distinguished. We introduce...... a method for HSID retrieval using a similarity measure based on a linear combination of Jeffreys-Matusita (JM) distances between distributions of color (and color derivatives) estimated from a set of automatically extracted image regions. The weight coefficients are estimated based on optimal retrieval...

  17. A new bi-primary color system for doubling the reflectance and colorfulness of e-paper

    Science.gov (United States)

    Heikenfeld, Jason

    2011-03-01

    There are several paradigms for color generation in reflective displays (e-Paper) including RGBW color filtering or stacked RGB or CMY. Theoretically, the highest white state reflectance and best color gamut are achieved by stacking three layers of pixels. However, stacking 3 layers induces significant optical losses especially at high resolution and typically does not allow for video operation. Therefore RGBW color filtering is currently preferred for higher resolution and single-layer e-Paper, but only provides color at 25% of the area and a maximum theoretical white reflectance of 50%. Presented herein is a new bi-primary color-system that cooperatively displays two complimentary colors inside a single sub-pixel, and therefore doubles the white state reflectance and color gamut for single-layer e-Paper. Also discussed are candidate e-Paper technologies that may be able to adopt the bi-primary color system, including possible advantages and challenges for each technology.

  18. Microcalorimetry for High-Resolution X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-03

    Magnetic Microcalorimeters (MMCs) are gamma-ray detectors with an energy resolution 10x higher than high-purity germanium detectors. They can increase the accuracy of non-destructive analysis of nuclear materials, enable the detection of new isotopes (e.g. Pu-242 of U-236), and improve nuclear data in cases where Ge detectors are limited by line overlap. MMCs consist of a magnetic sensor operated at temperatures below 50 mK, and they infer gamma-ray energies from the change in magnetization due to the temperature increase after gamma-ray absorption. The goal of this project is to further increase the energy resolution and sensitivity of MMC gamma detectors.

  19. High-Resolution Characterization of UMo Alloy Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jana, Saumyadeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Manandhar, Sandeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arey, Bruce W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-11-30

    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools that can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.

  20. High resolution capacitance detection circuit for rotor micro-gyroscope

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Ren

    2014-03-01

    Full Text Available Conventional methods for rotor position detection of micro-gyroscopes include common exciting electrodes (single frequency and common sensing electrodes (frequency multiplex, but they have encountered some problems. So we present a high resolution and low noise pick-off circuit for micro-gyroscopes which utilizes the time multiplex method. The detecting circuit adopts a continuous-time current sensing circuit for capacitance measurement, and its noise analysis of the charge amplifier is introduced. The equivalent output noise power spectral density of phase-sensitive demodulation is 120 nV/Hz1/2. Tests revealed that the whole circuitry has a relative capacitance resolution of 1 × 10−8.

  1. DMD based digital speckle illumination for high resolution imaging

    Science.gov (United States)

    Shinde, Anant; Mishra, Ayush; Perinchery, Sandeep M.; Murukeshan, V. M.

    2017-06-01

    Spatially non-uniform illumination patterns have shown significant potential to improve the imaging. Recent developments in the patterned illumination microscopy have demonstrated that the use of an optical speckle as an illumination pattern significantly improves the imaging resolution at the same time reducing the computational overheads. We present a DMD based method for generation of digital speckle pattern. The generated digital speckle and uniform white light illumination are used as two illuminations to acquire images. The image reconstruction algorithm for blind structured illumination microscopy is used to get the high resolution image. Our approach does not require any calibration step or stringent control of the illumination, and dramatically simplifies the experimental set-up.

  2. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  3. A compact high-resolution X-ray powder diffractometer.

    Science.gov (United States)

    Fewster, Paul F; Trout, David R D

    2013-12-01

    A new powder diffractometer operating in transmission mode is described. It can work as a rapid very compact instrument or as a high-resolution instrument, and the sample preparation is simplified. The incident beam optics create pure Cu K α 1 radiation, giving rise to peak widths of ∼0.1° in 2θ in compact form with a sample-to-detector minimum radius of 55 mm, reducing to peak widths of advantage of this geometry is that the resolution of the diffractometer can be calculated precisely and the instrumental artefacts can be analysed easily without a sample present. The performance is demonstrated with LaB 6 and paracetamol, and a critical appraisal of the uncertainties in the measurements is presented. The instantaneous data collection offers possibilities in dynamic experiments.

  4. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  5. Enhanced beetle luciferase for high-resolution bioluminescence imaging.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Nakajima

    Full Text Available We developed an enhanced green-emitting luciferase (ELuc to be used as a bioluminescence imaging (BLI probe. ELuc exhibits a light signal in mammalian cells that is over 10-fold stronger than that of the firefly luciferase (FLuc, which is the most widely used luciferase reporter gene. We showed that ELuc produces a strong light signal in primary cells and tissues and that it enables the visualization of gene expression with high temporal resolution at the single-cell level. Moreover, we successfully imaged the nucleocytoplasmic shuttling of importin alpha by fusing ELuc at the intracellular level. These results demonstrate that the use of ELuc allows a BLI spatiotemporal resolution far greater than that provided by FLuc.

  6. Realization of matching conditions for high-resolution spectrometers

    CERN Document Server

    Fujita, H; Berg, G P A; Bacher, A D; Foster, C C; Hara, K; Hatanaka, K; Kawabata, T; Noro, T; Sakaguchi, H; Shimbara, Y; Shinada, T; Stephenson, E J; Ueno, H; Yosoi, M

    2002-01-01

    For precise measurements of nuclear-reaction spectra using a beam from an accelerator, a high-resolution magnetic spectrometer is a powerful tool. The full capability of a magnetic spectrometer, however, can be achieved only if the characteristics of the beam coming from the accelerator are matched to those required by the spectrometer by properly adjusting the beam line conditions. The matching methods, lateral dispersion matching, focus matching and also the kinematic correction compensate the spectrum line-broadening effects caused by the beam momentum spread and reaction kinematics. In addition, angular dispersion matching should be performed if good resolution of the scattering angle is important. Diagnostic methods developed to realize these matching conditions for the spectrometers K600 at IUCF and Grand Raiden at RCNP are presented.

  7. Comparison of Leica ADS40 and Z/I imaging DMC high-resolution airborne sensors

    Science.gov (United States)

    Craig, John C.

    2005-01-01

    The Leica ADS40 is a line scanning sensor that collects stereo panchromatic imagery and 4 discrete multispectral bands in a 12,000 pixel-wide swath. The Z/I Imaging DMC is a frame based sensor that produces 13,824x7,680 pixel panchromatic images and 3072x2048 pixel multispectral images, which are normally pan sharpened to produce high resolution RGB and color infrared products. The suitability of the two systems for multispectral remote sensing and photogrammetric applications are compared, and contrasted with other film and digital alternatives. Results indicate that the DMC has an advantage for large scale photogrammetry applications, and the ADS40 is superior for remote sensing applications.

  8. High resolution satellite image indexing and retrieval using SURF features and bag of visual words

    Science.gov (United States)

    Bouteldja, Samia; Kourgli, Assia

    2017-03-01

    In this paper, we evaluate the performance of SURF descriptor for high resolution satellite imagery (HRSI) retrieval through a BoVW model on a land-use/land-cover (LULC) dataset. Local feature approaches such as SIFT and SURF descriptors can deal with a large variation of scale, rotation and illumination of the images, providing, therefore, a better discriminative power and retrieval efficiency than global features, especially for HRSI which contain a great range of objects and spatial patterns. Moreover, we combine SURF and color features to improve the retrieval accuracy, and we propose to learn a category-specific dictionary for each image category which results in a more discriminative image representation and boosts the image retrieval performance.

  9. High-resolution mapping of motor vehicle carbon dioxide emissions

    Science.gov (United States)

    McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.

    2014-05-01

    A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of 5 years, highlighting the importance of timely updates to motor vehicle emission inventories.

  10. High Range Resolution Profile Construction Exploiting Modified Fractional Fourier Transformation

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2015-01-01

    Full Text Available This paper addresses the discrimination of closely spaced high speed group targets with radar transmitting linear frequency modulation (LFM pulses. The high speed target motion leads to range migration and target dispersion and thereby the discriminating capability of the high range resolution profile (HRRP deteriorating significantly. An effective processing approach composed of stretch processing (SP, modified fractional Fourier transform (FrFT, and multiple signal classification (MUSIC algorithm is proposed to deal with this problem. Firstly, SP is adopted to transform the received LFM with Doppler distortions into narrow band LFM signals. Secondly, based on the two-dimensional range/velocity plane constructed by the modified FrFT, the velocity of the high speed group target is estimated and compensated with just one single pulse. After the compensation of range migration and target dispersion simultaneously, the resolution of the HRRP achieved by single pulse transmission improves significantly in the high speed group targets scenarios. Finally, MUSIC algorithm with superresolution capability is utilized to make a more explicit discrimination between the scatterers in comparison with the conventional SP method. Simulation results show the effectiveness of the proposed scheme.

  11. USGS Small-scale Dataset - Color Conterminous United States Shaded Relief - 200-Meter Resolution 200512 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color conterminous United States shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of the conterminous United...

  12. USGS Small-scale Dataset - Color Conterminous United States Shaded Relief - 200-Meter Resolution, Albers projection 200603 GeoTIFF

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color conterminous United States shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of the conterminous United...

  13. Color Puerto Rico and the U.S. Virgin Islands Shaded Relief ? 200- Meter Resolution - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The color Puerto Rico and U.S. Virgin Islands shaded relief data were derived from National Elevation Dataset (NED) data, and show the terrain of Puerto Rico and...

  14. Effect of high pressure treatment on the color of fresh and processed meats

    DEFF Research Database (Denmark)

    Bak, Kathrine Holmgaard; Bolumar, Tomas; Karlsson, Anders H.

    2017-01-01

    High pressure (HP) treatment often results in discoloration of beef, lamb, pork, and poultry. The degree of color changes depends on the physical and chemical state of the meat, especially myoglobin, and the atmospheric conditions during and after pressurization. A decreased redness is attributed...... to a large degree to the oxidation of the bright red oxymyoglobin or the purplish deoxymyoglobin into the brownish metmyoglobin, as well as to the denaturation of myoglobin. Surely, the high myoglobin content makes beef more exposed to this discoloration compared to the white chicken meat. In addition, HP...... treatment causes denaturation of myofibrillar proteins followed by aggregation, consequently, changing the surface reflectance and increasing lightness. Other intrinsic and extrinsic factors may affect the pressure-induced color changes positively or negatively. In this review, the pressure-induced color...

  15. Helium beam shadowing for high spatial resolution patterning of antibodies on microstructured diagnostic surfaces

    Science.gov (United States)

    Cacao, Eliedonna; Sherlock, Tim; Nasrullah, Azeem; Kemper, Steven; Knoop, Jennifer; Kourentzi, Katerina; Ruchhoeft, Paul; Stein, Gila E; Atmar, Robert L; Willson, Richard C

    2013-01-01

    Abstract We have developed a technique for the high-resolution, self-aligning, and high-throughput patterning of antibody binding functionality on surfaces by selectively changing the reactivity of protein-coated surfaces in specific regions of a workpiece with a beam of energetic helium particles. The exposed areas are passivated with bovine serum albumin (BSA) and no longer bind the antigen. We demonstrate that patterns can be formed (1) by using a stencil mask with etched openings that forms a patterned exposure, or (2) by using angled exposure to cast shadows of existing raised microstructures on the surface to form self-aligned patterns. We demonstrate the efficacy of this process through the patterning of anti-lysozyme, anti-Norwalk virus, and anti-Escherichia coli antibodies and the subsequent detection of each of their targets by the enzyme-mediated formation of colored or silver deposits, and also by binding of gold nanoparticles. The process allows for the patterning of three-dimensional structures by inclining the sample relative to the beam so that the shadowed regions remain unaltered. We demonstrate that the resolution of the patterning process is of the order of hundreds of nanometers, and that the approach is well-suited for high throughput patterning. PMID:24706125

  16. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution.

    Directory of Open Access Journals (Sweden)

    Xue Han

    Full Text Available The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, channelrhodopsin-2 (ChR2, for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells.

  17. Performance evaluation of a high resolution dedicated breast PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del [Department of Nuclear Medicine, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Roselló Ferrando, Joan [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Department of Physiology, University of Valencia, Valencia 46010 (Spain)

    2016-05-15

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good

  18. Convex optimization of coincidence time resolution for a high-resolution PET system.

    Science.gov (United States)

    Reynolds, Paul D; Olcott, Peter D; Pratx, Guillem; Lau, Frances W Y; Levin, Craig S

    2011-02-01

    We are developing a dual panel breast-dedicated positron emission tomography (PET) system using LSO scintillators coupled to position sensitive avalanche photodiodes (PSAPD). The charge output is amplified and read using NOVA RENA-3 ASICs. This paper shows that the coincidence timing resolution of the RENA-3 ASIC can be improved using certain list-mode calibrations. We treat the calibration problem as a convex optimization problem and use the RENA-3's analog-based timing system to correct the measured data for time dispersion effects from correlated noise, PSAPD signal delays and varying signal amplitudes. The direct solution to the optimization problem involves a matrix inversion that grows order (n(3)) with the number of parameters. An iterative method using single-coordinate descent to approximate the inversion grows order (n). The inversion does not need to run to convergence, since any gains at high iteration number will be low compared to noise amplification. The system calibration method is demonstrated with measured pulser data as well as with two LSO-PSAPD detectors in electronic coincidence. After applying the algorithm, the 511 keV photopeak paired coincidence time resolution from the LSO-PSAPD detectors under study improved by 57%, from the raw value of 16.3 ±0.07 ns full-width at half-maximum (FWHM) to 6.92 ±0.02 ns FWHM ( 11.52 ±0.05 ns to 4.89 ±0.02 ns for unpaired photons).

  19. High-Resolution Mammography Detector Employing Optical Switching Readout

    Science.gov (United States)

    Irisawa, Kaku; Kaneko, Yasuhisa; Yamane, Katsutoshi; Sendai, Tomonari; Hosoi, Yuichi

    Conceiving a new detector structure, FUJIFILM Corporation has successfully put its invention of an X-ray detector employing "Optical Switching" into practical use. Since Optical Switching Technology allows an electrode structure to be easily designed, both high resolution of pixel pitch and low electrical noise readout have been achieved, which have consequently realized the world's smallest pixel size of 50×50 μm2 from a Direct-conversion FPD system as well as high DQE. The digital mammography system equipped with this detector enables to acquire high definition images while maintaining granularity. Its outstanding feature is to be able to acquire high-precision images of microcalcifications which is an important index in breast examination.

  20. Compact high-resolution VIS/NIR hyperspectral sensor

    Science.gov (United States)

    Hyvärinen, Timo; Herrala, Esko; Procino, Wes; Weatherbee, Oliver

    2011-06-01

    Current hyperspectral imagers are either bulky with good performance, or compact with only moderate performance. This paper presents a new hyperspectral technology which overcomes this drawback, and makes it possible to integrate extremely compact and high performance push-broom hyperspectral imagers for Unmanned Aerial Vehicles (UAV) and other demanding applications. Hyperspectral imagers in VIS/NIR, SWIR, MWIR and LWIR spectral ranges have been implemented. This paper presents the measured performance attributes for a VIS/NIR imager which covers 350 to 1000 nm with spectral resolution of 3 nm. The key innovation is a new imaging spectrograph design which employs both transmissive and reflective optics in order to achieve high light throughput and large spatial image size in an extremely compact format. High light throughput is created by numerical aperture of F/2.4 and high diffraction efficiency. Image distortions are negligible, keystone being gimbals. In addition to laboratory characterization, results from a flight test mission are presented.

  1. Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics

    Science.gov (United States)

    Tybrandt, Klas; Stauffer, Flurin; Vörös, Janos

    2016-05-01

    Stretchable electronics can bridge the gap between hard planar electronic circuits and the curved, soft and elastic objects of nature. This has led to applications like conformal displays, electronic skin and soft neuroprosthetics. A remaining challenge, however, is to match the dimensions of the interfaced systems, as all require feature sizes well below 100 μm. Intrinsically stretchable nanocomposites are attractive in this context as the mechanical deformations occur on the nanoscale, although methods for patterning high performance materials have been lacking. Here we address these issues by reporting on a multilayer additive patterning approach for high resolution fabrication of stretchable electronic devices. The method yields highly conductive 30 μm tracks with similar performance to their macroscopic counterparts. Further, we demonstrate a three layer micropatterned stretchable electroluminescent display with pixel sizes down to 70 μm. These presented findings pave the way towards future developments of high definition displays, electronic skins and dense multielectrode arrays.

  2. High-resolution analysis of the mechanical behavior of tissue

    Science.gov (United States)

    Hudnut, Alexa W.; Armani, Andrea M.

    2017-06-01

    The mechanical behavior and properties of biomaterials, such as tissue, have been directly and indirectly connected to numerous malignant physiological states. For example, an increase in the Young's Modulus of tissue can be indicative of cancer. Due to the heterogeneity of biomaterials, it is extremely important to perform these measurements using whole or unprocessed tissue because the tissue matrix contains important information about the intercellular interactions and the structure. Thus, developing high-resolution approaches that can accurately measure the elasticity of unprocessed tissue samples is of great interest. Unfortunately, conventional elastography methods such as atomic force microscopy, compression testing, and ultrasound elastography either require sample processing or have poor resolution. In the present work, we demonstrate the characterization of unprocessed salmon muscle using an optical polarimetric elastography system. We compare the results of compression testing within different samples of salmon skeletal muscle with different numbers of collagen membranes to characterize differences in heterogeneity. Using the intrinsic collagen membranes as markers, we determine the resolution of the system when testing biomaterials. The device reproducibly measures the stiffness of the tissues at variable strains. By analyzing the amount of energy lost by the sample during compression, collagen membranes that are 500 μm in size are detected.

  3. A high resolution, low background fast neutron spectrometer

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S; Adams, J M; Nico, J S; Thompson, A K

    2002-01-01

    We discuss the possibility to create a spectrometer of full absorption based on liquid scintillator doped with enriched sup 6 Li. Of specific interest, the spectrometer will have energy resolution estimated to lie in the range 5-10% for 14 MeV neutrons. It will be sensitive to fluxes from 10 sup - sup 4 to 10 sup 6 cm sup - sup 2 s sup - sup 1 above a threshold of 1 MeV in a gamma-background of up to 10 sup 4 s sup - sup 1. The detector's efficiency will be determined by the volume of the scintillator only (approx 3 l) and is estimated to be 0.2-10%. The main reason for the poor resolution of an organic scintillator based spectrometer of full absorption is a non-linear light-yield of the scintillator for recoil protons. The neutron energy is occasionally distributed among recoil protons, and due to non-linear light-yield the total amount of light from all recoil protons ambiguously determines the initial neutron energy. The high-energy resolution will be achieved by compensation of the non-linear light-yield ...

  4. Extraction and labeling high-resolution images from PDF documents

    Science.gov (United States)

    Chachra, Suchet K.; Xue, Zhiyun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-12-01

    Accuracy of content-based image retrieval is affected by image resolution among other factors. Higher resolution images enable extraction of image features that more accurately represent the image content. In order to improve the relevance of search results for our biomedical image search engine, Open-I, we have developed techniques to extract and label high-resolution versions of figures from biomedical articles supplied in the PDF format. Open-I uses the open-access subset of biomedical articles from the PubMed Central repository hosted by the National Library of Medicine. Articles are available in XML and in publisher supplied PDF formats. As these PDF documents contain little or no meta-data to identify the embedded images, the task includes labeling images according to their figure number in the article after they have been successfully extracted. For this purpose we use the labeled small size images provided with the XML web version of the article. This paper describes the image extraction process and two alternative approaches to perform image labeling that measure the similarity between two images based upon the image intensity projection on the coordinate axes and similarity based upon the normalized cross-correlation between the intensities of two images. Using image identification based on image intensity projection, we were able to achieve a precision of 92.84% and a recall of 82.18% in labeling of the extracted images.

  5. High-Resolution Infrared Imaging of Young Outflow-Sources

    Science.gov (United States)

    Preibisch, Thomas; Schertl, Dieter; Weigelt, Gerd

    For a better understanding of the mechanisms by which jets and outflows from young stellar objects are generated accelerated and collimated it is essential to look as close as possible to their launching point at the disk/star boundary. High-spatial resolution is therefore of crucial importance for further progress in this field. In this contribution we present recent results from our near-infrared bispectrum speckle interferometry studies of several outflow sources. With a spatial resolution of up to 0.055'' our images have the highest spatial resolution achieved so far for these objects and exhibit previously unseen complex structures. Our results include the identification of two distinct bipolar outflow systems originating simultaneously from the protostar S140 IRS1 the detection of an episodic precessing jet from S140 IRS3 and the discovery of a micro-jet from one of the embedded sources in Mon R2 IRS3. We will also discuss the relation of the observed circumstellar structures to the jets and outflows from the young stellar objects

  6. High energy resolution with transparent ceramic garnet scintillators

    Science.gov (United States)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Swanberg, E. L.; Hunter, S.; Ahle, L.; Fisher, S. E.; Melcher, C.; Wei, H.; Stefanik, T.; Chung, Y.-S.; Kindem, J.

    2014-09-01

    Breakthrough energy resolution, R(662keV) Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce). Transparent ceramic GYGAG(Ce), has a peak emission wavelength of 550 nm that is better matched to Silicon photodetectors than to standard PMTs. We are therefore developing a spectrometer based on pixelated GYGAG(Ce) on a Silicon photodiode array that can provide R(662 keV) = 3.6%. In comparison, with large 1-2 in3 size GYGAG(Ce) ceramics we obtain R(662 keV) = 4.6% with PMT readout. We find that ceramic GYGAG(Ce) of a given stoichiometric chemical composition can exhibit very different scintillation properties, depending on sintering conditions and post-anneal treatments. Among the characteristics of transparent ceramic garnet scintillators that can be controlled by fabrication conditions are: scintillation decay components and their amplitudes, intensity and duration of afterglow, thermoluminescence glow curve peak positions and amplitudes, integrated light yield, light yield non-proportionality - as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI), and energy resolution for gamma spectroscopy. Garnet samples exhibiting a significant fraction of Cerium dopant in the tetravalent valence also exhibit: faster overall scintillation decay, very low afterglow, high light yield, but poor light yield proportionality and degraded energy resolution.

  7. CSpace high-resolution volumetric 3D display

    Science.gov (United States)

    Refai, Hakki H.; Melnik, George; Willner, Mark

    2013-05-01

    We are currently in the process of developing a static-volume 3D display, CSpace® display, that has the capability to produce images of much larger size than any other static-volume display currently under development, with up to nearly 800 million voxel resolution. A key component in achieving the size and resolution of the display is the optical system that transfers the pixel data from a standard DMD projection unit to the voxel size required by the display with high contrast and minimal distortion. The current optical system is capable of such performance for only small image sizes, and thus new designs of the optical system must be developed. We report here on the design and testing of a new optical projection system with the intent of achieving performance close to that of a telecentric lens. Theoretical analysis with Zemax allowed selection of appropriate lens size, spacing, and focal length, and identified the need for tilting the assembly to produce the desired beam properties. Experimental analysis using the CSpace® prototype showed that the improved beam parameters allowed for higher resolution and brighter images than those previously achieved, though their remains room for further improvement of the design. Heating of the DMD and its housing components were also addressed to minimize heating effects on the optical system. A combination of a thermo-electric cooler and a small fan produced sufficient cooling to stabilize the temperature of the system to acceptable levels.

  8. The Suzaku High Resolution X-Ray Spectrometer

    Science.gov (United States)

    Kelley, Richard L.; Mitsuda, Kazuhisa; Allen, Christine A.; Arsenovic, Petar; Audley, Michael D.; Bialas, Thomas G.; Boyce, Kevin R.; Boyle, Robert F.; Breon, Susan R.; Brown, Gregory V.; Cottam, Jean; Dipirro, Michael J.; Fujimoto, Ryuichi; Furusho, Tae; Gendreau, Keith C.; Gochar, Gene G.; Gonzalez, Oscar; Hirabayashi, Masayuki; Holt, Stephen S.; Inoue, Hajime; Ishida, Manabu; Ishisaki, Yoshitaka; Jones, Carol S.; Keski-Kuha, Ritva; Kilbourne, Caroline A.; McCammon, Dan; Morita, Umeyo; Moseley, S. Harvey; Mott, Brent; Narasaki, Katsuhiro; Ogawara, Yoshiaki; Ohashi, Takaya; Ota, Naomi; Panek, John S.; Porter, F. Scott; Serlemitsos, Aristides; Shirron, Peter J.; Sneiderman, Gary A.; Szymkowiak, Andrew E.; Takei, Yoh; Tveekrem, June L.; Volz, Stephen M.; Yamamoto, Mikio; Yamasaki, Noriko Y.

    2007-01-01

    The X-Ray Spectrometer (XRS) has been designed to provide the Suzaku Observatory with non-dispersive, high-resolution X-ray spectroscopy. As designed, the instrument covers the energy range 0.3 to 12keV, which encompasses the most diagnostically rich part of the X-ray band. The sensor consists of a 32-channel array of X-ray microcalorimeters, each with an energy resolution of about 6eV. The very low temperature required for operation of the array (60mK) is provided by a four-stage cooling system containing a single-stage adiabatic demagnetization refrigerator, a superfluid-helium cryostat, a solid-neon dewar, and a single-stage, Stirling-cycle cooler. The Suzaku/XRS is the first orbiting X-ray microcalorimeter spectrometer and was designed to last more than three years in orbit. The early verification phase of the mission demonstrated that the instrument worked properly and that the cryogen consumption rate was low enough to ensure a mission lifetime exceeding 3 years. However, the liquid-He cryogen was completely vaporized two weeks after opening the dewar guard vacuum vent. The problem has been traced to inadequate venting of the dewar He and Ne gases out of the spacecraft and into space. In this paper we present the design and ground testing of the XRS instrument, and then describe the in-flight performance. An energy resolution of 6eV was achieved during pre-launch tests and a resolution of 7eV was obtained in orbit. The slight degradation is due to the effects of cosmic rays.

  9. Aerial Photography and Imagery, Ortho-Corrected, Washington County, NC true color orthophotography - 1/4 foot resolution over selected areas, Published in 2009, 1:1200 (1in=100ft) scale, Washington County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Aerial Photography and Imagery, Ortho-Corrected dataset current as of 2009. Washington County, NC true color orthophotography - 1/4 foot resolution over selected...

  10. Aerial Photography and Imagery, Ortho-Corrected, Washington County, NC true color orhophotography - 1/2 foot resolution over selected areas, Published in 2009, 1:2400 (1in=200ft) scale, Washington County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Aerial Photography and Imagery, Ortho-Corrected dataset current as of 2009. Washington County, NC true color orhophotography - 1/2 foot resolution over selected areas.

  11. High resolution solar observations from first principles to applications

    Science.gov (United States)

    Verdoni, Angelo P.

    2009-10-01

    The expression "high-resolution observations" in Solar Physics refers to the spatial, temporal and spectral domains in their entirety. High-resolution observations of solar fine structure are a necessity to answer many of the intriguing questions related to solar activity. However, a researcher building instruments for high-resolution observations has to cope with the fact that these three domains often have diametrically opposed boundary conditions. Many factors have to be considered in the design of a successful instrument. Modern post-focus instruments are more closely linked with the solar telescopes that they serve than in past. In principle, the quest for high-resolution observations already starts with the selection of the observatory site. The site survey of the Advanced Technology Solar Telescope (ATST) under the stewardship of the National Solar Observatory (NSO) has identified Big Bear Solar Observatory (BBSO) as one of the best sites for solar observations. In a first step, the seeing characteristics at BBSO based on the data collected for the ATST site survey are described. The analysis will aid in the scheduling of high-resolution observations at BBSO as well as provide useful information concerning the design and implementation of a thermal control system for the New Solar Telescope (NST). NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m aperture. NST will be housed in a newly constructed 5/8-sphere ventilated dome. With optics exposed to the surrounding air, NST's open-structure design makes it particularly vulnerable to the effects of enclosure-related seeing. In an effort to mitigate these effects, the initial design of a thermal control system for the NST dome is presented. The goal is to remediate thermal related seeing effects present within the dome interior. The THermal Control System (THCS) is an essential component for the open-telescope design of NST to work. Following these tasks, a calibration routine for the

  12. Color Sensitivity Multiple Exposure Fusion using High Dynamic Range Image

    Directory of Open Access Journals (Sweden)

    Varsha Borole

    2014-02-01

    Full Text Available In this paper, we present a high dynamic range imaging (HDRI method using a capturing camera image using normally exposure, over exposure and under exposure. We make three different images from a multiple input image using local histogram stretching. Because the proposed method generated three histogram-stretched images from a multiple input image, ghost artifacts that are the result of the relative motion between the camera and objects during exposure time, are inherently removed. Therefore, the proposed method can be applied to a consumer compact camera to provide the ghost artifacts free HDRI. Experiments with several sets of test images with different exposures show that the proposed method gives a better performance than existing methods in terms of visual results and computation time.

  13. Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution

    Directory of Open Access Journals (Sweden)

    Yingying Jing

    2014-11-01

    Full Text Available Satellite measurements of the spatiotemporal distributions of atmospheric CO2 concentrations are a key component for better understanding global carbon cycle characteristics. Currently, several satellite instruments such as the Greenhouse gases Observing SATellite (GOSAT, SCanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY, and Orbiting Carbon Observatory-2 can be used to measure CO2 column-averaged dry air mole fractions. However, because of cloud effects, a single satellite can only provide limited CO2 data, resulting in significant uncertainty in the characterization of the spatiotemporal distribution of atmospheric CO2 concentrations. In this study, a new physical data fusion technique is proposed to combine the GOSAT and SCIAMACHY measurements. On the basis of the fused dataset, a gap-filling method developed by modeling the spatial correlation structures of CO2 concentrations is presented with the goal of generating global land CO2 distribution maps with high spatiotemporal resolution. The results show that, compared with the single satellite dataset (i.e., GOSAT or SCIAMACHY, the global spatial coverage of the fused dataset is significantly increased (reaching up to approximately 20%, and the temporal resolution is improved by two or three times. The spatial coverage and monthly variations of the generated global CO2 distributions are also investigated. Comparisons with ground-based Total Carbon Column Observing Network (TCCON measurements reveal that CO2 distributions based on the gap-filling method show good agreement with TCCON records despite some biases. These results demonstrate that the fused dataset as well as the gap-filling method are rather effective to generate global CO2 distribution with high accuracies and high spatiotemporal resolution.

  14. Proceedings of the workshop on high resolution computed microtomography (CMT)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The purpose of the workshop was to determine the status of the field, to define instrumental and computational requirements, and to establish minimum specifications required by possible users. The most important message sent by implementers was the remainder that CMT is a tool. It solves a wide spectrum of scientific problems and is complementary to other microscopy techniques, with certain important advantages that the other methods do not have. High-resolution CMT can be used non-invasively and non-destructively to study a variety of hierarchical three-dimensional microstructures, which in turn control body function. X-ray computed microtomography can also be used at the frontiers of physics, in the study of granular systems, for example. With high-resolution CMT, for example, three-dimensional pore geometries and topologies of soils and rocks can be obtained readily and implemented directly in transport models. In turn, these geometries can be used to calculate fundamental physical properties, such as permeability and electrical conductivity, from first principles. Clearly, use of the high-resolution CMT technique will contribute tremendously to the advancement of current R and D technologies in the production, transport, storage, and utilization of oil and natural gas. It can also be applied to problems related to environmental pollution, particularly to spilling and seepage of hazardous chemicals into the Earth's subsurface. Applications to energy and environmental problems will be far-ranging and may soon extend to disciplines such as materials science--where the method can be used in the manufacture of porous ceramics, filament-resin composites, and microelectronics components--and to biomedicine, where it could be used to design biocompatible materials such as artificial bones, contact lenses, or medication-releasing implants. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. A high spatio-temporal resolution optical pyrometer at the ORION laser facility.

    Science.gov (United States)

    Floyd, Emma; Gumbrell, Edward T; Fyrth, Jim; Luis, James D; Skidmore, Jonathan W; Patankar, Siddharth; Giltrap, Samuel; Smith, Roland

    2016-11-01

    A streaked pyrometer has been designed to measure the temperature of ≈100 μm diameter heated targets in the warm dense matter region. The diagnostic has picosecond time resolution. Spatial resolution is limited by the streak camera to 4 μm in one dimension; the imaging system has superior resolution of 1 μm. High light collection efficiency means that the diagnostic can transmit a measurable quantity of thermal emission at temperatures as low as 1 eV to the detector. This is achieved through the use of an f/1.4 objective, and a minimum number of reflecting and refracting surfaces to relay the image over 8 m with no vignetting over a 0.4 mm field of view with 12.5× magnification. All the system optics are highly corrected, to allow imaging with minimal aberrations over a broad spectral range. The detector is a highly sensitive Axis Photonique streak camera with a P820PSU streak tube. For the first time, two of these cameras have been absolutely calibrated at 1 ns and 2 ns sweep speeds under full operational conditions and over 8 spectral bands between 425 nm and 650 nm using a high-stability picosecond white light source. Over this range the cameras had a response which varied between 47 ± 8 and 14 ± 4 photons/count. The calibration of the optical imaging system makes absolute temperature measurements possible. Color temperature measurements are also possible due to the wide spectral range over which the system is calibrated; two different spectral bands can be imaged onto different parts of the photocathode of the same streak camera.

  16. A high spatio-temporal resolution optical pyrometer at the ORION laser facility

    Science.gov (United States)

    Floyd, Emma; Gumbrell, Edward T.; Fyrth, Jim; Luis, James D.; Skidmore, Jonathan W.; Patankar, Siddharth; Giltrap, Samuel; Smith, Roland

    2016-11-01

    A streaked pyrometer has been designed to measure the temperature of ≈100 μm diameter heated targets in the warm dense matter region. The diagnostic has picosecond time resolution. Spatial resolution is limited by the streak camera to 4 μm in one dimension; the imaging system has superior resolution of 1 μm. High light collection efficiency means that the diagnostic can transmit a measurable quantity of thermal emission at temperatures as low as 1 eV to the detector. This is achieved through the use of an f/1.4 objective, and a minimum number of reflecting and refracting surfaces to relay the image over 8 m with no vignetting over a 0.4 mm field of view with 12.5× magnification. All the system optics are highly corrected, to allow imaging with minimal aberrations over a broad spectral range. The detector is a highly sensitive Axis Photonique streak camera with a P820PSU streak tube. For the first time, two of these cameras have been absolutely calibrated at 1 ns and 2 ns sweep speeds under full operational conditions and over 8 spectral bands between 425 nm and 650 nm using a high-stability picosecond white light source. Over this range the cameras had a response which varied between 47 ± 8 and 14 ± 4 photons/count. The calibration of the optical imaging system makes absolute temperature measurements possible. Color temperature measurements are also possible due to the wide spectral range over which the system is calibrated; two different spectral bands can be imaged onto different parts of the photocathode of the same streak camera.

  17. Measuring Large-Scale Social Networks with High Resolution

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Sekara, Vedran; Sapiezynski, Piotr

    2014-01-01

    , telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1 000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation...... and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles....... The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection....

  18. High resolution wind turbine wake measurements with a scanning lidar

    DEFF Research Database (Denmark)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.

    2017-01-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One...... of the primary objectives is to collect experimental data to improve the predictive capability of wind plant computational models to represent the response of the turbine wake to varying inflow conditions and turbine operating states. The present work summarizes the experimental setup and illustrates several...

  19. High-resolution AMLCD for the electronic library system

    Science.gov (United States)

    Martin, Russel A.; Middo, Kathy; Turner, William D.; Lewis, Alan; Thompson, Malcolm J.; Silverstein, Louis D.

    1994-06-01

    The Electronic Library System (ELS), is a proposed data resource for the cockpit which can provide the aircrew with a vast array of technical information on their aircraft and flight plan. This information includes, but is not limited to, approach plates, Jeppeson Charts, and aircraft technical manuals. Most of these data are appropriate for digitization at high resolution (300 spi). Xerox Corporation has developed a flat panel active matrix liquid crystal display, AMLCD, that is an excellent match to the ELS, due to its innovative and aggressive design.

  20. High resolution X-ray spectroscopy in light antiprotonic atoms

    CERN Document Server

    Borchert, G L; Augsburger, M A; Castelli, C M; Chatellard, D; Egger, J P; El-Khoury, P; Elble, M; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    2000-01-01

    At the LEAR facility, CERN, antiprotonic L alpha transitions in light elements have been investigated with a focussing crystal spectrometer. The high resolution of the experiment allowed for the first time to resolve in pH/pH the 2/sup 3/P/sub 0/ state from the close-lying states 2/sup 3/P/sub 2/, 2/sup 1/P/sub 1/, and 2/sup 3/P /sub 1/. In pD the corresponding transitions were found to be more than an order of magnitude broader. To a large extent the results for pH support the meson exchange model. (15 refs).

  1. Laser ablated hydantoin: A high resolution rotational study

    Science.gov (United States)

    Alonso, Elena R.; Kolesniková, Lucie; Alonso, José L.

    2017-09-01

    Laser ablation techniques coupled with broadband and narrowband Fourier transform microwave spectroscopies have allowed the high resolution rotational study of solid hydantoin, an important target in astrochemistry as a possible precursor of glycine. The complicated hyperfine structure arising from the presence of two 14N nuclei in non-equivalent positions has been resolved and interpreted in terms of the nuclear quadrupole coupling interactions. The results reported in this work provide a solid base for the interstellar searches of hydantoin in the astrophysical surveys. The values of the nuclear quadrupole coupling constants have been also discussed in terms of the electronic environment around the respective nitrogen atom.

  2. Geomorphology of Impact Features on Tethys Using High Resolution Mosaics

    Science.gov (United States)

    2017-03-01

    GEOMORPHOLOGY OF IMPACT FEATURES ON TETHYS USING HIGH NIA RESOLUTION MOSAICS. 5b. GRANT NUMBER NIA 5c. PROGRAM ELEMENT NUMBER NIA 6. AUTHOR(S) 5d...PROJECT NUMBER A.R. Rhoden, M. Nayak, E. Asphaug NIA 5e. TASK NUMBER NIA 5f. WORK UNIT NUMBER NIA T. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Space Exploration, Arizona State University, Tempe, AZ 85282 NIA 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM

  3. High-resolution ultrasound of the extrinsic carpal ligaments☆

    Science.gov (United States)

    Orlandi, D.; Fabbro, E.; Ferrero, G.; Martini, C.; Lacelli, F.; Serafini, G.; Silvestri, E.; Sconfienza, L.M.

    2012-01-01

    Thanks to its intrinsic high spatial resolution, ultrasound is an ideal imaging modality for examining very thin, superficial structures, and this makes it very helpful in the evaluation of extrinsic carpal ligaments. These structures, which arise from the radius and ulna and insert on the carpal bones, are extremely important for wrist stability. Previous studies have assessed the use of ultrasound to study the extrinsic carpal ligaments in cadavers, healthy asymptomatic subjects, and patients with rheumatoid arthritis. In the present report, we review the normal anatomy, biomechanics, and ultrasound appearance of these ligaments. PMID:23730393

  4. High resolution projection micro stereolithography system and method

    Energy Technology Data Exchange (ETDEWEB)

    Spadaccini, Christopher M.; Farquar, George; Weisgraber, Todd; Gemberling, Steven; Fang, Nicholas; Xu, Jun; Alonso, Matthew; Lee, Howon

    2016-11-15

    A high-resolution P.mu.SL system and method incorporating one or more of the following features with a standard P.mu.SL system using a SLM projected digital image to form components in a stereolithographic bath: a far-field superlens for producing sub-diffraction-limited features, multiple spatial light modulators (SLM) to generate spatially-controlled three-dimensional interference holograms with nanoscale features, and the integration of microfluidic components into the resin bath of a P.mu.SL system to fabricate microstructures of different materials.

  5. Clickstream data yields high-resolution maps of science

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Johan [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Chute, Ryan [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Balakireva, Lyudmila [Los Alamos National Laboratory

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  6. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel

    2017-03-13

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.

  7. High-resolution overtone spectra of molecular complexes

    Science.gov (United States)

    Didriche, K.; Földes, T.

    2013-02-01

    A high-resolution spectrum of the acetylene-water complex has been recorded in the overtone range. Two bands of C2H2-D2O were analysed, corresponding to the overtone excitations of either the acetylene or the water units. The vibrational shifts and the upper states rotational constants were retrieved, demonstrating that the geometry of the complex is only slightly modified by the excitation. A larger linewidth was observed for the 2CH band than for the 2OD + DOD band, probably due to the direct coupling of the 2CH excitation with the dissociation coordinate.

  8. High resolution skin colorimetry, strain mapping and mechanobiology.

    Science.gov (United States)

    Devillers, C; Piérard-Franchimont, C; Schreder, A; Docquier, V; Piérard, G E

    2010-08-01

    Skin colours are notoriously different between individuals. They are governed by ethnicities and phototypes, and further influenced by a variety of factors including photoexposures and sustained mechanical stress. Indeed, mechanobiology is a feature affecting the epidermal melanization. High-resolution epiluminescence colorimetry helps in deciphering the effects of forces generated by Langer's lines or relaxed skin tension lines on the melanocyte activity. The same procedure shows a prominent laddering pattern of melanization in striae distensae contrasting with the regular honeycomb pattern in the surrounding skin.

  9. Differentiation of Staphylococcus spp. by high-resolution melting analysis.

    Science.gov (United States)

    Slany, Michal; Vanerkova, Martina; Nemcova, Eva; Zaloudikova, Barbora; Ruzicka, Filip; Freiberger, Tomas

    2010-12-01

    High-resolution melting analysis (HRMA) is a fast (post-PCR) high-throughput method to scan for sequence variations in a target gene. The aim of this study was to test the potential of HRMA to distinguish particular bacterial species of the Staphylococcus genus even when using a broad-range PCR within the 16S rRNA gene where sequence differences are minimal. Genomic DNA samples isolated from 12 reference staphylococcal strains (Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus intermedius, Staphylococcus saprophyticus, Staphylococcus sciuri, Staphylococcus simulans, Staphylococcus warneri, and Staphylococcus xylosus) were subjected to a real-time PCR amplification of the 16S rRNA gene in the presence of fluorescent dye EvaGreen™, followed by HRMA. Melting profiles were used as molecular fingerprints for bacterial species differentiation. HRMA of S. saprophyticus and S. xylosus resulted in undistinguishable profiles because of their identical sequences in the analyzed 16S rRNA region. The remaining reference strains were fully differentiated either directly or via high-resolution plots obtained by heteroduplex formation between coamplified PCR products of the tested staphylococcal strain and phylogenetically unrelated strain.

  10. A System for High-Resolution Topology Optimization.

    Science.gov (United States)

    Wu, Jun; Dick, Christian; Westermann, Rudiger

    2016-03-01

    A key requirement in 3D fabrication is to generate objects with individual exterior shapes and their interior being optimized to application-specific force constraints and low material consumption. Accomplishing this task is challenging on desktop computers, due to the extreme model resolutions that are required to accurately predict the physical shape properties, requiring memory and computational capacities going beyond what is currently available. Moreover, fabrication-specific constraints need to be considered to enable printability. To address these challenges, we present a scalable system for generating 3D objects using topology optimization, which allows to efficiently evolve the topology of high-resolution solids towards printable and light-weight-high-resistance structures. To achieve this, the system is equipped with a high-performance GPU solver which can efficiently handle models comprising several millions of elements. A minimum thickness constraint is built into the optimization process to automatically enforce printability of the resulting shapes. We further shed light on the question how to incorporate geometric shape constraints, such as symmetry and pattern repetition, in the optimization process. We analyze the performance of the system and demonstrate its potential by a variety of different shapes such as interior structures within closed surfaces, exposed support structures, and surface models.

  11. Providing Internet Access to High-Resolution Mars Images

    Science.gov (United States)

    Plesea, Lucian

    2008-01-01

    The OnMars server is a computer program that provides Internet access to high-resolution Mars images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of Mars. The OnMars server is an implementation of the Open Geospatial Consortium (OGC) Web Map Service (WMS) server. Unlike other Mars Internet map servers that provide Martian data using an Earth coordinate system, the OnMars WMS server supports encoding of data in Mars-specific coordinate systems. The OnMars server offers access to most of the available high-resolution Martian image and elevation data, including an 8-meter-per-pixel uncontrolled mosaic of most of the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) image collection, which is not available elsewhere. This server can generate image and map files in the tagged image file format (TIFF), Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. The OnMars server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  12. Providing Internet Access to High-Resolution Lunar Images

    Science.gov (United States)

    Plesea, Lucian

    2008-01-01

    The OnMoon server is a computer program that provides Internet access to high-resolution Lunar images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of the Moon. The OnMoon server implements the Open Geospatial Consortium (OGC) Web Map Service (WMS) server protocol and supports Moon-specific extensions. Unlike other Internet map servers that provide Lunar data using an Earth coordinate system, the OnMoon server supports encoding of data in Moon-specific coordinate systems. The OnMoon server offers access to most of the available high-resolution Lunar image and elevation data. This server can generate image and map files in the tagged image file format (TIFF) or the Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. Full-precision spectral arithmetic processing is also available, by use of a custom SLD extension. This server can dynamically add shaded relief based on the Lunar elevation to any image layer. This server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  13. High resolution micro-pattern gas detectors for particle physics

    Science.gov (United States)

    Shekhtman, L.; Aulchenko, V.; Bobrovnikov, V.; Bondar, A.; Fedotovich, G.; Kudryavtsev, V.; Maltsev, T.; Nikolenko, D.; Rachek, I.; Zhilich, V.; Zhulanov, V.

    2017-07-01

    Micro-pattern gaseous detectors (MPGDs) allow operation at very high background particle flux with high efficiency and spatial resolution. This combination of parameters determines the main application of these detectors in particle physics experiments: precise tracking in the areas close to the beam and in the end-cap regions of general-purpose detectors. MPGDs of different configurations have been developed and are under development for several experiments in the Budker INP. The system of eight two-coordinate detectors based on a cascade of Gas Electron Multipliers (GEM) is working in the KEDR experiment at the VEPP-4M collider in the tagging system that detects electrons and positrons that lost their energy in two-photon interactions and left the equilibrium orbit due to a dedicated magnetic system. Another set of cascaded GEM detectors is developed for the almost-real Photon Tagging System (PTS) of the DEUTRON facility at the VEPP-3 storage ring. The PTS contains three very light detectors with very high spatial resolution (below 50 μm). Dedicated detectors based on cascaded GEMs are developed for the extracted electron beam facility at the VEPP-4M collider. These devices will allow precise particle tracking with minimal multiple scattering due to very low material content. An upgrade of the coordinate system of the CMD-3 detector at the VEPP-2000 collider is proposed on the basis of the resistive micro-WELL (μ-rWELL). A research activity on this subject has just started.

  14. Montecarlo simulation for a new high resolution elemental analysis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto [Universidad de La Frontera, Temuco (Chile). Facultad de Ingenieria y Administracion

    1996-12-31

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2{pi} solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  15. MR-Venography Using High Resolution True-FISP

    Energy Technology Data Exchange (ETDEWEB)

    Spuentrup, E. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Beth Israel Deaconess Medical Center, Boston, MA (United States). Dept. of Medicine; Harvard Medical School, Boston, MA (United States); Buecker, A.; Guenther, R.W. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Stuber, M. [Beth Israel Deaconess Medical Center, Boston, MA (United States). Dept. of Medicine; Harvard Medical School, Boston, MA (United States); Philips Med. Syst., Best (Netherlands)

    2001-08-01

    A new fast MR-venography approach using a high resolution True-FISP imaging sequence was investigated in 20 patients suffering from 23 deep vein thromboses. Diagnosis was proven by X-ray venography, CT or ultrasound examination. The presented technique allowed for clear thrombus visualization with a high contrast to the surrounding blood pool even in calf veins. Acquisition time was less than 10 minutes for imaging the pelvis and the legs. No contrast media was needed. The presented high resolution True-FISP MR-veography is a promising non-invasive, fast MR-venography approach for detection of deep venous thrombosis. (orig.) [German] Eine neue schnelle, oertlich hochaufgeloeste MR-Phlebographietechnik mit einer axialen True-FISP Bildgebungssequenz wurde an 20 Patienten mit 23 nach-gewiesenen tiefen Beinvenenthrombosen untersucht. Die Befunde wurden mit einer konventionellen Roentgenphlebographie, einer CT oder einer Sonographie gesichert. Die vorgestellte Technik erlaubte in allen Faellen eine Thrombusdarstellung mit hohem Kontrast zum umgebenden venoesen Blut, wobei aufgrund der hohen Ortsaufloesung auch die Unterschenkelvenen beurteilt werden konnten. Die Datenaufnahmezeit zur Untersuchung des Beckens und der Beine betrug weniger als 10 Minuten. Kontrastmittel wurde nicht benoetigt. Die vorgestellte MR-Phlebographietechnik unter Verwendung einer oertlich hochauf-geloesten True-FISP Sequenz ist eine neue, vielversprechende, nicht-invasive Technik zur Diagnostik der tiefen Bein- und Beckenvenenthrombose. (orig.)

  16. Knowing Obama: How High School Students of Color Learn about the 44th President

    Science.gov (United States)

    Smith, William

    2016-01-01

    Drawing from a theory of racial literacy and literature on the post-racial phenomenon after the 2008 election, this case study examines how high school students of color have learned about Barack Obama as a racial and political figure. Findings suggest that schools can be unfriendly spaces for learning about these topics, with history and social…

  17. Social Justice Teaching through the Sympathetic Touch of Caring and High Expectations for Students of Color

    Science.gov (United States)

    Rojas, Leticia; Liou, Daniel D.

    2017-01-01

    This 1-year qualitative study examined the ways in which nine social justice-oriented teachers in racially segregated schools defined and fostered sympathy with low-income students of color. These teachers reportedly defined sympathy on the basis of caring and high expectations, which challenged traditional notions of sympathy as a teacher cue for…

  18. Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry

    NARCIS (Netherlands)

    van der Veen, Roeland; Tran, Tuan; Lohse, Detlef; Sun, Chao

    2012-01-01

    A drop impacting on a solid surface deforms before the liquid makes contact with the surface. We directly measure the time evolution of the air layer profile under the droplet using high-speed color interferometry, obtaining the air layer thickness before and during the wetting process. Based on the

  19. A high capacity text steganography scheme based on LZW compression and color coding

    Directory of Open Access Journals (Sweden)

    Aruna Malik

    2017-02-01

    Full Text Available In this paper, capacity and security issues of text steganography have been considered by employing LZW compression technique and color coding based approach. The proposed technique uses the forward mail platform to hide the secret data. This algorithm first compresses secret data and then hides the compressed secret data into the email addresses and also in the cover message of the email. The secret data bits are embedded in the message (or cover text by making it colored using a color coding table. Experimental results show that the proposed method not only produces a high embedding capacity but also reduces computational complexity. Moreover, the security of the proposed method is significantly improved by employing stego keys. The superiority of the proposed method has been experimentally verified by comparing with recently developed existing techniques.

  20. High-Resolution In Vivo Imaging of Regimes of Laser Damage to the Primate Retina

    Directory of Open Access Journals (Sweden)

    Ginger M. Pocock

    2014-01-01

    Full Text Available Purpose. To investigate fundamental mechanisms of regimes of laser induced damage to the retina and the morphological changes associated with the damage response. Methods. Varying grades of photothermal, photochemical, and photomechanical retinal laser damage were produced in eyes of eight cynomolgus monkeys. An adaptive optics confocal scanning laser ophthalmoscope and spectral domain optical coherence tomographer were combined to simultaneously collect complementary in vivo images of retinal laser damage during and following exposure. Baseline color fundus photography was performed to complement high-resolution imaging. Monkeys were perfused with 10% buffered formalin and eyes were enucleated for histological analysis. Results. Laser energies for visible retinal damage in this study were consistent with previously reported damage thresholds. Lesions were identified in OCT images that were not visible in direct ophthalmoscopic examination or fundus photos. Unique diagnostic characteristics, specific to each damage regime, were identified and associated with shape and localization of lesions to specific retinal layers. Previously undocumented retinal healing response to blue continuous wave laser exposure was recorded through a novel experimental methodology. Conclusion. This study revealed increased sensitivity of lesion detection and improved specificity to the laser of origin utilizing high-resolution imaging when compared to traditional ophthalmic imaging techniques in the retina.

  1. Random-Forest Classification of High-Resolution Remote Sensing Images and Ndsm Over Urban Areas

    Science.gov (United States)

    Sun, X. F.; Lin, X. G.

    2017-09-01

    As an intermediate step between raw remote sensing data and digital urban maps, remote sensing data classification has been a challenging and long-standing research problem in the community of remote sensing. In this work, an effective classification method is proposed for classifying high-resolution remote sensing data over urban areas. Starting from high resolution multi-spectral images and 3D geometry data, our method proceeds in three main stages: feature extraction, classification, and classified result refinement. First, we extract color, vegetation index and texture features from the multi-spectral image and compute the height, elevation texture and differential morphological profile (DMP) features from the 3D geometry data. Then in the classification stage, multiple random forest (RF) classifiers are trained separately, then combined to form a RF ensemble to estimate each sample's category probabilities. Finally the probabilities along with the feature importance indicator outputted by RF ensemble are used to construct a fully connected conditional random field (FCCRF) graph model, by which the classification results are refined through mean-field based statistical inference. Experiments on the ISPRS Semantic Labeling Contest dataset show that our proposed 3-stage method achieves 86.9% overall accuracy on the test data.

  2. Results in coastal waters with high resolution in situ spectral radiometry: The Marine Optical System ROV

    Science.gov (United States)

    Yarbrough, Mark; Feinholz, Michael; Flora, Stephanie; Houlihan, Terrance; Johnson, B. Carol; Kim, Yong S.; Murphy, Marilyn Y.; Ondrusek, Michael; Clark, Dennis

    2007-09-01

    The water-leaving spectral radiance is a basic ocean color remote sensing parameters required for the vicarious calibration. Determination of water-leaving spectral radiance using in-water radiometry requires measurements of the upwelling spectral radiance at several depths. The Marine Optical System (MOS) Remotely Operated Vehicle (ROV) is a portable, fiber-coupled, high-resolution spectroradiometer system with spectral coverage from 340 nm to 960 nm. MOS was developed at the same time as the Marine Optical Buoy (MOBY) spectrometer system and is optically identical except that it is configured as a profiling instrument. Concerns with instrument self-shadowing because of the large exterior dimensions of the MOS underwater housing led to adapting MOS and ROV technology. This system provides for measurement of the near-surface upwelled spectral radiance while minimizing the effects of shadowing. A major advantage of this configuration is that the ROV provides the capability to acquire measurements 5 cm to 10 cm below the water surface and is capable of very accurate depth control (1 cm) allowing for high vertical resolution observations within the very near-surface. We describe the integrated system and its characterization and calibration. Initial measurements and results from observations of coral reefs in Kaneohe Bay, Oahu, extremely turbid waters in the Chesapeake Bay, Maryland, and in Case 1 waters off Southern Oahu, Hawaii are presented.

  3. Application of multi-scale segmentation algorithms for high resolution remote sensing image

    Science.gov (United States)

    Zhou, Tingting; Gu, Lingjia; Ren, Ruizhi

    2017-09-01

    In recent decades, with the rapid development of remote sensing technology, high resolution remote sensing images have been widely used in various fields due to their characteristics, such as rich spectral information and complex texture information. As a key step in the feature extraction, multi-scale image segmentation algorithm has been a hotspot currently. The traditional image segmentation is based on pixels, which only takes the spectral information of pixel into account, and ignores the texture, spatial information and contextual relation of the objects in the image. The experimental high resolution remote sensing images are from GF-2 and the features of the experimental data are obvious, the edges are clear. By using the statistical region merging (SRM) algorithm, the fractal net evolution approach (FNEA) algorithm and the unsupervised multi-scale segmentation of color images (UMSC) algorithm, this paper analyzes the segmentation effects of three multi-scale segmentation algorithms on the optimal scale and on the same segmentation scale respectively. The experimental results under the optimal scale and the same segmentation scale show that the SRM algorithm outperforms the UMSC algorithm, and UMSC algorithm outperforms the FENA algorithm in multi-scale segmentation.

  4. Advanced Plasmonic Materials for Dynamic Color Display.

    Science.gov (United States)

    Shao, Lei; Zhuo, Xiaolu; Wang, Jianfang

    2017-11-10

    Plasmonic structures exhibit promising applications in high-resolution and durable color generation. Research on advanced hybrid plasmonic materials that allow dynamically reconfigurable color control has developed rapidly in recent years. Some of these results may give rise to practically applicable reflective displays in living colors with high performance and low power consumption. They will attract broad interest from display markets, compared with static plasmonic color printing, for example, in applications such as digital signage, full-color electronic paper, and electronic device screens. In this progress report, the most promising recent examples of utilizing advanced plasmonic materials for the realization of dynamic color display are highlighted and put into perspective. The performances, advantages, and disadvantages of different technologies are discussed, with emphasis placed on both the potential and possible limitations of various hybrid materials for dynamic plasmonic color display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preliminary clinical evaluation of a high-resolution telemammography system.

    Science.gov (United States)

    Maitz, G S; Chang, T S; Sumkin, J H; Wintz, P W; Johns, C M; Ganott, M; Holbert, B L; Hakim, C M; Harris, K M; Gur, D; Herron, J M

    1997-04-01

    The authors designed, assembled, tested, and clinically evaluated a high-quality, fast, and relatively inexpensive telemammography system. The authors designed a telemammography system that uses a high-resolution film digitizer and high data compression (> or = 40:1) to send images over regular telephone lines to a high-resolution laser printer that produces images with the look and feel of the original image and can operate in a hub and spokes mode. The authors then evaluated the system's performance. In a preliminary clinical study, interpretations of the laser-printed system's output of 119 cases were compared with the original interpretations, followed by a review of any clinically significant differences. With the exception of the laser printer, which is a modified off-the-shelf product, all hardware components of the system are commercially available products. The system digitizes (50 microns pixel size), compresses, transmits, receives, decompresses, and prints a 30 MB mammography file in less than 4 minutes. In the clinical study, there were 13 differences (in 13 cases) in the level of concern or recommendations. Seven were found to be clinically insignificant by a third-party review. The remaining six were reviewed by the original interpreter, and three were determined to be significant enough for further action. All were found to result from intra-reader variability rather than differences in visualization of possible abnormalities. Almost real-time, high-quality telemammography without geographic boundaries is possible with the use of high-level data compression. Telemammography with laser-printed film as the display may make it possible to offer mammographic services in remote locations while using commercially available technology.

  6. High resolution remote sensing of water surface patterns

    Science.gov (United States)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  7. Synthesis of rainfall time series in a high temporal resolution

    Science.gov (United States)

    Callau Poduje, Ana Claudia; Haberlandt, Uwe

    2014-05-01

    In order to optimize the design and operation of urban drainage systems, long and continuous rain series in a high temporal resolution are essential. As the length of the rainfall records is often short, particularly the data available with the temporal and regional resolutions required for urban hydrology, it is necessary to find some numerical representation of the precipitation phenomenon to generate long synthetic rainfall series. An Alternating Renewal Model (ARM) is applied for this purpose, which consists of two structures: external and internal. The former is the sequence of wet and dry spells, described by their durations which are simulated stochastically. The internal structure is characterized by the amount of rain corresponding to each wet spell and its distribution within the spell. A multivariate frequency analysis is applied to analyze the internal structure of the wet spells and to generate synthetic events. The stochastic time series must reproduce the statistical characteristics of observed high resolution precipitation measurements used to generate them. The spatio-temporal interdependencies between stations are addressed by resampling the continuous synthetic series based on the Simulated Annealing (SA) procedure. The state of Lower-Saxony and surrounding areas, located in the north-west of Germany is used to develop the ARM. A total of 26 rainfall stations with high temporal resolution records, i.e. rainfall data every 5 minutes, are used to define the events, find the most suitable probability distributions, calibrate the corresponding parameters, simulate long synthetic series and evaluate the results. The length of the available data ranges from 10 to 20 years. The rainfall series involved in the different steps of calculation are compared using a rainfall-runoff model to simulate the runoff behavior in urban areas. The EPA Storm Water Management Model (SWMM) is applied for this evaluation. The results show a good representation of the

  8. High Resolution X-ray Views of Solar System Objects

    Science.gov (United States)

    Branduardi-Raymont, Graziella

    2011-05-01

    Over the last decade Chandra, and XMM-Newton, have revealed the beauty and multiplicity of X-ray emissions in our solar system: high resolution data, in both spectral and spatial domains, have been crucial in disentangling the physical processes at work. The talk will review the main findings in this area at the boundary between astrophysics and planetary science, and will show how the solar system offers `next door’ examples of widespread astrophysical phenomena. Jupiter shows bright X-ray aurorae, arising from the interactions of local and/or solar wind ions, and electrons, with its powerful magnetic environment: the ions undergo charge exchange with atmospheric neutrals and generate soft X-ray line emission, and the electrons give rise to bremsstrahlung X-rays. Chandra's unparalleled spatial resolution has shown how the X-ray footprints of the electrons in the aurorae coincide with the bright FUV auroral oval, indicating that the same electron population is likely to be at the origin of both emissions. Moreover, Jupiter's disk scatters solar X-rays, displaying a spectrum that closely resembles that of solar flares. Saturn has not revealed X-ray aurorae (yet), but its disk X-ray brightness, like Jupiter's, is strictly correlated with the Sun's X-ray output. A bright X-ray spot has also been resolved by Chandra on the eastern ansa of Saturn's rings, and its spectrum suggests an origin in the fluorescent scattering of solar X-rays on the rings icy particles. Both Mars and Venus have X-ray emitting disks and exospheres, which can be clearly resolved at high spectral and spatial resolution. And the Earth has bright X-ray aurorae that have been targets of Chandra observations. Finally, comets, with their extended neutral comae and extremely line-rich X-ray spectra, are spectacular X-ray sources, and ideal probes of the conditions of the solar wind in the Sun's proximity.

  9. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  10. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  11. High-Resolution EUV Spectroscopy of White Dwarfs

    Science.gov (United States)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  12. High Resolution Spectral Analysis for Irregularly Sampled Helioseismic Data

    Science.gov (United States)

    Seghouani, N.

    2006-11-01

    Astronomical ground based data are very often irregularly sampled due to many factors such as: diurnal effect, weather conditions, etc. The analysis of such data cannot be performed with classical tools (such as periodigram) and new adapted methods are required. After presenting some of these techniques, we will focus on a regularized approach of the spectral analysis problem, which gives very good results in the case of band limited and narrow peaks spectrum. We will also show that with this approach we can achieve high-resolution spectra. Indeed, in classical Fourier analysis, spectral resolution is inversely proportional to the observation time T. Considering the spectral analysis problem as an inverse problem and introducing the “a priori” knowledge of band limited and narrow peak spectrum, this limit (1/T) can be exceeded and thus we can achieve highly resolved spectra, even with irregularly sampled data. This technique will be first applied to relevant simulated data, then to helioseismic data. Additional talk: “Brief description of solar projects in Algiers Observatory” A brief description of all projects developed in our department and that are related to the sun: helioseismology, solar data analysis (pipelines description), solar activity, VLF project, solar astrolabe (for solar diameter measurement), site testing for day-time observations, and the project of solar observatory in the Tamanrasset area.

  13. Bright Semiconductor Scintillator for High Resolution X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nagarkar, Vivek V.; Gaysinskiy, Valeriy; Ovechkina, Olena E.; Miller, Stuart; Singh, Bipin; Guo, Liang; Irving, Thomas (IIT); (Rad. Monitoring)

    2011-08-16

    We report on a novel approach to produce oxygen-doped zinc telluride (ZnTe:O), a remarkable group II-VI semiconductor scintillator, fabricated in the columnar-structured or polycrystalline forms needed to fulfill the needs of many demanding X-ray and {gamma}-ray imaging applications. ZnTe:O has one of the highest conversion efficiencies among known scintillators, emission around 680 nm (which is ideally suited for CCD sensors), high density of 6.4 g/cm{sup 3}, fast decay time of {approx}1 {micro}s with negligible afterglow, and orders of magnitude higher radiation resistance compared to commonly used scintillators. These properties allow the use of ZnTe:O in numerous applications, including X-ray imaging, nuclear medicine (particularly SPECT), room temperature radioisotope identification, and homeland security. Additionally, ZnTe:O offers distinct advantages for synchrotron-based high resolution imaging due to the absence of atomic absorption edges in the low energy range, which otherwise reduce resolution due to secondary X-ray formations. We have fabricated films of ZnTe:O using a vapor deposition technique that allows large-area structured scintillator fabrication in a time- and cost-efficient manner, and evaluated its performance for small-angle X-ray scattering (SAXS) at an Argonne National Laboratory synchrotron beamline. Details of the fabrication and characterization of the optical, scintillation and imaging properties of the ZnTe:O films are presented in this paper.

  14. High-resolution diffraction grating interferometric transducer of linear displacements

    Science.gov (United States)

    Shang, Ping; Xia, Haojie; Fei, Yetai

    2016-01-01

    A high-resolution transducer of linear displacements is presented. The system is based on semiconductor laser illumination and a diffraction grating applied as a length master. The theory of the optical method is formulated using Doppler description. The relationship model among the interference strips, measurement errors, grating deflection around the X, Y and Z axes and translation along the Z axis is built. The grating interference strips' direction and space is not changed with movement along the X (direction of grating movement), Y (direction of grating line), Z axis, and the direction and space has a great effect when rotating around the X axis. Moreover the space is little affected by deflection around the Z axis however the direction is changed dramatically. In addition, the strips' position shifted rightward or downwards respectively for deflection around the X or Y axis. Because the emitted beams are separated on the grating plane, the tilt around the X axis error of the stage during motion will lead to the optical path difference of the two beams resulting in phase shift. This study investigates the influence of the tilt around the X axis error. Experiments show that after yaw error compensation, the high-resolution diffraction grating interferometric transducer readings can be significantly improved. The error can be reduced from +/-80 nm to +/-30 nm in maximum.

  15. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    Directory of Open Access Journals (Sweden)

    Niels Buchhold

    2017-01-01

    Full Text Available This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD. The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels, the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force. This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  16. Optimized generation of high resolution breast anthropomorphic software phantoms

    Science.gov (United States)

    Pokrajac, David D.; Maidment, Andrew D. A.; Bakic, Predrag R.

    2012-01-01

    Purpose: The authors present an efficient method for generating anthropomorphic software breast phantoms with high spatial resolution. Employing the same region growing principles as in their previous algorithm for breast anatomy simulation, the present method has been optimized for computational complexity to allow for fast generation of the large number of phantoms required in virtual clinical trials of breast imaging. Methods: The new breast anatomy simulation method performs a direct calculation of the Cooper’s ligaments (i.e., the borders between simulated adipose compartments). The calculation corresponds to quadratic decision boundaries of a maximum a posteriori classifier. The method is multiscale due to the use of octree-based recursive partitioning of the phantom volume. The method also provides user-control of the thickness of the simulated Cooper’s ligaments and skin. Results: Using the proposed method, the authors have generated phantoms with voxel size in the range of (25–1000 μm)3/voxel. The power regression of the simulation time as a function of the reciprocal voxel size yielded a log-log slope of 1.95 (compared to a slope of 4.53 of our previous region growing algorithm). Conclusions: A new algorithm for computer simulation of breast anatomy has been proposed that allows for fast generation of high resolution anthropomorphic software phantoms. PMID:22482649

  17. CHIRON – A new high resolution spectrometer for CTIO

    Directory of Open Access Journals (Sweden)

    Marcy G.W.

    2011-07-01

    Full Text Available Small telescopes can play an important role in the search for exoplanets because they offer an opportunity for high cadence observations that are not possible with large aperture telescopes. However, there is a shortage of high resolution spectrometers for precision Doppler planet searches. We report on an innovative design for CHIRON, an inexpensive spectrometer that we are building for the 1.5-m telescope at CTIO in Chile. The resolution will be R >80.000, the spectral format spanning 410 to 880 nm. The total throughput of the telescope and spectrometer will be better than 12%, comparable with the efficiency of state-of-the-art spectrometers. The design is driven by the requirements for precision Doppler searches for exoplanets using an iodine cell. The optical layout is a classical echelle with 140 mm beam size. The bench-mounted spectrometer will be fibre-fed followed by an image slicer. An apochromatic refractor is used as the camera. Image quality and throughput of the design are excellent over the full spectral range. Extensive use of commercially available components and avoidance of complicated custom optics are key for quick and resource-efficient implementation.

  18. Quantitative analysis of cholesteatoma using high resolution computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Shigeru; Yamasoba, Tatsuya (Kameda General Hospital, Chiba (Japan)); Iinuma, Toshitaka

    1992-05-01

    Seventy-three cases of adult cholesteatoma, including 52 cases of pars flaccida type cholesteatoma and 21 of pars tensa type cholesteatoma, were examined using high resolution computed tomography, in both axial (lateral semicircular canal plane) and coronal sections (cochlear, vestibular and antral plane). These cases were classified into two subtypes according to the presence of extension of cholesteatoma into the antrum. Sixty cases of chronic otitis media with central perforation (COM) were also examined as controls. Various locations of the middle ear cavity were measured in terms of size in comparison with pars flaccida type cholesteatoma, pars tensa type cholesteatoma and COM. The width of the attic was significantly larger in both pars flaccida type and pars tensa type cholesteatoma than in COM. With pars flaccida type cholesteatoma there was a significantly larger distance between the malleus and lateral wall of the attic than with COM. In contrast, the distance between the malleus and medial wall of the attic was significantly larger with pars tensa type cholesteatoma than with COM. With cholesteatoma extending into the antrum, regardless of the type of cholesteatoma, there were significantly larger distances than with COM at the following sites: the width and height of the aditus ad antrum, and the width, height and anterior-posterior diameter of the antrum. However, these distances were not significantly different between cholesteatoma without extension into the antrum and COM. The hitherto demonstrated qualitative impressions of bone destruction in cholesteatoma were quantitatively verified in detail using high resolution computed tomography. (author).

  19. High-Resolution Mars Camera Test Image of Moon (Infrared)

    Science.gov (United States)

    2005-01-01

    This crescent view of Earth's Moon in infrared wavelengths comes from a camera test by NASA's Mars Reconnaissance Orbiter spacecraft on its way to Mars. The mission's High Resolution Imaging Science Experiment camera took the image on Sept. 8, 2005, while at a distance of about 10 million kilometers (6 million miles) from the Moon. The dark feature on the right is Mare Crisium. From that distance, the Moon would appear as a star-like point of light to the unaided eye. The test verified the camera's focusing capability and provided an opportunity for calibration. The spacecraft's Context Camera and Optical Navigation Camera also performed as expected during the test. The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

  20. High-Resolution Displacement Sensor Using a SQUID Array Amplifier

    Science.gov (United States)

    Chui, Talso; Penanen, Konstantin; Barmatz, M.; Paik, Ho Jung

    2004-01-01

    Improvement in the measurement of displacement has profound implications for both exploration technologies and fundamental physics. For planetary exploration, the new SQUID-based capacitive displacement sensor will enable a more sensitive gravity gradiometer for mapping the interior of planets and moons. A new concept of a superfluid clock to be reported by Penanen and Chui at this workshop is also based on a high-resolution displacement sensor. Examples of high-impact physics projects that can benefit from a better displacement sensor are: detection of gravitational waves, test of the equivalence principle, search for the postulated "axion" particle, and test of the inverse square law of gravity. We describe the concept of a new displacement sensor that makes use of a recent development in the Superconducting Quantum Interference Device (SQUID) technology. The SQUID array amplifier, invented by Welty and Martinis (IEEE Trans. Appl. Superconductivity 3, 2605, 1993), has about the same noise as a conventional SQUID; however, it can work at a much higher frequency of up to 5 MHz. We explain how the higher bandwidth can be translated into higher resolution using a bridge-balancing scheme that can simultaneously balance out both the carrier signal at the bridge output and the electrostatic force acting on the test mass.