WorldWideScience

Sample records for high resolution 3d

  1. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.

    Science.gov (United States)

    Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z

    2018-06-01

    To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. 3D high-resolution two-photon crosslinked hydrogel structures for biological studies.

    Science.gov (United States)

    Brigo, Laura; Urciuolo, Anna; Giulitti, Stefano; Della Giustina, Gioia; Tromayer, Maximilian; Liska, Robert; Elvassore, Nicola; Brusatin, Giovanna

    2017-06-01

    Hydrogels are widely used as matrices for cell growth due to the their tuneable chemical and physical properties, which mimic the extracellular matrix of natural tissue. The microfabrication of hydrogels into arbitrarily complex 3D structures is becoming essential for numerous biological applications, and in particular for investigating the correlation between cell shape and cell function in a 3D environment. Micrometric and sub-micrometric resolution hydrogel scaffolds are required to deeply investigate molecular mechanisms behind cell-matrix interaction and downstream cellular processes. We report the design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking. Hydrated structures of lateral linewidth down to 0.5µm, lateral and axial resolution down to a few µm are demonstrated. According to the processing parameters, different degrees of polymerization are obtained, resulting in hydrated scaffolds of variable swelling and deformation. The 3D hydrogels are biocompatible and promote cell adhesion and migration. Interestingly, according to the polymerization degree, 3D hydrogel woodpile structures show variable extent of cell adhesion and invasion. Human BJ cell lines show capability of deforming 3D micrometric resolved hydrogel structures. The design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking is reported. Significantly, topological and mechanical conditions of polymerized gelatin structures were suitable for cell accommodation in the volume of the woodpiles, leading to a cell density per unit area comparable to the bare substrate. The fabricated structures, presenting micrometric features of high resolution, are actively deformed by cells, both in terms of cell invasion within rods and of cell attachment in-between contiguous woodpiles. Possible biological targets for this 3D approach are customized 3D tissue models, or studies of cell adhesion

  3. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry

    Energy Technology Data Exchange (ETDEWEB)

    Gontard, L.C., E-mail: lionelcg@gmail.com [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Puerto Real 11510 (Spain); López-Castro, J.D.; González-Rovira, L. [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Escuela Superior de Ingeniería, Laboratorio de Corrosión, Universidad de Cádiz, Puerto Real 11519 (Spain); Vázquez-Martínez, J.M. [Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Puerto Real 11519 (Spain); Varela-Feria, F.M. [Servicio de Microscopía Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Av. Reina Mercedes 4b, 41012 Sevilla (Spain); Marcos, M. [Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Puerto Real 11519 (Spain); and others

    2017-06-15

    Highlights: • We describe a method to acquire a high-angle tilt series of SEM images that is symmetrical respect to the zero tilt of the sample stage. The method can be applied in any SEM microscope. • Using the method, high-resolution 3D SEM photogrammetry can be applied on planar surfaces. • 3D models of three surfaces patterned with grooves are reconstructed with high resolution using multi-view freeware photogrammetry software as described in LC Gontard et al. Ultramicroscopy, 2016. • From the 3D models roughness parameters are measured • 3D SEM high-resolution photogrammetry is compared with two conventional methods used for roughness characetrization: stereophotogrammetry and contact profilometry. • It provides three-dimensional information with high-resolution that is out of reach for any other metrological technique. - Abstract: We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are compared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate representation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters.

  4. High resolution, large deformation 3D traction force microscopy.

    Directory of Open Access Journals (Sweden)

    Jennet Toyjanova

    Full Text Available Traction Force Microscopy (TFM is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D imaging and traction force analysis (3D TFM have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  5. High-resolution MRI of the labyrinth. Optimization of scan parameters with 3D-FSE

    International Nuclear Information System (INIS)

    Sakata, Motomichi; Harada, Kuniaki; Shirase, Ryuji; Kumagai, Akiko; Ogasawara, Masashi

    2005-01-01

    The aim of our study was to optimize the parameters of high-resolution MRI of the labyrinth with a 3D fast spin-echo (3D-FSE) sequence. We investigated repetition time (TR), echo time (TE), Matrix, field of view (FOV), and coil selection in terms of CNR (contrast-to-noise ratio) and SNR (signal-to-noise ratio) by comparing axial images and/or three-dimensional images. The optimal 3D-FSE sequence parameters were as follows: 1.5 Tesla MR unit (Signa LX, GE Medical Systems), 3D-FSE sequence, dual 3-inch surface coil, acquisition time=12.08 min, TR=5000 msec, TE=300 msec, 3 number of excitations (NEX), FOV=12 cm, matrix=256 x 256, slice thickness=0.5 mm/0.0 sp, echo train=64, bandwidth=±31.5 kHz. High-resolution MRI of the labyrinth using the optimized 3D-FSE sequence parameters permits visualization of important anatomic details (such as scala tympani and scala vestibuli), making it possible to determine inner ear anomalies and the patency of cochlear turns. To obtain excellent heavily T2-weighted axial and three-dimensional images in the labyrinth, high CNR, SNR, and spatial resolution are significant factors at the present time. Furthermore, it is important not only to optimize the scan parameters of 3D-FSE but also to select an appropriate coil for high-resolution MRI of the labyrinth. (author)

  6. High-resolution 3D laser imaging based on tunable fiber array link

    Science.gov (United States)

    Zhao, Sisi; Ruan, Ningjuan; Yang, Song

    2017-10-01

    Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.

  7. High-resolution 3D imaging of polymerized photonic crystals by lab-based x-ray nanotomography with 50-nm resolution

    Science.gov (United States)

    Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.

    2010-09-01

    High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.

  8. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  9. A 3D CZT high resolution detector for x- and gamma-ray astronomy

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Zappettini, A.

    2014-01-01

    At DTU Space we have developed a high resolution three dimensional (3D) position sensitive CZT detector for high energy astronomy. The design of the 3D CZT detector is based on the CZT Drift Strip detector principle. The position determination perpendicular to the anode strips is performed using...

  10. 3D High Resolution l1-SPIRiT Reconstruction on Gadgetron based Cloud

    DEFF Research Database (Denmark)

    Xue, Hui; Kelmann, Peter; Inati, Souheil

    framework to support distributed computing in a cloud environment. This extension is named GT-Plus. A cloud version of 3D l1-SPIRiT was implemented on the GT-Plus framework. We demonstrate that a 3mins reconstruction could be achieved for 1mm3 isotropic resolution neuro scans with significantly improved......Applying non-linear reconstruction to high resolution 3D MRI is challenging because of the lengthy computing time needed for those iterative algorithms. To achieve practical processing duration to enable clinical usage of non-linear reconstruction, we have extended previously published Gadgetron...

  11. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Shu-Wei Chang

    2017-12-01

    Full Text Available This paper presents a novel experimental design for complex structural health monitoring (SHM studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  12. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    Science.gov (United States)

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  13. High-resolution 3D X-ray imaging of intracranial nitinol stents

    International Nuclear Information System (INIS)

    Snoeren, Rudolph M.; With, Peter H.N. de; Soederman, Michael; Kroon, Johannes N.; Roijers, Ruben B.; Babic, Drazenko

    2012-01-01

    To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast-noise-sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel-titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations. (orig.)

  14. 3D detectors with high space and time resolution

    Science.gov (United States)

    Loi, A.

    2018-01-01

    For future high luminosity LHC experiments it will be important to develop new detector systems with increased space and time resolution and also better radiation hardness in order to operate in high luminosity environment. A possible technology which could give such performances is 3D silicon detectors. This work explores the possibility of a pixel geometry by designing and simulating different solutions, using Sentaurus Tecnology Computer Aided Design (TCAD) as design and simulation tool, and analysing their performances. A key factor during the selection was the generated electric field and the carrier velocity inside the active area of the pixel.

  15. High resolution 3D confocal microscope imaging of volcanic ash particles.

    Science.gov (United States)

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM 10 s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. New approach to 3-D, high sensitivity, high mass resolution space plasma composition measurements

    International Nuclear Information System (INIS)

    McComas, D.J.; Nordholt, J.E.

    1990-01-01

    This paper describes a new type of 3-D space plasma composition analyzer. The design combines high sensitivity, high mass resolution measurements with somewhat lower mass resolution but even higher sensitivity measurements in a single compact and robust design. While the lower resolution plasma measurements are achieved using conventional straight-through time-of-flight mass spectrometry, the high mass resolution measurements are made by timing ions reflected in a linear electric field (LEF), where the restoring force that an ion experiences is proportional to the depth it travels into the LEF region. Consequently, the ion's equation of motion in that dimension is that of a simple harmonic oscillator and its travel time is simply proportional to the square root of the ion's mass/charge (m/q). While in an ideal LEF, the m/q resolution can be arbitrarily high, in a real device the resolution is limited by the field linearity which can be achieved. In this paper we describe how a nearly linear field can be produced and discuss how the design can be optimized for various different plasma regimes and spacecraft configurations

  17. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  18. High resolution 3D imaging of synchrotron generated microbeams

    International Nuclear Information System (INIS)

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-01-01

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery

  19. An ROI multi-resolution compression method for 3D-HEVC

    Science.gov (United States)

    Ti, Chunli; Guan, Yudong; Xu, Guodong; Teng, Yidan; Miao, Xinyuan

    2017-09-01

    3D High Efficiency Video Coding (3D-HEVC) provides a significant potential on increasing the compression ratio of multi-view RGB-D videos. However, the bit rate still rises dramatically with the improvement of the video resolution, which will bring challenges to the transmission network, especially the mobile network. This paper propose an ROI multi-resolution compression method for 3D-HEVC to better preserve the information in ROI on condition of limited bandwidth. This is realized primarily through ROI extraction and compression multi-resolution preprocessed video as alternative data according to the network conditions. At first, the semantic contours are detected by the modified structured forests to restrain the color textures inside objects. The ROI is then determined utilizing the contour neighborhood along with the face region and foreground area of the scene. Secondly, the RGB-D videos are divided into slices and compressed via 3D-HEVC under different resolutions for selection by the audiences and applications. Afterwards, the reconstructed low-resolution videos from 3D-HEVC encoder are directly up-sampled via Laplace transformation and used to replace the non-ROI areas of the high-resolution videos. Finally, the ROI multi-resolution compressed slices are obtained by compressing the ROI preprocessed videos with 3D-HEVC. The temporal and special details of non-ROI are reduced in the low-resolution videos, so the ROI will be better preserved by the encoder automatically. Experiments indicate that the proposed method can keep the key high-frequency information with subjective significance while the bit rate is reduced.

  20. Tracking Solid Oxide Cell Microstructure Evolution by High Resolution 3D Nano-Tomography

    DEFF Research Database (Denmark)

    De Angelis, Salvatore

    . The degradation processes are mainly attributed to morphological changes occurring within the electrodes microstructure. Therefore, precise tracking of 3D microstructural evolution during operation is considered crucial to understanding the complex relationship between microstructure and performance. In this work......, X-ray ptychographic tomography is applied to SOC materials, demonstrating unprecedented spatial resolution and data quality. The eect of a complete redox cycle on the same Ni-YSZ microstructure is visualized ex-situ in 3D, showing major rearrangement of the nickel network after reduction......, the formation of cracks in the YSZ, and void formation in nickel oxide after oxidation. Capitalizing on the high resolution of ptychography, the eect of nickel coarsening on the Ni-YSZ microstructure evolution is studied ex-situ in three dimensions, while the sample is repeatedly scanned and treated at high...

  1. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy

    International Nuclear Information System (INIS)

    Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R.; Murshudov, Garib N.; Short, Judith M.; Scheres, Sjors H.W.; Henderson, Richard

    2013-01-01

    Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an

  2. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R.; Murshudov, Garib N.; Short, Judith M.; Scheres, Sjors H.W.; Henderson, Richard, E-mail: rh15@mrc-lmb.cam.ac.uk

    2013-12-15

    Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an

  3. High resolution micro ultrasonic machining for trimming 3D microstructures

    International Nuclear Information System (INIS)

    Viswanath, Anupam; Li, Tao; Gianchandani, Yogesh

    2014-01-01

    This paper reports on the evaluation of a high resolution micro ultrasonic machining (HR-µUSM) process suitable for post fabrication trimming of complex 3D microstructures made from fused silica. Unlike conventional USM, the HR-µUSM process aims for low machining rates, providing high resolution and high surface quality. The machining rate is reduced by keeping the micro-tool tip at a fixed distance from the workpiece and vibrating it at a small amplitude. The surface roughness is improved by an appropriate selection of abrasive particles. Fluidic modeling is performed to study interaction among the vibrating micro-tool tip, workpiece, and the slurry. Using 304 stainless steel (SS304) tool tips of 50 µm diameter, the machining performance of the HR-µUSM process is characterized on flat fused silica substrates. The depths and surface finish of machined features are evaluated as functions of slurry concentrations, separation between the micro-tool and workpiece, and machining time. Under the selected conditions, the HR-µUSM process achieves machining rates as low as 10 nm s −1  averaged over the first minute of machining of a flat virgin sample. This corresponds to a mass removal rate of ≈20 ng min −1 . The average surface roughness, S a , achieved is as low as 30 nm. Analytical and numerical modeling are used to explain the typical profile of the machined features as well as machining rates. The process is used to demonstrate trimming of hemispherical 3D shells made of fused silica. (paper)

  4. High-Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet with Multiple Functional Inks.

    Science.gov (United States)

    An, Byeong Wan; Kim, Kukjoo; Lee, Heejoo; Kim, So-Yun; Shim, Yulhui; Lee, Dae-Young; Song, Jun Yeob; Park, Jang-Ung

    2015-08-05

    Electrohydrodynamic-inkjet-printed high-resolution complex 3D structures with multiple functional inks are demonstrated. Printed 3D structures can have a variety of fine patterns, such as vertical or helix-shaped pillars and straight or rounded walls, with high aspect ratios (greater than ≈50) and narrow diameters (≈0.7 μm). Furthermore, the formation of freestanding, bridge-like Ag wire structures on plastic substrates suggests substantial potentials as high-precision, flexible 3D interconnects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-Resolution Multibeam Sonar Survey and Interactive 3-D Exploration of the D-Day Wrecks off Normandy

    Science.gov (United States)

    Mayer, L. A.; Calder, B.; Schmidt, J. S.

    2003-12-01

    Historically, archaeological investigations use sidescan sonar and marine magnetometers as initial search tools. Targets are then examined through direct observation by divers, video, or photographs. Magnetometers can demonstrate the presence, absence, and relative susceptibility of ferrous objects but provide little indication of the nature of the target. Sidescan sonar can present a clear image of the overall nature of a target and its surrounding environment, but the sidescan image is often distorted and contains little information about the true 3-D shape of the object. Optical techniques allow precise identification of objects but suffer from very limited range, even in the best of situations. Modern high-resolution multibeam sonar offers an opportunity to cover a relatively large area from a safe distance above the target, while resolving the true three-dimensional (3-D) shape of the object with centimeter-level resolution. The combination of 3-D mapping and interactive 3-D visualization techniques provides a powerful new means to explore underwater artifacts. A clear demonstration of the applicability of high-resolution multibeam sonar to wreck and artifact investigations occurred when the Naval Historical Center (NHC), the Center for Coastal and Ocean Mapping (CCOM) at the University of New Hampshire, and Reson Inc., collaborated to explore the state of preservation and impact on the surrounding environment of a series of wrecks located off the coast of Normandy, France, adjacent to the American landing sectors The survey augmented previously collected magnetometer and high-resolution sidescan sonar data using a Reson 8125 high-resolution focused multibeam sonar with 240, 0.5° (at nadir) beams distributed over a 120° swath. The team investigated 21 areas in water depths ranging from about three -to 30 meters (m); some areas contained individual targets such as landing craft, barges, a destroyer, troop carrier, etc., while others contained multiple smaller

  6. Development of a High Resolution 3D Infant Stomach Model for Surgical Planning

    Science.gov (United States)

    Chaudry, Qaiser; Raza, S. Hussain; Lee, Jeonggyu; Xu, Yan; Wulkan, Mark; Wang, May D.

    Medical surgical procedures have not changed much during the past century due to the lack of accurate low-cost workbench for testing any new improvement. The increasingly cheaper and powerful computer technologies have made computer-based surgery planning and training feasible. In our work, we have developed an accurate 3D stomach model, which aims to improve the surgical procedure that treats the infant pediatric and neonatal gastro-esophageal reflux disease (GERD). We generate the 3-D infant stomach model based on in vivo computer tomography (CT) scans of an infant. CT is a widely used clinical imaging modality that is cheap, but with low spatial resolution. To improve the model accuracy, we use the high resolution Visible Human Project (VHP) in model building. Next, we add soft muscle material properties to make the 3D model deformable. Then we use virtual reality techniques such as haptic devices to make the 3D stomach model deform upon touching force. This accurate 3D stomach model provides a workbench for testing new GERD treatment surgical procedures. It has the potential to reduce or eliminate the extensive cost associated with animal testing when improving any surgical procedure, and ultimately, to reduce the risk associated with infant GERD surgery.

  7. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy.

    Science.gov (United States)

    Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R; Murshudov, Garib N; Short, Judith M; Scheres, Sjors H W; Henderson, Richard

    2013-12-01

    Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an

  8. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    International Nuclear Information System (INIS)

    Wirtz, T; Philipp, P; Audinot, J-N; Dowsett, D; Eswara, S

    2015-01-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM). (paper)

  9. Feasibility and evaluation of dual-source transmit 3D imaging of the orbits: Comparison to high-resolution conventional MRI at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Achim, E-mail: achim.seeger@gmx.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Schulze, Maximilian, E-mail: maximilian.schulze@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Schuettauf, Frank, E-mail: fschuettauf@uni-tuebingen.de [University Eye Hospital, Department of Ophthalmology, Eberhard-Karls-University, Schleichstrasse 12, Tübingen 72076 (Germany); Klose, Uwe, E-mail: uwe.klose@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Ernemann, Ulrike, E-mail: ulrike.ernemann@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Hauser, Till-Karsten, E-mail: till-karsten.hauser@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany)

    2015-06-15

    Highlights: • Reduced FOV imaging enables a 3D approach for a very fast assessment of the orbits. • Conventional MRI exhibited higher eSNR values and consecutively higher scores for overall image quality in the subjective readers’ analysis. • All pathologies could be detected compared to high-resolution conventional MRI making 3D pTX SPACE to a potential alternative and fast imaging technique. - Abstract: Purpose: To prospectively compare the image quality and diagnostic performance of orbital MR images obtained by using a dual-source parallel transmission (pTX) 3D sequence (Sampling Perfection with Application optimized Contrasts using different flip angle Evolution, SPACE) with the image quality of conventional high-resolution standard protocol for clinical use in patients at 3T. Materials and methods: After obtaining institutional review board approval and patient consent, 32 patients with clinical indication for orbital MRI were examined using a high-resolution conventional sequences and 3D pTX SPACE sequences. Quantitative measurements, image quality of the healthy orbit, incidence of artifacts, and the subjective diagnostic performance to establish diagnosis was rated. Statistical significance was calculated by using a Student's t-test and nonparametric Wilcoxon signed rank test. Results: Length measurements were comparable in the two techniques, 3D pTX SPACE resulted in significant faster image acquisition with higher spatial resolution and less motion artifacts as well as better delineation of the optic nerve sheath. However, estimated contrast-to-noise and signal-to-noise and overall image quality as well as subjective scores of the conventional TSE imaging were rated significantly higher. The conventional MR sequences were the preferred techniques by the readers. Conclusion: This study demonstrates the feasibility of 3D pTX SPACE of the orbit resulting in a rapid acquisition of isotropic high-resolution images. Although no pathology was

  10. Feasibility of fabricating personalized 3D-printed bone grafts guided by high-resolution imaging

    Science.gov (United States)

    Hong, Abigail L.; Newman, Benjamin T.; Khalid, Arbab; Teter, Olivia M.; Kobe, Elizabeth A.; Shukurova, Malika; Shinde, Rohit; Sipzner, Daniel; Pignolo, Robert J.; Udupa, Jayaram K.; Rajapakse, Chamith S.

    2017-03-01

    Current methods of bone graft treatment for critical size bone defects can give way to several clinical complications such as limited available bone for autografts, non-matching bone structure, lack of strength which can compromise a patient's skeletal system, and sterilization processes that can prevent osteogenesis in the case of allografts. We intend to overcome these disadvantages by generating a patient-specific 3D printed bone graft guided by high-resolution medical imaging. Our synthetic model allows us to customize the graft for the patients' macro- and microstructure and correct any structural deficiencies in the re-meshing process. These 3D-printed models can presumptively serve as the scaffolding for human mesenchymal stem cell (hMSC) engraftment in order to facilitate bone growth. We performed highresolution CT imaging of a cadaveric human proximal femur at 0.030-mm isotropic voxels. We used these images to generate a 3D computer model that mimics bone geometry from micro to macro scale represented by STereoLithography (STL) format. These models were then reformatted to a format that can be interpreted by the 3D printer. To assess how much of the microstructure was replicated, 3D-printed models were re-imaged using micro-CT at 0.025-mm isotropic voxels and compared to original high-resolution CT images used to generate the 3D model in 32 sub-regions. We found a strong correlation between 3D-printed bone volume and volume of bone in the original images used for 3D printing (R2 = 0.97). We expect to further refine our approach with additional testing to create a viable synthetic bone graft with clinical functionality.

  11. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  12. Process development for high-resolution 3D-printing of bioresorbable vascular stents

    Science.gov (United States)

    Ware, Henry Oliver T.; Farsheed, Adam C.; van Lith, Robert; Baker, Evan; Ameer, Guillermo; Sun, Cheng

    2017-02-01

    The recent development of "continuous projection microstereolithography" also known as CLIP technology has successfully alleviated the main obstacles surrounding 3D printing technologies: production speed and part quality. Following the same working principle, we further developed the μCLIP process to address the needs for high-resolution 3D printing of biomedical devices with micron-scale precision. Compared to standard stereolithography (SLA) process, μCLIP fabrication can reduce fabrication time from several hours to as little as a few minutes. μCLIP can also produce better surface finish and more uniform mechanical properties than conventional SLA, as each individual "fabrication layer" continuously polymerizes into the subsequent layer. In this study, we report the process development in manufacturing high-resolution bioresorbable stents using our own μCLIP system. The bioresorbable photopolymerizable biomaterial (B-ink) used in this study is methacrylated poly(1, 12 dodecamethylene citrate) (mPDC). Through optimization of our μCLIP process and concentration of B-ink components, we have created a customizable bioresorbable stent with similar mechanical properties exhibited by nitinol stents. Upon optimization, fabricating a 2 cm tall vascular stent that comprises 4000 layers was accomplished in 26.5 minutes.

  13. Geant4 simulation of a 3D high resolution gamma camera

    International Nuclear Information System (INIS)

    Akhdar, H.; Kezzar, K.; Aksouh, F.; Assemi, N.; AlGhamdi, S.; AlGarawi, M.; Gerl, J.

    2015-01-01

    The aim of this work is to develop a 3D gamma camera with high position resolution and sensitivity relying on both distance/absorption and Compton scattering techniques and without using any passive collimation. The proposed gamma camera is simulated in order to predict its performance using the full benefit of Geant4 features that allow the construction of the needed geometry of the detectors, have full control of the incident gamma particles and study the response of the detector in order to test the suggested geometries. Three different geometries are simulated and each configuration is tested with three different scintillation materials (LaBr3, LYSO and CeBr3)

  14. On the limitations and optimisation of high-resolution 3D medical X-ray imaging systems

    International Nuclear Information System (INIS)

    Zhou Shuang; Brahme, Anders

    2011-01-01

    Based on a quantitative analysis of both attenuation and refractive properties of X-ray propagation in human body tissues and the introduction of a mathematical model for image quality analysis, some limitations and optimisation of high-resolution three-dimensional (3D) medical X-ray imaging techniques are studied. A comparison is made of conventional attenuation-based X-ray imaging methods with the phase-contrast X-ray imaging modalities that have been developed recently. The results indicate that it is theoretically possible through optimal design of the X-ray imaging system to achieve high spatial resolution (<100 μm) in 3D medical X-ray imaging of the human body at a clinically acceptable dose level (<10 mGy) by introducing a phase-contrast X-ray imaging technique.

  15. 3D high-resolution radar imaging of small body interiors

    Science.gov (United States)

    Sava, Paul; Asphaug, Erik

    2017-10-01

    Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their interior structure in detail and at high resolution (Asphaug, 2009). We often infer internal structure from surface observations, e.g. that comet 67P/Churyumov-Gerasimenko is a primordial agglomeration of cometesimals (Massironi et al., 2015). However, the interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data, as suggested by the CONSERT experiment on Rosetta. Interior imaging depends on observations from multiple viewpoints, as in medical tomography.We discuss radar imaging using methodology adapted from terrestrial exploration seismology (Sava et al., 2015). We primarily focus on full wavefield methods that facilitate high quality imaging of small body interiors characterized by complex structure and large contrasts of physical properties. We consider the case of a monostatic system (co-located transmitters and receivers) operated at two frequency bands, centered around 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Assuming that the spin period is significantly (e.g. 5x) faster than the orbital period, this configuration allows repeated views from multiple directions (Safaeinili et al., 2002)Using realistic numerical experiments, we argue that (1) the comet/asteroid imaging problem is intrinsically 3D and conventional SAR methodology does not satisfy imaging, sampling and resolution requirements; (2) imaging at different frequency bands can provide information about internal surfaces (through migration) and internal volumes (through tomography); (3) interior imaging can be accomplished progressively as data are being acquired through successive orbits around the studied object; (4) imaging resolution can go beyond the apparent radar frequency band by deconvolution of the point-spread-function characterizing the imaging system; and (5

  16. 3D high- and super-resolution imaging using single-objective SPIM.

    Science.gov (United States)

    Galland, Remi; Grenci, Gianluca; Aravind, Ajay; Viasnoff, Virgile; Studer, Vincent; Sibarita, Jean-Baptiste

    2015-07-01

    Single-objective selective-plane illumination microscopy (soSPIM) is achieved with micromirrored cavities combined with a laser beam-steering unit installed on a standard inverted microscope. The illumination and detection are done through the same objective. soSPIM can be used with standard sample preparations and features high background rejection and efficient photon collection, allowing for 3D single-molecule-based super-resolution imaging of whole cells or cell aggregates. Using larger mirrors enabled us to broaden the capabilities of our system to image Drosophila embryos.

  17. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    International Nuclear Information System (INIS)

    Foxley, Sean; Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-01-01

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T 2 * -weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T 2 * and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm 3 and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T 2 * -weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not

  18. Analyzing 3D xylem networks in Vitis vinifera using High Resolution Computed Tomography (HRCT)

    Science.gov (United States)

    Recent developments in High Resolution Computed Tomography (HRCT) have made it possible to visualize three dimensional (3D) xylem networks without time consuming, labor intensive physical sectioning. Here we describe a new method to visualize complex vessel networks in plants and produce a quantitat...

  19. Evaluation of prospective motion correction of high-resolution 3D-T2-FLAIR acquisitions in epilepsy patients.

    Science.gov (United States)

    Vos, Sjoerd B; Micallef, Caroline; Barkhof, Frederik; Hill, Andrea; Winston, Gavin P; Ourselin, Sebastien; Duncan, John S

    2018-03-02

    T2-FLAIR is the single most sensitive MRI contrast to detect lesions underlying focal epilepsies but 3D sequences used to obtain isotropic high-resolution images are susceptible to motion artefacts. Prospective motion correction (PMC) - demonstrated to improve 3D-T1 image quality in a pediatric population - was applied to high-resolution 3D-T2-FLAIR scans in adult epilepsy patients to evaluate its clinical benefit. Coronal 3D-T2-FLAIR scans were acquired with a 1mm isotropic resolution on a 3T MRI scanner. Two expert neuroradiologists reviewed 40 scans without PMC and 40 with navigator-based PMC. Visual assessment addressed six criteria of image quality (resolution, SNR, WM-GM contrast, intensity homogeneity, lesion conspicuity, diagnostic confidence) on a seven-point Likert scale (from non-diagnostic to outstanding). SNR was also objectively quantified within the white matter. PMC scans had near-identical scores on the criteria of image quality to non-PMC scans, with the notable exception that intensity homogeneity was generally worse. Using PMC, the percentage of scans with bad image quality was substantially lower than without PMC (3.25% vs. 12.5%) on the other five criteria. Quantitative SNR estimates revealed that PMC and non-PMC had no significant difference in SNR (P=0.07). Application of prospective motion correction to 3D-T2-FLAIR sequences decreased the percentage of low-quality scans, reducing the number of scans that need to be repeated to obtain clinically useful data. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  20. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  1. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  2. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  3. Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Hovden, Robert, E-mail: rmh244@cornell.edu [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States); Ercius, Peter [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Jiang, Yi [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Wang, Deli; Yu, Yingchao; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (United States); Elser, Veit [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Muller, David A. [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States)

    2014-05-01

    To date, high-resolution (<1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (>6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. - Highlights: • Develop tomography technique for high-resolution and large field of view. • We combine depth sectioning with traditional tilt tomography. • Through-focal tomography reduces tilts and improves resolution. • Through-focal tomography overcomes the fundamental Crowther limit. • Aberration-corrected becomes a benefit and not a hindrance for tomography.

  4. Markerless 3D Head Tracking for Motion Correction in High Resolution PET Brain Imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter

    relying on markers. Data-driven motion correction is problematic due to the physiological dynamics. Marker-based tracking is potentially unreliable, and it is extremely hard to validate when the tracking information is correct. The motion estimation is essential for proper motion correction of the PET......This thesis concerns application specific 3D head tracking. The purpose is to improve motion correction in position emission tomography (PET) brain imaging through development of markerless tracking. Currently, motion correction strategies are based on either the PET data itself or tracking devices...... images. Incorrect motion correction can in the worst cases result in wrong diagnosis or treatment. The evolution of a markerless custom-made structured light 3D surface tracking system is presented. The system is targeted at state-of-the-art high resolution dedicated brain PET scanners with a resolution...

  5. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.

    Science.gov (United States)

    Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi

    2018-04-12

    Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.

  6. High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography

    Science.gov (United States)

    Zikmund, T.; Novotná, M.; Kavková, M.; Tesařová, M.; Kaucká, M.; Szarowská, B.; Adameyko, I.; Hrubá, E.; Buchtová, M.; Dražanová, E.; Starčuk, Z.; Kaiser, J.

    2018-02-01

    The biomedically focused brain research is largely performed on laboratory mice considering a high homology between the human and mouse genomes. A brain has an intricate and highly complex geometrical structure that is hard to display and analyse using only 2D methods. Applying some fast and efficient methods of brain visualization in 3D will be crucial for the neurobiology in the future. A post-mortem analysis of experimental animals' brains usually involves techniques such as magnetic resonance and computed tomography. These techniques are employed to visualize abnormalities in the brains' morphology or reparation processes. The X-ray computed microtomography (micro CT) plays an important role in the 3D imaging of internal structures of a large variety of soft and hard tissues. This non-destructive technique is applied in biological studies because the lab-based CT devices enable to obtain a several-micrometer resolution. However, this technique is always used along with some visualization methods, which are based on the tissue staining and thus differentiate soft tissues in biological samples. Here, a modified chemical contrasting protocol of tissues for a micro CT usage is introduced as the best tool for ex vivo 3D imaging of a post-mortem mouse brain. This way, the micro CT provides a high spatial resolution of the brain microscopic anatomy together with a high tissue differentiation contrast enabling to identify more anatomical details in the brain. As the micro CT allows a consequent reconstruction of the brain structures into a coherent 3D model, some small morphological changes can be given into context of their mutual spatial relationships.

  7. A low-cost microwell device for high-resolution imaging of neurite outgrowth in 3D

    Science.gov (United States)

    Ren, Yuan; Mlodzianoski, Michael J.; Cheun Lee, Aih; Huang, Fang; Suter, Daniel M.

    2018-06-01

    Objective. Current neuronal cell culture is mostly performed on two-dimensional (2D) surfaces, which lack many of the important features of the native environment of neurons, including topographical cues, deformable extracellular matrix, and spatial isotropy or anisotropy in three dimensions. Although three-dimensional (3D) cell culture systems provide a more physiologically relevant environment than 2D systems, their popularity is greatly hampered by the lack of easy-to-make-and-use devices. We aim to develop a widely applicable 3D culture procedure to facilitate the transition of neuronal cultures from 2D to 3D. Approach. We made a simple microwell device for 3D neuronal cell culture that is inexpensive, easy to assemble, and fully compatible with commonly used imaging techniques, including super-resolution microscopy. Main results. We developed a novel gel mixture to support 3D neurite regeneration of Aplysia bag cell neurons, a system that has been extensively used for quantitative analysis of growth cone dynamics in 2D. We found that the morphology and growth pattern of bag cell growth cones in 3D culture closely resemble the ones of growth cones observed in vivo. We demonstrated the capability of our device for high-resolution imaging of cytoskeletal and signaling proteins as well as organelles. Significance. Neuronal cell culture has been a valuable tool for neuroscientists to study the behavior of neurons in a controlled environment. Compared to 2D, neurons cultured in 3D retain the majority of their native characteristics, while offering higher accessibility, control, and repeatability. We expect that our microwell device will facilitate a wider adoption of 3D neuronal cultures to study the mechanisms of neurite regeneration.

  8. High-resolution 3D-GRE imaging of the abdomen using controlled aliasing acceleration technique - a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    AlObaidy, Mamdoh; Ramalho, Miguel; Busireddy, Kiran K.R.; Liu, Baodong; Burke, Lauren M.; Altun, Ersan; Semelka, Richard C. [University of North Carolina at Chapel Hill, Department of Radiology, Chapel Hill, NC (United States); Dale, Brian M. [Siemens Medical Solutions, MR Research and Development, Morrisville, NC (United States)

    2015-12-15

    To assess the feasibility of high-resolution 3D-gradient-recalled echo (GRE) fat-suppressed T1-weighted images using controlled aliasing acceleration technique (CAIPIRINHA-VIBE), and compare image quality and lesion detection to standard-resolution 3D-GRE images using conventional acceleration technique (GRAPPA-VIBE). Eighty-four patients (41 males, 43 females; age range: 14-90 years, 58.8 ± 15.6 years) underwent abdominal MRI at 1.5 T with CAIPIRINHA-VIBE [spatial resolution, 0.76 ± 0.04 mm] and GRAPPA-VIBE [spatial resolution, 1.17 ± 0.14 mm]. Two readers independently reviewed image quality, presence of artefacts, lesion conspicuity, and lesion detection. Kappa statistic was used to assess interobserver agreement. Wilcoxon signed-rank test was used for image qualitative pairwise comparisons. Logistic regression with post-hoc testing was used to evaluate statistical significance of lesions evaluation. Interobserver agreement ranged between 0.45-0.93. Pre-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and lesion conspicuity with decreased residual aliasing, but more noise enhancement and inferior image quality. Post-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and higher lesion conspicuity, with less respiratory motion and residual aliasing artefacts. Inferior fat-suppression was noticeable on CAIPIRINHA-VIBE sequences (p < 0.001). High in-plane resolution abdominal 3D-GRE fat-suppressed T1-weighted imaging using controlled-aliasing acceleration technique is feasible and yields sharper images compared to standard-resolution images using standard acceleration, with higher post-contrast image quality and trend for improved hepatic lesions detection. (orig.)

  9. High-resolution 3D-GRE imaging of the abdomen using controlled aliasing acceleration technique - a feasibility study

    International Nuclear Information System (INIS)

    AlObaidy, Mamdoh; Ramalho, Miguel; Busireddy, Kiran K.R.; Liu, Baodong; Burke, Lauren M.; Altun, Ersan; Semelka, Richard C.; Dale, Brian M.

    2015-01-01

    To assess the feasibility of high-resolution 3D-gradient-recalled echo (GRE) fat-suppressed T1-weighted images using controlled aliasing acceleration technique (CAIPIRINHA-VIBE), and compare image quality and lesion detection to standard-resolution 3D-GRE images using conventional acceleration technique (GRAPPA-VIBE). Eighty-four patients (41 males, 43 females; age range: 14-90 years, 58.8 ± 15.6 years) underwent abdominal MRI at 1.5 T with CAIPIRINHA-VIBE [spatial resolution, 0.76 ± 0.04 mm] and GRAPPA-VIBE [spatial resolution, 1.17 ± 0.14 mm]. Two readers independently reviewed image quality, presence of artefacts, lesion conspicuity, and lesion detection. Kappa statistic was used to assess interobserver agreement. Wilcoxon signed-rank test was used for image qualitative pairwise comparisons. Logistic regression with post-hoc testing was used to evaluate statistical significance of lesions evaluation. Interobserver agreement ranged between 0.45-0.93. Pre-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and lesion conspicuity with decreased residual aliasing, but more noise enhancement and inferior image quality. Post-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and higher lesion conspicuity, with less respiratory motion and residual aliasing artefacts. Inferior fat-suppression was noticeable on CAIPIRINHA-VIBE sequences (p < 0.001). High in-plane resolution abdominal 3D-GRE fat-suppressed T1-weighted imaging using controlled-aliasing acceleration technique is feasible and yields sharper images compared to standard-resolution images using standard acceleration, with higher post-contrast image quality and trend for improved hepatic lesions detection. (orig.)

  10. High-Resolution Urban Greenery Mapping for Micro-Climate Modelling Based on 3d City Models

    Science.gov (United States)

    Hofierka, J.; Gallay, M.; Kaňuk, J.; Šupinský, J.; Šašak, J.

    2017-10-01

    Urban greenery has various positive micro-climate effects including mitigation of heat islands. The primary root of heat islands in cities is in absorption of solar radiation by the mass of building structures, roads and other solid materials. The absorbed heat is subsequently re-radiated into the surroundings and increases ambient temperatures. The vegetation can stop and absorb most of incoming solar radiation mostly via the photosynthesis and evapotranspiration process. However, vegetation in mild climate of Europe manifests considerable annual seasonality which can also contribute to the seasonal change in the cooling effect of the vegetation on the urban climate. Modern methods of high-resolution mapping and new generations of sensors have brought opportunity to record the dynamics of urban greenery in a high resolution in spatial, spectral, and temporal domains. In this paper, we use the case study of the city of Košice in Eastern Slovakia to demonstrate the methodology of 3D mapping and modelling the urban greenery during one vegetation season in 2016. The purpose of this monitoring is to capture 3D effects of urban greenery on spatial distribution of solar radiation in urban environment. Terrestrial laser scanning was conducted on four selected sites within Košice in ultra-high spatial resolution. The entire study area, which included these four smaller sites, comprised 4 km2 of the central part of the city was flown within a single airborne lidar and photogrammetric mission to capture the upper parts of buildings and vegetation. The acquired airborne data were used to generate a 3D city model and the time series of terrestrial lidar data were integrated with the 3D city model. The results show that the terrestrial and airborne laser scanning techniques can be effectively used to monitor seasonal changes in foliage of trees in order to assess the transmissivity of the canopy for microclimate modelling.

  11. An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing

    Science.gov (United States)

    Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng

    2018-02-01

    De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.

  12. SEM-microphotogrammetry, a new take on an old method for generating high-resolution 3D models from SEM images.

    Science.gov (United States)

    Ball, A D; Job, P A; Walker, A E L

    2017-08-01

    The method we present here uses a scanning electron microscope programmed via macros to automatically capture dozens of images at suitable angles to generate accurate, detailed three-dimensional (3D) surface models with micron-scale resolution. We demonstrate that it is possible to use these Scanning Electron Microscope (SEM) images in conjunction with commercially available software originally developed for photogrammetry reconstructions from Digital Single Lens Reflex (DSLR) cameras and to reconstruct 3D models of the specimen. These 3D models can then be exported as polygon meshes and eventually 3D printed. This technique offers the potential to obtain data suitable to reconstruct very tiny features (e.g. diatoms, butterfly scales and mineral fabrics) at nanometre resolution. Ultimately, we foresee this as being a useful tool for better understanding spatial relationships at very high resolution. However, our motivation is also to use it to produce 3D models to be used in public outreach events and exhibitions, especially for the blind or partially sighted. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  13. High resolution 3D gas-jet characterization

    International Nuclear Information System (INIS)

    Landgraf, Bjoern; Kaluza, Malte C.; Spielmann, Christian; Schnell, Michael; Saevert, Alexander

    2011-01-01

    We present a tomographic characterization of gas jets employed for high-intensity laser-plasma interaction experiments where the shape can be non-symmetrically. With a Mach-Zehnder interferometer we measured the phase shift for different directions through the neutral density distribution of the gas jet. From the recorded interferograms it is possible to retrieve 3-dimensional neutral density distributions by tomographic reconstruction based on the filtered back projections. We report on criteria for the smallest number of recorded interferograms as well as a comparison with the widely used phase retrieval based on an Abel inversion. As an example for the performance of our approach, we present the characterization of nozzles with rectangular openings or gas jets with shock waves. With our setup we obtained a spatial resolution of less than 60 μm for an Argon density as low as 2 x 10 17 cm -3 .

  14. Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses

    Directory of Open Access Journals (Sweden)

    Ariel E. Marcy

    2018-06-01

    Full Text Available Background Advances in 3D shape capture technology have made powerful shape analyses, such as geometric morphometrics, more feasible. While the highly accurate micro-computed tomography (µCT scanners have been the “gold standard,” recent improvements in 3D surface scanners may make this technology a faster, portable, and cost-effective alternative. Several studies have already compared the two devices but all use relatively large specimens such as human crania. Here we perform shape analyses on Australia’s smallest rodent to test whether a 3D scanner produces similar results to a µCT scanner. Methods We captured 19 delicate mouse (Pseudomys delicatulus crania with a µCT scanner and a 3D scanner for geometric morphometrics. We ran multiple Procrustes ANOVAs to test how variation due to scan device compared to other sources such as biologically relevant variation and operator error. We quantified operator error as levels of variation and repeatability. Further, we tested if the two devices performed differently at classifying individuals based on sexual dimorphism. Finally, we inspected scatterplots of principal component analysis (PCA scores for non-random patterns. Results In all Procrustes ANOVAs, regardless of factors included, differences between individuals contributed the most to total variation. The PCA plots reflect this in how the individuals are dispersed. Including only the symmetric component of shape increased the biological signal relative to variation due to device and due to error. 3D scans showed a higher level of operator error as evidenced by a greater spread of their replicates on the PCA, a higher level of multivariate variation, and a lower repeatability score. However, the 3D scan and µCT scan datasets performed identically in classifying individuals based on intra-specific patterns of sexual dimorphism. Discussion Compared to µCT scans, we find that even low resolution 3D scans of very small specimens are

  15. MR imaging of cranial nerve lesions using six different high-resolution T1- and T2(*)-weighted 3D and 2D sequences

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, J.; Held, P.; Strotzer, M.; Voelk, M.; Nitz, W.R.; Dorenbeck, U.; Feuerbach, S. [Univ. Hospital of Regensburg (Germany). Dept. of Diagnostic Radiology; Stamato, S. [Univ. of California, San Diego, CA (United States). Dept. of Radiology

    2002-07-01

    Purpose: To find a suitable high-resolution MR protocol for the visualization of lesions of all 12 cranial nerves. Material and Methods: Thirty-eight pathologically changed cranial nerves (17 patients) were studied with MR imaging at 1.5T using 3D T2*-weighted CISS, T1-weighted 3D MP-RAGE (without and with i.v. contrast medium), T2-weighted 3D TSE, T2-weighted 2D TSE and T1-weighted fat saturation 2D TSE sequences. Visibility of the 38 lesions of the 12 cranial nerves in each sequence was evaluated by consensus of two radiologists using an evaluation scale from 1 (excellently visible) to 4 (not visible). Results: The 3D CISS sequence provided the best resolution of the cranial nerves and their lesions when surrounded by CSF. In nerves which were not surrounded by CSF, the 2D T1-weighted contrast-enhanced fat suppression technique was the best sequence. Conclusions: A combination of 3D CISS, the 2D T1-weighted fat suppressed sequence and a 3D contrast-enhanced MP-RAGE proved to be the most useful sequence to visualize all lesions of the cranial nerves. For the determination of enhancement, an additional 3D MP-RAGE sequence without contrast medium is required. This sequence is also very sensitive for the detection of hemorrhage.

  16. MR imaging of cranial nerve lesions using six different high-resolution T1- and T2(*)-weighted 3D and 2D sequences

    International Nuclear Information System (INIS)

    Seitz, J.; Held, P.; Strotzer, M.; Voelk, M.; Nitz, W.R.; Dorenbeck, U.; Feuerbach, S.; Stamato, S.

    2002-01-01

    Purpose: To find a suitable high-resolution MR protocol for the visualization of lesions of all 12 cranial nerves. Material and Methods: Thirty-eight pathologically changed cranial nerves (17 patients) were studied with MR imaging at 1.5T using 3D T2*-weighted CISS, T1-weighted 3D MP-RAGE (without and with i.v. contrast medium), T2-weighted 3D TSE, T2-weighted 2D TSE and T1-weighted fat saturation 2D TSE sequences. Visibility of the 38 lesions of the 12 cranial nerves in each sequence was evaluated by consensus of two radiologists using an evaluation scale from 1 (excellently visible) to 4 (not visible). Results: The 3D CISS sequence provided the best resolution of the cranial nerves and their lesions when surrounded by CSF. In nerves which were not surrounded by CSF, the 2D T1-weighted contrast-enhanced fat suppression technique was the best sequence. Conclusions: A combination of 3D CISS, the 2D T1-weighted fat suppressed sequence and a 3D contrast-enhanced MP-RAGE proved to be the most useful sequence to visualize all lesions of the cranial nerves. For the determination of enhancement, an additional 3D MP-RAGE sequence without contrast medium is required. This sequence is also very sensitive for the detection of hemorrhage

  17. ) A Feasibility Study for High Resolution 3D Seismic In The Deep Offshore Nigeria

    International Nuclear Information System (INIS)

    Enuma, C.; Hope, R.; Mila, F.; Maurel, L.

    2003-01-01

    The conventional Exploration 3D seismic in the Deep Offshore Nigeria is typically acquired with 4000m-6000m cable length at 6-8 depth and with flip-flop shooting, providing a shot point interval of 50m. the average resulting frequency content is typically between 10-60hz which is adequate for exploration interpretation. It has become common in the last few years. E.g. in Angola and the Gulf of Mexico, to re-acquire High Resolution 3D seismic, after a discovery, to improve definition of turbidite systems and accuracy of reservoir geometry for optimized delineation drilling. This feasibility study which was carried out in three different steps was due to the question on whether HR-Seismic should be acquired over TotalFinaElf AKPO discovery for optimized delineation drilling

  18. On the feasibility of comprehensive high-resolution 3D remote dosimetry

    International Nuclear Information System (INIS)

    Juang, Titania; Grant, Ryan; Adamovics, John; Ibbott, Geoffrey; Oldham, Mark

    2014-01-01

    Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE®/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE® (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2. Four unirradiated PRESAGE® dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.5–9.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field “cross” arrangement of 4 × 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE® formulations for remote dosimetry. Results: The best agreements between the

  19. Spatial resolution of the HRRT PET scanner using 3D-OSEM PSF reconstruction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sibomana, Merence; Keller, Sune Høgild

    2009-01-01

    The spatial resolution of the Siemens High Resolution Research Tomograph (HRRT) dedicated brain PET scanner installed at Copenhagen University Hospital (Rigshospitalet) was measured using a point-source phantom with high statistics. Further, it was demonstrated how the newly developed 3D-OSEM PSF...

  20. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics.

    Science.gov (United States)

    Yoshino, Masanori; Saito, Toki; Kin, Taichi; Nakagawa, Daichi; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications.

  1. WE-F-16A-04: Micro-Irradiator Treatment Verification with High-Resolution 3D-Printed Rodent-Morphic Dosimeters

    International Nuclear Information System (INIS)

    Bache, S; Belley, M; Benning, R; Adamovics, J; Stanton, I; Therien, M; Yoshizumi, T; Oldham, M

    2014-01-01

    Purpose: Pre-clinical micro-radiation therapy studies often utilize very small beams (∼0.5-5mm), and require accurate dose delivery in order to effectively investigate treatment efficacy. Here we present a novel high-resolution absolute 3D dosimetry procedure, capable of ∼100-micron isotopic dosimetry in anatomically accurate rodent-morphic phantoms Methods: Anatomically accurate rat-shaped 3D dosimeters were made using 3D printing techniques from outer body contours and spinal contours outlined on CT. The dosimeters were made from a radiochromic plastic material PRESAGE, and incorporated high-Z PRESASGE inserts mimicking the spine. A simulated 180-degree spinal arc treatment was delivered through a 2 step process: (i) cone-beam-CT image-guided positioning was performed to precisely position the rat-dosimeter for treatment on the XRad225 small animal irradiator, then (ii) treatment was delivered with a simulated spine-treatment with a 180-degree arc with 20mm x 10mm cone at 225 kVp. Dose distribution was determined from the optical density change using a high-resolution in-house optical-CT system. Absolute dosimetry was enabled through calibration against a novel nano-particle scintillation detector positioned in a channel in the center of the distribution. Results: Sufficient contrast between regular PRESAGE (tissue equivalent) and high-Z PRESAGE (spinal insert) was observed to enable highly accurate image-guided alignment and targeting. The PRESAGE was found to have linear optical density (OD) change sensitivity with respect to dose (R 2 = 0.9993). Absolute dose for 360-second irradiation at isocenter was found to be 9.21Gy when measured with OD change, and 9.4Gy with nano-particle detector- an agreement within 2%. The 3D dose distribution was measured at 500-micron resolution Conclusion: This work demonstrates for the first time, the feasibility of accurate absolute 3D dose measurement in anatomically accurate rat phantoms containing variable density PRESAGE

  2. Feasibility analysis of high resolution tissue image registration using 3-D synthetic data

    Directory of Open Access Journals (Sweden)

    Yachna Sharma

    2011-01-01

    Full Text Available Background: Registration of high-resolution tissue images is a critical step in the 3D analysis of protein expression. Because the distance between images (~4-5μm thickness of a tissue section is nearly the size of the objects of interest (~10-20μm cancer cell nucleus, a given object is often not present in both of two adjacent images. Without consistent correspondence of objects between images, registration becomes a difficult task. This work assesses the feasibility of current registration techniques for such images. Methods: We generated high resolution synthetic 3-D image data sets emulating the constraints in real data. We applied multiple registration methods to the synthetic image data sets and assessed the registration performance of three techniques (i.e., mutual information (MI, kernel density estimate (KDE method [1], and principal component analysis (PCA at various slice thicknesses (with increments of 1μm in order to quantify the limitations of each method. Results: Our analysis shows that PCA, when combined with the KDE method based on nuclei centers, aligns images corresponding to 5μm thick sections with acceptable accuracy. We also note that registration error increases rapidly with increasing distance between images, and that the choice of feature points which are conserved between slices improves performance. Conclusions: We used simulation to help select appropriate features and methods for image registration by estimating best-case-scenario errors for given data constraints in histological images. The results of this study suggest that much of the difficulty of stained tissue registration can be reduced to the problem of accurately identifying feature points, such as the center of nuclei.

  3. High-resolution direct 3D printed PLGA scaffolds: print and shrink

    International Nuclear Information System (INIS)

    Chia, Helena N; Wu, Benjamin M

    2015-01-01

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds. (paper)

  4. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2014-12-17

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.

  5. A 3D high-resolution gamma camera for radiopharmaceutical studies with small animals

    CERN Document Server

    Loudos, G K; Giokaris, N D; Styliaris, E; Archimandritis, S C; Varvarigou, A D; Papanicolas, C N; Majewski, S; Weisenberger, D; Pani, R; Scopinaro, F; Uzunoglu, N K; Maintas, D; Stefanis, K

    2003-01-01

    The results of studies conducted with a small field of view tomographic gamma camera based on a Position Sensitive Photomultiplier Tube are reported. The system has been used for the evaluation of radiopharmaceuticals in small animals. Phantom studies have shown a spatial resolution of 2 mm in planar and 2-3 mm in tomographic imaging. Imaging studies in mice have been carried out both in 2D and 3D. Conventional radiopharmaceuticals have been used and the results have been compared with images from a clinically used system.

  6. Reservoir core porosity in the Resende formation using 3D high-resolution X-ray computed microtomography

    International Nuclear Information System (INIS)

    Oliveira, Milena F.S.; Lima, Inaya; Lopes, Ricardo T.; Rocha, Paula Lucia F. da

    2009-01-01

    The storage capacity and production of oil are influenced, among other things, by rocks and fluids characteristics. Porosity is one of the most important characteristics to be analyzed in oil industry, mainly in oil prospection because it represents the direct capacity of storage fluids in the rocks. By definition, porosity is the ratio of pore volume to the total bulk volume of the formation, expressed in percentage, being able to be absolute or effective. The aim of this study was to calculate porosity by 3D High-Resolution X-ray Computed Microtomography using core plugs from Resende Formation which were collected in Porto Real, Rio de Janeiro State. This formation is characterized by sandstones and fine conglomerates with associated fine siliciclastic sediments, and the paleoenviroment is interpreted as a braided fluvial system. For acquisitions data, it was used a 3D high resolution microtomography system which has a microfocus X-ray tube (spot size < 5μm) and a 12-bit cooled X-ray camera (CCD fiber-optically coupled to a scintillator) operated at 100 kV and 100 μA. Twenty-two samples taken at different depths from two boreholes were analyzed. A total of 961 slices were performed with a resolution of 14.9 μm. The results demonstrated that μ-CT is a reliable and effective technique. Through the images and data it was possible to quantify the porosity and to view the size and shape of porous. (author)

  7. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    Energy Technology Data Exchange (ETDEWEB)

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of

  8. Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions

    International Nuclear Information System (INIS)

    Hovden, Robert; Ercius, Peter; Jiang, Yi; Wang, Deli; Yu, Yingchao; Abruña, Héctor D.; Elser, Veit; Muller, David A.

    2014-01-01

    To date, high-resolution ( 6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. - Highlights: • Develop tomography technique for high-resolution and large field of view. • We combine depth sectioning with traditional tilt tomography. • Through-focal tomography reduces tilts and improves resolution. • Through-focal tomography overcomes the fundamental Crowther limit. • Aberration-corrected becomes a benefit and not a hindrance for tomography

  9. Non Invasive 3D Characterization of Materials at Multi scale Resolution in Correlative and 4D microscopy

    International Nuclear Information System (INIS)

    Lau, S.H.

    2011-01-01

    We describe a suite of novel lab-based X-ray computed tomography (CT) systems for high contrast 3D characterization of hard to soft materials with resolution across length scales. The system has similar resolution and contrast range obtained from x-ray micro and nano tomography systems in synchrotron radiation facilities, except it makes use of conventional lab sources. Samples with dimensions from several cm to several microns may be imaged non invasively at varying resolution from tens of microns to 20 nm voxel. The novel multi scale CT helps bridge the resolution, scaling and 3D visualization gap in the traditional destructive 2D imaging modalities such as optical microscopes, AFM, SEM, SEM-FIB and TEM. It provides a direct non-invasive volumetric imaging technique at the macro to nano scale, making it ideal for accurate prediction and modeling of whole systems and components. For example, using 3D visualization, segmentation and computational analysis tools, pore networks, FEA, fluid, thermal and ionic transport in various systems and materials from ceramics, geo materials, composites, metals, and coatings may be characterized and modeled. The high resolution and unique phase contrast features of the novel CTs also lend themselves very well to characterize inherently low contrast soft materials such as polymers; membranes and biological tissue or to differentiate small differences in material and mineral phases in geo material and composites. Tomography of samples may be acquired at different volume vs resolution using local tomography technique, often without sample destruction. In the emerging field of 3D correlative microscopy, these larger CT volumetric data sets can be correlated at the different length scales with conventional 2D imaging modalities. For example, after a CT scan, specimen may undergo destructive sample sectioning at specific region of interest, to obtain the corresponding 2D slices with SEM and TEM or with X-ray microanalysis derive its

  10. High spatial resolution 3D MR cholangiography with high sampling efficiency technique (SPACE): Comparison of 3 T vs. 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Arizono, Shigeki [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: arizono@kuhp.kyoto-u.ac.jp; Isoda, Hiroyoshi [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: sayuki@kuhp.kyoto-u.ac.jp; Maetani, Yoji S. [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: mbo@kuhp.kyoto-u.ac.jp; Hirokawa, Yuusuke [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: yuusuke@kuhp.kyoto-u.ac.jp; Shimada, Kotaro [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: kotaro@kuhp.kyoto-u.ac.jp; Nakamoto, Yuji [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: ynakamo1@kuhp.kyoto-u.ac.jp; Shibata, Toshiya [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: ksj@kuhp.kyoto-u.ac.jp; Togashi, Kaori [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: ktogashi@kuhp.kyoto-u.ac.jp

    2010-01-15

    Purpose: The aim of this study was to evaluate image quality of 3D MR cholangiography (MRC) using high sampling efficiency technique (SPACE) at 3 T compared with 1.5 T. Methods and materials: An IRB approved prospective study was performed with 17 healthy volunteers using both 3 and 1.5 T MR scanners. MRC images were obtained with free-breathing navigator-triggered 3D T2-weighted turbo spin-echo sequence with SPACE (TR, >2700 ms; TE, 780 ms at 3 T and 801 ms at 1.5 T; echo-train length, 121; voxel size, 1.1 mm x 1.0 mm x 0.84 mm). The common bile duct (CBD) to liver contrast-to-noise ratios (CNRs) were compared between 3 and 1.5 T. A five-point scale was used to compare overall image quality and visualization of the third branches of bile duct (B2, B6, and B8). The depiction of cystic duct insertion and the highest order of bile duct visible were also compared. The results were compared using the Wilcoxon signed-ranks test. Results: CNR between the CBD and liver was significantly higher at 3 T than 1.5 T (p = 0.0006). MRC at 3 T showed a significantly higher overall image quality (p = 0.0215) and clearer visualization of B2 (p = 0.0183) and B6 (p = 0.0106) than at 1.5 T. In all analyses of duct visibility, 3 T showed higher scores than 1.5 T. Conclusion: 3 T MRC using SPACE offered better image quality than 1.5 T. SPACE technique facilitated high-resolution 3D MRC with excellent image quality at 3 T.

  11. High-Resolution 3T MR Imaging of the Triangular Fibrocartilage Complex.

    Science.gov (United States)

    von Borstel, Donald; Wang, Michael; Small, Kirstin; Nozaki, Taiki; Yoshioka, Hiroshi

    2017-01-10

    This study is intended as a review of 3Tesla (T) magnetic resonance (MR) imaging of the triangular fibrocartilage complex (TFCC). The recent advances in MR imaging, which includes high field strength magnets, multi-channel coils, and isotropic 3-dimensional (3D) sequences have enabled the visualization of precise TFCC anatomy with high spatial and contrast resolution. In addition to the routine wrist protocol, there are specific techniques used to optimize 3T imaging of the wrist; including driven equilibrium sequence (DRIVE), parallel imaging, and 3D imaging. The coil choice for 3T imaging of the wrist depends on a number of variables, and the proper coil design selection is critical for high-resolution wrist imaging with high signal and contrast-to-noise ratio. The TFCC is a complex structure and is composed of the articular disc (disc proper), the triangular ligament, the dorsal and volar radioulnar ligaments, the meniscus homologue, the ulnar collateral ligament (UCL), the extensor carpi ulnaris (ECU) tendon sheath, and the ulnolunate and ulnotriquetral ligaments. The Palmer classification categorizes TFCC lesions as traumatic (type 1) or degenerative (type 2). In this review article, we present clinical high-resolution MR images of normal TFCC anatomy and TFCC injuries with this classification system.

  12. Extraction of Features from High-resolution 3D LiDaR Point-cloud Data

    Science.gov (United States)

    Keller, P.; Kreylos, O.; Hamann, B.; Kellogg, L. H.; Cowgill, E. S.; Yikilmaz, M. B.; Hering-Bertram, M.; Hagen, H.

    2008-12-01

    Airborne and tripod-based LiDaR scans are capable of producing new insight into geologic features by providing high-quality 3D measurements of the landscape. High-resolution LiDaR is a promising method for studying slip on faults, erosion, and other landscape-altering processes. LiDaR scans can produce up to several billion individual point returns associated with the reflection of a laser from natural and engineered surfaces; these point clouds are typically used to derive a high-resolution digital elevation model (DEM). Currently, there exist only few methods that can support the analysis of the data at full resolution and in the natural 3D perspective in which it was collected by working directly with the points. We are developing new algorithms for extracting features from LiDaR scans, and present method for determining the local curvature of a LiDaR data set, working directly with the individual point returns of a scan. Computing the curvature enables us to rapidly and automatically identify key features such as ridge-lines, stream beds, and edges of terraces. We fit polynomial surface patches via a moving least squares (MLS) approach to local point neighborhoods, determining curvature values for each point. The size of the local point neighborhood is defined by a user. Since both terrestrial and airborne LiDaR scans suffer from high noise, we apply additional pre- and post-processing smoothing steps to eliminate unwanted features. LiDaR data also captures objects like buildings and trees complicating greatly the task of extracting reliable curvature values. Hence, we use a stochastic approach to determine whether a point can be reliably used to estimate curvature or not. Additionally, we have developed a graph-based approach to establish connectivities among points that correspond to regions of high curvature. The result is an explicit description of ridge-lines, for example. We have applied our method to the raw point cloud data collected as part of the Geo

  13. AN INTEGRATED PHOTOGRAMMETRIC AND PHOTOCLINOMETRIC APPROACH FOR PIXEL-RESOLUTION 3D MODELLING OF LUNAR SURFACE

    Directory of Open Access Journals (Sweden)

    W. C. Liu

    2018-04-01

    Full Text Available High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo. Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this

  14. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla.

    Science.gov (United States)

    Qiao, Ye; Steinman, David A; Qin, Qin; Etesami, Maryam; Schär, Michael; Astor, Brad C; Wasserman, Bruce A

    2011-07-01

    To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Compared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. The 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time. Copyright © 2011 Wiley-Liss, Inc.

  15. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks

    International Nuclear Information System (INIS)

    Wang, Zongjie; Parker, Benjamin; Samanipour, Roya; Kim, Keekyoung; Abdulla, Raafa; Ghosh, Sanjoy

    2015-01-01

    Bioprinting is a rapidly developing technique for biofabrication. Because of its high resolution and the ability to print living cells, bioprinting has been widely used in artificial tissue and organ generation as well as microscale living cell deposition. In this paper, we present a low-cost stereolithography-based bioprinting system that uses visible light crosslinkable bioinks. This low-cost stereolithography system was built around a commercial projector with a simple water filter to prevent harmful infrared radiation from the projector. The visible light crosslinking was achieved by using a mixture of polyethylene glycol diacrylate (PEGDA) and gelatin methacrylate (GelMA) hydrogel with eosin Y based photoinitiator. Three different concentrations of hydrogel mixtures (10% PEG, 5% PEG + 5% GelMA, and 2.5% PEG + 7.5% GelMA, all w/v) were studied with the presented systems. The mechanical properties and microstructure of the developed bioink were measured and discussed in detail. Several cell-free hydrogel patterns were generated to demonstrate the resolution of the solution. Experimental results with NIH 3T3 fibroblast cells show that this system can produce a highly vertical 3D structure with 50 μm resolution and 85% cell viability for at least five days. The developed system provides a low-cost visible light stereolithography solution and has the potential to be widely used in tissue engineering and bioengineering for microscale cell patterning. (paper)

  16. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks.

    Science.gov (United States)

    Wang, Zongjie; Abdulla, Raafa; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Kim, Keekyoung

    2015-12-22

    Bioprinting is a rapidly developing technique for biofabrication. Because of its high resolution and the ability to print living cells, bioprinting has been widely used in artificial tissue and organ generation as well as microscale living cell deposition. In this paper, we present a low-cost stereolithography-based bioprinting system that uses visible light crosslinkable bioinks. This low-cost stereolithography system was built around a commercial projector with a simple water filter to prevent harmful infrared radiation from the projector. The visible light crosslinking was achieved by using a mixture of polyethylene glycol diacrylate (PEGDA) and gelatin methacrylate (GelMA) hydrogel with eosin Y based photoinitiator. Three different concentrations of hydrogel mixtures (10% PEG, 5% PEG + 5% GelMA, and 2.5% PEG + 7.5% GelMA, all w/v) were studied with the presented systems. The mechanical properties and microstructure of the developed bioink were measured and discussed in detail. Several cell-free hydrogel patterns were generated to demonstrate the resolution of the solution. Experimental results with NIH 3T3 fibroblast cells show that this system can produce a highly vertical 3D structure with 50 μm resolution and 85% cell viability for at least five days. The developed system provides a low-cost visible light stereolithography solution and has the potential to be widely used in tissue engineering and bioengineering for microscale cell patterning.

  17. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-11

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm{sup 3} uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm){sup 3} to (2 mm){sup 3} in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm){sup 3} to (9 mm){sup 3}. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm){sup 3} even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm){sup 3} cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial

  18. 3D high resolution tracking of ice flow using mutli-temporal stereo satellite imagery, Franz Josef Glacier, New Zealand

    Science.gov (United States)

    Leprince, S.; Lin, J.; Ayoub, F.; Herman, F.; Avouac, J.

    2013-12-01

    We present the latest capabilities added to the Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) software, which aim at analyzing time-series of stereoscopic imagery to document 3D variations of the ground surface. We review the processing chain and present the new and improved modules for satellite pushbroom imagery, in particular the N-image bundle block adjustment to jointly optimize the viewing geometry of multiple acquisitions, the improved multi-scale image matching based on Semi-Global Matching (SGM) to extract high resolution topography, and the triangulation of multi-temporal disparity maps to derive 3D ground motion. In particular, processes are optimized to run on a cluster computing environment. This new suite of algorithms is applied to the study of Worldview stereo imagery above the Franz Josef, Fox, and Tasman Glaciers, New Zealand, acquired on 01/30/2013, 02/09/2013, and 02/28/2013. We derive high resolution (1m post-spacing) maps of ice flow in three dimensions, where ice velocities of up to 4 m/day are recorded. Images were collected in early summer during a dry and sunny period, which followed two weeks of unsettled weather with several heavy rainfall events across the Southern Alps. The 3D tracking of ice flow highlights the surface response of the glaciers to changes in effective pressure at the ice-bedrock interface due to heavy rainfall, at an unprecedented spatial resolution.

  19. DEM GENERATION FROM HIGH RESOLUTION SATELLITE IMAGES THROUGH A NEW 3D LEAST SQUARES MATCHING ALGORITHM

    Directory of Open Access Journals (Sweden)

    T. Kim

    2012-09-01

    Full Text Available Automated generation of digital elevation models (DEMs from high resolution satellite images (HRSIs has been an active research topic for many years. However, stereo matching of HRSIs, in particular based on image-space search, is still difficult due to occlusions and building facades within them. Object-space matching schemes, proposed to overcome these problem, often are very time consuming and critical to the dimensions of voxels. In this paper, we tried a new least square matching (LSM algorithm that works in a 3D object space. The algorithm starts with an initial height value on one location of the object space. From this 3D point, the left and right image points are projected. The true height is calculated by iterative least squares estimation based on the grey level differences between the left and right patches centred on the projected left and right points. We tested the 3D LSM to the Worldview images over 'Terrassa Sud' provided by the ISPRS WG I/4. We also compared the performance of the 3D LSM with the correlation matching based on 2D image space and the correlation matching based on 3D object space. The accuracy of the DEM from each method was analysed against the ground truth. Test results showed that 3D LSM offers more accurate DEMs over the conventional matching algorithms. Results also showed that 3D LSM is sensitive to the accuracy of initial height value to start the estimation. We combined the 3D COM and 3D LSM for accurate and robust DEM generation from HRSIs. The major contribution of this paper is that we proposed and validated that LSM can be applied to object space and that the combination of 3D correlation and 3D LSM can be a good solution for automated DEM generation from HRSIs.

  20. Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM)

    International Nuclear Information System (INIS)

    Brücker, C; Hess, D; Kitzhofer, J

    2013-01-01

    Scanning PIV as introduced by Brücker (1995 Exp. Fluids 19 255–63, 1996a Appl. Sci. Res. 56 157–79) has been successfully applied in the last 20 years to different flow problems where the frame rate was sufficient to ensure a ‘frozen’ field condition. The limited number of parallel planes however leads typically to an under-sampling in the scan direction in depth; therefore, the spatial resolution in depth is typically considerably lower than the spatial resolution in the plane of the laser sheet (depth resolution = scan shift Δz ≫ pixel unit in object space). In addition, a partial volume averaging effect due to the thickness of the light sheet must be taken into account. Herein, the method is further developed using a high-resolution scanning in combination with a Gaussian regression technique to achieve an isotropic representation of the tracer particles in a voxel-based volume reconstruction with cuboidal voxels. This eliminates the partial volume averaging effect due to light sheet thickness and leads to comparable spatial resolution of the particle field reconstructions in x-, y- and z-axes. In addition, advantage of voxel-based processing with estimations of translation, rotation and shear/strain is taken by using a 3D least-squares matching method, well suited for reconstruction of grey-level pattern fields. The method is discussed in this paper and used to investigate the ring vortex instability at Re = 2500 within a measurement volume of roughly 75 × 75 × 50 mm 3 with a spatial resolution of 100 µm/voxel (750 × 750 × 500 voxel elements). The volume has been scanned with a number of 100 light sheets and scan rates of 10 kHz. The results show the growth of the Tsai–Widnall azimuthal instabilities accompanied with a precession of the axis of the vortex ring. Prior to breakdown, secondary instabilities evolve along the core with streamwise oriented striations. The front stagnation point's streamwise distance to the core starts to decrease

  1. High resolution photoemission study of Nd1-xSrxMnO3

    International Nuclear Information System (INIS)

    Togashi, T.; Osawa, H.; Shin, S.; Tanaka, K.; Isozumi, Y.; Iwazumi, T.; Nozawa, S.

    2004-01-01

    Full text:Nd 1-x SrxMnO 3 shows the negative colossal magnetoresistance and various electronic phases. In order to reveal their states, we have performed a high- resolution Mn 2p-3d resonance photoemission (RPES) study of Nd 1-x SrxMnO 3 with an energy resolution of 100 meV at BL25SU in SPring-8. Figure 1 shows the Mn 2p-3d RPES spectra of Nd 1-x SrxMnO 3 . It is found that the spectral line shape in the ground-state phases (GS) at low temperatures is closely related to the shape of MnO 6 octahedra depending on x due to a static Jahn- Teller (JT) effect while the line shape in the paramagnetic insulator (PI) phase near room temperature is qualitatively similar to each other irrespective of x. These results strongly suggest that the dynamical and static JT effects are responsible for the 3d electronic states at high and low temperatures, respectively

  2. Airborne LIDAR and high resolution satellite data for rapid 3D feature extraction

    Science.gov (United States)

    Jawak, S. D.; Panditrao, S. N.; Luis, A. J.

    2014-11-01

    This work uses the canopy height model (CHM) based workflow for individual tree crown delineation and 3D feature extraction approach (Overwatch Geospatial's proprietary algorithm) for building feature delineation from high-density light detection and ranging (LiDAR) point cloud data in an urban environment and evaluates its accuracy by using very high-resolution panchromatic (PAN) (spatial) and 8-band (multispectral) WorldView-2 (WV-2) imagery. LiDAR point cloud data over San Francisco, California, USA, recorded in June 2010, was used to detect tree and building features by classifying point elevation values. The workflow employed includes resampling of LiDAR point cloud to generate a raster surface or digital terrain model (DTM), generation of a hill-shade image and an intensity image, extraction of digital surface model, generation of bare earth digital elevation model (DEM) and extraction of tree and building features. First, the optical WV-2 data and the LiDAR intensity image were co-registered using ground control points (GCPs). The WV-2 rational polynomial coefficients model (RPC) was executed in ERDAS Leica Photogrammetry Suite (LPS) using supplementary *.RPB file. In the second stage, ortho-rectification was carried out using ERDAS LPS by incorporating well-distributed GCPs. The root mean square error (RMSE) for the WV-2 was estimated to be 0.25 m by using more than 10 well-distributed GCPs. In the second stage, we generated the bare earth DEM from LiDAR point cloud data. In most of the cases, bare earth DEM does not represent true ground elevation. Hence, the model was edited to get the most accurate DEM/ DTM possible and normalized the LiDAR point cloud data based on DTM in order to reduce the effect of undulating terrain. We normalized the vegetation point cloud values by subtracting the ground points (DEM) from the LiDAR point cloud. A normalized digital surface model (nDSM) or CHM was calculated from the LiDAR data by subtracting the DEM from the DSM

  3. High Resolution 3-D Finite-Volume Coastal Ocean Modeling in Lower Campbell River and Discovery Passage, British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Yuehua Lin

    2014-03-01

    Full Text Available The 3-D unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM was used to simulate the flows in Discovery Passage including the adjoining Lower Campbell River, British Columbia, Canada. Challenges in the studies include the strong tidal currents (e.g., up to 7.8 m/s in Seymour Narrows and tailrace discharges, small-scale topographic features and steep bottom slopes, and stratification affected by the Campbell River freshwater discharges. Two applications of high resolution 3-D FVCOM modeling were conducted. One is for the Lower Campbell River extending upstream as far as the John Hart Hydroelectric dam. The horizontal resolution varies from 0.27 m to 32 m in the unstructured triangular mesh to resolve the tailrace flow. The bottom elevation decreases ~14 m within the distance of ~1.4 km along the river. This pioneering FVCOM river modeling demonstrated a very good performance in simulating the river flow structures. The second application is to compute ocean currents immediately above the seabed along the present underwater electrical cable crossing routes across Discovery Passage. Higher resolution was used near the bottom with inter-layer spacing ranging from 0.125 to 0.0005 of total water depth. The model behaves very well in simulating the strong tidal currents in the area at high resolution in both the horizontal and vertical. One year maximum near bottom tidal current along the routes was then analyzed using the model results.

  4. 3D single-molecule super-resolution microscopy with a tilted light sheet.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-01-09

    Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.

  5. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    International Nuclear Information System (INIS)

    Sakhalkar, H. S.; Oldham, M.

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of ∼5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 μm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of the

  6. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    International Nuclear Information System (INIS)

    Zhang, E Z; Laufer, J G; Beard, P C; Pedley, R B

    2009-01-01

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  7. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, E Z; Laufer, J G; Beard, P C [Department of Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Pedley, R B [UCL Cancer Institute, Paul O' Gorman Building, University College London, 72 Huntley St, London WC1E 6BT (United Kingdom)

    2009-02-21

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  8. South Ilan Plain High-Resolution 3-D S-Wave Velocity from Ambient Noise Tomography

    Directory of Open Access Journals (Sweden)

    Kai-Xun Chen

    2016-06-01

    Full Text Available The Ilan Plain in northeastern Taiwan is located at a pivotal point where the Ryukyu trench subduction zone, the northern Taiwan crustal stretching zone, and the ongoing arc-continent collision zone converge. In contrast to the North Ilan Plain, the South Ilan Plain exhibits a thin unconsolidated sedimentary layer with depths ranging from 0 - 1 km, high on-land seismicity and significant SE movements relative to Penghu island. We deployed a dense network of 43 short-period vertical component Texan instruments from June to November 2013 in this study, covering most of the South Ilan Plain and its vicinity. We then used the ambient noise tomography method for simultaneous phase and group Rayleigh wave velocity measurements to invert a high-resolution 3-D S-wave for shallow structures (up to a depth of 2.5 km in the South Ilan Plain. We used the fast marching method for ray tracing to deal with ray bending in an inhomogeneous medium. The resulting rays gradually bend toward high velocity zones with increasing number of iterations. The high velocity zone results are modified by more iterations and the resolutions become higher because ray crossings are proportional to ray densities for evenly distributed stations. The final results agreed well with known sedimentary basement thickness patterns. We observed nearly EW trending fast anomalies beneath the mountainous terrain abutting to the South Ilan Plain. The Chingshui location consistently exhibited a low S-wave velocity zone to a depth of 1.5 km.

  9. Study of CT-based positron range correction in high resolution 3D PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cal-Gonzalez, J., E-mail: jacobo@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Vicente, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Herranz, E. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Desco, M. [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Vaquero, J.J. [Dpto. de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Dpto. Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  10. Study of CT-based positron range correction in high resolution 3D PET imaging

    International Nuclear Information System (INIS)

    Cal-Gonzalez, J.; Herraiz, J.L.; Espana, S.; Vicente, E.; Herranz, E.; Desco, M.; Vaquero, J.J.; Udias, J.M.

    2011-01-01

    Positron range limits the spatial resolution of PET images and has a different effect for different isotopes and positron propagation materials. Therefore it is important to consider it during image reconstruction, in order to obtain optimal image quality. Positron range distributions for most common isotopes used in PET in different materials were computed using the Monte Carlo simulations with PeneloPET. The range profiles were introduced into the 3D OSEM image reconstruction software FIRST and employed to blur the image either in the forward projection or in the forward and backward projection. The blurring introduced takes into account the different materials in which the positron propagates. Information on these materials may be obtained, for instance, from a segmentation of a CT image. The results of introducing positron blurring in both forward and backward projection operations was compared to using it only during forward projection. Further, the effect of different shapes of positron range profile in the quality of the reconstructed images with positron range correction was studied. For high positron energy isotopes, the reconstructed images show significant improvement in spatial resolution when positron range is taken into account during reconstruction, compared to reconstructions without positron range modeling.

  11. Iodine and freeze-drying enhanced high-resolution MicroCT imaging for reconstructing 3D intraneural topography of human peripheral nerve fascicles.

    Science.gov (United States)

    Yan, Liwei; Guo, Yongze; Qi, Jian; Zhu, Qingtang; Gu, Liqiang; Zheng, Canbin; Lin, Tao; Lu, Yutong; Zeng, Zitao; Yu, Sha; Zhu, Shuang; Zhou, Xiang; Zhang, Xi; Du, Yunfei; Yao, Zhi; Lu, Yao; Liu, Xiaolin

    2017-08-01

    The precise annotation and accurate identification of the topography of fascicles to the end organs are prerequisites for studying human peripheral nerves. In this study, we present a feasible imaging method that acquires 3D high-resolution (HR) topography of peripheral nerve fascicles using an iodine and freeze-drying (IFD) micro-computed tomography (microCT) method to greatly increase the contrast of fascicle images. The enhanced microCT imaging method can facilitate the reconstruction of high-contrast HR fascicle images, fascicle segmentation and extraction, feature analysis, and the tracing of fascicle topography to end organs, which define fascicle functions. The complex intraneural aggregation and distribution of fascicles is typically assessed using histological techniques or MR imaging to acquire coarse axial three-dimensional (3D) maps. However, the disadvantages of histological techniques (static, axial manual registration, and data instability) and MR imaging (low-resolution) limit these applications in reconstructing the topography of nerve fascicles. Thus, enhanced microCT is a new technique for acquiring 3D intraneural topography of the human peripheral nerve fascicles both to improve our understanding of neurobiological principles and to guide accurate repair in the clinic. Additionally, 3D microstructure data can be used as a biofabrication model, which in turn can be used to fabricate scaffolds to repair long nerve gaps. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Varenicline increases in vivo striatal dopamine D2/3 receptor binding: an ultra-high-resolution pinhole [123I]IBZM SPECT study in rats

    International Nuclear Information System (INIS)

    Crunelle, Cleo L.; Wit, Tim C. de; Bruin, Kora de; Ramakers, Ruud M.; Have, Frans van der; Beekman, Freek J.; Brink, Wim van den; Booij, Jan

    2012-01-01

    Introduction: Ex vivo storage phosphor imaging rat studies reported increased brain dopamine D 2/3 receptor (DRD 2/3 ) availability following treatment with varenicline, a nicotinergic drug. However, ex vivo studies can only be performed using cross-sectional designs. Small-animal imaging offers the opportunity to perform serial assessments. We evaluated whether high-resolution pinhole single photon emission computed tomography (SPECT) imaging in rats was able to reproduce previous ex vivo findings. Methods: Rats were imaged for baseline striatal DRD 2/3 availability using ultra-high-resolution pinhole SPECT (U-SPECT-II) and [ 123 I]IBZM as a radiotracer, and randomized to varenicline (n=7; 2 mg/kg) or saline (n=7). Following 2 weeks of treatment, a second scan was acquired. Results: Significantly increased striatal DRD 2/3 availability was found following varenicline treatment compared to saline (time⁎treatment effect): posttreatment difference in binding potential between groups corrected for initial baseline differences was 2.039 (P=.022), indicating a large effect size (d=1.48). Conclusions: Ultra-high-resolution pinhole SPECT can be used to assess varenicline-induced changes in DRD 2/3 availability in small laboratory animals over time. Future small-animal studies should include imaging techniques to enable repeated within-subjects measurements and reduce the amount of animals.

  13. High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging (3D-PLI

    Directory of Open Access Journals (Sweden)

    Markus eAxer

    2011-12-01

    Full Text Available Functional interactions between different brain regions require connecting fiber tracts, the structural basis of the human connectome. To assemble a comprehensive structural understanding of neural network elements from the microscopic to the macroscopic dimensions, a multimodal and multiscale approach has to be envisaged. However, the integration of results from complementary neuroimaging techniques poses a particular challenge. In this paper, we describe a steadily evolving neuroimaging technique referred to as three-dimensional polarized light imaging (3D-PLI. It is based on the birefringence of the myelin sheaths surrounding axons, and enables the high-resolution analysis of myelinated axons constituting the fiber tracts. 3D-PLI provides the mapping of spatial fiber architecture in the postmortem human brain at a sub-millimeter resolution, i.e. at the mesoscale. The fundamental data structure gained by 3D-PLI is a comprehensive 3D vector field description of fibers and fiber tract orientations – the basis for subsequent tractography. To demonstrate how 3D-PLI can contribute to unravel and assemble the human connectome, a multiscale approach with the same technology was pursued. Two complementary state-of-the-art polarimeters providing different sampling grids (pixel sizes of 100 μm and 1.6 μm were used. To exemplarily highlight the potential of this approach, fiber orientation maps and 3D fiber models were reconstructed in selected regions of the brain (e.g., Corpus callosum, Internal capsule, Pons. The results demonstrate that 3D-PLI is an ideal tool to serve as an interface between the microscopic and macroscopic levels of organization of the human connectome.

  14. High-resolution 3D simulations of NIF ignition targets performed on Sequoia with HYDRA

    Science.gov (United States)

    Marinak, M. M.; Clark, D. S.; Jones, O. S.; Kerbel, G. D.; Sepke, S.; Patel, M. V.; Koning, J. M.; Schroeder, C. R.

    2015-11-01

    Developments in the multiphysics ICF code HYDRA enable it to perform large-scale simulations on the Sequoia machine at LLNL. With an aggregate computing power of 20 Petaflops, Sequoia offers an unprecedented capability to resolve the physical processes in NIF ignition targets for a more complete, consistent treatment of the sources of asymmetry. We describe modifications to HYDRA that enable it to scale to over one million processes on Sequoia. These include new options for replicating parts of the mesh over a subset of the processes, to avoid strong scaling limits. We consider results from a 3D full ignition capsule-only simulation performed using over one billion zones run on 262,000 processors which resolves surface perturbations through modes l = 200. We also report progress towards a high-resolution 3D integrated hohlraum simulation performed using 262,000 processors which resolves surface perturbations on the ignition capsule through modes l = 70. These aim for the most complete calculations yet of the interactions and overall impact of the various sources of asymmetry for NIF ignition targets. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  15. Improved resolution of 3D printed scaffolds by shrinking.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2015-10-01

    Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computer-modeled 3D object. Two general approaches for 3DP have been described for biomedical applications (direct and indirect 3DP). The two approaches offer competing advantages, and both are limited by print resolution. This study describes a materials processing strategy to enhance 3DP resolution by controlled shrinking net-shape scaffolds. Briefly, porogen preforms are printed and infused with the desired monomer or polymer solution. After solidification or polymerization, the porogen is leached and the polymer is allowed to shrink by controlled drying. Heat treatment is performed to retain the dimensions against swelling forces. The main objective of this study is to determine the effects of polymer content and post-processing on dimension, microstructure, and thermomechanical properties of the scaffold. For polyethylene glycol diacrylate (PEG-DA), reducing polymer content corresponded with greater shrinkage with maximum shrinkage of ∼80 vol% at 20% vol% PEG-DA. The secondary heat treatment retains the microarchitecture and new dimensions of the scaffolds, even when the heat-treated scaffolds are immersed into water. To demonstrate shrinkage predictability, 3D components with interlocking positive and negative features were printed, processed, and fitted. This material processing strategy provides an alternative method to enhance the resolution of 3D scaffolds, for a wide range of polymers, without optimizing the binder-powder interaction physics to print each material combination. © 2014 Wiley Periodicals, Inc.

  16. USER–APPROPRIATE VIEWER FOR HIGH RESOLUTION INTERACTIVE ENGAGEMENT WITH 3D DIGITAL CULTURAL ARTEFACTS

    Directory of Open Access Journals (Sweden)

    D. Gillespie

    2013-07-01

    Full Text Available Three dimensional (3D laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008. The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013 and WebGL (Khronos, 2013, it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games

  17. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    Science.gov (United States)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper

  18. SU-E-T-296: Dosimetric Analysis of Small Animal Image-Guided Irradiator Using High Resolution Optical CT Imaging of 3D Dosimeters

    International Nuclear Information System (INIS)

    Na, Y; Qian, X; Wuu, C; Adamovics, J

    2015-01-01

    Purpose: To verify the dosimetric characteristics of a small animal image-guided irradiator using a high-resolution of optical CT imaging of 3D dosimeters. Methods: PRESAEGE 3D dosimeters were used to determine dosimetric characteristics of a small animal image-guided irradiator and compared with EBT2 films. Cylindrical PRESAGE dosimeters with 7cm height and 6cm diameter were placed along the central axis of the beam. The films were positioned between 6×6cm 2 cubed plastic water phantoms perpendicular to the beam direction with multiple depths. PRESAGE dosimeters and EBT2 films were then irradiated with the irradiator beams at 220kVp and 13mA. Each of irradiated PRESAGE dosimeters named PA1, PA2, PB1, and PB2, was independently scanned using a high-resolution single laser beam optical CT scanner. The transverse images were reconstructed with a 0.1mm high-resolution pixel. A commercial Epson Expression 10000XL flatbed scanner was used for readout of irradiated EBT2 films at a 0.4mm pixel resolution. PDD curves and beam profiles were measured for the irradiated PRESAGE dosimeters and EBT2 films. Results: The PDD agreements between the irradiated PRESAGE dosimeter PA1, PA2, PB1, PB2 and the EB2 films were 1.7, 2.3, 1.9, and 1.9% for the multiple depths at 1, 5, 10, 15, 20, 30, 40 and 50mm, respectively. The FWHM measurements for each PRESAEGE dosimeter and film agreed with 0.5, 1.1, 0.4, and 1.7%, respectively, at 30mm depth. Both PDD and FWHM measurements for the PRESAGE dosimeters and the films agreed overall within 2%. The 20%–80% penumbral widths of each PRESAGE dosimeter and the film at a given depth were respectively found to be 0.97, 0.91, 0.79, 0.88, and 0.37mm. Conclusion: Dosimetric characteristics of a small animal image-guided irradiator have been demonstrated with the measurements of PRESAGE dosimeter and EB2 film. With the high resolution and accuracy obtained from this 3D dosimetry system, precise targeting small animal irradiation can be achieved

  19. Tilted Light Sheet Microscopy with 3D Point Spread Functions for Single-Molecule Super-Resolution Imaging in Mammalian Cells.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  20. D1A, a high resolution neutron powder diffractometer with a bank of mylar collimators

    International Nuclear Information System (INIS)

    Hewat, A.W.; Bailey, I.

    1976-01-01

    This paper describes a first attempt at following the design criteria set out earlier for a high resolution conventional powder diffractometer. An existing machine, D1A, has been modified using a bank of ten high pressure 3 He counters and almost perfect 10minutes of arc mylar foil collimators. The system is more successful than earlier multicollimator arrangements because each of the collimator/counters is virtually identical; this permits automatic addition of the intensities so that a single high resolution profile, up to X40 times as intense as on the original diffractometer, is obtained just as easily as on a single counter machine. A comparison is made with the other powder diffractometers, D1B and D2 at the ILL. (Auth.)

  1. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    International Nuclear Information System (INIS)

    Mertens, J.C.E.; Williams, J.J.; Chawla, Nikhilesh

    2014-01-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution

  2. Evaluation of the 3D high resolution seismic method at the Tournemire site around the IPSN experimental station

    International Nuclear Information System (INIS)

    Cabrera Nunez, J.

    2003-01-01

    The IPSN experimental station of Tournemire is localized at a 200 m depth inside an abandoned railway tunnel dug in a Jurassic clayey formation. The a priori knowledge of the existing geologic structures of the clayey formations allows to test the reliability of the 3D high resolution seismic survey technique and its capability to detect these structures and discontinuities. This test study is reported in this technical note. It comprises several steps: a bibliographic synthesis and a state-of-the-art of the 3D seismic survey technique, the construction of a velocity model for the different strata of the site, a simulation of the possible seismic response of these strata with respect to the velocities chosen, the processing of the data and finally their interpretation. (J.S.)

  3. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging.

    Science.gov (United States)

    Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R

    2017-11-01

    The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.

  4. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    Science.gov (United States)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  5. Tilted light sheet microscopy with 3D point spread functions for single-molecule super-resolution imaging in mammalian cells

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  6. 3D printing for orthopedic applications: from high resolution cone beam CT images to life size physical models

    Science.gov (United States)

    Jackson, Amiee; Ray, Lawrence A.; Dangi, Shusil; Ben-Zikri, Yehuda K.; Linte, Cristian A.

    2017-03-01

    With increasing resolution in image acquisition, the project explores capabilities of printing toward faithfully reflecting detail and features depicted in medical images. To improve safety and efficiency of orthopedic surgery and spatial conceptualization in training and education, this project focused on generating virtual models of orthopedic anatomy from clinical quality computed tomography (CT) image datasets and manufacturing life-size physical models of the anatomy using 3D printing tools. Beginning with raw micro CT data, several image segmentation techniques including thresholding, edge recognition, and region-growing algorithms available in packages such as ITK-SNAP, MITK, or Mimics, were utilized to separate bone from surrounding soft tissue. After converting the resulting data to a standard 3D printing format, stereolithography (STL), the STL file was edited using Meshlab, Netfabb, and Meshmixer. The editing process was necessary to ensure a fully connected surface (no loose elements), positive volume with manifold geometry (geometry possible in the 3D physical world), and a single, closed shell. The resulting surface was then imported into a "slicing" software to scale and orient for printing on a Flashforge Creator Pro. In printing, relationships between orientation, print bed volume, model quality, material use and cost, and print time were considered. We generated anatomical models of the hand, elbow, knee, ankle, and foot from both low-dose high-resolution cone-beam CT images acquired using the soon to be released scanner developed by Carestream, as well as scaled models of the skeletal anatomy of the arm and leg, together with life-size models of the hand and foot.

  7. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.

    Science.gov (United States)

    Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai

    2018-03-01

    With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.

  8. Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host.

    Directory of Open Access Journals (Sweden)

    Tara J Moriarty

    2008-06-01

    Full Text Available Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood-brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP. Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo.

  9. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  10. High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing.

    Science.gov (United States)

    Kuang, Xiao; Zhao, Zeang; Chen, Kaijuan; Fang, Daining; Kang, Guozheng; Qi, Hang Jerry

    2018-04-01

    Design and direct fabrication of high-performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high-speed 3D printing of high-performance epoxy thermosets via a two-stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h -1 . It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two-stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high-performance and functional applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Denoising of high resolution small animal 3D PET data using the non-subsampled Haar wavelet transform

    International Nuclear Information System (INIS)

    Ochoa Domínguez, Humberto de Jesús; Máynez, Leticia O.; Vergara Villegas, Osslan O.; Mederos, Boris; Mejía, José M.; Cruz Sánchez, Vianey G.

    2015-01-01

    PET allows functional imaging of the living tissue. However, one of the most serious technical problems affecting the reconstructed data is the noise, particularly in images of small animals. In this paper, a method for high-resolution small animal 3D PET data is proposed with the aim to reduce the noise and preserve details. The method is based on the estimation of the non-subsampled Haar wavelet coefficients by using a linear estimator. The procedure is applied to the volumetric images, reconstructed without correction factors (plane reconstruction). Results show that the method preserves the structures and drastically reduces the noise that contaminates the image

  12. Denoising of high resolution small animal 3D PET data using the non-subsampled Haar wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa Domínguez, Humberto de Jesús, E-mail: hochoa@uacj.mx [Departamento de Ingeniería Eléctrica y computación, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico); Máynez, Leticia O. [Departamento de Ingeniería Eléctrica y computación, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico); Vergara Villegas, Osslan O. [Departamento de Ingeniería Industrial, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico); Mederos, Boris; Mejía, José M.; Cruz Sánchez, Vianey G. [Departamento de Ingeniería Eléctrica y computación, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico)

    2015-06-01

    PET allows functional imaging of the living tissue. However, one of the most serious technical problems affecting the reconstructed data is the noise, particularly in images of small animals. In this paper, a method for high-resolution small animal 3D PET data is proposed with the aim to reduce the noise and preserve details. The method is based on the estimation of the non-subsampled Haar wavelet coefficients by using a linear estimator. The procedure is applied to the volumetric images, reconstructed without correction factors (plane reconstruction). Results show that the method preserves the structures and drastically reduces the noise that contaminates the image.

  13. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity.

    Science.gov (United States)

    Blaeser, Andreas; Duarte Campos, Daniela Filipa; Puster, Uta; Richtering, Walter; Stevens, Molly M; Fischer, Horst

    2016-02-04

    A microvalve-based bioprinting system for the manufacturing of high-resolution, multimaterial 3D-structures is reported. Applying a straightforward fluid-dynamics model, the shear stress at the nozzle site can precisely be controlled. Using this system, a broad study on how cell viability and proliferation potential are affected by different levels of shear stress is conducted. Complex, multimaterial 3D structures are printed with high resolution. This work pioneers the investigation of shear stress-induced cell damage in 3D bioprinting and might help to comprehend and improve the outcome of cell-printing studies in the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Accelerated high-resolution 3D magnetic resonance spectroscopic imaging in the brain At 7 T

    International Nuclear Information System (INIS)

    Hangel, G.

    2015-01-01

    With the announcement of the first series of magnetic resonance (MR) scanners with a field strength of 7 Tesla (T) intended for clinical practice, the development of high-performance sequences for higher field strengths has gained importance. Magnetic resonance spectroscopic imaging (MRSI) in the brain currently offers the unique ability to spatially resolve the distribution of multiple metabolites simultaneously. Its big diagnostic potential could be applied to many clinical protocols, for example the assessment of tumour treatment or progress of Multiple Sclerosis. Moving to ultra-high fields like 7 T has the main benefits of increased signal-to-noise ratio (SNR) and improved spectral quality, but brings its own challenges due to stronger field inhomogeneities. Necessary for a robust, flexible and useful MRSI sequence in the brain are high resolutions, shortened measurement times, the possibility for 3D-MRSI and the suppression of spectral contamination by trans-cranial lipids. This thesis addresses these limitations and proposes Hadamard spectroscopic imaging (HSI) as solution for multi-slice MRSI, the application of generalized autocalibrating partially parallel acquisition (GRAPPA) and spiral trajectories for measurement acceleration, non-selective inversion recovery (IR) lipid-suppression as well as combinations of these methods. Further, the optimisation of water suppression for 7 T systems and the acquisition of ultra-high resolution (UHR)-MRSI are discussed. In order to demonstrate the clinical feasibility of these approaches, MRSI measurement results of a glioma patient are presented. The discussion of the obtained results in the context of the state-of-art in 7 T MRSI in the brain, possible future applications as well as potential further improvements of the MRSI sequences conclude this thesis. (author) [de

  15. A 3D HIDAC-PET camera with sub-millimeter resolution for imaging small animals

    International Nuclear Information System (INIS)

    Jeavons, A.P.; Chandler, R.A.; Dettmar, C.A.R.

    1999-01-01

    A HIDAC-PET camera consisting essentially of 5 million 0.5 mm gas avalanching detectors has been constructed for small-animal imaging. The particular HIDAC advantage--a high 3D spatial resolution--has been improved to 0.95 mm fwhm and to 0.7 mm fwhm when reconstructing with 3D-OSEM methods incorporating resolution recovery. A depth-of-interaction resolution of 2.5 mm is implicit, due to the laminar construction. Scatter-corrected sensitivity, at 8.9 cps/kBq (i.e. 0.9%) from a central point source, or 7.2 cps/kBq (543 cps/kBq/cm 3 ) from a distributed (40 mm diameter, 60 mm long) source is now much higher than previous, and other, work. A field-of-view of 100 mm (adjustable to 200 mm) diameter by 210 mm axially permits whole-body imaging of small animals, containing typically 4MBqs of activity, at 40 kcps of which 16% are random coincidences, with a typical scatter fraction of 44%. Throughout the field-of-view there are no positional distortions and relative quantitation is uniform to ± 3.5%, but some variation of spatial resolution is found. The performance demonstrates that HIDAC technology is quite appropriate for small-animal PET cameras

  16. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    International Nuclear Information System (INIS)

    Bäck, A

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK ® (Sun Nuclear), MatriXX Evolution (IBA Dosimetry) and OCTAVIOUS ® 1500 (PTW), 3D phantoms such as OCTAVIUS ® 4D (PTW), ArcCHECK ® (Sun Nuclear) and Delta 4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDose TM (Sun Nuclear) and Dosimetry Check TM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific

  17. High-resolution 3D X-ray microtomography as tool to investigate size distribution of grain phase and pore space in sandstones

    Science.gov (United States)

    Kahl, Wolf-Achim; Holzheid, Astrid

    2013-04-01

    The geometry and internal structures of sandstone reservoirs, like grain size, sorting, degree of bioturbation, and the history of the diagenetic alterations determine the quantity, flow rates, and recovery of hydrocarbons present in the pore space. In this respect, processes influencing the deep reservoir quality in sandstones are either of depositional, shallow diagenetic, or deep-burial origin. To assess the effect of compaction and cementation on the pore space during diagenesis, we investigated a set of sandstone samples using high-resolution microtomography (µ-CT). By high-resolution µ-CT, size distributions (in 2D and 3D), surface areas and volume fractions of the grain skeleton and pore space of sandstones and - in addition - of mineral powders have been determined. For this study, we analysed aliquots of sandstones that exhibit either complete, partial or no cemententation of the pore space, and sets of mineral powders (quartz, feldspar, calcite). As the resolution of the µ-CT scans is in the µm-range, the surface areas determined for sandstones and powders do detect the geometric surface of the material (Kahl & Holzheid, 2010). Since there are differing approaches to "size" parameters like e.g., long/short particle axes, area equivalent radius, Feret-diameter (2D), and structural thickness (3D), we decided to illustrate the effect of various size determinations for (a) single grains, (b) grain skeletons, and (c) pore space. Therefor, the computer-aided morphometric analysis of the segmented 3D models of the reconstructed scan images comprises versatile calculation algorithms. For example, size distribution of the pore space of partially cemented sandstones can be used to infer the timing of the formation of the cement in respect to tectonic/diagenetic activities. In the case of a late-stage partial cementation of a Bunter sandstone, both pore space and cement phase show identical size distributions. On the contrary, the anhydrite cement of a

  18. High-resolution pyrimidine- and ribose-specific 4D HCCH-COSY spectra of RNA using the filter diagonalization method

    International Nuclear Information System (INIS)

    Douglas, Justin T.; Latham, Michael P.; Armstrong, Geoffrey S.; Bendiak, Brad; Pardi, Arthur

    2008-01-01

    The NMR spectra of nucleic acids suffer from severe peak overlap, which complicates resonance assignments. 4D NMR experiments can overcome much of the degeneracy in 2D and 3D spectra; however, the linear increase in acquisition time with each new dimension makes it impractical to acquire high-resolution 4D spectra using standard Fourier transform (FT) techniques. The filter diagonalization method (FDM) is a numerically efficient algorithm that fits the entire multi-dimensional time-domain data to a set of multi-dimensional oscillators. Selective 4D constant-time HCCH-COSY experiments that correlate the H5-C5-C6-H6 base spin systems of pyrimidines or the H1'-C1'-C2'-H2' spin systems of ribose sugars were acquired on the 13 C-labeled iron responsive element (IRE) RNA. FDM-processing of these 4D experiments recorded with only 8 complex points in the indirect dimensions showed superior spectral resolution than FT-processed spectra. Practical aspects of obtaining optimal FDM-processed spectra are discussed. The results here demonstrate that FDM-processing can be used to obtain high-resolution 4D spectra on a medium sized RNA in a fraction of the acquisition time normally required for high-resolution, high-dimensional spectra

  19. Studies on image quality, high contrast resolution and dose for the axial skeleton and limbs with a new, dedicated CT system (ISO-C-3D)

    International Nuclear Information System (INIS)

    Rock, C.; Kotsianos, D.; Linsenmaier, U.; Fischer, T.

    2002-01-01

    Purpose: Evaluation of 3D-CT imaging of the axial skeleton and different joints of the lower and upper extremities with a new dedicated CT system (ISO-C-3D) based on a mobile isocentric C-arm image amplifier. Material and Methods: 27 cadaveric specimes of different joints of the lower and upper extremities and of the spinal column were examined with 3D-CT imaging (ISO-C-3d). All images were evaluated by 3 radiologists for image quality using a semiquantitative score (score value 1: poor quality; score value 4: excellent quality). In addition, dose measurements and measurements of high contrast resolution were performed in comparison to conventional and low-dose spiral CT using a high contrast phantom (Catphan, Phantom Laboratories). Results: Adequate image quality (mean score values 3-4) could be achieved with an applied dose comparable to low-dose CT in smaller joints such as wrist, elbow, ankle and knee. A remarkably inferior image quality resulted in imaging of the hip, lumbar and thoracic spine (mean score values 2-3) in spite of almost doubling the dose (dose increased by 85 percent). The image quality of shoulder examinations was insufficient (mean score value 1). Phantom studies showed a high-contrast resolution comparable to helical CT in the xy-axis (9 lp/cm). Conclusion: Preliminary results show, that image quality of C-arm-based CT-imaging (ISO-C-3D) seems to be adequate in smaller joints. ISO-C-3D images of the hip and axial skeleton show a decreased image quality, which does not seem to be sufficient for diagnosing subtle fractures. (orig.) [de

  20. High resolution model mesh and 3D printing of the Gaudí’s Porta del Drac

    Science.gov (United States)

    Corso, Juan; Garcia-Almirall, Pilar; Marco, Adria

    2017-10-01

    This article intends to explore the limits of scanning with the technology of 3D Laser Scanner and the 3D printing, as an approximation to its application for the survey and the study of singular elements of the architectural heritage. The case study we developed is the Porta del Drac, in the Pavelló Güell, designed by Antoni Gaudí. We divided the process in two parts, one about how to scan and optimize the survey with the Laser Scanner Technology, made with a Faro Forus3D x330 scanner. The second one, about the optimization of the survey as a high-resolution mesh to have a scaled 3D model to be printed in 3D, for the musealization of the Verdaguer House of Literature in Vil.la Joana (Barcelona), a project developed by the Museum of History of Barcelona, in tribute to Jacint Verdaguer. In the first place, we propose a methodology for the survey of this atypical model, which is of special interest for several factors: the geometric complexity in relation to the occlusions, the thickness of the metallic surfaces, the hidden internal structure partially seen from the outside, the produced noise in its interior, and the instrumental errors. These factors make the survey process complex from the data collection, having to perform several scans from different positions to cover the entire sculpture, which has a geometry composed of a variety of folds that cause occlusions. Also, the union of the positions and the average of the surfaces is of great relevance, since the elements of the sculpture are constructed by a metal plate of 2mm, therefore, the error in the union of all these many positions must be smaller than this. Moreover, optimization of the cloud has a great difficulty because of the noise created by the instrumental error as it is a metal sculpture and because of noise point clouds that are generated inside the internal folds of the wings, which are made with a welded wire mesh with little spaces between them. Finally, the added difficulty that there is an

  1. Spatial resolution properties in 3D fast spin-echo using variable refocusing flip angles

    International Nuclear Information System (INIS)

    Ozaki, Masanori; Mizukami, Shinya; Hata, Hirofumi; Sato, Mayumi; Komi, Syotaro; Miyati, Tosiaki; Nozaki, Atsushi

    2011-01-01

    A new 3-dimensional fast spin-echo (3D FSE) method that uses a variable refocusing flip angle technique has recently been applied to imaging. The imaging pulse sequence can inhibit T 2 decay by varying the refocusing flip angle. Use of a long echo train length allows acquisition of 3D T 2 -weighted images with less blurring in a short scan time. The smaller refocusing flip angle in the new 3D FSE method than in the conventional method can reduce the specific absorption rate. However, T 2 decay differs between the new and conventional 3D FSE methods, so the resolution properties of the 2 methods may differ. We investigated the resolution properties of the new 3D FSE method using a variable refocusing flip angle technique. Varying the refocusing flip angle resulted in different resolution properties for the new 3D FSE method compared to the conventional method, a difference particularly noticeable when the imaging parameters were set for obtaining proton density weighted images. (author)

  2. Usefulness of high-resolution 3D multifusion medical imaging for preoperative planning in patients with posterior fossa hemangioblastoma: technical note.

    Science.gov (United States)

    Yoshino, Masanori; Nakatomi, Hirofumi; Kin, Taichi; Saito, Toki; Shono, Naoyuki; Nomura, Seiji; Nakagawa, Daichi; Takayanagi, Shunsaku; Imai, Hideaki; Oyama, Hiroshi; Saito, Nobuhito

    2017-07-01

    Successful resection of hemangioblastoma depends on preoperative assessment of the precise locations of feeding arteries and draining veins. Simultaneous 3D visualization of feeding arteries, draining veins, and surrounding structures is needed. The present study evaluated the usefulness of high-resolution 3D multifusion medical imaging (hr-3DMMI) for preoperative planning of hemangioblastoma. The hr-3DMMI combined MRI, MR angiography, thin-slice CT, and 3D rotated angiography. Surface rendering was mainly used for the creation of hr-3DMMI using multiple thresholds to create 3D models, and processing took approximately 3-5 hours. This hr-3DMMI technique was used in 5 patients for preoperative planning and the imaging findings were compared with the operative findings. Hr-3DMMI could simulate the whole 3D tumor as a unique sphere and show the precise penetration points of both feeding arteries and draining veins with the same spatial relationships as the original tumor. All feeding arteries and draining veins were found intraoperatively at the same position as estimated preoperatively, and were occluded as planned preoperatively. This hr-3DMMI technique could demonstrate the precise locations of feeding arteries and draining veins preoperatively and estimate the appropriate route for resection of the tumor. Hr-3DMMI is expected to be a very useful support tool for surgery of hemangioblastoma.

  3. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    International Nuclear Information System (INIS)

    Reischig, Peter; Helfen, Lukas; Wallert, Arie; Baumbach, Tilo; Dik, Joris

    2013-01-01

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art. (orig.)

  4. 3D laser imaging for ODOT interstate network at true 1-mm resolution.

    Science.gov (United States)

    2014-12-01

    With the development of 3D laser imaging technology, the latest iteration of : PaveVision3D Ultra can obtain true 1mm resolution 3D data at full-lane coverage in all : three directions at highway speed up to 60MPH. This project provides rapid survey ...

  5. Detection of N-(1-deoxy-d-fructos-1-yl) Fumonisins B2 and B3 in Corn by High-Resolution LC-Orbitrap MS

    Science.gov (United States)

    Matsuo, Yosuke; Takahara, Kentaro; Sago, Yuki; Kushiro, Masayo; Nagashima, Hitoshi; Nakagawa, Hiroyuki

    2015-01-01

    The existence of glucose conjugates of fumonisin B2 (FB2) and fumonisin B3 (FB3) in corn powder was confirmed for the first time. These “bound-fumonisins” (FB2 and FB3 bound to glucose) were identified as N-(1-deoxy-d-fructos-1-yl) fumonisin B2 (NDfrc-FB2) and N-(1-deoxy-d-fructos-1-yl) fumonisin B3 (NDfrc-FB3) respectively, based on the accurate mass measurements of characteristic ions and fragmentation patterns using high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS) analysis. Treatment on NDfrc-FB2 and NDfrc-FB3 with the o-phthalaldehyde (OPA) reagent also supported that d-glucose binding to FB2 and FB3 molecules occurred to their primary amine residues. PMID:26389955

  6. EUV blank defect and particle inspection with high throughput immersion AFM with 1nm 3D resolution

    NARCIS (Netherlands)

    Es, M.H. van; Sadeghian Marnani, H.

    2016-01-01

    Inspection of EUV mask substrates and blanks is demanding. We envision this is a good target application for massively parallel Atomic Force Microscopy (AFM). We envision to do a full surface characterization of EUV masks with AFM enabling 1nm true 3D resolution over the entire surface. The limiting

  7. Computation of a high-resolution MRI 3D stereotaxic atlas of the sheep brain.

    Science.gov (United States)

    Ella, Arsène; Delgadillo, José A; Chemineau, Philippe; Keller, Matthieu

    2017-02-15

    The sheep model was first used in the fields of animal reproduction and veterinary sciences and then was utilized in fundamental and preclinical studies. For more than a decade, magnetic resonance (MR) studies performed on this model have been increasingly reported, especially in the field of neuroscience. To contribute to MR translational neuroscience research, a brain template and an atlas are necessary. We have recently generated the first complete T1-weighted (T1W) and T2W MR population average images (or templates) of in vivo sheep brains. In this study, we 1) defined a 3D stereotaxic coordinate system for previously established in vivo population average templates; 2) used deformation fields obtained during optimized nonlinear registrations to compute nonlinear tissues or prior probability maps (nlTPMs) of cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) tissues; 3) delineated 25 external and 28 internal sheep brain structures by segmenting both templates and nlTPMs; and 4) annotated and labeled these structures using an existing histological atlas. We built a quality high-resolution 3D atlas of average in vivo sheep brains linked to a reference stereotaxic space. The atlas and nlTPMs, associated with previously computed T1W and T2W in vivo sheep brain templates and nlTPMs, provide a complete set of imaging space that are able to be imported into other imaging software programs and could be used as standardized tools for neuroimaging studies or other neuroscience methods, such as image registration, image segmentation, identification of brain structures, implementation of recording devices, or neuronavigation. J. Comp. Neurol. 525:676-692, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Fluid Lensing, Applications to High-Resolution 3D Subaqueous Imaging & Automated Remote Biosphere Assessment from Airborne and Space-borne Platforms

    Science.gov (United States)

    Chirayath, V.

    2014-12-01

    Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.

  9. High resolution study of Kβ' and Kβ1,3 X-ray emission lines from Mn-compounds

    International Nuclear Information System (INIS)

    Limandri, S.; Ceppi, S.; Tirao, G.; Stutz, G.; Sanchez, C.G.; Riveros, J.A.

    2010-01-01

    High-resolution Kβ emission spectra of several manganese compounds were measured in order to characterize the dependence of the Kβ' and Kβ 1,3 features, on the chemical environment. High resolution spectra were obtained using a non-conventional spectrometer based on quasi-back-diffraction geometry at National Synchrotron Light Laboratory (LNLS). It was found that the energy of the Kβ' satellite structure relative to the main Kβ 1,3 line decreases linearly with the formal oxidation state for Mn-O systems. A noticeable dispersion of the relative Kβ' energy for different Mn 2+ compounds could be observed. The dependence of the Kβ' satellite line on the net charge and the effective 3d spin in Mn 2+ compounds was investigated. Calculations of the net charge and the effective 3d spin were performed within the density-functional theory using the package SIESTA. A direct relation between this dispersion and the effective Mn 3d spin was found.

  10. 2D and 3D high resolution seismic imaging of shallow Solfatara crater in Campi Flegrei (Italy): new insights on deep hydrothermal fluid circulation processes

    Science.gov (United States)

    De Landro, Grazia; Gammaldi, Sergio; Serlenga, Vincenzo; Amoroso, Ortensia; Russo, Guido; Festa, Gaetano; D'Auria, Luca; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo

    2017-04-01

    Seismic tomography can be used to image the spatial variation of rock properties within complex geological media such as volcanoes. Solfatara is a volcano located within the Campi Flegrei still active caldera, characterized by periodic episodes of extended, low-rate ground subsidence and uplift called bradyseism accompanied by intense seismic and geochemical activities. In particular, Solfatara is characterized by an impressive magnitude diffuse degassing, which underlines the relevance of fluid and heat transport at the crater and prompted further research to improve the understanding of the hydrothermal system feeding the surface phenomenon. In this line, an active seismic experiment, Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to provide time-varying high-resolution images of the structure of Solfatara. In this study we used the datasets provided by two different acquisition geometries: a) A 2D array cover an area of 90 x 115 m ^ 2 sampled by a regular grid of 240 vertical sensors deployed at the crater surface; b) two 1D orthogonal seismic arrays deployed along NE-SW and NW-SE directions crossing the 400 m crater surface. The arrays are sampled with a regular line of 240 receiver and 116 shots. We present 2D and 3D tomographic high-resolution P-wave velocity images obtained using two different tomographic methods adopting a multiscale strategy. The 3D image of the shallow (30-35 m) central part of Solfatara crater is performed through the iterative, linearized, tomographic inversion of the P-wave first arrival times. 2D P-wave velocity sections (60-70 m) are obtained using a non-linear travel-time tomography method based on the evaluation of a posteriori probability density with a Bayesian approach. The 3D retrieved images integrated with resistivity section and temperature and CO2 flux measurements , define the following characteristics: 1. A depth dependent P-wave velocity layer

  11. Technologies and R&D for a High Resolution Cavity BPM for the CLIC Main Beam

    CERN Document Server

    Towler, J R; Soby, L; Wendt, M; Boogert, S T; Cullinan, F J; Lyapin, A

    2013-01-01

    The Main Beam (MB) linac of the Compact Linear Collider (CLIC) requires a beam orbit measurement system with high spatial (50 nm) and high temporal resolution (50 ns) to resolve the beam position within the 156 ns long bunch train, traveling on an energy-chirped, minimum dispersive trajectory. A 15 GHz prototype cavity BPM has been commissioned in the probe beam-line of the CTF3 CLIC Test Facility. We discuss performance and technical details of this prototype installation, including the 15 GHz analogue downconverter, the data acquisition and the control electronics and software. An R&D outlook is given for the next steps, which requires a system of 3 cavity BPMs to investigate the full resolution potential.

  12. Initial results of high resolution L-H transition studies on DIII-D

    International Nuclear Information System (INIS)

    Wang, G; Rhodes, T L; Doyle, E J; Peebles, W A; Zeng, L; Burrell, K H; McKee, G R; Groebner, R J; Evans, T E

    2004-01-01

    Understanding the L-H transition in tokamaks has been an important area of research for more than two decades. High time resolution diagnostics on DIII-D allow detailed characterization of the L-H transition and, therefore, testing and benchmarking of theoretical models. An experiment was performed in DIII-D utilizing a novel, high temporal and spatial resolution reflectometer density profile system to measure densities from the SOL to the inside separatrix. Initial data analysis indicates different density profile evolution during L-H transitions in upper single-null and lower single-null divertor configuration plasmas. A detailed comparison of the density gradient and fluctuation changes is presented for these two cases

  13. Initial results of high resolution L-H transition studies on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G [Department of Electrical Engineering and PSTI, University of California, Los Angeles, CA 90095 (United States); Rhodes, T L [Department of Electrical Engineering and PSTI, University of California, Los Angeles, CA 90095 (United States); Doyle, E J [Department of Electrical Engineering and PSTI, University of California, Los Angeles, CA 90095 (United States); Peebles, W A [Department of Electrical Engineering and PSTI, University of California, Los Angeles, CA 90095 (United States); Zeng, L [Department of Electrical Engineering and PSTI, University of California, Los Angeles, CA 90095 (United States); Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186 (United States); McKee, G R [University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186 (United States); Evans, T E [General Atomics, PO Box 85608, San Diego, CA 92186 (United States)

    2004-05-01

    Understanding the L-H transition in tokamaks has been an important area of research for more than two decades. High time resolution diagnostics on DIII-D allow detailed characterization of the L-H transition and, therefore, testing and benchmarking of theoretical models. An experiment was performed in DIII-D utilizing a novel, high temporal and spatial resolution reflectometer density profile system to measure densities from the SOL to the inside separatrix. Initial data analysis indicates different density profile evolution during L-H transitions in upper single-null and lower single-null divertor configuration plasmas. A detailed comparison of the density gradient and fluctuation changes is presented for these two cases.

  14. High spatial resolution free-breathing 3D late gadolinium enhancement cardiac magnetic resonance imaging in ischaemic and non-ischaemic cardiomyopathy: quantitative assessment of scar mass and image quality.

    Science.gov (United States)

    Bizino, Maurice B; Tao, Qian; Amersfoort, Jacob; Siebelink, Hans-Marc J; van den Bogaard, Pieter J; van der Geest, Rob J; Lamb, Hildo J

    2018-04-06

    To compare breath-hold (BH) with navigated free-breathing (FB) 3D late gadolinium enhancement cardiac MRI (LGE-CMR) MATERIALS AND METHODS: Fifty-one patients were retrospectively included (34 ischaemic cardiomyopathy, 14 non-ischaemic cardiomyopathy, three discarded). BH and FB 3D phase sensitive inversion recovery sequences were performed at 3T. FB datasets were reformatted into normal resolution (FB-NR, 1.46x1.46x10mm) and high resolution (FB-HR, isotropic 0.91-mm voxels). Scar mass, scar edge sharpness (SES), SNR and CNR were compared using paired-samples t-test, Pearson correlation and Bland-Altman analysis. Scar mass was similar in BH and FB-NR (mean ± SD: 15.5±18.0 g vs. 15.5±16.9 g, p=0.997), with good correlation (r=0.953), and no bias (mean difference ± SD: 0.00±5.47 g). FB-NR significantly overestimated scar mass compared with FB-HR (15.5±16.9 g vs 14.4±15.6 g; p=0.007). FB-NR and FB-HR correlated well (r=0.988), but Bland-Altman demonstrated systematic bias (1.15±2.84 g). SES was similar in BH and FB-NR (p=0.947), but significantly higher in FB-HR than FB-NR (pFB-NR (pFB-HR than FB-NR (p<0.01). Navigated free-breathing 3D LGE-CMR allows reliable scar mass quantification comparable to breath-hold. During free-breathing, spatial resolution can be increased resulting in improved sharpness and reduced scar mass. • Navigated free-breathing 3D late gadolinium enhancement is reliable for myocardial scar quantification. • High-resolution 3D late gadolinium enhancement increases scar sharpness • Ischaemic and non-ischaemic cardiomyopathy patients can be imaged using free-breathing LGE CMR.

  15. High-resolution coherent three-dimensional spectroscopy of Br2.

    Science.gov (United States)

    Chen, Peter C; Wells, Thresa A; Strangfeld, Benjamin R

    2013-07-25

    In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.

  16. Depth geological model building: application to the 3D high resolution 'ANDRA' seismic block

    International Nuclear Information System (INIS)

    Mari, J.L.; Yven, B.

    2012-01-01

    Document available in extended abstract form only. 3D seismic blocks and logging data, mainly acoustic and density logs, are often used for geological model building in time. The geological model must be then converted from time to depth. Geostatistical approach for time-to-depth conversion of seismic horizons is often used in many geo-modelling projects. From a geostatistical point of view, the time-to-depth conversion of seismic horizons is a classical estimation problem involving one or more secondary variables. Bayesian approach [1] provides an excellent estimator which is more general than the traditional kriging with external drift(s) and fits very well to the needs for time-to-depth conversion of seismic horizons. The time-to-depth conversion of the selected seismic horizons is used to compute a time-to-depth conversion model at the time sampling rate (1 ms). The 3D depth conversion model allows the computation of an interval velocity block which is compared with the acoustic impedance block to estimate a density block as QC. Non realistic density values are edited and the interval velocity block as well as the depth conversion model is updated. The proposed procedure has been applied on a 3D data set. The dataset comes from a High Resolution 3D seismic survey recorded in France at the boundary of the Meuse and Haute-Marne departments in the vicinity of the Andra Center (National radioactive waste management Agency). The 3D design is a cross spread. The active spread is composed of 12 receiver lines with 120 stations each. The source lines are perpendicular to the receiver lines. The receiver and source line spacings are respectively 80 m and 120 m. The receiver and source point spacings are 20 m. The source is a Vibroseis source generating a signal in the 14 - 140 Hz frequency bandwidth.. The bin size is 10 x 10 m 2 . The nominal fold is 60. A conventional seismic sequence was applied to the data set. It includes amplitude recovery, deconvolution and wave

  17. High Resolution 3d Imaging during the Construction of National Radioactive Waste Repository from BÁTAAPÁTI, Hungary

    Science.gov (United States)

    Gaich, A.; Deák, F.; Pötsch, M.

    2012-12-01

    investigation of the photorealistic 3D models reproducibility in the both cases JMX and SMX. Regularly geotechnical rock mass classifications (Q, RMR and GSI) were used on the basis of the 3D models without field experience of the given tunnel faces. All documentations were analysed with statistical methods considering the circumstances of scanning and picturing. The orientation of main characteristic discontinuities were defined by each geologist, but also some differences occured. These discrepancies had not occurred in the results of geotechnical evaluation. Due to several cases the information provided by the 3D modelling systems could be very useful in different phases of excavation works. These information were applied in geoscience researches for example in surface roughness determination, fracture system modelling of the host rock and geological or technical objects findings behind the shotcrete layer. Beside the above mentioned advanteges we have to emphasize that JMX and SMX systems provide contact free acqusition and assessment of rock and terrain surfaces by metric high resolution 3D images in very short time period.

  18. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks

    DEFF Research Database (Denmark)

    Zhang, Rujing; Larsen, Niels Bent

    2017-01-01

    the required freedom in design, detail and chemistry for fabricating truly 3D constructs have remained limited. Here, we report a stereolithographic high-resolution 3D printing technique utilizing poly(ethylene glycol) diacrylate (PEGDA, MW 700) to manufacture diffusion-open and mechanically stable hydrogel...... and material flexibility by embedding a highly compliant cell-laden gelatin hydrogel within the confines of a 3D printed resilient PEGDA hydrogel chip of intermediate compliance. Overall, our proposed strategy represents an automated, cost-effective and high resolution technique to manufacture complex 3D......Three-dimensional (3D) in vitro models capturing both the structural and dynamic complexity of the in vivo situation are in great demand as an alternative to animal models. Despite tremendous progress in engineering complex tissue/organ models in the past decade, approaches that support...

  19. 3D Super-Resolution Motion-Corrected MRI: Validation of Fetal Posterior Fossa Measurements.

    Science.gov (United States)

    Pier, Danielle B; Gholipour, Ali; Afacan, Onur; Velasco-Annis, Clemente; Clancy, Sean; Kapur, Kush; Estroff, Judy A; Warfield, Simon K

    2016-09-01

    Current diagnosis of fetal posterior fossa anomalies by sonography and conventional MRI is limited by fetal position, motion, and by two-dimensional (2D), rather than three-dimensional (3D), representation. In this study, we aimed to validate the use of a novel magnetic resonance imaging (MRI) technique, 3D super-resolution motion-corrected MRI, to image the fetal posterior fossa. From a database of pregnant women who received fetal MRIs at our institution, images of 49 normal fetal brains were reconstructed. Six measurements of the cerebellum, vermis, and pons were obtained for all cases on 2D conventional and 3D reconstructed MRI, and the agreement between the two methods was determined using concordance correlation coefficients. Concordance of axial and coronal measurements of the transcerebellar diameter was also assessed within each method. Between the two methods, the concordance of measurements was high for all six structures (P fetal motion and orthogonal slice acquisition. This technique will facilitate further study of fetal abnormalities of the posterior fossa. Copyright © 2016 by the American Society of Neuroimaging.

  20. High-resolution mapping of 1D and 2D dose distributions using X-band electron paramagnetic resonance imaging

    International Nuclear Information System (INIS)

    Kolbun, N.; Lund, E.; Adolfsson, E.; Gustafsson, H.

    2014-01-01

    Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogeneously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. (authors)

  1. Sea Level History in 3D: Early results of an ultra-high resolution MCS survey across IODP Expedition 313 drillsites

    Science.gov (United States)

    Mountain, G. S.; Kucuk, H. M.; Nedimovic, M. R.; Austin, J. A., Jr.; Fulthorpe, C.; Newton, A.; Baldwin, K.; Johnson, C.; Stanley, J. N.; Bhatnagar, T.

    2015-12-01

    Although globally averaged sea level is rising at roughly 3 mm/yr (and is accelerating), rates of local sea-level change measured at coastlines may differ from this number by a factor of two or more; at some locations, sea level may even be falling. This is due to local processes that can match or even reverse the global trend, making it clear that reliable predictions of future impacts of sea-level rise require a firm understanding of processes at the local level. The history of local sea-level change and shoreline response is contained in the geologic record of shallow-water sediments. We report on a continuing study of sea-level history in sediments at the New Jersey continental margin, where compaction and glacial isostatic adjustment are currently adding 2 mm/yr to the globally averaged rise. We collected 570 sq km of ultra-high resolution 3D MCS data aboard the R/V Langseth in June-July 2015; innovative recording and preliminary results are described by Nedimovic et al. in this same session. The goal was to provide regional context to coring and logging at IODP Exp 313 sites 27-29 that were drilled 750 m into the New Jersey shelf in 2009. These sites recovered a nearly continuous record of post-Eocene sediments from non-marine soils, estuaries, shoreface, delta front, pro-delta and open marine settings. Existing seismic data are good but are 2D high-resolution profiles at line spacings too wide to enable mapping of key nearshore features. The Langseth 3D survey used shallow towing of a tuned air gun array to preserve high frequencies, and twenty-four 50-m PCables each 12.5 apart provided 6.25 x 3.125 m common-midpoint bins along seventy-seven 50-km sail lines. With this especially dense spatial resolution of a pre-stack time migrated volume we expect to map rivers, incised valleys, barrier islands, inlets and bays, pro-delta clinoforms, tidal deltas, sequence boundaries, debris flow aprons, and more. Seismic attributes linked to sedimentary facies and

  2. Two millennia of soil dynamics derived from ancient desert terraces using high resolution 3-D data

    Science.gov (United States)

    Filin, Sagi; Arav, Reuma; Avni, Yoav

    2017-04-01

    Large areas in the arid southern Levant are dotted with ancient terrace-based agriculture systems which were irrigated by runoff harvesting techniques. They were constructed and maintained between the 3rd - 9th centuries AD and abandoned in the 10th century AD. During their 600 years of cultivation, these terraces documented the gradual aggradation of alluvial soils, erosion processes within the drainage basins, as well as flashflood damage. From their abandonment and onwards, they documented 1000 years and more of land degradation and soil erosion processes. Examination of these installations presents an opportunity to study natural and anthropogenic induced changes over almost two millennia. On a global scale, such an analysis is unique as it is rare to find intact manifestations of anthropogenic influences over such time-scales because of landscape dynamics. It is also rare to find a near millennia documentation of soil erosion processes. We study in this paper the aggradation processes within intact agriculture plots in the region surrounding the world heritage Roman-Byzantine ancient city of Avdat, Negev Highlands. We follow the complete cycle of the historical desert agriculture, from the configuration pre-dating the first anthropogenic intervention, through the centuries of cultivation, and up to the present erosion phase, which spans over more than a millennium. We use high resolution 3-D laser scans to document the erosion and the environmental dynamics during these two millennia. The high-resolution data is then utilized to compute siltation rates as well as erosion rates. The long-term measures of soil erosion and land degradation we present here significantly improve our understanding of the mechanism of long-term environmental change acting in arid environments. For sustainable desert inhabitation, the study offers insights into better planning of modern agriculture in similar zones as well as insights on strategies needed to protect such historical

  3. 3D high-resolution anorectal manometry in patients with perianal fistulas: comparison with 3D-anal ultrasound.

    Science.gov (United States)

    Felt-Bersma, Richelle J F; Vlietstra, Maarten S; Vollebregt, Paul F; Han-Geurts, Ingrid J M; Rempe-Sorm, Vera; Vander Mijnsbrugge, Grietje J H; Molenaar, Charlotte B H

    2018-04-04

    Perianal fistula surgery can damage the anal sphincters which may cause faecal incontinence. By measuring regional pressures, 3D-HRAM potentially provides better guidance for surgical strategy in patients with perianal fistulas. The aim was to measure regional anal pressures with 3D-HRAM and to compare these with 3D-EUS findings in patients with perianal fistulas. Consecutive patients with active perianal fistulas who underwent both 3D-EUS and 3D-HRAM at a clinic specialised in proctology were included. A group of 30 patients without fistulas served as controls. Data regarding demographics, complaints, previous perianal surgical procedures and obstetric history were collected. The mean and regional anal pressures were measured with 3D-HRAM. Fistula tract areas detected with 3D-EUS were analysed with 3D-HRAM by visual coding and the regional pressures of the corresponding and surrounding area of the fistula tract areas were measured. The study was granted by the VUmc Medical Ethical Committee. Forty patients (21 males, mean age 47) were included. Four patients had a primary fistula, 19 were previously treated with a seton/abscess drainage and 17 had a recurrence after previously performed fistula surgery. On 3D-HRAM, 24 (60%) fistula tract areas were good and 8 (20%) moderately visible. All but 7 (18%) patients had normal mean resting pressures. The mean resting pressure of the fistula tract area was significantly lower compared to the surrounding area (47 vs. 76 mmHg; p < 0.0001). Only 2 (5%) patients had a regional mean resting pressure < 10 mmHg of the fistula tract area. Using a Δ mean resting pressure ≥ 30 mmHg difference between fistula tract area and non-fistula tract area as alternative cut-off, 21 (53%) patients were identified. In 6 patients 3D-HRAM was repeated after surgery: a local pressure drop was detected in one patient after fistulotomy with increased complaints of faecal incontinence. Profound local anal pressure drops are found

  4. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  5. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  6. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    Science.gov (United States)

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  7. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Science.gov (United States)

    Martisek, Dalibor; Prochazkova, Jana

    2017-12-01

    The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  8. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Directory of Open Access Journals (Sweden)

    Martisek Dalibor

    2017-12-01

    Full Text Available The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  9. Characterization of a high resolution and high sensitivity pre-clinical PET scanner with 3D event reconstruction

    CERN Document Server

    Rissi, M; Bolle, E; Dorholt, O; Hines, K E; Rohne, O; Skretting, A; Stapnes, S; Volgyes, D

    2012-01-01

    COMPET is a preclinical PET scanner aiming towards a high sensitivity, a high resolution and MRI compatibility by implementing a novel detector geometry. In this approach, long scintillating LYSO crystals are used to absorb the gamma-rays. To determine the point of interaction (P01) between gamma-ray and crystal, the light exiting the crystals on one of the long sides is collected with wavelength shifters (WLS) perpendicularly arranged to the crystals. This concept has two main advantages: (1) The parallax error is reduced to a minimum and is equal for the whole field of view (FOV). (2) The P01 and its energy deposit is known in all three dimension with a high resolution, allowing for the reconstruction of Compton scattered gamma-rays. Point (1) leads to a uniform point source resolution (PSR) distribution over the whole FOV, and also allows to place the detector close to the object being imaged. Both points (1) and (2) lead to an increased sensitivity and allow for both high resolution and sensitivity at the...

  10. 3D super-resolution imaging with blinking quantum dots

    Science.gov (United States)

    Wang, Yong; Fruhwirth, Gilbert; Cai, En; Ng, Tony; Selvin, Paul R.

    2013-01-01

    Quantum dots are promising candidates for single molecule imaging due to their exceptional photophysical properties, including their intense brightness and resistance to photobleaching. They are also notorious for their blinking. Here we report a novel way to take advantage of quantum dot blinking to develop an imaging technique in three-dimensions with nanometric resolution. We first applied this method to simulated images of quantum dots, and then to quantum dots immobilized on microspheres. We achieved imaging resolutions (FWHM) of 8–17 nm in the x-y plane and 58 nm (on coverslip) or 81 nm (deep in solution) in the z-direction, approximately 3–7 times better than what has been achieved previously with quantum dots. This approach was applied to resolve the 3D distribution of epidermal growth factor receptor (EGFR) molecules at, and inside of, the plasma membrane of resting basal breast cancer cells. PMID:24093439

  11. SRS station 16.3: high-resolution applications

    CERN Document Server

    Murphy, B M; Golshan, M; Moore, M; Reid, J; Kowalski, G

    2001-01-01

    Station 16.3 is a high-resolution X-ray diffraction beamline at Daresbury Laboratory Synchrotron Radiation Source. The data presented demonstrate the high-resolution available on the station utilising the recently commissioned four-reflection Si 1 1 1 monochromator and three-reflection Si 1 1 1 analyser. For comparison, a reciprocal space map of the two-bounce Si 1 1 1 monochromator and two-bounce analyser is also shown. Operation of the station is illustrated with examples for silicon, and for diamond. Lattice parameter variations were measured with accuracies in the part per million range and lattice tilts at the arc second level (DuMond, Phys. Rev. 52 (1937) 872).

  12. Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging.

    Directory of Open Access Journals (Sweden)

    Lina Carlini

    Full Text Available Three-dimensional (3D localization-based super-resolution microscopy (SR requires correction of aberrations to accurately represent 3D structure. Here we show how a depth-dependent lateral shift in the apparent position of a fluorescent point source, which we term `wobble`, results in warped 3D SR images and provide a software tool to correct this distortion. This system-specific, lateral shift is typically > 80 nm across an axial range of ~ 1 μm. A theoretical analysis based on phase retrieval data from our microscope suggests that the wobble is caused by non-rotationally symmetric phase and amplitude aberrations in the microscope's pupil function. We then apply our correction to the bacterial cytoskeletal protein FtsZ in live bacteria and demonstrate that the corrected data more accurately represent the true shape of this vertically-oriented ring-like structure. We also include this correction method in a registration procedure for dual-color, 3D SR data and show that it improves target registration error (TRE at the axial limits over an imaging depth of 1 μm, yielding TRE values of < 20 nm. This work highlights the importance of correcting aberrations in 3D SR to achieve high fidelity between the measurements and the sample.

  13. D2B, a new high resolution neutron powder diffractometer at ILL Grenoble

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1987-01-01

    Applications of high resolution neutron powder diffraction to materials science have grown rapidly in the past 10 years, with the development of Rietveld methods of profile refinement, and new high resolution diffractometers and multidetectors. Materials studied range from catalysts to zeolites, and from battery electrodes to prestressed superconducting wires. Although the techniques have now been adapted for X-ray and synchrotron radiation, neutron powder diffraction retains unique advantages. In this paper we describe the design and first test measurements on the latest high resolution powder diffractometer D2B at ILL Grenoble. A review of the applications is published in Chemica Scripta (1986). (author) 9 refs., 6 figs., 2 tabs

  14. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California

    Science.gov (United States)

    Kluesner, Jared W.; Brothers, Daniel

    2016-01-01

    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  15. CsI calorimeter with 3-D position resolution

    CERN Document Server

    Schopper, Herwig Franz; Shaw, H; Nefzger, C; Zoglauer, A; Schönfelder, V; Kanbach, G

    2000-01-01

    New gamma-ray calorimeter have been developed for the MEGA Compton camera. They consist of arrays of small CsI(Tl) scintillator bars read out by Silicon PIN-diodes and low noise, self-triggering frontend electronics. The length of the bars (the thickness of the calorimeter) can be varied for different applications to fit the stopping power needed and the light loss tolerable. In this paper we present calibration results from 2 cm long bars with diodes on one side, and 8 cm long bars with diodes on two opposite sides. Double-sided readout gives 3-D information of interactions which will be used to overcome the limited position resolution in Anger-cameras at high energies. Simpler detection devices like Anger-cameras might finally resolve only the centre of gravity. As events from gamma-rays with energies of MeV do extend over several cm, it is a prerequisite for an imaging device to resolve the interaction structure in detail. Combining CsI(Tl) scintillators, Silicon PIN-photodiodes and frontend electronics in...

  16. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  17. A Novel 2D Image Compression Algorithm Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured Light 3D Surface Reconstruction

    Science.gov (United States)

    Siddeq, M. M.; Rodrigues, M. A.

    2015-09-01

    Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.

  18. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  19. High-Resolution X-Ray Tomography: A 3D Exploration Into the Skeletal Architecture in Mouse Models Submitted to Microgravity Constraints

    Directory of Open Access Journals (Sweden)

    Alessandra Giuliani

    2018-03-01

    Full Text Available Bone remodeling process consists in a slow building phase and in faster resorption with the objective to maintain a functional skeleton locomotion to counteract the Earth gravity. Thus, during spaceflights, the skeleton does not act against gravity, with a rapid decrease of bone mass and density, favoring bone fracture. Several studies approached the problem by imaging the bone architecture and density of cosmonauts returned by the different spaceflights. However, the weaknesses of the previously reported studies was two-fold: on the one hand the research suffered the small statistical sample size of almost all human spaceflight studies, on the other the results were not fully reliable, mainly due to the fact that the observed bone structures were small compared with the spatial resolution of the available imaging devices. The recent advances in high-resolution X-ray tomography have stimulated the study of weight-bearing skeletal sites by novel approaches, mainly based on the use of the mouse and its various strains as an animal model, and sometimes taking advantage of the synchrotron radiation support to approach studies of 3D bone architecture and mineralization degree mapping at different hierarchical levels. Here we report the first, to our knowledge, systematic review of the recent advances in studying the skeletal bone architecture by high-resolution X-ray tomography after submission of mice models to microgravity constrains.

  20. High Resolution Ultrasonic Method for 3D Fingerprint Representation in Biometrics

    Science.gov (United States)

    Maev, R. Gr.; Bakulin, E. Y.; Maeva, E. Y.; Severin, F. M.

    Biometrics is an important field which studies different possible ways of personal identification. Among a number of existing biometric techniques fingerprint recognition stands alone - because very large database of fingerprints has already been acquired. Also, fingerprints are an important evidence that can be collected at a crime scene. Therefore, of all automated biometric techniques, especially in the field of law enforcement, fingerprint identification seems to be the most promising. Ultrasonic method of fingerprint imaging was originally introduced over a decade as the mapping of the reflection coefficient at the interface between the finger and a covering plate and has shown very good reliability and free from imperfections of previous two methods. This work introduces a newer development of the ultrasonic fingerprint imaging, focusing on the imaging of the internal structures of fingerprints (including sweat pores) with raw acoustic resolution of about 500 dpi (0.05 mm) using a scanning acoustic microscope to obtain images and acoustic data in the form of 3D data array. C-scans from different depths inside the fingerprint area of fingers of several volunteers were obtained and showed good contrast of ridges-and-valleys patterns and practically exact correspondence to the standard ink-and-paper prints of the same areas. Important feature reveled on the acoustic images was the clear appearance of the sweat pores, which could provide additional means of identification.

  1. A multi-resolution approach for an automated fusion of different low-cost 3D sensors.

    Science.gov (United States)

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-04-24

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory.

  2. Subnuclear foci quantification using high-throughput 3D image cytometry

    Science.gov (United States)

    Wadduwage, Dushan N.; Parrish, Marcus; Choi, Heejin; Engelward, Bevin P.; Matsudaira, Paul; So, Peter T. C.

    2015-07-01

    Ionising radiation causes various types of DNA damages including double strand breaks (DSBs). DSBs are often recognized by DNA repair protein ATM which forms gamma-H2AX foci at the site of the DSBs that can be visualized using immunohistochemistry. However most of such experiments are of low throughput in terms of imaging and image analysis techniques. Most of the studies still use manual counting or classification. Hence they are limited to counting a low number of foci per cell (5 foci per nucleus) as the quantification process is extremely labour intensive. Therefore we have developed a high throughput instrumentation and computational pipeline specialized for gamma-H2AX foci quantification. A population of cells with highly clustered foci inside nuclei were imaged, in 3D with submicron resolution, using an in-house developed high throughput image cytometer. Imaging speeds as high as 800 cells/second in 3D were achieved by using HiLo wide-field depth resolved imaging and a remote z-scanning technique. Then the number of foci per cell nucleus were quantified using a 3D extended maxima transform based algorithm. Our results suggests that while most of the other 2D imaging and manual quantification studies can count only up to about 5 foci per nucleus our method is capable of counting more than 100. Moreover we show that 3D analysis is significantly superior compared to the 2D techniques.

  3. High-resolution 3D coronary vessel wall imaging with near 100% respiratory efficiency using epicardial fat tracking: reproducibility and comparison with standard methods.

    Science.gov (United States)

    Scott, Andrew D; Keegan, Jennifer; Firmin, David N

    2011-01-01

    To quantitatively assess the performance and reproducibility of 3D spiral coronary artery wall imaging with beat-to-beat respiratory-motion-correction (B2B-RMC) compared to navigator gated 2D spiral and turbo-spin-echo (TSE) acquisitions. High-resolution (0.7 × 0.7 mm) cross-sectional right coronary wall acquisitions were performed in 10 subjects using four techniques (B2B-RMC 3D spiral with alternate (2RR) and single (1RR) R-wave gating, navigator-gated 2D spiral (2RR) and navigator-gated 2D TSE (2RR)) on two occasions. Wall thickness measurements were compared with repeated measures analysis of variance (ANOVA). Reproducibility was assessed with the intraclass correlation coefficient (ICC). In all, 91% (73/80) of acquisitions were successful (failures: four TSE, two 3D spiral (1RR) and one 3D spiral (2RR)). Respiratory efficiency of the B2B-RMC was less variable and substantially higher than for navigator gating (99.6 ± 1.2% vs. 39.0 ± 7.5%, P B2B-RMC permits coronary vessel wall assessment over multiple thin contiguous slices in a clinically feasible duration. Excellent reproducibility of the technique potentially enables studies of disease progression/regression. Copyright © 2010 Wiley-Liss, Inc.

  4. High-resolution 3D dose distribution measured for two low-energy x-ray brachytherapy seeds: 125I and 103Pd

    International Nuclear Information System (INIS)

    Massillon-JL, G.; Minniti, R.; Mitch, M.G.; Soares, C.G.; Hearn, R.A.

    2011-01-01

    In this work, we have investigated the 3D absorbed dose distribution around 125 I and 103 Pd low-energy photon brachytherapy seeds using a high-spatial-resolution gel scanning system to address the current difficulty in measuring absorbed dose at close distances to these sources as a consequence of high dose rate gradient. A new version of BANG-gel coupled with a small format laser CT scanner has been used. Measurements were performed with 100 μm resolution in all dimensions. In particular, radial dose function and absorbed dose rate in the plane parallel to the sources longitudinal-axis were derived at radial distances smaller than or equal to 1 cm. In addition, the energy dependence was evaluated, finding that, within measurement uncertainties, the gel response is independent of the energy for energy photon values between 20 keV and 1250 keV. We have observed that at distances larger than 1.4 mm from the source, the delivered dose is similar to predictions from published Monte Carlo calculations (MC) for the 125 I seed. For distances between 1 mm and 3 mm, differences in magnitude and shape are significant for the 103 Pd seed, where an enhancement is observed. In the enhancement region, a difference of up to 70% in the radial dose function was obtained. Such observation suggests a contribution from other radionuclides emitting beta-particles or electrons, and not considered by MC. To understand the effect, spectrometry measurements were performed. A small contribution of 102 Rh/ 102m Rh radionuclide relative to 103 Pd was observed and its importance on the absorbed dose measured at close distances to the seed is time dependent and consequently, avoids reproducible measurements. Finally, the results obtained in this work underscore the importance of using high-spatial-resolution and water-equivalent detectors for measuring absorbed dose in low-energy photon radiation fields.

  5. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    Science.gov (United States)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon

  6. Application of Artificial Neural Networks for Efficient High-Resolution 2D DOA Estimation

    Directory of Open Access Journals (Sweden)

    M. Agatonović

    2012-12-01

    Full Text Available A novel method to provide high-resolution Two-Dimensional Direction of Arrival (2D DOA estimation employing Artificial Neural Networks (ANNs is presented in this paper. The observed space is divided into azimuth and elevation sectors. Multilayer Perceptron (MLP neural networks are employed to detect the presence of a source in a sector while Radial Basis Function (RBF neural networks are utilized for DOA estimation. It is shown that a number of appropriately trained neural networks can be successfully used for the high-resolution DOA estimation of narrowband sources in both azimuth and elevation. The training time of each smaller network is significantly re¬duced as different training sets are used for networks in detection and estimation stage. By avoiding the spectral search, the proposed method is suitable for real-time ap¬plications as it provides DOA estimates in a matter of seconds. At the same time, it demonstrates the accuracy comparable to that of the super-resolution 2D MUSIC algorithm.

  7. High-resolution MRI of cranial nerves in posterior fossa at 3.0 T

    Institute of Scientific and Technical Information of China (English)

    Zi-Yi Guo; Jing Chen; Qi-Zhou Liang; Hai-Yan Liao; Qiong-Yue Cheng; Shui-Xi Fu; Cai-Xiang Chen; Dan Yu

    2013-01-01

    Objective:To evaluate the influence of high-resolution imaging obtainable with the higher field strength of3.0T on the visualization of the brain nerves in the posterior fossa.Methods:In total,20 nerves were investigated onMRI of12 volunteers each and selected for comparison, respectively, with theFSE sequences with5 mm and2 mm section thicknesses and gradient recalled echo(GRE) sequences acquired with a3.0-T scanner.TheMR images were evaluated by three independent readers who rated image quality according to depiction of anatomic detail and contrast with use of a rating scale.Results:In general, decrease of the slice thickness showed a significant increase in the detection of nerves as well as in the image quality characteristics. ComparingFSE andGRE imaging, the course of brain nerves and brainstem vessels was visualized best with use of the three-dimensional(3D) pulse sequence.Conclusions:The comparison revealed the clear advantage of a thin section.The increased resolution enabled immediate identification of all brainstem nerves.GRE sequence most distinctly and confidently depicted pertinent structures and enables3D reconstruction to illustrate complex relations of the brainstem.

  8. Rostrocaudal gradients of dopamine D2/3 receptor binding in striatal subregions measured with [11C]raclopride and high-resolution positron emission tomography

    DEFF Research Database (Denmark)

    Alakurtti, Kati; Johansson, Jarkko J; Tuokkola, Terhi

    2013-01-01

    scanned with brain-dedicated high-resolution research tomography (HRRT, Siemens Medical Solutions, Knoxville, TN, USA) and [(11)C]raclopride. Coronally defined regions of interest (ROIs) of the caudate nucleus, putamen and ventral striatum (VST) were sampled plane-by-plane, 1.5mm apart, on spatially...... observed in the VST. The novelty of this study lies in the presentation, for the first time, of the D2/3 receptor binding gradients in each striatal subregion in the brains of living healthy humans. The high spatial resolution provided by HRRT enables frequent sampling of BPND along the longitudinal extent...

  9. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    Science.gov (United States)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non

  10. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    DEFF Research Database (Denmark)

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process...... is a combination of a rapid collapse phase and a slow degradation phase. The damages of box origami mainly happen in the collapse phase. Thus, the structure stability of 3D DNA box origami should be further improved, especially in the collapse phase, before clinical applications...

  11. Resolution doubling in 3D-STORM imaging through improved buffers.

    Science.gov (United States)

    Olivier, Nicolas; Keller, Debora; Gönczy, Pierre; Manley, Suliana

    2013-01-01

    Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM) provide resolutions down to a few tens of nanometers by exploiting the cycling of dyes between fluorescent and non-fluorescent states to obtain a sparse population of emitters and precisely localizing them individually. This cycling of dyes is commonly induced by adding different chemicals, which are combined to create a STORM buffer. Despite their importance, the composition of these buffers has scarcely evolved since they were first introduced, fundamentally limiting what can be resolved with STORM. By identifying a new chemical suitable for STORM and optimizing the buffer composition for Alexa-647, we significantly increased the number of photons emitted per cycle by each dye, providing a simple means to enhance the resolution of STORM independently of the optical setup used. Using this buffer to perform 3D-STORM on biological samples, we obtained images with better than 10 nanometer lateral and 30 nanometer axial resolution.

  12. Resolution doubling in 3D-STORM imaging through improved buffers.

    Directory of Open Access Journals (Sweden)

    Nicolas Olivier

    Full Text Available Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM provide resolutions down to a few tens of nanometers by exploiting the cycling of dyes between fluorescent and non-fluorescent states to obtain a sparse population of emitters and precisely localizing them individually. This cycling of dyes is commonly induced by adding different chemicals, which are combined to create a STORM buffer. Despite their importance, the composition of these buffers has scarcely evolved since they were first introduced, fundamentally limiting what can be resolved with STORM. By identifying a new chemical suitable for STORM and optimizing the buffer composition for Alexa-647, we significantly increased the number of photons emitted per cycle by each dye, providing a simple means to enhance the resolution of STORM independently of the optical setup used. Using this buffer to perform 3D-STORM on biological samples, we obtained images with better than 10 nanometer lateral and 30 nanometer axial resolution.

  13. Non-invasive 3D-microscopy with 10-μm spatial resolution inside alive small laboratory animals

    International Nuclear Information System (INIS)

    Sasov, A.; Dewaele, D.; De Clerck, N.

    2002-01-01

    Full text: Small laboratory animals (mice and rats) are widely used in development of drugs and treatments. Micro-CT or microtomography allows non-invasive 3D imaging and measurements of the microstructure inside the body of alive animals. To recognise the internal changes of bones and different organs in the very early stage, high-resolution micro-CT scanner for in-vivo 3D-imaging has been developed. The Micro-CT scanner based on the X-ray geometry with source-detector pair rotation around the object instead of object rotation geometry, typical for other micro-CT systems. Object illuminated by an X-ray source with 5 microns spot size and 20-100keV energies. X-ray images collected by a digital x-ray camera. Projection images with 8000x1000x16bit format collected from several hundreds angular projections. On the base of this information cross sectional images can be reconstructed in 8000x8000x32bit full format or 1024x1024x32bit preview. Maximum object size (scanning volume) is 80mm in diameter by 200mm in length with 10-microns isotropic pixel size for reconstruction at any place of this space. All software for system control, reconstruction and 3D analysis runs on Pentium-4 2GHz or Dual Intel Xeon 1.7GHz computer under Microsoft Windows-2000. The instrument is widely used for scanning of physical phantoms as well as different alive small laboratory animals under anesthesia. Achieved spatial resolution is 20microns for low-contrast objects and 10-microns for high-contrast objects (bone, etc.). Typical scanning time is 20-120min, typical irradiation dose - 0.25-0.7Gy per scan. To avoid movement artefacts from breathing, the instrument can synchronise acquisition cycle with pulses from special breathing sensor. Software package includes dual-processor reconstruction software, 3D-rendering and measurement of all general and bone-specific morphological parameters. New in-vivo Micro-CT scanner allows non-destructive 3D-imaging and measurements of the internal

  14. Acquisition and Processing of High Resolution Hyperspectral Imageries for the 3d Mapping of Urban Heat Islands and Microparticles of Montreal

    Science.gov (United States)

    Mongeau, R.; Baudouin, Y.; Cavayas, F.

    2017-10-01

    Ville de Montreal wanted to develop a system to identify heat islands and microparticles at the urban scale and to study their formation. UQAM and UdeM universities have joined their expertise under the framework "Observatoire Spatial Urbain" to create a representative geospatial database of thermal and atmospheric parameters collected during the summer months. They innovated in the development of a methodology for processing high resolution hyperspectral images (1-2 m). In partnership with Ville de Montreal, they integrated 3D geospatial data (topography, transportation and meteorology) in the process. The 3D mapping of intraurban heat islands as well as air micro-particles makes it possible, initially, to identify the problematic situations for future civil protection interventions during extreme heat. Moreover, it will be used as a reference for the Ville de Montreal to establish a strategy for public domain tree planting and in the analysis of urban development projects.

  15. Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: a case study at 11.7 T.

    Science.gov (United States)

    Aggarwal, Manisha; Zhang, Jiangyang; Pletnikova, Olga; Crain, Barbara; Troncoso, Juan; Mori, Susumu

    2013-07-01

    A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125-255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7 T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong gray-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of gray matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. SAETTA: high resolution 3D mapping of the lightning activity around Corsica Island

    Science.gov (United States)

    Coquillat, Sylvain; Defer, Eric; Lambert, Dominique; Pinty, Jean-Pierre; Pont, Véronique; Prieur, Serge

    2017-04-01

    In the frame of the French atmospheric observatory CORSiCA (http://www.obs-mip.fr/corsica), a total lightning activity detection system called SAETTA (Suivi de l'Activité Electrique Tridimensionnelle Totale de l'Atmosphère) has been deployed in Corsica Island in order to strengthen the potential of observation of convective events causing heavy rainfall and flash floods in the West Mediterranean basin. SAETTA is a network of 12 LMA stations (Lightning Mapping Array) developed by New Mexico Tech (USA). The instrument allows observing lightning flashes in 3D and real time, at high temporal (80 µs) and spatial resolutions. It detects the radiations emitted by cloud discharges in the 60-66 MHz band, in a radius of about 350 km from the centre of the network, in passive mode and standalone (solar panel and batteries). Initially deployed in May 2014, SAETTA operated from July 13 to October 20 in 2014 and from April 19 to December 1st in 2015. It is now in permanent operation since 16 April 2016. Many high quality observations have been performed so far that provide an accurate location in space and time of the convective events. They also bring interesting dynamical and microphysical features of those events. For example the intensity of the convective surges, the transport of charged ice particles in the stratiform area of the thunderclouds can be deduced from SAETTA observations. Specific events have also been detected as well: bolts-from-the-blue, inter cloud discharges, high level discharges in convective but also in stratiform areas, inverted dipoles. The specific lightning patterns of 2015 illustrate the complex influence of the relief, probably via slope and valley winds over Corsica and via induced lee-side convergences over the sea. SAETTA is expected to operate for at least a decade over Corsica so it will participate to the calibration/validation of upcoming lightning detectors from space such as MTG-LI. It will also be a key instrument during the field

  17. CsI calorimeter with 3-D position resolution

    International Nuclear Information System (INIS)

    Schopper, F.; Andritschke, R.; Shaw, H.; Nefzger, C.; Zoglauer, A.; Schoenfelder, V.; Kanbach, G.

    2000-01-01

    New γ-ray calorimeter have been developed for the MEGA Compton camera. They consist of arrays of small CsI(Tl) scintillator bars read out by Silicon PIN-diodes and low noise, self-triggering frontend electronics. The length of the bars (the thickness of the calorimeter) can be varied for different applications to fit the stopping power needed and the light loss tolerable. In this paper we present calibration results from 2 cm long bars with diodes on one side, and 8 cm long bars with diodes on two opposite sides. Double-sided readout gives 3-D information of interactions which will be used to overcome the limited position resolution in Anger-cameras at high energies. Simpler detection devices like Anger-cameras might finally resolve only the centre of gravity. As events from γ-rays with energies of MeV do extend over several cm, it is a prerequisite for an imaging device to resolve the interaction structure in detail. Combining CsI(Tl) scintillators, Silicon PIN-photodiodes and frontend electronics inside the housing results in a cheap rugged design. While the development in our institute is mainly done for the Compton camera prototype, many other applications are conceivable

  18. Robust automatic high resolution segmentation of SOFC anode porosity in 3D

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Bowen, Jacob R.

    2008-01-01

    Routine use of 3D characterization of SOFCs by focused ion beam (FIB) serial sectioning is generally restricted by the time consuming task of manually delineating structures within each image slice. We apply advanced image analysis algorithms to automatically segment the porosity phase of an SOFC...... anode in 3D. The technique is based on numerical approximations to partial differential equations to evolve a 3D surface to the desired phase boundary. Vector fields derived from the experimentally acquired data are used as the driving force. The automatic segmentation compared to manual delineation...... reveals and good correspondence and the two approaches are quantitatively compared. It is concluded that the. automatic approach is more robust, more reproduceable and orders of magnitude quicker than manual segmentation of SOFC anode porosity for subsequent quantitative 3D analysis. Lastly...

  19. CeBr3 as a room-temperature, high-resolution gamma-ray detector

    International Nuclear Information System (INIS)

    Guss, Paul; Reed, Michael; Yuan Ding; Reed, Alexis; Mukhopadhyay, Sanjoy

    2009-01-01

    Cerium bromide (CeBr 3 ) has become a material of interest in the race for high-resolution gamma-ray spectroscopy at room temperature. This investigation quantified the potential of CeBr 3 as a room-temperature, high-resolution gamma-ray detector. The performance of CeBr 3 crystals was compared to other scintillation crystals of similar dimensions and detection environments. Comparison of self-activity of CeBr 3 to cerium-doped lanthanum tribromide (LaBr 3 :Ce) was performed. Energy resolution and relative intrinsic efficiency were measured and are presented.

  20. High-definition resolution three-dimensional imaging systems in laparoscopic radical prostatectomy: randomized comparative study with high-definition resolution two-dimensional systems.

    Science.gov (United States)

    Kinoshita, Hidefumi; Nakagawa, Ken; Usui, Yukio; Iwamura, Masatsugu; Ito, Akihiro; Miyajima, Akira; Hoshi, Akio; Arai, Yoichi; Baba, Shiro; Matsuda, Tadashi

    2015-08-01

    Three-dimensional (3D) imaging systems have been introduced worldwide for surgical instrumentation. A difficulty of laparoscopic surgery involves converting two-dimensional (2D) images into 3D images and depth perception rearrangement. 3D imaging may remove the need for depth perception rearrangement and therefore have clinical benefits. We conducted a multicenter, open-label, randomized trial to compare the surgical outcome of 3D-high-definition (HD) resolution and 2D-HD imaging in laparoscopic radical prostatectomy (LRP), in order to determine whether an LRP under HD resolution 3D imaging is superior to that under HD resolution 2D imaging in perioperative outcome, feasibility, and fatigue. One-hundred twenty-two patients were randomly assigned to a 2D or 3D group. The primary outcome was time to perform vesicourethral anastomosis (VUA), which is technically demanding and may include a number of technical difficulties considered in laparoscopic surgeries. VUA time was not significantly shorter in the 3D group (26.7 min, mean) compared with the 2D group (30.1 min, mean) (p = 0.11, Student's t test). However, experienced surgeons and 3D-HD imaging were independent predictors for shorter VUA times (p = 0.000, p = 0.014, multivariate logistic regression analysis). Total pneumoperitoneum time was not different. No conversion case from 3D to 2D or LRP to open RP was observed. Fatigue was evaluated by a simulation sickness questionnaire and critical flicker frequency. Results were not different between the two groups. Subjective feasibility and satisfaction scores were significantly higher in the 3D group. Using a 3D imaging system in LRP may have only limited advantages in decreasing operation times over 2D imaging systems. However, the 3D system increased surgical feasibility and decreased surgeons' effort levels without inducing significant fatigue.

  1. High-Resolution Visual 3D Recontructions for Rapid Archaeological Characterization

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The final output will be geotiffs and a custom 3D texture model format that allows for dynamic level-of-detail rendering. The work discussed in the proposal will...

  2. High-resolution MRI of cranial nerves in posterior fossa at 3.0 T.

    Science.gov (United States)

    Guo, Zi-Yi; Chen, Jing; Liang, Qi-Zhou; Liao, Hai-Yan; Cheng, Qiong-Yue; Fu, Shui-Xi; Chen, Cai-Xiang; Yu, Dan

    2013-02-01

    To evaluate the influence of high-resolution imaging obtainable with the higher field strength of 3.0 T on the visualization of the brain nerves in the posterior fossa. In total, 20 nerves were investigated on MRI of 12 volunteers each and selected for comparison, respectively, with the FSE sequences with 5 mm and 2 mm section thicknesses and gradient recalled echo (GRE) sequences acquired with a 3.0-T scanner. The MR images were evaluated by three independent readers who rated image quality according to depiction of anatomic detail and contrast with use of a rating scale. In general, decrease of the slice thickness showed a significant increase in the detection of nerves as well as in the image quality characteristics. Comparing FSE and GRE imaging, the course of brain nerves and brainstem vessels was visualized best with use of the three-dimensional (3D) pulse sequence. The comparison revealed the clear advantage of a thin section. The increased resolution enabled immediate identification of all brainstem nerves. GRE sequence most distinctly and confidently depicted pertinent structures and enables 3D reconstruction to illustrate complex relations of the brainstem. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  3. High-resolution T2-weighted MR imaging of the inner ear using a long echo-train-length 3D fast spin-echo sequence

    International Nuclear Information System (INIS)

    Naganawa, S.; Yamakawa, K.; Fukatsu, H.; Ishigaki, T.; Nakashima, T.; Sugimoto, H.; Aoki, I.; Miyazaki, M.; Takai, H.

    1996-01-01

    The purpose of this study was to assess the value of a long echo-train-length 3D fast spin-echo (3D-FSE) sequence in visualizing the inner ear structures. Ten normal ears and 50 patient ears were imaged on a 1.5T MR unit using a head coil. Axial high-resolution T2-weighted images of the inner ear and the internal auditory canal (IAC) were obtained in 15 min. In normal ears the reliability of the visualization for the inner ear structures was evaluated on original images and the targeted maximum intensity projection (MIP) images of the labyrinth. In ten normal ears, 3D surface display (3D) images were also created and compared with MIP images. On the original images the cochlear aqueduct, the vessels in the vicinity of the IAC, and more than three branches of the cranial nerves were visualized in the IAC in all the ears. The visibility of the endolympathic duct was 80%. On the MIP images the visibility of the three semicircular canals, anterior and posterior ampulla, and of more than two turns of the cochlea was 100%. The MIP images and 3D images were almost comparable. The visibility of the endolymphatic duct was 80% in normal ears and 0% in the affected ears of the patients with Meniere's disease (p<0.001). In one patient ear a small intracanalicular tumor was depicted clearly. In conclusion, the long echo train length T2-weighted 3D-FSE sequence enables the detailed visualization of the tiny structures of the inner ear and the IAC within a clinically acceptable scan time. Furthermore, obtaining a high contrast between the soft/bony tissue and the cerebrospinal/endolymph/perilymph fluid would be of significant value in the diagnosis of the pathologic conditions around the labyrinth and the IAC. (orig.)

  4. Convergence and resolution recovery of block-iterative EM algorithms modeling 3D detector response in SPECT

    International Nuclear Information System (INIS)

    Lalush, D.S.; Tsui, B.M.W.; Karimi, S.S.

    1996-01-01

    We evaluate fast reconstruction algorithms including ordered subsets-EM (OS-EM) and Rescaled Block Iterative EM (RBI-EM) in fully 3D SPECT applications on the basis of their convergence and resolution recovery properties as iterations proceed. Using a 3D computer-simulated phantom consisting of 3D Gaussian objects, we simulated projection data that includes only the effects of sampling and detector response of a parallel-hole collimator. Reconstructions were performed using each of the three algorithms (ML-EM, OS-EM, and RBI-EM) modeling the 3D detector response in the projection function. Resolution recovery was evaluated by fitting Gaussians to each of the four objects in the iterated image estimates at selected intervals. Results show that OS-EM and RBI-EM behave identically in this case; their resolution recovery results are virtually indistinguishable. Their resolution behavior appears to be very similar to that of ML-EM, but accelerated by a factor of twenty. For all three algorithms, smaller objects take more iterations to converge. Next, we consider the effect noise has on convergence. For both noise-free and noisy data, we evaluate the log likelihood function at each subiteration of OS-EM and RBI-EM, and at each iteration of ML-EM. With noisy data, both OS-EM and RBI-EM give results for which the log-likelihood function oscillates. Especially for 180-degree acquisitions, RBI-EM oscillates less than OS-EM. Both OS-EM and RBI-EM appear to converge to solutions, but not to the ML solution. We conclude that both OS-EM and RBI-EM can be effective algorithms for fully 3D SPECT reconstruction. Both recover resolution similarly to ML-EM, only more quickly

  5. Reconstruction of high resolution MLC leaf positions using a low resolution detector for accurate 3D dose reconstruction in IMRT

    NARCIS (Netherlands)

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-01-01

    In pre-treatment dose verification, low resolution detector systems are unable to identify shifts of individual leafs of high resolution multi leaf collimator (MLC) systems from detected changes in the dose deposition. The goal of this study was to introduce an alternative approach (the shutter

  6. Non-destructive testing of layer-to-layer fusion of a 3D print using ultrahigh resolution optical coherence tomography

    Science.gov (United States)

    Israelsen, Niels M.; Maria, Michael; Feuchter, Thomas; Podoleanu, Adrian; Bang, Ole

    2017-06-01

    Within the last decade, 3D printing has moved from a costly approach of building mechanical items to the present state-of-the-art phase where access to 3D printers is now common, both in industry and in private places. The plastic printers are the most common type of 3D printers providing prints that are light, robust and of lower cost. The robustness of the structure printed is only maintained if each layer printed is properly fused to its previously printed layers. In situations where the printed component has to accomplish a key mechanical role there is a need to characterize its mechanical strength. This may only be revealed by in-depth testing in order to discover unwanted air-gaps in the structure. Optical coherence tomography (OCT) is an in-depth imaging method, that is sensitive to variations in the refractive index and therefore can resolve with high resolution translucid samples. We report on volume imaging of a 3D printed block made with 100% PLA fill. By employing ultrahigh resolution OCT (UHR-OCT) we show that some parts of the PLA volume reveal highly scattering interfaces which likely correspond to transitions from one layer to another. In doing so, we document that UHR-OCT can act as a powerful tool that can be used in detecting fractures between layers stemming from insufficient fusion between printed structure layers. UHR-OCT can therefore serve as an useful assessment method of quality of 3D prints.

  7. 3D CISS, 3D MP-PAGE and 2D TSE for MRI prior to Cochlear implantation

    International Nuclear Information System (INIS)

    Seitz, J.; Held, P.; Voelk, M.; Lenhart, M.; Strotzer, M.; Waldeck, A.

    2000-01-01

    Purpose: The aim of this study was to determine the presurgical predictive value of high resolution MRI in patients scheduled for chochlear implantation. Method and material: The presurgical MRI (3D CISS, 3D MP-RAGE with and without i.v. contrast medium, 2D TSE) findings of 54 patients and the intraoperative situation reported by the surgeon were compared retrospectively. The surgical and functional success of the cochlear implantation was evaluated. Results: We found a high degree of correlation between MRI and intraoperative findings concerning the patency of the whole cochlea and anomalies as well as in the diagnosis of pathology of the cochlear, vestibular and facial nerves and in anomalies of the internal auditory canal. However, in four out of 54 patients there was a false negative prediction regarding the patency of the cochlea. The sensitivity was 50% (4/8), the specificity 100% (46/46). Concerning the surgical success the accuracy was 100%. In all patients MRI gave sufficient anatomical information to the surgeon concerning the jugular bulb and the facial nerve. Conclusion: A high-resolution MRI protocol consisting of coronal 2D T2w TSE, 3D T2*w transverse CISS; plain and contrast enhanced sagittal T1w 3D MP-RAGE is recommended for the evaluation of candidates scheduled for cochlear implantation. (orig.) [de

  8. 3D printable highly conductive and mechanically strong thermoplastic-based nanocomposites

    Science.gov (United States)

    Tabiai, Ilyass; Therriault, Daniel

    Highly conductive 3D printable inks can be used to design electrical devices with various functionalities and geometries. We use the solvent evaporation assisted 3D-printing method to create high resolution structures made of poly(lactid) acid (PLA) reinforced with multi-walled carbon nanotube (MWCNTs). We characterize fibers with diameters ranging between 100 μm to 330 μm and reinforced with MWCNTs from 0.5 up to 40wt% here. Tensile test, shrinkage ratio, density and electrical conductivity measurements of the printed nanocomposite are presented. The material's electrical conductivity is strongly improved by adding MWCNTs (up to 3000S/m), this value was found to be higher than any 3D-printable carbon based material available in the literature. It is observed that MWCNTs significantly increase the material's strength and stiffness while reducing its ductility. The ink's density was also higher while still being in the range of polymers' densities. The presented nanocomposite is light weight, highly conductive, has good mechanical properties and can be printed in a freeform fashion at the micro scale. A myriad of low power consumption with less resistive heating sensors and devices can potentially be designed using it and integrated into other 3D printable products.

  9. The new high resolution method of Godunov`s type for 3D viscous flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yershov, S.V.; Rusanov, A.V. [Ukranian National Academy of Sciences, Kahrkov (Ukraine)

    1996-12-31

    The numerical method is suggested for the calculations of the 3D viscous compressible flows described by the thin-layer Reynolds-averaged Navier-Stokes equations. The method is based on the Godunov`s finite-difference scheme and it uses the ENO reconstruction suggested by Harten to achieve the uniformly high-order accuracy. The computational efficiency is provided with the simplified multi grid approach and the implicit step written in {delta} -form. The turbulent effects are simulated with the Baldwin - Lomax turbulence model. The application package FlowER is developed to calculate the 3D turbulent flows within complex-shape channels. The numerical results for the 3D flow around a cylinder and through the complex-shaped channels show the accuracy and the reliability of the suggested method. (author)

  10. The new high resolution method of Godunov`s type for 3D viscous flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yershov, S V; Rusanov, A V [Ukranian National Academy of Sciences, Kahrkov (Ukraine)

    1997-12-31

    The numerical method is suggested for the calculations of the 3D viscous compressible flows described by the thin-layer Reynolds-averaged Navier-Stokes equations. The method is based on the Godunov`s finite-difference scheme and it uses the ENO reconstruction suggested by Harten to achieve the uniformly high-order accuracy. The computational efficiency is provided with the simplified multi grid approach and the implicit step written in {delta} -form. The turbulent effects are simulated with the Baldwin - Lomax turbulence model. The application package FlowER is developed to calculate the 3D turbulent flows within complex-shape channels. The numerical results for the 3D flow around a cylinder and through the complex-shaped channels show the accuracy and the reliability of the suggested method. (author)

  11. High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area

    Science.gov (United States)

    Ishiyama, Tatsuya; Sato, Hiroshi; Abe, Susumu; Kawasaki, Shinji; Kato, Naoko

    2016-10-01

    We collected and interpreted high-resolution 3D seismic reflection data across a hypothesized fault scarp, along the largest active fault that could generate hazardous earthquakes in the Tokyo metropolitan area. The processed and interpreted 3D seismic cube, linked with nearby borehole stratigraphy, suggests that a monocline that deforms lower Pleistocene units is unconformably overlain by middle Pleistocene conglomerates. Judging from structural patterns and vertical separation on the lower-middle Pleistocene units and the ground surface, the hypothesized scarp was interpreted as a terrace riser rather than as a manifestation of late Pleistocene structural growth resulting from repeated fault activity. Devastating earthquake scenarios had been predicted along the fault in question based on its proximity to the metropolitan area, however our new results lead to a significant decrease in estimated fault length and consequently in the estimated magnitude of future earthquakes associated with reactivation. This suggests a greatly reduced seismic hazard in the Tokyo metropolitan area from earthquakes generated by active intraplate crustal faults.

  12. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes; William E. Harrison

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.

  13. Mapping Cortical Laminar Structure in the 3D BigBrain.

    Science.gov (United States)

    Wagstyl, Konrad; Lepage, Claude; Bludau, Sebastian; Zilles, Karl; Fletcher, Paul C; Amunts, Katrin; Evans, Alan C

    2018-07-01

    Histological sections offer high spatial resolution to examine laminar architecture of the human cerebral cortex; however, they are restricted by being 2D, hence only regions with sufficiently optimal cutting planes can be analyzed. Conversely, noninvasive neuroimaging approaches are whole brain but have relatively low resolution. Consequently, correct 3D cross-cortical patterns of laminar architecture have never been mapped in histological sections. We developed an automated technique to identify and analyze laminar structure within the high-resolution 3D histological BigBrain. We extracted white matter and pial surfaces, from which we derived histologically verified surfaces at the layer I/II boundary and within layer IV. Layer IV depth was strongly predicted by cortical curvature but varied between areas. This fully automated 3D laminar analysis is an important requirement for bridging high-resolution 2D cytoarchitecture and in vivo 3D neuroimaging. It lays the foundation for in-depth, whole-brain analyses of cortical layering.

  14. P-Cable 3D high-resolution seismic data as a powerful tool to characterize subglacial landforms and their genesis: A case study from the SW Barents Sea

    Science.gov (United States)

    Bellwald, Benjamin; Planke, Sverre; Matar, Mohammed; Daria Piasecka, Emilia

    2017-04-01

    High-resolution 3D seismic data have significantly increased our knowledge about petroleum reservoirs and submarine geohazards. However, little effort has been undertaken to evaluate the potential of such data for mapping subglacial landforms. The Barents Sea has been subjected to repeated Pleistocene glaciations, which intensively eroded the region, resulting in a generally thin (geology. The seismic data cover an area of 200 km2 in water depths of 380-470 m with a recorded in-line spacing of geology. Therefore high-resolution seismic data is beneficial in identifying and analyzing small-scale glacial structures and their expression in the underlying strata in great detail, contributing to the understanding of processes involved in paleo-ice stream dynamics.

  15. Quantitative evaluation of interstitial pneumonia using 3D-curved high-resolution CT imaging parallel to the chest wall: A pilot study.

    Directory of Open Access Journals (Sweden)

    Hiroyasu Umakoshi

    Full Text Available To quantify the imaging findings of patients with interstitial pneumonia (IP and emphysema using three-dimensional curved high-resolution computed tomography (3D-cHRCT at a constant depth from the chest wall, and compare the results to visual assessment of IP and each patient's diffusing capacity of the lungs for carbon monoxide (DLco.We retrospectively reviewed the axial CT findings and pulmonary function test results of 95 patients with lung cancer (72 men and 23 women, aged 45-84 years with or without IP, as follows: non-IP (n = 47, mild IP (n = 31, and moderate IP (n = 17. The 3D-cHRCT images of the lung at a 1-cm depth from the chest wall were reconstructed automatically using original software; total area (TA, high-attenuation area (HAA >-500 HU, and low-attenuation area (LAA <-950 HU were calculated on a workstation. The %HAA and %LAA were calculated as follows: [Formula: see text], and [Formula: see text].The %HAA and %LAA respective values were 3.2±0.9 and 27.7±8.2, 3.9±1.2 and 27.6±5.9, and 6.9±2.2 and 25.4±8.7 in non-IP, mild IP, and moderate IP patients, respectively. There were significant differences in %HAA between the 3 groups of patients (P<0.001, but no differences in %LAA (P = 0.558. Multiple linear regression analysis revealed that %HAA and %LAA were negatively correlated with predicted DLco (standard partial regression coefficient [b*] = -0.453, P<0.001; b* = -0.447, P<0.001, respectively.The %HAA and %LAA values computed using 3D-cHRCT were significantly correlated with DLco and may be important quantitative parameters for both IP and emphysema.

  16. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences

    Energy Technology Data Exchange (ETDEWEB)

    Altahawi, Faysal F.; Blount, Kevin J.; Omar, Imran M. [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Morley, Nicholas P. [Marshfield Clinic, Department of Radiology, Marshfield, WI (United States); Raithel, Esther [Siemens Healthcare GmbH, Erlangen (Germany)

    2017-01-15

    To compare a faster, new, high-resolution accelerated 3D-fast-spin-echo (3D-FSE) acquisition sequence (CS-SPACE) to traditional 2D and high-resolution 3D sequences for knee 3-T magnetic resonance imaging (MRI). Twenty patients received knee MRIs that included routine 2D (T1, PD ± FS, T2-FS; 0.5 x 0.5 x 3 mm{sup 3}; ∝10 min), traditional 3D FSE (SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝7.5 min), and accelerated 3D-FSE prototype (CS-SPACE-PD-FS; 0.5 x 0.5 x 0.5 mm{sup 3}; ∝5 min) acquisitions on a 3-T MRI system (Siemens MAGNETOM Skyra). Three musculoskeletal radiologists (MSKRs) prospectively and independently reviewed the studies with graded surveys comparing image and diagnostic quality. Tissue-specific signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were also compared. MSKR-perceived diagnostic quality of cartilage was significantly higher for CS-SPACE than for SPACE and 2D sequences (p < 0.001). Assessment of diagnostic quality of menisci and synovial fluid was higher for CS-SPACE than for SPACE (p < 0.001). CS-SPACE was not significantly different from SPACE but had lower assessments than 2D sequences for evaluation of bones, ligaments, muscles, and fat (p ≤ 0.004). 3D sequences had higher spatial resolution, but lower overall assessed contrast (p < 0.001). Overall image quality from CS-SPACE was assessed as higher than SPACE (p = 0.007), but lower than 2D sequences (p < 0.001). Compared to SPACE, CS-SPACE had higher fluid SNR and CNR against all other tissues (all p < 0.001). The CS-SPACE prototype allows for faster isotropic acquisitions of knee MRIs over currently used protocols. High fluid-to-cartilage CNR and higher spatial resolution over routine 2D sequences may present a valuable role for CS-SPACE in the evaluation of cartilage and menisci. (orig.)

  17. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    International Nuclear Information System (INIS)

    Li, Guang; Wei, Jie; Kadbi, Mo; Moody, Jason; Sun, August; Zhang, Shirong; Markova, Svetlana; Zakian, Kristen; Hunt, Margie; Deasy, Joseph O.

    2017-01-01

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm"3) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm"3). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4DMRI has been

  18. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Kadbi, Mo [Philips Healthcare, MR Therapy Cleveland, Ohio (United States); Moody, Jason; Sun, August; Zhang, Shirong; Markova, Svetlana; Zakian, Kristen; Hunt, Margie; Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2017-06-01

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm{sup 3}) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm{sup 3}). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4

  19. High resolution integral holography using Fourier ptychographic approach.

    Science.gov (United States)

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  20. High-resolution, time-resolved MRA provides superior definition of lower-extremity arterial segments compared to 2D time-of-flight imaging.

    Science.gov (United States)

    Thornton, F J; Du, J; Suleiman, S A; Dieter, R; Tefera, G; Pillai, K R; Korosec, F R; Mistretta, C A; Grist, T M

    2006-08-01

    To evaluate a novel time-resolved contrast-enhanced (CE) projection reconstruction (PR) magnetic resonance angiography (MRA) method for identifying potential bypass graft target vessels in patients with Class II-IV peripheral vascular disease. Twenty patients (M:F = 15:5, mean age = 58 years, range = 48-83 years), were recruited from routine MRA referrals. All imaging was performed on a 1.5 T MRI system with fast gradients (Signa LX; GE Healthcare, Waukesha, WI). Images were acquired with a novel technique that combined undersampled PR with a time-resolved acquisition to yield an MRA method with high temporal and spatial resolution. The method is called PR hyper time-resolved imaging of contrast kinetics (PR-hyperTRICKS). Quantitative and qualitative analyses were used to compare two-dimensional (2D) time-of-flight (TOF) and PR-hyperTRICKS in 13 arterial segments per lower extremity. Statistical analysis was performed with the Wilcoxon signed-rank test. Fifteen percent (77/517) of the vessels were scored as missing or nondiagnostic with 2D TOF, but were scored as diagnostic with PR-hyperTRICKS. Image quality was superior with PR-hyperTRICKS vs. 2D TOF (on a four-point scale, mean rank = 3.3 +/- 1.2 vs. 2.9 +/- 1.2, P < 0.0001). PR-hyperTRICKS produced images with high contrast-to-noise ratios (CNR) and high spatial and temporal resolution. 2D TOF images were of inferior quality due to moderate spatial resolution, inferior CNR, greater flow-related artifacts, and absence of temporal resolution. PR-hyperTRICKS provides superior preoperative assessment of lower limb ischemia compared to 2D TOF.

  1. 4D very high-resolution topography monitoring of surface deformation using UAV-SfM framework.

    Science.gov (United States)

    Clapuyt, François; Vanacker, Veerle; Schlunegger, Fritz; Van Oost, Kristof

    2016-04-01

    During the last years, exploratory research has shown that UAV-based image acquisition is suitable for environmental remote sensing and monitoring. Image acquisition with cameras mounted on an UAV can be performed at very-high spatial resolution and high temporal frequency in the most dynamic environments. Combined with Structure-from-Motion algorithm, the UAV-SfM framework is capable of providing digital surface models (DSM) which are highly accurate when compared to other very-high resolution topographic datasets and highly reproducible for repeated measurements over the same study area. In this study, we aim at assessing (1) differential movement of the Earth's surface and (2) the sediment budget of a complex earthflow located in the Central Swiss Alps based on three topographic datasets acquired over a period of 2 years. For three time steps, we acquired aerial photographs with a standard reflex camera mounted on a low-cost and lightweight UAV. Image datasets were then processed with the Structure-from-Motion algorithm in order to reconstruct a 3D dense point cloud representing the topography. Georeferencing of outputs has been achieved based on the ground control point (GCP) extraction method, previously surveyed on the field with a RTK GPS. Finally, digital elevation model of differences (DOD) has been computed to assess the topographic changes between the three acquisition dates while surface displacements have been quantified by using image correlation techniques. Our results show that the digital elevation model of topographic differences is able to capture surface deformation at cm-scale resolution. The mean annual displacement of the earthflow is about 3.6 m while the forefront of the landslide has advanced by ca. 30 meters over a period of 18 months. The 4D analysis permits to identify the direction and velocity of Earth movement. Stable topographic ridges condition the direction of the flow with highest downslope movement on steep slopes, and diffuse

  2. The point-spread function measure of resolution for the 3-D electrical resistivity experiment

    Science.gov (United States)

    Oldenborger, Greg A.; Routh, Partha S.

    2009-02-01

    The solution appraisal component of the inverse problem involves investigation of the relationship between our estimated model and the actual model. However, full appraisal is difficult for large 3-D problems such as electrical resistivity tomography (ERT). We tackle the appraisal problem for 3-D ERT via the point-spread functions (PSFs) of the linearized resolution matrix. The PSFs represent the impulse response of the inverse solution and quantify our parameter-specific resolving capability. We implement an iterative least-squares solution of the PSF for the ERT experiment, using on-the-fly calculation of the sensitivity via an adjoint integral equation with stored Green's functions and subgrid reduction. For a synthetic example, analysis of individual PSFs demonstrates the truly 3-D character of the resolution. The PSFs for the ERT experiment are Gaussian-like in shape, with directional asymmetry and significant off-diagonal features. Computation of attributes representative of the blurring and localization of the PSF reveal significant spatial dependence of the resolution with some correlation to the electrode infrastructure. Application to a time-lapse ground-water monitoring experiment demonstrates the utility of the PSF for assessing feature discrimination, predicting artefacts and identifying model dependence of resolution. For a judicious selection of model parameters, we analyse the PSFs and their attributes to quantify the case-specific localized resolving capability and its variability over regions of interest. We observe approximate interborehole resolving capability of less than 1-1.5m in the vertical direction and less than 1-2.5m in the horizontal direction. Resolving capability deteriorates significantly outside the electrode infrastructure.

  3. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy

    Science.gov (United States)

    Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.

    2018-03-01

    Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.

  4. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  5. Zooming in: high resolution 3D reconstruction of differently stained histological whole slide images

    Science.gov (United States)

    Lotz, Johannes; Berger, Judith; Müller, Benedikt; Breuhahn, Kai; Grabe, Niels; Heldmann, Stefan; Homeyer, André; Lahrmann, Bernd; Laue, Hendrik; Olesch, Janine; Schwier, Michael; Sedlaczek, Oliver; Warth, Arne

    2014-03-01

    Much insight into metabolic interactions, tissue growth, and tissue organization can be gained by analyzing differently stained histological serial sections. One opportunity unavailable to classic histology is three-dimensional (3D) examination and computer aided analysis of tissue samples. In this case, registration is needed to reestablish spatial correspondence between adjacent slides that is lost during the sectioning process. Furthermore, the sectioning introduces various distortions like cuts, folding, tearing, and local deformations to the tissue, which need to be corrected in order to exploit the additional information arising from the analysis of neighboring slide images. In this paper we present a novel image registration based method for reconstructing a 3D tissue block implementing a zooming strategy around a user-defined point of interest. We efficiently align consecutive slides at increasingly fine resolution up to cell level. We use a two-step approach, where after a macroscopic, coarse alignment of the slides as preprocessing, a nonlinear, elastic registration is performed to correct local, non-uniform deformations. Being driven by the optimization of the normalized gradient field (NGF) distance measure, our method is suitable for differently stained and thus multi-modal slides. We applied our method to ultra thin serial sections (2 μm) of a human lung tumor. In total 170 slides, stained alternately with four different stains, have been registered. Thorough visual inspection of virtual cuts through the reconstructed block perpendicular to the cutting plane shows accurate alignment of vessels and other tissue structures. This observation is confirmed by a quantitative analysis. Using nonlinear image registration, our method is able to correct locally varying deformations in tissue structures and exceeds the limitations of globally linear transformations.

  6. MAP3D: a media processor approach for high-end 3D graphics

    Science.gov (United States)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  7. Styrylpyrylium Salts: 1H and 13C NMR High-Resolution Spectroscopy (1D and 2D

    Directory of Open Access Journals (Sweden)

    Jean Claude W. Ouédraogo

    2010-01-01

    Full Text Available 1H and 13C NMR high-resolution spectroscopy (1D and 2D (1H, 1H-COSY, HSQC, HMBC for four styrylpyrylium perchlorates were carried out and signal attributions are reported. Chemical shifts observed on 13C NMR spectra for the styrylpyrylium salts were compared with net atomic charge for carbon obtained by AM1 semiempirical calculations. The position of the styryl group present low effect on chemical shifts for carbon atoms, while the presence of methyl group led to the unshielding of the substituted carbon.

  8. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  9. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

    Science.gov (United States)

    Coggins, Brian E; Zhou, Pei

    2008-12-01

    Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

  10. High resolution T{sub 2}{sup *}-weighted magnetic resonance imaging at 3 Tesla using PROPELLER-EPI

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Martin; Reichenbach, Juergen R. [Jena University Hospital (Germany). Medical Physics Group

    2014-09-01

    We report the application of PROPELLER-EPI for high resolution T{sub 2}{sup *}-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 x 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T{sub 2}{sup *}-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. (orig.)

  11. Conceptual design of high resolution and reliable density measurement system on helical reactor FFHR-d1 and demonstration on LHD

    International Nuclear Information System (INIS)

    Akiyama, T.; Yasuhara, R.; Isobe, M.; Sakamoto, R.; Goto, T.; Kawahata, K.; Sagara, A.; Nakayama, K.; Okajima, S.

    2014-10-01

    This paper describes a conceptual design of the density measurement system on the helical reactor FFHR-d1 based on its quantitative operation scenario. The density measurement is required to meet the reactor design, and to have a high density resolution of the order of 10 17 m -3 with a time resolution of 10 ms and high reliability (no fringe jump). “A dispersion interferometer” is designed and a prototype is tested and installed on LHD, which can realize a demo relevant density plasma. The prototype demonstrates the feasibility on a demo reactor. (author)

  12. High-Resolution 3 T MR Microscopy Imaging of Arterial Walls

    International Nuclear Information System (INIS)

    Sailer, Johannes; Rand, Thomas; Berg, Andreas; Sulzbacher, Irene; Peloschek, P.; Hoelzenbein, Thomas; Lammer, Johannes

    2006-01-01

    Purpose. To achieve a high spatial resolution in MR imaging that allows for clear visualization of anatomy and even histology and documentation of plaque morphology in in vitro samples from patients with advanced atherosclerosis. A further objective of our study was to evaluate whether T2-weighted high-resolution MR imaging can provide accurate classification of atherosclerotic plaque according to a modified American Heart Association classification. Methods. T2-weighted images of arteries were obtained in 13 in vitro specimens using a 3 T MR unit (Medspec 300 Avance/Bruker, Ettlingen, Germany) combined with a dedicated MR microscopy system. Measurement parameters were: T2-weighted sequences with TR 3.5 sec, TE 15-120 msec; field of view (FOV) 1.4 x 1.4; NEX 8; matrix 192; and slice thickness 600 μm. MR measurements were compared with corresponding histologic sections. Results. We achieved excellent spatial and contrast resolution in all specimens. We found high agreement between MR images and histology with regard to the morphology and extent of intimal proliferations in all but 2 specimens. We could differentiate fibrous caps and calcifications from lipid plaque components based on differences in signal intensity in order to differentiate hard and soft atheromatous plaques. Hard plaques with predominantly intimal calcifications were found in 7 specimens, and soft plaques with a cholesterol/lipid content in 5 cases. In all specimens, hemorrhage or thrombus formation, and fibrotic and hyalinized tissue could be detected on both MR imaging and histopathology. Conclusion. High-resolution, high-field MR imaging of arterial walls demonstrates the morphologic features, volume, and extent of intimal proliferations with high spatial and contrast resolution in in vitro specimens and can differentiate hard and soft plaques

  13. High Resolution 3D Earth Observation Data Analysis for Safeguards Activities

    International Nuclear Information System (INIS)

    D'Angelo, P.; Eineder, M.; Rossi, C.

    2015-01-01

    This paper provides an overview of the investigations performed in the last three years at DLR and highlights the application of SAR and optical data for 3D analysis in the context of Safeguards. The Research Center Juelich and the adjacent open cut mines were used as main test site, and a comprehensive stack of ascending and descending TerraSAR data was acquired over two years. TerraSAR data acquisition was performed, and various ways to visualize stacks of radar images were evaluated. Building height estimation was performed using a combination of ascending-descending radar images, as well as height-form-shadow, height-from-layover. A tutorial on building signatures from SAR images highlighted the sensor specific imaging characteristics. These topics were particularly relevant in safeguards activity with a ''small-budget'' as only a single image - or a couple - were employed. Interferometric coherence map interpretation allows the detection of used dirt roads. Digital surface models (DSM) were generated from TanDEM-X interferometric data and from optical VHR data. Sub-meterWorldview-2 and GeoEye-1 data was processed into highly detailed DSM with a grid spacing of 1 m, showing building structures. 3D change and volume detection was performed with both optical and radar DSMs. The TanDEM-X DSMs proved useful for volume change detection and computation in mining areas, and down to building level with optical data. Virtual fly-through were found to be a good tool to provide an intuitive understanding of site structure and might be useful for inspector briefing. Tools for most of the above mentioned tasks have been developed for the ENVI environment and can be used by IAEA internally. (author)

  14. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be

  15. Non-destructive testing of layer-to-layer fusion of a 3D print using ultrahigh resolution optical coherence tomography

    DEFF Research Database (Denmark)

    Israelsen, Niels Møller; Maria, Michael; Feuchter, Thomas

    2017-01-01

    Within the last decade, 3D printing has moved from a costly approach of building mechanical items to the present state-of-the-art phase where access to 3D printers is now common, both in industry and in private places. The plastic printers are the most common type of 3D printers providing prints...... on volume imaging of a 3D printed block made with 100% PLA fill. By employing ultrahigh resolution OCT (UHR-OCT) we show that some parts of the PLA volume reveal highly scattering interfaces which likely correspond to transitions from one layer to another. In doing so, we document that UHR-OCT can act...... as a powerful tool that can be used in detecting fractures between layers stemming from insufficient fusion between printed structure layers. UHR-OCT can therefore serve as an useful assessment method of quality of 3D prints....

  16. High-Resolution Powder Diffractometer HRPT for Thermal Neutrons at SINQ

    International Nuclear Information System (INIS)

    Fischer, P.; Koch, M.; Koennecke, M.; Pomjakushin, V.; Schefer, J.; Schlumpf, N.

    1999-01-01

    The new neutron powder diffractometer at the Swiss continuous spallation neutron source SINQ is designed as a flexible instrument for high resolution [best values δd/d: ( -3 with d = lattice spacing in the high resolution or high intensity modes, respectively]. It uses large scattering angles 2Θ M = 120 deg or 90 deg of the monochromator, a 28 cm high, vertically focusing wafer type Ge(hkk) monochromator and a position-sensitive 3 He detector(3.6 bar) produced by Cerca at Romans, France. It has 1600 (25x64) detectors with an angular separation of 0.1 deg and includes modern electronics developed by E. Berruyer, Cerca and PSI. The SICS software of PSI controls the instrument with a server running on an unix workstation and clients written in Java through the TCP/IP network. The design principles and first experiences are presented. The interdisciplinary applications of HRPT will permit high-resolution refinement of chemical and magnetic structures as well as phase analysis including the detection of defects and internal microstrain. In particular real-time investigations of chemical or structural changes and of magnetic phase transitions in crystalline, quasicrystalline, amorphous and liquid samples including technically interesting new materials are possible. (author)

  17. Initial experience with 3D isotropic high-resolution 3 T MR arthrography of the wrist.

    Science.gov (United States)

    Sutherland, John K; Nozaki, Taiki; Kaneko, Yasuhito; J Yu, Hon; Rafijah, Gregory; Hitt, David; Yoshioka, Hiroshi

    2016-01-16

    Our study was performed to evaluate the image quality of 3 T MR wrist arthrograms with attention to ulnar wrist structures, comparing image quality of isotropic 3D proton density fat suppressed turbo spin echo (PDFS TSE) sequence versus standard 2D 3 T sequences as well as comparison with 1.5 T MR arthrograms. Eleven consecutive 3 T MR wrist arthrograms were performed and the following sequences evaluated: 3D isotropic PDFS, repetition time/echo time (TR/TE) 1400/28.3 ms, voxel size 0.35x0.35x0.35 mm, acquisition time 5 min; 2D coronal sequences with slice thickness 2 mm: T1 fat suppressed turbo spin echo (T1FS TSE) (TR/TE 600/20 ms); proton density (PD) TSE (TR/TE 3499/27 ms). A 1.5 T group of 18 studies with standard sequences were evaluated for comparison. All MR imaging followed fluoroscopically guided intra-articular injection of dilute gadolinium contrast. Qualitative assessment related to delineation of anatomic structures between 1.5 T and 3 T MR arthrograms was carried out using Mann-Whitney test and the differences in delineation of anatomic structures among each sequence in 3 T group were analyzed with Wilcoxon signed-rank test. Quantitative assessment of mean relative signal intensity (SI) and relative contrast measurements was performed using Wilcoxon signed-rank test. Mean qualitative scores for 3 T sequences were significantly higher than 1.5 T (p < 0.01), with isotropic 3D PDFS sequence having highest mean qualitative scores (p < 0.05). Quantitative analysis demonstrated no significant difference in relative signal intensity among the 3 T sequences. Significant differences were found in relative contrast between fluid-bone and fluid-fat comparing 3D and 2D PDFS (p < 0.01). 3D isotropic PDFS sequence showed promise in both qualitative and quantitative assessment, suggesting this may be useful for MR wrist arthrograms at 3 T. Primary reasons for diagnostic potential include the ability to make reformations in any

  18. Strategies for High-Resolution 3-D Millimeter Wave Imaging.

    Science.gov (United States)

    1987-02-01

    Co-Investigator K.S. Lee - Graduate Student (50%) P. Frangos - Graduate Student (50%) Y. Shen - Graduate Student (50%) K. Schultz - Graduate...period of this report: * P. Frangos (Ph.D.) - "One-Dinensionl Inverse Scattering: Exact Methods and Applications", * C.L. Werner (Ph.D.) - ŗ-D

  19. 3D micro-particle image modeling and its application in measurement resolution investigation for visual sensing based axial localization in an optical microscope

    International Nuclear Information System (INIS)

    Wang, Yuliang; Li, Xiaolai; Bi, Shusheng; Zhu, Xiaofeng; Liu, Jinhua

    2017-01-01

    Visual sensing based three dimensional (3D) particle localization in an optical microscope is important for both fundamental studies and practical applications. Compared with the lateral ( X and Y ) localization, it is more challenging to achieve a high resolution measurement of axial particle location. In this study, we aim to investigate the effect of different factors on axial measurement resolution through an analytical approach. Analytical models were developed to simulate 3D particle imaging in an optical microscope. A radius vector projection method was applied to convert the simulated particle images into radius vectors. With the obtained radius vectors, a term of axial changing rate was proposed to evaluate the measurement resolution of axial particle localization. Experiments were also conducted for comparison with that obtained through simulation. Moreover, with the proposed method, the effects of particle size on measurement resolution were discussed. The results show that the method provides an efficient approach to investigate the resolution of axial particle localization. (paper)

  20. Magnetic Particle Imaging for High Temporal Resolution Assessment of Aneurysm Hemodynamics.

    Directory of Open Access Journals (Sweden)

    Jan Sedlacik

    Full Text Available The purpose of this work was to demonstrate the capability of magnetic particle imaging (MPI to assess the hemodynamics in a realistic 3D aneurysm model obtained by additive manufacturing. MPI was compared with magnetic resonance imaging (MRI and dynamic digital subtraction angiography (DSA.The aneurysm model was of saccular morphology (7 mm dome height, 5 mm cross-section, 3-4 mm neck, 3.5 mm parent artery diameter and connected to a peristaltic pump delivering a physiological flow (250 mL/min and pulsation rate (70/min. High-resolution (4 h long 4D phase contrast flow quantification (4D pc-fq MRI was used to directly assess the hemodynamics of the model. Dynamic MPI, MRI, and DSA were performed with contrast agent injections (3 mL volume in 3 s through a proximally placed catheter.4D pc-fq measurements showed distinct pulsatile flow velocities (20-80 cm/s as well as lower flow velocities and a vortex inside the aneurysm. All three dynamic methods (MPI, MRI, and DSA also showed a clear pulsation pattern as well as delayed contrast agent dynamics within the aneurysm, which is most likely caused by the vortex within the aneurysm. Due to the high temporal resolution of MPI and DSA, it was possible to track the contrast agent bolus through the model and to estimate the average flow velocity (about 60 cm/s, which is in accordance with the 4D pc-fq measurements.The ionizing radiation free, 4D high resolution MPI method is a very promising tool for imaging and characterization of hemodynamics in human. It carries the possibility of overcoming certain disadvantages of other modalities like considerably lower temporal resolution of dynamic MRI and limited 2D characteristics of DSA. Furthermore, additive manufacturing is the key for translating powerful pre-clinical techniques into the clinic.

  1. SHARING HIGH-RESOLUTION MODELS AND INFORMATION ON WEB: THE WEB MODULE OF BIM3DSG SYSTEM

    Directory of Open Access Journals (Sweden)

    F. Rechichi

    2016-06-01

    Full Text Available BIM3DSG system is described here. It is an ad hoc designed BIM system created for Cultural Heritage applications. It proposes some solutions to solve some issues related to the use of BIM in this field. First, it tries to resolve the problem of managing huge, complex, high resolution and heterogeneous 3D models, and then it offers a practical, easy and efficient solution for a wide sharing of data and information.

  2. Impact of mesh and DEM resolutions in SEM simulation of 3D seismic response

    NARCIS (Netherlands)

    Khan, Saad; van der Meijde, M.; van der Werff, H.M.A.; Shafique, Muhammad

    2017-01-01

    This study shows that the resolution of a digital elevation model (DEM) and model mesh strongly influences 3D simulations of seismic response. Topographic heterogeneity scatters seismic waves and causes variation in seismic response (am-plification and deamplification of seismic amplitudes) at the

  3. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  4. Characterizing 3D sensors using the 3D modulation transfer function

    Science.gov (United States)

    Kellner, Timo; Breitbarth, Andreas; Zhang, Chen; Notni, Gunther

    2018-03-01

    The fields of optical 3D measurement system applications are continuously expanding and becoming more and more diverse. To evaluate appropriate systems for various measurement tasks, comparable parameters are necessary, whereas the 3D modulation transfer function (3D-MTF) has been established as a further criterion. Its aim is the determination of the system response between the measurement of a straight, sharp-edged cube and its opposite ideal calculated one. Within the scope of this work simulations and practical investigations regarding the 3D-MTF’s influences and its main issues are specifically investigated. Therefore, different determined edge radii representing the high-frequency spectra lead to various decreasing 3D-MTF characteristics. Furthermore, rising sampling frequencies improve its maximum transfer value to a saturation point in dependence of the radius. To approve these results of previous simulations, three fringe projection scanners were selected to determine the diversity. As the best 3D-MTF characteristic, a saturated transfer value of H_3D( f_N, 3D) = 0.79 has been identified at a sufficient sampling frequency, which is reached at four times the Nyquist limit. This high 3D resolution can mainly be achieved due to an improved camera projector interaction. Additionally, too small sampling ratios lead to uncertainties in the edge function determination, while higher ratios do not show major improvements. In conclusion, the 3D-MTF algorithm has thus been practically verified and its repeatability as well as its robustness have been confirmed.

  5. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    Science.gov (United States)

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  6. A new high resolution neutron powder diffractometer at the Brookhaven high flux beam reactor

    International Nuclear Information System (INIS)

    Passell, L.; Bar-Ziv, S.; Gardner, D.W.; Cox, D.E.; Axe, J.D.

    1991-01-01

    A high resolution neutron powder diffractometer under construction at the Brookhaven HFBR is expected to be completed by mid-1991. The new machine will have a Ge (511) monochromator with a take-off angle of 120 o (λ=1.89A) and 64 3 He counters in the detector bank. There will be interchangeable collimators before the monochromator allowing a choice of 5 or 11' horizontal divergence, and 10 cm-high, 5' collimators in front of the detectors. In the higher resolution mode, Δd/d is expected to be about 6x10 -4 at the resolution minimum. The diffractometer is generally similar to D2B at the Institut Laue-Langevin except for the monochromator. This will consist of a vertically focussing array of segments 3x1.27 cm in dimensions cut from stacks of 20 0.43 mm wafers that have been pressed and brazed together. Preliminary measurements indicate that a mosaic width of 0.1-0.15 o and a peak reflectivity of 25% can be achieved in this way. (author) 2 figs., 22 refs

  7. Stereolithographic hydrogel printing of 3D microfluidic cell culture chips

    DEFF Research Database (Denmark)

    Zhang, Rujing

    that support the required freedom in design, detail and chemistry for fabricating truly 3D constructs have remained limited. Here, we report a stereolithographic high-resolution 3D printing technique utilizing poly(ethylene glycol) diacrylate (PEGDA, MW 700) to manufacture diffusion-open and mechanically...... and material flexibility by embedding a highly compliant cell-laden gelatin hydrogel within the confines of a 3D printed resilient PEGDA hydrogel chip of intermediate compliance. Overall, our proposed strategy represents an automated, cost-effective and high resolution technique to manufacture complex 3D...... epoxy component as structural supports interfacing the external world as well as compliant PEGDA component as microfluidic channels have been manufactured and perfused. Although still in the preliminary stage, this dual-material printing approach shows the potential for constructing complex 3D...

  8. IMPROVED DETERMINATION OF THE 1{sub 0}-0{sub 0} ROTATIONAL FREQUENCY OF NH{sub 3}D{sup +} FROM THE HIGH-RESOLUTION SPECTRUM OF THE {nu}{sub 4} INFRARED BAND

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, J. L.; Cueto, M.; Herrero, V. J.; Tanarro, I. [Molecular Physics Department, Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E-28006 Madrid (Spain); Tercero, B.; Cernicharo, J. [Department of Astrophysics, CAB, INTA-CSIC, Crta Torrejon-Ajalvir Km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Fuente, A., E-mail: jl.domenech@csic.es [Observatorio Astronomico Nacional, Apdo. 112, E-28803 Alcala de Henares (Spain)

    2013-07-01

    The high-resolution spectrum of the {nu}{sub 4} band of NH{sub 3}D{sup +} has been measured by difference frequency IR laser spectroscopy in a multipass hollow cathode discharge cell. From the set of molecular constants obtained from the analysis of the spectrum, a value of 262817 {+-} 6 MHz ({+-}3{sigma}) has been derived for the frequency of the 1{sub 0}-0{sub 0} rotational transition. This value supports the assignment to NH{sub 3}D{sup +} of lines at 262816.7 MHz recorded in radio astronomy observations in Orion-IRc2 and the cold prestellar core B1-bS.

  9. High resolution reconstruction of PET images using the iterative OSEM algorithm

    International Nuclear Information System (INIS)

    Doll, J.; Bublitz, O.; Werling, A.; Haberkorn, U.; Semmler, W.; Adam, L.E.; Pennsylvania Univ., Philadelphia, PA; Brix, G.

    2004-01-01

    Aim: Improvement of the spatial resolution in positron emission tomography (PET) by incorporation of the image-forming characteristics of the scanner into the process of iterative image reconstruction. Methods: All measurements were performed at the whole-body PET system ECAT EXACT HR + in 3D mode. The acquired 3D sinograms were sorted into 2D sinograms by means of the Fourier rebinning (FORE) algorithm, which allows the usage of 2D algorithms for image reconstruction. The scanner characteristics were described by a spatially variant line-spread function (LSF), which was determined from activated copper-64 line sources. This information was used to model the physical degradation processes in PET measurements during the course of 2D image reconstruction with the iterative OSEM algorithm. To assess the performance of the high-resolution OSEM algorithm, phantom measurements performed at a cylinder phantom, the hotspot Jaszczack phantom, and the 3D Hoffmann brain phantom as well as different patient examinations were analyzed. Results: Scanner characteristics could be described by a Gaussian-shaped LSF with a full-width at half-maximum increasing from 4.8 mm at the center to 5.5 mm at a radial distance of 10.5 cm. Incorporation of the LSF into the iteration formula resulted in a markedly improved resolution of 3.0 and 3.5 mm, respectively. The evaluation of phantom and patient studies showed that the high-resolution OSEM algorithm not only lead to a better contrast resolution in the reconstructed activity distributions but also to an improved accuracy in the quantification of activity concentrations in small structures without leading to an amplification of image noise or even the occurrence of image artifacts. Conclusion: The spatial and contrast resolution of PET scans can markedly be improved by the presented image restauration algorithm, which is of special interest for the examination of both patients with brain disorders and small animals. (orig.)

  10. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cardin, A; Avery, S; Ding, X; Kassaee, A; Lin, L [University of Pennsylvania, Philadelphia, PA (United States); Maryanski, M [MGS Research, Inc., Madison, CT (United States)

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulated proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a

  11. Studies on image quality, high contrast resolution and dose for the axial skeleton and limbs with a new, dedicated CT system (ISO-C-3D); Untersuchungen zur Bildqualitaet, Hochkontrastaufloesung und Dosis am Stamm- und Gliedmassenskelett mit einem neuen dedizierten CT-System (ISO-C-3D)

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.; Kotsianos, D.; Linsenmaier, U. [Klinikum der Universitaet Muenchen, Muenchen (Germany). Inst. fuer Klinische Radiologie; Fischer, T. [Klinikum der Universitaet Muenchen, Muenchen (DE). Inst. fuer Klinische Radiologie] (and others)

    2002-02-01

    Purpose: Evaluation of 3D-CT imaging of the axial skeleton and different joints of the lower and upper extremities with a new dedicated CT system (ISO-C-3D) based on a mobile isocentric C-arm image amplifier. Material and Methods: 27 cadaveric specimes of different joints of the lower and upper extremities and of the spinal column were examined with 3D-CT imaging (ISO-C-3d). All images were evaluated by 3 radiologists for image quality using a semiquantitative score (score value 1: poor quality; score value 4: excellent quality). In addition, dose measurements and measurements of high contrast resolution were performed in comparison to conventional and low-dose spiral CT using a high contrast phantom (Catphan, Phantom Laboratories). Results: Adequate image quality (mean score values 3-4) could be achieved with an applied dose comparable to low-dose CT in smaller joints such as wrist, elbow, ankle and knee. A remarkably inferior image quality resulted in imaging of the hip, lumbar and thoracic spine (mean score values 2-3) in spite of almost doubling the dose (dose increased by 85 percent). The image quality of shoulder examinations was insufficient (mean score value 1). Phantom studies showed a high-contrast resolution comparable to helical CT in the xy-axis (9 lp/cm). Conclusion: Preliminary results show, that image quality of C-arm-based CT-imaging (ISO-C-3D) seems to be adequate in smaller joints. ISO-C-3D images of the hip and axial skeleton show a decreased image quality, which does not seem to be sufficient for diagnosing subtle fractures. (orig.) [German] Zielsetzung: Evaluierung der 3D-CT-Bildgebung mit einem C-Bogen-basierten dedizierten CT-System (ISO-C-3D, Fa. Siemens) an Extremitaetengelenken und am Stammskelett. Methodik: 27 humane Leichenpraeparate der unteren und oberen Extremitaet sowie des Stammskeletts wurden am ISO-C-3D untersucht und die Bilddaten anhand eines Bildqualitaetsscores von 3 Untersuchern semiquantitativ evaluiert (Score 1: nicht

  12. High Resolution 3D Experimental Investigation of Flow Structures and Turbulence Statistics in the Viscous and Buffer Layer

    Science.gov (United States)

    Sheng, Jian; Malkiel, Edwin; Katz, Joseph

    2006-11-01

    Digital Holographic Microscopy is implemented to perform 3D velocity measurement in the near-wall region of a turbulent boundary layer in a square channel over a smooth wall at Reτ=1,400. The measurements are performed at a resolution of ˜1μm over a sample volume of 1.5x2x1.5mm (x^+=50, y^+=60, z^+=50), sufficient for resolving buffer layer structures and for measuring the instantaneous wall shear stress distributions from velocity gradients in the sublayer. The data provides detailed statistics on the spatial distribution of both wall shear stress components along with the characteristic flow structures, including streamwise counter-rotating vortex pairs, multiple streamwise vortices, and rare hairpins. Conditional sampling identifies characteristic length scales of 70 wall units in spanwise and 10 wall units in wall-normal direction. In the region of high stress, the conditionally averaged flow consists of a stagnation-like sweeping motion induced by a counter rotating pair of streamwise vortices. Regions with low stress are associated with ejection motion, also generated by pairs of counter-rotating vortices. Statistics on the local strain and geometric alignment between strain and vorticity shows that the high shear generating vortices are inclined at 45 to streamwise direction, indicating that vortices are being stretched. Results of on-going analysis examines statistics of helicity, strain and impacts of near-wall structures.

  13. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: kemptone@grinnell.edu [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  14. Landslide detection using very high-resolution satellite imageries

    Science.gov (United States)

    Suga, Yuzo; Konishi, Tomohisa

    2012-10-01

    The heavy rain induced by the 12th typhoon caused landslide disaster at Kii Peninsula in the middle part of Japan. We propose a quick response method for landslide disaster mapping using very high resolution (VHR) satellite imageries. Especially, Synthetic Aperture Radar (SAR) is effective because it has the capability of all weather and day/night observation. In this study, multi-temporal COSMO-SkyMed imageries were used to detect the landslide areas. It was difficult to detect the landslide areas using only backscatter change pattern derived from pre- and post-disaster COSMOSkyMed imageries. Thus, the authors adopted a correlation analysis which the moving window was selected for the correlation coefficient calculation. Low value of the correlation coefficient reflects land cover change between pre- and post-disaster imageries. This analysis is effective for the detection of landslides using SAR data. The detected landslide areas were compared with the area detected by EROS-B high resolution optical image. In addition, we have developed 3D viewing system for geospatial visualizing of the damaged area using these satellite image data with digital elevation model. The 3D viewing system has the performance of geographic measurement with respect to elevation height, area and volume calculation, and cross section drawing including landscape viewing and image layer construction using a mobile personal computer with interactive operation. As the result, it was verified that a quick response for the detection of landslide disaster at the initial stage could be effectively performed using optical and SAR very high resolution satellite data by means of 3D viewing system.

  15. Fine resolution 3D temperature fields off Kerguelen from instrumented penguins

    Science.gov (United States)

    Charrassin, Jean-Benoît; Park, Young-Hyang; Le Maho, Yvon; Bost, Charles-André

    2004-12-01

    The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals' behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins ( Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature-time-depth recorders (TTDRs) to record dive depth and sea temperature. The penguins' foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0-200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen

  16. Novel short-pulse laser diode source for high-resolution 3D flash lidar

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-06-01

    Imaging based on laser illumination is present in various fields of applications such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified the recent years. Among the various technologies currently studied, automotive lidars are a fast-growing one due to their accuracy to detect a wide range of objects at distances up to a few hundreds of meters in various weather conditions. First commercialized devices for ADAS were laser scanners. Since then, new architectures have recently appeared such as solid-state lidar and flash lidar that offer a higher compactness, robustness and a cost reduction. Flash lidars are based on time-of-flight measurements, with the particularity that they do not require beam scanners because only one short laser pulse with a large divergence is used to enlighten the whole scene. Depth of encountered objects can then be recovered from measurement of echoed light at once, hence enabling real-time 3D mapping of the environment. This paper will bring into the picture a cutting edge laser diode source that can deliver millijoule pulses as short as 12 ns, which makes them highly suitable for integration in flash lidars. They provide a 100-kW peak power highly divergent beam in a footprint of 4x5 cm2 (including both the laser diode and driver) and with a 30-% electrical-to-optical efficiency, making them suitable for integration in environments in which compactness and power consumption are a priority. Their emission in the range of 800-1000 nm is considered to be eye safe when taking into account the high divergence of the output beam. An overview of architecture of these state-of-the-art pulsed laser diode sources will be given together with some solutions for their integration in 3D mapping systems. Future work leads will be discussed for miniaturization of the laser diode and drastic cost reduction.

  17. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields.

    Science.gov (United States)

    Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian

    2018-04-03

    Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.

  18. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Science.gov (United States)

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  19. Low-resolution characterization of the 3D structure of the Euglena gracilis photoreceptor

    International Nuclear Information System (INIS)

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Gualtieri, Paolo

    2008-01-01

    This paper deals with the first characterization of the structure of the photoreceptive organelle of the unicellular alga Euglena gracilis (Euglenophyta). This organelle has a three-dimensional organization consisting of up to 50 closely stacked membrane lamellae. Ionically induced unstacking of the photoreceptor lamellae revealed ordered arrays well suited to structural analysis by electron microscopy and image analysis, which ultimately yielded a low-resolution picture of the structure. Each lamella is formed by the photoreceptive membrane protein of the cell assembled within the membrane layer in a hexagonal lattice. The first order diffraction spots in the calculated Fourier transform reveals the presence of 6-fold symmetrized topography (better resolution about 90 A). The 2D and 3D structural data are very similar with those recently published on proteorodopsin, a membrane protein used by marine bacterio-plankton as light-driven proton pump. In our opinion these similarity indicate that a photoreceptive protein belonging to the same superfamily of proteorodopsin could form the Euglena photoreceptor

  20. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5μm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼1000 Angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼6000 Angstrom, however some features were clearly reconstructed with a depth resolution of ∼1000 Angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to ∼1200 Angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  1. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.; Lee, H.R.; McNulty, I.; Zalensky, A.O.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5 microm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼ 1,000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼ 6,000 angstrom, however some features were clearly reconstructed with a depth resolution of ∼ 1,000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to ∼ 1,200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  2. High repeatability from 3D experimental platform for quantitative analysis of cellular branch pattern formations.

    Science.gov (United States)

    Hagiwara, Masaya; Nobata, Rina; Kawahara, Tomohiro

    2018-04-24

    Three-dimensional (3D) cell and tissue cultures more closely mimic biological environments than two-dimensional (2D) cultures and are therefore highly desirable in culture experiments. However, 3D cultures often fail to yield repeatable experimental results because of variation in the initial culture conditions, such as cell density and distribution in the extracellular matrix, and therefore reducing such variation is a paramount concern. Here, we present a 3D culture platform that demonstrates highly repeatable experimental results, obtained by controlling the initial cell cluster shape in the gel cube culture device. A micro-mould with the desired shape was fabricated by photolithography or machining, creating a 3D pocket in the extracellular matrix contained in the device. Highly concentrated human bronchial epithelial cells were then injected in the pocket so that the cell cluster shape matched the fabricated mould shape. Subsequently, the cubic device supplied multi-directional scanning, enabling high-resolution capture of the whole tissue structure with only a low-magnification lens. The proposed device significantly improved the repeatability of the developed branch pattern, and multi-directional scanning enabled quantitative analysis of the developed branch pattern formations. A mathematical simulation was also conducted to reveal the mechanisms of branch pattern formation. The proposed platform offers the potential to accelerate any research field that conducts 3D culture experiments, including tissue regeneration and drug development.

  3. The optimization of high resolution topographic data for 1D hydrodynamic models

    International Nuclear Information System (INIS)

    Ales, Ronovsky; Michal, Podhoranyi

    2016-01-01

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.

  4. The optimization of high resolution topographic data for 1D hydrodynamic models

    Science.gov (United States)

    Ales, Ronovsky; Michal, Podhoranyi

    2016-06-01

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.

  5. The optimization of high resolution topographic data for 1D hydrodynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Ales, Ronovsky, E-mail: ales.ronovsky@vsb.cz; Michal, Podhoranyi [IT4Innovations National Supercomputing Center, VŠB-Technical University of Ostrava, Studentská 6231/1B, 708 33 Ostrava (Czech Republic)

    2016-06-08

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.

  6. Array diagnostics, spatial resolution, and filtering of undesired radiation with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, C.; Pivnenko, Sergey; Jørgensen, E.

    2013-01-01

    This paper focuses on three important features of the 3D reconstruction algorithm of DIATOOL: the identification of array elements improper functioning and failure, the obtainable spatial resolution of the reconstructed fields and currents, and the filtering of undesired radiation and scattering...

  7. Localization-based super-resolution imaging meets high-content screening.

    Science.gov (United States)

    Beghin, Anne; Kechkar, Adel; Butler, Corey; Levet, Florian; Cabillic, Marine; Rossier, Olivier; Giannone, Gregory; Galland, Rémi; Choquet, Daniel; Sibarita, Jean-Baptiste

    2017-12-01

    Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.

  8. SU-C-201-04: Noise and Temporal Resolution in a Near Real-Time 3D Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Rilling, M [Department of physics, engineering physics and optics, Universite Laval, Quebec City, QC (Canada); Centre de recherche sur le cancer, Universite Laval, Quebec City, QC (Canada); Radiation oncology department, CHU de Quebec, Quebec City, QC (Canada); Center for optics, photonics and lasers, Universite Laval, Quebec City, Quebec (Canada); Goulet, M [Radiation oncology department, CHU de Quebec, Quebec City, QC (Canada); Beaulieu, L; Archambault, L [Department of physics, engineering physics and optics, Universite Laval, Quebec City, QC (Canada); Centre de recherche sur le cancer, Universite Laval, Quebec City, QC (Canada); Radiation oncology department, CHU de Quebec, Quebec City, QC (Canada); Thibault, S [Center for optics, photonics and lasers, Universite Laval, Quebec City, Quebec (Canada)

    2016-06-15

    Purpose: To characterize the performance of a real-time three-dimensional scintillation dosimeter in terms of signal-to-noise ratio (SNR) and temporal resolution of 3D dose measurements. This study quantifies its efficiency in measuring low dose levels characteristic of EBRT dynamic treatments, and in reproducing field profiles for varying multileaf collimator (MLC) speeds. Methods: The dosimeter prototype uses a plenoptic camera to acquire continuous images of the light field emitted by a 10×10×10 cm{sup 3} plastic scintillator. Using EPID acquisitions, ray tracing-based iterative tomographic algorithms allow millimeter-sized reconstruction of relative 3D dose distributions. Measurements were taken at 6MV, 400 MU/min with the scintillator centered at the isocenter, first receiving doses from 1.4 to 30.6 cGy. Dynamic measurements were then performed by closing half of the MLCs at speeds of 0.67 to 2.5 cm/s, at 0° and 90° collimator angles. A reference static half-field was obtained for measured profile comparison. Results: The SNR steadily increases as a function of dose and reaches a clinically adequate plateau of 80 at 10 cGy. Below this, the decrease in light collected and increase in pixel noise diminishes the SNR; nonetheless, the EPID acquisitions and the voxel correlation employed in the reconstruction algorithms result in suitable SNR values (>75) even at low doses. For dynamic measurements at varying MLC speeds, central relative dose profiles are characterized by gradients at %D{sub 50} of 8.48 to 22.7 %/mm. These values converge towards the 32.8 %/mm-gradient measured for the static reference field profile, but are limited by the dosimeter’s current acquisition rate of 1Hz. Conclusion: This study emphasizes the efficiency of the 3D dose distribution reconstructions, while identifying limits of the current prototype’s temporal resolution in terms of dynamic EBRT parameters. This work paves the way for providing an optimized, second

  9. SU-C-201-04: Noise and Temporal Resolution in a Near Real-Time 3D Dosimeter

    International Nuclear Information System (INIS)

    Rilling, M; Goulet, M; Beaulieu, L; Archambault, L; Thibault, S

    2016-01-01

    Purpose: To characterize the performance of a real-time three-dimensional scintillation dosimeter in terms of signal-to-noise ratio (SNR) and temporal resolution of 3D dose measurements. This study quantifies its efficiency in measuring low dose levels characteristic of EBRT dynamic treatments, and in reproducing field profiles for varying multileaf collimator (MLC) speeds. Methods: The dosimeter prototype uses a plenoptic camera to acquire continuous images of the light field emitted by a 10×10×10 cm"3 plastic scintillator. Using EPID acquisitions, ray tracing-based iterative tomographic algorithms allow millimeter-sized reconstruction of relative 3D dose distributions. Measurements were taken at 6MV, 400 MU/min with the scintillator centered at the isocenter, first receiving doses from 1.4 to 30.6 cGy. Dynamic measurements were then performed by closing half of the MLCs at speeds of 0.67 to 2.5 cm/s, at 0° and 90° collimator angles. A reference static half-field was obtained for measured profile comparison. Results: The SNR steadily increases as a function of dose and reaches a clinically adequate plateau of 80 at 10 cGy. Below this, the decrease in light collected and increase in pixel noise diminishes the SNR; nonetheless, the EPID acquisitions and the voxel correlation employed in the reconstruction algorithms result in suitable SNR values (>75) even at low doses. For dynamic measurements at varying MLC speeds, central relative dose profiles are characterized by gradients at %D_5_0 of 8.48 to 22.7 %/mm. These values converge towards the 32.8 %/mm-gradient measured for the static reference field profile, but are limited by the dosimeter’s current acquisition rate of 1Hz. Conclusion: This study emphasizes the efficiency of the 3D dose distribution reconstructions, while identifying limits of the current prototype’s temporal resolution in terms of dynamic EBRT parameters. This work paves the way for providing an optimized, second-generational real-time 3D

  10. IGUANA A high-performance 2D and 3D visualisation system

    CERN Document Server

    Alverson, G; Muzaffar, S; Osborne, I; Taylor, L; Tuura, L A

    2004-01-01

    The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high- performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, sl...

  11. 3-D Printed Biocompatible Micro-Bellows Membranes

    KAUST Repository

    Moussi, Khalil; Kosel, Jü rgen

    2018-01-01

    for the development of integrated systems with novel capabilities as needed, for example, in advanced biomedical devices. Using a two-photon polymerization, 3-D printing technique, we present a high-resolution, high-yield, and customizable manufacturing process

  12. A high resolution animal PET scanner using compact PS-PMT detectors

    International Nuclear Information System (INIS)

    Watanabe, M.; Okada, H.; Shimizu, K.; Omura, T.

    1996-01-01

    A new high resolution PET scanner dedicated to animal studies has been designed, built and tested. The system utilizes 240 block detectors, each of which consists of a new compact position-sensitive photomultiplier tube (PS-PMT) and an 8 x 4 BGO array. A total number of 7,680 crystals (480 per ring) are positioned to form a 508 mm diameter of 16 detector rings with 7.2 mm pitch and 114 mm axial field of view (FOV). The system is designed to perform activation studies using a monkey in a sitting position. The data can be acquired in either 2D or 3D mode, where the slice collimators are retracted in 3D mode. The transaxial resolution is 2.6 mm FWHM at the center of the FOV, and the average axial resolution on the axis of the ring is 3.3 mm FWHM in the direct slice and 3.2 mm FWHM in the cross slice. The scatter fraction, sensitivity and count rate performance were evaluated for a 10 cm diameter cylindrical phantom. The total system sensitivity is 2.3 kcps/kBq/ml in 2D mode and 22.8 kcps/kBq/ml in 3D mode. The noise equivalent count rate with 3D mode is equivalent to that with 2D mode at five times higher radioactivity level. The applicable imaging capabilities of the scanner was demonstrated by animal studies with a monkey

  13. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    , current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI...

  14. Comprehensive Non-Destructive Conservation Documentation of Lunar Samples Using High-Resolution Image-Based 3D Reconstructions and X-Ray CT Data

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2015-01-01

    Established contemporary conservation methods within the fields of Natural and Cultural Heritage encourage an interdisciplinary approach to preservation of heritage material (both tangible and intangible) that holds "Outstanding Universal Value" for our global community. NASA's lunar samples were acquired from the moon for the primary purpose of intensive scientific investigation. These samples, however, also invoke cultural significance, as evidenced by the millions of people per year that visit lunar displays in museums and heritage centers around the world. Being both scientifically and culturally significant, the lunar samples require a unique conservation approach. Government mandate dictates that NASA's Astromaterials Acquisition and Curation Office develop and maintain protocols for "documentation, preservation, preparation and distribution of samples for research, education and public outreach" for both current and future collections of astromaterials. Documentation, considered the first stage within the conservation methodology, has evolved many new techniques since curation protocols for the lunar samples were first implemented, and the development of new documentation strategies for current and future astromaterials is beneficial to keeping curation protocols up to date. We have developed and tested a comprehensive non-destructive documentation technique using high-resolution image-based 3D reconstruction and X-ray CT (XCT) data in order to create interactive 3D models of lunar samples that would ultimately be served to both researchers and the public. These data enhance preliminary scientific investigations including targeted sample requests, and also provide a new visual platform for the public to experience and interact with the lunar samples. We intend to serve these data as they are acquired on NASA's Astromaterials Acquisistion and Curation website at http://curator.jsc.nasa.gov/. Providing 3D interior and exterior documentation of astromaterial

  15. Scalable, incremental learning with MapReduce parallelization for cell detection in high-resolution 3D microscopy data

    KAUST Repository

    Sung, Chul; Woo, Jongwook; Goodman, Matthew; Huffman, Todd; Choe, Yoonsuck

    2013-01-01

    Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy

  16. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb

    Science.gov (United States)

    Frueh, Florian S.; Körbel, Christina; Gassert, Laura; Müller, Andreas; Gousopoulos, Epameinondas; Lindenblatt, Nicole; Giovanoli, Pietro; Laschke, Matthias W.; Menger, Michael D.

    2016-01-01

    Secondary lymphedema is a common complication of cancer treatment characterized by chronic limb swelling with interstitial inflammation. The rodent hindlimb is a widely used model for the evaluation of novel lymphedema treatments. However, the assessment of limb volume in small animals is challenging. Recently, high-resolution three-dimensional (3D) imaging modalities have been introduced for rodent limb volumetry. In the present study we evaluated the validity of microcomputed tomography (μCT), magnetic resonance imaging (MRI) and ultrasound in comparison to conventional measuring techniques. For this purpose, acute lymphedema was induced in the mouse hindlimb by a modified popliteal lymphadenectomy. The 4-week course of this type of lymphedema was first assessed in 6 animals. In additional 12 animals, limb volumes were analyzed by μCT, 9.4 T MRI and 30 MHz ultrasound as well as by planimetry, circumferential length and paw thickness measurements. Interobserver correlation was high for all modalities, in particular for μCT analysis (r = 0.975, p < 0.001). Importantly, caliper-measured paw thickness correlated well with μCT (r = 0.861), MRI (r = 0.821) and ultrasound (r = 0.800). Because the assessment of paw thickness represents a time- and cost-effective approach, it may be ideally suited for the quantification of rodent hindlimb lymphedema. PMID:27698469

  17. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile......-deformed copper, individual, almost dislocation-free subgrains are identified from high-intensity peaks and distinguished by their unique combination of orientation and elastic strain; dislocation walls manifest themselves as a smooth cloud of lower intensity. The elastic strain shows only minor variations within...... dynamics is followed in situ during varying loading conditions by reciprocal space mapping: during uninterrupted tensile deformation, formation of subgrains is observed concurrently with broadening of Bragg reflections shortly after the onset of plastic deformation. When the traction is terminated, stress...

  18. Highly-stretchable 3D-architected Mechanical Metamaterials

    Science.gov (United States)

    Jiang, Yanhui; Wang, Qiming

    2016-09-01

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  19. High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

    Directory of Open Access Journals (Sweden)

    Yves Fleming

    2015-04-01

    Full Text Available Using the recently developed SIMS–SPM prototype, secondary ion mass spectrometry (SIMS data was combined with topographical data from the scanning probe microscopy (SPM module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios. In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet.

  20. 3D Simulations of NIF Wetted Foam Experiments to Understand the Transition from 2D to 3D Implosion Behavior

    Science.gov (United States)

    Haines, Brian; Olson, Richard; Yi, Austin; Zylstra, Alex; Peterson, Robert; Bradley, Paul; Shah, Rahul; Wilson, Doug; Kline, John; Leeper, Ramon; Batha, Steve

    2017-10-01

    The high convergence ratio (CR) of layered Inertial Confinement Fusion capsule implosions contribute to high performance in 1D simulations yet make them more susceptible to hydrodynamic instabilities, contributing to the development of 3D flows. The wetted foam platform is an approach to hot spot ignition to achieve low-to-moderate convergence ratios in layered implosions on the NIF unobtainable using an ice layer. Detailed high-resolution modeling of these experiments in 2D and 3D, including all known asymmetries, demonstrates that 2D hydrodynamics explain capsule performance at CR 12 but become less suitable as the CR increases. Mechanisms for this behavior and detailed comparisons of simulations to experiments on NIF will be presented. To evaluate the tradeoff between increased instability and improved 1D performance, we present a full-scale wetted foam capsule design with 17

  1. High spatial resolution magnetic resonance imaging of experimental cerebral venous thrombosis with a blood pool contrast agent

    International Nuclear Information System (INIS)

    Spuentrup, E.; Wiethoff, A.J.; Parsons, E.C.; Spangenberg, P.; Stracke, C.P.

    2010-01-01

    Purpose: The purpose of this study was to investigate the feasibility of clot visualization in small sinus and cortical veins with contrast enhanced MRA in a cerebral venous thrombosis animal model using a blood pool contrast agent, Gadofosveset, and high spatial resolution imaging. Material and methods: For induction of cerebral venous thrombosis a recently developed combined interventional and microsurgical model was used. Cerebral sinus and cortical vein thrombosis was induced in six pigs. Two further pigs died during the procedure. Standard structural, time-of-flight- and phase contrast-angiograms were followed by fast time resolved high resolution 3D MRA (4D MRA) and subsequent high spatial resolution 3D MRA in the equilibrium phase with and without addition of parallel imaging. Visualization of the clots using the different sequences was subjectively compared and contrast-to-noise ratio (CNR) was assessed. Results: In the remaining six animals the procedure and MR-imaging protocol including administration of Gadofosveset was successfully completed. The 3D high resolution MRA in the equilibrium phase without the addition of parallel imaging was superior to all the other applied MR measurement techniques in terms of visualization of the clots. Only applying this sequence bridging vein thromboses were also seen as a small filling defect with a high CNR of >18. Conclusion: Only the non-accelerated high spatial resolution 3D MRA in the equilibrium in conjunction with the blood pool agent Gadofosveset allows for high-contrast visualization of very small clots in the cerebral sinus and cortical veins. Statement clinical impact: Detection of cortical vein thrombosis is of high clinical impact. Conventional MRI sequences often fail to visualize the clot. We could demonstrate that, in contrast to conventional sequences, with high spatial resolution 3D MRA in the equilibrium in conjunction with the blood pool agent Gadofosveset very small clots in the cerebral sinus and

  2. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.

    1976-01-01

    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...... successfully in terms of the many-body theory of Mahan, Nozières, and De Dominicis. The 4d spectrum agrees well with predictions based on a relativistic-augmented-plane-wave band-structure calculation....

  3. High-resolution digital 3D models of Algar do Penico Chamber: limitations, challenges, and potential

    Directory of Open Access Journals (Sweden)

    Ivo Silvestre M.Sc.

    2015-01-01

    Full Text Available The study of karst and its geomorphological structures is important for understanding the relationships between hydrology and climate over geological time. In that context, we conducted a terrestrial laser-scan survey to map geomorphological structures in the karst cave of Algar do Penico in southern Portugal. The point cloud data set obtained was used to generate 3D meshes with different levels of detail, allowing the limitations of mapping capabilities to be explored. In addition to cave mapping, the study focuses on 3D-mesh analysis, including the development of two algorithms for determination of stalactite extremities and contour lines, and on the interactive visualization of 3D meshes on the Web. Data processing and analysis were performed using freely available open-source software. For interactive visualization, we adopted a framework based on Web standards X3D, WebGL, and X3DOM. This solution gives both the general public and researchers access to 3D models and to additional data produced from map tools analyses through a web browser, without the need for plug-ins.

  4. Using kites for 3-D mapping of gullies at decimetre-resolution over several square kilometres: a case study on the Kamech catchment, Tunisia

    Directory of Open Access Journals (Sweden)

    D. Feurer

    2018-06-01

    Full Text Available Monitoring agricultural areas threatened by soil erosion often requires decimetre topographic information over areas of several square kilometres. Airborne lidar and remotely piloted aircraft system (RPAS imagery have the ability to provide repeated decimetre-resolution and -accuracy digital elevation models (DEMs covering these extents, which is unrealistic with ground surveys. However, various factors hamper the dissemination of these technologies in a wide range of situations, including local regulations for RPAS and the cost for airborne laser systems and medium-format RPAS imagery. The goal of this study is to investigate the ability of low-tech kite aerial photography to obtain DEMs with decimetre resolution and accuracy that permit 3-D descriptions of active gullying in cultivated areas of several square kilometres. To this end, we developed and assessed a two-step workflow. First, we used both heuristic experimental approaches in field and numerical simulations to determine the conditions that make a photogrammetric flight possible and effective over several square kilometres with a kite and a consumer-grade camera. Second, we mapped and characterised the entire gully system of a test catchment in 3-D. We showed numerically and experimentally that using a thin and light line for the kite is key for a complete 3-D coverage over several square kilometres. We thus obtained a decimetre-resolution DEM covering 3.18 km2 with a mean error and standard deviation of the error of +7 and 22 cm respectively, hence achieving decimetre accuracy. With this data set, we showed that high-resolution topographic data permit both the detection and characterisation of an entire gully system with a high level of detail and an overall accuracy of 74 % compared to an independent field survey. Kite aerial photography with simple but appropriate equipment is hence an alternative tool that has been proven to be valuable for surveying gullies with sub

  5. Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting

    International Nuclear Information System (INIS)

    Wei, Chuang; Dong, Jingyan

    2013-01-01

    This paper presents the direct three-dimensional (3D) fabrication of polymer scaffolds with sub-10 µm structures using electrohydrodynamic jet (EHD-jet) plotting of melted thermoplastic polymers. Traditional extrusion-based fabrication approaches of 3D periodic porous structures are very limited in their resolution, due to the excessive pressure requirement for extruding highly viscous thermoplastic polymers. EHD-jet printing has become a high-resolution alternative to other forms of nozzle deposition-based fabrication approaches by generating micro-scale liquid droplets or a fine jet through the application of a large electrical voltage between the nozzle and the substrate. In this study, we successfully apply EHD-jet plotting technology with melted biodegradable polymer (polycaprolactone, or PCL) for the fabrication of 2D patterns and 3D periodic porous scaffold structures in potential tissue engineering applications. Process conditions (e.g. electrical voltage, pressure, plotting speed) have been thoroughly investigated to achieve reliable jet printing of fine filaments. We have demonstrated for the first time that the EHD-jet plotting process is capable of the fabrication of 3D periodic structures with sub-10 µm resolution, which has great potential in advanced biomedical applications, such as cell alignment and guidance. (paper)

  6. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  7. High-resolution CT with histopathological correlates of the classic metaphyseal lesion of infant abuse

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Andy; Kleinman, Paul K. [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States); McDonald, Anna G. [Office of the Chief Medical Examiner, Boston, MA (United States); Rosenberg, Andrew E. [University of Miami Hospital, Department of Pathology, Miami, FL (United States); Gupta, Rajiv [Massachusetts General Hospital, Department of Radiology, Boston, MA (United States)

    2014-02-15

    The classic metaphyseal lesion (CML) is a common high specificity indicator of infant abuse and its imaging features have been correlated histopathologically in infant fatalities. High-resolution CT imaging and histologic correlates were employed to (1) characterize the normal infant anatomy surrounding the chondro-osseous junction, and (2) confirm the 3-D model of the CML previously inferred from planar radiography and histopathology. Long bone specimens from 5 fatally abused infants, whose skeletal survey showed definite or suspected CMLs, were studied postmortem. After skeletal survey, selected specimens were resected and imaged with high-resolution digital radiography. They were then scanned with micro-CT (isotropic resolution of 45 μm{sup 3}) or with high-resolution flat-panel CT (isotropic resolutions of 200 μm{sup 3}). Visualization of the bony structures was carried out using image enhancement, segmentation and isosurface extraction, together with volume rendering and multiplanar reformatting. These findings were then correlated with histopathology. Study of normal infant bone clarifies the 3-D morphology of the subperiosteal bone collar (SPBC) and the radiographic zone of provisional calcification (ZPC). Studies on specimens with CML confirm that this lesion is a fracture extending in a planar fashion through the metaphysis, separating a mineralized fragment. This disk-like mineralized fragment has two components: (1) a thick peripheral component encompassing the SPBC; and (2) a thin central component comprised predominantly of the radiologic ZPC. By manipulating the 3-D model, the varying appearances of the CML are displayed. High-resolution CT coupled with histopathology provides elucidation of the morphology of the CML, a strong indicator of infant abuse. This new information may prove useful in assessing the biomechanical factors that produce this strong indicator of abusive assaults in infants. (orig.)

  8. High-resolution CT with histopathological correlates of the classic metaphyseal lesion of infant abuse

    International Nuclear Information System (INIS)

    Tsai, Andy; Kleinman, Paul K.; McDonald, Anna G.; Rosenberg, Andrew E.; Gupta, Rajiv

    2014-01-01

    The classic metaphyseal lesion (CML) is a common high specificity indicator of infant abuse and its imaging features have been correlated histopathologically in infant fatalities. High-resolution CT imaging and histologic correlates were employed to (1) characterize the normal infant anatomy surrounding the chondro-osseous junction, and (2) confirm the 3-D model of the CML previously inferred from planar radiography and histopathology. Long bone specimens from 5 fatally abused infants, whose skeletal survey showed definite or suspected CMLs, were studied postmortem. After skeletal survey, selected specimens were resected and imaged with high-resolution digital radiography. They were then scanned with micro-CT (isotropic resolution of 45 μm 3 ) or with high-resolution flat-panel CT (isotropic resolutions of 200 μm 3 ). Visualization of the bony structures was carried out using image enhancement, segmentation and isosurface extraction, together with volume rendering and multiplanar reformatting. These findings were then correlated with histopathology. Study of normal infant bone clarifies the 3-D morphology of the subperiosteal bone collar (SPBC) and the radiographic zone of provisional calcification (ZPC). Studies on specimens with CML confirm that this lesion is a fracture extending in a planar fashion through the metaphysis, separating a mineralized fragment. This disk-like mineralized fragment has two components: (1) a thick peripheral component encompassing the SPBC; and (2) a thin central component comprised predominantly of the radiologic ZPC. By manipulating the 3-D model, the varying appearances of the CML are displayed. High-resolution CT coupled with histopathology provides elucidation of the morphology of the CML, a strong indicator of infant abuse. This new information may prove useful in assessing the biomechanical factors that produce this strong indicator of abusive assaults in infants. (orig.)

  9. High-resolution MR imaging of the knee at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, M.; Nakai, T.; Ikeda, K.; Tang, G.Y.; Yoshioka, H.; Itai, Y. [Tsukuba Univ., Ibaraki (Japan). Dept. of Radiology

    2000-07-01

    In order to examine the practical feasibility of using a 3.0-T MR unit to obtain high-quality, high-resolution images of the knee joint, one human cadaveric and 5 porcine knees were imaged with the 3.0-T unit. Sets of T1-weighted spin echo images were obtained with in-plane resolution of 0.195x0.39 mm and an acquisition time of approximately 5 min. Two porcine knees were also imaged with the 1.0-T unit with an identical imaging protocol and the signal-to-noise (S/N) ratios were measured on images at 3 T and 1 T. The 3-T MR system provided detailed delineation of the knees. Deep layers of the medial collateral ligament and associated fine fibers beneath the medial and lateral collateral ligament were demarcated. We observed precise demonstration of the tibial attachment of the anterior cruciate ligament, irregularity of the meniscal free edge, and conjoint tendon formation together with the lateral collateral ligament and the biceps femoris tendon. Compared to the 1-T unit, the S/N ratio with the 3-T unit was increased by a factor of 1.39 to 1.72. Due to the potential advantage of obtaining detailed images, the 3-T MR system suggests a practical utility for fine demonstration of the knee morphology.

  10. High-resolution MR imaging of the knee at 3 T

    International Nuclear Information System (INIS)

    Niitsu, M.; Nakai, T.; Ikeda, K.; Tang, G.Y.; Yoshioka, H.; Itai, Y.

    2000-01-01

    In order to examine the practical feasibility of using a 3.0-T MR unit to obtain high-quality, high-resolution images of the knee joint, one human cadaveric and 5 porcine knees were imaged with the 3.0-T unit. Sets of T1-weighted spin echo images were obtained with in-plane resolution of 0.195x0.39 mm and an acquisition time of approximately 5 min. Two porcine knees were also imaged with the 1.0-T unit with an identical imaging protocol and the signal-to-noise (S/N) ratios were measured on images at 3 T and 1 T. The 3-T MR system provided detailed delineation of the knees. Deep layers of the medial collateral ligament and associated fine fibers beneath the medial and lateral collateral ligament were demarcated. We observed precise demonstration of the tibial attachment of the anterior cruciate ligament, irregularity of the meniscal free edge, and conjoint tendon formation together with the lateral collateral ligament and the biceps femoris tendon. Compared to the 1-T unit, the S/N ratio with the 3-T unit was increased by a factor of 1.39 to 1.72. Due to the potential advantage of obtaining detailed images, the 3-T MR system suggests a practical utility for fine demonstration of the knee morphology

  11. High resolution techniques using scanning proton microprobe (SPM)

    International Nuclear Information System (INIS)

    Cholewa, M.; Saint, A.; Prawer, S.; Laird, J.S.; Legge, G.J.F.; Bardos, R.A.; Moorhead, G.F.; Taylor, G.N.; Stuart, S.A.; Howard, J.

    1994-01-01

    The very high resolution (down to 50 nm) achieved with low beam currents (fA) in a scanning ion microprobe have lead to many nondestructive techniques of microanalysis. This paper discusses recent developments and applications in the use of 3-D STIM (scanning transmission ion microscopy) Tomography, channeling STIM and IBIC (ion beam induced charge). (orig.)

  12. RELAP5-3D Resolution of Known Restart/Backup Issues

    Energy Technology Data Exchange (ETDEWEB)

    Mesina, George L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Anderson, Nolan A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    The state-of-the-art nuclear reactor system safety analysis computer program developed at the Idaho National Laboratory (INL), RELAP5-3D, continues to adapt to changes in computer hardware and software and to develop to meet the ever-expanding needs of the nuclear industry. To continue at the forefront, code testing must evolve with both code and industry developments, and it must work correctly. To best ensure this, the processes of Software Verification and Validation (V&V) are applied. Verification compares coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions. A form of this, sequential verification, checks code specifications against coding only when originally written then applies regression testing which compares code calculations between consecutive updates or versions on a set of test cases to check that the performance does not change. A sequential verification testing system was specially constructed for RELAP5-3D to both detect errors with extreme accuracy and cover all nuclear-plant-relevant code features. Detection is provided through a “verification file” that records double precision sums of key variables. Coverage is provided by a test suite of input decks that exercise code features and capabilities necessary to model a nuclear power plant. A matrix of test features and short-running cases that exercise them is presented. This testing system is used to test base cases (called null testing) as well as restart and backup cases. It can test RELAP5-3D performance in both standalone and coupled (through PVM to other codes) runs. Application of verification testing revealed numerous restart and backup issues in both standalone and couple modes. This document reports the resolution of these issues.

  13. Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2010-12-28

    A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.

  14. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    Directory of Open Access Journals (Sweden)

    Niels Buchhold

    2017-01-01

    Full Text Available This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD. The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels, the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force. This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  15. High-frequency 3D echodentographic imaging modality for early assessment of periodontal diseases: in vitro study

    Science.gov (United States)

    Mahmoud, Ahmed M.; Ngan, Peter; Crout, Richard; Mukdadi, Osama M.

    2009-02-01

    The use of ultrasound in dentistry is still an open growing area of research. Currently, there is a lack of imaging modalities to accurately predict minute structures and defects in the jawbone. In particular, the inability of 2D radiographic images to detect bony periodontal defects resulted from infection of the periodontium. This study investigates the feasibility of high frequency ultrasound to reconstruct high resolution 3D surface images of human jawbone. Methods: A dentate and non-dentate mandibles were used in this study. The system employs high frequency single-element ultrasound focused transducers (15-30 MHz) for scanning. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high precision two-dimensional stage positioning system of +/-1 μm resolution for acquiring accurate and quantitative measurements of the mandible in vitro. Radio frequency (RF) signals are acquired laterally 44-45.5 μm apart for each frame. Different frames are reconstructed 500 μm apart for the 3D reconstruction. Signal processing algorithms are applied on the received ultrasound signals for filtering, focusing, and envelope detection before frame reconstruction. Furthermore, an edge detection technique is adopted to detect the bone surface in each frame. Finally, all edges are combined together in order to render a 3D surface image of the jawbone. Major anatomical landmarks on the resultant images were confirmed with the anatomical structures on the mandibles to show the efficacy of the system. Comparison were also made with conventional 2D radiographs to show the superiority of the ultrasound imaging system in diagnosing small defects in the lateral, axial and elevation planes of space. Results: The landmarks on all ultrasound images matched with those on the mandible, indicating the efficacy of the system in detecting small structures in human jaw bones. Comparison with conventional 2D radiographic images of the same mandible showed superiority of

  16. Intrinsic spatial resolution evaluation of the X'tal cube PET detector based on a 3D crystal block segmented by laser processing.

    Science.gov (United States)

    Yoshida, Eiji; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko; Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo; Murayama, Hideo; Yamaya, Taiga

    2013-01-01

    The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from the six sides of a crystal block. The X'tal cube is composed of the 3D crystal block with isotropic resolution and arrays of multi-pixel photon counters (MPPCs). In this study, to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving (SSLE) technique to a monolithic crystal block instead of gluing segmented small crystals. The SSLE technique provided micro-crack walls which carve a groove into a monolithic scintillator block. Using the fabricated X'tal cube, we evaluated its intrinsic spatial resolution to show a proof of concept of isotropic resolution. The 3D grids of 2 mm pitch were fabricated into an 18 × 18 × 18 mm(3) monolithic lutetium yttrium orthosilicate (LYSO) crystal by the SSLE technique. 4 × 4 MPPCs were optically coupled to each surface of the crystal block. The X'tal cube was uniformly irradiated by (22)Na gamma rays, and all of the 3D grids on the 3D position histogram were separated clearly by an Anger-type calculation from the 96-channel MPPC signals. Response functions of the X'tal cube were measured by scanning with a (22)Na point source. The gamma-ray beam with a 1.0 mm slit was scanned in 0.25 mm steps by positioning of the X'tal cube at vertical and 45° incident angles. The average FWHM resolution at both incident angles was 2.1 mm. Therefore, we confirmed the isotropic spatial resolution performance of the X'tal cube.

  17. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    Energy Technology Data Exchange (ETDEWEB)

    Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Université de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Liège (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium)

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  18. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution.

    Science.gov (United States)

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ.

  19. Initial evaluation of image performance of a 3-D x-ray system: phantom-based comparison of 3-D tomography with conventional computed tomography.

    Science.gov (United States)

    Benz, Robyn Melanie; Garcia, Meritxell Alzamora; Amsler, Felix; Voigt, Johannes; Fieselmann, Andreas; Falkowski, Anna Lucja; Stieltjes, Bram; Hirschmann, Anna

    2018-01-01

    Phantom-based initial performance assessment of a prototype three-dimensional (3-D) x-ray system and comparison of 3-D tomography with computed tomography (CT) were proposed. A 3-D image quality phantom was scanned with a prototype version of 3-D cone-beam CT imaging implemented on a twin robotic x-ray system using three trajectories (163 deg = table, 188 deg = upright, and 200 deg = side), six tube voltages (60, 70, 81, 90, 100, and 121 kV), and four detector doses (0.348, 0.696, 1.740, and [Formula: see text]). CT was obtained with a clinical protocol. Spatial resolution (line pairs/cm) and soft-tissue-contrast resolution were assessed by two independent readers. Radiation dose was assessed. Descriptive and analysis of variance (ANOVA) ([Formula: see text]) were performed. With 3-D tomography, a maximum of 16 lp/cm was visible and best soft-tissue-contrast resolution was 2 mm at 30 Hounsfield units (HU) for 160 projections. With CT, 10 lp/cm was visible and soft-tissue-contrast resolution was 4 mm at 20 HU. The upright trajectory yielded significantly better spatial resolution and soft tissue contrast, and the side trajectory yielded significantly higher soft tissue contrast than the table trajectory ([Formula: see text]). Radiation dose was higher in 3-D tomography (45 to 704 mGycm) than CT (44 mGycm). Three-dimensional tomography renders overall equal or higher spatial resolution and comparable soft tissue contrast to CT for medium- and high-dose protocols in the side and upright trajectories, but with higher radiation doses.

  20. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    Science.gov (United States)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  1. 3D Flow Field Measurements using Aerosol Correlation Velocimetry, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — AeroMancer Technologies proposes to develop a 3D Global Lidar Airspeed Sensor (3D-LGAS) using Aerosol Correlation Velocimetry for standoff sensing of high-resolution...

  2. IGUANA: a high-performance 2D and 3D visualisation system

    Energy Technology Data Exchange (ETDEWEB)

    Alverson, G. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Eulisse, G. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Muzaffar, S. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Osborne, I. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Taylor, L. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)]. E-mail: lucas.taylor@cern.ch; Tuura, L.A. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)

    2004-11-21

    The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high-performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, slicing, lighting or animation, as well as multiple linked views with OpenInventor, and describe them in this paper. We give details on how to edit object appearance efficiently and easily, and even dynamically as a function of object properties, with instant visual feedback to the user.

  3. IGUANA: a high-performance 2D and 3D visualisation system

    International Nuclear Information System (INIS)

    Alverson, G.; Eulisse, G.; Muzaffar, S.; Osborne, I.; Taylor, L.; Tuura, L.A.

    2004-01-01

    The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high-performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, slicing, lighting or animation, as well as multiple linked views with OpenInventor, and describe them in this paper. We give details on how to edit object appearance efficiently and easily, and even dynamically as a function of object properties, with instant visual feedback to the user

  4. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain....... In contrast to the deformation stages, during each stress relaxation stage, number, size and orientation of subgrains are found to be constant, while a minor amount of clean-up of the microstructure is observed as narrowing of the radial X-ray diffraction line profile. The associated decrease in the width...

  5. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  6. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    Directory of Open Access Journals (Sweden)

    Carles eBosch

    2015-05-01

    Full Text Available The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs in mice. 3D reconstruction of spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of spine development and unexpected features of synapse formation, including vacant and branched spines and presynaptic terminals establishing synapses with up to 10 spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  7. 72-directional display having VGA resolution for high-appearance image generation

    Science.gov (United States)

    Takaki, Yasuhiro; Dairiki, Takeshi

    2006-02-01

    The high-density directional display, which was originally developed in order to realize a natural 3D display, is not only a 3D display but also a high-appearance display. The appearances of objects, such as glare and transparency, are the results of the reflection and the refraction of rays. The faithful reproduction of such appearances of objects is impossible using conventional 2D displays because rays diffuse on the display screen. The high-density directional display precisely controls the horizontal ray directions so that it can reproduce the appearances of objects. The fidelity of the reproduction of object appearances depends on the ray angle sampling pitch. The angle sampling pitch is determined by considering the human eye imaging system. In the present study the high-appearance display which has the resolution of 640×400 and emits rays in 72 different horizontal directions with the angle pitch of 0.38° was constructed. Two 72-directional displays were combined, each of which consisted of a high-resolution LCD panel (3,840×2,400) and a slanted lenticular sheet. Two images produced by two displays were superimposed by a half mirror. A slit array was placed at the focal plane of the lenticular sheet for each display to reduce the horizontal image crosstalk in the combined image. The impression analysis shows that the high-appearance display provides higher appearances and presence than the conventional 2D displays do.

  8. Real-Time Very High-Resolution Regional 4D Assimilation in Supporting CRYSTAL-FACE Experiment

    Science.gov (United States)

    Wang, Donghai; Minnis, Patrick

    2004-01-01

    To better understand tropical cirrus cloud physical properties and formation processes with a view toward the successful modeling of the Earth's climate, the CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment) field experiment took place over southern Florida from 1 July to 29 July 2002. During the entire field campaign, a very high-resolution numerical weather prediction (NWP) and assimilation system was performed in support of the mission with supercomputing resources provided by NASA Center for Computational Sciences (NCCS). By using NOAA NCEP Eta forecast for boundary conditions and as a first guess for initial conditions assimilated with all available observations, two nested 15/3 km grids are employed over the CRYSTAL-FACE experiment area. The 15-km grid covers the southeast US domain, and is run two times daily for a 36-hour forecast starting at 0000 UTC and 1200 UTC. The nested 3-km grid covering only southern Florida is used for 9-hour and 18-hour forecasts starting at 1500 and 0600 UTC, respectively. The forecasting system provided more accurate and higher spatial and temporal resolution forecasts of 4-D atmospheric fields over the experiment area than available from standard weather forecast models. These forecasts were essential for flight planning during both the afternoon prior to a flight day and the morning of a flight day. The forecasts were used to help decide takeoff times and the most optimal flight areas for accomplishing the mission objectives. See more detailed products on the web site http://asd-www.larc.nasa.gov/mode/crystal. The model/assimilation output gridded data are archived on the NASA Center for Computational Sciences (NCCS) UniTree system in the HDF format at 30-min intervals for real-time forecasts or 5-min intervals for the post-mission case studies. Particularly, the data set includes the 3-D cloud fields (cloud liquid water, rain water, cloud ice, snow and graupe/hail).

  9. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    Science.gov (United States)

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.

  10. 3D bioprinting for vascularized tissue fabrication

    Science.gov (United States)

    Richards, Dylan; Jia, Jia; Yost, Michael; Markwald, Roger; Mei, Ying

    2016-01-01

    3D bioprinting holds remarkable promise for rapid fabrication of 3D tissue engineering constructs. Given its scalability, reproducibility, and precise multi-dimensional control that traditional fabrication methods do not provide, 3D bioprinting provides a powerful means to address one of the major challenges in tissue engineering: vascularization. Moderate success of current tissue engineering strategies have been attributed to the current inability to fabricate thick tissue engineering constructs that contain endogenous, engineered vasculature or nutrient channels that can integrate with the host tissue. Successful fabrication of a vascularized tissue construct requires synergy between high throughput, high-resolution bioprinting of larger perfusable channels and instructive bioink that promotes angiogenic sprouting and neovascularization. This review aims to cover the recent progress in the field of 3D bioprinting of vascularized tissues. It will cover the methods of bioprinting vascularized constructs, bioink for vascularization, and perspectives on recent innovations in 3D printing and biomaterials for the next generation of 3D bioprinting for vascularized tissue fabrication. PMID:27230253

  11. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry.

    Science.gov (United States)

    Gontard, L C; López-Castro, J D; González-Rovira, L; Vázquez-Martínez, J M; Varela-Feria, F M; Marcos, M; Calvino, J J

    2017-06-01

    We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are compared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate representation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Depiction of the cranial nerves around the cavernous sinus by 3D reversed FISP with diffusion weighted imaging (3D PSIF-DWI)

    International Nuclear Information System (INIS)

    Ishida, Go; Oishi, Makoto; Jinguji, Shinya; Yoneoka, Yuichiro; Fujii, Yukihiko; Sato, Mitsuya

    2011-01-01

    The purpose of this study was to evaluate the anatomy of cranial nerves running in and around the cavernous sinus, we employed three-dimensional reversed fast imaging with steady-state precession (FISP) with diffusion weighted imaging (3D PSIF-DWI) on 3-T magnetic resonance (MR) system. After determining the proper parameters to obtain sufficient resolution of 3D PSIF-DWI, we collected imaging data of 20-side cavernous regions in 10 normal subjects. 3D PSIF-DWI provided high contrast between the cranial nerves and other soft tissues, fluid, and blood in all subjects. We also created volume-rendered images of 3D PSIF-DWI and anatomically evaluated the reliability of visualizing optic, oculomotor, trochlear, trigeminal, and abducens nerves on 3D PSIF-DWI. All 20 sets of cranial nerves were visualized and 12 trochlear nerves and 6 abducens nerves were partially identified. We also presented preliminary clinical experiences in two cases with pituitary adenomas. The anatomical relationship between the tumor and cranial nerves running in and around the cavernous sinus could be three-dimensionally comprehended by 3D PSIF-DWI and the volume-rendered images. In conclusion, 3D PSIF-DWI has great potential to provide high resolution 'cranial nerve imaging', which visualizes the whole length of the cranial nerves including the parts in the blood flow as in the cavernous sinus region. (author)

  13. [Depiction of the cranial nerves around the cavernous sinus by 3D reversed FISP with diffusion weighted imaging (3D PSIF-DWI)].

    Science.gov (United States)

    Ishida, Go; Oishi, Makoto; Jinguji, Shinya; Yoneoka, Yuichiro; Sato, Mitsuya; Fujii, Yukihiko

    2011-10-01

    To evaluate the anatomy of cranial nerves running in and around the cavernous sinus, we employed three-dimensional reversed fast imaging with steady-state precession (FISP) with diffusion weighted imaging (3D PSIF-DWI) on 3-T magnetic resonance (MR) system. After determining the proper parameters to obtain sufficient resolution of 3D PSIF-DWI, we collected imaging data of 20-side cavernous regions in 10 normal subjects. 3D PSIF-DWI provided high contrast between the cranial nerves and other soft tissues, fluid, and blood in all subjects. We also created volume-rendered images of 3D PSIF-DWI and anatomically evaluated the reliability of visualizing optic, oculomotor, trochlear, trigeminal, and abducens nerves on 3D PSIF-DWI. All 20 sets of cranial nerves were visualized and 12 trochlear nerves and 6 abducens nerves were partially identified. We also presented preliminary clinical experiences in two cases with pituitary adenomas. The anatomical relationship between the tumor and cranial nerves running in and around the cavernous sinus could be three-dimensionally comprehended by 3D PSIF-DWI and the volume-rendered images. In conclusion, 3D PSIF-DWI has great potential to provide high resolution "cranial nerve imaging", which visualizes the whole length of the cranial nerves including the parts in the blood flow as in the cavernous sinus region.

  14. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  15. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  16. Comparison of 3D Maximum A Posteriori and Filtered Backprojection algorithms for high resolution animal imaging in microPET

    International Nuclear Information System (INIS)

    Chatziioannou, A.; Qi, J.; Moore, A.; Annala, A.; Nguyen, K.; Leahy, R.M.; Cherry, S.R.

    2000-01-01

    We have evaluated the performance of two three dimensional reconstruction algorithms with data acquired from microPET, a high resolution tomograph dedicated to small animal imaging. The first was a linear filtered-backprojection algorithm (FBP) with reprojection of the missing data and the second was a statistical maximum-aposteriori probability algorithm (MAP). The two algorithms were evaluated in terms of their resolution performance, both in phantoms and in vivo. Sixty independent realizations of a phantom simulating the brain of a baby monkey were acquired, each containing 3 million counts. Each of these realizations was reconstructed independently with both algorithms. The ensemble of the sixty reconstructed realizations was used to estimate the standard deviation as a measure of the noise for each reconstruction algorithm. More detail was recovered in the MAP reconstruction without an increase in noise relative to FBP. Studies in a simple cylindrical compartment phantom demonstrated improved recovery of known activity ratios with MAP. Finally in vivo studies also demonstrated a clear improvement in spatial resolution using the MAP algorithm. The quantitative accuracy of the MAP reconstruction was also evaluated by comparison with autoradiography and direct well counting of tissue samples and was shown to be superior

  17. High-resolution 3 T MRI of traumatic and degenerative triangular fibrocartilage complex (TFCC) abnormalities using Palmer and Outerbridge classifications.

    Science.gov (United States)

    Nozaki, T; Rafijah, G; Yang, L; Ueno, T; Horiuchi, S; Hitt, D; Yoshioka, H

    2017-10-01

    To investigate the usefulness of high-resolution 3 T magnetic resonance imaging (MRI) for the evaluation of traumatic and degenerative triangular fibrocartilage complex (TFCC) abnormalities among three groups: patients presenting with wrist pain who were (a) younger than age 50 years or (b) age 50 or older (PT<50 and PT≥50, respectively), and (c) asymptomatic controls who were younger than age 50 years (AC). High-resolution 3 T MRI was evaluated retrospectively in 96 patients, including 47 PT<50, 38 PT≥50, and 11 AC. Two board-certified radiologists reviewed the MRI images independently. MRI features of TFCC injury were analysed according to the Palmer classification, and cartilage degeneration around the TFCC was evaluated using the Outerbridge classification. Differences in MRI findings among these groups were detected using chi-square test. Cohen's kappa was calculated to assess interobserver and intra-observer reliability. The incidence of Palmer class 1A, 1C and 1D traumatic TFCC injury was significantly (p<0.05) higher in PT≥50 than in PT<50 (class 1A: 47.4% versus 27.7%, class 1C: 31.6% versus 12.8%, and class 1D: 21.1% versus 2.1%). Likewise, MRI findings of TFCC degeneration were observed more frequently in PT≥50 than in PT<50 (p<0.01). Outerbridge grade 2 or higher cartilage degeneration was significantly (p<0.01) more frequently seen in PT≥50 than in PT<50 (55.3% versus 17% in the lunate, 28.9% versus 4.3% in the triquetrum, 73.7% versus 12.8% in the ulna). High-resolution wrist MRI at 3 T enables detailed evaluation of TFCC traumatic injury and degenerative changes using the Palmer and Outerbridge classifications, with good or excellent interobserver and intra-observer reliability. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. Highly Elastic, Transparent, and Conductive 3D-Printed Ionic Composite Hydrogels

    KAUST Repository

    Odent, Jérémy

    2017-07-17

    Despite extensive progress to engineer hydrogels for a broad range of technologies, practical applications have remained elusive due to their (until recently) poor mechanical properties and lack of fabrication approaches, which constrain active structures to simple geometries. This study demonstrates a family of ionic composite hydrogels with excellent mechanical properties that can be rapidly 3D-printed at high resolution using commercial stereolithography technology. The new material design leverages the dynamic and reversible nature of ionic interactions present in the system with the reinforcement ability of nanoparticles. The composite hydrogels combine within a single platform tunable stiffness, toughness, extensibility, and resiliency behavior not reported previously in other engineered hydrogels. In addition to their excellent mechanical performance, the ionic composites exhibit fast gelling under near-UV exposure, remarkable conductivity, and fast osmotically driven actuation. The design of such ionic composites, which combine a range of tunable properties and can be readily 3D-printed into complex architectures, provides opportunities for a variety of practical applications such as artificial tissue, soft actuators, compliant conductors, and sensors for soft robotics.

  19. High-resolution acoustic imaging at low frequencies using 3D-printed metamaterials

    Directory of Open Access Journals (Sweden)

    S. Laureti

    2016-12-01

    Full Text Available An acoustic metamaterial has been constructed using 3D printing. It contained an array of air-filled channels, whose size and shape could be varied within the design and manufacture process. In this paper we analyze both numerically and experimentally the properties of this polymer metamaterial structure, and demonstrate its use for the imaging of a sample with sub-wavelength dimensions in the audible frequency range.

  20. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  1. Forward transformation for high resolution eddy current tomography using whitney elements

    International Nuclear Information System (INIS)

    Szewczyk, R.; Salach, J.; Nowicki, M.; Ruokolainen, J.; Raback, P.

    2014-01-01

    Tomographic methods are intensively developed field of non-destructive testing. The main advantage of this type of NDT method is 3D information concerning the shape of the discontinuities in investigated material. On the other hand, the most common tomography method utilizing X-rays creates the significant risks typical to X-ray technique. As a result, Xray tomography is difficult to use in industry. Introduced to the industry in 2007, the eddy current tomography is safe and cost effective. However, in opposite to X-ray tomography, eddy current tomography requires sophisticated and time consuming inverse transformation creating 2D or 3D view of discontinuities. For this reason solutions presented previously are focused on 2D inverse transformation and exhibit limited resolution. For eddy current tomography, the forward tomographic transformation is most important, which is the base of inverse transformation. This paper presents the novel, fast and cost-effective solution utilizing Whitney elements method for such forward transformation. As a result, new possibilities of development in the area of high resolution 3D eddy current tomography are created. (authors)

  2. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    Science.gov (United States)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  3. sup 3 sup 1 P high resolution solid state NMR studies of phosphoorganic compounds of biological interest

    CERN Document Server

    Potrzebowski, M J; Kazmierski, S

    2001-01-01

    In this review several applications of sup 3 sup 1 P high resolution solid state NMR spectroscopy in structural studies of bioorganic samples is recorded. The problem of pseudopolymorphism of bis[6-O,6'-O-(1,2:3,4diisopropylidene-alpha-D-galactopyranosyl) phosphothionyl] disulfide (1) and application of sup 3 sup 1 P C/MAS experiment to investigate of this phenomenon is discussed. The influence of weak C-H--S intermolecular contacts on molecular packing of 1,6-anhydro-2-O-tosyl-4-S- (5,5-dimethyl-2-thioxa-1,3,2-dioxaphosphophorinan-2-= yl)-beta-D-glucopyranose (2) and S sub P , R sub P diastereomers of deoxyxylothymidyl-3'-O-acetylthymidyl (3',5')-O-(2-cyanoethyl) phosphorothioate (3) and their implication on sup 3 sup 1 P NMR spectra is shown. The final part of review describes the recent progress in structural studies of O-phosphorylated amino acids (serine, threonine, tyrosine), relationship between molecular structure and sup 3 sup 1 P chemical shift parameters delta sub i sub i and influence of hydrogen ...

  4. In situ repair of bone and cartilage defects using 3D scanning and 3D printing.

    Science.gov (United States)

    Li, Lan; Yu, Fei; Shi, Jianping; Shen, Sheng; Teng, Huajian; Yang, Jiquan; Wang, Xingsong; Jiang, Qing

    2017-08-25

    Three-dimensional (3D) printing is a rapidly emerging technology that promises to transform tissue engineering into a commercially successful biomedical industry. However, the use of robotic bioprinters alone is not sufficient for disease treatment. This study aimed to report the combined application of 3D scanning and 3D printing for treating bone and cartilage defects. Three different kinds of defect models were created to mimic three orthopedic diseases: large segmental defects of long bones, free-form fracture of femoral condyle, and International Cartilage Repair Society grade IV chondral lesion. Feasibility of in situ 3D bioprinting for these diseases was explored. The 3D digital models of samples with defects and corresponding healthy parts were obtained using high-resolution 3D scanning. The Boolean operation was used to achieve the shape of the defects, and then the target geometries were imported in a 3D bioprinter. Two kinds of photopolymerized hydrogels were synthesized as bioinks. Finally, the defects of bone and cartilage were restored perfectly in situ using 3D bioprinting. The results of this study suggested that 3D scanning and 3D bioprinting could provide another strategy for tissue engineering and regenerative medicine.

  5. Synthetic biology's tall order: Reconstruction of 3D, super resolution images of single molecules in real-time

    CSIR Research Space (South Africa)

    Henriques, R

    2010-08-31

    Full Text Available -to-use reconstruction software coupled with image acquisition. Here, we present QuickPALM, an Image plugin, enabling real-time reconstruction of 3D super-resolution images during acquisition and drift correction. We illustrate its application by reconstructing Cy5...

  6. Advanced 3D Object Identification System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  7. High-speed biometrics ultrasonic system for 3D fingerprint imaging

    Science.gov (United States)

    Maev, Roman G.; Severin, Fedar

    2012-10-01

    The objective of this research is to develop a new robust fingerprint identification technology based upon forming surface-subsurface (under skin) ultrasonic 3D images of the finger pads. The presented work aims to create specialized ultrasonic scanning methods for biometric purposes. Preliminary research has demonstrated the applicability of acoustic microscopy for fingerprint reading. The additional information from internal skin layers and dermis structures contained in the scan can essentially improve confidence in the identification. Advantages of this system include high resolution and quick scanning time. Operating in pulse-echo mode provides spatial resolution up to 0.05 mm. Technology advantages of the proposed technology are the following: • Full-range scanning of the fingerprint area "nail to nail" (2.5 x 2.5 cm) can be done in less than 5 sec with a resolution of up to 1000 dpi. • Collection of information about the in-depth structure of the fingerprint realized by the set of spherically focused 50 MHz acoustic lens provide the resolution ~ 0.05 mm or better • In addition to fingerprints, this technology can identify sweat porous at the surface and under the skin • No sensitivity to the contamination of the finger's surface • Detection of blood velocity using Doppler effect can be implemented to distinguish living specimens • Utilization as polygraph device • Simple connectivity to fingerprint databases obtained with other techniques • The digitally interpolated images can then be enhanced allowing for greater resolution • Method can be applied to fingernails and underlying tissues, providing more information • A laboratory prototype of the biometrics system based on these described principles was designed, built and tested. It is the first step toward a practical implementation of this technique.

  8. Four-dimensional (4D) tracking of high-temperature microparticles

    International Nuclear Information System (INIS)

    Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.

    2016-01-01

    High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.

  9. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. A Virtual Study of Grid Resolution on Experiments of a Highly-Resolved Turbulent Plume

    Science.gov (United States)

    Maisto, Pietro M. F.; Marshall, Andre W.; Gollner, Michael J.; Fire Protection Engineering Department Collaboration

    2017-11-01

    An accurate representation of sub-grid scale turbulent mixing is critical for modeling fire plumes and smoke transport. In this study, PLIF and PIV diagnostics are used with the saltwater modeling technique to provide highly-resolved instantaneous field measurements in unconfined turbulent plumes useful for statistical analysis, physical insight, and model validation. The effect of resolution was investigated employing a virtual interrogation window (of varying size) applied to the high-resolution field measurements. Motivated by LES low-pass filtering concepts, the high-resolution experimental data in this study can be analyzed within the interrogation windows (i.e. statistics at the sub-grid scale) and on interrogation windows (i.e. statistics at the resolved scale). A dimensionless resolution threshold (L/D*) criterion was determined to achieve converged statistics on the filtered measurements. Such a criterion was then used to establish the relative importance between large and small-scale turbulence phenomena while investigating specific scales for the turbulent flow. First order data sets start to collapse at a resolution of 0.3D*, while for second and higher order statistical moments the interrogation window size drops down to 0.2D*.

  11. Making 3D movies of Northern Lights

    Science.gov (United States)

    Hivon, Eric; Mouette, Jean; Legault, Thierry

    2017-10-01

    We describe the steps necessary to create three-dimensional (3D) movies of Northern Lights or Aurorae Borealis out of real-time images taken with two distant high-resolution fish-eye cameras. Astrometric reconstruction of the visible stars is used to model the optical mapping of each camera and correct for it in order to properly align the two sets of images. Examples of the resulting movies can be seen at http://www.iap.fr/aurora3d

  12. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    Science.gov (United States)

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  13. From AWE-GEN to AWE-GEN-2d: a high spatial and temporal resolution weather generator

    Science.gov (United States)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2016-04-01

    A new weather generator, AWE-GEN-2d (Advanced WEather GENerator for 2-Dimension grid) is developed following the philosophy of combining physical and stochastic approaches to simulate meteorological variables at high spatial and temporal resolution (e.g. 2 km x 2 km and 5 min for precipitation and cloud cover and 100 m x 100 m and 1 h for other variables variable (temperature, solar radiation, vapor pressure, atmospheric pressure and near-surface wind). The model is suitable to investigate the impacts of climate variability, temporal and spatial resolutions of forcing on hydrological, ecological, agricultural and geomorphological impacts studies. Using appropriate parameterization the model can be used in the context of climate change. Here we present the model technical structure of AWE-GEN-2d, which is a substantial evolution of four preceding models (i) the hourly-point scale Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.) (ii) the Space-Time Realizations of Areal Precipitation (STREAP) model introduced by Paschalis et al. (2013, Water Resour. Res.), (iii) the High-Resolution Synoptically conditioned Weather Generator developed by Peleg and Morin (2014, Water Resour. Res.), and (iv) the Wind-field Interpolation by Non Divergent Schemes presented by Burlando et al. (2007, Boundary-Layer Meteorol.). The AWE-GEN-2d is relatively parsimonious in terms of computational demand and allows generating many stochastic realizations of current and projected climates in an efficient way. An example of model application and testing is presented with reference to a case study in the Wallis region, a complex orography terrain in the Swiss Alps.

  14. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    Science.gov (United States)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  15. Max CAPR: high-resolution 3D contrast-enhanced MR angiography with acquisition times under 5 seconds.

    Science.gov (United States)

    Haider, Clifton R; Borisch, Eric A; Glockner, James F; Mostardi, Petrice M; Rossman, Phillip J; Young, Phillip M; Riederer, Stephen J

    2010-10-01

    High temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-encoding acceleration and partial Fourier acceleration, providing 1mm isotropic resolution of the calves, with 4.9-sec frame time and 17.6-sec temporal footprint. In this work, the CAPR acquisition is further undersampled to provide a net acceleration approaching 40 by eliminating all view sharing. The tradeoff of frame time and temporal footprint in view sharing is presented and characterized in phantom experiments. It is shown that the resultant 4.9-sec acquisition time, three-dimensional images sets have sufficient spatial and temporal resolution to clearly portray arterial and venous phases of contrast passage. It is further hypothesized that these short temporal footprint sequences provide diagnostic quality images. This is tested and shown in a series of nine contrast-enhanced MR angiography patient studies performed with the new method.

  16. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments

    Energy Technology Data Exchange (ETDEWEB)

    Motackova, Veronika; Novacek, Jiri [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Zawadzka-Kazimierczuk, Anna; Kazimierczuk, Krzysztof [University of Warsaw, Faculty of Chemistry (Poland); Zidek, Lukas, E-mail: lzidek@chemi.muni.c [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Sanderova, Hana; Krasny, Libor [Academy of Sciences of the Czech Republic, Laboratory of Molecular Genetics of Bacteria and Department of Bacteriology, Institute of Microbiology (Czech Republic); Kozminski, Wiktor [University of Warsaw, Faculty of Chemistry (Poland); Sklenar, Vladimir [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic)

    2010-11-15

    A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, {delta} subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment.

  17. Establishment of a high-resolution 2-D reference map of human spermatozoal proteins from 12 fertile sperm-bank donors.

    Science.gov (United States)

    Li, Ling-Wei; Fan, Li-Qing; Zhu, Wen-Bing; Nien, Hong-Chuan; Sun, Bo-Lan; Luo, Ke-Li; Liao, Ting-Ting; Tang, Le; Lu, Guang-Xiu

    2007-05-01

    To extend the analysis of the proteome of human spermatozoa and establish a 2-D gel electrophoresis (2-DE) reference map of human spermatozoal proteins in a pH range of 3.5-9.0. In order to reveal more protein spots, immobilized pH gradient strips (24 cm) of broad range of pH 3-10 and the narrower range of pH 6-9, as well as different overlapping narrow range pH immobilized pH gradient (IPG) strips, including 3.5-4.5, 4.0-5.0, 4.5-5.5, 5.0-6.0 and 5.5-6.7, were used. After 2-DE, several visually identical spots between the different pH range 2-D gel pairs were cut from the gels and confirmed by mass spectrometry and used as landmarks for computer analysis. The 2-D reference map with pH value from 3.5 to 9.0 was synthesized by using the ImageMaster analysis software. The overlapping spots were excluded, so that every spot was counted only once. A total of 3872 different protein spots were identified from the reference map, an approximately 3-fold increase compared to the broad range pH 3-10 IPG strip (1306 spots). The present 2-D pattern is a high resolution 2-D reference map for human fertile spermatozoal protein spots. A comprehensive knowledge of the protein composition of human spermatozoa is very meaningful in studying dysregulation of male fertility.

  18. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    Science.gov (United States)

    Naidoo-Variawa, S.; Hey-Cunningham, A. J.; Lehnert, W.; Kench, P. L.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2007-11-01

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  19. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo-Variawa, S [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Hey-Cunningham, A J [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Lehnert, W [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Kench, P L [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Kassiou, M [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Banati, R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Meikle, S R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia)

    2007-11-21

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm{sup 3} FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm{sup 3}) and 3D reprojection (3DRP) (5.9-9.1 mm{sup 3}). A pilot {sup 18}F-2-fluoro-2-deoxy-d-glucose ([{sup 18}F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  20. Evaluation of 3D reconstruction algorithms for a small animal PET camera

    International Nuclear Information System (INIS)

    Johnson, C.A.; Gandler, W.R.; Seidel, J.

    1996-01-01

    The use of paired, opposing position-sensitive phototube scintillation cameras (SCs) operating in coincidence for small animal imaging with positron emitters is currently under study. Because of the low sensitivity of the system even in 3D mode and the need to produce images with high resolution, it was postulated that a 3D expectation maximization (EM) reconstruction algorithm might be well suited for this application. We investigated four reconstruction algorithms for the 3D SC PET camera: 2D filtered back-projection (FBP), 2D ordered subset EM (OSEM), 3D reprojection (3DRP), and 3D OSEM. Noise was assessed for all slices by the coefficient of variation in a simulated uniform cylinder. Resolution was assessed from a simulation of 15 point sources in the warm background of the uniform cylinder. At comparable noise levels, the resolution achieved with OSEM (0.9-mm to 1.2-mm) is significantly better than that obtained with FBP or 3DRP (1.5-mm to 2.0-mm.) Images of a rat skull labeled with 18 F-fluoride suggest that 3D OSEM can improve image quality of a small animal PET camera

  1. Mechanism of high-resolution STM/AFM imaging with functionalized tips

    Czech Academy of Sciences Publication Activity Database

    Hapala, Prokop; Kichin, G.; Wagner, C.; Tautz, F.S.; Temirov, R.; Jelínek, Pavel

    2014-01-01

    Roč. 90, č. 8 (2014), "085421-1"-"085421-9" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GC14-16963J Grant - others:AVČR(CZ) M100101207 Institutional support: RVO:68378271 Keywords : AFM * STM * high resolution Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  2. Identification and determination of D3 vitamine, D3 vitamine 25 (OH) and D3 vitamine 1,25(OH)2 in plasma of animals treated with solanum glaucophyllum (Sg)

    International Nuclear Information System (INIS)

    Pawlak, Eva

    1997-01-01

    The enzootic calcinosis is a disease produced in the bovines by the ingestion of the toxic plant Sg, which contains vitamine D 3 glycosides and its active metabolites. This disease is characterized by the loss of weight and physical condition, motor disorders and alteration of phosphocalcic metabolism with deposition of calcium compounds in soft tissues. To contribute to the advanced diagnostic of the disease, analytic techniques to determine D vitamine, D vitamine 25 (OH) and D vitamine 1,25 (OH) 2 in plasma, by high resolution liquid chromatography and radio receptor essay are used

  3. A high resolution hydrodynamic 3-D model simulation of the malta shelf area

    Directory of Open Access Journals (Sweden)

    A. F. Drago

    2003-01-01

    Full Text Available The seasonal variability of the water masses and transport in the Malta Channel and proximity of the Maltese Islands have been simulated by a high resolution (1.6 km horizontal grid on average, 15 vertical sigma layers eddy resolving primitive equation shelf model (ROSARIO-I. The numerical simulation was run with climatological forcing and includes thermohaline dynamics with a turbulence scheme for the vertical mixing coefficients on the basis of the Princeton Ocean Model (POM. The model has been coupled by one-way nesting along three lateral boundaries (east, south and west to an intermediate coarser resolution model (5 km implemented over the Sicilian Channel area. The fields at the open boundaries and the atmospheric forcing at the air-sea interface were applied on a repeating "perpetual" year climatological cycle. The ability of the model to reproduce a realistic circulation of the Sicilian-Maltese shelf area has been demonstrated. The skill of the nesting procedure was tested by model-modelc omparisons showing that the major features of the coarse model flow field can be reproduced by the fine model with additional eddy space scale components. The numerical results included upwelling, mainly in summer and early autumn, along the southern coasts of Sicily and Malta; a strong eastward shelf surface flow along shore to Sicily, forming part of the Atlantic Ionian Stream, with a presence throughout the year and with significant seasonal modulation, and a westward winter intensified flow of LIW centered at a depth of around 280 m under the shelf break to the south of Malta. The seasonal variability in the thermohaline structure of the domain and the associated large-scale flow structures can be related to the current knowledge on the observed hydrography of the area. The level of mesoscale resolution achieved by the model allowed the spatial and temporal evolution of the changing flow patterns, triggered by internal dynamics, to be followed in

  4. A high resolution hydrodynamic 3-D model simulation of the malta shelf area

    Directory of Open Access Journals (Sweden)

    A. F. Drago

    Full Text Available The seasonal variability of the water masses and transport in the Malta Channel and proximity of the Maltese Islands have been simulated by a high resolution (1.6 km horizontal grid on average, 15 vertical sigma layers eddy resolving primitive equation shelf model (ROSARIO-I. The numerical simulation was run with climatological forcing and includes thermohaline dynamics with a turbulence scheme for the vertical mixing coefficients on the basis of the Princeton Ocean Model (POM. The model has been coupled by one-way nesting along three lateral boundaries (east, south and west to an intermediate coarser resolution model (5 km implemented over the Sicilian Channel area. The fields at the open boundaries and the atmospheric forcing at the air-sea interface were applied on a repeating "perpetual" year climatological cycle.

    The ability of the model to reproduce a realistic circulation of the Sicilian-Maltese shelf area has been demonstrated. The skill of the nesting procedure was tested by model-modelc omparisons showing that the major features of the coarse model flow field can be reproduced by the fine model with additional eddy space scale components. The numerical results included upwelling, mainly in summer and early autumn, along the southern coasts of Sicily and Malta; a strong eastward shelf surface flow along shore to Sicily, forming part of the Atlantic Ionian Stream, with a presence throughout the year and with significant seasonal modulation, and a westward winter intensified flow of LIW centered at a depth of around 280 m under the shelf break to the south of Malta. The seasonal variability in the thermohaline structure of the domain and the associated large-scale flow structures can be related to the current knowledge on the observed hydrography of the area. The level of mesoscale resolution achieved by the model allowed the spatial and temporal evolution of the changing flow patterns, triggered by

  5. Super-resolution reconstruction of 4D-CT lung data via patch-based low-rank matrix reconstruction

    Science.gov (United States)

    Fang, Shiting; Wang, Huafeng; Liu, Yueliang; Zhang, Minghui; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2017-10-01

    Lung 4D computed tomography (4D-CT), which is a time-resolved CT data acquisition, performs an important role in explicitly including respiratory motion in treatment planning and delivery. However, the radiation dose is usually reduced at the expense of inter-slice spatial resolution to minimize radiation-related health risk. Therefore, resolution enhancement along the superior-inferior direction is necessary. In this paper, a super-resolution (SR) reconstruction method based on a patch low-rank matrix reconstruction is proposed to improve the resolution of lung 4D-CT images. Specifically, a low-rank matrix related to every patch is constructed by using a patch searching strategy. Thereafter, the singular value shrinkage is employed to recover the high-resolution patch under the constraints of the image degradation model. The output high-resolution patches are finally assembled to output the entire image. This method is extensively evaluated using two public data sets. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 9.7%-33.4% and the edge width by 11.4%-24.3%, relative to linear interpolation, back projection (BP) and Zhang et al’s algorithm. A new algorithm has been developed to improve the resolution of 4D-CT. In all experiments, the proposed method outperforms various interpolation methods, as well as BP and Zhang et al’s method, thus indicating the effectivity and competitiveness of the proposed algorithm.

  6. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery

    Science.gov (United States)

    Malambo, L.; Popescu, S. C.; Murray, S. C.; Putman, E.; Pugh, N. A.; Horne, D. W.; Richardson, G.; Sheridan, R.; Rooney, W. L.; Avant, R.; Vidrine, M.; McCutchen, B.; Baltensperger, D.; Bishop, M.

    2018-02-01

    Plant breeders and agronomists are increasingly interested in repeated plant height measurements over large experimental fields to study critical aspects of plant physiology, genetics and environmental conditions during plant growth. However, collecting such measurements using commonly used manual field measurements is inefficient. 3D point clouds generated from unmanned aerial systems (UAS) images using Structure from Motion (SfM) techniques offer a new option for efficiently deriving in-field crop height data. This study evaluated UAS/SfM for multitemporal 3D crop modelling and developed and assessed a methodology for estimating plant height data from point clouds generated using SfM. High-resolution images in visible spectrum were collected weekly across 12 dates from April (planting) to July (harvest) 2016 over 288 maize (Zea mays L.) and 460 sorghum (Sorghum bicolor L.) plots using a DJI Phantom 3 Professional UAS. The study compared SfM point clouds with terrestrial lidar (TLS) at two dates to evaluate the ability of SfM point clouds to accurately capture ground surfaces and crop canopies, both of which are critical for plant height estimation. Extended plant height comparisons were carried out between SfM plant height (the 90th, 95th, 99th percentiles and maximum height) per plot and field plant height measurements at six dates throughout the growing season to test the repeatability and consistency of SfM estimates. High correlations were observed between SfM and TLS data (R2 = 0.88-0.97, RMSE = 0.01-0.02 m and R2 = 0.60-0.77 RMSE = 0.12-0.16 m for the ground surface and canopy comparison, respectively). Extended height comparisons also showed strong correlations (R2 = 0.42-0.91, RMSE = 0.11-0.19 m for maize and R2 = 0.61-0.85, RMSE = 0.12-0.24 m for sorghum). In general, the 90th, 95th and 99th percentile height metrics had higher correlations to field measurements than the maximum metric though differences among them were not statistically significant. The

  7. 3-D inversion of synthetic marine magnetotelluric data: resolution and sensitivity

    Science.gov (United States)

    Tada, N.; Baba, K.; Siripunvaraporn, W.; Uyeshima, M.; Utada, H.

    2010-12-01

    In recent years, seafloor magnetotelluric (MT) observation is carried out by using an increasing number of ocean bottom electromagnetometers (OBEMs) not only along a line but also in 2-D array. Thus, imaging electrical conductivity structures under the seafloor in 3-D is now feasible. A 3-D approach is indispensable especially for marine MT data, because the electric and magnetic fields observed at the seafloor are heavily distorted by the rugged seafloor topography and the distribution of land and sea which are generally 3-D. It is very important to incorporate the topography in a 3-D model for an accurate estimation of the conductivity structure beneath seafloor that is generally more resistive than seawater by several orders of magnitude. WSINV3DMT (Siripunvaraporn et al., 2005) is one of 3-D inversion codes that are now of practical use, but the original WSINV3DMT is not applicable to marine MT data because of two reasons. 1) MT responses are calculated only at the boundary corresponding to the Earth surface. 2) We have to use fine mesh design because an observation site must locate exactly at the center of the top surface of a block, which needs large memory that even a highest performance computer can not handle. We propose an extended version of the WSINV3DMT by solving the two problems shown above so that it can be applied to the marine MT data. The extended version of the WSINV3DMT is tested using synthetic models including a 3-D anomaly, seawater and topographic variation. Here shown is an example of a checkerboard test by using a model in which 10 ohm-m and 100 ohm-m blocks are put alternately in both horizontal and vertical directions. The model is composed of 5 blocks in horizontal directions and of 4 blocks in vertical direction with a background of a 31.6 ohm-m half-space below actual topography. The calculation area in the inversion is 7440 × 7440 × 1008 km, and is discretized at 35 blocks in the x and y directions, and 69 blocks in the z

  8. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  9. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  10. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    International Nuclear Information System (INIS)

    Bieniosek, Matthew F.; Lee, Brian J.; Levin, Craig S.

    2015-01-01

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed

  11. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, Matthew F. [Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, California 94305 (United States); Lee, Brian J. [Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, California 94305 (United States); Levin, Craig S., E-mail: cslevin@stanford.edu [Departments of Radiology, Physics, Bioengineering and Electrical Engineering, Stanford University, 300 Pasteur Dr., Stanford, California 94305-5128 (United States)

    2015-10-15

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed

  12. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms.

    Science.gov (United States)

    Bieniosek, Matthew F; Lee, Brian J; Levin, Craig S

    2015-10-01

    Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial "Micro Deluxe" phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. This work shows that 3D printed phantoms can be functionally equivalent to

  13. High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles

    NARCIS (Netherlands)

    Huotari, Simo; Suljoti, Edlira; Sahle, Christoph J.; Raedel, Stephanie; Monaco, Giulio; de Groot, Frank M. F.

    2015-01-01

    We report high-resolution x-ray Raman scattering studies of high-order multipole spectra of rare earth 4d -> 4f excitations (the N-4,N-5 absorption edge) in nanoparticles of the phosphates LaPO4, CePO4, PrPO4, and NdPO4. We also present corresponding data for La 5p -> 5d excitations (the O-2,O-3

  14. Computerized tomography using high resolution X-ray imaging system with a microfocus source

    International Nuclear Information System (INIS)

    Zaprazny, Z.; Korytar, D.; Konopka, P.; Ac, V.; Bielecki, J.

    2011-01-01

    In recent years there is an effort to image an internal structure of an object by using not only conventional 2D X-ray radiography but also using high resolution 3D tomography which is based on reconstruction of multiple 2D projections at various angular positions of the object. We have previously reported [1] the development and basic parameters of a high resolution x-ray imaging system with a microfocus source. We report the recent progress using this high resolution X-ray laboratory system in this work. These first findings show that our system is particularly suitable for light weight and nonmetallic objects such as biological objects, plastics, wood, paper, etc. where phase contrast helps to increase the visibility of the finest structures of the object. Phase-contrast X-ray Computerized Tomography is of our special interest because it is an emerging imaging technique that can be implemented at third generation synchrotron radiation sources and also in laboratory conditions using a microfocus X-ray tube or beam conditioning optics. (authors)

  15. High-resolution neutron diffraction studies of biological and industrial fibres

    Energy Technology Data Exchange (ETDEWEB)

    Langan, P; Mason, S A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Fuller, W; Forsyth, V T; Mahendrasingam, A; Shotton, M; Simpson, L [Keele Univ. (United Kingdom); Grimm, H [FZ, Juelich (Germany); Leberman, R [EMBL, (Country Unknown)

    1997-04-01

    Neutron diffraction is becoming an important tool for studying fibres due to its complementarity to X-ray diffraction. Unlike X-rays, scattering of neutrons by polymer atoms is not a function of their atomic number. In high-resolution studies (1.5-3 A) on D19 deuteration (replacing H by D) is being used to change the relative scattering power of chosen groups making them easier to locate. Recent studies on DNA and cellulose are described. (author). 6 refs.

  16. High-pressure 3He gas scintillation neutron spectrometer

    International Nuclear Information System (INIS)

    Derzon, M.S.; Slaughter, D.R.; Prussin, S.G.

    1985-10-01

    A high-pressure, 3 He-Xe gas scintillation spectrometer has been developed for neutron spectroscopy on D-D fusion plasmas. The spectrometer exhibits an energy resolution of (121 +- 20 keV) keV (FWHM) at 2.5 MeV and an efficiency of (1.9 +- 0.4) x 10 -3 (n/cm 2 ) -1 . The contribution to the resolution (FWHM) from counting statistics is only (22 +- 3 keV) and the remainder is due predominantly to the variation of light collection efficiency with location of neutron events within the active volume of the detector

  17. Reliable planning and monitoring tools by dismantling 3D photographic image of high resolution and document management systems. Application MEDS system

    International Nuclear Information System (INIS)

    Vela Morales, F.

    2010-01-01

    MEDS system (Metric Environment Documentation System) is a method developed by CT3 based engineering documentation generation metric of a physical environment using measurement tools latest technology and high precision, such as the Laser Scanner. With this equipment it is possible to obtain three-dimensional information of a physical environment through the 3D coordinates of millions of points. This information is processed by software that is very useful tool for modeling operations and 3D simulations.

  18. The upcoming 3D-printing revolution in microfluidics

    Science.gov (United States)

    Bhattacharjee, Nirveek; Urrios, Arturo; Kang, Shawn; Folch, Albert

    2016-01-01

    In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers. PMID:27101171

  19. Serial isoelectric focusing as an effective and economic way to obtain maximal resolution and high-throughput in 2D-based comparative proteomics of scarce samples: proof-of-principle.

    Science.gov (United States)

    Farhoud, Murtada H; Wessels, Hans J C T; Wevers, Ron A; van Engelen, Baziel G; van den Heuvel, Lambert P; Smeitink, Jan A

    2005-01-01

    In 2D-based comparative proteomics of scarce samples, such as limited patient material, established methods for prefractionation and subsequent use of different narrow range IPG strips to increase overall resolution are difficult to apply. Also, a high number of samples, a prerequisite for drawing meaningful conclusions when pathological and control samples are considered, will increase the associated amount of work almost exponentially. Here, we introduce a novel, effective, and economic method designed to obtain maximum 2D resolution while maintaining the high throughput necessary to perform large-scale comparative proteomics studies. The method is based on connecting different IPG strips serially head-to-tail so that a complete line of different IPG strips with sequential pH regions can be focused in the same experiment. We show that when 3 IPG strips (covering together the pH range of 3-11) are connected head-to-tail an optimal resolution is achieved along the whole pH range. Sample consumption, time required, and associated costs are reduced by almost 70%, and the workload is reduced significantly.

  20. Tomo3D 2.0--exploitation of advanced vector extensions (AVX) for 3D reconstruction.

    Science.gov (United States)

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-02-01

    Tomo3D is a program for fast tomographic reconstruction on multicore computers. Its high speed stems from code optimization, vectorization with Streaming SIMD Extensions (SSE), multithreading and optimization of disk access. Recently, Advanced Vector eXtensions (AVX) have been introduced in the x86 processor architecture. Compared to SSE, AVX double the number of simultaneous operations, thus pointing to a potential twofold gain in speed. However, in practice, achieving this potential is extremely difficult. Here, we provide a technical description and an assessment of the optimizations included in Tomo3D to take advantage of AVX instructions. Tomo3D 2.0 allows huge reconstructions to be calculated in standard computers in a matter of minutes. Thus, it will be a valuable tool for electron tomography studies with increasing resolution needs. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. High-resolution multimodal clinical multiphoton tomography of skin

    Science.gov (United States)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  2. Mobile 3D tomograph

    International Nuclear Information System (INIS)

    Illerhaus, Bernhard; Goebbels, Juergen; Onel, Yener; Sauerwein, Christoph

    2008-01-01

    Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm [de

  3. Airborne 3D Imaging Lidar for Contiguous Decimeter Resolution Terrain Mapping and Shallow Water Bathymetry

    Science.gov (United States)

    Degnan, J. J.; Wells, D. N.; Huet, H.; Chauvet, N.; Lawrence, D. W.; Mitchell, S. E.; Eklund, W. D.

    2005-12-01

    A 3D imaging lidar system, developed for the University of Florida at Gainesville and operating at the water transmissive wavelength of 532 nm, is designed to contiguously map underlying terrain and/or perform shallow water bathymetry on a single overflight from an altitude of 600 m with a swath width of 225 m and a horizontal spatial resolution of 20 cm. Each 600 psec pulse from a frequency-doubled, low power (~3 microjoules @ 8 kHz = 24 mW), passively Q-switched Nd:YAG microchip laser is passed through a holographic element which projects a 10x10 array of spots onto a 2m x 2m target area. The individual ground spots are then imaged onto individual anodes within a 10x10 segmented anode photomultiplier. The latter is followed by a 100 channel multistop ranging receiver with a range resolution of about 4 cm. The multistop feature permits single photon detection in daylight with wide range gates as well as multiple single photon returns per pixel per laser fire from volumetric scatterers such as tree canopies or turbid water columns. The individual single pulse 3D images are contiguously mosaiced together through the combined action of the platform velocity and a counter-rotating dual wedge optical scanner whose rotations are synchronized to the laser pulse train. The paper provides an overview of the lidar opto-mechanical design, the synchronized dual wedge scanner and servo controller, and the experimental results obtained to date.

  4. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.

    Science.gov (United States)

    Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B; Krumm, Anton; Shendure, Jay; Blau, C Anthony; Disteche, Christine M; Noble, William S; Duan, ZhiJun

    2018-06-01

    The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Comparative evaluation of HD 2D/3D laparoscopic monitors and benchmarking to a theoretically ideal 3D pseudodisplay: even well-experienced laparoscopists perform better with 3D.

    Science.gov (United States)

    Wilhelm, D; Reiser, S; Kohn, N; Witte, M; Leiner, U; Mühlbach, L; Ruschin, D; Reiner, W; Feussner, H

    2014-08-01

    Though theoretically superior to standard 2D visualization, 3D video systems have not yet achieved a breakthrough in laparoscopy. The latest 3D monitors, including autostereoscopic displays and high-definition (HD) resolution, are designed to overcome the existing limitations. We performed a randomized study on 48 individuals with different experience levels in laparoscopy. Three different 3D displays (glasses-based 3D monitor, autostereoscopic display, and a mirror-based theoretically ideal 3D display) were compared to a 2D HD display by assessing multiple performance and mental workload parameters and rating the subjects during a laparoscopic suturing task. Electromagnetic tracking provided information on the instruments' pathlength, movement velocity, and economy. The usability, the perception of visual discomfort, and the quality of image transmission of each monitor were subjectively rated. Almost all performance parameters were superior with the conventional glasses-based 3D display compared to the 2D display and the autostereoscopic display, but were often significantly exceeded by the mirror-based 3D display. Subjects performed a task faster and with greater precision when visualization was achieved with the 3D and the mirror-based display. Instrument pathlength was shortened by improved depth perception. Workload parameters (NASA TLX) did not show significant differences. Test persons complained of impaired vision while using the autostereoscopic monitor. The 3D and 2D displays were rated user-friendly and applicable in daily work. Experienced and inexperienced laparoscopists profited equally from using a 3D display, with an improvement in task performance about 20%. Novel 3D displays improve laparoscopic interventions as a result of faster performance and higher precision without causing a higher mental workload. Therefore, they have the potential to significantly impact the further development of minimally invasive surgery. However, as shown by the

  6. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and

  7. 3D structure of individual nanocrystals in solution by electron microscopy

    Science.gov (United States)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul

    2015-07-01

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.

  8. Application of Internal Standard Method for Several 3d-Transition Metallic Elements in Flame Atomic Absorption Spectrometry Using a Multi-wavelength High-resolution Spectrometer.

    Science.gov (United States)

    Toya, Yusuke; Itagaki, Toshiko; Wagatsuma, Kazuaki

    2017-01-01

    We investigated a simultaneous internal standard method in flame atomic absorption spectrometry (FAAS), in order to better the analytical precision of 3d-transition metals contained in steel materials. For this purpose, a new spectrometer system for FAAS, comprising a bright xenon lamp as the primary radiation source and a high-resolution Echelle monochromator, was employed to measure several absorption lines at a wavelength width of ca. 0.3 nm at the same time, which enables the absorbances of an analytical line and also an internal standard line to be estimated. In considering several criteria for selecting an internal standard element and the absorption line, it could be suggested that platinum-group elements: ruthenium, rhodium, or palladium, were suitable for an internal standard element to determine the 3d-transition metal elements, such as titanium, iron, and nickel, by measuring an appropriate pair of these absorption lines simultaneously. Several variances of the absorption signal, such as a variation in aspirated amounts of sample solution and a short-period drift of the primary light source, would be corrected and thus reduced, when the absorbance ratio of the analytical line to the internal standard line was measured. In Ti-Pd, Ni-Rh, and Fe-Ru systems chosen as typical test samples, the repeatability of the signal respnses was investigated with/without the internal standard method, resulting in better precision when the internal standard method was applied in the FAAS with a nitrous oxide-acetylene flame rather than an air-acetylene flame.

  9. 3D quantitative phase imaging of neural networks using WDT

    Science.gov (United States)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  10. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission.

    Science.gov (United States)

    Wu, Xiaoping; Auerbach, Edward J; Vu, An T; Moeller, Steen; Lenglet, Christophe; Schmitter, Sebastian; Van de Moortele, Pierre-François; Yacoub, Essa; Uğurbil, Kâmil

    2018-03-30

    Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm 2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data. © 2018 International Society for Magnetic Resonance in Medicine.

  11. 3D Bioprinting for Organ Regeneration

    Science.gov (United States)

    Cui, Haitao; Nowicki, Margaret; Fisher, John P.; Zhang, Lijie Grace

    2017-01-01

    Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled bio-manufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting. PMID:27995751

  12. Plasmodium vivax merozoite surface protein-3 alpha: a high-resolution marker for genetic diversity studies.

    Science.gov (United States)

    Prajapati, Surendra Kumar; Joshi, Hema; Valecha, Neena

    2010-06-01

    Malaria, an ancient human infectious disease caused by five species of Plasmodium, among them Plasmodium vivax is the most widespread human malaria species and causes huge morbidity to its host. Identification of genetic marker to resolve higher genetic diversity for an ancient origin organism is a crucial task. We have analyzed genetic diversity of P. vivax field isolates using highly polymorphic antigen gene merozoite surface protein-3 alpha (msp-3 alpha) and assessed its suitability as high-resolution genetic marker for population genetic studies. 27 P. vivax field isolates collected during chloroquine therapeutic efficacy study at Chennai were analyzed for genetic diversity. PCR-RFLP was employed to assess the genetic variations using highly polymorphic antigen gene msp-3 alpha. We observed three distinct PCR alleles at msp-3 alpha, and among them allele A showed significantly high frequency (53%, chi2 = 8.22, p = 0.001). PCR-RFLP analysis revealed 14 and 17 distinct RFLP patterns for Hha1 and Alu1 enzymes respectively. Further, RFLP analysis revealed that allele A at msp-3 alpha is more diverse in the population compared with allele B and C. Combining Hha1 and Alu1 RFLP patterns revealed 21 distinct genotypes among 22 isolates reflects higher diversity resolution power of msp-3 alpha in the field isolates. P. vivax isolates from Chennai region revealed substantial amount of genetic diversity and comparison of allelic diversity with other antigen genes and microsatellites suggesting that msp-3 alpha could be a high-resolution marker for genetic diversity studies among P. vivax field isolates.

  13. High-precision real-time 3D shape measurement based on a quad-camera system

    Science.gov (United States)

    Tao, Tianyang; Chen, Qian; Feng, Shijie; Hu, Yan; Zhang, Minliang; Zuo, Chao

    2018-01-01

    Phase-shifting profilometry (PSP) based 3D shape measurement is well established in various applications due to its high accuracy, simple implementation, and robustness to environmental illumination and surface texture. In PSP, higher depth resolution generally requires higher fringe density of projected patterns which, in turn, lead to severe phase ambiguities that must be solved with additional information from phase coding and/or geometric constraints. However, in order to guarantee the reliability of phase unwrapping, available techniques are usually accompanied by increased number of patterns, reduced amplitude of fringe, and complicated post-processing algorithms. In this work, we demonstrate that by using a quad-camera multi-view fringe projection system and carefully arranging the relative spatial positions between the cameras and the projector, it becomes possible to completely eliminate the phase ambiguities in conventional three-step PSP patterns with high-fringe-density without projecting any additional patterns or embedding any auxiliary signals. Benefiting from the position-optimized quad-camera system, stereo phase unwrapping can be efficiently and reliably performed by flexible phase consistency checks. Besides, redundant information of multiple phase consistency checks is fully used through a weighted phase difference scheme to further enhance the reliability of phase unwrapping. This paper explains the 3D measurement principle and the basic design of quad-camera system, and finally demonstrates that in a large measurement volume of 200 mm × 200 mm × 400 mm, the resultant dynamic 3D sensing system can realize real-time 3D reconstruction at 60 frames per second with a depth precision of 50 μm.

  14. Structured light 3D tracking system for measuring motions in PET brain imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Jørgensen, Morten Rudkjær; Paulsen, Rasmus Reinhold

    2010-01-01

    Patient motion during scanning deteriorates image quality, especially for high resolution PET scanners. A new proposal for a 3D head tracking system for motion correction in high resolution PET brain imaging is set up and demonstrated. A prototype tracking system based on structured light with a ...

  15. 3D scanning particle tracking velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Klaus; Holzner, Markus; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang [Swiss Federal Institut of Technology Zurich, Institut fuer Hydromechanik und Wasserwirtschaft, Zuerich (Switzerland); Luethi, Beat [Risoe National Laboratory, Roskilde (Denmark)

    2005-11-01

    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements. (orig.)

  16. Low-cost, portable, robust and high-resolution single-camera stereo-DIC system and its application in high-temperature deformation measurements

    Science.gov (United States)

    Chi, Yuxi; Yu, Liping; Pan, Bing

    2018-05-01

    A low-cost, portable, robust and high-resolution single-camera stereo-digital image correlation (stereo-DIC) system for accurate surface three-dimensional (3D) shape and deformation measurements is described. This system adopts a single consumer-grade high-resolution digital Single Lens Reflex (SLR) camera and a four-mirror adaptor, rather than two synchronized industrial digital cameras, for stereo image acquisition. In addition, monochromatic blue light illumination and coupled bandpass filter imaging are integrated to ensure the robustness of the system against ambient light variations. In contrast to conventional binocular stereo-DIC systems, the developed pseudo-stereo-DIC system offers the advantages of low cost, portability, robustness against ambient light variations, and high resolution. The accuracy and precision of the developed single SLR camera-based stereo-DIC system were validated by measuring the 3D shape of a stationary sphere along with in-plane and out-of-plane displacements of a translated planar plate. Application of the established system to thermal deformation measurement of an alumina ceramic plate and a stainless-steel plate subjected to radiation heating was also demonstrated.

  17. Fabrication of highly modulable fibrous 3D extracellular microenvironments

    KAUST Repository

    Zhang, Xixiang; Han, Fangfei; Syed, Ahad; Bukhari, Ebtihaj M.; Siang, Basil Chew Joo; Yang, Shan; Zhou, Bingpu; Wen, Wei-jia; Jiang, Dechen

    2017-01-01

    Three-dimensional (3D) in vitro scaffolds that mimic the irregular fibrous structures of in vivo extracellular matrix (ECM) are critical for many important biological applications. However, structural properties modulation of fibrous 3D scaffolds remains a challenge. Here, we report the first highly modulable 3D fibrous scaffolds self-assembled by high-aspect-ratio (HAR) microfibers. The scaffolds structural properties can be easily tailored to incorporate various physical cues, including geometry, stiffness, heterogeneity and nanotopography. Moreover, the fibrous scaffolds are readily and accurately patterned on desired locations of the substrate. Cell culture exhibits that our scaffolds can elicit strong bidirectional cell-material interactions. Furthermore, a functional disparity between the two-dimensional substrate and our 3D scaffolds is identified by cell spreading and proliferation data. These results prove the potential of the proposed scaffold as a biomimetic extracellular microenvironment for cell study.

  18. Fabrication of highly modulable fibrous 3D extracellular microenvironments

    KAUST Repository

    Zhang, Xixiang

    2017-06-13

    Three-dimensional (3D) in vitro scaffolds that mimic the irregular fibrous structures of in vivo extracellular matrix (ECM) are critical for many important biological applications. However, structural properties modulation of fibrous 3D scaffolds remains a challenge. Here, we report the first highly modulable 3D fibrous scaffolds self-assembled by high-aspect-ratio (HAR) microfibers. The scaffolds structural properties can be easily tailored to incorporate various physical cues, including geometry, stiffness, heterogeneity and nanotopography. Moreover, the fibrous scaffolds are readily and accurately patterned on desired locations of the substrate. Cell culture exhibits that our scaffolds can elicit strong bidirectional cell-material interactions. Furthermore, a functional disparity between the two-dimensional substrate and our 3D scaffolds is identified by cell spreading and proliferation data. These results prove the potential of the proposed scaffold as a biomimetic extracellular microenvironment for cell study.

  19. High-resolution Imaging of Deuterium-Tritium Capsule Implosions on the National Ignition Facility

    Science.gov (United States)

    Bachmann, Benjamin; Rygg, Ryan; Collins, Gilbert; Patel, Pravesh

    2017-10-01

    Highly-resolved 3-D simulations of inertial confinement fusion (ICF) implosions predict a hot spot plasma that exhibits complex micron-scale structure originating from a variety of 3-D perturbations. Experimental diagnosis of these conditions requires high spatial resolution imaging techniques. X-ray penumbral imaging can improve the spatial resolution over pinhole imaging while simultaneously increasing the detected photon yield at x-ray energies where the ablator opacity becomes negligible. Here we report on the first time-integrated x-ray penumbral imaging experiments of ICF capsule implosions at the National Ignition Facility that achieved spatial resolution as high as 4 micrometer. 6 to 30 keV hot spot images from layered DT implosions will be presented from a variety of experimental ICF campaigns, revealing previously unseen detail. It will be discussed how these and future results can be used to improve our physics understanding of inertially confined fusion plasmas by enabling spatially resolved measurements of hot spot properties, such as radiation energy, temperature or derived quantities. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  20. 3D bioprinting and its in vivo applications.

    Science.gov (United States)

    Hong, Nhayoung; Yang, Gi-Hoon; Lee, JaeHwan; Kim, GeunHyung

    2018-01-01

    The purpose of 3D bioprinting technology is to design and create functional 3D tissues or organs in situ for in vivo applications. 3D cell-printing, or additive biomanufacturing, allows the selection of biomaterials and cells (bioink), and the fabrication of cell-laden structures in high resolution. 3D cell-printed structures have also been used for applications such as research models, drug delivery and discovery, and toxicology. Recently, numerous attempts have been made to fabricate tissues and organs by using various 3D printing techniques. However, challenges such as vascularization are yet to be solved. This article reviews the most commonly used 3D cell-printing techniques with their advantages and drawbacks. Furthermore, up-to-date achievements of 3D bioprinting in in vivo applications are introduced, and prospects for the future of 3D cell-printing technology are discussed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 444-459, 2018. © 2017 Wiley Periodicals, Inc.

  1. High spatial resolution imaging of some of the distant 3CR galaxies

    International Nuclear Information System (INIS)

    Le Fevre, O.; Hammer, F.; Jones, J.

    1988-01-01

    Deep, high spatial resolution imaging of several sources from the high-redshift 3CR galaxy sample is presented. Very complex and unexpected morphologies are found. All the galaxies observed so far are resolved, and most of them show multimodal sources. Significant color differences for the components of each galaxy are measured. An interpretation in terms of gravitational amplification/lensing by foreground galaxies or galactic clusters is proposed for 3C 238, 3C 241, and 3C 305.1, 3C 238 being the strongest candidate. The complexity of the 3CR galaxies like 3C 356, which includes a compact object, and 3C 326.1 shows that they are not normal ellipticals and their use as standard candles to test for galaxy evolution is therefore questionable. 29 references

  2. Preparative resolution of D,L-threonine catalyzed by immobilized phosphatase.

    Science.gov (United States)

    Scollar, M P; Sigal, G; Klibanov, A M

    1985-03-01

    Hydrolysis of L- and D-O-phosphothreonines catalyzed by four different phosphatases, alkaline phosphatases from calf intestine and E. coli and acid phosphatases from wheat germ and potato, has been kinetically studied. Alkaline phosphatases were found to have comparable reactivities towards the optical isomers. On the other hand, both acid phosphatases displayed a marked stereoselectivity, hydrolyzing the L-ester much faster than its D counterpart. Wheat germ acid phosphatase was the most stereoselective enzyme: V(L)/V(D) = 24 and K(m,L)/K(m,D) = 0.17. This enzyme was immobilized (in k-carrageenan gel, followed by crosslinking with glutaraldehyde) and used for the preparative resolution of D,L-threonine: the latter was first chemically O-phosphorylated and then asymmetrically hydrolyzed by the immobilized phosphatase. As a result, gram quantities of L-threonine of high optical purity and O-phospho-D-threonine were prepared. Immobilized wheat germ phosphatase has been tested for the resolution of other racemic alcohols: serine, 2-amino-1-butanol, 1-amino-2-propanol, 2-octanol, and menthol. In all those cases, the enzyme was either not sufficiently stereoselective or too slow for preparative resolutions.

  3. Angular difference feature extraction for urban scene classification using ZY-3 multi-angle high-resolution satellite imagery

    Science.gov (United States)

    Huang, Xin; Chen, Huijun; Gong, Jianya

    2018-01-01

    Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed

  4. X-ray tomography: Biological cells in 3-D at better than 50 nm resolution

    International Nuclear Information System (INIS)

    Larabell, C.; Le Gros, M.

    2004-01-01

    Full text: X-ray microscopy can be used to image whole, hydrated, specimens with a spatial resolution 5-10 times better than that obtained using visible light microscopy. X-ray imaging at photon energies below the K- absorption edge of oxygen, referred to as the water window, exploits the strong natural contrast for organic material embedded in a mostly water matrix. With a transmission X-ray microscope using Fresnel zone plate optics, specimens up to 10 microns thick can be examined. The highest X-ray transmission in hydrated samples is obtained at a wavelength of 2.4 nm but, due to the low numerical aperture of zone plate lenses operated in st order diffraction mode the structures resolved are much larger than the X-ray wavelength. Because of the low NA of X-ray lenses (NA=0.05), combined with the effect of polychromatic illumination and a wavelength dependant focal length, the effective depth of ld is large (6-10 microns). The experiments presented here were performed at the Advanced Light Source using the full ld transmission X-ray microscope, XM-1. This microscope employs a bend magnet X-ray source and zone plate condenser and objective lenses. The condenser zone plate acts as a monochromator and the X-ray images are recorded directly on a cooled, back-thinned 1024x1024 pixel CCD camera. The sample holder was a rotationally symmetric glass tube; the region containing the sample was 10 microns in diameter with a wall thickness of 200 nm. Live yeast cells were loaded into the tube, rapidly frozen by a blast of liquid nitrogen-cooled helium gas, and maintained at 140 deg C by a steady flow of cold helium. The image sequence spanned 180 deg and consisted of 45 images spaced by 4 deg. The images were aligned to a common axis and computed tomographic reconstruction was used to obtain the 3-D X-ray linear absorption coefficient. Volume rendering and animation of reconstructed data was performed using the 3-D program, Amira. Acquisition time for 90 images was 3 min

  5. Hyper-resolution urban flood modeling using high-resolution radar precipitation and LiDAR data

    Science.gov (United States)

    Noh, S. J.; Lee, S.; Lee, J.; Seo, D. J.

    2016-12-01

    Floods occur most frequently among all natural hazards, often causing widespread economic damage and loss of human lives. In particular, urban flooding is becoming increasingly costly and difficult to manage with a greater concentration of population and assets in urban centers. Despite of known benefits for accurate representation of small scale features and flow interaction among different flow domains, which have significant impact on flood propagation, high-resolution modeling has not been fully utilized due to expensive computation and various uncertainties from model structure, input and parameters. In this study, we assess the potential of hyper-resolution hydrologic-hydraulic modeling using high-resolution radar precipitation and LiDAR data for improved urban flood prediction and hazard mapping. We describe a hyper-resolution 1D-2D coupled urban flood model for pipe and surface flows and evaluate the accuracy of the street-level inundation information produced. For detailed geometric representation of urban areas and for computational efficiency, we use 1 m-resolution topographical data, processed from LiDAR measurements, in conjunction with adaptive mesh refinement. For street-level simulation in large urban areas at grid sizes of 1 to 10 m, a hybrid parallel computing scheme using MPI and openMP is also implemented in a high-performance computing system. The modeling approach developed is applied for the Johnson Creek Catchment ( 40 km2), which makes up the Arlington Urban Hydroinformatics Testbed. In addition, discussion will be given on availability of hyper-resolution simulation archive for improved real-time flood mapping.

  6. [Examination of upper abdominal region in high spatial resolution diffusion-weighted imaging using 3-Tesla MRI].

    Science.gov (United States)

    Terada, Masaki; Matsushita, Hiroki; Oosugi, Masanori; Inoue, Kazuyasu; Yaegashi, Taku; Anma, Takeshi

    2009-03-20

    The advantage of the higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3-Tesla) has the possibility of contributing to the improvement of high spatial resolution without causing image deterioration. In this study, we compared SNR and the apparent diffusion coefficient (ADC) value with 3-Tesla as the condition in the diffusion-weighted image (DWI) parameter of the 1.5-Tesla magnetic resonance imaging (1.5-Tesla) and we examined the high spatial resolution images in the imaging method [respiratory-triggering (RT) method and breath free (BF) method] and artifact (motion and zebra) in the upper abdominal region of DWI at 3-Tesla. We have optimized scan parameters based on phantom and in vivo study. As a result, 3-Tesla was able to obtain about 1.5 times SNR in comparison with the 1.5-Tesla, ADC value had few differences. Moreover, the RT method was effective in correcting the influence of respiratory movement in comparison with the BF method, and image improvement by the effective acquisition of SNR and reduction of the artifact were provided. Thus, DWI of upper abdominal region was a useful sequence for the high spatial resolution in 3-Tesla.

  7. High-resolution structural and functional assessments of cerebral microvasculature using 3D Gas ΔR2*-mMRA.

    Science.gov (United States)

    Huang, Chien-Hsiang; Chen, Chiao-Chi V; Siow, Tiing-Yee; Hsu, Sheng-Hsiou S; Hsu, Yi-Hua; Jaw, Fu-Shan; Chang, Chen

    2013-01-01

    The ability to evaluate the cerebral microvascular structure and function is crucial for investigating pathological processes in brain disorders. Previous angiographic methods based on blood oxygen level-dependent (BOLD) contrast offer appropriate visualization of the cerebral vasculature, but these methods remain to be optimized in order to extract more comprehensive information. This study aimed to integrate the advantages of BOLD MRI in both structural and functional vascular assessments. The BOLD contrast was manipulated by a carbogen challenge, and signal changes in gradient-echo images were computed to generate ΔR2* maps. Simultaneously, a functional index representing the regional cerebral blood volume was derived by normalizing the ΔR2* values of a given region to those of vein-filled voxels of the sinus. This method is named 3D gas ΔR2*-mMRA (microscopic MRA). The advantages of using 3D gas ΔR2*-mMRA to observe the microvasculature include the ability to distinguish air-tissue interfaces, a high vessel-to-tissue contrast, and not being affected by damage to the blood-brain barrier. A stroke model was used to demonstrate the ability of 3D gas ΔR2*-mMRA to provide information about poststroke revascularization at 3 days after reperfusion. However, this technique has some limitations that cannot be overcome and hence should be considered when it is applied, such as magnifying vessel sizes and predominantly revealing venous vessels.

  8. Fabrication of fillable microparticles and other complex 3D microstructures

    Science.gov (United States)

    McHugh, Kevin J.; Nguyen, Thanh D.; Linehan, Allison R.; Yang, David; Behrens, Adam M.; Rose, Sviatlana; Tochka, Zachary L.; Tzeng, Stephany Y.; Norman, James J.; Anselmo, Aaron C.; Xu, Xian; Tomasic, Stephanie; Taylor, Matthew A.; Lu, Jennifer; Guarecuco, Rohiverth; Langer, Robert; Jaklenec, Ana

    2017-09-01

    Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types of microstructures that can be formed. We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives.

  9. New approaches to high-resolution mapping of marine vertical structures.

    Science.gov (United States)

    Robert, Katleen; Huvenne, Veerle A I; Georgiopoulou, Aggeliki; Jones, Daniel O B; Marsh, Leigh; D O Carter, Gareth; Chaumillon, Leo

    2017-08-21

    Vertical walls in marine environments can harbour high biodiversity and provide natural protection from bottom-trawling activities. However, traditional mapping techniques are usually restricted to down-looking approaches which cannot adequately replicate their 3D structure. We combined sideways-looking multibeam echosounder (MBES) data from an AUV, forward-looking MBES data from ROVs and ROV-acquired videos to examine walls from Rockall Bank and Whittard Canyon, Northeast Atlantic. High-resolution 3D point clouds were extracted from each sonar dataset and structure from motion photogrammetry (SfM) was applied to recreate 3D representations of video transects along the walls. With these reconstructions, it was possible to interact with extensive sections of video footage and precisely position individuals. Terrain variables were derived on scales comparable to those experienced by megabenthic individuals. These were used to show differences in environmental conditions between observed and background locations as well as explain spatial patterns in ecological characteristics. In addition, since the SfM 3D reconstructions retained colours, they were employed to separate and quantify live coral colonies versus dead framework. The combination of these new technologies allows us, for the first time, to map the physical 3D structure of previously inaccessible habitats and demonstrates the complexity and importance of vertical structures.

  10. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  11. 3-D Imaging by Laser Radar and Applications in Preventing and Combating Crime and Terrorism

    National Research Council Canada - National Science Library

    Letalick, Dietmar; Ahlberg, Joergen; Andersson, Pierre; Chevalier, Tomas; Groenwall, Christina; Larsson, Hakan; Persson, Asa; Klasen, Lena

    2004-01-01

    This paper describes the ongoing research on 3-dimensional (3-D) imaging at FOI. Specifically, we address the new possibilities brought by laser radars, focusing on systems for high resolution 3-D imaging...

  12. High resolution krypton M/sub 4,5/ x-ray emission spectra

    International Nuclear Information System (INIS)

    Perera, R.C.C.; Hettrick, M.C.; Lindle, D.W.

    1987-10-01

    High resolution M/sub 4,5/ (3d → 4p) x-ray emission spectra from a krypton plasma were measured using a recently developed grazing-incidence reflection-grating monochromator/spectrometer with very high flux rates at extreme ultraviolet and soft x-ray wave lengths. The nominal resolving power of the instrument, E/ΔE, is about 300 in this energy range (∼80 eV). Three dipole-allowed 3d → 4p emission lines were observed at 80.98 eV, 80.35 eV and 79.73 eV. A broad peak at about 82.3 eV is tentatively assigned to transitions resulting from Kr 2+ , and effects of excitation energy on M/sub 4,5/ x-ray emission were observed. 9 refs., 3 figs., 1 tab

  13. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Structure recognition from high resolution images of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  15. Fiber optic coherent laser radar 3D vision system

    International Nuclear Information System (INIS)

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-01-01

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution

  16. Triangulation-based 3D surveying borescope

    Science.gov (United States)

    Pulwer, S.; Steglich, P.; Villringer, C.; Bauer, J.; Burger, M.; Franz, M.; Grieshober, K.; Wirth, F.; Blondeau, J.; Rautenberg, J.; Mouti, S.; Schrader, S.

    2016-04-01

    In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of +/- 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations.

  17. Whole-heart coronary MRA with 3D affine motion correction using 3D image-based navigation.

    Science.gov (United States)

    Henningsson, Markus; Prieto, Claudia; Chiribiri, Amedeo; Vaillant, Ghislain; Razavi, Reza; Botnar, René M

    2014-01-01

    Robust motion correction is necessary to minimize respiratory motion artefacts in coronary MR angiography (CMRA). The state-of-the-art method uses a 1D feet-head translational motion correction approach, and data acquisition is limited to a small window in the respiratory cycle, which prolongs the scan by a factor of 2-3. The purpose of this work was to implement 3D affine motion correction for Cartesian whole-heart CMRA using a 3D navigator (3D-NAV) to allow for data acquisition throughout the whole respiratory cycle. 3D affine transformations for different respiratory states (bins) were estimated by using 3D-NAV image acquisitions which were acquired during the startup profiles of a steady-state free precession sequence. The calculated 3D affine transformations were applied to the corresponding high-resolution Cartesian image acquisition which had been similarly binned, to correct for respiratory motion between bins. Quantitative and qualitative comparisons showed no statistical difference between images acquired with the proposed method and the reference method using a diaphragmatic navigator with a narrow gating window. We demonstrate that 3D-NAV and 3D affine correction can be used to acquire Cartesian whole-heart 3D coronary artery images with 100% scan efficiency with similar image quality as with the state-of-the-art gated and corrected method with approximately 50% scan efficiency. Copyright © 2013 Wiley Periodicals, Inc.

  18. Volumetric 3D Display System with Static Screen

    Science.gov (United States)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  19. A high-resolution regional reanalysis for the European CORDEX region

    Science.gov (United States)

    Bollmeyer, Christoph; Keller, Jan; Ohlwein, Christian; Wahl, Sabrina

    2015-04-01

    Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Weather Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations, renewable energy applications). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on two regional reanalyses for Europe and Germany. The European reanalysis COSMO-REA6 matches the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). Nested into COSMO-REA6 is COSMO-REA2, a convective-scale reanalysis with 2km resolution for Germany. COSMO-REA6 comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-Interim data. COSMO-REA2 also uses the nudging scheme complemented by a latent heat nudging of radar information. The reanalysis data set currently covers 17 years (1997-2013) for COSMO-REA6 and 4 years (2010-2013) for COSMO-REA2 with a very large set of output variables and a high temporal output step of hourly 3D-fields and quarter-hourly 2D-fields. The evaluation

  20. High resolution X-ray spectroscopy in light antiprotonic atoms

    CERN Document Server

    Borchert, G L; Augsburger, M A; Castelli, C M; Chatellard, D; Egger, J P; El-Khoury, P; Elble, M; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    2000-01-01

    At the LEAR facility, CERN, antiprotonic L alpha transitions in light elements have been investigated with a focussing crystal spectrometer. The high resolution of the experiment allowed for the first time to resolve in pH/pH the 2/sup 3/P/sub 0/ state from the close-lying states 2/sup 3/P/sub 2/, 2/sup 1/P/sub 1/, and 2/sup 3/P /sub 1/. In pD the corresponding transitions were found to be more than an order of magnitude broader. To a large extent the results for pH support the meson exchange model. (15 refs).

  1. Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.

    Science.gov (United States)

    Jia, Chao; Bian, Huiyang; Gao, Tingting; Jiang, Feng; Kierzewski, Iain Michael; Wang, Yilin; Yao, Yonggang; Chen, Liheng; Shao, Ziqiang; Zhu, J Y; Hu, Liangbing

    2017-08-30

    Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.

  2. A 360-degree floating 3D display based on light field regeneration.

    Science.gov (United States)

    Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong

    2013-05-06

    Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method.

  3. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...

  4. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  5. 3D-Printed Millimeter Wave Structures

    Science.gov (United States)

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  6. Fully 3D iterative scatter-corrected OSEM for HRRT PET using a GPU

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Sang; Ye, Jong Chul, E-mail: kssigari@kaist.ac.kr, E-mail: jong.ye@kaist.ac.kr [Bio-Imaging and Signal Processing Lab., Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahak-no, Yuseong-gu, Daejon 305-701 (Korea, Republic of)

    2011-08-07

    Accurate scatter correction is especially important for high-resolution 3D positron emission tomographies (PETs) such as high-resolution research tomograph (HRRT) due to large scatter fraction in the data. To address this problem, a fully 3D iterative scatter-corrected ordered subset expectation maximization (OSEM) in which a 3D single scatter simulation (SSS) is alternatively performed with a 3D OSEM reconstruction was recently proposed. However, due to the computational complexity of both SSS and OSEM algorithms for a high-resolution 3D PET, it has not been widely used in practice. The main objective of this paper is, therefore, to accelerate the fully 3D iterative scatter-corrected OSEM using a graphics processing unit (GPU) and verify its performance for an HRRT. We show that to exploit the massive thread structures of the GPU, several algorithmic modifications are necessary. For SSS implementation, a sinogram-driven approach is found to be more appropriate compared to a detector-driven approach, as fast linear interpolation can be performed in the sinogram domain through the use of texture memory. Furthermore, a pixel-driven backprojector and a ray-driven projector can be significantly accelerated by assigning threads to voxels and sinograms, respectively. Using Nvidia's GPU and compute unified device architecture (CUDA), the execution time of a SSS is less than 6 s, a single iteration of OSEM with 16 subsets takes 16 s, and a single iteration of the fully 3D scatter-corrected OSEM composed of a SSS and six iterations of OSEM takes under 105 s for the HRRT geometry, which corresponds to acceleration factors of 125x and 141x for OSEM and SSS, respectively. The fully 3D iterative scatter-corrected OSEM algorithm is validated in simulations using Geant4 application for tomographic emission and in actual experiments using an HRRT.

  7. A high resolution TOF-PET concept with axial geometry and digital SiPM readout

    CERN Document Server

    Casella, C; Joram, C; Schneider, T

    2014-01-01

    The axial arrangement of long scintillation crystals is a promising concept in PET instrumentation to address the need for optimized resolution and sensitivity. Individual crystal readout and arrays of wavelength shifter strips placed orthogonally to the crystals lead to a 3D-detection of the annihilations photons. A fully operational demonstrator scanner, developed by the AX-PET collaboration, proved the potential of this concept in terms of energy and spatial resolution as well as sensitivity. This paper describes a feasibility study, performed on axial prototype detector modules with 100 mm long LYSO crystals, read out by the novel digital Silicon Photomultipliers (dSiPM) from Philips. With their highly integrated readout electronics and excellent intrinsic time resolution, dSiPMs allow for compact, axial detector modules which may extend the potential of the axial PET concept by time of fl ight capabilities (TOF-PET). A coincidence time resolution of 211 ps (FWHM) was achieved in the coincidence of two ax...

  8. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)

    2000-07-01

    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  9. High Resolution, Radiation Tolerant Focal Plane Array for Lunar And Deep Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerius Photonics and its partners propose the development of a high resolution, radiation hardened 3-D FLASH Focal Plane Array (FPA), with performance expected to be...

  10. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  11. 3D-ICONS Ireland – fulfilling the potential of a rich 3D resource

    Directory of Open Access Journals (Sweden)

    Anthony Corns

    2017-03-01

    Full Text Available As a partner in the EU co-funded 3D-ICONS project, the Discovery Programme undertook the 3D documentation of some of the most iconic cultural heritage sites in Ireland. This pan-European project aimed to establish a complete pipeline for the production of 3D replicas of archaeological monuments and historic buildings, and to publish the content to Europeana for public access. The list of Irish icons range from wider cultural landscapes to smaller ornately carved stones and includes a wide range of chronological periods: from Neolithic rock art from 2500 BC to Derry's 17th-century fortifications. The primary digitisation methods include airborne laser scanning (ALS, phase-based terrestrial laser scanning (Faro Focus 3D and close range structured light scanning (Artec EVA. These are now mainstream approaches for surveying historic landscapes, structures and objects, generating precise, high-resolution point cloud data, primarily for viewing and interaction in proprietary software applications. The challenge was to convert these complex high-volume datasets into textured 3D models, retaining the geometric integrity of the original data. The article highlights the development of a pipeline to produce a lightweight 3D model that enables the public to interact with a photorealistic model based upon accurate survey and texture data. 3D-ICONS ended in January 2015, but a new website 3dicons.ie was launched to offer continued access to the Irish 3D models and associated content and media generated during the project. The article will consider the impact of this online content, particularly how it has been used as a teaching aid in secondary schools and how this may be extended in the future. It will also demonstrate how content from the project has been remodelled to develop an interactive and immersive experience for the great mound at Knowth, a development in partnership with the operators of the Brú na Bóinne visitor centre.

  12. Atomic resolution three-dimensional electron diffraction microscopy

    International Nuclear Information System (INIS)

    Miao Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; Hodgson, Keith O.; O'Keefe, Michael A.

    2002-01-01

    We report the development of a novel form of diffraction-based 3D microscopy to overcome resolution barriers inherent in high-resolution electron microscopy and tomography. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a nanocrystal can be determined ab initio at a resolution of 1 Angstrom from 29 simulated noisy diffraction patterns. This new form of microscopy can be used to image the 3D structures of nanocrystals and noncrystalline samples, with resolution limited only by the quality of sample diffraction

  13. LOTT RANCH 3D PROJECT

    International Nuclear Information System (INIS)

    Larry Lawrence; Bruce Miller

    2004-01-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  14. Proposal for a semiconductor high resolution tracking detector

    International Nuclear Information System (INIS)

    Rehak, P.

    1983-01-01

    A 'new' concept for detection and tracking of charged particles in high energy physics experiments is proposed. It combines a well known high purity semiconductor diode detector (HPSDD) with a heterojunction structure (HJ) and a negative electron affinity (NEA) surface. The detector should be capable of providing a two dimensional view (few cm 2 ) of multi-track events with the following properties: a) position resolution down to a few μm (10 8 position elements); b) high density of information (10 2 -10 3 dots per mm of minimum ionizing track); c) high rate capabilities (few MHz); d) live operation with options to be triggered and/or the information from the detector can be used as an input for the decision to record an event. (orig.)

  15. CCTV Coverage Index Based on Surveillance Resolution and Its Evaluation Using 3D Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Kyoungah Choi

    2015-09-01

    Full Text Available We propose a novel approach to evaluating how effectively a closed circuit television (CCTV system can monitor a targeted area. With 3D models of the target area and the camera parameters of the CCTV system, the approach produces surveillance coverage index, which is newly defined in this study as a quantitative measure for surveillance performance. This index indicates the proportion of the space being monitored with a sufficient resolution to the entire space of the target area. It is determined by computing surveillance resolution at every position and orientation, which indicates how closely a specific object can be monitored with a CCTV system. We present full mathematical derivation for the resolution, which depends on the location and orientation of the object as well as the geometric model of a camera. With the proposed approach, we quantitatively evaluated the surveillance coverage of a CCTV system in an underground parking area. Our evaluation process provided various quantitative-analysis results, compelling us to examine the design of the CCTV system prior to its installation and understand the surveillance capability of an existing CCTV system.

  16. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons.

    Science.gov (United States)

    Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan

    2017-09-01

    To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.

  17. Evaluation of TSE- and T1-3D-GRE-sequences for focal cartilage lesions in vitro in comparison to ultrahigh resolution multi-slice CT

    International Nuclear Information System (INIS)

    Stork, A.; Schulze, D.; Koops, A.; Kemper, J.; Adam, G.

    2002-01-01

    Purpose: Evaluation of TSE- and T 1 -3D-GRE-sequences for focal cartilage lesions in vitro in comparison to ultrahigh resolution multi-slice CT. Materials and methods: Forty artificial cartilage lesions in ten bovine patellae were immersed in a solution of iodinated contrast medium and assessed with ultrahigh resolution multi-slice CT. Fat-suppressed TSE images with intermediate- and T 2 -weighting at a slice thickness of 2, 3 and 4 mm as well as fat-suppressed T 1 -weighted 3D-FLASH images with an effective slice thickness of 1, 2 and 3 mm were acquired at 1.5 T. After adding Gd-DTPA to the saline solution containing the patellae, the T 1 -weighted 3D-FLASH imaging was repeated. Results: All cartilage lesions were visualised and graded with ultrahigh resolution multi-slice CT. The TSE images had a higher sensitivity and a higher inter- and intraobserver kappa compared to the FLASH-sequences (TSE: 70-95%; 0.82-0.83; 0.85-0.9; FLASH: 57.5-85%; 0.53-0.72; 0.73-0.82, respectively). An increase in slice thickness decreased the sensitivity, whereby deep lesions were even reliably depicted on TSE images at a slice thickness of 3 and 4 mm. Adding Gd-DTPA to the saline solution increased the sensitivity by 10% with no detectable advantage over the T 2 -weighted TSE images. Conclusion: TSE sequences and application of Gd-DTPA seemed to be superior to T 1 -weighted 3D-FLASH sequences without Gd-DTPA in the detection of focal cartilage lesions. The ultrahigh resolution multi-slice CT can serve as in vitro reference standard for focal cartilage lesions. (orig.) [de

  18. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    Science.gov (United States)

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  19. High-resolution Hydrodynamic Simulation of Tidal Detonation of a Helium White Dwarf by an Intermediate Mass Black Hole

    Science.gov (United States)

    Tanikawa, Ataru

    2018-05-01

    We demonstrate tidal detonation during a tidal disruption event (TDE) of a helium (He) white dwarf (WD) with 0.45 M ⊙ by an intermediate mass black hole using extremely high-resolution simulations. Tanikawa et al. have shown tidal detonation in results of previous studies from unphysical heating due to low-resolution simulations, and such unphysical heating occurs in three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations even with 10 million SPH particles. In order to avoid such unphysical heating, we perform 3D SPH simulations up to 300 million SPH particles, and 1D mesh simulations using flow structure in the 3D SPH simulations for 1D initial conditions. The 1D mesh simulations have higher resolutions than the 3D SPH simulations. We show that tidal detonation occurs and confirm that this result is perfectly converged with different space resolution in both 3D SPH and 1D mesh simulations. We find that detonation waves independently arise in leading parts of the WD, and yield large amounts of 56Ni. Although detonation waves are not generated in trailing parts of the WD, the trailing parts would receive detonation waves generated in the leading parts and would leave large amounts of Si group elements. Eventually, this He WD TDE would synthesize 56Ni of 0.30 M ⊙ and Si group elements of 0.08 M ⊙, and could be observed as a luminous thermonuclear transient comparable to SNe Ia.

  20. Navigating 3D electron microscopy maps with EM-SURFER.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Xiong, Yi; Han, Xusi; Guang, Shuomeng; Christoffer, Charles; Kihara, Daisuke

    2015-05-30

    The Electron Microscopy DataBank (EMDB) is growing rapidly, accumulating biological structural data obtained mainly by electron microscopy and tomography, which are emerging techniques for determining large biomolecular complex and subcellular structures. Together with the Protein Data Bank (PDB), EMDB is becoming a fundamental resource of the tertiary structures of biological macromolecules. To take full advantage of this indispensable resource, the ability to search the database by structural similarity is essential. However, unlike high-resolution structures stored in PDB, methods for comparing low-resolution electron microscopy (EM) density maps in EMDB are not well established. We developed a computational method for efficiently searching low-resolution EM maps. The method uses a compact fingerprint representation of EM maps based on the 3D Zernike descriptor, which is derived from a mathematical series expansion for EM maps that are considered as 3D functions. The method is implemented in a web server named EM-SURFER, which allows users to search against the entire EMDB in real-time. EM-SURFER compares the global shapes of EM maps. Examples of search results from different types of query structures are discussed. We developed EM-SURFER, which retrieves structurally relevant matches for query EM maps from EMDB within seconds. The unique capability of EM-SURFER to detect 3D shape similarity of low-resolution EM maps should prove invaluable in structural biology.

  1. 3D Bioprinting for Organ Regeneration.

    Science.gov (United States)

    Cui, Haitao; Nowicki, Margaret; Fisher, John P; Zhang, Lijie Grace

    2017-01-01

    Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fabrication of 3D SiO x structures using patterned PMMA sacrificial layer

    Science.gov (United States)

    Li, Zhiqin; Xiang, Quan; Zheng, Mengjie; Bi, Kaixi; Chen, Yiqin; Chen, Keqiu; Duan, Huigao

    2018-02-01

    Three-dimensional (3D) nanofabrication based on electron-beam lithography (EBL) has drawn wide attention for various applications with its high patterning resolution and design flexibility. In this work, we present a bilayer EBL process to obtain 3D freestanding SiO x structures via the release of the bottom sacrificial layer. This new kind of bilayer process enables us to define various 3D freestanding SiO x structures with high resolution and low edge roughness. As a proof of concept for applications, metal-coated freestanding SiO x microplates with an underlying air gap were fabricated to form asymmetric Fabry-Perot resonators, which can be utilized for colorimetric refractive index sensing and thus also have application potential for biochemical detection, anti-counterfeiting and smart active nano-optical devices.

  3. High-resolution 3-T MR neurography of peroneal neuropathy

    International Nuclear Information System (INIS)

    Chhabra, Avneesh; Faridian-Aragh, Neda; Chalian, Majid; Soldatos, Theodoros; Thawait, Shrey K.; Williams, Eric H.; Andreisek, Gustav

    2012-01-01

    The common peroneal nerve (CPN), a major terminal branch of the sciatic nerve, can be subject to a variety of pathologies, which may affect the nerve at any level from the lumbar plexus to its distal branches. Although the diagnosis of peripheral neuropathy is traditionally based on a patient's clinical findings and electrodiagnostic tests, magnetic resonance neurography (MRN) is gaining an increasing role in the definition of the type, site, and extent of peripheral nerve disorders. Current high-field MR scanners enable high-resolution and excellent soft-tissue contrast imaging of peripheral nerves. In the lower extremities, MR neurography has been employed in the demonstration of the anatomy and pathology of the CPN, as well as in the detection of associated secondary muscle denervation changes. This article reviews the normal appearance of the CPN as well as typical pathologies and abnormal findings at 3.0-T MR neurography of the lower extremity. (orig.)

  4. High-resolution 3-T MR neurography of peroneal neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Avneesh; Faridian-Aragh, Neda; Chalian, Majid; Soldatos, Theodoros; Thawait, Shrey K. [Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Williams, Eric H. [Johns Hopkins Hospital, Department of Plastic Surgery, Baltimore, MD (United States); Dellon Institute for Peripheral Nerve Surgery, Baltimore, MD (United States); Andreisek, Gustav [University Hospital Zurich, Institute for Diagnostic Radiology, Department of Medical Radiology, Zurich (Switzerland)

    2012-03-15

    The common peroneal nerve (CPN), a major terminal branch of the sciatic nerve, can be subject to a variety of pathologies, which may affect the nerve at any level from the lumbar plexus to its distal branches. Although the diagnosis of peripheral neuropathy is traditionally based on a patient's clinical findings and electrodiagnostic tests, magnetic resonance neurography (MRN) is gaining an increasing role in the definition of the type, site, and extent of peripheral nerve disorders. Current high-field MR scanners enable high-resolution and excellent soft-tissue contrast imaging of peripheral nerves. In the lower extremities, MR neurography has been employed in the demonstration of the anatomy and pathology of the CPN, as well as in the detection of associated secondary muscle denervation changes. This article reviews the normal appearance of the CPN as well as typical pathologies and abnormal findings at 3.0-T MR neurography of the lower extremity. (orig.)

  5. Minimally invasive vascular imaging using 3D-CTA and 3D-MRA. Update

    International Nuclear Information System (INIS)

    Hayashi, Hiromitsu; Kawamata, Hiroshi; Takagi, Ryo; Amano, Yasuo; Wakabayashi, Hiroyuki; Ichikawa, Kazuo; Kumazaki, Tatsuo

    1998-01-01

    Conventional angiography is considered the standard of reference for diagnostic imaging of vascular diseases with respect to its temporal and spatial resolution. This procedure, however is invasive and repeated studies are difficult, and arterial complications are occasionally associated in catheter-based conventional angiography. Recent advances in diagnostic imaging have facilitated three-dimensional CT angiography (3D-CTA) using the volumetric acquisition capabilities inherent in spiral CT and three-dimensional MR angiography (3D-MRA) using the 3D gradient-echo sequence with a bolus injection of Gd-DTPA. These techniques can provide vascular images exceedingly similar to conventional angiograms within a short acquisition time. 3D-CTA and 3D-MRA are considered to be promising, minimally invasive methods for obtaining images of the vasculature, and alternatives to catheter angiography. This study reviews the current status of 3D-CTA and 3D-MRA, with emphasis on the clinical usefulness of three-dimensional diagnostic imaging for the evaluation of diverse vascular pathologies. (author)

  6. 3D display considerations for rugged airborne environments

    Science.gov (United States)

    Barnidge, Tracy J.; Tchon, Joseph L.

    2015-05-01

    The KC-46 is the next generation, multi-role, aerial refueling tanker aircraft being developed by Boeing for the United States Air Force. Rockwell Collins has developed the Remote Vision System (RVS) that supports aerial refueling operations under a variety of conditions. The system utilizes large-area, high-resolution 3D displays linked with remote sensors to enhance the operator's visual acuity for precise aerial refueling control. This paper reviews the design considerations, trade-offs, and other factors related to the selection and ruggedization of the 3D display technology for this military application.

  7. Sub-Millimeter T2 Weighted fMRI at 7 T: Comparison of 3D-GRASE and 2D SE-EPI

    Directory of Open Access Journals (Sweden)

    Valentin G. Kemper

    2015-05-01

    Full Text Available Functional magnetic resonance imaging (fMRI allows studying human brain function non-invasively up to the spatial resolution of cortical columns and layers. Most fMRI acquisitions rely on the blood oxygenation level dependent (BOLD contrast employing T2* weighted 2D multi-slice echo-planar imaging (EPI. At ultra-high magnetic field (i.e. 7 T and above, it has been shown experimentally and by simulation, that T2 weighted acquisitions yield a signal that is spatially more specific to the site of neuronal activity at the cost of functional sensitivity. This study compared two T2 weighted imaging sequences, inner-volume 3D Gradient-and-Spin-Echo (3D-GRASE and 2D Spin-Echo EPI (SE-EPI, with evaluation of their imaging point-spread function, functional specificity, and functional sensitivity at sub-millimeter resolution. Simulations and measurements of the imaging point-spread function revealed that the strongest anisotropic blurring in 3D-GRASE (along the second phase-encoding direction was about 60 % higher than the strongest anisotropic blurring in 2D SE-EPI (along the phase-encoding direction In a visual paradigm, the BOLD sensitivity of 3D-GRASE was found to be superior due to its higher temporal signal-to-noise ratio. High resolution cortical depth profiles suggested that the contrast mechanisms are similar between the two sequences, however, 2D SE-EPI had a higher surface bias owing to the higher T2* contribution of the longer in-plane EPI echo-train for full field of view compared to the reduced field of view of zoomed 3D-GRASE.

  8. High-resolution study of the 3D collagen fibrillary matrix of Achilles tendons without tissue labelling and dehydrating.

    Science.gov (United States)

    Wu, Jian-Ping; Swift, Benjamin John; Becker, Thomas; Squelch, Andrew; Wang, Allan; Zheng, Yong-Chang; Zhao, Xuelin; Xu, Jiake; Xue, Wei; Zheng, Minghao; Lloyd, David; Kirk, Thomas Brett

    2017-06-01

    Knowledge of the collagen structure of an Achilles tendon is critical to comprehend the physiology, biomechanics, homeostasis and remodelling of the tissue. Despite intensive studies, there are still uncertainties regarding the microstructure. The majority of studies have examined the longitudinally arranged collagen fibrils as they are primarily attributed to the principal tensile strength of the tendon. Few studies have considered the structural integrity of the entire three-dimensional (3D) collagen meshwork, and how the longitudinal collagen fibrils are integrated as a strong unit in a 3D domain to provide the tendons with the essential tensile properties. Using second harmonic generation imaging, a 3D imaging technique was developed and used to study the 3D collagen matrix in the midportion of Achilles tendons without tissue labelling and dehydration. Therefore, the 3D collagen structure is presented in a condition closely representative of the in vivo status. Atomic force microscopy studies have confirmed that second harmonic generation reveals the internal collagen matrix of tendons in 3D at a fibril level. Achilles tendons primarily contain longitudinal collagen fibrils that braid spatially into a dense rope-like collagen meshwork and are encapsulated or wound tightly by the oblique collagen fibrils emanating from the epitenon region. The arrangement of the collagen fibrils provides the longitudinal fibrils with essential structural integrity and endows the tendon with the unique mechanical function for withstanding tensile stresses. A novel 3D microscopic method has been developed to examine the 3D collagen microstructure of tendons without tissue dehydrating and labelling. The study also provides new knowledge about the collagen microstructure in an Achilles tendon, which enables understanding of the function of the tissue. The knowledge may be important for applying surgical and tissue engineering techniques to tendon reconstruction. © 2017 The Authors

  9. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  10. Multiphoton crosslinking for biocompatible 3D printing of type I collagen.

    Science.gov (United States)

    Bell, Alex; Kofron, Matthew; Nistor, Vasile

    2015-09-03

    Multiphoton fabrication is a powerful technique for three-dimensional (3D) printing of structures at the microscale. Many polymers and proteins have been successfully structured and patterned using this method. Type I collagen comprises a large part of the extracellular matrix for most tissue types and is a widely used cellular scaffold material for tissue engineering. Current methods for creating collagen tissue scaffolds do not allow control of local geometry on a cellular scale. This means the environment experienced by cells may be made up of the native material but unrelated to native cellular-scale structure. In this study, we present a novel method to allow multiphoton crosslinking of type I collagen with flavin mononucleotide photosensitizer. The method detailed allows full 3D printing of crosslinked structures made from unmodified type I collagen and uses only demonstrated biocompatible materials. Resolution of 1 μm for both standing lines and high-aspect ratio gaps between structures is demonstrated and complex 3D structures are fabricated. This study demonstrates a means for 3D printing with one of the most widely used tissue scaffold materials. High-resolution, 3D control of the fabrication of collagen scaffolds will facilitate higher fidelity recreation of the native extracellular environment for engineered tissues.

  11. High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material

    Energy Technology Data Exchange (ETDEWEB)

    Naganawa, Shinji; Koshikawa, Tokiko; Nakamura, Tatsuya; Fukatsu, Hiroshi; Ishigaki, Takeo [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Shouwa-ku, 466-8550, Nagoya (Japan); Aoki, Ikuo [Medical System Company, Toshiba Corporation, Tokyo (Japan)

    2003-12-01

    The small structures in the temporal bone are surrounded by bone and air. The objectives of this study were (a) to compare contrast-enhanced T1-weighted images acquired by fast spin-echo-based three-dimensional real inversion recovery (3D rIR) against those acquired by gradient echo-based 3D SPGR in the visualization of the enhancement of small structures in the temporal bone, and (b) to determine whether either 3D rIR or 3D SPGR is useful for visualizing enhancement of the cochlear lymph fluid. Seven healthy men (age range 27-46 years) volunteered to participate in this study. All MR imaging was performed using a dedicated bilateral quadrature surface phased-array coil for temporal bone imaging at 1.5 T (Visart EX, Toshiba, Tokyo, Japan). The 3D rIR images (TR/TE/TI: 1800 ms/10 ms/500 ms) and flow-compensated 3D SPGR images (TR/TE/FA: 23 ms/10 ms/25 ) were obtained with a reconstructed voxel size of 0.6 x 0.7 x 0.8 mm{sup 3}. Images were acquired before and 1, 90, 180, and 270 min after the administration of triple-dose Gd-DTPA-BMA (0.3 mmol/kg). In post-contrast MR images, the degree of enhancement of the cochlear aqueduct, endolymphatic sac, subarcuate artery, geniculate ganglion of the facial nerve, and cochlear lymph fluid space was assessed by two radiologists. The degree of enhancement was scored as follows: 0 (no enhancement); 1 (slight enhancement); 2 (intermediate between 1 and 3); and 3 (enhancement similar to that of vessels). Enhancement scores for the endolymphatic sac, subarcuate artery, and geniculate ganglion were higher in 3D rIR than in 3D SPGR. Washout of enhancement in the endolymphatic sac appeared to be delayed compared with that in the subarcuate artery, suggesting that the enhancement in the endolymphatic sac may have been due in part to non-vascular tissue enhancement. Enhancement of the cochlear lymph space was not observed in any of the subjects in 3D rIR and 3D SPGR. The 3D rIR sequence may be more sensitive than the 3D SPGR sequence in

  12. 3D FaceCam: a fast and accurate 3D facial imaging device for biometrics applications

    Science.gov (United States)

    Geng, Jason; Zhuang, Ping; May, Patrick; Yi, Steven; Tunnell, David

    2004-08-01

    Human faces are fundamentally three-dimensional (3D) objects, and each face has its unique 3D geometric profile. The 3D geometric features of a human face can be used, together with its 2D texture, for rapid and accurate face recognition purposes. Due to the lack of low-cost and robust 3D sensors and effective 3D facial recognition (FR) algorithms, almost all existing FR systems use 2D face images. Genex has developed 3D solutions that overcome the inherent problems in 2D while also addressing limitations in other 3D alternatives. One important aspect of our solution is a unique 3D camera (the 3D FaceCam) that combines multiple imaging sensors within a single compact device to provide instantaneous, ear-to-ear coverage of a human face. This 3D camera uses three high-resolution CCD sensors and a color encoded pattern projection system. The RGB color information from each pixel is used to compute the range data and generate an accurate 3D surface map. The imaging system uses no moving parts and combines multiple 3D views to provide detailed and complete 3D coverage of the entire face. Images are captured within a fraction of a second and full-frame 3D data is produced within a few seconds. This described method provides much better data coverage and accuracy in feature areas with sharp features or details (such as the nose and eyes). Using this 3D data, we have been able to demonstrate that a 3D approach can significantly improve the performance of facial recognition. We have conducted tests in which we have varied the lighting conditions and angle of image acquisition in the "field." These tests have shown that the matching results are significantly improved when enrolling a 3D image rather than a single 2D image. With its 3D solutions, Genex is working toward unlocking the promise of powerful 3D FR and transferring FR from a lab technology into a real-world biometric solution.

  13. Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, J E; Kontaxakis, G; Rubio, J L; Santos, A [Departamento de Ingenieria Electronica (DIE), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Guerra, P [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain)], E-mail: juanen@die.upm.es

    2010-04-07

    A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

  14. Duchenne muscular dystrophy: High-resolution melting curve ...

    African Journals Online (AJOL)

    Duchenne muscular dystrophy: High-resolution melting curve analysis as an affordable diagnostic mutation scanning tool in a South African cohort. ... Genetic screening for D/BMD in South Africa currently includes multiple ligase-dependent probe amplification (MLPA) for exonic deletions and duplications and linkage ...

  15. High resolution X radiography imaging detector-micro gap chamber

    International Nuclear Information System (INIS)

    Long Huqiang; Wang Yun; Xu Dong; Xie Kuanzhong; Bian Jianjiang

    2007-01-01

    Micro gap chamber (MGC) is a new type of Two-Dimensional position sensitive detector having excellent properties on the space and time resolution, counting rate, 2D compact structure and the flexible of application. It will become a candidate of a new tracking detector for high energy physics experiment. The basic structure and properties of MGC as well as its main research subjects are presented in this paper. Furthermore, the feasibility and validity of utilizing diamond films as the MGC gap material were also discussed in detail. So, a potential radiography imaging detector is provided in order to realize X image and X ray diffraction experiment having very good spatial and time resolution in the 3rd Generation of Synchrotron Radiation Facility. (authors)

  16. Imaging system for creating 3D block-face cryo-images of whole mice

    Science.gov (United States)

    Roy, Debashish; Breen, Michael; Salvado, Olivier; Heinzel, Meredith; McKinley, Eliot; Wilson, David

    2006-03-01

    We developed a cryomicrotome/imaging system that provides high resolution, high sensitivity block-face images of whole mice or excised organs, and applied it to a variety of biological applications. With this cryo-imaging system, we sectioned cryo-preserved tissues at 2-40 μm thickness and acquired high resolution brightfield and fluorescence images with microscopic in-plane resolution (as good as 1.2 μm). Brightfield images of normal and pathological anatomy show exquisite detail, especially in the abdominal cavity. Multi-planar reformatting and 3D renderings allow one to interrogate 3D structures. In this report, we present brightfield images of mouse anatomy, as well as 3D renderings of organs. For BPK mice model of polycystic kidney disease, we compared brightfield cryo-images and kidney volumes to MRI. The color images provided greater contrast and resolution of cysts as compared to in vivo MRI. We note that color cryo-images are closer to what a researcher sees in dissection, making it easier for them to interpret image data. The combination of field of view, depth of field, ultra high resolution and color/fluorescence contrast enables cryo-image volumes to provide details that cannot be found through in vivo imaging or other ex vivo optical imaging approaches. We believe that this novel imaging system will have applications that include identification of mouse phenotypes, characterization of diseases like blood vessel disease, kidney disease, and cancer, assessment of drug and gene therapy delivery and efficacy and validation of other imaging modalities.

  17. Installation of high-resolution ERDA in UTTAC at the University of Tsukuba: Determination of the energy resolution and the detection limit for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sekiba, D., E-mail: sekiba@tac.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 (Japan); University of Tsukuba, Tandem Accelerator Complex (UTTAC), Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 (Japan); Chito, K.; Harayama, I. [Institute of Applied Physics, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573 (Japan); Watahiki, Y.; Ishii, S. [University of Tsukuba, Tandem Accelerator Complex (UTTAC), Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 (Japan); Ozeki, K. [Department of Mechanical Engineering, Ibaraki University, Nakanarusawa 4-12-1, Hitachi, Ibaraki 316-8511 (Japan)

    2017-06-15

    A newly developed high-resolution elastic recoil detection analysis (HERDA) system installed at the 1 MV Tandetron in UTTAC at the University of Tsukuba is introduced. The effective solid angle of detector, energy resolution and detection limit for hydrogen are, for the first time, determined quantitatively by the measurements on an a-C:H (and D) film deposited on a Si substrate. In the case of a 500 keV {sup 16}O{sup +} as the incident beam, an energy resolution of ∼0.45 keV and a detection limit of ∼3.8 × 10{sup 20} atoms/cm{sup 3} (∼0.18 at.%) with a data acquisition time of ∼310 s are derived.

  18. High resolution numerical simulation (WRF V3) of an extreme rainy event over the Guadeloupe archipelago: Case of 3-5 january 2011.

    Science.gov (United States)

    Bernard, Didier C.; Cécé, Raphaël; Dorville, Jean-François

    2013-04-01

    During the dry season, the Guadeloupe archipelago may be affected by extreme rainy disturbances which may induce floods in a very short time. C. Brévignon (2003) considered a heavy rain event for rainfall upper 100 mm per day (out of mountainous areas) for this tropical region. During a cold front passage (3-5 January 2011), torrential rainfalls caused floods, major damages, landslides and five deaths. This phenomenon has put into question the current warning system based on large scale numerical models. This low-resolution forecasting (around 50-km scale) has been unsuitable for small tropical island like Guadeloupe (1600 km2). The most affected area was the middle of Grande-Terre island which is the main flat island of the archipelago (area of 587 km2, peak at 136 m). It is the most populated sector of Guadeloupe. In this area, observed rainfall have reached to 100-160 mm in 24 hours (this amount is equivalent to two months of rain for January (C. Brévignon, 2003)), in less 2 hours drainage systems have been saturated, and five people died in a ravine. Since two years, the atmospheric model WRF ARW V3 (Skamarock et al., 2008) has been used to modeling meteorological variables fields observed over the Guadeloupe archipelago at high resolution 1-km scale (Cécé et al., 2011). The model error estimators show that meteorological variables seem to be properly simulated for standard types of weather: undisturbed, strong or weak trade winds. These simulations indicate that for synoptic winds weak to moderate, a small island like Grande-Terre is able to generate inland convergence zones during daytime. In this presentation, we apply this high resolution model to simulate this extreme rainy disturbance of 3-5 January 2011. The evolution of modeling meteorological variable fields is analyzed in the most affected area of Grande-Terre (city of Les Abymes). The main goal is to examine local quasi-stationary updraft systems and highlight their convective mechanisms. The

  19. An Analysis of the Discrepancies between MODIS and INSAT-3D LSTs in High Temperatures

    Directory of Open Access Journals (Sweden)

    Seyed Kazem Alavipanah

    2017-04-01

    Full Text Available In many disciplines, knowledge on the accuracy of Land Surface Temperature (LST as an input is of great importance. One of the most efficient methods in LST evaluation is cross validation. Well-documented and validated polar satellites with a high spatial resolution can be used as references for validating geostationary LST products. This study attempted to investigate the discrepancies between a Moderate Resolution Imaging Spectro-radiometer (MODIS and Indian National Satellite (INSAT-3D LSTs for high temperatures, focusing on six deserts with sand dune land cover in the Middle East from 3 March 2015 to 24 August 2016. Firstly, the variability of LSTs in the deserts of the study area was analyzed by comparing the mean, Standard Deviation (STD, skewness, minimum, and maximum criteria for each observation time. The mean value of the LST observations indicated that the MYD-D observation times are closer to those of diurnal maximum and minimum LSTs. At all times, the LST observations exhibited a negative skewness and the STD indicated higher variability during times of MOD-D. The observed maximum LSTs from MODIS collection 6 showed higher values in comparison with the last versions of LSTs for hot spot regions around the world. After the temporal, spatial, and geometrical matching of LST products, the mean of the MODIS—INSAT LST differences was calculated for the study area. The results demonstrated that discrepancies increased with temperature up to +15.5 K. The slopes of the mean differences were relatively similar for all deserts except for An Nafud, suggesting an effect of View Zenith Angle (VZA. For modeling the discrepancies between two sensors in continuous space, the Diurnal Temperature Cycles (DTC of both sensors were constructed and compared. The sample DTC models approved the results from discrete LST subtractions and proposed the uncertainties within MODIS DTCs. The authors proposed that the observed LST discrepancies in high

  20. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    International Nuclear Information System (INIS)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-01-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light–matter interactions and the realization of future metamaterials. (fast track communication)

  1. One-step direct-laser metal writing of sub-100 nm 3D silver nanostructures in a gelatin matrix

    Science.gov (United States)

    Kang, SeungYeon; Vora, Kevin; Mazur, Eric

    2015-03-01

    Developing an ability to fabricate high-resolution, 3D metal nanostructures in a stretchable 3D matrix is a critical step to realizing novel optoelectronic devices such as tunable bulk metal-dielectric optical devices and THz metamaterial devices that are not feasible with alternative techniques. We report a new chemistry method to fabricate high-resolution, 3D silver nanostructures using a femtosecond-laser direct metal writing technique. Previously, only fabrication of 3D polymeric structures or single-/few-layer metal structures was possible. Our method takes advantage of unique gelatin properties to overcome such previous limitations as limited freedom in 3D material design and short sample lifetime. We fabricate more than 15 layers of 3D silver nanostructures with a resolution of less than 100 nm in a stable dielectric matrix that is flexible and has high large transparency that is well-matched for potential applications in the optical and THz metamaterial regimes. This is a single-step process that does not require any further processing. This work will be of interest to those interested in fabrication methods that utilize nonlinear light-matter interactions and the realization of future metamaterials.

  2. High temporal resolution functional MRI using parallel echo volumar imaging

    International Nuclear Information System (INIS)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F.; Le Roux, P.; Dehaine-Lambertz, G.

    2008-01-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  3. Construction of a high resolution electron beam profile monitor

    International Nuclear Information System (INIS)

    Norem, J.; Dawson, J.; Haberichter, W.; Novak, W.; Reed, L.; Yang, X.F.

    1993-01-01

    Bremsstrahlung from an electron beam on a heavy target can be used to image the beam profile using collimators and slits. The limiting resolution using this system is determined by Fresnel diffraction, and is ∼ √(λd/2), where λ is the photon wavelength and d is determined by the linear dimensions of the system. For linear colliders this resolution could be a few nm. The highest resolution requires detectors which see only high energy, (small λ), photons, and this is accomplished by converting photons to pairs, and detecting Cherenkov light in a nearly forward angle with a CCD detector or streak camera. Tests are planned at the Argonne APS and SLAC FFTB

  4. 3D MODELLING OF PROPHYLACTIC FOOTWEAR FOR A HIGH ARCHED FOOT

    OpenAIRE

    COSTEA Mariana; MIHAI Aura

    2016-01-01

    This article approaches the methodology of designing customized footwear for high arched foot. The authors propose to reconsider the classical structure of footwear bottom components for people with high arched foot and recommend incorporating custom components, with the role of compensation or adjustment. This study continues the authors’ research, starting from a foot’s 3D shape obtained by 3D scanning, the anthropometrical and biomechanical parameters, shoe lasts’ 3D modelling and continui...

  5. Transfer function restoration in 3D electron microscopy via iterative data refinement

    International Nuclear Information System (INIS)

    Sorzano, C O S; Marabini, R; Herman, G T; Censor, Y; Carazo, J M

    2004-01-01

    Three-dimensional electron microscopy (3D-EM) is a powerful tool for visualizing complex biological systems. As with any other imaging device, the electron microscope introduces a transfer function (called in this field the contrast transfer function, CTF) into the image acquisition process that modulates the various frequencies of the signal. Thus, the 3D reconstructions performed with these CTF-affected projections are also affected by an implicit 3D transfer function. For high-resolution electron microscopy, the effect of the CTF is quite dramatic and limits severely the achievable resolution. In this work we make use of the iterative data refinement (IDR) technique to ameliorate the effect of the CTF. It is demonstrated that the approach can be successfully applied to noisy data

  6. The absolute calibration of KOMPSAT-3 and 3A high spatial resolution satellites using radiometric tarps and MFRSR measurments

    Science.gov (United States)

    Yeom, J. M.

    2017-12-01

    Recently developed Korea Multi-Purpose Satellite-3A (KOMPSAT-3A), which is a continuation of the KOMPSAT-1, 2 and 3 earth observation satellite (EOS) programs from the Korea Aerospace Research Institute (KARI) was launched on March, 25 2015 on a Dnepr-1 launch vehicle from the Jasny Dombarovsky site in Russia. After launched, KARI performed in-orbit-test (IOT) including radiometric calibration for 6 months from 14 Apr. to 4 Sep. 2015. KOMPSAT-3A is equipped with two distinctive sensors; one is a high resolution multispectral optical sensor, namely the Advances Earth Image Sensor System-A (AEISS-A) and the other is the Scanner Infrared Imaging System (SIIS). In this study, we focused on the radiometric calibration of AEISS-A. The multispectral wavelengths of AEISS-A are covering three visible regions: blue (450 - 520 nm), green (520 - 600 nm), red (630 - 690 nm), one near infrared (760 - 900 nm) with a 2.0 m spatial resolution at nadir, whereas the panchromatic imagery (450 - 900 nm) has a 0.5 m resolution. Those are the same spectral response functions were same with KOMPSAT-3 multispectral and panchromatic bands but the spatial resolutions are improved. The main mission of KOMPSAT-3A is to develop for Geographical Information System (GIS) applications in environmental, agriculture, and oceanographic sciences, as well as natural hazard monitoring.

  7. Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation

    International Nuclear Information System (INIS)

    Surti, S; Karp, J S; Muehllehner, G

    2004-01-01

    The main thrust for this work is the investigation and design of a whole-body PET scanner based on new lanthanum bromide scintillators. We use Monte Carlo simulations to generate data for a 3D PET scanner based on LaBr 3 detectors, and to assess the count-rate capability and the reconstructed image quality of phantoms with hot and cold spheres using contrast and noise parameters. Previously we have shown that LaBr 3 has very high light output, excellent energy resolution and fast timing properties which can lead to the design of a time-of-flight (TOF) whole-body PET camera. The data presented here illustrate the performance of LaBr 3 without the additional benefit of TOF information, although our intention is to develop a scanner with TOF measurement capability. The only drawbacks of LaBr 3 are the lower stopping power and photo-fraction which affect both sensitivity and spatial resolution. However, in 3D PET imaging where energy resolution is very important for reducing scattered coincidences in the reconstructed image, the image quality attained in a non-TOF LaBr 3 scanner can potentially equal or surpass that achieved with other high sensitivity scanners. Our results show that there is a gain in NEC arising from the reduced scatter and random fractions in a LaBr 3 scanner. The reconstructed image resolution is slightly worse than a high-Z scintillator, but at increased count-rates, reduced pulse pileup leads to an image resolution similar to that of LSO. Image quality simulations predict reduced contrast for small hot spheres compared to an LSO scanner, but improved noise characteristics at similar clinical activity levels

  8. Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements

    International Nuclear Information System (INIS)

    Toloui, Mostafa; Mallery, Kevin; Hong, Jiarong

    2017-01-01

    Three-dimensional (3D) particle image velocimetry (PIV) and particle tracking velocimetry (PTV) provide the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. In this study, we present our latest developments on minimizing these challenges, which enables high-fidelity DIH-PTV implementation to larger sampling volumes with significantly higher particle seeding densities suitable for wall-bounded turbulent flow measurements. The improvements include: (1) adjustable window thresholding; (2) multi-pass 3D tracking; (3) automatic wall localization; and (4) continuity-based out-of-plane velocity component computation. The accuracy of the proposed DIH-PTV method is validated with conventional 2D PIV and double-view holographic PTV measurements in smooth-wall turbulent channel flow experiments. The capability of the technique in characterization of wall-bounded turbulence is further demonstrated through its application to flow measurements for smooth- and rough-wall turbulent channel flows. In these experiments, 3D velocity fields are measured within sampling volumes of 14.7  ×  50.0  ×  14.4 mm 3 (covering the entire depth of the channel) with a velocity resolution of  <1.1 mm/vector. Overall, the presented DIH-PTV method and

  9. Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources

    Science.gov (United States)

    Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.

    2015-12-01

    Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.

  10. 3D tomodosimetry using long scintillating fibers: A feasibility study

    International Nuclear Information System (INIS)

    Goulet, Mathieu; Archambault, Louis; Beaulieu, Luc; Gingras, Luc

    2013-01-01

    Purpose: 3D dosimetry is recognized as an ideal for patient-specific quality assurance (QA) of highly conformal radiotherapy treatments. However, existing 3D dosimeters are not straightforward to implement in the clinic, as their read-out procedure is often tedious and their accuracy, precision, and/or sample size exhibit limitations. The purpose of this work is to develop a 3D dosimeter based on the concept of tomodosimetry inside concentric cylindrical planes using long scintillating fibers for the QA of modern radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) or intensity-modulated arc therapy (IMAT).Methods: Using a model-based simulation, scintillating fibers were modeled on three concentric cylindrical planes of radii 2.5, 5.0, and 7.5 cm, inside a 10 cm radius water-equivalent cylinder phantom. The phantom was set to rotate around its central axis, made parallel to the linac gantry axis of rotation. Light acquisitions were simulated using the calculated dose from the treatment planning software and reconstructed in each cylindrical plane at a resolution of 1 mm 2 using a total-variation minimization iterative reconstruction algorithm. The 3D dose was then interpolated from the reconstructed cylindrical plane doses at a resolution of 1 mm 3 . Different scintillating fiber patterns were compared by varying the angle of each fiber in its cylindrical plane and introducing a light-tight cut in each fiber. The precision of the reconstructed cylindrical dose distribution was evaluated using a Poisson modeling of the acquired light signals and the accuracy of the interpolated 3D dose was evaluated using an IMRT clinical plan for a prostate case.Results: Straight scintillating fiber patterns with light-tight cuts were the most accurate in cylindrical dose reconstruction, showing less than 0.5 mm distance-to-agreement in dose gradients and a mean local dose difference of less than 0.2% in the high dose region for a 10 × 10 cm 2 field. The

  11. Registration of 3D spectral OCT volumes using 3D SIFT feature point matching

    Science.gov (United States)

    Niemeijer, Meindert; Garvin, Mona K.; Lee, Kyungmoo; van Ginneken, Bram; Abràmoff, Michael D.; Sonka, Milan

    2009-02-01

    The recent introduction of next generation spectral OCT scanners has enabled routine acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D OCT is used in the detection and management of serious eye diseases such as glaucoma and age-related macular degeneration. For follow-up studies, image registration is a vital tool to enable more precise, quantitative comparison of disease states. This work presents a registration method based on a recently introduced extension of the 2D Scale-Invariant Feature Transform (SIFT) framework1 to 3D.2 The SIFT feature extractor locates minima and maxima in the difference of Gaussian scale space to find salient feature points. It then uses histograms of the local gradient directions around each found extremum in 3D to characterize them in a 4096 element feature vector. Matching points are found by comparing the distance between feature vectors. We apply this method to the rigid registration of optic nerve head- (ONH) and macula-centered 3D OCT scans of the same patient that have only limited overlap. Three OCT data set pairs with known deformation were used for quantitative assessment of the method's robustness and accuracy when deformations of rotation and scaling were considered. Three-dimensional registration accuracy of 2.0+/-3.3 voxels was observed. The accuracy was assessed as average voxel distance error in N=1572 matched locations. The registration method was applied to 12 3D OCT scans (200 x 200 x 1024 voxels) of 6 normal eyes imaged in vivo to demonstrate the clinical utility and robustness of the method in a real-world environment.

  12. Tritiated 2-deoxy-D-glucose: a high-resolution marker for autoradiographic localization of brain metabolism

    International Nuclear Information System (INIS)

    Hammer, R.P. Jr.; Herkenham, M.

    1984-01-01

    The technique for autoradiographic localization of 2-deoxy-D-glucose (2DG) uptake has become a useful method for observing alterations of functional brain activity resulting from experimental manipulation. Autoradiographic resolution is improved using tritiated ([3H]) rather than carbon-14 ([14C)]2DG, due to the lower energy and shorter path of tritium emissions. In addition, lower 2DG uptake by white matter relative to gray matter is exaggerated in the [3H]2DG autoradiographs due to the greater absorption of tritium emissions by lipids. Using [3H]2DG, it is possible to observe differential metabolic labeling in various individual nuclei or portions of nuclei that is unresolvable using [14C]2DG in the awake, normal animal. Heterogeneous patterns of 2DG uptake seen only with [3H]2DG are found in the nucleus accumbens, the anterior portion of the basolateral nucleus of the amygdala, specific nuclei of the inferior olivary complex, various hypothalamic regions, and a region straddling the border of the medial and lateral habenular nuclei. The lamination of differential 2DG uptake in the hippocampus is better localized using [3H]2DG. Autoradiographic resolution of labeled 2DG is further improved when the brain is perfused prior to frozen sectioning, due perhaps to selective fixation and retention of intracellular labeled 2-deoxy-glycogen. A series of [3H]2DG autoradiographs are presented together with views of the Nissl-stained sections that produced the autoradiographs

  13. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    Science.gov (United States)

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  14. Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor.

    Science.gov (United States)

    You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen

    2017-03-31

    The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face.

  15. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  16. High resolution crystal calorimetry at LHC

    International Nuclear Information System (INIS)

    Schneegans, M.; Ferrere, D.; Lebeau, M.; Vivargent, M.

    1991-01-01

    The search for Higgs bosons above Lep200 reach could be one of the main tasks of the future pp and ee colliders. In the intermediate mass region, and in particular in the range 80-140 GeV/c 2 , only the 2-photon decay mode of a Higgs produced inclusively or in association with a W, gives a good chance of observation. A 'dedicated' very high resolution calorimeter with photon angle reconstruction and pion identification capability should detect a Higgs signal with high probability. A crystal calorimeter can be considered as a conservative approach to such a detector, since a large design and operation experience already exists. The extensive R and D needed for finding a dense, fast and radiation hard crystal, is under way. Guide-lines for designing an optimum calorimeter for LHC are discussed and preliminary configurations are given. (author) 7 refs., 3 figs., 2 tabs

  17. Emission features in the spectrum of NGC 7027 near 3. 3 microns at very high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P. (Western Ontario Univ., London (Canada) CNRS, Institut d' Astrophysique, Paris (France))

    1991-02-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs.

  18. Emission features in the spectrum of NGC 7027 near 3.3 microns at very high resolution

    International Nuclear Information System (INIS)

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P.

    1991-01-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs

  19. CO (3 – 2) HIGH-RESOLUTION SURVEY OF THE GALACTIC PLANE: R1

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, J. T.; Thomas, H. S.; Currie, M. J., E-mail: j.dempsey@jach.hawaii.edu, E-mail: h.thomas@jach.hawaii.edu, E-mail: m.currie@jach.hawaii.edu [Joint Astronomy Centre, 660 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-11-01

    We present the first release (R1) of data from the CO High-Resolution Survey (COHRS), which maps a strip of the inner Galactic plane in {sup 12}CO (J = 3 → 2). The data are taken using the Heterodyne Array Receiver Programme on the James Clerk Maxwell Telescope (JCMT) in Hawaii, which has a 14 arcsec angular resolution at this frequency. When complete, this survey will cover |b| ≤ 0.°5 between 10° < l < 65°. This first release covers |b| ≤ 0.°5 between 10.°25 < l < 17.°5 and 50.°25 < l < 55.°25, and |b| ≤ 0.°25 between 17.°5 < l < 50.°25. The data are smoothed to a velocity resolution of 1 km s{sup –1}, a spatial resolution of 16 arcsec and achieve a mean rms of ∼1 K. COHRS data are available to the community online at http://dx.doi.org/10.11570/13.0002. In this paper we describe the data acquisition and reduction techniques used and present integrated intensity images and longitude-velocity maps. We also discuss the noise characteristics of the data. The high resolution is a powerful tool for morphological studies of bubbles and filaments while the velocity information shows the spiral arms and outflows. These data are intended to complement both existing and upcoming surveys, e.g., the Bolocam Galactic Plane Survey (BGPS), ATLASGAL, the Herschel Galactic Plane Survey (Hi-GAL) and the JCMT Galactic Plane Survey with SCUBA-2 (JPS)

  20. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianzhong; Cao, Yong; Wu, Tianding; Li, Dongzhe [Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008 (China); Lu, Hongbin, E-mail: hongbinlu@hotmail.com [Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China)

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord was clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.

  1. Advanced 2D and 3D Electron Microscopy Analysis of Clay/PP Nanocomposites

    DEFF Research Database (Denmark)

    Mosca, Alessandra; Roberts, Ashley; Daviðsdóttir, Svava

    2011-01-01

    ) equipped with field emission gun (FEG) and through lens detector (TLD) was used for high resolution 3D imaging of the material via slice-and-view technique [2]. Image analysis was performed using Matlab. Results and Discussion Figure 1 (a) shows a TEM micrograph of a clay/PP nanocomposite, where the clay...... of nanometres and are rather uniformly oriented, distributed, and spaced from each other. Image analysis from these micrographs is very useful since a rather large field view is analysed as compared to TEM micrographs, which are traditionally used to study such properties. Figure 3 (a) shows a high resolution......Introduction Clay/polypropylene (PP) nanocomposites with engineered properties are attractive in developing novel components of interest in a plurality of application fields [1]. An understanding of clay dispersion and intercalation in the polymeric matrix is of great importance to explain...

  2. 3D Printing of Living Responsive Materials and Devices.

    Science.gov (United States)

    Liu, Xinyue; Yuk, Hyunwoo; Lin, Shaoting; Parada, German Alberto; Tang, Tzu-Chieh; Tham, Eléonore; de la Fuente-Nunez, Cesar; Lu, Timothy K; Zhao, Xuanhe

    2018-01-01

    3D printing has been intensively explored to fabricate customized structures of responsive materials including hydrogels, liquid-crystal elastomers, shape-memory polymers, and aqueous droplets. Herein, a new method and material system capable of 3D-printing hydrogel inks with programed bacterial cells as responsive components into large-scale (3 cm), high-resolution (30 μm) living materials, where the cells can communicate and process signals in a programmable manner, are reported. The design of 3D-printed living materials is guided by quantitative models that account for the responses of programed cells in printed microstructures of hydrogels. Novel living devices are further demonstrated, enabled by 3D printing of programed cells, including logic gates, spatiotemporally responsive patterning, and wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Non-model-based correction of respiratory motion using beat-to-beat 3D spiral fat-selective imaging.

    Science.gov (United States)

    Keegan, Jennifer; Gatehouse, Peter D; Yang, Guang-Zhong; Firmin, David N

    2007-09-01

    To demonstrate the feasibility of retrospective beat-to-beat correction of respiratory motion, without the need for a respiratory motion model. A high-resolution three-dimensional (3D) spiral black-blood scan of the right coronary artery (RCA) of six healthy volunteers was acquired over 160 cardiac cycles without respiratory gating. One spiral interleaf was acquired per cardiac cycle, prior to each of which a complete low-resolution fat-selective 3D spiral dataset was acquired. The respiratory motion (3D translation) on each cardiac cycle was determined by cross-correlating a region of interest (ROI) in the fat around the artery in the low-resolution datasets with that on a reference end-expiratory dataset. The measured translations were used to correct the raw data of the high-resolution spiral interleaves. Beat-to-beat correction provided consistently good results, with the image quality being better than that obtained with a fixed superior-inferior tracking factor of 0.6 and better than (N = 5) or equal to (N = 1) that achieved using a subject-specific retrospective 3D translation motion model. Non-model-based correction of respiratory motion using 3D spiral fat-selective imaging is feasible, and in this small group of volunteers produced better-quality images than a subject-specific retrospective 3D translation motion model. (c) 2007 Wiley-Liss, Inc.

  4. Physical model of a fumarolic system inferred from a high-resolution 3-D Resistivity image of Solfatara volcano

    Science.gov (United States)

    Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Rinaldi, Antonio Pio; Johnson, Timothy C.; Ricci, Tullio; Petrillo, Zaccaria; Vilardo, Giuseppe; Lebourg, Thomas; Mangiacapra, Annarita

    2017-04-01

    Solfatara crater, located inside the Phlegrean Fields caldera, is showing a significant unrest activity since 10 years with a increase of ground deformation, degassing and heating. Electrical Resistivity Imaging was performed between 2012 and 2016 with the purpose of improving our knowledge of the shallow hydrothermal system. The complete dataset includes 43,432 D-C measurements inverted using the E4D code. This 3-D inversion was compared with the mappings of surface temperature, diffuse soil CO2 flux and self-potential in order to better constrain the interpretation of the observed resistivity structure in terms of lithological contrasts and hydrothermal signatures. For the first time, we highlighted in 3-D the main geological units: Monte Olibano lava dome and Solfatara crypto-dome appear as two relatively resistive bodies (50-100 Ω.m). Furthermore, the resistivity model clearly revealed the contrasting geometry of the hydrothermal circulation in the Solfatara crater. A channel-like conductive structure (7 Ω.m) represents the condensate that flows from the main fumarolic area down to the liquid-dominated Fangaia mud pool. This interpretation is consistent with the negative Self-Potential anomaly and with the surface observations. We imaged at a metric-resolution the two main fumaroles, Bocca Grande and Bocca Nuova, that have the following geochemical characteristics. Bocca Grande vent: 162°C, ˜150 t of CO2 released per day with a mass ratio CO2/H20 = 0.4 and Bocca Nuova vent: 148°C, ˜50 t of CO2 released per day with a mass ratio CO2/H20 = 0.45. The differences between these geochemical characteristics could lead one to believe that they are fed by two distinct sources at depth. On the contrary, our resistivity model shows that the two fumarolic vents are directly connected to a common resistive body (30-50 Ω.m) at a depth of 50 meters. This structure likely represents a single gas reservoir feeding the two fumaroles. Its depth corresponds indeed to a

  5. High-resolution structure of the native histone octamer

    International Nuclear Information System (INIS)

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P6 5 , the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle

  6. Microstructural Assessment of Cancellous Bone Using 3D Microtomography

    International Nuclear Information System (INIS)

    Silva A M H; Alves J M; Da Silva O L; Silva Junior N F; Gazziro M; Pereira J C; Lasso P R O; Vaz C M P; Pereira C A M; Leiva T P; Guarniero R

    2011-01-01

    Cancellous bones have a porous microstructure and can be modeled as linear elastic solid, heterogeneous and anisotropic. Few studies regarding the morphometric analysis of trabecular bone samples with 3D microtomography have been published so far. The technique has spread worldwide for the characterization of trabecular structures in studies related to bone quality and its relationship with metabolic diseases bone like osteoporosis. In our study cancellous bone samples with cubic and cylindrical geometry were extracted from bovine femur were used to investigate the structural arrangement of bone through high resolution x-ray 3D microtomography (μCT). Four trabecular microstructural parameters (tissue volume, bone volume, bone volume fraction and tissue surface) were measured by 2D (stereological method) and 3D morphometric analysis using the software CTan Analyser supplied by the manufacturer of the microtomograph (SkyScan, model 1172, Belgium). The measurements were done in three main directions (superior-inferior, medial-lateral and anterior-posterior) to investigate the correlation between the 2D and 3D morphometric analysis. The results show a high correlation between the analysis. The x-ray 3D microtomography technique has a great potential for the assessment of bone quality.

  7. 3D printed high performance strain sensors for high temperature applications

    Science.gov (United States)

    Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul

    2018-01-01

    Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.

  8. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  9. 3D seismic surveys for shallow targets

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C.; Stewart, R.R.; Bertram, M.B. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    Although 3D seismic surveys are generally used to map deep hydrocarbon plays, this study demonstrated that they can be useful for characterizing shallow targets, such as oilsands deposits. A high-resolution 3D seismic survey was undertaken to map shallow stratigraphy near Calgary, Alberta. The project demonstrated the efficacy of reflection seismic surveys for shallow targets ranging from 100 to 500 metres. The purpose of the program was to map shallow stratigraphy and structure to depths of up to 500m, and to investigate shallow aquifers in the study area. The results of the survey illustrated the opportunity that 3D seismic surveys provide for mapping shallow reflectors and the acquisition geometry needed to image them. Applications include mapping the distribution of shallow aquifers, delineating shallow coals and investigating oilsands deposits. 2 refs., 5 figs.

  10. Combining Different Modalities for 3D Imaging of Biological Objects

    CERN Document Server

    Tsyganov, E; Kulkarni, P; Mason, R; Parkey, R; Seliuonine, S; Shay, J; Soesbe, T; Zhezher, V; Zinchenko, A I

    2005-01-01

    A resolution enhanced NaI(Tl)-scintillator micro-SPECT device using pinhole collimator geometry has been built and tested with small animals. This device was constructed based on a depth-of-interaction measurement using a thick scintillator crystal and a position sensitive PMT to measure depth-dependent scintillator light profiles. Such a measurement eliminates the parallax error that degrades the high spatial resolution required for small animal imaging. This novel technique for 3D gamma-ray detection was incorporated into the micro-SPECT device and tested with a $^{57}$Co source and $^{98m}$Tc-MDP injected in mice body. To further enhance the investigating power of the tomographic imaging different imaging modalities can be combined. In particular, as proposed and shown in this paper, the optical imaging permits a 3D reconstruction of the animal's skin surface thus improving visualization and making possible depth-dependent corrections, necessary for bioluminescence 3D reconstruction in biological objects. ...

  11. Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing

    Directory of Open Access Journals (Sweden)

    Ludovic Serex

    2018-02-01

    Full Text Available Advances in 3D printing have enabled the use of this technology in a growing number of fields, and have started to spark the interest of biologists. Having the particularity of being cell friendly and allowing multimaterial deposition, extrusion-based 3D printing has been shown to be the method of choice for bioprinting. However as biologically relevant constructs often need to be of high resolution and high complexity, new methods are needed, to provide an improved level of control on the deposited biomaterials. In this paper, we demonstrate how microfluidics can be used to add functions to extrusion 3D printers, which widens their field of application. Micromixers can be added to print heads to perform the last-second mixing of multiple components just before resin dispensing, which can be used for the deposition of new polymeric or composite materials, as well as for bioprinting new materials with tailored properties. The integration of micro-concentrators in the print heads allows a significant increase in cell concentration in bioprinting. The addition of rapid microfluidic switching as well as resolution increase through flow focusing are also demonstrated. Those elementary implementations of microfluidic functions for 3D printing pave the way for more complex applications enabling new prospects in 3D printing.

  12. Peripheral Vasculature: High-Temporal- and High-Spatial-Resolution Three-dimensional Contrast-enhanced MR Angiography1

    Science.gov (United States)

    Haider, Clifton R.; Glockner, James F.; Stanson, Anthony W.; Riederer, Stephen J.

    2009-01-01

    Purpose: To prospectively evaluate the feasibility of performing high-spatial-resolution (1-mm isotropic) time-resolved three-dimensional (3D) contrast material–enhanced magnetic resonance (MR) angiography of the peripheral vasculature with Cartesian acquisition with projection-reconstruction–like sampling (CAPR) and eightfold accelerated two-dimensional (2D) sensitivity encoding (SENSE). Materials and Methods: All studies were approved by the institutional review board and were HIPAA compliant; written informed consent was obtained from all participants. There were 13 volunteers (mean age, 41.9; range, 27–53 years). The CAPR sequence was adapted to provide 1-mm isotropic spatial resolution and a 5-second frame time. Use of different receiver coil element sizes for those placed on the anterior-to-posterior versus left-to-right sides of the field of view reduced signal-to-noise ratio loss due to acceleration. Results from eight volunteers were rated independently by two radiologists according to prominence of artifact, arterial to venous separation, vessel sharpness, continuity of arterial signal intensity in major arteries (anterior and posterior tibial, peroneal), demarcation of origin of major arteries, and overall diagnostic image quality. MR angiographic results in two patients with peripheral vascular disease were compared with their results at computed tomographic angiography. Results: The sequence exhibited no image artifact adversely affecting diagnostic image quality. Temporal resolution was evaluated to be sufficient in all cases, even with known rapid arterial to venous transit. The vessels were graded to have excellent sharpness, continuity, and demarcation of the origins of the major arteries. Distal muscular branches and the communicating and perforating arteries were routinely seen. Excellent diagnostic quality rating was given for 15 (94%) of 16 evaluations. Conclusion: The feasibility of performing high-diagnostic-quality time-resolved 3D

  13. MARVEL analysis of the measured high-resolution spectra of 14NH3

    International Nuclear Information System (INIS)

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Császár, Attila G.

    2015-01-01

    Accurate, experimental rotational–vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14 NH 3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7–17 000 cm −1 region, with a large gap between 7000 and 15 000 cm −1 . The MARVEL (Measured Active Rotational–Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para- 14 NH 3 , respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14 NH 3 , 8 for ortho- and 22 for para- 14 NH 3 . The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para- 14 NH 3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14 NH 3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14 NH 3 ; these lines are also deposited in the Supporting Information to this paper

  14. MARVEL analysis of the measured high-resolution spectra of 14NH3

    Science.gov (United States)

    Al Derzi, Afaf R.; Furtenbacher, Tibor; Tennyson, Jonathan; Yurchenko, Sergei N.; Császár, Attila G.

    2015-08-01

    Accurate, experimental rotational-vibrational energy levels and line positions, with associated labels and uncertainties, are reported for the ground electronic state of the symmetric-top 14NH3 molecule. All levels and lines are based on critically reviewed and validated high-resolution experimental spectra taken from 56 literature sources. The transition data are in the 0.7-17 000 cm-1 region, with a large gap between 7000 and 15 000 cm-1. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) algorithm is used to determine the energy levels. Out of the 29 450 measured transitions 10 041 and 18 947 belong to ortho- and para-14NH3, respectively. A careful analysis of the related experimental spectroscopic network (SN) allows 28 530 of the measured transitions to be validated, 18 178 of these are unique, while 462 transitions belong to floating components. Despite the large number of spectroscopic measurements published over the last 80 years, the transitions determine only 30 vibrational band origins of 14NH3, 8 for ortho- and 22 for para-14NH3. The highest J value, where J stands for the rotational quantum number, for which an energy level is validated is 31. The number of experimental-quality ortho- and para-14NH3 rovibrational energy levels is 1724 and 3237, respectively. The MARVEL energy levels are checked against ones in the BYTe first-principles database, determined previously. The lists of validated lines and levels for 14NH3 are deposited in the Supporting Information to this paper. Combination of the MARVEL energy levels with first-principles absorption intensities yields a huge number of experimental-quality rovibrational lines, which should prove to be useful for the understanding of future complex high-resolution spectroscopy on 14NH3; these lines are also deposited in the Supporting Information to this paper.

  15. 3D Printing All-Aromatic Polyimides using Mask-Projection Stereolithography: Processing the Nonprocessable.

    Science.gov (United States)

    Hegde, Maruti; Meenakshisundaram, Viswanath; Chartrain, Nicholas; Sekhar, Susheel; Tafti, Danesh; Williams, Christopher B; Long, Timothy E

    2017-08-01

    High-performance, all-aromatic, insoluble, engineering thermoplastic polyimides, such as pyromellitic dianhydride and 4,4'-oxydianiline (PMDA-ODA) (Kapton), exhibit exceptional thermal stability (up to ≈600 °C) and mechanical properties (Young's modulus exceeding 2 GPa). However, their thermal resistance, which is a consequence of the all-aromatic molecular structure, prohibits processing using conventional techniques. Previous reports describe an energy-intensive sintering technique as an alternative technique for processing polyimides with limited resolution and part fidelity. This study demonstrates the unprecedented 3D printing of PMDA-ODA using mask-projection stereolithography, and the preparation of high-resolution 3D structures without sacrificing bulk material properties. Synthesis of a soluble precursor polymer containing photo-crosslinkable acrylate groups enables light-induced, chemical crosslinking for spatial control in the gel state. Postprinting thermal treatment transforms the crosslinked precursor polymer to PMDA-ODA. The dimensional shrinkage is isotropic, and postprocessing preserves geometric integrity. Furthermore, large-area mask-projection scanning stereolithography demonstrates the scalability of 3D structures. These unique high-performance 3D structures offer potential in fields ranging from water filtration and gas separation to automotive and aerospace technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy.

    Science.gov (United States)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A; Zettl, A; Alivisatos, A Paul

    2015-07-17

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale. Copyright © 2015, American Association for the Advancement of Science.

  17. Poisson traces, D-modules, and symplectic resolutions.

    Science.gov (United States)

    Etingof, Pavel; Schedler, Travis

    2018-01-01

    We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.

  18. Poisson traces, D-modules, and symplectic resolutions

    Science.gov (United States)

    Etingof, Pavel; Schedler, Travis

    2018-03-01

    We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.

  19. Marker-referred movement measurement with grey-scale coordinate extraction for high-resolution real-time 3D at 100 Hz

    NARCIS (Netherlands)

    Furnée, E.H.; Jobbá, A.; Sabel, J.C.; Veenendaal, H.L.J. van; Martin, F.; Andriessen, D.C.W.G.

    1997-01-01

    A review of early history in photography highlights the origin of cinefilm as a scientific tool for image-based measurement of human and animal motion. The paper is concerned with scanned-area video sensors (CCD) and a computer interface for the real-time, high-resolution extraction of image

  20. Feasibility of a novel design of high resolution parallax-free Compton enhanced PET scanner dedicated to brain research

    CERN Document Server

    Braem, André; Chesi, Enrico Guido; Correia, J G; Garibaldi, F; Joram, C; Mathot, S; Nappi, E; Ribeiro da Silva, M; Schoenahl, F; Séguinot, Jacques; Weilhammer, P; Zaidi, H

    2004-01-01

    A novel concept for a positron emission tomography (PET) camera module is proposed, which provides full 3D reconstruction with high resolution over the total detector volume, free of parallax errors. The key components are a matrix of long scintillator crystals and hybrid photon detectors (HPDs) with matched segmentation and integrated readout electronics. The HPDs read out the two ends of the scintillator package. Both excellent spatial (x, y, z) and energy resolution are obtained. The concept allows enhancing the detection efficiency by reconstructing a significant fraction of events which underwent Compton scattering in the crystals. The proof of concept will first be demonstrated with yttrium orthoaluminate perovskite (YAP):Ce crystals, but the final design will rely on other scintillators more adequate for PET applications (e.g. LSO:Ce or LaBr /sub 3/:Ce). A promising application of the proposed camera module, which is currently under development, is a high resolution 3D brain PET camera with an axial fi...

  1. Whole-body PET acceptance test in 2D and 3D using NEMA NU 2-2001 protocol

    International Nuclear Information System (INIS)

    Sharma, Shamurailatpam Dayananda; Deshpande, D.; Prasad, R.; Shetye, Bina; Rangarajan, V.; Shrivastava, S.K.; Dinshaw, K.A.

    2007-01-01

    Integrated PET/CT has emerged as an integral component of oncology management because of its unique potential of providing both functional and morphological images in a single imaging session. In this work, performance of the 'bismuth germinate (BGO) crystal'-based PET of a newly installed Discovery ST PET/CT was evaluated in 2D and 3D mode for whole-body scanning using National Electrical Manufacturers Association (NEMA) NU 2-2001 protocol and the recommended phantoms. During the entire measurements, the system operates with an energy window of 375-650 keV and 11.7 ns coincidence time window. The set of tests performed were spatial resolution, sensitivity, scatter fraction (SF) and counting rate performance. The average transaxial and axial spatial resolution measured as full width at half maximum (FWHM) of the point spread function at 1 cm (and 10 cm) off-axis was 0.632 (0.691) and 0.491 (0.653) cm in 2D and 0.646 (0.682) and 0.54 (0.601) cm in 3D respectively. The average sensitivity for the two radial positions (R = 0 cm and R = 10 cm) was 2.56 (2.63) cps/kBq in 2D and 11.85 (12.14) cps/kBq in 3D. The average scatter fraction was 19.79% in 2D and 46.19% in 3D. The peak noise equivalent counting rate (NECR) evaluated with single random subtraction was 89.41 kcps at 49 kBq/cc in 2D and 60 kcps at 12 kBq/cc in 3D acquisition mode. The NECR with delayed random subtraction was 61.47 kcps at 40.67 kBq/cc in 2D and 45.57 kcps at 16.45 kBq/cc in 3D. The performance of the PET scanner was satisfactory within the manufacturer-specified limits. The test result of PET shows excellent system sensitivity with relatively uniform resolution throughout the FOV, making this scanner highly suitable for whole-body studies. (author)

  2. Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry

    Science.gov (United States)

    Mahmoodani, Fatemeh; Perera, Conrad O.; Abernethy, Grant; Fedrizzi, Bruno; Greenwood, David; Chen, Hong

    2018-03-01

    In a successful fortification program, the stability of micronutrients added to the food is one of the most important factors. The added vitamin D3 is known to sometimes decline during storage of fortified milks, and oxidation through fatty acid lipoxidation could be suspected as the likely cause. Identification of vitamin D3 oxidation products (VDOPs) in natural foods is a challenge due to the low amount of their contents and their possible transformation to other compounds during analysis. The main objective of this study was to find a method to extract VDOPs in simulated whole milk powder and to identify these products using LTQ-ion trap, Q-Exactive Orbitrap and triple quadrupole mass spectrometry. The multistage mass spectrometry (MSn) spectra can help to propose plausible schemes for unknown compounds and their fragmentations. With the growth of combinatorial libraries, mass spectrometry (MS) has become an important analytical technique because of its speed of analysis, sensitivity, and accuracy. This study was focused on identifying the fragmentation rules for some VDOPs by incorporating MS data with in silico calculated MS fragmentation pathways. Diels-Alder derivatization was used to enhance the sensitivity and selectivity for the VDOPs' identification. Finally, the confirmed PTAD-derivatized target compounds were separated and analyzed using ESI(+)-UHPLC-MS/MS in multiple reaction monitoring (MRM) mode. [Figure not available: see fulltext.

  3. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, Elke R. [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Maderwald, Stefan [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Linn, Jennifer; Bochmann, Katja [LMU Munich, Department of Neuroradiology, Munich (Germany); Dassinger, Benjamin [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Justus-Liebig-University Giessen, Department of Neuroradiology, Giessen (Germany); Forsting, Michael [University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Ladd, Mark E. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2014-03-15

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures. (orig.)

  4. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    International Nuclear Information System (INIS)

    Gizewski, Elke R.; Maderwald, Stefan; Linn, Jennifer; Bochmann, Katja; Dassinger, Benjamin; Forsting, Michael; Ladd, Mark E.

    2014-01-01

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures. (orig.)

  5. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  6. Virtual endoscopy and 3D volume rendering in the management of frontal sinus fractures.

    Science.gov (United States)

    Belina, Stanko; Cuk, Viseslav; Klapan, Ivica

    2009-12-01

    Frontal sinus fractures (FSF) are commonly caused by traffic accidents, assaults, industrial accidents and gunshot wounds. Classical roentgenography has high proportion of false negative findings in cases of FSF and is not particularly useful in examining the severity of damage to the frontal sinus posterior table and the nasofrontal duct region. High resolution computed tomography was inavoidable during the management of such patients but it may produce large quantity of 2D images. Postprocessing of datasets acquired by high resolution computer tomography from patients with severe head trauma may offer a valuable additional help in diagnostics and surgery planning. We performed virtual endoscopy (VE) and 3D volume rendering (3DVR) on high resolution CT data acquired from a 54-year-old man with with both anterior and posterior frontal sinus wall fracture in order to demonstrate advantages and disadvantages of these methods. Data acquisition was done by Siemens Somatom Emotion scanner and postprocessing was performed with Syngo 2006G software. VE and 3DVR were performed in a man who suffered blunt trauma to his forehead and nose in an traffic accident. Left frontal sinus anterior wall fracture without dislocation and fracture of tabula interna with dislocation were found. 3D position and orientation of fracture lines were shown in by 3D rendering software. We concluded that VE and 3DVR can clearly display the anatomic structure of the paranasal sinuses and nasopharyngeal cavity, revealing damage to the sinus wall caused by a fracture and its relationship to surrounding anatomical structures.

  7. Contrast-enhanced MR angiography of the carotid artery using 3D time-resolved imaging of contrast kinetics. Comparison with real-time fluoroscopic triggered 3D-elliptical centric view ordering

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Koshikawa, Tokiko; Fukatsu, Hiroshi; Sakurai, Yasuo; Ishiguchi, Tsuneo; Ishigaki, Takeo; Ichinose, Nobuyasu

    2001-01-01

    The purpose of this study was to evaluate contrast-enhanced MR angiography using the 3D time-resolved imaging of contrast kinetics technique (3D-TRICKS) by direct comparison with the fluoroscopic triggered 3D-elliptical centric view ordering (3D-ELLIP) technique. 3D-TRICKS and 3D-ELLIP were directly compared on a 1.5-Tesla MR unit using the same spatial resolution and matrix. In 3D-TRICKS, the central part of the k-space is updated more frequently than the peripheral part of the k-space, which is divided in the slice-encoding direction. The carotid arteries were imaged using 3D-TRICKS and 3D-ELLIP sequentially in 14 patients. Temporal resolution was 12 sec for 3D-ELLIP and 6 sec for 3D-TRICKS. The signal-to-noise ratio (S/N) of the common carotid artery was measured, and the quality of MIP images was then scored in terms of venous overlap and blurring of vessel contours. No significant difference in mean S/N was seen between the two methods. Significant venous overlap was not seen in any of the patients examined. Moderate blurring of vessel contours was noted on 3D-TRICKS in five patients and on 3D-ELLIP in four patients. Blurring in the slice-encoding direction was slightly more pronounced in 3D-TRICKS. However, qualitative analysis scores showed no significant differences. When the spatial resolution of the two methods was identical, the performance of 3D-TRICKS was found to be comparable in static visualization of the carotid arteries with 3D-ELLIP, although blurring in the slice-encoding direction was slightly more pronounced in 3D-TRICKS. 3D-TRICKS is a more robust technique than 3D-ELLIP, because 3D-ELLIP requires operator-dependent fluoroscopic triggering. Furthermore, 3D-TRICKS can achieve higher temporal resolution. For the spatial resolution employed in this study, 3D-TRICKS may be the method of choice. (author)

  8. 3D circuit integration for Vertex and other detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Ray; /Fermilab

    2007-09-01

    High Energy Physics continues to push the technical boundaries for electronics. There is no area where this is truer than for vertex detectors. Lower mass and power along with higher resolution and radiation tolerance are driving forces. New technologies such as SOI CMOS detectors and three dimensional (3D) integrated circuits offer new opportunities to meet these challenges. The fundamentals for SOI CMOS detectors and 3D integrated circuits are discussed. Examples of each approach for physics applications are presented. Cost issues and ways to reduce development costs are discussed.

  9. High Resolution Gamma Ray Spectroscopy at MHz Counting Rates With LaBr3 Scintillators for Fusion Plasma Applications

    Science.gov (United States)

    Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.

    2013-04-01

    High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.

  10. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling

    Science.gov (United States)

    Wang, Jie; Shen, Yuzhong

    2011-01-01

    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  11. a Web-Based Interactive Tool for Multi-Resolution 3d Models of a Maya Archaeological Site

    Science.gov (United States)

    Agugiaro, G.; Remondino, F.; Girardi, G.; von Schwerin, J.; Richards-Rissetto, H.; De Amicis, R.

    2011-09-01

    Continuous technological advances in surveying, computing and digital-content delivery are strongly contributing to a change in the way Cultural Heritage is "perceived": new tools and methodologies for documentation, reconstruction and research are being created to assist not only scholars, but also to reach more potential users (e.g. students and tourists) willing to access more detailed information about art history and archaeology. 3D computer-simulated models, sometimes set in virtual landscapes, offer for example the chance to explore possible hypothetical reconstructions, while on-line GIS resources can help interactive analyses of relationships and change over space and time. While for some research purposes a traditional 2D approach may suffice, this is not the case for more complex analyses concerning spatial and temporal features of architecture, like for example the relationship of architecture and landscape, visibility studies etc. The project aims therefore at creating a tool, called "QueryArch3D" tool, which enables the web-based visualisation and queries of an interactive, multi-resolution 3D model in the framework of Cultural Heritage. More specifically, a complete Maya archaeological site, located in Copan (Honduras), has been chosen as case study to test and demonstrate the platform's capabilities. Much of the site has been surveyed and modelled at different levels of detail (LoD) and the geometric model has been semantically segmented and integrated with attribute data gathered from several external data sources. The paper describes the characteristics of the research work, along with its implementation issues and the initial results of the developed prototype.

  12. Initial results of the high resolution edge Thomson scattering upgrade at DIII-D.

    Science.gov (United States)

    Eldon, D; Bray, B D; Deterly, T M; Liu, C; Watkins, M; Groebner, R J; Leonard, A W; Osborne, T H; Snyder, P B; Boivin, R L; Tynan, G R

    2012-10-01

    Validation of models of pedestal structure is an important part of predicting pedestal height and performance in future tokamaks. The Thomson scattering diagnostic at DIII-D has been upgraded in support of validating these models. Spatial and temporal resolution, as well as signal to noise ratio, have all been specifically enhanced in the pedestal region. This region is now diagnosed by 20 view-chords with a spacing of 6 mm and a scattering length of just under 5 mm sampled at a nominal rate of 250 Hz. When mapped to the outboard midplane, this corresponds to ~3 mm spacing. These measurements are being used to test critical gradient models, in which pedestal gradients increase in time until a threshold is reached. This paper will describe the specifications of the upgrade and present initial results of the system.

  13. RELAP5-3D User Problems

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  14. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing.

    Science.gov (United States)

    Kuang, Xiao; Chen, Kaijuan; Dunn, Conner K; Wu, Jiangtao; Li, Vincent C F; Qi, H Jerry

    2018-02-28

    The three-dimensional (3D) printing of flexible and stretchable materials with smart functions such as shape memory (SM) and self-healing (SH) is highly desirable for the development of future 4D printing technology for myriad applications, such as soft actuators, deployable smart medical devices, and flexible electronics. Here, we report a novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomer via UV-light-assisted direct-ink-write printing. An ink containing urethane diacrylate and a linear semicrystalline polymer is developed for the 3D printing of a semi-interpenetrating polymer network elastomer that can be stretched by up to 600%. The 3D-printed complex structures show interesting functional properties, such as high strain SM and SM -assisted SH capability. We demonstrate that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices. This research paves a new way for the further development of novel 4D printing, soft robotics, and biomedical devices.

  15. Slab detachment in laterally varying subduction zones: 3-D numerical modeling

    NARCIS (Netherlands)

    Duretz, T.; Gerya, T.V.; Spakman, W.|info:eu-repo/dai/nl/074103164

    Understanding the three-dimensional (3-D) dynamics of subduction-collision systems is a longstanding challenge in geodynamics. We investigate the impact of slab detachment in collision systems that are subjected to along-trench variations. High-resolution thermomechanical numerical models,

  16. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration

    OpenAIRE

    Rosenzweig, Derek H.; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-01-01

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (N...

  17. RELAP5-3D User Problems

    International Nuclear Information System (INIS)

    Riemke, Richard Allan

    2001-01-01

    The Reactor Excursion and Leak Analysis Program with 3D capability (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics and 3D neutron kinetics. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution

  18. Multiview 3D sensing and analysis for high quality point cloud reconstruction

    Science.gov (United States)

    Satnik, Andrej; Izquierdo, Ebroul; Orjesek, Richard

    2018-04-01

    Multiview 3D reconstruction techniques enable digital reconstruction of 3D objects from the real world by fusing different viewpoints of the same object into a single 3D representation. This process is by no means trivial and the acquisition of high quality point cloud representations of dynamic 3D objects is still an open problem. In this paper, an approach for high fidelity 3D point cloud generation using low cost 3D sensing hardware is presented. The proposed approach runs in an efficient low-cost hardware setting based on several Kinect v2 scanners connected to a single PC. It performs autocalibration and runs in real-time exploiting an efficient composition of several filtering methods including Radius Outlier Removal (ROR), Weighted Median filter (WM) and Weighted Inter-Frame Average filtering (WIFA). The performance of the proposed method has been demonstrated through efficient acquisition of dense 3D point clouds of moving objects.

  19. Development of sealed sample containers and high resolution micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    Uesugi, Kentaro, E-mail: ueken@spring8.or.jp; Takeuchi, Akihisa; Suzuki, Yoshio [Japan synchrotron radiation research institute, JASRI/SPring-8 Kouto 1-1-1, Sayo, Hyogo 679-5198 Japan (Japan); Uesugi, Masayuki [Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Hamada, Hiroshi [NTT Advanced technology Corporation, Atsugi, Kanagawa 243-0124 (Japan)

    2016-01-28

    A sample container and a high resolution micro-tomography system have been developed at BL47XU at SPring-8. The container is made of a SiN membrane in a shape of truncated pyramid, which makes it possible to exclude oxygen and moisture in the air. The sample rotation stage for tomography is set downward to keep the sample in the container without any glue. The spatial resolution and field of view are 300 nm and 110 μm using a Fresnel zone plate objective with an outermost zone width of 100 nm at 8 keV, respectively. The scan time is about 20 minutes for 1800 projections. A 3-D image of an asteroid particle was successfully obtained without adhesive and contamination.

  20. Measurable realistic image-based 3D mapping

    Science.gov (United States)

    Liu, W.; Wang, J.; Wang, J. J.; Ding, W.; Almagbile, A.

    2011-12-01

    Maps with 3D visual models are becoming a remarkable feature of 3D map services. High-resolution image data is obtained for the construction of 3D visualized models.The3D map not only provides the capabilities of 3D measurements and knowledge mining, but also provides the virtual experienceof places of interest, such as demonstrated in the Google Earth. Applications of 3D maps are expanding into the areas of architecture, property management, and urban environment monitoring. However, the reconstruction of high quality 3D models is time consuming, and requires robust hardware and powerful software to handle the enormous amount of data. This is especially for automatic implementation of 3D models and the representation of complicated surfacesthat still need improvements with in the visualisation techniques. The shortcoming of 3D model-based maps is the limitation of detailed coverage since a user can only view and measure objects that are already modelled in the virtual environment. This paper proposes and demonstrates a 3D map concept that is realistic and image-based, that enables geometric measurements and geo-location services. Additionally, image-based 3D maps provide more detailed information of the real world than 3D model-based maps. The image-based 3D maps use geo-referenced stereo images or panoramic images. The geometric relationships between objects in the images can be resolved from the geometric model of stereo images. The panoramic function makes 3D maps more interactive with users but also creates an interesting immersive circumstance. Actually, unmeasurable image-based 3D maps already exist, such as Google street view, but only provide virtual experiences in terms of photos. The topographic and terrain attributes, such as shapes and heights though are omitted. This paper also discusses the potential for using a low cost land Mobile Mapping System (MMS) to implement realistic image 3D mapping, and evaluates the positioning accuracy that a measureable

  1. SPADAS: a high-speed 3D single-photon camera for advanced driver assistance systems

    Science.gov (United States)

    Bronzi, D.; Zou, Y.; Bellisai, S.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F.

    2015-02-01

    Advanced Driver Assistance Systems (ADAS) are the most advanced technologies to fight road accidents. Within ADAS, an important role is played by radar- and lidar-based sensors, which are mostly employed for collision avoidance and adaptive cruise control. Nonetheless, they have a narrow field-of-view and a limited ability to detect and differentiate objects. Standard camera-based technologies (e.g. stereovision) could balance these weaknesses, but they are currently not able to fulfill all automotive requirements (distance range, accuracy, acquisition speed, and frame-rate). To this purpose, we developed an automotive-oriented CMOS single-photon camera for optical 3D ranging based on indirect time-of-flight (iTOF) measurements. Imagers based on Single-photon avalanche diode (SPAD) arrays offer higher sensitivity with respect to CCD/CMOS rangefinders, have inherent better time resolution, higher accuracy and better linearity. Moreover, iTOF requires neither high bandwidth electronics nor short-pulsed lasers, hence allowing the development of cost-effective systems. The CMOS SPAD sensor is based on 64 × 32 pixels, each able to process both 2D intensity-data and 3D depth-ranging information, with background suppression. Pixel-level memories allow fully parallel imaging and prevents motion artefacts (skew, wobble, motion blur) and partial exposure effects, which otherwise would hinder the detection of fast moving objects. The camera is housed in an aluminum case supporting a 12 mm F/1.4 C-mount imaging lens, with a 40°×20° field-of-view. The whole system is very rugged and compact and a perfect solution for vehicle's cockpit, with dimensions of 80 mm × 45 mm × 70 mm, and less that 1 W consumption. To provide the required optical power (1.5 W, eye safe) and to allow fast (up to 25 MHz) modulation of the active illumination, we developed a modular laser source, based on five laser driver cards, with three 808 nm lasers each. We present the full characterization of

  2. Integrated 3D density modelling and segmentation of the Dead Sea

    OpenAIRE

    H.-J. Götze; R. El-Kelani; Sebastian Schmidt; M. Rybakov; M. Hassouneh; Hans-Jürgen Förster; J. Ebbing; DESERT Group;  ;  ;  

    2007-01-01

    A 3D interpretation of the newly compiled Bouguer anomaly in the area of the '‘Dead Sea Rift’’ is presented. A high-resolution 3D model constrained with the seismic results reveals the crustal thickness and density distribution beneath the Arava/Araba Valley (AV), the region between the Dead Sea and the Gulf of Aqaba/Elat. The Bouguer anomalies along the axial portion of the AV, as deduced from the modelling results, are mainly caused by deep-seated sedimentary basins (D > 10 km). An inferred...

  3. BiI3 Crystals for High Energy Resolution Gamma-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nino, Juan C. [Univ. of Florida, Gainesville, FL (United States); Baciak, James [Univ. of Florida, Gainesville, FL (United States); Johns, Paul [Univ. of Florida, Gainesville, FL (United States); Sulekar, Soumitra [Univ. of Florida, Gainesville, FL (United States); Totten, James [Univ. of Florida, Gainesville, FL (United States); Nimmagadda, Jyothir [Univ. of Florida, Gainesville, FL (United States)

    2017-04-12

    BiI3 had been investigated for its unique properties as a layered compound semiconductor for many decades. However, despite the exceptional atomic, physical, and electronic properties of this material, good resolution gamma ray spectra had never been reported for BiI3. The shortcomings that previously prevented BiI3 from reaching success as a gamma ray sensor were, through this project, identified and suppressed to unlock the performance of this promising compound. Included in this work were studies on a number of methods which have, for the first time, enabled BiI3 to exhibit spectral performance rivaling many other candidate semiconductors for room temperature gamma ray sensors. New approaches to crystal growth were explored that allow BiI3 spectrometers to be fabricated with up to 2.2% spectral resolution at 662 keV. Fundamental studies on trap states, dopant incorporation, and polarization were performed to enhance performance of this compound. Additionally, advanced detection techniques were applied to display the capabilities of high quality BiI3 spectrometers. Overall, through this work, BiI3 has been revealed as a potentially transformative material for nuclear security and radiation detection sciences.

  4. 3D material cytometry (3DMaC): a very high-replicate, high-throughput analytical method using microfabricated, shape-specific, cell-material niches.

    Science.gov (United States)

    Parratt, Kirsten; Jeong, Jenny; Qiu, Peng; Roy, Krishnendu

    2017-08-08

    Studying cell behavior within 3D material niches is key to understanding cell biology in health and diseases, and developing biomaterials for regenerative medicine applications. Current approaches to studying these cell-material niches have low throughput and can only analyze a few replicates per experiment resulting in reduced measurement assurance and analytical power. Here, we report 3D material cytometry (3DMaC), a novel high-throughput method based on microfabricated, shape-specific 3D cell-material niches and imaging cytometry. 3DMaC achieves rapid and highly multiplexed analyses of very high replicate numbers ("n" of 10 4 -10 6 ) of 3D biomaterial constructs. 3DMaC overcomes current limitations of low "n", low-throughput, and "noisy" assays, to provide rapid and simultaneous analyses of potentially hundreds of parameters in 3D biomaterial cultures. The method is demonstrated here for a set of 85 000 events containing twelve distinct cell-biomaterial micro-niches along with robust, customized computational methods for high-throughput analytics with potentially unprecedented statistical power.

  5. Macromolecular 3D SEM reconstruction strategies: Signal to noise ratio and resolution

    International Nuclear Information System (INIS)

    Woodward, J.D.; Wepf, R.A.

    2014-01-01

    Three-dimensional scanning electron microscopy generates quantitative volumetric structural data from SEM images of macromolecules. This technique provides a quick and easy way to define the quaternary structure and handedness of protein complexes. Here, we apply a variety of preparation and imaging methods to filamentous actin in order to explore the relationship between resolution, signal-to-noise ratio, structural preservation and dataset size. This information can be used to define successful imaging strategies for different applications. - Highlights: • F-actin SEM datasets were collected using 8 different preparation/ imaging techniques. • Datasets were reconstructed by back projection and compared/analyzed • 3DSEM actin reconstructions can be produced with <100 views of the asymmetric unit. • Negatively stained macromolecules can be reconstructed by 3DSEM to ∼3 nm resolution

  6. High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness.

    Science.gov (United States)

    Chen, Xiangfan; Liu, Wenzhong; Dong, Biqin; Lee, Jongwoo; Ware, Henry Oliver T; Zhang, Hao F; Sun, Cheng

    2018-05-01

    Advancements in three-dimensional (3D) printing technology have the potential to transform the manufacture of customized optical elements, which today relies heavily on time-consuming and costly polishing and grinding processes. However the inherent speed-accuracy trade-off seriously constrains the practical applications of 3D-printing technology in the optical realm. In addressing this issue, here, a new method featuring a significantly faster fabrication speed, at 24.54 mm 3 h -1 , without compromising the fabrication accuracy required to 3D-print customized optical components is reported. A high-speed 3D-printing process with subvoxel-scale precision (sub 5 µm) and deep subwavelength (sub 7 nm) surface roughness by employing the projection micro-stereolithography process and the synergistic effects from grayscale photopolymerization and the meniscus equilibrium post-curing methods is demonstrated. Fabricating a customized aspheric lens 5 mm in height and 3 mm in diameter is accomplished in four hours. The 3D-printed singlet aspheric lens demonstrates a maximal imaging resolution of 373.2 lp mm -1 with low field distortion less than 0.13% across a 2 mm field of view. This lens is attached onto a cell phone camera and the colorful fine details of a sunset moth's wing and the spot on a weevil's elytra are captured. This work demonstrates the potential of this method to rapidly prototype optical components or systems based on 3D printing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High resolution remote sensing of water surface patterns

    Science.gov (United States)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  8. First study of small-cell 3D Silicon Pixel Detectors for the High Luminosity LHC

    CERN Document Server

    E. Currás (1), J. Duarte-Campderrós (1), M. Fernández (1), A. García (1), G. Gómez (1), J. González (1), R. Jaramillo (1), D. Moya (1), I. Vila (1), S. Hidalgo (2), M. Manna (2), G. Pellegrini (2), D. Quirion (2), D. Pitzl (3), A. Ebrahimi (4), T. Rohe (5), S. Wiederkehr (5); ((1) Instituto de Física de Cantabria, (2) Instituto de Microelectrónica de Barcelona - Centro Nacional de Microelectrónica, (3) Deutsches Elektronen Synchrotron, (4) University of Hamburg, (5) Paul Scherrer Institut)

    2018-01-01

    A study of 3D pixel sensors of cell size 50 {\\mu}m x 50 {\\mu}m fabricated at IMB-CNM using double-sided n-on-p 3D technology is presented. Sensors were bump-bonded to the ROC4SENS readout chip. For the first time in such a small-pitch hybrid assembly, the sensor response to ionizing radiation in a test beam of 5.6 GeV electrons was studied. Results for non-irradiated sensors are presented, including efficiency, charge sharing, signal-to-noise, and resolution for different incidence angles.

  9. Mechanical design of a high-resolution x-ray powder diffractometer at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Lee, P.; Preissner, C.; Ramanathan, M.; Beno, M.; VonDreele, R.; Ranay, R.; Ribaud, L.; Kurtz, C.; Jiao, X.; Kline, D.; Jemian, P.; Toby, B.

    2007-01-01

    A novel high-resolution x-ray powder diffractometer has been designed and commissioned at the bending magnet beamline 11-BM at the Advanced Photon Source (APS), Argonne National Laboratory (ANL). This state-of-the-art instrument is designed to meet challenging mechanical and optical specifications for producing high-quality powder diffraction data with high throughput. The 2600 mm (H) X 2100 mm (L) X 1700 mm (W) diffractometer consists of five subassemblies: a customized two-circle goniometer with a 3-D adjustable supporting base; a twelve-channel high-resolution crystal analyzer system with an array of precision x-ray slits; a manipulator system for a twelve scintillator x-ray detectors; a 4-D sample manipulator with cryo-cooling capability; and a robot-based sample exchange automation system. The mechanical design of the diffractometer as well as the test results of its positioning performance are presented in this paper.

  10. Mechanical design of a high-resolution x-ray powder diffractometer at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Lee, P.; Preissner, C.; Ramanathan, M.; Beno, M.; VonDreele, R.; Ranay, R.; Ribaud, L.; Kurtz, C.; Jiao, X.; Kline, D.; Jemian, P.; Toby, B.

    2007-01-01

    A novel high-resolution x-ray powder diffractometer has been designed and commissioned at the bending magnet beamline 11-BM at the Advanced Photon Source (APS), Argonne National Laboratory (ANL). This state-of-the-art instrument is designed to meet challenging mechanical and optical specifications for producing high-quality powder diffraction data with high throughput. The 2600 mm (H) X 2100 mm (L) X 1700 mm (W) diffractometer consists of five subassemblies: a customized two-circle goniometer with a 3-D adjustable supporting base; a twelve-channel high-resolution crystal analyzer system with an array of precision x-ray slits; a manipulator system for a twelve scintillator x-ray detectors; a 4-D sample manipulator with cryo-cooling capability; and a robot-based sample exchange automation system. The mechanical design of the diffractometer as well as the test results of its positioning performance are presented in this paper.

  11. High-resolution MRI of the ulnar and radial collateral ligaments of the wrist.

    Science.gov (United States)

    Nozaki, Taiki; Wu, Wei Der; Kaneko, Yasuhito; Rafijah, Gregory; Yang, Lily; Hitt, Dave; Yoshioka, Hiroshi

    2017-12-01

    Background Accurate diagnosis of injuries to the collateral ligaments of the wrist is technically challenging on MRI. Purpose To investigate usefulness of high-resolution two-dimensional (2D) and isotropic three-dimensional (3D) magnetic resonance imaging (MRI) for identifying and classifying the morphology of the ulnar and radial collateral ligaments (UCL and RCL) of the wrist. Material and Methods Thirty-seven participants were evaluated using 3T coronal 2D and isotropic 3D images by two radiologists independently. The UCL was classified into four types: 1a, narrow attachment to the tip of the ulnar styloid (Tip); 1b, broad attachment to the Tip; 2a, narrow attachment to the medial base of the ulnar styloid (Base); and 2b, broad attachment to the Base. The RCL was also classified into four types: 1a, separate radioscaphoid and scaphotrapezial ligaments (RS + ST) with narrow scaphoid attachment; 1b, RS + ST with broad scaphoid attachment; 2a, continuous radio-scapho-trapezial ligaments (RST) with narrow scaphoid attachment; and 2b, RST with broad scaphoid attachment. The inter-observer reliability of these classifications was calculated. Results Type 1a was the most common of both collateral ligaments. Of UCL classifications, 31.4% were revised after additional review of multiplanar reconstruction (MPR) images from isotropic data. The inter-observer reliability of UCL classification was substantial (k = 0.62) without MPR, and almost perfect (k = 0.84) with MPR. The inter-observer reliability of RCL classification was almost perfect (k = 0.89). Anatomic delineation between the two sequences was not statistically different. Conclusion The UCL and RCL were each identified on high-resolution 2D and isotropic 3D MRI equally well. MPR allows accurate identification of the UCL attachment to the ulnar styloid.

  12. High-speed 3D surface measurement with mechanical projector

    Science.gov (United States)

    Hyun, Jae-Sang; Zhang, Song

    2017-05-01

    This paper presents a method to overcome the light spectral range limitation of using digital-light-processing (DLP) projector for 3D shape measurement by developing a mechanical projector. The mechanical projector enables much broader spectral range of light than that the DLP projector allows. The rapidly spinning disk with binary structures can generate desired sinusoidal patterns at a frequency of 10 kHz or higher with a single DC motor. By precisely synchronizing the camera with the projector, phase-shifted fringe patterns can be accurately captured for high-accuracy 3D shape measurement. We further employed a computational framework that could enable absolute phase and thus absolute 3D shape measurement. We developed such prototype system that experimentally demonstrated the success of the proposed method.

  13. High-Resolution Imaging Reveals New Features of Nuclear Export of mRNA through the Nuclear Pore Complexes

    Directory of Open Access Journals (Sweden)

    Joseph M. Kelich

    2014-08-01

    Full Text Available The nuclear envelope (NE of eukaryotic cells provides a physical barrier for messenger RNA (mRNA and the associated proteins (mRNPs traveling from sites of transcription in the nucleus to locations of translation processing in the cytoplasm. Nuclear pore complexes (NPCs embedded in the NE serve as a dominant gateway for nuclear export of mRNA. However, the fundamental characterization of export dynamics of mRNPs through the NPC has been hindered by several technical limits. First, the size of NPC that is barely below the diffraction limit of conventional light microscopy requires a super-resolution microscopy imaging approach. Next, the fast transit of mRNPs through the NPC further demands a high temporal resolution by the imaging approach. Finally, the inherent three-dimensional (3D movements of mRNPs through the NPC demand the method to provide a 3D mapping of both transport kinetics and transport pathways of mRNPs. This review will highlight the recently developed super-resolution imaging techniques advanced from 1D to 3D for nuclear export of mRNPs and summarize the new features in the dynamic nuclear export process of mRNPs revealed from these technical advances.

  14. Magneto-Hydrodynamic Simulations of a Magnetic Flux Compression Generator Using ALE3D

    Science.gov (United States)

    2017-07-01

    3 Fig. 3 Half- plane view of the geometry used in ALE3D simulation showing the materials...to LLNL’s SESAME data.8 Fig. 3 Half- plane view of the geometry used in ALE3D simulation showing the materials There are 2 broad approaches to...of mesh can be time- consuming . Since MFCGs have a cylindrical geometry, a high-resolution mesh is not required; one can use a conformal mesh and

  15. High temporal resolution magnetic resonance imaging: development of a parallel three dimensional acquisition method for functional neuroimaging; Imagerie par resonance magnetique a haute resolution temporelle: developpement d'une methode d'acquisition parallele tridimensionnelle pour l'imagerie fonctionnelle cerebrale

    Energy Technology Data Exchange (ETDEWEB)

    Rabrait, C

    2007-11-15

    Echo Planar Imaging is widely used to perform data acquisition in functional neuroimaging. This sequence allows the acquisition of a set of about 30 slices, covering the whole brain, at a spatial resolution ranging from 2 to 4 mm, and a temporal resolution ranging from 1 to 2 s. It is thus well adapted to the mapping of activated brain areas but does not allow precise study of the brain dynamics. Moreover, temporal interpolation is needed in order to correct for inter-slices delays and 2-dimensional acquisition is subject to vascular in flow artifacts. To improve the estimation of the hemodynamic response functions associated with activation, this thesis aimed at developing a 3-dimensional high temporal resolution acquisition method. To do so, Echo Volume Imaging was combined with reduced field-of-view acquisition and parallel imaging. Indeed, E.V.I. allows the acquisition of a whole volume in Fourier space following a single excitation, but it requires very long echo trains. Parallel imaging and field-of-view reduction are used to reduce the echo train durations by a factor of 4, which allows the acquisition of a 3-dimensional brain volume with limited susceptibility-induced distortions and signal losses, in 200 ms. All imaging parameters have been optimized in order to reduce echo train durations and to maximize S.N.R., so that cerebral activation can be detected with a high level of confidence. Robust detection of brain activation was demonstrated with both visual and auditory paradigms. High temporal resolution hemodynamic response functions could be estimated through selective averaging of the response to the different trials of the stimulation. To further improve S.N.R., the matrix inversions required in parallel reconstruction were regularized, and the impact of the level of regularization on activation detection was investigated. Eventually, potential applications of parallel E.V.I. such as the study of non-stationary effects in the B.O.L.D. response

  16. Rovibrational study of the 2ν2 band of D213CO by high-resolution Fourier transform infrared spectroscopy

    Science.gov (United States)

    Wu, Q. Y.; Tan, T. L.; A'dawiah, Rabia'tul; Ng, L. L.

    2018-03-01

    The high-resolution FTIR spectrum of the 2ν2 band (3250-3380 cm-1) of D213CO was recorded at an unapodized resolution of 0.0063 cm-1. A total of 747 rovibrational transitions have been assigned and fitted up to J″ = 32 and Ka″ = 10 using the Watson's A-reduced Hamiltonian in the Ir representation. A set of accurate upper state (v2 = 2) rovibrational constants, three rotational and five quartic centrifugal distortion constants, were determined for the first time. The band center of the 2ν2 band was found to be 3326.765109 ± 0.000079 cm-1. The rms deviation of the rovibrational fit was 0.00096 cm-1.

  17. High-resolution n = 3 to n = 2 spectra of neonlike silver

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Bitter, M.; von Goeler, S.

    1986-01-01

    Spectra of the n = 3 to n = 2 transitions in neonlike silver emitted from the Princeton Large Torus have been recorded with a high-resolution Bragg-crystal spectrometer. The measurements cover the wavelength region 3.3--4.1 A-circle and include the forbidden 3p→2p electric quadrupole lines. Transitions in the adjacent sodiumlike, magnesiumlike, and aluminumlike charge states of silver have also been observed and identified. The Ly-α spectra of hydrogenlike argon and iron, the Kα spectra of heliumlike argon, potassium, manganese, and iron, and the Kβ spectrum of heliumlike argon fall in the same wavelength region in first or second order and have been measured concurrently. These spectra provide a coherent set of wavelength reference data obtained with the same spectrometer and from the same tokamak. This set is used as a basis to compare wavelength predictions for one- and two-electron systems to each other and to determine the transition energies of the silver lines with great accuracy

  18. High spatial resolution mapping of folds and fractures using Unmanned Aerial Vehicle (UAV) photogrammetry

    Science.gov (United States)

    Cruden, A. R.; Vollgger, S.

    2016-12-01

    The emerging capability of UAV photogrammetry combines a simple and cost-effective method to acquire digital aerial images with advanced computer vision algorithms that compute spatial datasets from a sequence of overlapping digital photographs from various viewpoints. Depending on flight altitude and camera setup, sub-centimeter spatial resolution orthophotographs and textured dense point clouds can be achieved. Orientation data can be collected for detailed structural analysis by digitally mapping such high-resolution spatial datasets in a fraction of time and with higher fidelity compared to traditional mapping techniques. Here we describe a photogrammetric workflow applied to a structural study of folds and fractures within alternating layers of sandstone and mudstone at a coastal outcrop in SE Australia. We surveyed this location using a downward looking digital camera mounted on commercially available multi-rotor UAV that autonomously followed waypoints at a set altitude and speed to ensure sufficient image overlap, minimum motion blur and an appropriate resolution. The use of surveyed ground control points allowed us to produce a geo-referenced 3D point cloud and an orthophotograph from hundreds of digital images at a spatial resolution automatically extracted from these high-resolution datasets using open-source software. This resulted in an extensive and statistically relevant orientation dataset that was used to 1) interpret the progressive development of folds and faults in the region, and 2) to generate a 3D structural model that underlines the complex internal structure of the outcrop and quantifies spatial variations in fold geometries. Overall, our work highlights how UAV photogrammetry can contribute to new insights in structural analysis.

  19. Low-cost structured-light based 3D capture system design

    Science.gov (United States)

    Dong, Jing; Bengtson, Kurt R.; Robinson, Barrett F.; Allebach, Jan P.

    2014-03-01

    Most of the 3D capture products currently in the market are high-end and pricey. They are not targeted for consumers, but rather for research, medical, or industrial usage. Very few aim to provide a solution for home and small business applications. Our goal is to fill in this gap by only using low-cost components to build a 3D capture system that can satisfy the needs of this market segment. In this paper, we present a low-cost 3D capture system based on the structured-light method. The system is built around the HP TopShot LaserJet Pro M275. For our capture device, we use the 8.0 Mpixel camera that is part of the M275. We augment this hardware with two 3M MPro 150 VGA (640 × 480) pocket projectors. We also describe an analytical approach to predicting the achievable resolution of the reconstructed 3D object based on differentials and small signal theory, and an experimental procedure for validating that the system under test meets the specifications for reconstructed object resolution that are predicted by our analytical model. By comparing our experimental measurements from the camera-projector system with the simulation results based on the model for this system, we conclude that our prototype system has been correctly configured and calibrated. We also conclude that with the analytical models, we have an effective means for specifying system parameters to achieve a given target resolution for the reconstructed object.

  20. A new method for high-resolution characterization of hydraulic conductivity

    Science.gov (United States)

    Liu, Gaisheng; Butler, J.J.; Bohling, Geoffrey C.; Reboulet, Ed; Knobbe, Steve; Hyndman, D.W.

    2009-01-01

    A new probe has been developed for high-resolution characterization of hydraulic conductivity (K) in shallow unconsolidated formations. The probe was recently applied at the Macrodispersion Experiment (MADE) site in Mississippi where K was rapidly characterized at a resolution as fine as 0.015 m, which has not previously been possible. Eleven profiles were obtained with K varying up to 7 orders of magnitude in individual profiles. Currently, high-resolution (0.015-m) profiling has an upper K limit of 10 m/d; lower-resolution (???0.4-m) mode is used in more permeable zones pending modifications. The probe presents a new means to help address unresolved issues of solute transport in heterogeneous systems. Copyright 2009 by the American Geophysical Union.