WorldWideScience

Sample records for high reheating temperature

  1. Optimization of advanced high-temperature Brayton cycles with multiple reheat stages

    International Nuclear Information System (INIS)

    Haihua Zhao; Per F Peterson

    2005-01-01

    Full text of publication follows: This paper presents an overview and a few point designs for multiple-reheat Brayton cycle power conversion systems using high temperature molten salts (or liquid metals). All designs are derived from the General Atomics GT-MHR power conversion unit (PCU). The GT-MHR PCU is currently the only closed helium cycle system that has undergone detailed engineering design analysis, and that has turbomachinery which is sufficiently large to extrapolate to a >1000 MW(e) multiple reheat gas cycle power conversion system. Analysis shows that, with relatively small engineering modifications, multiple GT-MHR PCU's can be connected together to create a power conversion system in the >1000 MW(e) class. The resulting power conversion system is quite compact, and results in what is likely the minimum gas duct volume possible for a multiple-reheat system. To realize this, compact offset fin plate type liquid-to-gas heat exchangers (power densities from 10 to 120 MW/m 3 ) are needed. Both metal and non-metal heat exchangers are being investigated for high-temperature, gas-cooled reactors for temperatures to 1000 deg. C. Recent high temperature heat exchanger studies for nuclear hydrogen production has suggested that carbon-coated composite materials such as liquid silicon infiltrated chopped fiber carbon-carbon preformed material potentially could be used to fabricate plate fin heat exchangers with reasonable price. Different fluids such as helium, nitrogen and helium mixture, and supercritical CO 2 are compared for these multiple reheat Brayton cycles. Nitrogen and helium mixture cycle need about 40% more total PCU volume than helium cycle while keeping the same net cycle efficiency. Supercritical CO 2 needs very high pressure to optimize. Due to relatively detailed design for components such as heat exchangers, turbomachinery, and duct system, relatively accurate total pressure loss can be obtained, which results in more credible net efficiency

  2. Quintessential inflation at low reheating temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Llibert Areste [Universitat Politecnica de Catalunya, Departament de Matematiques, Barcelona (Spain); Ludwig-Maximilians-Universitaet, Fakultaet fuer Physik, Munich (Germany); Haro, Jaume de [Universitat Politecnica de Catalunya, Departament de Matematiques, Terrassa (Spain)

    2017-11-15

    We have tested some simple quintessential inflation models, imposing the requirement that they match with the recent observational data provided by the BICEP and Planck team and leading to a reheating temperature, which is obtained via gravitational particle production after inflation, supporting the nucleosynthesis success. Moreover, for the models coming from supergravity one needs to demand low temperatures in order to avoid problems such as the gravitino overproduction or the gravitational production of moduli fields, which are obtained only when the reheating temperature is due to the production of massless particles with a coupling constant very close to its conformal value. (orig.)

  3. Low reheating temperatures in monomial and binomial inflationary models

    International Nuclear Information System (INIS)

    Rehagen, Thomas; Gelmini, Graciela B.

    2015-01-01

    We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied ϕ 2 inflationary potential is no longer favored by current CMB data, as well as ϕ p with p>2, a ϕ 1 potential and canonical reheating (w re =0) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, n s , implies an upper bound on the reheating temperature of T re ≲6×10 10 GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a ϕ 1 potential. We find that as a subdominant ϕ 2 term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of T re =4 MeV is excluded by the Planck 2015 68% confidence limit

  4. Root cause analysis of oxide scale forming and shedding in high temperature reheater of a 200MW super high pressure boiler

    Science.gov (United States)

    Bo, Jiang; Hao, Weidong; Hu, Zhihong; Liu, Fuguo

    2015-12-01

    In order to solve the problem of over temperature tube-burst caused by oxide scale shedding and blocking tubes of high temperature reheater of a 200MW super high pressure power plant boiler, this paper expounds the mechanism of scale forming and shedding, and analyzes the probable causes of the tube-burst failure. The results show that the root cause of scale forming is that greater steam extraction flow after reforming of the second extraction leads to less steam flow into reheater, which causes over temperature to some of the heated tubes; and the root cause of scale shedding is that long term operation in AGC-R mode brings about great fluctuations of unit load, steam temperature and pressure, accelerating scale shedding. In conclusion, preventive measures are drawn up considering the operation mode of the unit.

  5. Correlation Between Microstructure and Low-Temperature Impact Toughness of Simulated Reheated Zones in the Multi-pass Weld Metal of High-Strength Steel

    Science.gov (United States)

    Kang, Yongjoon; Park, Gitae; Jeong, Seonghoon; Lee, Changhee

    2018-01-01

    A large fraction of reheated weld metal is formed during multi-pass welding, which significantly affects the mechanical properties (especially toughness) of welded structures. In this study, the low-temperature toughness of the simulated reheated zone in multi-pass weld metal was evaluated and compared to that of the as-deposited zone using microstructural analyses. Two kinds of high-strength steel welds with different hardenabilities were produced by single-pass, bead-in-groove welding, and both welds were thermally cycled to peak temperatures above Ac3 using a Gleeble simulator. When the weld metals were reheated, their toughness deteriorated in response to the increase in the fraction of detrimental microstructural components, i.e., grain boundary ferrite and coalesced bainite in the weld metals with low and high hardenabilities, respectively. In addition, toughness deterioration occurred in conjunction with an increase in the effective grain size, which was attributed to the decrease in nucleation probability of acicular ferrite; the main cause for this decrease changed depending on the hardenability of the weld metal.

  6. Moisture separator reheaters for nuclear power plants

    International Nuclear Information System (INIS)

    Miyoshi, Michizo; Yonemura, Katsutoshi

    1974-01-01

    In the light water reactor plants using BWRS or PWRS, the pressure and temperature of steam at the inlet of turbines are low, and the steam is moist, as compared with the case of thermal power plants. Therefore, moisture separator/reheaters are used between high and low pressure turbines. The steam from a high pressure turbine enters a manifold, and goes zigzag through vertical plate separator elements, its moisture is removed from the steam. Then, after being reheated with the steam bled from the high pressure turbine and directly from a reactor, the steam is fed into a low pressure turbine. The development and test made on the components of a moisture separaotr/reheater and the overall model experiment are described together with the mechanism of moisture separation and reheating. (Mori, K.)

  7. Experimental thermal behavior of a power plant reheater

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M. Manuela Prieto; Garcia, F. Javier Fernandez; Ramon, Ines Suarez [Departamento de Energia, Universidad de Oviedo, Campus de Viesques, 33204 Gijon, Asturias (Spain); Roces, Hilario Sanchez [Central Termica de Soto de Ribera, Soto de Ribera, Asturias (Spain)

    2006-04-15

    The process conditions of power plant components subjected to high pressures and temperatures are essential to determine their remaining life, availability and efficiency. It is, therefore, expedient to pay special attention to critical components, such as superheater and reheater heat exchangers, headers, and main and reheated steam lines. In this paper, on-line and off-line variables of a power plant reheater that has presented problems of thickness losses and repetitive tube fissures are studied. The fissures are associated with the effect of a thermal-mechanical mechanism. Off-line measurements were taken of the following variables: pressure, temperature, velocity and composition of the gases. On-line instrumentation was completed by the installation of specific thermocouples to ascertain the temperatures in the tubes outlet. Various angles for the fuel inlet of the burners and variations in the number and location of the working burners were also assayed. As a consequence of this analysis, it can be deduced that there are important differences in the outlet temperature of the reheater tubes that decrease for lower powers. Finally, it is pointed that a non-uniform distribution of the steam flow in the reheater might be the cause of the problem. (author)

  8. Constraining curvatonic reheating

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, Robert J.; Vennin, Vincent; Koyama, Kazuya; Wands, David, E-mail: robert.hardwick@port.ac.uk, E-mail: vincent.vennin@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: david.wands@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom)

    2016-08-01

    We derive the first systematic observational constraints on reheating in models of inflation where an additional light scalar field contributes to primordial density perturbations and affects the expansion history during reheating. This encompasses the original curvaton model but also covers a larger class of scenarios. We find that, compared to the single-field case, lower values of the energy density at the end of inflation and of the reheating temperature are preferred when an additional scalar field is introduced. For instance, if inflation is driven by a quartic potential, which is one of the most favoured models when a light scalar field is added, the upper bound T {sub reh} < 5 × 10{sup 4} GeV on the reheating temperature T {sub reh} is derived, and the implications of this value on post-inflationary physics are discussed. The information gained about reheating is also quantified and it is found that it remains modest in plateau inflation (though still larger than in the single-field version of the model) but can become substantial in quartic inflation. The role played by the vev of the additional scalar field at the end of inflation is highlighted, and opens interesting possibilities for exploring stochastic inflation effects that could determine its distribution.

  9. Reheating of the Universe as holographic thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Shinsuke, E-mail: shinsuke.kawai@gmail.com [Department of Physics, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Nakayama, Yu [California Institute of Technology, 452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, Kashiwa, Chiba 277-8583 (Japan)

    2016-08-10

    Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.

  10. Reheating of the Universe as holographic thermalization

    Directory of Open Access Journals (Sweden)

    Shinsuke Kawai

    2016-08-01

    Full Text Available Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.

  11. The Higgs boson can delay reheating after inflation

    Science.gov (United States)

    Freese, Katherine; Sfakianakis, Evangelos I.; Stengel, Patrick; Visinelli, Luca

    2018-05-01

    The Standard Model Higgs boson, which has previously been shown to develop an effective vacuum expectation value during inflation, can give rise to large particle masses during inflation and reheating, leading to temporary blocking of the reheating process and a lower reheat temperature after inflation. We study the effects on the multiple stages of reheating: resonant particle production (preheating) as well as perturbative decays from coherent oscillations of the inflaton field. Specifically, we study both the cases of the inflaton coupling to Standard Model fermions through Yukawa interactions as well as to Abelian gauge fields through a Chern-Simons term. We find that, in the case of perturbative inflaton decay to SM fermions, reheating can be delayed due to Higgs blocking and the reheat temperature can decrease by up to an order of magnitude. In the case of gauge-reheating, Higgs-generated masses of the gauge fields can suppress preheating even for large inflaton-gauge couplings. In extreme cases, preheating can be shut down completely and must be substituted by perturbative decay as the dominant reheating channel. Finally, we discuss the distribution of reheat temperatures in different Hubble patches, arising from the stochastic nature of the Higgs VEV during inflation and its implications for the generation of both adiabatic and isocurvature fluctuations.

  12. Reheating the D-brane universe via instant preheating

    International Nuclear Information System (INIS)

    Panda, Sudhakar; Sami, M.; Thongkool, I.

    2010-01-01

    We investigate a possibility of reheating in a scenario of D-brane inflation in a warped deformed conifold background which includes perturbative corrections to throat geometry sourced by a chiral operator of dimension 3/2 in the conformal field theory. The effective D-brane potential, in this case, belongs to the class of nonoscillatory models of inflation for which the conventional reheating mechanism does not work. We find that gravitational particle production is inefficient and leads to reheating temperature of the order of 10 8 GeV. We show that instant preheating is quite suitable to the present scenario and can easily reheat the universe to a temperature which is higher by about 3 orders of magnitude than its counterpart associated with gravitational particle production. The reheating temperature is shown to be insensitive to a particular choice of inflationary parameters suitable to observations.

  13. HTGR power plant hot reheat steam pressure control system

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1975-01-01

    A control system for a high temperature gas cooled reactor (HTGR) power plant is disclosed wherein such plant includes a plurality of steam generators. Dual turbine-generators are connected to the common steam headers, a high pressure element of each turbine receiving steam from the main steam header, and an intermediate-low pressure element of each turbine receiving steam from the hot reheat header. Associated with each high pressure element is a bypass line connected between the main steam header and a cold reheat header, which is commonly connected to the high pressure element exhausts. A control system governs the flow of steam through the first and second bypass lines to provide for a desired minimum steam flow through the steam generator reheater sections at times when the total steam flow through the turbines is less than such minimum, and to regulate the hot reheat header steam pressure to improve control of the auxiliary steam turbines and thereby improve control of the reactor coolant gas flow, particularly following a turbine trip. (U.S.)

  14. Reheating temperature and gauge mediation models of supersymmetry breaking

    International Nuclear Information System (INIS)

    Olechowski, Marek; Pokorski, Stefan; Turzynski, Krzysztof; Wells, James D.

    2009-01-01

    For supersymmetric theories with gravitino dark matter, the maximal reheating temperature consistent with big bang nucleosynthesis bounds arises when the physical gaugino masses are degenerate. We consider the cases of a stau or sneutrino next-to-lightest superpartner, which have relatively less constraint from big bang nucleosynthesis. The resulting parameter space is consistent with leptogenesis requirements, and can be reached in generalized gauge mediation models. Such models illustrate a class of theories that overcome the well-known tension between big bang nucleosynthesis and leptogenesis.

  15. Exergy analysis of a 1000 MW double reheat ultra-supercritical power plant

    International Nuclear Information System (INIS)

    Si, Ningning; Zhao, Zhigang; Su, Sheng; Han, Pengshuai; Sun, Zhijun; Xu, Jun; Cui, Xiaoning; Hu, Song; Wang, Yi; Jiang, Long; Zhou, Yingbiao; Chen, Gang; Xiang, Jun

    2017-01-01

    Highlights: • Set up a simple and effective method to analysis the performance of double reheat USC unit. • Exergy loss distribution of the double reheat USC unit was declared. • The sensitivity variations of the unit’s exergy efficiency has been revealed. • Provide the foundation for the operation optimization of double reheat USC unit. - Abstract: This study evaluates the performance of a 1000 MW double reheat ultra-supercritical power plant. An exergy analysis was performed to direct the energy loss distribution of this system. Based on the exergy balance equation, together with exergy efficiency, exergy loss coefficient, and exergy loss rate, the exergy distribution and efficiency of the unit were determined. Results show that the highest exergy loss in furnace is as high as 85%, which caused by the combustion of fuel and heat exchange of water wall. The VHP and the two LPs suffer the highest exergy losses, namely 1.86%, 2.04% and 2.13% respectively. The regenerative heating system has an exergy loss rate of 2.3%. The condenser suffers a heat loss of 999 MW, but its exergy is as low as 20.49 MW. The sensitivity variations of the unit’s exergy efficiency with load, feedwater temperature, main steam temperature and pressure, the twice reheat steam temperatures, and steam exhaust pressure were also analyzed, indicating that load, feedwater temperature, and steam exhaust pressure influence the exergy efficiency of this unit than other elements. The overall exergy efficiency decreases along with the gradual increase of steam exhaust pressure at any constant outlet boiler temperature, but it increases as the load, feedwater temperature, main steam temperature and pressure, and twice reheat steam temperatures increase at fixed steam exhaust pressure.

  16. Effects of Re-heating Tissue Samples to Core Body Temperature on High-Velocity Ballistic Projectile-tissue Interactions.

    Science.gov (United States)

    Humphrey, Caitlin; Henneberg, Maciej; Wachsberger, Christian; Maiden, Nicholas; Kumaratilake, Jaliya

    2017-11-01

    Damage produced by high-speed projectiles on organic tissue will depend on the physical properties of the tissues. Conditioning organic tissue samples to human core body temperature (37°C) prior to conducting ballistic experiments enables their behavior to closely mimic that of living tissues. To minimize autolytic changes after death, the tissues are refrigerated soon after their removal from the body and re-heated to 37°C prior to testing. This research investigates whether heating 50-mm-cube samples of porcine liver, kidney, and heart to 37°C for varying durations (maximum 7 h) can affect the penetration response of a high-speed, steel sphere projectile. Longer conditioning times for heart and liver resulted in a slight loss of velocity/energy of the projectile, but the reverse effect occurred for the kidney. Possible reasons for these trends include autolytic changes causing softening (heart and liver) and dehydration causing an increase in density (kidney). © 2017 American Academy of Forensic Sciences.

  17. On ultraviolet freeze-in dark matter during reheating

    Science.gov (United States)

    Chen, Shao-Long; Kang, Zhaofeng

    2018-05-01

    The absence of any confirmative signals from extensive DM searching motivates us to go beyond the conventional WIMPs scenario. The feebly interacting massive particles (FIMPs) paradigm provides a good alternative which, despite of its feebly interaction with the thermal particles, still could correctly produce relic abundance without conventional DM signals. The Infrared-FIMP based on the renormalizable operators is usually suffering the very tiny coupling drawback, which can be overcome in the UltraViolet-FIMP scenario based on high dimensional effective operators. However, it is sensitive to the history of the very early Universe. The previous works terminates this sensitivity at the reheating temperature TRH. We, motivated by its UV-sensitivity, investigate the effects from the even earlier Universe, reheating era. We find that in the usual case with TRHgg mDM, the production rate during reheating is very small as long as the effective operators dimension d study the situation when TRH is even lower than mDM and DM can be directly produced during reheating if its mass does not exceed TMAX.

  18. A review of temperature measurement in the steel reheat furnace

    International Nuclear Information System (INIS)

    Martocci, A.P.; Mihalow, F.A.

    1985-01-01

    The incentive for conducting research and development on reheat furnaces is substantial; the domestic steel industry spent approximately one billion dollars on fuel in reheat furnaces in 1981. Bethlehem Steel Corp. spent /145 million of that total, and neither figure includes fuel consumed in soaking pits or annealing furnaces. If the authors set a goal to save 10% of these annual fuel costs, that translates into /100 million for the domestic steel industry and /14.5 million for Bethlehem Steel. These large sums of money are significant incentives. The purpose of this paper is to review the historical heating practices and equipment at steel reheat furnaces along with current practices and instrumentation

  19. Magnetic reheating

    Science.gov (United States)

    Saga, Shohei; Tashiro, Hiroyuki; Yokoyama, Shuichiro

    2018-02-01

    We provide a new bound on the amplitude of primordial magnetic fields (PMFs) by using a novel mechanism, magnetic reheating. The damping of the magnetohydrodynamics fluid motions in a primordial plasma brings the dissipation of the PMFs. In the early Universe with z ≳ 2 × 106, cosmic microwave background (CMB) photons are quickly thermalized with the dissipated energy and shift to a different Planck distribution with a new temperature. In other words, the PMF dissipation changes the baryon-to-photon number ratio, and we name such a process magnetic reheating. From the current baryon-to-photon number ratio obtained from the big bang nucleosynthesis and CMB observations, we put the strongest constraint on the PMFs on small scales which CMB observations cannot access, B0 ≲ 1.0 μG at the scales 104 generation mechanisms of PMFs in the early Universe.

  20. Method for operating a steam turbine of the nuclear type with electronic reheat control of a cycle steam reheater

    International Nuclear Information System (INIS)

    Luongo, M.C.

    1975-01-01

    An electronic system is provided for operating a nuclear electric power plant with electronic steam reheating control applied to the nuclear turbine system in response to low pressure turbine temperatures, and the control is adapted to operate in a plurality of different automatic control modes to control reheating steam flow and other steam conditions. Each of the modes of control permit turbine temperature variations within predetermined constraints and according to predetermined functions of time. (Official Gazette)

  1. Replacement of low pressure reheater and performance evaluation on domestic NPP moisture separator reheater

    International Nuclear Information System (INIS)

    Choi, Y. S.; Jeong, W. T.; Shon, S. Y.; Kim, M. H.

    2003-01-01

    Moisture Separator Reheater is one of the most important equipment for the integrity of low pressure turbine and the total efficiency of the nuclear power plant, It supplies the dry steam to low pressure turbine after separation of moisture and reheating the wet steam out of high pressure turbine. This equipment is always operated under severe conditions, therefore it should be carefully maintained for safe operation and operating confidence. After replacement low pressure reheater of moister separator reheater on domestic nuclear power plant, there was MSR performance degradation and vibration of condensate drain line. So I found out root cause and commented a solution, site people modified the equipment. Finally I concluded the performanc of MSR was good condition, after I inspected the equipment and evaluated the performance of MSR

  2. Steel billet reheat simulation with growth of oxide layer and investigation on zone temperature sensitivity

    International Nuclear Information System (INIS)

    Dubey, Satish Kumar; Srinivasan, P.

    2014-01-01

    This paper presents a three-dimensional heat conduction numerical model and simulation of steel billet reheating in a reheat furnace. The model considers the growth of oxide scale on the billet surfaces. Control-volume approach and implicit scheme of finite difference method are used to discretize the transient heat conduction equation. The model is validated with analytical results subject to limited conditions. Simulations are carried out for predictions of three-dimensional temperature filed in the billet and oxide scale growth on the billet surfaces. The model predictions are in agreement with expected trends. It was found that the effect of oxide scale on billet heating is considerable. In order to investigate the effect of zone temperatures on the responses, a parametric sensitivity subject to six responses of interest are carried out using analysis of mean approach. The simulation approach and parametric study presented will be useful and applicable to the steel industry.

  3. Reheating after inflation

    International Nuclear Information System (INIS)

    Kripfganz, Jochen; Karl-Marx-Universitaet, Leipzig; Ilgenfritz, E.M.

    1986-01-01

    A numerical analysis of reheating is performed for a classical scalar field with exponentially flat potential. An operational definition of the reheating time is given involving the gradient contribution to the inflation field energy. For the parameter range studied the product of reheating time and Hubble constant H is found to be of order one, being approximately independent of the value of H. (author)

  4. Reheating after inflation

    International Nuclear Information System (INIS)

    Kripfganz, J.; Ilgenfritz, E.M.

    1985-07-01

    A numerical analysis of reheating is performed for a classical scalar field with exponentially flat potential. An operational definition of the reheating time is given involving the gradient contribution to the inflation field energy. For the parameter range studied the product of reheating time and Hubble constant H is found to be of order one, being approximately independent of the value of H. (author)

  5. Hemispherical power asymmetry from scale-dependent modulated reheating

    International Nuclear Information System (INIS)

    McDonald, John

    2013-01-01

    We propose a new model for the hemispherical power asymmetry of the CMB based on modulated reheating. Non-Gaussianity from modulated reheating can be small enough to satisfy the bound from Planck if the dominant modulation of the inflaton decay rate is linear in the modulating field σ. σ must then acquire a spatially-modulated power spectrum with a red scale-dependence. This can be achieved if the primordial perturbation of σ is generated via tachyonic growth of a complex scalar field. Modulated reheating due to σ then produces a spatially modulated and scale-dependent sub-dominant contribution to the adiabatic density perturbation. We show that it is possible to account for the observed asymmetry while remaining consistent with bounds from quasar number counts, non-Gaussianity and the CMB temperature quadupole. The model predicts that the adiabatic perturbation spectral index and its running will be modified by the modulated reheating component

  6. Reheating experiment in the 35-ton pile

    International Nuclear Information System (INIS)

    Cherot, J.; Girard, Y.

    1957-01-01

    When the 35-ton pile was started up it was necessary for us, in order to study certain effects (xenon for example), to know the anti reactivity value of the rods as a function of their dimensions. We have made use of the possibility, in the reheating experiment, of raising the temperature of the graphite-uranium block by simple heating, in order to determine the anti reactivity curves of the rods, and from that the overall temperature coefficient. For the latter we have considered two solutions: first, one in which the average temperature of the pile is defined as our arithmetical mean of the different values given by the 28 thermocouples distributed throughout the pile; a second in which the temperature in likened to a poisoning and is balanced by the square of the flux. The way in which the measurements have been made is indicated, and the different instruments used are described. The method of reheating does not permit the separation of the temperature coefficients of uranium and of graphite. The precision obtained is only moderate, and suffers from the changes of various parameters necessary to other manipulations carried out simultaneously (life time modulators for example), and finally it is a function of the comparatively restricted time allowed. It is evident of course that more careful stabilisation at the different plateaux chosen would have necessitated long periods of reheating. (author) [fr

  7. A study on different thermodynamic cycle schemes coupled with a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu, Xinhe; Yang, Xiaoyong; Wang, Jie

    2017-01-01

    Highlights: • The features of three different power generation schemes, including closed Brayton cycle, non-reheating combined cycle and reheating combined cycle, coupled with high temperature gas-cooled reactor (HTGR) were investigated and compared. • The effects and mechanism of reactor core outlet temperature, compression ratio and other key parameters over cycle characteristics were analyzed by the thermodynamic models.. • It is found that reheated combined cycle has the highest efficiency. Reactor outlet temperature and main steam parameters are key factors to improve the cycle’s performance. - Abstract: With gradual increase in reactor outlet temperature, the efficient power conversion technology has become one of developing trends of (very) high temperature gas-cooled reactors (HTGRs). In this paper, different cycle power generation schemes for HTGRs were systematically studied. Physical and mathematical models were established for these three cycle schemes: closed Brayton cycle, simple combined cycle, and reheated combined cycle. The effects and mechanism of key parameters such as reactor core outlet temperature, reactor core inlet temperature and compression ratio on the features of these cycles were analyzed. Then, optimization results were given with engineering restrictive conditions, including pinch point temperature differences. Results revealed that within the temperature range of HTGRs (700–900 °C), the reheated combined cycle had the highest efficiency, while the simple combined cycle had the lowest efficiency (900 °C). The efficiencies of the closed Brayton cycle, simple combined cycle and reheated combined cycle are 49.5%, 46.6% and 50.1%, respectively. These results provide insights on the different schemes of these cycles, and reveal the effects of key parameters on performance of these cycles. It could be helpful to understand and develop a combined cycle coupled with a high temperature reactor in the future.

  8. CMB constraints on the inflaton couplings and reheating temperature in α-attractor inflation

    Science.gov (United States)

    Drewes, Marco; Kang, Jin U.; Mun, Ui Ri

    2017-11-01

    We study reheating in α-attractor models of inflation in which the inflaton couples to other scalars or fermions. We show that the parameter space contains viable regions in which the inflaton couplings to radiation can be determined from the properties of CMB temperature fluctuations, in particular the spectral index. This may be the only way to measure these fundamental microphysical parameters, which shaped the universe by setting the initial temperature of the hot big bang and contain important information about the embedding of a given model of inflation into a more fundamental theory of physics. The method can be applied to other models of single field inflation.

  9. Theoretical development of a thermal model for the reheater of a power plant boiler

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, M.M. [Oviedo University, Energy Department, Campus de Viesques, 33204 GIJON. Asturias (Spain)]. E-mail: manuelap@uniovi.es; Suarez, I. [Oviedo University, Energy Department, Campus de Viesques, 33204 GIJON. Asturias (Spain); Fernandez, F.J. [Oviedo University, Energy Department, Campus de Viesques, 33204 GIJON. Asturias (Spain); Sanchez, H. [Central Termica de Soto de Ribera, Ribera de Arriba, Asturias (Spain); Mateos, M. [Central Termica de Soto de Ribera, Ribera de Arriba, Asturias (Spain)

    2007-02-15

    A three-dimensional numerical model for simulating flow and heat transfer in the reheater of a boiler is presented. The aim is to describe, as well as possible, the geometry of the reheater and to be able to perform different mass flows of steam along each of the tube serpentines. The model thus makes it possible to calculate the temperature of the tube surfaces along the reheater. The porosity concept is employed, along with empirical correlations for the convective heat transfer coefficient and the radiation heat transfer coefficients. The radiation equations consider most of the radiative effects of the gas: ash content, triatomic gases, type of fuel and temperatures, tube layout and distances and temperatures of other radiative surfaces. The model is proposed with a view to using the measured values of velocities, temperatures and gas composition in the reheater as boundary conditions. The equations are solved using a general purpose computational fluid dynamics (CFD) code in conjunction with specific calculations for the source terms.

  10. Reheat cracking in 1/2 CrMoV steel. Heat affected zones

    International Nuclear Information System (INIS)

    Batte, A.D.; Miller, R.C.; Murphy, M.C.

    1976-01-01

    Low alloy creep resisting steels are inherently susceptible to cracking during stress relief heat treatment (reheat cracking) though few welds give rise to problems in manufacture or service. Mechanical tests on simulated affected zone structures in CrMoV forgings have shown that cracking occurs when the high temperature ductility is inadequate to accommodate the residual welding strain. Differences in susceptibility result from differences in heat affected zone grain size if the purity level is sufficiently high; reheat cracking may then be avoided by ensuring complete grain refinement during welding. The susceptibility of a lower purity forging was insensitive to grain size; heat affected zone refinement is unlikely to eliminate cracking in such steel. (orig.) [de

  11. Probing the reheating temperature of the universe with a gravitational wave background

    International Nuclear Information System (INIS)

    Nakayama, Kazunori; Saito, Shun; Suwa, Yudai; Yokoyama, Jun'ichi

    2008-01-01

    The thermal history of the universe after big bang nucleosynthesis (BBN) is well understood both theoretically and observationally, and recent cosmological observations also begin to reveal the inflationary dynamics. However, the epoch between inflation and BBN is scarcely known. In this paper we show that the detection of the stochastic gravitational wave background around 1 Hz provides useful information about thermal history well before BBN. In particular, the reheating temperature of the universe may be determined by future space-based laser interferometer experiments such as DECIGO and/or BBO if it is around 10 6−9 GeV, depending on the tensor-to-scalar ratio r and dilution factor F

  12. Reheating mechanism of the curvaton with nonminimal derivative coupling to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Taotao [Central China Normal University, Institute of Astrophysics, Wuhan (China); Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and College of Physical Science and Technology, Wuhan (China); Feng, Kaixi [Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China)

    2017-10-15

    In this paper, we continue our study of the curvaton model with nonminimal derivative coupling (NDC) to Einstein gravity proposed in our previous work (Feng in Phys Lett B 729:99, 2014; Feng and Qiu in Phys Rev D 90(12):123508, 2014), focusing on the reheating mechanism. We found that according to whether the curvaton has or has not dominated the background after the end of inflation, it will have two different behaviors of evolution, which should be the general property of the curvaton with nonminimal couplings. This will cause two different parts of reheating, which goes on via the parametric resonance process. The reheating temperature is estimated for both cases in which reheating completes before and after curvaton domination, and the constraints are quite loose compared to that of overproduction of gravitinos. Finally we investigated the evolution of curvature perturbation during reheating. We have shown both analytically and numerically that the curvature perturbation will not blow up during the resonance process. (orig.)

  13. Reheating mechanism of the curvaton with nonminimal derivative coupling to gravity

    International Nuclear Information System (INIS)

    Qiu, Taotao; Feng, Kaixi

    2017-01-01

    In this paper, we continue our study of the curvaton model with nonminimal derivative coupling (NDC) to Einstein gravity proposed in our previous work (Feng in Phys Lett B 729:99, 2014; Feng and Qiu in Phys Rev D 90(12):123508, 2014), focusing on the reheating mechanism. We found that according to whether the curvaton has or has not dominated the background after the end of inflation, it will have two different behaviors of evolution, which should be the general property of the curvaton with nonminimal couplings. This will cause two different parts of reheating, which goes on via the parametric resonance process. The reheating temperature is estimated for both cases in which reheating completes before and after curvaton domination, and the constraints are quite loose compared to that of overproduction of gravitinos. Finally we investigated the evolution of curvature perturbation during reheating. We have shown both analytically and numerically that the curvature perturbation will not blow up during the resonance process. (orig.)

  14. Advanced steel reheat furnace

    Energy Technology Data Exchange (ETDEWEB)

    Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  15. CFD analysis of temperature imbalance in superheater/reheater region of tangentially coal-fired boiler

    Science.gov (United States)

    Zainudin, A. F.; Hasini, H.; Fadhil, S. S. A.

    2017-10-01

    This paper presents a CFD analysis of the flow, velocity and temperature distribution in a 700 MW tangentially coal-fired boiler operating in Malaysia. The main objective of the analysis is to gain insights on the occurrences in the boiler so as to understand the inherent steam temperature imbalance problem. The results show that the root cause of the problem comes from the residual swirl in the horizontal pass. The deflection of the residual swirl due to the sudden reduction and expansion of the flow cross-sectional area causes velocity deviation between the left and right side of the boiler. This consequently results in flue gas temperature imbalance which has often caused tube leaks in the superheater/reheater region. Therefore, eliminating the residual swirl or restraining it from being diverted might help to alleviate the problem.

  16. IMPROVEMENT OF SLAB REHEATING PROCESS AT USIMINAS THROUGH MATHEMATICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Antônio Adel dos Santos

    2012-09-01

    Full Text Available Basic characteristics and application examples of the mathematical simulator for reheating process in walking-beam type furnaces, that has been developed and applied to Usiminas plate mill line at Ipatinga, are shown in this paper. This is a bi-dimensional mathematical model solved by the finite volume method, validated by temperature measurements inside the slab during heating and coded as a visual tool. Among these applications, the following can be highlighted: (i determination of suitable furnace zone temperatures and residence times for processing steels by accelerated cooling technology; (ii determination of slab average temperature at discharging as well as at each zone exit, supplying data to be fed to the automation system at the comissioning stage; (iii analyses of slab thermal distribution through the reheating process, enabling operational optimization

  17. Curvaton reheating in a logamediate inflationary model

    International Nuclear Information System (INIS)

    Campo, Sergio del; Herrera, Ramon; Saavedra, Joel; Campuzano, Cuauhtemoc; Rojas, Efrain

    2009-01-01

    In a logamediate inflationary universe model we introduce the curvaton field in order to bring this inflationary model to an end. In this approach we determine the reheating temperature. We also outline some interesting constraints on the parameters that describe our models. Thus, we give the parameter space in this scenario.

  18. Gravitino or axino dark matter with reheat temperature as high as 10{sup 16} GeV

    Energy Technology Data Exchange (ETDEWEB)

    Co, Raymond T. [Berkeley Center for Theoretical Physics, Department of Physics, University of California,366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,1 Cyclotron Rd., Berkeley, CA 94720 (United States); D’Eramo, Francesco [Department of Physics, University of California Santa Cruz,1156 High Street, Santa Cruz, CA 95064 (United States); Santa Cruz Institute for Particle Physics,1156 High Street, Santa Cruz, CA 95064 (United States); Hall, Lawrence J. [Berkeley Center for Theoretical Physics, Department of Physics, University of California,366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,1 Cyclotron Rd., Berkeley, CA 94720 (United States)

    2017-03-01

    A new scheme for lightest supersymmetric particle (LSP) dark matter is introduced and studied in theories of TeV supersymmetry with a QCD axion, a, and a high reheat temperature after inflation, T{sub R}. A large overproduction of axinos (ã) and gravitinos (G̃) from scattering at T{sub R}, and from freeze-in at the TeV scale, is diluted by the late decay of a saxion condensate that arises from inflation. The two lightest superpartners are ã, with mass of order the TeV scale, and G̃ with mass m{sub 3/2} anywhere between the keV and TeV scales, depending on the mediation scale of supersymmetry breaking. Dark matter contains both warm and cold components: for G̃ LSP the warm component arises from ã→G̃a, while for ã LSP the warm component arises from G̃→ãa. The free-streaming scale for the warm component is predicted to be of order 1 Mpc (and independent of m{sub 3/2} in the case of G̃ LSP). T{sub R} can be as high as 10{sup 16} GeV, for any value of m{sub 3/2}, solving the gravitino problem. The PQ symmetry breaking scale V{sub PQ} depends on T{sub R} and m{sub 3/2} and can be anywhere in the range (10{sup 10}−10{sup 16}) GeV. Detailed predictions are made for the lifetime of the neutralino LOSP decaying to ã+h/Z and G̃+h/Z/γ, which is in the range of (10{sup −1}−10{sup 6})m over much of parameter space. For an axion misalignment angle of order unity, the axion contribution to dark matter is sub-dominant, except when V{sub PQ} approaches 10{sup 16} GeV.

  19. PFC Performance Improvement of Ultra-supercritical Secondary Reheat Unit

    Directory of Open Access Journals (Sweden)

    Li Jun

    2018-01-01

    Full Text Available Ultra-supercritical secondary reheat unit has been widely used in the world because of its advantages of large capacity, low consumption and high efficiency etc., but rapid load change ability of the turbines to be weakened which caused by its system organization, cannot meet the requirements of power grid frequency modulation. Based on the analysis of the control characteristics of ultra-supercritical once-through reheat unit, the primary frequency control based on feed-water flow overshoot compensation is proposed. The main steam pressure generated by the feed-water is changed to improve the primary frequency control capability. The relevant control strategy has been applied to the 1000MW secondary reheating unit. The results show that the technology is feasible and has high economical efficiency.

  20. Brown Boveri moves to fourth generation MSRs [moisture separator reheaters

    International Nuclear Information System (INIS)

    Boeckh, P. von

    1987-01-01

    The fourth, space saving, generation of moisture separator reheaters from Brown Boveri and Cie (BBC) consists of two types of high velocity moisture separators, 'Mops' and 'Scrups', and the small size reheater, 'Road' . The design of the unit is described, together with operational experience. (author)

  1. What can the CMB tell about the microphysics of cosmic reheating?

    International Nuclear Information System (INIS)

    Drewes, Marco

    2016-01-01

    In inflationary cosmology, cosmic reheating after inflation sets the initial conditions for the hot big bang. We investigate how CMB data can be used to study the effective potential and couplings of the inflaton during reheating to constrain the underlying microphysics. If there is a phase of preheating that is driven by a parametric resonance or other instability, then the thermal history and expansion history during the reheating era depend on a large number of microphysical parameters in a complicated way. In this case the connection between CMB observables and microphysical parameters can only established with intense numerical studies. Such studies can help to improve CMB constraints on the effective inflaton potential in specific models, but parameter degeneracies usually make it impossible to extract meaningful best-fit values for individual microphysical parameters. If, on the other hand, reheating is driven by perturbative processes, then it can be possible to constrain the inflaton couplings and the reheating temperature from CMB data. This provides an indirect probe of fundamental microphysical parameters that most likely can never be measured directly in the laboratory, but have an immense impact on the evolution of the cosmos by setting the stage for the hot big bang

  2. Energy conservation in reheating furnaces by reducing scrap and scale formation; Kuumamuokkauksen energiasaeaestoet romun maeaeraeae ja hilseilyae vaehentaemaellae

    Energy Technology Data Exchange (ETDEWEB)

    Kivivuori, S.; Savolainen, P.; Fredriksson, J.; Paavola, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1996-12-31

    The main objective of the project `Energy Savings in Reheating Furnaces by Reducing Scrap and Scale Formation` is to reduce energy consumption and environmental harms in reheating and rolling of steel. This was done by analysing the different atmospheres in reheating furnaces of the steel companies participating in this project. These atmospheres were then simulated in a laboratory furnace. Scale formation tests with different steel grades were then carried out in these atmospheres. Scale removal tests were done to some steel grades too. The results showed that lower oxygen content - as expected - decreases oxidation despite the even higher carbondioxide content in the atmosphere. Lower oxygen content may cause difficulties in scale removal. This however is highly dependent on the steel grade. Heat treatment tests showed the effect of increased temperature and furnace time on decarburization. Some energy savings was obtained in fuel consumption by optimising the operation parameters and the atmosphere steadier in different reheating furnaces. (orig.)

  3. Energy conservation in reheating furnaces by reducing scrap and scale formation; Kuumamuokkauksen energiasaeaestoet romun maeaeraeae ja hilseilyae vaehentaemaellae

    Energy Technology Data Exchange (ETDEWEB)

    Kivivuori, S; Savolainen, P; Fredriksson, J; Paavola, J [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    The main objective of the project `Energy Savings in Reheating Furnaces by Reducing Scrap and Scale Formation` is to reduce energy consumption and environmental harms in reheating and rolling of steel. This was done by analysing the different atmospheres in reheating furnaces of the steel companies participating in this project. These atmospheres were then simulated in a laboratory furnace. Scale formation tests with different steel grades were then carried out in these atmospheres. Scale removal tests were done to some steel grades too. The results showed that lower oxygen content - as expected - decreases oxidation despite the even higher carbondioxide content in the atmosphere. Lower oxygen content may cause difficulties in scale removal. This however is highly dependent on the steel grade. Heat treatment tests showed the effect of increased temperature and furnace time on decarburization. Some energy savings was obtained in fuel consumption by optimising the operation parameters and the atmosphere steadier in different reheating furnaces. (orig.)

  4. Reheating effects in the matter power spectrum and implications for substructure

    International Nuclear Information System (INIS)

    Erickcek, Adrienne L.; Sigurdson, Kris

    2011-01-01

    The thermal and expansion history of the Universe before big bang nucleosynthesis is unknown. We investigate the evolution of cosmological perturbations through the transition from an early matter era to radiation domination. We treat reheating as the perturbative decay of an oscillating scalar field into relativistic plasma and cold dark matter. After reheating, we find that subhorizon perturbations in the decay-produced dark matter density are significantly enhanced, while subhorizon radiation perturbations are instead suppressed. If dark matter originates in the radiation bath after reheating, this suppression may be the primary cutoff in the matter power spectrum. Conversely, for dark matter produced nonthermally from scalar decay, enhanced perturbations can drive structure formation during the cosmic dark ages and dramatically increase the abundance of compact substructures. For low reheat temperatures, we find that as much as 50% of all dark matter is in microhalos with M > or approx. 0.1M + at z≅100, compared to a fraction of ∼10 -10 in the standard case. In this scenario, ultradense substructures may constitute a large fraction of dark matter in galaxies today.

  5. Reheat cracking susceptibility of P23 (7CrWVMoNb9-6) steel welds made using matching and mis-matching filler metals

    Energy Technology Data Exchange (ETDEWEB)

    Nevasmaa, Pekka; Salonen, Jorma; Auerkari, Pertti; Rantala, Juhani; Holmstroem, Stefan [VTT Technical Research Centre of Finland, Espoo (Finland)

    2010-07-01

    Reheat cracking sensitivity of 7CrWVMoNb9-6 (P23) thick-section multipass welds has been investigated by Gleeble simulation, mechanical testing, fractography and metallography. The results demonstrate that the experimental weld metal made using a high-Nb-W-Ti-B type filler metal was sensitive to reheat cracking, with a reduction of area no more than 2-3% in the BWI reheat cracking (RC) test. Welds made using a high-W -low-Ti type filler metal with Nb content similar to the parent steel, as well as welds make using a Ni-Nb-Ti-free-(W-free) type filler metal with the chemical composition closer to P24 grade material, were more ductile and crack-resistant, though with reduced cross-weld creep strength. Fractography of RC test specimens showed evidence of pronounced localisation of damage at the prior austenite grain boundaries of the thermally reheated, experimental P23 weld metal. The reheat cracking susceptibility of the less ductile weld metal was apparently related both to the chemical composition (higher B, Nb and Ti content) and sub-structural features of the coarse-grained reheated weld metal microstructure. Appropriate single- and multi-cycle thermal Gleeble simulations to produce representative HAY and reheated weld metal microstructures (as function of peak temperature), in conjunction with the BWI RC test were successfully applied to characterise the reheat cracking sensitivity of the candidate weld metals and parent steel HAZ. (orig.)

  6. Standard test method for determination of "microwave safe for reheating" for ceramicware

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method determines the suitability of ceramicware for use in microwave re-heating applications. Microwave ovens are mainly used for reheating and defrosting frozen foods. Severe thermal conditions can occur while reheating foods. Typical reheating of foods requires one to five min. in the microwave at the highest power settings. Longer periods than five minutes are considered cooking. Cooking test methods and standards are not addressed in this test method. Most ceramicware is minimally absorbing of the microwave energy and will not heat up significantly. Unfortunately there are some products that absorb microwave energy to a greater extent and can become very hot in the microwave and pose a serious hazard. Additionally, the nature of microwave heating introduces radiation in a non-uniform manner producing temperature differentials in the food being cooked as well as the ceramic container holding it. The differential may become great enough to thermal shock the ware and create dangerous condition...

  7. Assessment of uniform temperature assumption in zoning on the numerical simulation of a walking beam reheating furnace

    International Nuclear Information System (INIS)

    Morgado, Tiago; Coelho, Pedro J.; Talukdar, Prabal

    2015-01-01

    The numerical simulation of the heating process of steel slabs in a walking beam reheating furnace is reported using two different models. In one model, the turbulent reactive flow in the furnace is simulated together with the heat conduction in the slabs. The calculations are performed using a commercial code and a user-defined function is used to simulate the periodic movement of the slabs by the walking beams in the furnace. Unsteady calculations are performed until a periodic transient solution is achieved. In the second model, the furnace is divided into a small number of zones and the average temperature and chemical composition are prescribed in every zone based on the results of the first model. The unsteady heating process of the slabs is modeled using the same software and accounting for radiative transfer in the furnace and heat conduction in the slabs. The results of the first model are taken as a benchmark for the second one. It is shown that the first model predicts radiative heat fluxes and temperatures of the slabs that are consistent with previous work. The two models yield volume average temperatures of the slabs leaving the furnace that differ by less than 3%, provided that accurate values of the temperature of the gases and walls are used. The second model is computationally more economical, requiring only about 5% of the computational time of the first one. - Highlights: • The heating process of steel slabs in a reheating furnace is numerically simulated. • Unsteady calculations accounting for the periodic movement of the slabs are reported. • We compare two models differing on how the thermochemical composition is obtained. • The models predict mean slab temperatures at the exit that differ by less than 3%. • The computational time of the fastest model is only about 5% of the slowest one

  8. Chilly dark sectors and asymmetric reheating

    International Nuclear Information System (INIS)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-01-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  9. Chilly dark sectors and asymmetric reheating

    Energy Technology Data Exchange (ETDEWEB)

    Adshead, Peter [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States); Cui, Yanou [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Maryland Center for Fundamental Physics, University of Maryland,College Park, MD 20742 (United States); Shelton, Jessie [Department of Physics, University of Illinois at Urbana-Champaign,Urbana, IL 61801 (United States)

    2016-06-06

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N{sub eff}, we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  10. Chilly dark sectors and asymmetric reheating

    Science.gov (United States)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-06-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  11. Effect of inter-critically reheating temperature on microstructure and properties of simulated inter-critically reheated coarse grained heat affected zone in X70 steel

    International Nuclear Information System (INIS)

    Zhu, Zhixiong; Kuzmikova, Lenka; Li, Huijun; Barbaro, Frank

    2014-01-01

    This study investigated the influence of the inter-critical reheating temperature on the microstructure and mechanical properties of a coarse grained heat affected zone (CGHAZ) in an API 5L grade X70 pipeline steel seam weld. A Gleeble 3500 thermo-mechanical simulator was employed to duplicate particular weld thermal cycles in order to accurately assess specific regions of the weld HAZ. Detailed microstructural analysis, including investigation of the martensite–austenite (M–A) constituent, was performed using optical microscope (OM), scanning electron microscope (SEM) and selective etching techniques. It is shown that the fracture toughness of the CGHAZ is significantly reduced following exposure to a subsequent inter-critical thermal cycle. Fracture toughness gradually improves as the inter-critical temperature is increased, but does not return to the value of the original CGHAZ due to the presence of isolated large M–A particles and coarse microstructure. Significance of M–A particles to the HAZ fracture toughness is first related to the location of particles along prior austenite grain boundaries, followed by the size of individual M–A particles

  12. On finite density effects on cosmic reheating and moduli decay and implications for Dark Matter production

    International Nuclear Information System (INIS)

    Drewes, Marco

    2014-01-01

    We study the damping of an oscillating scalar field in a Friedmann-Robertson-Walker spacetime by perturbative processes, taking into account the back-reaction of the plasma of decay products on the damping rate. The scalar field may be identified with the inflaton, in which case this process resembles the reheating of the universe after inflation. It can also model a modulus that dominates the energy density of the universe at later times. We find that the finite density corrections to the damping rate can have a drastic effect on the thermal history and considerably increase both, the maximal temperature in the early universe and the reheating temperature at the onset of the radiation dominated era. As a result the abundance of some Dark Matter candidates may be considerably larger than previously estimated. We give improved analytic estimates for the maximal and the reheating temperatures and confirm them numerically in a simple model

  13. Numerical analysis method for reheater performance of moisture separator reheater for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Oda, Tsuyoshi; Fujisawa, Kyosuke; Akamatsu, Hiroshi

    2014-01-01

    Nuclear power generation uses saturated steam of 6 MPa and 275degC level due to the restrictions imposed by the materials used in the nuclear reactor, and its efficiency, approximately 33-35%, is not high compared with fossil fuel power generation. Therefore, thermal engineers working on nuclear power generation have the important responsibility toward society of achieving the highest efficiency under the given restrictions. The use of a moisture separator reheater (MSR) is one of the measures we can take to achieve higher efficiency. Because the bottom of the MSR tube bundle making contact with the cycle steam at its lowest temperature is subcooled and inadequate drainage of the condensate inside the tubes causes cyclic flooding and temperature oscillations in some cases, it is necessary to have a minimum flow rate of excess heating steam slightly beyond the demand of/what is required for the heat transfer, and the consequent subcooling must be kept below a certain level. This report describes the numerical analysis method developed for the design of heat transfer performance and evaluation of the tube bundle integrity of MSRs. (author)

  14. Thermodynamic performance evaluation of combustion gas turbine cogeneration system with reheat

    International Nuclear Information System (INIS)

    Khaliq, A.; Kaushik, S.C.

    2004-01-01

    This communication presents thermodynamic methodology for the performance evaluation of combustion gas turbine cogeneration system with reheat. The energetic and exergetic efficiencies have been defined. The effects of process steam pressure and pinch point temperature used in the design of heat recovery steam generator, and reheat on energetic and exergetic efficiencies have been investigated. From the results obtained in graphs it is observed that the power to heat ratio increases with an increase in pinch point, but the first-law efficiency and second-law efficiency decreases with an increase in pinch point. The power to heat ratio and second-law efficiency increases significantly with increase in process steam pressure, but the first-law efficiency decreases with the same. Results also show that inclusion of reheat, provide significant improvement in electrical power output, process heat production, fuel-utilization (energetic) efficiency and second-law (exergetic) efficiency. This methodology may be quite useful in the selection and comparison of combined energy production systems from thermodynamic performance point of view

  15. Toward an effective field theory approach to reheating

    Science.gov (United States)

    Özsoy, Ogan; Giblin, John T.; Nesbit, Eva; Şengör, Gizem; Watson, Scott

    2017-12-01

    We investigate whether effective field theory (EFT) approaches, which have been useful in examining inflation and dark energy, can also be used to establish a systematic approach to inflationary reheating. We consider two methods. First, we extend Weinberg's background EFT to the end of inflation and reheating. We establish when parametric resonance and decay of the inflaton occurs, but also find intrinsic theoretical limitations, which make it difficult to capture some reheating models. This motivates us to next consider Cheung et al.'s EFT approach, which instead focuses on perturbations and the symmetry breaking induced by the cosmological background. Adapting the latter approach to reheating implies some new and important differences compared to the EFT of inflation. In particular, there are new hierarchical scales, and we must account for inflaton oscillations during reheating, which lead to discrete symmetry breaking. Guided by the fundamental symmetries, we construct the EFT of reheating, and as an example of its usefulness we establish a new class of reheating models and the corresponding predictions for gravity wave observations. In this paper we primarily focus on the first stages of preheating. We conclude by discussing challenges for the approach and future directions. This paper builds on ideas first proposed in the paper [O. Ozsoy, G. Sengor, K. Sinha, and S. Watson, arXiv:1507.06651.].

  16. 3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills

    OpenAIRE

    J. Y. Jang; Y. W. Lee; C. N. Lin; C. H. Wang

    2015-01-01

    The reheating furnace is used to reheat the steel slabs before the hot-rolling process. The supported system includes the stationary/moving beams, and the skid buttons which block some thermal radiation transmitted to the bottom of the slabs. Therefore, it is important to analyze the steel slab temperature distribution during the heating period. A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab ha...

  17. Effect of Scale on Slab Heat Transfer in a Walking Beam Type Reheating Furnace

    OpenAIRE

    Man Young Kim

    2013-01-01

    In this work, the effects of scale on thermal behavior of the slab in a walking-beam type reheating furnace is studied by considering scale formation and growth in a furnace environment. Also, mathematical heat transfer model to predict the thermal radiation in a complex shaped reheating furnace with slab and skid buttons is developed with combined nongray WSGGM and blocked-off solution procedure. The model can attack the heat flux distribution within the furnace and the temperature distribut...

  18. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  19. Optimization of a slab heating pattern for minimum energy consumption in a walking-beam type reheating furnace

    International Nuclear Information System (INIS)

    Jang, Jiin-Yuh; Huang, Jun-Bo

    2015-01-01

    A two-dimensional mathematical heat transfer model for the prediction of the temperature history of steel slabs was performed in order to obtain the optimal heating pattern of these slabs with minimum energy consumption in a walking-beam type reheating furnace. An algorithm developed with a simplified conjugated-gradient method combined with a shooting method, was used as an optimizer to design the furnace temperature distribution, including the preheating zone, heating zone and soaking zone temperatures. Comparison with the in-situ experimental data indicated that the present heat transfer model works well for the prediction of the thermal behavior of a slab in the reheating furnace. The effect of the furnace temperature distribution on the design requirements, such as energy required for heating a slab, slab temperature uniformity at the furnace exit and slab discharging temperature, were investigated. The parametric study results indicated that energy consumption significantly decreases with reductions in the preheating zone temperature. The optimal design also resulted in lower energy consumption for heating a slab as compared to the original operational conditions in the steel plant. - Highlights: • The heating process of steel slabs in a reheating furnace is numerically simulated. • An algorithm is developed to search for the optimal heating pattern of a slab. • Energy consumption decreases with reductions in the preheating zone temperature

  20. Reheating, multifield inflation and the fate of the primordial observables

    International Nuclear Information System (INIS)

    Leung, Godfrey; Tarrant, Ewan R.M.; Copeland, Edmund J.; Byrnes, Christian T.

    2012-01-01

    We study the effects of perturbative reheating on the evolution of the curvature perturbation ζ, in two-field inflation models. We use numerical methods to explore the sensitivity of f NL , n ζ and r to the reheating process, and present simple qualitative arguments to explain our results. In general, if a large non-Gaussian signal exists at the start of reheating, it will remain non-zero at the end of reheating. Unless all isocurvature modes have completely decayed before the start of reheating, we find that the non-linearity parameter, f NL , can be sensitive to the reheating timescale, and that this dependence is most appreciable for 'runaway' inflationary potentials that only have a minimum in one direction. For potentials with a minimum in both directions, f NL can also be sensitive to reheating if a mild hierarchy exists between the decay rates of each field. Within the class of models studied, we find that the spectral index n ζ , is fairly insensitive to large changes in the field decay rates, indicating that n ζ is a more robust inflationary observable, unlike the non-linearity parameter f NL . Our results imply that the statistics of ζ, especially f NL , can only be reliably used to discriminate between models of two-field inflation if the physics of reheating are properly accounted for

  1. Higgs Inflation, Reheating and Gravitino Production in No-Scale Supersymmetric GUTs

    CERN Document Server

    Ellis, John; Xianyu, Zhong-Zhi

    2016-08-30

    We extend our previous study of supersymmetric Higgs inflation in the context of no-scale supergravity and grand unification, to include models based on the flipped SU(5) and the Pati-Salam group. Like the previous SU(5) GUT model, these yield a class of inflation models whose inflation predictions interpolate between those of the quadratic chaotic inflation and Starobinsky-like inflation, while also avoiding tension with proton decay limits. We further analyse the reheating process in these models, and derive the number of $e$-folds, which is independent of the reheating temperature. We derive the corresponding predictions for the scalar tilt and the tensor-to-scalar ratio in cosmic microwave background perturbations, and also discuss gravitino production following inflation.

  2. Higgs inflation, reheating and gravitino production in no-scale Supersymmetric GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group,Department of Physics, King’s College London,London WC2R 2LS (United Kingdom); Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); He, Hong-Jian [Institute of Modern Physics and Center for High Energy Physics, Tsinghua University,Beijing 100084 (China); Center for High Energy Physics, Peking University,Beijing 100871 (China); Xianyu, Zhong-Zhi [Center of Mathematical Sciences and Applications andDepartment of Physics, Harvard University,Massachusetts 02138 (United States)

    2016-08-30

    We extend our previous study of supersymmetric Higgs inflation in the context of no-scale supergravity and grand unification, to include models based on the flipped SU(5) and the Pati-Salam group. Like the previous SU(5) GUT model, these yield a class of inflation models whose inflation predictions interpolate between those of the quadratic chaotic inflation and Starobinsky-like inflation, while avoiding tension with proton decay limits. We further analyse the reheating process in these models, and derive the number of e-folds, which is independent of the reheating temperature. We derive the corresponding predictions for the scalar tilt and the tensor-to-scalar ratio in cosmic microwave background perturbations, as well as discussing the gravitino production following inflation.

  3. Development of Next Generation Heating System for Scale Free Steel Reheating

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  4. Dual turbine power plant and a reheat steam bypass flow control system for use therein

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1977-01-01

    An electric power plant having dual turbine-generators connected to a steam source that includes a high temperature gas cooled nuclear reactor is described. Each turbine comprises a high pressure portion operated by superheat steam and an intermediate-low pressure portion operated by reheat steam; a bypass line is connected across each turbine portion to permit a desired minimum flow of steam from the source at times when the combined flow of steam through the turbine is less than the minimum. Coolant gas is propelled through the reactor by a circulator which is driven by an auxiliary turbine which uses steam exhausted from the high pressure portions and their bypass lines. The pressure of the reheat steam is controlled by a single proportional-plus-integral controller which governs the steam flow through the bypass lines associated with the intermediate-low pressure portions. At times when the controller is not in use its output signal is limited to a value that permits an unbiased response when pressure control is resumed, as in event of a turbine trip. 25 claims, 2 figures

  5. Effect of reheating on predictions following multiple-field inflation

    Science.gov (United States)

    Hotinli, Selim C.; Frazer, Jonathan; Jaffe, Andrew H.; Meyers, Joel; Price, Layne C.; Tarrant, Ewan R. M.

    2018-01-01

    We study the sensitivity of cosmological observables to the reheating phase following inflation driven by many scalar fields. We describe a method which allows semianalytic treatment of the impact of perturbative reheating on cosmological perturbations using the sudden decay approximation. Focusing on N -quadratic inflation, we show how the scalar spectral index and tensor-to-scalar ratio are affected by the rates at which the scalar fields decay into radiation. We find that for certain choices of decay rates, reheating following multiple-field inflation can have a significant impact on the prediction of cosmological observables.

  6. Fireside corrosion of superheaters/reheaters in advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Syed, A.U.; Simms, N.J.; Oakey, J.E. [Cranfield Univ. (United Kingdom). Energy Technology Centre

    2010-07-01

    The generation of increasing amounts of electricity while simultaneously reducing environmental emissions (CO{sub 2}, SO{sub 2}, NO{sub x} particles, etc) has become a goal for the power industry worldwide. Co-firing biomass and coal in new advanced pulverised fuel power plants is one route to address this issue, since biomass is regarded as a CO{sub 2} neutral fuel (i.e. CO{sub 2} uptake during its growth equals the CO{sub 2} emissions produced during its combustion) and such new advanced power plants operate at higher efficiencies than current plants as a result of using steam systems with high temperatures and pressures. However, co-firing has the potential to cause significant operational challenges for such power plants as amongst other issues, it will significantly change the chemistry of the deposits on the heat exchanger surfaces and the surrounding gas compositions. As a result these critical components can experience higher corrosion rates, and so shorter lives, causing increased operational costs, unless the most appropriate materials are selected for their construction. This paper reports the results of a series of 1000 hour laboratory corrosion tests that have been carried out in controlled atmosphere furnaces, to assess the effect of biomass/coal co-firing on the fireside corrosion of superheaters/reheaters. The materials used for the tests were one ferritic alloy (T92), two austenitic alloys (347HFG and HR3C) and one nickel based alloy (alloy 625). Temperatures of 600 and 650 C were used to represent the metal temperatures in advanced power plants. During these exposures, traditional mass change data were recorded as the samples were recoated with the simulated deposits. After these exposures, cross-sections through samples were prepared using standard metallographic techniques and then analysed using SEM/EDX. Pre-exposure micrometer and post-exposure image analyser measurements were used so that the metal wastage could be calculated. These data are

  7. High temperature metallic recuperator

    Science.gov (United States)

    Ward, M. E.; Solmon, N. G.; Smeltzer, C. E.

    1981-06-01

    An industrial 4.5 MM Btu/hr axial counterflow recuperator, fabricated to deliver 1600 F combustion air, was designed to handle rapid cyclic loading, a long life, acceptable costs, and a low maintenance requirement. A cost benefit anlysis of a high temperature waste heat recovery system utilizing the recurperator and components capable of 1600 F combustion air preheat shows that this system would have a payback period of less than two years. Fifteen companies and industrial associations were interviewed and expressed great interest in recuperation in large energy consuming industries. Determination of long term environmental effects on candidate recuperator tubing alloys was completed. Alloys found to be acceptable in the 2200 F flue gas environment of a steel billet reheat furnace, were identified.

  8. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  9. Observational status of Tachyon Natural Inflation and reheating

    Science.gov (United States)

    Rashidi, Narges; Nozari, Kourosh; Grøn, Øyvind

    2018-05-01

    We study observational viability of Natural Inflation with a tachyon field as inflaton. By obtaining the main perturbation parameters in this model, we perform a numerical analysis on the parameter space of the model and in confrontation with 68% and 95% CL regions of Planck2015 data. By adopting a warped background geometry, we find some new constraints on the width of the potential in terms of its height and the warp factor. We show that the Tachyon Natural Inflation in the large width limit recovers the tachyon model with a phi2 potential which is consistent with Planck2015 observational data. Then we focus on the reheating era after inflation by treating the number of e-folds, temperature and the effective equation of state parameter in this era. Since it is likely that the value of the effective equation of state parameter during the reheating era to be in the range 0Inflation model. In particular, we show that a prediction of this model is r<=8/3 δns, where δns is the scalar spectral tilt, δns=1‑ns. In this regard, given that from the Planck2015 data we have δns=0.032 (corresponding to ns=0.968), we get r<= 0.085.

  10. An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel

    Science.gov (United States)

    Phung-On, Isaratat

    2007-12-01

    Reheat cracking has been a persistent problem for welding of many alloys such as the stabilized stainless steels: Types 321 and 347 as well as Cr-Mo-V steels. Similar problem occurs in Ni-base superalloys termed "strain-age cracking". Cracking occurs during the post weld heat treatment. The HAZ is the most susceptible area due to metallurgical reactions in solid state during both heating and cooling thermal cycle. Many investigations have been conducted to understand the RHC mechanism. There is still no comprehensive mechanism to explain its underlying mechanism. In this study, there were two proposed cracking mechanisms. The first is the formation of a PFZ resulting in local weakening and strain localization. The second is the creep-like grain boundary sliding that causes microvoid formation at the grain boundaries and the triple point junctions. Cracking occurs due to the coalescence of the microvoids that form. In this study, stabilized grade stainless steel, Type 347, was selected for investigation of reheat cracking mechanism due to the simplicity of its microstructure and understanding of its metallurgical behavior. The Gleeble(TM) 3800 system was employed due to its capability for precise control of both thermal and mechanical simulation. Cylindrical samples were subjected to thermal cycles for the HAZ simulation followed by PWHT as the reheat cracking test. "Susceptibility C-curves" were plotted as a function of PWHT temperatures and time to failure at applied stress levels of 70% and 80% yield strength. These C-curves show the possible relationship of the reheat cracking susceptibility and carbide precipitation behavior. To identify the mechanism, the sample shape was modified containing two flat surfaces at the center section. These flat surfaces were electro-polished and subjected to the HAZ simulation followed by the placement of the micro-indentation arrays. Then, the reheat cracking test was performed. The cracking mechanism was identified by tracing

  11. Finite Element Modeling of Reheat Stretch Blow Molding of PET

    Science.gov (United States)

    Krishnan, Dwarak; Dupaix, Rebecca B.

    2004-06-01

    Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.

  12. Structure–property relationship in a 960 MPa grade ultrahigh strength low carbon niobium–vanadium microalloyed steel: The significance of high frequency induction tempering

    International Nuclear Information System (INIS)

    Xie, Z.J.; Fang, Y.P.; Han, G.; Guo, H.; Misra, R.D.K.; Shang, C.J.

    2014-01-01

    The present study describes the microstructure and precipitation behavior in an ultra-high strength low carbon niobium–vanadium microalloyed steel that was processed by quenching and high frequency induction tempering. Ultrahigh yield strength of ∼1000 MPa with high elongation of ∼15% and high low temperature toughness of 55 J (half thickness) at −40 °C was obtained after quenching from austenitization at 900 °C for 30 min, and tempering at 600 °C for 15 min by induction reheating with a reheating rate of ∼50 °C/s. While the yield strength increase on tempering was similar for both induction reheating and conventional reheating (electrical resistance reheating), there was ∼100% increase in low temperature toughness in induction reheated steel compared to the conventional reheating process. The underlying reason for the increase in toughness was attributed to the transformation of cementite film observed in conventional reheating and tempering to nanoscale cementite in induction reheating and tempering. The precipitation of nanoscale carbides is believed to significantly contribute to ultra-high strength, good ductility, and high toughness in the high frequency induction reheating and tempering process

  13. Antilisterial properties of marinades during refrigerated storage and microwave oven reheating against post-cooking inoculated chicken breast meat.

    Science.gov (United States)

    Fouladkhah, Aliyar; Geornaras, Ifigenia; Nychas, George-John; Sofos, John N

    2013-02-01

    This study evaluated growth of Listeria monocytogenes inoculated on cooked chicken meat with different marinades and survival of the pathogen as affected by microwave oven reheating. During aerobic storage at 7 °C, on days 0, 1, 2, 4, and 7, samples were reheated by microwave oven (1100 W) for 45 or 90 s and analyzed microbiologically. L. monocytogenes counts on nonmarinated (control) samples increased (P 2.4 to 5.0 (90 s) log CFU/g. With similar trends across different marinates, the high levels of L. monocytogenes survivors found after microwave reheating, especially after storage for more than 2 d, indicate that length of storage and reheating time need to be considered for safe consumption of leftover cooked chicken. © 2013 Institute of Food Technologists®

  14. Reheating for closed string inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Mazumdar, Anupam [Lancaster Univ. (United Kingdom). Physics Dept.; Copenhagen Univ. (Denmark). Niels Bohr Institute

    2010-05-15

    We point out some of the outstanding challenges for embedding inflationary cosmology within string theory studying the process of reheating for models where the inflaton is a closed string mode parameterising the size of an internal cycle of the compactification manifold. A realistic model of inflation must explain the tiny perturbations in the cosmic microwave background radiation and also how to excite the ordinary matter degrees of freedom after inflation, required for the success of Big Bang Nucleosynthesis. We study these issues focusing on two promising inflationary models embedded in LARGE volume type IIB flux compactifications. We show that phenomenological requirements and consistency of the effective field theory treatment imply the presence at low energies of a hidden sector together with a visible sector, where the Minimal Supersymmetric Standard Model fields are residing. A detailed calculation of the inflaton coupling to the fields of the hidden sector, visible sector, and moduli sector, reveals that the inflaton fails to excite primarily the visible sector fields, instead hidden sector fields are excited copiously after the end of inflation. This sets severe constraints on hidden sector model building where the most promising scenario emerges as a pure N=1 SYM theory, forbidding the kinematical decay of the inflaton to the hidden sector. In this case it is possible to reheat the Universe with the visible degrees of freedom even though in some cases we discover a new tension between TeV scale SUSY and reheating on top of the well-known tension between TeV scale SUSY and inflation. (orig.)

  15. Reheating for closed string inflation

    International Nuclear Information System (INIS)

    Cicoli, Michele; Mazumdar, Anupam; Copenhagen Univ.

    2010-05-01

    We point out some of the outstanding challenges for embedding inflationary cosmology within string theory studying the process of reheating for models where the inflaton is a closed string mode parameterising the size of an internal cycle of the compactification manifold. A realistic model of inflation must explain the tiny perturbations in the cosmic microwave background radiation and also how to excite the ordinary matter degrees of freedom after inflation, required for the success of Big Bang Nucleosynthesis. We study these issues focusing on two promising inflationary models embedded in LARGE volume type IIB flux compactifications. We show that phenomenological requirements and consistency of the effective field theory treatment imply the presence at low energies of a hidden sector together with a visible sector, where the Minimal Supersymmetric Standard Model fields are residing. A detailed calculation of the inflaton coupling to the fields of the hidden sector, visible sector, and moduli sector, reveals that the inflaton fails to excite primarily the visible sector fields, instead hidden sector fields are excited copiously after the end of inflation. This sets severe constraints on hidden sector model building where the most promising scenario emerges as a pure N=1 SYM theory, forbidding the kinematical decay of the inflaton to the hidden sector. In this case it is possible to reheat the Universe with the visible degrees of freedom even though in some cases we discover a new tension between TeV scale SUSY and reheating on top of the well-known tension between TeV scale SUSY and inflation. (orig.)

  16. Parametric Amplification of Gravitational Fluctuations during Reheating

    International Nuclear Information System (INIS)

    Finelli, F.; Brandenberger, R.; Finelli, F.

    1999-01-01

    Cosmological perturbations can undergo amplification by parametric resonance during preheating even on scales larger than the Hubble radius, without violating causality. A unified description of gravitational and matter fluctuations is crucial to determine the strength of the instability. To extract specific signatures of the oscillating inflaton field during reheating, it is essential to focus on a variable describing metric fluctuations which is constant in the standard analyses of inflation. For a massive inflaton without self-coupling, we find no additional growth of superhorizon modes during reheating beyond the usual predictions. For a massless self-coupled inflaton, there is a sub-Hubble scale resonance. copyright 1999 The American Physical Society

  17. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  18. Reheating via Gravitational Particle Production in Simple Models of Quintessence or ΛCDM Inflation

    Directory of Open Access Journals (Sweden)

    Jaume de Haro

    2017-11-01

    Full Text Available We have tested some simple Λ CDM (the same test is also valid for quintessence inflation models, imposing that they match with the recent observational data provided by the BICEP and Planck’s team and leading to a reheating temperature, which is obtained via gravitational particle production after inflation, supporting the nucleosynthesis success.

  19. Calculations of Inflaton Decays and Reheating: with Applications to No-Scale Inflation Models

    CERN Document Server

    Ellis, John; Nanopoulos, Dimitri V; Olive, Keith A

    2015-01-01

    We discuss inflaton decays and reheating in no-scale Starobinsky-like models of inflation, calculating the effective equation-of-state parameter, $w$, during the epoch of inflaton decay, the reheating temperature, $T_{\\rm reh}$, and the number of inflationary e-folds, $N_*$, comparing analytical approximations with numerical calculations. We then illustrate these results with applications to models based on no-scale supergravity and motivated by generic string compactifications, including scenarios where the inflaton is identified as an untwisted-sector matter field with direct Yukawa couplings to MSSM fields, and where the inflaton decays via gravitational-strength interactions. Finally, we use our results to discuss the constraints on these models imposed by present measurements of the scalar spectral index $n_s$ and the tensor-to-scalar perturbation ratio $r$, converting them into constraints on $N_*$, the inflaton decay rate and other parameters of specific no-scale inflationary models.

  20. Thermodynamic and economic analysis of a partially-underground tower-type boiler design for advanced double reheat power plants

    International Nuclear Information System (INIS)

    Xu, Gang; Xu, Cheng; Yang, Yongping; Fang, Yaxiong; Zhou, Luyao; Yang, Zhiping

    2015-01-01

    An increasing number of tower-type boilers have been selected for advanced double reheat power plants, due to the uniform flue gas profile and the smooth steam temperature increase. The tall height and long steam pipelines lengths will however, result in dramatic increases in the difficulty of construction, as well as increased power plant investment cost. Given these factors, a novel partially-underground tower-type boiler design has been proposed in this study, which has nearly half of the boiler embedded underground, thereby significantly reducing the boiler height and steam pipeline lengths. Thermodynamic and economic analyses were quantitatively conducted on a 1000 MW advanced double reheat steam cycle. Results showed that compared to the reference power plant, the power plant with the proposed tower-type boiler design could reduce the net heat rate by 18.3 kJ/kWh and could reduce the cost of electricity (COE) by $0.60/MWh. The study also investigated the effects of price fluctuations on the cost-effectiveness of the reference power plant, for both the conventional and the proposed tower-type boilers designs, and found that the double reheat power plant with the proposed tower-type boiler design would be even more competitive and price-effective when the coal price and the investment costs increase. The research of this paper may provide a promising tower-type boiler design for advanced double reheat power plants with lower construction complexity and better cost-effectiveness. - Highlights: • A partially-underground tower-type boiler in double reheat power plants is proposed. for double reheat power plants is proposed. • Thermodynamic and economic analyses are quantitatively conducted. • Better energetic efficiency and greater economic benefits are achieved. • The impacts of price fluctuations on the economic feasibility are discussed

  1. Dark matter from gravitational particle production at reheating

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Nurmi, Sami, E-mail: tommi.markkanen@kcl.ac.uk, E-mail: sami.t.nurmi@jyu.fi [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä (Finland)

    2017-02-01

    We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses m and non-minimal coupling values ξ. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for m ∼ 0.1 GeV and ξ ∼ 1. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

  2. Dark matter from gravitational particle production at reheating

    International Nuclear Information System (INIS)

    Markkanen, Tommi; Nurmi, Sami

    2017-01-01

    We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses m and non-minimal coupling values ξ. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for m ∼ 0.1 GeV and ξ ∼ 1. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

  3. Design and stability limits of the HPLWR re-heater

    International Nuclear Information System (INIS)

    Herbell, H.; Class, A.; Starflinger, J.; Schulenberg, T.

    2010-01-01

    The High Performance Light Water Reactor (HPLWR) is a particular design study of a supercritical water cooled reactor. A heat exchanger design has been proposed for the re-heater as a shell-and-tube heat exchanger. Inside the tubes fluid undergoes pseudo-condensing, e.g. it changes its density from steam-like to liquid-like properties (from 80 kg/m 3 to 582 kg/m 3 ) at supercritical pressure, whereas the shell side superheats intermediate pressure steam. For sub-critical pressures an instability has been reported by Goodykoontz and Dorsch (19679. The experiment exhibits unstable steam condensation in case of downward flow inside a tube of 7.4 mm diameter and 2.42 m length in some specific cases. The counter-current condenser was cooled with water flowing in an annulus surrounding the condenser tube. This experiment motivates the current investigation of instabilities for supercritical pseudo-condensation. The study includes static instabilities, i.e. Ledingegg instability and flow maldistribution of the parallel tubes, as well as pressure drop oscillations. At the present stage, no instabilities are predicted for the specific operation conditions of the HPLWR. The commercial system code APROS is used to perform one dimensional transient simulations of the described experiment to understand the physical mechanism. These simulations show that choking flow initiates the pressure oscillations. These periodically change steam temperatures, and consequently the condensation rate. In turn, this modifies the sound speed which is responsible for choking. Condensate reverse flow at choked conditions triggers the pressure waves. APROS simulations and experimental results agree well both in pressure amplitude and frequency. APROS simulations at supercritical pressure conditions did not exhibit any instability as the fluid velocity is clearly sub-sonic in the entire HPLWR re-heater. (authors)

  4. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Kuroyanagi, Sachiko [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Hiramatsu, Takashi [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 Japan (Japan); Yokoyama, Jun' ichi, E-mail: skuro@nagoya-u.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp [Research Center for the Early Universe (RESCEU), School of Science, The University of Tokyo, Tokyo, 113-0033 Japan (Japan)

    2016-02-01

    We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform 512{sup 3} lattice simulations to investigate how the ordering scalar field reacts to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.

  5. 3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills

    Science.gov (United States)

    Jang, J. Y.; Lee, Y. W.; Lin, C. N.; Wang, C. H.

    2016-05-01

    A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed by considering the thermal radiation in the walking-beam-type reheating furnace chamber. The steel slabs are heated up through the non-firing, preheating, 1st-heating, 2nd-heating, and soaking zones in the furnace, respectively, where the furnace wall temperature is function of time. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.

  6. Furan formation during storage and reheating of sterilised vegetable purées.

    Science.gov (United States)

    Palmers, Stijn; Grauwet, Tara; Buvé, Carolien; Van de Vondel, Lore; Kebede, Biniam T; Hendrickx, Marc E; Van Loey, Ann

    2015-01-01

    To this day, research for furan mitigation has mostly targeted the levels of food production and handling of prepared foods by the consumer. However, part of the furan concentrations found in commercially available food products might originate from chemical deterioration reactions during storage. A range of individual vegetable purées was stored at two different temperatures to investigate the effects of storage on the furan concentrations of shelf-stable, vegetable-based foods. After 5 months of storage at 35°C (temperature-abuse conditions), a general increase in furan concentrations was observed. The furan formation during storage could be reduced by storing the vegetable purées at a refrigerated temperature of 4°C, at which the furan concentrations remained approximately constant for at least 5 months. Following storage, the vegetable purées were briefly reheated to 90°C to simulate the effect of the final preparation step before consumption. Contrary to storage, furan concentrations decreased as a result of evaporative losses. Both refrigerated storage and the reheating step prior to consumption showed the potential of mitigation measures for furan formation in vegetable-based foods (e.g. canned vegetables, ready-to-eat soups, sauces or baby foods). Next to furan, the vegetable purées were analysed for 2- and 3-methylfuran. Tomato was very susceptible to the formation of both alkylated derivatives of furan, as opposed to the other vegetables in this study. Methylfuran concentrations rapidly decreased during storage, which was contrary to the results observed for furan.

  7. Device and Container for Reheating and Sterilization

    Science.gov (United States)

    Sastry, Sudhir K.; Heskitt, Brian F.; Jun, Soojin; Marcy, Joseph E.; Mahna, Ritesh

    2012-01-01

    Long-duration space missions require the development of improved foods and novel packages that do not represent a significant disposal issue. In addition, it would also be desirable if rapid heating technologies could be used on Earth as well, to improve food quality during a sterilization process. For this purpose, a package equipped with electrodes was developed that will enable rapid reheating of contents via ohmic heating to serving temperature during space vehicle transit. Further, the package is designed with a resealing feature, which enables the package, once used, to contain and sterilize waste, including human waste for storage prior to jettison during a long-duration mission. Ohmic heating is a technology that has been investigated on and off for over a century. Literature indicates that foods processed by ohmic heating are of superior quality to their conventionally processed counterparts. This is due to the speed and uniformity of ohmic heating, which minimizes exposure of sensitive materials to high temperatures. In principle, the material may be heated rapidly to sterilization conditions, cooled rapidly, and stored. The ohmic heating device herein is incorporated within a package. While this by itself is not novel, a reusable feature also was developed with the intent that waste may be stored and re-sterilized within the packages. These would then serve a useful function after their use in food processing and storage. The enclosure should be designed to minimize mass (and for NASA's purposes, Equivalent System Mass, or ESM), while enabling the sterilization function. It should also be electrically insulating. For this reason, Ultem high-strength, machinable electrical insulator was used.

  8. Thermodynamic Analysis of a Steam Power Plant with Double Reheat and Feed Water Heaters

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-03-01

    Full Text Available A steam cycle with double reheat and turbine extraction is presented. Six heaters are used, three of them at high pressure and the other three at low pressure with deaerator. The first and second law analysis for the cycle and optimization of the thermal and exergy efficiencies are investigated. An exergy analysis is performed to guide the thermodynamic improvement for this cycle. The exergy and irreversibility analyses of each component of the cycle are determined. Effects of turbine inlet pressure, boiler exit steam temperature, and condenser pressure on the first and second laws' efficiencies are investigated. Also the best turbine extraction pressure on the first law efficiency is obtained. The results show that the biggest exergy loss occurs in the boiler followed by the turbine. The results also show that the overall thermal efficiency and the second law efficiency decrease as the condenser pressure increases for any fixed outlet boiler temperature, however, they increase as the boiler temperature increases for any condenser pressure. Furthermore, the best values of extraction pressure from high, intermediate, and low pressure turbine which give the maximum first law efficiencies are obtained based on the required heat load corresponding to each exit boiler temperature.

  9. On effect of some thermodeformation parameters of welding cycle on tendency of pearlitic heat-resisting steels to fracture in reheating

    International Nuclear Information System (INIS)

    Prokhorov, N.N.; Bardokin, E.V.

    1979-01-01

    Studied is the inclination of the 12Kh1MF, 15Kh3M1F and N18K9M5T steels subject to thermodeformation cycle imitating a welding one, to fracture in reheating. A hot-rolled metal then subject to the same thermal treatment was used. The imitation of thermodeformation cycle of the welding permitted to vary maximum heating temperatures, the period during which the metal is kept at temperatures higher than 1100 deg C, and the cooling rate of ajacent zone metal. It is shown that the curve of the dependence of deformation ability and the tendency to fracture at the reheating of adjacent zone metal on the rate of its cooling at welding is U-shaped. Deformation ability has its maximum value at the cooling rate of 30 deg c/s in the range 1300 to 1000 deg C

  10. Reheat cracking susceptibility of new generation 2%CrMo(W)V P23 steel multipass welds made using matching and mis-matching filler metals

    Energy Technology Data Exchange (ETDEWEB)

    Nevasmaa, P.; Salonen, J.; Holmstroem, S. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2007-06-15

    In comparison with conventional creep resisting grade T/P22, the modified 2%Cr steels T/P23 and T/P24 show nearly twice the creep strength at typical service temperatures of about 520-570 deg C. The possibility of welding thin-wall boiler tubes without preheating or PWHT has promoted the use of T23 and T24 in practical boiler service. For thick-wall applications and multipass welds, welding consumables still require further development to improve creep strength and ductility. Susceptibility to reheat cracking and hydrogen cracking increase with the wall-thickness and structural rigidity of the component. Consequently, thick-wall sections generally require the use of PWHT and sometimes preheating as well. This paper is concerned with weldability of P23 pipe steel, with particular emphasis on reheat cracking sensitivity of simulated HAZ microstructures and thick-section multipass welds made using closely matching and mis-matching filler metals. The results demonstrate that the weld metal is far more critical than the parent steel HAZ, both in terms of reheat cracking sensitivity and ductility and toughness. In the as-welded condition, the weld metal exhibited excessive hardness of {approx}380 HV and only diminutive Charpy toughness at room temperature. Adoption of the PWHT (760 deg C/2h) enhanced the weldment toughness; however, it also inevitably raises risk to reheat cracking in the weld metal that showed values of reduction of area (RA) no more than 2-3% in the BWI cracking test. The results imply that thick-section multipass welds made using filler metal with the chemical composition closer to P24 grade material are much less susceptible to reheat cracking than 'matching' P23 grade welds. (orig.)

  11. High Temperature Corrosion Problem of Boiler Components in presence of Sulfur and Alkali based Fuels

    Science.gov (United States)

    Ghosh, Debashis; Mitra, Swapan Kumar

    2011-04-01

    Material degradation and ageing is of particular concern for fossil fuel fired power plant components. New techniques/approaches have been explored in recent years for Residual Life assessment of aged components and material degradation due to different damage mechanism like creep, fatigue, corrosion and erosion etc. Apart from the creep, the high temperature corrosion problem in a fossil fuel fired boiler is a matter of great concern if the fuel contains sulfur, chlorine sodium, potassium and vanadium etc. This paper discusses the material degradation due to high temperature corrosion in different critical components of boiler like water wall, superheater and reheater tubes and also remedial measures to avoid the premature failure. This paper also high lights the Residual Life Assessment (RLA) methodology of the components based on high temperature fireside corrosion. of different critical components of boiler.

  12. Effect of Primary Recrystallized Microstructure and Nitriding on Secondary Recrystallization in Grain Oriented Silicon Steel by Low Temperature Slab Reheating

    Directory of Open Access Journals (Sweden)

    LIU Gong-tao

    2018-01-01

    Full Text Available Different primary recrystallized grain sizes were obtained by controlling decarburization process in grain oriented silicon steel produced by low temperature slab reheating technique. The effect of primary grain size on secondary recrystallization and magnetic properties was studied. The appropriate nitrogen content after nitriding was explored in case of very large primary grain size, and the effect of {411}〈148〉 primary recrystallized texture on the abnormal growth behavior was discussed. The results show that an increase in average primary grain size from 10μm to 15μm leads to an increase of secondary recrystallization temperature and a sharper Goss texture with higher magnetic permeability, in the condition of a very large average primary grain size of 28μm, the suitable amount of nitrogen increases to about 6×10-4. The {411}〈148〉 oriented grains in primary recrystallized microstructure can easily grow into larger sizes due to their size advantage, and thus hinder the abnormal growth of secondary grains, moreover, the hindering effect is more pronounced in the abnormal growth of Brass-oriented grains due to their misorientation with low migration rate other than Goss grains.

  13. Gravitational wave background from reheating after hybrid inflation

    International Nuclear Information System (INIS)

    Garcia-Bellido, Juan; Figueroa, Daniel G.; Sastre, Alfonso

    2008-01-01

    The reheating of the Universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubblelike structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the fraction of energy density today in these primordial gravitational waves could be significant for grand unified theory (GUT)-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA, or BBO. However, low-scale models could still produce a detectable signal at frequencies accessible to BBO or DECIGO. For comparison, we have also computed the analogous gravitational wave background from some chaotic inflation models and obtained results similar to those found by other groups. The discovery of such a background would open a new observational window into the very early universe, where the details of the process of reheating, i.e. the big bang, could be explored. Moreover, it could also serve in the future as a new experimental tool for testing the inflationary paradigm

  14. Reheating experiment in the 35-ton pile; Experience de rechauffage sur la pile de 35 tonnes

    Energy Technology Data Exchange (ETDEWEB)

    Cherot, J; Girard, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    When the 35-ton pile was started up it was necessary for us, in order to study certain effects (xenon for example), to know the anti reactivity value of the rods as a function of their dimensions. We have made use of the possibility, in the reheating experiment, of raising the temperature of the graphite-uranium block by simple heating, in order to determine the anti reactivity curves of the rods, and from that the overall temperature coefficient. For the latter we have considered two solutions: first, one in which the average temperature of the pile is defined as our arithmetical mean of the different values given by the 28 thermocouples distributed throughout the pile; a second in which the temperature in likened to a poisoning and is balanced by the square of the flux. The way in which the measurements have been made is indicated, and the different instruments used are described. The method of reheating does not permit the separation of the temperature coefficients of uranium and of graphite. The precision obtained is only moderate, and suffers from the changes of various parameters necessary to other manipulations carried out simultaneously (life time modulators for example), and finally it is a function of the comparatively restricted time allowed. It is evident of course that more careful stabilisation at the different plateaux chosen would have necessitated long periods of reheating. (author) [French] Nous avions besoin lors de la montee en puissance de la pile de 35 tonnes, pour l'elude de divers effets (xenon par ex.) de la valeur de l'antireactivite des barres en fonction de leurs cotes. Nous avons profite dans l'experience rechauffage de la possibilite de monter en temperature, non nucleairement, le bloc graphite uranium, pour determiner les courbes d'antireactivite des barres et de la le coefficient global de temperature. Nous avons considere pour ce dernier deux solutions. Une premiere dans laquelle la temperature moyenne de la pile est definie comme

  15. Design of a high-temperature first wall/blanket for a d-d compact Reversed-Field-Pinch reactor (CRFPR)

    International Nuclear Information System (INIS)

    Dabiri, A.E.; Glancy, J.E.

    1983-05-01

    A high-temperature first wall/blanket which would take full advantage of the absence of tritium breeding in a d-d reactor was designed. This design which produces steam at p = 7 MPa and T = 538 0 C at the blanket exit eliminates the requirement for a separate steam generator. A steam cycle with steam-to-steam reheat yielding about 37.5 percent efficiency is compatible with this design

  16. Condensation front modelling in a moisture separator reheater by application of SICLE numerical model

    International Nuclear Information System (INIS)

    Grange, J.L.; Caremoli, C.; Eddi, M.

    1988-01-01

    This paper presents improvements performed on SICLE numerical model in order to analyse the condensation front that occurs in the moisture separator reheaters (MSR) of nuclear power plants. Modifications of SICLE numerical model architecture and a fine modelling of reheater have allowed to correctly simulate the MSR thermohydraulic behaviour during a severe transient (plant islanding) [fr

  17. Reheat cracking in austenitic stainless steels; Fissuration en relaxation des aciers inoxydables austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Auzoux, Q.; Allais, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire, DMN, 91 - Gif sur Yvette (France); Pineau, A.; Gourgues, A.F. [Centre des Materiaux Pierre-Marie Fourt UMR CNRS 7633, 91 - Evry (France)

    2002-07-01

    Intergranular cracking can occur in heat-affected zones (HAZs) of austenitic stainless steel welded joints when reheated in the temperature range from 500 to 700 deg C. At this temperature, residual stresses due to welding relax by creep flow. HAZ may not sustain this small strain if its microstructure has been sufficiently altered during welding. In order to precise which particular microstructure alteration causes such an intergranular embrittlement, type 316L(N) HAZs were examined by transmission electron microscopy. A marked increase in the dislocation density, due to plastic strain during the welding process, was revealed, which caused an increase in Vickers hardness. Type 316L(N) HAZ were then simulated by the following thermal-mechanical process: annealing treatment and work hardening (pre-strain). Creep rupture tests on smooth specimens were also carried out at 600 deg C on both base metal and simulated HAZ. Pre-straining increased creep strength but reduced ductility. Slow strain rate tests on CT specimens confirmed this trend as well as did relaxation tests on CT specimens, which led to intergranular crack propagation in the pre-strained material only. Metallography and fractography showed no qualitative difference between base metal and HAZs in the creep cavitation around intergranular carbides. Although quantitative study of damage development is not achieved yet, experiments suggest that uniaxial creep strain smaller than one percent could lead to cavity nucleation when the material is pre-strained. Pre-strain as well as stress triaxiality reduce therefore creep ductility and enhance the reheat cracking risk. (authors)

  18. Effect of Dynamic Reheating Induced by Weaving on the Microstructure of GTAW Weld Metal of 25% Cr Super Duplex Stainless Steel Weld Metal

    Directory of Open Access Journals (Sweden)

    Hee-Joon Sung

    2017-11-01

    Full Text Available The importance of the additional growth and/or transformation of the austenite phase that occurs in weld metals of super duplex stainless steel upon reheating is known. However, the effects have not been fully investigated, especially with respect to reheating induced by weaving during single-pass welding. In this work, bead-on-pipe gas tungsten arc welding (GTAW was conducted on super duplex stainless steel to understand the effect of weaving on the microstructure of weld metal. Microstructural analysis, electron backscatter diffraction (EBSD, and focused ion beam transmission electron microscopy (FIB-TEM were carried out to investigate the relationship between weaving and microstructural change. The weaving of GTAW produced a dynamic reheated area just before the weld bead during welding. It was revealed that extensive reheated weld existed even after one welding pass, and that the content of the austenite phase in the reheated area was higher than that in the non-reheated area, indicating the existence of a large quantity of intragranular austenite phase. In addition, the Cr2N content in the reheated area was lower than that in the non-reheated area. This reduction of Cr2N was closely related to the reheating resulting from weaving. TEM analysis revealed that Cr2N in the non-reheated area was dispersed following heating and transformed to secondary austenite.

  19. Optimal set values of zone modeling in the simulation of a walking beam type reheating furnace on the steady-state operating regime

    International Nuclear Information System (INIS)

    Yang, Zhi; Luo, Xiaochuan

    2016-01-01

    Highlights: • The adjoint equation is introduced to the PDE optimal control problem. • Lipschitz continuity for the gradient of the cost functional is derived. • The simulation time and iterations reduce by a large margin in the simulations. • The model validation and comparison are made to verify the proposed math model. - Abstract: In this paper, this study proposed a new method to solve the PDE optimal control problem by introducing the adjoint problem to the optimization model, which was used to get the reference values for the optimal furnace zone temperatures and the optimal temperature distribution of steel slabs in the reheating furnace on the steady-state operating regime. It was proved that the gradient of the cost functional could be written via the weak solution of this adjoint problem and then Lipschitz continuity of the gradient was derived. Model validation and comparison between the mathematics model and the experiment results indicated that the present heat transfer model worked well for the prediction of thermal behavior about a slab in the reheating furnace. Iterations and simulation time had shown a significant decline in the simulations of 20MnSi slab, and it was shown by numerical simulations for 0.4 m thick slabs that the proposed method was better applied in the medium and heavy plate plant, leading to better performance in terms of productivity, energy efficiency and other features of reheating furnaces.

  20. On the performance simulation of inter-stage turbine reheat

    International Nuclear Information System (INIS)

    Pellegrini, Alvise; Nikolaidis, Theoklis; Pachidis, Vassilios; Köhler, Stephan

    2017-01-01

    Highlights: • An innovative gas turbine performance simulation methodology is proposed. • It allows to perform DP and OD performance calculations for complex engines layouts. • It is essential for inter-turbine reheat (ITR) engine performance calculation. • A detailed description is provided for fast and flexible implementation. • The methodology is successfully verified against a commercial closed-source software. - Abstract: Several authors have suggested the implementation of reheat in high By-Pass Ratio (BPR) aero engines, to improve engine performance. In contrast to military afterburning, civil aero engines would aim at reducing Specific Fuel Consumption (SFC) by introducing ‘Inter-stage Turbine Reheat’ (ITR). To maximise benefits, the second combustor should be placed at an early stage of the expansion process, e.g. between the first and second High-Pressure Turbine (HPT) stages. The aforementioned cycle design requires the accurate simulation of two or more turbine stages on the same shaft. The Design Point (DP) performance can be easily evaluated by defining a Turbine Work Split (TWS) ratio between the turbine stages. However, the performance simulation of Off-Design (OD) operating points requires the calculation of the TWS parameter for every OD step, by taking into account the thermodynamic behaviour of each turbine stage, represented by their respective maps. No analytical solution of the aforementioned problem is currently available in the public domain. This paper presents an analytical methodology by which ITR can be simulated at DP and OD. Results show excellent agreement with a commercial, closed-source performance code; discrepancies range from 0% to 3.48%, and are ascribed to the different gas models implemented in the codes.

  1. A Histological Analysis of Visceral Organs to Evaluate the Effect of Duration of Heating From Refrigeration to Core Body Temperature for Ballistics Investigations.

    Science.gov (United States)

    Humphrey, Caitlin; Kumaratilake, Jaliya

    2017-12-01

    Animal organs have been used in ballistics research to investigate the effects on human organs. Such organs are refrigerated until the investigation to minimize autolytic degradation and at times have been reheated to the human core body temperature to simulate the in situ environment. The aim of this investigation was to study the microstructural changes that may occur in fresh chilled visceral organs of the thorax and abdomen (ie, heart, lung, liver, and kidney) during the period of reheating to 37°C. Fifty-millimeter cubes of porcine heart, lung, liver, and kidney were taken rapidly after slaughter, chilled overnight, and the next morning were reheated to core body temperature (37°C). Histological changes occurring in the tissues during the reheating phase were investigated. The findings indicated that no cytoplasmic or nuclear changes occurred in any of the tissues during the period of reheating. Therefore, reheating of animal organs to the human core body temperature is not necessary, if the organs are refrigerated.

  2. Supersymmetric D-term inflation, reheating, and Affleck-Dine baryogenesis

    International Nuclear Information System (INIS)

    Kolda, C.; March-Russell, J.

    1999-01-01

    The phenomenology of supersymmetric models of inflation, where the inflationary vacuum energy is dominated by D terms of a U(1), is investigated. Particular attention is paid to the questions of how to arrange for sufficient e folds of inflation to occur, what kind of thermal history is expected after the end of inflation, and how to implement successful baryogenesis. Such models are argued to require a more restrictive symmetry structure than previously thought. In particular, it is nontrivial that the decays of the fields driving D inflation can reheat the Universe in such a way as to avoid the strong gravitino production constraints. We also show how the initial conditions for Affleck-Dine baryogenesis can arise in these models and that the simplest flat directions along which a baryon number is generated can often be ruled out by the constraints coming from a decoherence of the condensate in a hot environment. At the end, we find that successful reheating and baryogenesis can take place in a large subset of D-inflationary models. copyright 1999 The American Physical Society

  3. Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    2002-01-01

    The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [∼1000 Mw(e)] with passive safety systems to provide the potential for improved economics

  4. A role of neutral hydrogen in CHS plasmas with reheat and collapse and comparison with JIPP T-IIU tokamak plasmas

    International Nuclear Information System (INIS)

    Morita, S.; Yamada, H.; Iguchi, H.

    1992-09-01

    Results are described on NBI plasmas of the Compact Helical System (CHS). An increase in the stored energy, which is called plasma 'reheat', is observed with density peaking when gas puffing is turned off in the high density region. A plasma collapse with large increase in radiation loss occurs even in discharges whose Z eff values (typically, less than 2-3) do not show any increase when the gas puffing is continued. Both phenomena are basically explained by the edge electron temperature due to the difference in the amount of edge hydrogen neutrals. After turning off the gas puffing, the central electron density n e0 shows an increase of 80% and the density peaking factor (n e0 /n-bar e ) changes from 1.0 to 2.0, in typical cases, and a high inward velocity of the impurities appears (v = 20 m/s). The accumulation is studied in relation to the poloidal rotation and the edge temperature. These results are compared with results from plasmas with IOC- and H-modes in the JIPPT-IIU tokamak. (author)

  5. MSW-resonant fermion mixing during reheating

    Science.gov (United States)

    Kanai, Tsuneto; Tsujikawa, Shinji

    2003-10-01

    We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario.

  6. MSW-resonant fermion mixing during reheating

    International Nuclear Information System (INIS)

    Kanai, Tsuneto; Tsujikawa, Shinji

    2003-01-01

    We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario

  7. NOvel Refractory Materials for High Alkali, High Temperature Environments

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, J.G.; Griffin, R. (MINTEQ International, Inc.)

    2011-08-30

    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  8. Simulating intracrater ash recycling during mid-intensity explosive activity: high temperature laboratory experiments on natural basaltic ash

    Science.gov (United States)

    D'Oriano, Claudia; Pompilio, Massimo; Bertagnini, Antonella; Cioni, Raffaello; Pichavant, Michel

    2010-05-01

    Direct observations of mid-intensity eruptions, in which a huge amount of ash is generated, indicate that ash recycling is quite common. The recognition of juvenile vs. recycled fragments is not straightforward, and no unequivocal, widely accepted criteria exist to support this. The presence of recycled glassy fragments can hide primary magmatic information, introducing bias in the interpretations of the ongoing magmatic and volcanic activity. High temperature experiments were performed at atmospheric pressure on natural samples to investigate the effects of reheating on morphology, texture and composition of volcanic ash. Experiments simulate the transformation of juvenile glassy fragments that, falling into the crater or in the upper part of the conduit, are recycled by following explosions. Textural and compositional modifications obtained in laboratory are compared with similar features observed in natural samples in order to identify some main general criteria to be used for the discrimination of recycled material. Experiments were carried out on tephra produced during Strombolian activity, fire fountains and continuous ash emission at Etna, Stromboli and Vesuvius. Coarse glassy clasts were crushed in a nylon mortar in order to create an artificial ash, and then sieved to select the size interval of 1-0.71 mm. Ash shards were put in a sealed or open quartz tube, in order to prevent or to reproduce effects of air oxidation. The tube was suspended in a HT furnace at INGV-Pisa and kept at different temperatures (up to to 1110°C) for increasing time (0.5-12 hours). Preliminary experiments were also performed under gas flux conditions. Optical and electron microscope observations indicate that high temperature and exposure to the air induce large modifications on clast surface, ranging from change in color, to incipient plastic deformation till complete sintering. Significant change in color of clasts is strictly related to the presence of air, irrespective of

  9. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones

    Science.gov (United States)

    Auzoux, Q.; Allais, L.; Caës, C.; Monnet, I.; Gourgues, A. F.; Pineau, A.

    2010-05-01

    Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 °C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.

  10. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones

    International Nuclear Information System (INIS)

    Auzoux, Q.; Allais, L.; Caes, C.; Monnet, I.; Gourgues, A.F.; Pineau, A.

    2010-01-01

    Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 deg. C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.

  11. Thermal Efficiency of Cogeneration Units with Multi-Stage Reheating for Russian Municipal Heating Systems

    Directory of Open Access Journals (Sweden)

    Evgeny Lisin

    2016-04-01

    Full Text Available This paper explores the layout of an optimum process for supplying heat to Russian municipal heating systems operating in a market environment. We analyze and compare the standard cogeneration unit design with two-stage reheating of service water coming from controlled extraction locations and layouts that employ three in-line reheaters with heat the supply controlled by a rotary diaphragm and qualitative/quantitative methods (so-called “uncontrolled extraction”. Cogeneration unit designs are benchmarked in terms of their thermal efficiency expressed as a fuel consumption rate. The specific fuel consumption rate on electricity production is viewed as a key parameter of thermal efficiency.

  12. Inflation and reheating in induced-gravity models

    International Nuclear Information System (INIS)

    Barr, S.; Segre, G.

    1990-01-01

    The Planck mass is generated dynamically in induced-gravity models, typically being related to the vacuum expectation value of a scalar field φ, ε 1/2 left-angle φ right-angle=M Pl / √8π , where ε is a dimensionless parameter, typically smaller than one. We discuss in this paper the decay of the φ particle, which is mainly into gravitons, and the consequences this has for models in which the φ field is responsible for inflation. We show in particular that too much energy is stored in φ oscillations and adequate reheating does not occur

  13. Hypercharged dark matter and direct detection as a probe of reheating.

    Science.gov (United States)

    Feldstein, Brian; Ibe, Masahiro; Yanagida, Tsutomu T

    2014-03-14

    The lack of new physics at the LHC so far weakens the argument for TeV scale thermal dark matter. On the other hand, heavier, nonthermal dark matter is generally difficult to test experimentally. Here we consider the interesting and generic case of hypercharged dark matter, which can allow for heavy dark matter masses without spoiling testability. Planned direct detection experiments will be able to see a signal for masses up to an incredible 1010  GeV, and this can further serve to probe the reheating temperature up to about 109  GeV, as determined by the nonthermal dark matter relic abundance. The Z-mediated nature of the dark matter scattering may be determined in principle by comparing scattering rates on different detector nuclei, which in turn can reveal the dark matter mass. We will discuss the extent to which future experiments may be able to make such a determination.

  14. Leptogenesis and reheating in complex hybrid inflation

    International Nuclear Information System (INIS)

    Martinez-Prieto, Carlos; Delepine, David; Urena-Lopez, L. Arturo

    2010-01-01

    We study the transformation into a baryon asymmetry of a charge initially stored in a complex (waterfall) scalar field at the end of a hybrid inflation phase as described by Delepine, Martinez, and Urena-Lopez [Phys. Rev. Lett. 98, 161302 (2007)]. The waterfall field is coupled to right-handed neutrinos, and is also responsible for their Majorana masses. The charge is finally transferred to the leptons of the standard model through the decay of the right-handed neutrinos without introducing new CP violating interactions. Other needed processes, like the decay of the inflaton field and the reheating of the Universe, are also discussed in detail.

  15. Thermodynamic evaluation of supercritical oxy-type power plant with high-temperature three-end membrane for air separation

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-09-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.

  16. Engineered for the energy future. I. Moisture separator-reheaters: extreme reliability an imperative

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A description is given of the design and development activities performed by Foster-Wheeler to insure operational reliability of sixteen moisture separator-reheaters being manufactured for eight twin-unit BWR power plants to be operated by TVA

  17. Effect of Dynamic Reheating Controlled by the Weaving Width on the Microstructure of GTA Bead-On-Pipe Weld Metal of 25% Cr Super Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Hee-Joon Sung

    2018-05-01

    Full Text Available Gas tungsten arc welding (GTAW with three different heat inputs controlled by the weaving width was performed to understand their effects on the microstructural changes during bead-on-pipe welding of super duplex stainless steel. The microstructure of the weld metals was categorized into three different types of zones: non-reheated, reheated type, and reheating-free zone. Even though single-pass welding with different weaving widths was employed, a reheated microstructure was detected, which has been previously observed with multiple pass welding. This phenomenon was called “dynamic reheating”, because it was produced by the weaving operation during welding regardless of the weaving width. The categorized area fraction varied with the weaving width change. Electron backscatter diffraction (EBSD results at the edge (the area near the fusion line of the low-heat-input condition indicated a higher austenite volume fraction and a lower Cr2N fraction than that of the medium heat input condition. Thus, it described an inverse relationship, because higher heat input provided a lower austenite fraction. In addition, it was observed clearly that the austenite fraction at the medium heat input condition was dramatically increased by reheating, while the Cr2N fraction was reduced. Regardless of the weaving width, reheating contributed to the increase of the austenite fraction, further reducing the Cr2N quantity. The edge areas in the map showed an inverse relationship in the reheated area fraction between low heat input and medium heat input. For this reason, the austenite fraction on the weld metal was determined not only by the heat input, but also by the amount of reheating.

  18. Metal temperature monitoring in corrosive gases at high temperature and high thermal flows; Monitoreo de temperaturas de metal en gases corrosivos a alta temperatura y altos flujos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Martinez Flores, Marco Antonio; Martinez Villafane, Alberto; Porcayo Calderon, Jesus; Gomez Guzman, Roberto; Reyes Cervantes, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    The direct measurement of metal temperatures during operation in superheater, reheater, and water wall tubes in zones exposed to high thermal flows is of great interest for the operation and analysis of the correct functioning of a steam generator. The operation temperature measurement of these zones differs very much of the monitored temperature in headers in the dead chamber, since the temperature measured in this zone is the steam temperature that does not reflect the one detected in the gas zone. For this reason, the thermocouples implant in gas zones will detect the real metal temperature and the incidence that some operation variables might have on it (Martinez et al., (1990). [Espanol] La medicion directa de temperaturas de metal durante operacion en tubos de sobrecalentador, recalentador y pared de agua en zonas expuestas a altos flujos termicos es de gran interes para la operacion y analisis del buen funcionamiento de un generador de vapor. La medicion de la temperatura de operacion de estas zonas, difiere mucho de la temperatura monitoreada en cabezales en zona de camara muerta, ya que la temperatura registrada en esta zona es la de vapor que no es un reflejo de la detectada en zona de gases. Por esta razon, la implantacion de termopares en zona de gases detectara la temperatura de metal real y la incidencia que algunas variables de operacion tengan sobre esta (Martinez et al., 1990).

  19. Metal temperature monitoring in corrosive gases at high temperature and high thermal flows; Monitoreo de temperaturas de metal en gases corrosivos a alta temperatura y altos flujos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Martinez Flores, Marco Antonio; Martinez Villafane, Alberto; Porcayo Calderon, Jesus; Gomez Guzman, Roberto; Reyes Cervantes, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    The direct measurement of metal temperatures during operation in superheater, reheater, and water wall tubes in zones exposed to high thermal flows is of great interest for the operation and analysis of the correct functioning of a steam generator. The operation temperature measurement of these zones differs very much of the monitored temperature in headers in the dead chamber, since the temperature measured in this zone is the steam temperature that does not reflect the one detected in the gas zone. For this reason, the thermocouples implant in gas zones will detect the real metal temperature and the incidence that some operation variables might have on it (Martinez et al., (1990). [Espanol] La medicion directa de temperaturas de metal durante operacion en tubos de sobrecalentador, recalentador y pared de agua en zonas expuestas a altos flujos termicos es de gran interes para la operacion y analisis del buen funcionamiento de un generador de vapor. La medicion de la temperatura de operacion de estas zonas, difiere mucho de la temperatura monitoreada en cabezales en zona de camara muerta, ya que la temperatura registrada en esta zona es la de vapor que no es un reflejo de la detectada en zona de gases. Por esta razon, la implantacion de termopares en zona de gases detectara la temperatura de metal real y la incidencia que algunas variables de operacion tengan sobre esta (Martinez et al., 1990).

  20. Upgrading the SPP-500-1 moisture separators-steam reheaters used in the Leningrad NPP turbine units

    Science.gov (United States)

    Legkostupova, V. V.; Sudakov, A. V.

    2015-03-01

    The specific features of existing designs of moisture separators-steam reheaters (MSRs) and experience gained with using them at nuclear power plants are considered. Main factors causing damage to and failures of MSRs are described: nonuniform distribution of wet steam flow among the separation modules, breakthrough of moisture through the separator (and sometimes also through the steam reheater), which may lead to the occurrence of additional thermal stresses and, hence, to thermal-fatigue damage to or stress corrosion cracking of metal. MSR failure results in a less efficient operation of the turbine unit as a whole and have an adverse effect on the reliability of the low-pressure cylinder's last-stage blades. By the time the design service life of the SPP-500-1 MSRs had been exhausted in power units equipped with RBMK-1000 reactors, the number of damages inflicted to both the separation part and to the pipework and heating surface tubes was so large, that a considerable drop of MSR effectiveness and turbine unit efficiency as a whole occurred. The design of the upgraded separation part used in the SPP-500-1 MSR at the Leningrad NPP is described and its effectiveness is shown, which was confirmed by tests. First, efforts taken to achieve more uniform distribution of moisture content over the perimeter and height of steam space downstream of the separation modules and to bring it to values close to the design ones were met with success. Second, no noticeable effect of the individual specific features of separation modules on the moisture content was revealed. Recommendations on elaborating advanced designs of moisture separators-steam reheaters are given: an MSR arrangement in which the separator is placed under or on the side from the steam reheater; axial admission of wet steam for ensuring its uniform distribution among the separation modules; inlet chambers with an extended preliminary separation system and devices for uniformly distributing steam flows in the

  1. Moisture separators and reheaters for wet steam turbines

    International Nuclear Information System (INIS)

    Gibbins, J.

    1979-01-01

    Moisture separator reheater (M.S.R.) units are now a well established feature of the wet steam cycle as associated with the various types of water cooled reactor. This paper describes the development of M.S.Rs. as supplied by GEC for turbine generators of up to 1200 MW ratings covering the design procedures used and the features required to ensure efficient and reliable operation. In addition to details of the M.S.R. design, the desirable features of the steam supply, venting and drain control systems are also discussed. The recent developments, as provided on current projects, are described. (author)

  2. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  3. Reheating and dangerous relics in pre-big-bang string cosmology

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Lemoine, Martin; Olive, Keith A.

    2000-01-01

    We discuss the mechanism of reheating in pre-big-bang string cosmology and we calculate the amount of moduli and gravitinos produced gravitationally and in scattering processes of the thermal bath. We find that this abundance always exceeds the limits imposed by big-bang nucleosynthesis, and significant entropy production is required. The exact amount of entropy needed depends on the details of the high curvature phase between the dilaton-driven inflationary era and the radiation era. We show that the domination and decay of the zero-mode of a modulus field, which could well be the dilaton, or of axions, suffices to dilute moduli and gravitinos. In this context, baryogenesis can be accommodated in a simple way via the Affleck-Dine mechanism and in some cases the Affleck-Dine condensate could provide both the source of entropy and the baryon asymmetry

  4. The influence of heating rate on reheat-cracking in a commercial 2 1/4Cr1Mo steel

    International Nuclear Information System (INIS)

    Hippsley, C.A.

    1983-03-01

    The effects of elevated heating rate on stress-relief cracking in a commercial 2 1/4 Cr1Mo steel have been investigated. A SEN bend-specimen stress-relaxation test was used to assess reheat cracking susceptibility and fracture mechanisms for an initial post-weld heating rate of 1000 Kh - 1 . Two factors controlling the influence of heating rate on the final severity of cracking were identified, i.e. the rate of stress-relaxation with respect to temperature, and the time available for crack-growth. The factors were found to counteract each other, but in the case of commercial 2 1/4 Cr1Mo steel, the crack-growth factor outweighed the relaxation factor, resulting in a reduction in the propensity to stress-relief cracking at the elevated heating rate. However, by reference to the results of a separate investigation concerning A508/2 MnMoNiCr steel it was demonstrated that the balance between these two factors may be reversed in other alloy systems, with the consequence that reheat cracking is exacerbated by increasing the initial heating rate. A computer model was addressed to the stress-relaxation test conditions using data from the commercial 2 1/4 Cr1Mo steel. The model predictions exhibited reasonable agreement with experimental test results for both 100 Kh - 1 and 1000 Kh - 1 heating rates. (author)

  5. Baryogenesis, dark matter and the maximal temperature of the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, Wilfried

    2012-12-15

    Mechanisms for the generation of the matter-antimatter asymmetry and dark matter strongly depend on the reheating temperature T{sub R}, the maximal temperature reached in the early universe. Forthcoming results from the LHC, low energy experiments, astrophysical observations and the Planck satellite will significantly constrain baryogenesis and the nature of dark matter, and thereby provide valuable information about the very early hot universe. At present, a wide range of reheating temperatures is still consistent with observations. We illustrate possible origins of matter and dark matter with four examples: moduli decay, electroweak baryogenesis, leptogenesis in the {nu}MSM and thermal leptogenesis. Finally, we discuss the connection between baryogenesis, dark matter and inflation in the context of supersymmetric spontaneous B-L breaking.

  6. Baryogenesis, dark matter and the maximal temperature of the early universe

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried

    2012-12-01

    Mechanisms for the generation of the matter-antimatter asymmetry and dark matter strongly depend on the reheating temperature T R , the maximal temperature reached in the early universe. Forthcoming results from the LHC, low energy experiments, astrophysical observations and the Planck satellite will significantly constrain baryogenesis and the nature of dark matter, and thereby provide valuable information about the very early hot universe. At present, a wide range of reheating temperatures is still consistent with observations. We illustrate possible origins of matter and dark matter with four examples: moduli decay, electroweak baryogenesis, leptogenesis in the νMSM and thermal leptogenesis. Finally, we discuss the connection between baryogenesis, dark matter and inflation in the context of supersymmetric spontaneous B-L breaking.

  7. Heating characteristics of billet in a walking hearth type reheating furnace

    International Nuclear Information System (INIS)

    Emadi, Ali; Saboonchi, Ahmad; Taheri, Mahdi; Hassanpour, Saeid

    2014-01-01

    The heating characteristics of billet in a walking hearth type reheating furnace were studied by developing a mathematical heat transfer model. Radiation calculations were conducted by means of zone method and considering all radiation exchange paths. The weighted-sum-of-gray-gas-model was used for better accuracy of gas radiation prediction. Convective heat flux was calculated by considering suitable value of convective heat transfer coefficient at any location of the furnace. The model was substantiated through its comparison to experimental data. A comparison was drawn to evaluate the effect of constant and variable convective coefficient on convective flux distribution and billet thermal behavior. The effect of furnace wall's emissivity of each zone and whole of the furnace on the billet thermal behavior was investigated. The obtained results revealed that by increasing furnace wall's emissivity for a determined residence time, billet's temperature in primary zones rises but it has no significant effect on its final temperature. However, by increasing wall's emissivity from 0.7 to 0.95, the residence time can be declined by about 5%. Moreover, emissivity increase in non-firing and preheating zones as compared to heating and soaking zones has greater impact on the billet thermal behavior. -- Highlights: • 3D radiation modeling by considering all possible paths of radiation exchange. • Using WSGG model for better prediction of gas radiation. • Using non-constant convection coefficient to consider variation of gas mass flow. • Investigation of effect of convection coefficient on billet temperature behavior. • Investigation of wall emissivity of furnace zones

  8. Reheating-volume measure for random-walk inflation

    International Nuclear Information System (INIS)

    Winitzki, Sergei

    2008-01-01

    The recently proposed 'reheating-volume' (RV) measure promises to solve the long-standing problem of extracting probabilistic predictions from cosmological multiverse scenarios involving eternal inflation. I give a detailed description of the new measure and its applications to generic models of eternal inflation of random-walk type. For those models I derive a general formula for RV-regulated probability distributions that is suitable for numerical computations. I show that the results of the RV cutoff in random-walk type models are always gauge invariant and independent of the initial conditions at the beginning of inflation. In a toy model where equal-time cutoffs lead to the 'youngness paradox', the RV cutoff yields unbiased results that are distinct from previously proposed measures.

  9. Reheating via a generalized nonminimal coupling of curvature to matter

    International Nuclear Information System (INIS)

    Bertolami, Orfeu; Frazao, Pedro; Paramos, Jorge

    2011-01-01

    In this work, one shows that a generalized nonminimal coupling between geometry and matter is compatible with Starobinsky inflation and leads to a successful process of preheating, a reheating scenario based on the production of massive particles via parametric resonance. The model naturally extends the usual preheating mechanism, which resorts to an ad hoc scalar curvature-dependent mass term for a scalar field χ, and also encompasses a previously studied preheating channel based upon a nonstandard kinetic term.

  10. Singularity in the positive Hall coeffcient near pre-onset temperatures in high-Tc superconductors

    Science.gov (United States)

    Vezzoli, G. C.; Chen, M. F.; Craver, F.; Moon, B. M.; Safari, A.; Burke, T.; Stanley, W.

    1990-10-01

    Hall measurements using continuous extremely slow cooling and reheating rates as well as employing eqiulibrium point-by-point conventional techniques reveals a clear anomally in RH at pre-onset temperatures near Tc in polycrystalline samples Y1Ba2Cu3O7 and Bi2Sr2Ca2Cu3O10. The anomaly has the appearance of a singularity of Dirac-delta function which parallels earlier work on La1-xSrxCuO4. Recent single crystal work on the Bi-containing high-Tc superconductor is in accord with a clearcut anomaly. The singularity is tentatively interpreted to be associated (upon cooling) with initially the removal of positive holes from the hopping conduction system of the normal state such as from the increased concentration of bound virtual excitons due to increased exciton and hole lifetimes at low temperature. Subsequently the formation of Cooper pairs by mediation from these centers (bound-holes) and/or bound excitons) may cause an ionization of these bound virtual excitons thereby re-introducing holes and electrons into the conduction system at Tc.

  11. Comparison of elastic and inelastic seismic response of high temperature piping systems

    International Nuclear Information System (INIS)

    Thomas, F.M.; McCabe, S.L.; Liu, Y.

    1994-01-01

    A study of high temperature power piping systems is presented. The response of the piping systems is determined when subjected to seismic disturbances. Two piping systems are presented, a main steam line, and a cold reheat line. Each of the piping systems are modeled using the ANSYS computer program and two analyses are performed on each piping system. First, each piping system is subjected to a seismic disturbance and the pipe material is assumed to remain linear and elastic. Next the analysis is repeated for each piping system when the pipe material is modeled as having elastic-plastic behavior. The results of the linear elastic analysis and elastic-plastic analysis are compared for each of the two pipe models. The pipe stresses, strains, and displacements, are compared. These comparisons are made so that the effect of the material yielding can be determined and to access what error is made when a linear analysis is performed on a system that yields

  12. Influence of Fixed Temperature of Chilled Water Outlet Setting toward Performance of Chiller Absorbtion with Two Level Heating Cycle Method

    Directory of Open Access Journals (Sweden)

    I Gusti Agung Bagus Wirajati

    2012-11-01

    Full Text Available The study investigated the performance of re-heat two stage cycle. This paper presents the working principle and theexperimental results of the reheat two stage adsorption cycle. The performance of the cycle was evaluated under differentheat source temperature and mass recovery time. Coefficient of performance (COP and cooling capacity have beencalculated to analyze the influences of experimental conditions. The experimental results shown in both COP and coolingcapacity increased along with heat source temperature increased, and mass recovery time is very effective to improve theperformance without increasing heat source temperature.

  13. Reheating of the Universe and evolution of the inflaton

    International Nuclear Information System (INIS)

    Mazzitelli, F.D.; Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina,); Paz, J.P.; Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad)

    1989-01-01

    The problem of the reheating of the Universe after inflation is considered. Our approach is based on the use, as ''first principles,'' of the renormalized version of (a) the evolution equation for the mean value of an interacting scalar field and (b) the semiclassical Einstein equations. We compute (for two different toy models) the characteristic time for the damping of the mean-value oscillations. We show that when the oscillations are damped the Universe becomes radiation dominated and inflation ends. The techniques used in this paper are those of quantum field theory in curved spacetime and can be generalized to more realistic models

  14. Reheating-volume measure in the string theory landscape

    International Nuclear Information System (INIS)

    Winitzki, Sergei

    2008-01-01

    I recently proposed the ''reheating-volume'' (RV) prescription as a possible solution to the measure problem in ''multiverse'' cosmology. The goal of this work is to extend the RV measure to scenarios involving bubble nucleation, such as the string theory landscape. In the spirit of the RV prescription, I propose to calculate the distribution of observable quantities in a landscape that is conditioned in probability to nucleate a finite total number of bubbles to the future of an initial bubble. A general formula for the relative number of bubbles of different types can be derived. I show that the RV measure is well defined and independent of the choice of the initial bubble type, as long as that type supports further bubble nucleation. Applying the RV measure to a generic landscape, I find that the abundance of Boltzmann brains is always negligibly small compared with the abundance of ordinary observers in the bubbles of the same type. As an illustration, I present explicit results for a toy landscape containing four vacuum states, and for landscapes with a single high-energy vacuum and a large number of low-energy vacua.

  15. POWER CYCLE AND STRESS ANALYSES FOR HIGH TEMPERATURE GAS-COOLED REACTOR

    International Nuclear Information System (INIS)

    Oh, Chang H; Davis, Cliff; Hawkes, Brian D; Sherman, Steven R

    2007-01-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold (1) efficient low cost energy generation and (2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with three turbines and four compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with three stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and a 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to

  16. Dynamics of cosmological perturbations and reheating in the anamorphic universe

    Energy Technology Data Exchange (ETDEWEB)

    Graef, L.L.; Ferreira, Elisa G.M.; Brandenberger, Robert [Physics Department, McGill University, Montreal, QC, H3A 2T8 (Canada); Hipólito-Ricaldi, W.S., E-mail: leilagraef@on.br, E-mail: wiliam.ricaldi@ufes.br, E-mail: elisa.ferreira@mail.mcgill.ca, E-mail: rhb@physics.mcgill.ca [Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, Rodovia BR 101 Norte, km. 60, São Mateus, ES (Brazil)

    2017-04-01

    We discuss scalar-tensor realizations of the Anamorphic cosmological scenario recently proposed by Ijjas and Steinhardt [1]. Through an analysis of the dynamics of cosmological perturbations we obtain constraints on the parameters of the model. We also study gravitational Parker particle production in the contracting Anamorphic phase and we compute the fraction between the energy density of created particles at the end of the phase and the background energy density. We find that, as in the case of inflation, a new mechanism is required to reheat the universe.

  17. Particle creation and reheating in a braneworld inflationary scenario

    Science.gov (United States)

    Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.

    2017-10-01

    We study the cosmological particle creation in the tachyon inflation based on the D-brane dynamics in the Randall-Sundrum (RSII) model extended to include matter in the bulk. The presence of matter modifies the warp factor which results in two effects: a modification of the RSII cosmology and a modification of the tachyon potential. Besides, a string theory D-brane supports among other fields a U(1) gauge field reflecting open strings attached to the brane. We demonstrate how the interaction of the tachyon with the U(1) gauge field drives cosmological creation of massless particles and estimate the resulting reheating at the end of inflation.

  18. Effect of re-heating on the hot electron temperature

    International Nuclear Information System (INIS)

    Estabrook, K.; Rosen, M.

    1980-01-01

    Resonant absorption is the direct conversion of the transverse laser light to longitudinal electron plasma waves (epw) at the critical density [10 21 (1.06 μm/lambda 0 ) 2 cm -3 ]. The oscillating longitudinal electric field of the epw heats the electrons by accelerating them down the density gradient to a temperature of approximately 21T/sub e/ 0 25 ([I(W/cm 2 )/10 16 ](lambda 0 /1.06 μm) 2 ) 0 4 . This section extends the previous work by studying the effects of magnetic fields and collisions (albedo) which return the heated electrons for further heating. A magnetic field increases their temperature and collisions do not

  19. Study on thermodynamic cycle of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu Xinhe; Yang Xiaoyong; Wang Jie

    2017-01-01

    The development trend of the (very) High temperature gas-cooled reactor is to gradually increase the reactor outlet temperature. The different power conversion units are required at the different reactor outlet temperature. In this paper, for the helium turbine direct cycle and the combined cycle of the power conversion unit of the High temperature gas-cooled reactor, the mathematic models are established, and three cycle plans are designed. The helium turbine direct cycle is a Brayton cycle with recuperator, precooler and intercooler. In the combined cycle plan 1, the topping cycle is a simple Brayton cycle without recuperator, precooler and intercooler, and the bottoming cycle is based on the steam parameters (540deg, 6 MPa) recommended by Siemens. In the combined cycle plan 2, the topping cycle also is a simple Brayton cycle, and the bottoming cycle which is a Rankine cycle with reheating cycle is based on the steam parameters of conventional subcritical thermal power generation (540degC, 18 MPa). The optimization results showed that the cycle efficiency of the combined cycle plan 2 is the highest, the second is the helium turbine direct cycle, and the combined cycle plan 2 is the lowest. When the reactor outlet temperature is 900degC and the pressure ratio is 2.02, the cycle efficiency of the combined cycle plan 2 can reach 49.7%. The helium turbine direct cycle has a reactor inlet temperature above 500degC due to the regenerating cycle, so it requires a cooling circuit for the internal wall of the reactor pressure vessel. When the reactor outlet temperature increases, the increase of the pressure ratio required by the helium turbine direct cycle increases may bring some difficulties to the design and manufacture of the magnetic bearings. For the combined cycle, the reactor inlet temperature can be controlled below than 370degC, so the reactor pressure vessel can use SA533 steel without cooling the internal wall of the reactor pressure vessel. The pressure

  20. Urbanized South Asians' susceptibility to coronary heart disease: The high-heat food preparation hypothesis.

    Science.gov (United States)

    Kakde, Smitha; Bhopal, Raj S; Bhardwaj, Swati; Misra, Anoop

    2017-01-01

    Known risk factors do not fully explain the comparatively high susceptibility to coronary heart disease (CHD) in South Asians (Indian, Pakistani, Bangladeshi, and Sri Lankan populations in South Asia and overseas). The search for explanatory hypotheses and cofactors that raise susceptibility of South Asians to CHD continues. The aim of this study was to propose "the high-heat food preparation hypothesis," where neo-formed contaminants (NFCs) such as trans-fatty acids (TFAs) and advanced glycation end-products (AGEs) are the cofactors. We reviewed the actions of AGEs and TFAs, the burden of these products in tissues and blood in South Asians, the relationship between these products and CHD, the effects of preparing food and reheating oils at high temperatures on NFCs, and the foods and mode of preparation in South Asian and Chinese cuisines. Animal and human studies show NFCs increase the risk for CHD. Evidence on the consumption and body burden of these products across ethnic groups is not available, and comparable data on the NFC content of the cuisine of South Asians and potential comparison populations (e.g., the Chinese with lower CHD rates) are limited. South Asians' cuisine is dominated by frying and roasting techniques that use high temperatures. South Asian foods have high TFA content primarily through the use of partially hydrogenated fats, reheated oils, and high-heat cooking. Reheating oils greatly increases the TFA content. In comparison, Chinese cuisine involves mostly braising, steaming, and boiling rather than frying. We hypothesize that South Asians' susceptibility to CHD is partly attributable to high-heat treated foods producing high NFCs. Research to accrue direct evidence is proposed. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Prospects for direct detection of inflationary gravitational waves by next generation interferometric detectors

    International Nuclear Information System (INIS)

    Kuroyanagi, Sachiko; Chiba, Takeshi; Sugiyama, Naoshi

    2011-01-01

    We study the potential impact of detecting the inflationary gravitational wave background by the future space-based gravitational wave detectors, such as DECIGO and BBO. The signal-to-noise ratio of each experiment is calculated for chaotic/natural/hybrid inflation models by using the precise predictions of the gravitational wave spectrum based on numerical calculations. We investigate the dependence of each inflation model on the reheating temperature which influences the amplitude and shape of the spectrum, and find that the gravitational waves could be detected for chaotic/natural inflation models with high reheating temperature. From the detection of the gravitational waves, a lower bound on the reheating temperature could be obtained. The implications of this lower bound on the reheating temperature for particle physics are also discussed.

  2. Research, Development, and Field Testing of Thermochemical Recuperation for High Temperature Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Harry; Kozlov, Aleksandr

    2014-03-31

    Gas Technology Institute (GTI) evaluated the technical and economic feasibility of utilizing a non-catalytic ThermoChemical Recuperation System (TCRS) to recover a significant amount of energy from the waste gases of natural gas fired steel reheat furnaces. The project was related to DOE-AMO’s (formerly known as ITP) one of the technical areas of interest: Technologies to improve energy efficiency and reduce the carbon footprint of equipment currently used in energy-intensive industries such as iron and steel, and reduce by at least 30% energy consumption and carbon dioxide emission compared to the conventional technologies. ThermoChemical Recuperation (TCR) is a technique that recovers sensible heat in the exhaust gas from an industrial process, furnace, engine etc., when a hydrocarbon fuel is used for combustion. TCR enables waste heat recovery by both combustion air preheat and hydrocarbon fuel (natural gas, for example) reforming into a higher calorific fuel. The reforming process uses hot flue gas components (H2O and CO2) or steam to convert the fuel into a combustible mixture of hydrogen (H2), carbon monoxide (CO), and some unreformed hydrocarbons (CnHm). Reforming of natural gas with recycled exhaust gas or steam can significantly reduce fuel consumption, CO2 emissions and cost as well as increase process thermal efficiency. The calorific content of the fuel can be increased by up to ~28% with the TCR process if the original source fuel is natural gas. In addition, the fuel is preheated during the TCR process adding sensible heat to the fuel. The Research and Development work by GTI was proposed to be carried out in three Phases (Project Objectives). • Phase I: Develop a feasibility study consisting of a benefits-derived economic evaluation of a ThermoChemical Recuperation (TCR) concept with respect to high temperature reheat furnace applications within the steel industry (and cross-cutting industries). This will establish the design parameters and

  3. Method and apparatus for thermal power generation

    International Nuclear Information System (INIS)

    1981-01-01

    A thermal power plant reheat cycle system is described in which the discharge from a first expansion stage is reheated prior to expansion in a subsequent expansion stage. The primary coolant has a high sheet transfer rate and can accommodate temperature changes in the reheat vapor. (U.K.)

  4. MEDEA, Steady-State Pressure and Temperature Distribution in He H2O Steam Generator

    International Nuclear Information System (INIS)

    Hansen, Ulf

    1976-01-01

    1 - Nature of physical problem solved: MEDEA calculates the time-independent pressure and temperature distribution in a helium-water steam generator. The changing material properties of the fluids with pressure and temperature are treated exactly. The steam generator may consist of economizer, evaporator, superheater and reheater in variable flow patterns. In case of reheating the high-pressure turbine is taken into account. The main control circuits influencing the behaviour of the system are simulated. These are water spraying of the hot steam, load-dependent control of steam pressure at the HP-turbine inlet and valves before the LP-turbine to ensure constant pressure in the reheater section. Investigations of hydrodynamic flow stability in single tubes can be performed. 2 - Method of solution: The steam generator is calculated as a 1-dimensional model, (i.e. all parallel tubes working under equal conditions) and is divided into small heat exchanger elements with helium and water in ideal parallel or counter flow. The material and thermodynamic properties are kept constant within one element. The calculations start at the cold end of the steam generator and proceed stepwise along the water flow pattern to produce pressure and temperature distributions of helium and water. The gas outlet temperature is changed until convergence is reached with a continuous temperature profile on the gas side. MEDEA chooses the iteration scheme according to flow pattern and other special arrangements in the steam generator. The hydrodynamic stability is calculated for a single tube assuming that all tubes are exposed to the same gas temperature profile and changing the water flow in a single tube will not influence the conditions on the gas side. Varying the water flow by keeping gas temperature constant and repeating the steam generator calculations yield pressure drop and steam temperature as a function of flow rate. 3 - Restrictions on the complexity of the problem: Maximum

  5. A system to control low pressure turbine temperatures

    International Nuclear Information System (INIS)

    1980-01-01

    An improved system to control low pressure turbine cycle steam and metal temperatures by governing the heat transfer operation in a moisture separator-reheater is described. The use of the present invention in a pressurized water reactor or a boiling water reactor steam turbine system is demonstrated. (UK)

  6. Exergy Analysis of a Subcritical Reheat Steam Power Plant with Regression Modeling and Optimization

    Directory of Open Access Journals (Sweden)

    MUHIB ALI RAJPER

    2016-07-01

    Full Text Available In this paper, exergy analysis of a 210 MW SPP (Steam Power Plant is performed. Firstly, the plant is modeled and validated, followed by a parametric study to show the effects of various operating parameters on the performance parameters. The net power output, energy efficiency, and exergy efficiency are taken as the performance parameters, while the condenser pressure, main steam pressure, bled steam pressures, main steam temperature, and reheat steam temperature isnominated as the operating parameters. Moreover, multiple polynomial regression models are developed to correlate each performance parameter with the operating parameters. The performance is then optimizedby using Direct-searchmethod. According to the results, the net power output, energy efficiency, and exergy efficiency are calculated as 186.5 MW, 31.37 and 30.41%, respectively under normal operating conditions as a base case. The condenser is a major contributor towards the energy loss, followed by the boiler, whereas the highest irreversibilities occur in the boiler and turbine. According to the parametric study, variation in the operating parameters greatly influences the performance parameters. The regression models have appeared to be a good estimator of the performance parameters. The optimum net power output, energy efficiency and exergy efficiency are obtained as 227.6 MW, 37.4 and 36.4, respectively, which have been calculated along with optimal values of selected operating parameters.

  7. Critical review of use of high pressure saturated steam turbine economizers in nuclear power plants

    International Nuclear Information System (INIS)

    Urbanek, J.

    1981-01-01

    In the high-pressure part of the turbine drops of moisture condensate, which causes erosion and has negative impact on the service-life of the turbine and on its thermodynamic efficiency. Various designs have been put forward to eliminate moisture. A good combination is moisture separation combined with the offtake of steam for the regeneration of feed water or for the steam re-heater. As concerns the high-pressure component of the turbine it is best to offtake steam for the feed water heater and for heating the steam between the high- and low-pressure components of the turbine. The connections of the heater and re-heater in diagrams of various manufacturers are evaluated and compared. It appears to be uneconomical to use the heater in cases where feed water would be heated to temperature considerably below its optimal value. (M.D.)

  8. Reheating, thermalization and non-thermal gravitino production in MSSM inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrantelli, Andrea [Tallinn University of Technology, Faculty of Civil Engineering, Tallinn (Estonia)

    2017-10-15

    In the framework of MSSM inflation, matter and gravitino production are here investigated through the decay of the fields which are coupled to the udd inflaton, a gauge-invariant combination of squarks. After the end of inflation, the flat direction oscillates about the minimum of its potential, losing at each oscillation about 56% of its energy into bursts of gauge/gaugino and scalar quanta when crossing the origin. These particles then acquire a large inflaton VEV-induced mass and decay perturbatively into the MSSM quanta and gravitinos, transferring the inflaton energy very efficiently via instant preheating. Regarding thermalization, we show that the MSSM degrees of freedom thermalize very quickly, yet not immediately by virtue of the large vacuum expectation value of the inflaton, which breaks the SU(3){sub C} x U(1){sub Y} symmetry into a residual U(1). The energy transfer to the MSSM quanta is very efficient, since full thermalization is achieved after only O(40) complete oscillations. The udd inflaton thus provides an extremely efficient reheating of the Universe, with a temperature T{sub reh} = O(10{sup 8} GeV), which allows for instance several mechanisms of baryogenesis. We also compute the gravitino number density from the perturbative decay of the flat direction and of the SUSY multiplet. We find that the gravitinos are produced in negligible amount and satisfy cosmological bounds such as the Big Bang nucleosynthesis (BBN) and dark matter (DM) constraints. (orig.)

  9. Oxidation of zircaloy-2 in high temperature steam

    International Nuclear Information System (INIS)

    Ikeda, Seiichi; Ito, Goro; Ohashi, Shigeo

    1975-01-01

    Oxidation tests were conducted for zircaloy-2 in steam at temperature ranging from 900 to 1300 0 C to clarify its oxidation kinetics as a nuclear fuel cladding materials in case of a loss-of-coolant accident. The influence of maximum temperature and heating rate of the specimen on its oxidation rate in steam was investigated. The changes in mechanical properties of the specimens after oxidation tests are also studied. The results obtained were summarized as follows: (1) The weight of the specimen after oxidation in steam increased two times as the time required to reach the maximum temperature increased from 1 to 10 mins. (2) The kinetics of oxidation of zircaloy-2 in steam were not affected by the difference in the surface condition before test such as chemical polishing or pre-oxidation in steam. (3) The dominant growth of oxide film on the surface of zircaloy-2 was observed at the initial stage of oxidation in steam. However, the thickness of oxygen-rich solid solution layer under the film increased gradually with the progress of oxidation and the ratio of oxygen in oxide to that in solid solution has a constant value of 8:2. (4) The breakaway took place only in the specimen subjected to 900 0 C repeated heating. This penomenon was caused by the local growth of the oxide below a crack of the oxide film resulting from the reheating of the specimen. (5) The results of bending tests showed that the deflection until fracture of the specimen was smaller for the one heated at a higher temperature even if the weight increase was of the same order of magnitude for both specimens. (6) It was concluded that the ductility of zircaloy-2 decreased remarkably at a heating temperature in excess of 1100 0 C for more than 5 min. (auth.)

  10. Gravitational wave signals and cosmological consequences of gravitational reheating

    Science.gov (United States)

    Artymowski, Michał; Czerwińska, Olga; Lalak, Zygmunt; Lewicki, Marek

    2018-04-01

    Reheating after inflation can proceed even if the inflaton couples to Standard Model (SM) particles only gravitationally. However, particle production during the transition between de-Sitter expansion and a decelerating Universe is rather inefficient and the necessity to recover the visible Universe leads to a non-standard cosmological evolution initially dominated by remnants of the inflaton field. We remain agnostic to the specific dynamics of the inflaton field and discuss a generic scenario in which its remnants behave as a perfect fluid with a general barotropic parameter w. Using CMB and BBN constraints we derive the allowed range of inflationary scales. We also show that this scenario results in a characteristic primordial Gravitational Wave (GW) spectrum which gives hope for observation in upcoming runs of LIGO as well as in other planned experiments.

  11. Design of large reheat steam turbines for U.K. and overseas markets

    International Nuclear Information System (INIS)

    Mitchell, J.M.

    1979-01-01

    Two prototype designs of large reheat steam turbines are described, together with the technical, economic and plant design aspects that have influenced their main features. Relevant service experience is outlined and details are given of the solutions adopted to overcome the relatively few problems that were encountered. The evolution of these designs to form the current range of adaptable, pre-engineered modular designs is presented and the main features of current machines are described. A brief account is given of likely future developments in large steam turbines. (author)

  12. A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Young [School of Mechanical and Aerospace Systems Engineering, Research Center of Industrial Technology, Chonbuk National University, 664-14 Duckjin-Dong, Duckjin-Gu, Jeonju, Chonbuk 561-756 (Korea)

    2007-09-15

    A mathematical heat transfer model for the prediction of heat flux on the slab surface and temperature distribution in the slab has been developed by considering the thermal radiation in the furnace chamber and transient heat conduction governing equations in the slab, respectively. The furnace is modeled as radiating medium with spatially varying temperature and constant absorption coefficient. The steel slabs are moved on the next fixed beam by the walking beam after being heated up through the non-firing, charging, preheating, heating, and soaking zones in the furnace. Radiative heat flux calculated from the radiative heat exchange within the furnace modeled using the FVM by considering the effect of furnace wall, slab, and combustion gases is introduced as the boundary condition of the transient conduction equation of the slab. Heat transfer characteristics and temperature behavior of the slab is investigated by changing such parameters as absorption coefficient and emissivity of the slab. Comparison with the experimental work show that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. (author)

  13. Contamination prevention of superheaters and reheaters during initial startup and operation

    International Nuclear Information System (INIS)

    Gabrielli, F.; Sylvester, W.R.; Thimot, G.W.

    1976-01-01

    The general precautions that should be taken to minimize the potential for harmful contamination or oxygen corrosion of power plant superheaters and reheaters during the period from field storage through operation are discussed and summarized. Present boiler industry start-up and operating practices intended to minimize the introduction of solids to the superheater are, as proven by experience, adequate to avoid contamination-related problems. No basic changes to general industry practice are necessary. What is needed, however, is a continuing awareness of the potential for contamination-related problems so that in the specific application of these practices all likely sources of contamination will be considered

  14. Simultaneously estimation for surface heat fluxes of steel slab in a reheating furnace based on DMC predictive control

    International Nuclear Information System (INIS)

    Li, Yanhao; Wang, Guangjun; Chen, Hong

    2015-01-01

    The predictive control theory is utilized for the research of a simultaneous estimation of heat fluxes through the upper, side and lower surface of a steel slab in a walking beam type rolling steel reheating furnace. An inverse algorithm based on dynamic matrix control (DMC) is established. That is, each surface heat flux of a slab is simultaneously estimated through rolling optimization on the basis of temperature measurements in selected points of its interior by utilizing step response function as predictive model of a slab's temperature. The reliability of the DMC results is enhanced without prior assuming specific functions of heat fluxes over a period of future time. The inverse algorithm proposed a respective regularization to effectively improve the stability of the estimated results by considering obvious strength differences between the upper as well as lower and side surface heat fluxes of the slab. - Highlights: • The predictive control theory is adopted. • An inversion scheme based on DMC is established. • Upper, side and lower surface heat fluxes of slab are estimated based DMC. • A respective regularization is proposed to improve the stability of results

  15. Influence of Post-Weld Heat Treatment on the Microstructure, Microhardness, and Toughness of a Weld Metal for Hot Bend

    Directory of Open Access Journals (Sweden)

    Xiu-Lin Han

    2016-03-01

    Full Text Available In this work, a weld metal in K65 pipeline steel pipe has been processed through self-designed post-weld heat treatments including reheating and tempering associated with hot bending. The microstructures and the corresponding toughness and microhardness of the weld metal subjected to the post-weld heat treatments have been investigated. Results show that with the increase in reheating temperature, austenite grain size increases and the main microstructures transition from fine polygonal ferrite (PF to granular bainitic ferrite (GB. The density of the high angle boundary decreases at higher reheating temperature, leading to a loss of impact toughness. Lots of martensite/austenite (M/A constituents are observed after reheating, and to a large extent transform into cementite after further tempering. At high reheating temperatures, the increased hardenability promotes the formation of large quantities of M/A constituents. After tempering, the cementite particles become denser and coarser, which considerably deteriorates the impact toughness. Additionally, microhardness has a good linear relation with the mean equivalent diameter of ferrite grain with a low boundary tolerance angle (2°−8°, which shows that the hardness is controlled by low misorientation grain boundaries for the weld metal.

  16. Detection and evaluation of corrosion zones at high temperature in steam generators; Deteccion y evaluacion de zonas de corrosion en alta temperatura de generadoras de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Villafane, Alberto; Chacon Nava, Jose G; Huerta Espino, Mario; Mojica Calderon, Cecilio; Castillo Viveros, Antonio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    This paper presents the methodology for the detection and evaluation of high corrosion zones at high temperature. The results found up to now, show a critical zone in the Babcock Hitachi design, specifically in the high temperature reheater in the zone nearby the outlet header. In the normalized design CE (Mitsubishi) of 300 MW and CE (Canada) of 300 MW, the results found in recent years show small thickness reduction, therefore a good operation of these steam generators is recognized. [Espanol] En este trabajo se presenta la metodologia para la deteccion y evaluacion de zonas de corrosion en alta temperatura. Los resultados encontrados hasta el momento muestran una zona critica en el diseno Babcock Hitachi, especificamente en el recalentador de alta temperatura en la zona cercana al cabezal de salida. En el diseno normalizado CE (Mitsubishi) de 300 MW y CE (Canada) de 300 MW, los resultados encontrados en anos recientes muestran poca disminucion de espesor, por lo que se considera una buena operacion de estos generadores de vapor.

  17. Detection and evaluation of corrosion zones at high temperature in steam generators; Deteccion y evaluacion de zonas de corrosion en alta temperatura de generadoras de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Villafane, Alberto; Chacon Nava, Jose G.; Huerta Espino, Mario; Mojica Calderon, Cecilio; Castillo Viveros, Antonio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    This paper presents the methodology for the detection and evaluation of high corrosion zones at high temperature. The results found up to now, show a critical zone in the Babcock Hitachi design, specifically in the high temperature reheater in the zone nearby the outlet header. In the normalized design CE (Mitsubishi) of 300 MW and CE (Canada) of 300 MW, the results found in recent years show small thickness reduction, therefore a good operation of these steam generators is recognized. [Espanol] En este trabajo se presenta la metodologia para la deteccion y evaluacion de zonas de corrosion en alta temperatura. Los resultados encontrados hasta el momento muestran una zona critica en el diseno Babcock Hitachi, especificamente en el recalentador de alta temperatura en la zona cercana al cabezal de salida. En el diseno normalizado CE (Mitsubishi) de 300 MW y CE (Canada) de 300 MW, los resultados encontrados en anos recientes muestran poca disminucion de espesor, por lo que se considera una buena operacion de estos generadores de vapor.

  18. Cooling of nuclear power stations with high temperature reactors and helium turbine cycles

    International Nuclear Information System (INIS)

    Foerster, S.; Hewing, G.

    1977-01-01

    On nuclear power stations with high temperature reactors and helium turbine cycles (HTR-single circuits) the residual heat from the energy conversion process in the primary and intermediate coolers is removed from cycled gas, helium. Water, which is circulated for safety reasons through a closed circuit, is used for cooling. The primary and intermediate coolers as well as other cooling equipment of the power plant are installed within the reactor building. The heat from the helium turbine cycle is removed to the environment most effectively by natural draught cooling towers. In this way a net plant efficiency of about 40% is attainable. The low quantities of residual heat thereby produced and the high (in comparison with power stations with steam turbine cycles) cooling agent pressure and cooling water reheat pressure in the circulating coolers enable an economically favourable design of the overall 'cold end' to be expected. In the so-called unit range it is possible to make do with one or two cooling towers. Known techniques and existing operating experience can be used for these dry cooling towers. After-heat removal reactor shutdown is effected by a separate, redundant cooling system with forced air dry coolers. The heat from the cooling process at such locations in the power station is removed to the environment either by a forced air dry cooling installation or by a wet cooling system. (orig.) [de

  19. Observational signatures of the parametric amplification of gravitational waves during reheating after inflation

    Science.gov (United States)

    Kuroyanagi, Sachiko; Lin, Chunshan; Sasaki, Misao; Tsujikawa, Shinji

    2018-01-01

    We study the evolution of gravitational waves (GWs) during and after inflation as well as the resulting observational consequences in a Lorentz-violating massive gravity theory with one scalar (inflaton) and two tensor degrees of freedom. We consider two explicit examples of the tensor mass mg that depends either on the inflaton field ϕ or on its time derivative ϕ ˙, both of which lead to parametric excitations of GWs during reheating after inflation. The first example is Starobinsky's R2 inflation model with a ϕ -dependent mg, and the second is a low energy-scale inflation model with a ϕ ˙-dependent mg. We compute the energy density spectrum ΩGW(k ) today of the GW background. In the Starobinsky's model, we show that the GWs can be amplified up to the detectable ranges of both cosmic microwave background and DECi-hertz Interferometer Gravitational wave Observatory, but the bound from the big bang nucleosynthesis is quite tight to limit the growth. In low-scale inflation with a fast transition to the reheating stage driven by the potential V (ϕ )=M2ϕ2/2 around ϕ ≈Mpl (where Mpl is the reduced Planck mass), we find that the peak position of ΩGW(k ) induced by the parametric resonance can reach the sensitivity region of advanced LIGO for the Hubble parameter of order 1 GeV at the end of inflation. Thus, our massive gravity scenario offers exciting possibilities for probing the physics of primordial GWs at various different frequencies.

  20. Thermodynamic performance simulation and concise formulas for triple-pressure reheat HRSG of gas–steam combined cycle under off-design condition

    International Nuclear Information System (INIS)

    Zhang, Guoqiang; Zheng, Jiongzhi; Yang, Yongping; Liu, Wenyi

    2016-01-01

    Highlights: • An off-design performance simulation of triple-pressure reheat HRSG is executed. • The bottoming cycle characteristics of energy transfer/conversion are analyzed. • Concise formulas for the off-design performance of bottoming cycle are proposed. • The accuracy of the formulas is verified under different load control strategies. • The errors of the formulas are generally within 1% at a load of 100–50%. - Abstract: Concise semi-theoretical, semi-empirical formulas are developed in this study to predict the off-design performance of the bottoming cycle of the gas–steam turbine combined cycle. The formulas merely refer to the key thermodynamic design parameters (full load parameters) of the bottoming cycle and off-design gas turbine exhaust temperature and flow, which are convenient in determining the overall performance of the bottoming cycle. First, a triple-pressure reheat heat recovery steam generator (HRSG) is modeled, and thermodynamic analysis is performed. Second, concise semi-theoretical, semi-empirical performance prediction formulas for the bottoming cycle are proposed through a comprehensive analysis of the heat transfer characteristics of the HRSG and the energy conversion characteristics of the steam turbine under the off-design condition. The concise formulas are found to be effective, i.e., fast, simple, and precise in obtaining the thermodynamic parameters for bottoming cycle efficiency, HRSG heat transfer capacity, HRSG efficiency, steam turbine power output, and steam turbine efficiency under the off-design condition. Accuracy is verified by comparing the concise formulas’ calculation results with the simulation results and practical operation data under different load control strategies. The calculation errors are within 1.5% (mainly less than 1% for both simulation and actual operation data) under combined cycle load (gas turbine load) ranging from 50% to 100%. However, accuracy declines sharply when the turbine

  1. Stress corrosion cracking in superheater and reheater austenitic tubing

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, R. Barry [Structural Integrity Associates, Inc., Charlotte, NC (United States); Bursik, Albert [PowerPlant Chemistry GmbH, Neulussheim (Germany)

    2011-02-15

    University 101 courses are typically designed to help incoming first-year undergraduate students to adjust to the university, develop a better understanding of the college environment, and acquire essential academic success skills. Why are we offering a special Boiler and HRSG Tube Failures PPChem 101? The answer is simple, yet very conclusive: - There is a lack of knowledge on the identification of tube failure mechanisms and for the implementation of adequate counteractions in many power plants, particularly at industrial power and steam generators. - There is a lack of knowledge to prevent repeat tube failures. The vast majority of BTF/HTF have been, and continue to be, repeat failures. It is hoped that the information about the failure mechanisms of BTF supplied in this course will help to put plant engineers and chemists on the right track. The major goal of this course is the avoidance of repeat BTF. This eights lesson is focused on Stress Corrosion Cracking in Superheater and Reheater Austenitic Tubing. (orig.)

  2. Processes subject to integrated pollution control. Combustion processes: reheat and heat treatment furnaces 50 MW(th) and over

    International Nuclear Information System (INIS)

    1995-01-01

    This document, part of a series offering guidance on pollution control regulations issued by Her Majesty's Inspectorate of Pollution, focuses on combustion processes involved with reheat and heat treatment furnaces of 50 MW (th) and over. Techniques for controlling releases into air, water and to land are detailed as are the various pollution monitoring strategies. (UK)

  3. Microstructural characteristics and gastro-small intestinal digestion in vitro of potato starch: Effects of refrigerated storage and reheating in microwave.

    Science.gov (United States)

    Colussi, Rosana; Singh, Jaspreet; Kaur, Lovedeep; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra; Stewart, Robert B; Singh, Harjinder

    2017-07-01

    The objective of our study was to evaluate paste clarity, retrogradation (syneresis %), thermal characteristics and kinetics of glucose release during in vitro gastro-small intestinal digestion of freshly cooked and refrigerated potato starch. Freshly cooked starch pastes had a paste clarity of 71%, which decreased to 35.4% whereas syneresis (%) increased after 7days of refrigerated storage. The X-ray and thermal characteristics of native, retrograded and microwave reheated starch samples differed significantly from each other. For the freshly cooked starch pastes, ∼88% starch hydrolysis was observed at the end (150min) of digestion under simulated gastro-small intestinal conditions that decreased to ∼70% for the 7day stored pastes. The hydrolysis (%) of refrigerated pastes increased to 86% and 92% after one and two cycles of microwave reheating, respectively. These results contribute to the understanding of starch retrogradation in relation to starch digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Zone modelling of the thermal performances of a large-scale bloom reheating furnace

    International Nuclear Information System (INIS)

    Tan, Chee-Keong; Jenkins, Joana; Ward, John; Broughton, Jonathan; Heeley, Andy

    2013-01-01

    This paper describes the development and comparison of a two- (2D) and three-dimensional (3D) mathematical models, based on the zone method of radiation analysis, to simulate the thermal performances of a large bloom reheating furnace. The modelling approach adopted in the current paper differs from previous work since it takes into account the net radiation interchanges between the top and bottom firing sections of the furnace and also allows for enthalpy exchange due to the flows of combustion products between these sections. The models were initially validated at two different furnace throughput rates using experimental and plant's model data supplied by Tata Steel. The results to-date demonstrated that the model predictions are in good agreement with measured heating profiles of the blooms encountered in the actual furnace. It was also found no significant differences between the predictions from the 2D and 3D models. Following the validation, the 2D model was then used to assess the impact of the furnace responses to changing throughput rate. It was found that the potential furnace response to changing throughput rate influences the settling time of the furnace to the next steady state operation. Overall the current work demonstrates the feasibility and practicality of zone modelling and its potential for incorporation into a model based furnace control system. - Highlights: ► 2D and 3D zone models of large-scale bloom reheating furnace. ► The models were validated with experimental and plant model data. ► Examine the transient furnace response to changing the furnace throughput rates. ► No significant differences found between the predictions from the 2D and 3D models.

  5. Cold dark matter in brane cosmology scenario

    International Nuclear Information System (INIS)

    Dahab, Eiman Abou El; Khalil, Shaaban

    2006-01-01

    We analyze the dark matter problem in the context of brane cosmology. We investigate the impact of the non-conventional brane cosmology on the relic abundance of non-relativistic stable particles in high and low reheating temperature scenarios. We show that in case of high reheating temperature, the brane cosmology may enhance the dark matter relic density by many order of magnitudes and a stringent lower bound on the five dimensional scale is obtained. We also consider low reheating temperature scenarios with chemical equilibrium and non-equilibrium. We emphasize that in non-equilibrium case, the resulting relic density is very small. While with equilibrium, it is increased by a factor of O(10 2 ) with respect to the standard thermal production. Therefore, dark matter particles with large cross section, which is favored by detection expirements, can be consistent with the recent relic density observational limits

  6. Thermal performance of Brayton power cycles. A study based on high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Herranz, Luis E.; Linares, Jose I.; Moratilla, Beatriz Y.

    2005-01-01

    Power cycles optimization has become an essential ingredient to achieve sustainability and improve economic competitiveness of forthcoming Generation IV designs. This paper investigates performance of several configurations of direct helium Brayton cycles. An optimum layout is proposed based on multiple intercooled compression stages and in-between turbines reheating: C(IC) 2 HTRTX. Under the hypotheses and approximations made, a 59% is estimated and it increases even further (67%) when the foreseen technological development is considered. A sensitive analysis identified key components and variables for cycle performance. Particular attention is paid to the effect of the extracted gas mass fraction for reheating. It is shown that the C(IC) 2 HTRTX cycle provides a feasible and simple way to operate the power plant the load-follow mode with a very little loss of efficiency. (author)

  7. Stein industrie moisture separator reheaters in 900 MW and 1300 MW PWR units behaviour and feedback

    International Nuclear Information System (INIS)

    Guignard, S.; Gabrel, J.; Marceau, J.; Gauchet, J.P.

    1990-01-01

    Various metallurgical investigations were carried out with a view to making technological modifications to the Stein Industrie designed moisture separator reheaters of the 900 MW CP0/CP1 and 1300 MW P4/P'4 plant series. Dismantling and assessment of four reheater bundles from the CP0/CP1 plants revealed tube leaks at the bends and in the straight part of the bundle due chiefly to erosion-corrosion. In addition, thickness losses due to the same phenomenon were observed on the inner walls of the vessels and internal hardware in contact with wet steam. The assessments and inspections carried out in the field on the MSR bundles of the CP0 and CP1 plants confirmed the presence of erosion-corrosion, virtually stabilized to date, and revealed fouling of bends by sequestration of particles in the circuit with presence of some pitting. Fatigue cracking of the last support plate of certain MSRs of the CP0 series was also revealed. Adoption of finned tubes of 18% chrome ferritic stainless steel (Z 2 CT 18) for spare bundles and new MSRs, protection of vessels by austenitic and/or martensitic stainless steel internal hardware, modification of water conditioning in the steam-water circuit, and implementation of some technological modifications should guarantee the longterm resistance of the MSRs [fr

  8. Automatic Generation Control Study in Two Area Reheat Thermal Power System

    Science.gov (United States)

    Pritam, Anita; Sahu, Sibakanta; Rout, Sushil Dev; Ganthia, Sibani; Prasad Ganthia, Bibhu

    2017-08-01

    Due to industrial pollution our living environment destroyed. An electric grid system has may vital equipment like generator, motor, transformers and loads. There is always be an imbalance between sending end and receiving end system which cause system unstable. So this error and fault causing problem should be solved and corrected as soon as possible else it creates faults and system error and fall of efficiency of the whole power system. The main problem developed from this fault is deviation of frequency cause instability to the power system and may cause permanent damage to the system. Therefore this mechanism studied in this paper make the system stable and balance by regulating frequency at both sending and receiving end power system using automatic generation control using various controllers taking a two area reheat thermal power system into account.

  9. Evolution of the microstructure in electrochemically deposited copper films at room temperature

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2007-01-01

    The room temperature evolution of the microstructure in copper electrodeposits (self-annealing) was investigated by means of X-ray diffraction analysis and simultaneous measurement of the electrical resistivity as a function of time with an unprecedented time resolution. Independent of the copper...... the crystallographic texture changes by a multiple twinning mechanism. The kinetics of self-annealing is strongly affected by the thickness of the deposit. Storage of the copper films at sub-zero temperatures effectively hinders self-annealing and does not affect the kinetics of self-annealing upon reheating to room...... temperature....

  10. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  11. Steam generator concept of a small HTR for reheating and for removal of the residual heat

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J; Barnert, H; Hohn, H; Mondry, M [Institut fuer Reaktorenentwicklung, Kernforschungsanlage Juelich GmbH, Juelich (Germany)

    1988-07-01

    The steam generator of a small HTR is arranged above the core in an in line design of the primary loop, thereby helium flows upwards. Water flows downwards in the steam generator to realize cross flow. To achieve stable evaporation conditions during part load operation it is desired to realize upward evaporation in the steam generator. Moreover if the steam generator is also used as a heat sink for removal of residual heat, this desire of upwards evaporation becomes more imperative. It is possible to realize the design of steam generator with upwards evaporation by arranging a hot gas duct in its central region, so that hot helium can flow upwards through it. Therefore helium enters the steam generator from the top and flows downwards and water upwards. In the presented design, a heat exchanger is arranged in the central region of the steam generator instead of a hot gas duct. Hot helium of 750 deg. C flows upwards in this heat exchanger and thereby cools down to the temperature of about 700 deg. C before it enters the bundle of the steam generator at the top. Through an intermediate loop this heat is transferred outside the primary loop, where in an extra heat exchanger live steam is reheated to improve the thermal efficiency of the plant. This intermediate loop works on the basis of forced convection and transfer about 25 MW for reheating. During the shutdown operation of the reactor, this heat exchanger in the central region of the steam generator serves as a heat sink for removal of the residual heat through natural convection in the primary loop. At the same time it is further possible, that intermediate loop also works on the basis of natural convection, because during shutdown operation only a very small amount of heat has to be removed and moreover the outside heat exchanger can be arranged much higher above the central heat exchanger to get favourable conditions for the natural convection. Some of the highlights of the central heat exchanger are: coaxial

  12. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  13. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  14. Effects of S and Mn on the hot workability of STS 316L and 309S steels

    International Nuclear Information System (INIS)

    Lee, Soo Chan; Kim, Young Hwan; Lee, Yun Yong

    1998-01-01

    Effects of sulfur and manganese on the hot workability of STS 316L and 309S steels have been investigated. From the results of hot workability test, the hot ductility was decreased with increasing sulfur content and reheating temperature. This is considered to be caused by sulfur segregations and sulfide precipitates at grain boundaries. Sulfur would be dissolved under the reheating conditions and reprecipitated with decreasing temperatures during hot rolling. The content of reprecipitated sulfur is decreased with increasing manganese content and decreasing reheating temperature. Therefore, the hot ductility is increased with increasing manganese content. It was also found that the hot ductility is increased with decreasing reheating temperature

  15. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  16. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  17. Thermodynamic analysis of SCW NPP cycles with thermo-chemical co-generation of hydrogen

    International Nuclear Information System (INIS)

    Naidin, N.; Mokry, S.; Monichan, R.; Chophla, K.; Pioro, I.; Naterer, G.; Gabriel, K.

    2009-01-01

    Research activities are currently conducted worldwide to develop Generation IV nuclear reactor concepts with the objective of improving thermal efficiency and increasing economic competitiveness of Generation IV Nuclear Power Plants (NPPs) compared to modern thermal power plants. The Super-Critical Water-cooled Reactor (SCWR) concept is one of the six Generation IV options chosen for further investigation and development in several countries including Canada and Russia. Water-cooled reactors operating at subcritical pressures (10 - 16 MPa) have provided a significant amount of electricity production for the past 50 years. However, the thermal efficiency of the current NPPs is not very high (30 - 35%). As such, more competitive designs, with higher thermal efficiencies, which will be close to that of modern thermal power plants (45 - 50%), need to be developed and implemented. Super-Critical Water (SCW) NPPs will have much higher operating parameters compared to current NPPs (i.e., steam pressures of about 25 MPa and steam outlet temperatures up to 625 o C). Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermochemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. The two SCW NPP cycles proposed by this paper are based on direct, regenerative, no-reheat and single-reheat configurations. As such, the main parameters and performance in terms of thermal efficiency of the SCW NPP concepts mentioned above are being analyzed. The cycles are generally comprised of: an SCWR, a SC turbine, one deaerator, ten feedwater heaters, and pumps. The SC turbine of the no-reheat cycle consists of one High-Pressure (HP) cylinder and two Low-Pressure (LP) cylinders. Alternatively, the SC turbine for the single-reheat cycle is comprised of one High-Pressure (HP) cylinder, one Intermediate-Pressure (IP) cylinder and two Low-Pressure (LP) cylinders. Since the single-reheat option

  18. Thermally activated formation of martensite in Fe-C alloys and Fe-17%Cr-C stainless steels during heating from boiling nitrogen temperature

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Somers, Marcel A. J.

    2016-01-01

    The thermally activated austenite-to-martensite transformation was investigated by magnetometry in three Fe-C alloys and in two 17%Cr stainless steels. After quenching to room temperature, samples were immersed in boiling nitrogen and martensite formation was followed during subsequent (re......)heating to room temperature. Different tests were performed applying heating rates from 0.5 K/min to 10 K/min. An additional test consisted in fast (re)heating the samples by immersion in water. Thermally activated martensite formation was demonstrated for all investigated materials by a heating rate......-dependent transformation curve. Moreover, magnetometry showed that the heating rate had an influence on the fraction of martensite formed during sub-zero Celsius treatment. The activation energy for thermally activated martensite formation was quantified in the range 11‒21 kJ/mol by a Kissinger-like method....

  19. Flow-induced vibration and fretting-wear damage in a moisture separator reheater

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.

    1996-01-01

    Tube failures due to excessive flow-induced vibration were experienced in the tube bundles of moisture separator reheaters in a BWR nuclear station. This paper presents the results of a root cause analysis and covers recommendations for continued operation and for replacement tube bundles. The following tasks are discussed: tube failure analysis; flow velocity distribution calculations; flow-induced vibration analysis with particular emphasis on finned-tubes; fretting-wear testing of a tube and tube-support material combination under simulated operating conditions; field measurements of flow-induced vibration; and development of vibration specifications for replacement tube bundles. The effect of transient operating conditions and of other operational changes such as tube fouling were considered in the analysis. This paper outlines a typical field problem and illustrates the application of flow-induced vibration technology for the solution of a practical problem

  20. Effectiveness of oxygen barrier oven bags in low temperature cooking on reduction of warmed-over flavor in beef roasts.

    Science.gov (United States)

    Lepper-Blilie, A N; Berg, E P; Buchanan, D S; Keller, W L; Maddock-Carlin, K R; Berg, P T

    2014-03-01

    A 3×3×2 factorial was utilized to determine if roast size (small, medium, large), cooking method (open-pan, oven bag, vacuum bag), and heating process (fresh, reheated) prevented warmed-over flavor (WOF) in beef clod roasts. Fresh vacuum bag and reheated open-pan roasts had higher cardboardy flavor scores compared with fresh open-pan roast scores. Reheated roasts in oven and vacuum bags did not differ from fresh roasts for cardboardy flavor. Brothy and fat intensity were increased in reheated roasts in oven and vacuum bags compared with fresh roasts in oven and vacuum bags. Differences in TBARS were found in the interaction of heating process and roast size with the fresh and reheated large, and reheated medium roasts having the lowest values. Based on TBARS data, to prevent WOF in reheated beef roasts, a larger size roast in a cooking bag is the most effective method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Development of a PF fired high efficiency power plant (AD700)

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R.; Kjaer, S.; Bugge, J. [DONG Energy Generation, Fredericia (Denmark)

    2007-05-15

    European efforts to start substantial improvements of the performance of well established supercritical coal-fired power technology named the AD700 project began in 1998. Major targets were development of austenitic materials and nickel-based superalloys for the hottest sections of boilers, steam lines and turbines. Other targets were development of boiler and turbine designs for the more advanced conditions and finally economic viability of the AD700 technology has been investigated. The project has been very successful and 40 partners from the European power industry have worked together in several projects co-funded by the European Commission for nearly years. Procurement of mature and commercially optimised AD700 plant could take place around 2015. The investigated nickel-based materials have shown very high creep strengths but they have also shown to be very hard to manufacture, and more efforts to define new machining lines are being started. Ongoing tests indicate that the developed austenitic material will fulfil its creep strength target and is now ready for commercialisation. Development works on boiler and turbine designs for the advanced steam conditions have also been successfully completed but they also clearly indicate that further development work on improved ferritic steel for furnace walls is important. Conventional development of the steam cycles is based on new improved materials, which open for higher steam temperatures and efficiencies whereas other thermodynamic tools are only slowly being accepted. However, in the present paper a proposal for steam cycle improvements not based on higher steam temperatures is presented. The improved cycle is named the Master Cycle (MC) and it is based on a revision of the double reheat steam cycle where the bleeds of the IP turbines have been moved to a feed pump turbine bleeding on the first cold reheat line. Elsam has established protection of a patent for the MC in a number of countries. At constant main

  2. Gas turbine with heating during the expansion in the stator blades

    International Nuclear Information System (INIS)

    Abd El-Maksoud, Rafea Mohamed

    2014-01-01

    Highlights: • A new cycle is herein introduced with a concept of heating during the expansion. • Turbine overheating is avoided by reducing significantly the cycle temperature. • Comparison is done with a reheat cycle having a higher maximum cycle temperature. • The cycle performance is higher than the reheat cycle. • Regeneration is used to boost the present cycle efficiency. - Abstract: Reheat is used in the gas turbine to achieve higher power output. However, the reheat process is constrained by the heat quantity given to it and the choice of reheat point. Consequently, this paper introduces a new gas turbine cycle to overcome the reheat drawbacks and having superior features. In this cycle, the reheat process is replaced by processes of heating the expanded gases while passing through different turbine stator blades. Small amount of combusted gases is utilized to flow inside such blades for heating and mixing with the expanded gases. Nevertheless, this is performed with precautions of turbine overheating by reducing significantly the maximum temperature of the present cycle. The simulated results demonstrate that the cycle performance is increased by raising the quantity of heating during the expansion. Additionally, this cycle achieves greater efficient output than the traditional reheat Brayton cycle operating with higher maximum cycle temperature. To boost the present cycle efficiency, regeneration is used making the possibility of such cycle to be competitive to the combined cycle

  3. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  4. Effects of Three Different Additives and Two Different Bulk Densities on Maize Silage Characteristics, Temperature Profiles, CO2 and O2–Dynamics in Small Scale Silos during Aerobic Exposure

    Directory of Open Access Journals (Sweden)

    Kerstin Helena Jungbluth

    2017-05-01

    Full Text Available Silage quality and aerobic stability are sometimes insufficient. If management requirements are not met, or to improve silage quality, additives are often used. The objective of this study is to investigate the effects of different factors on silage during aerobic conditions. Whole-crop forage maize was harvested and 24 buckets (65 L were filled and assigned to one of four treatment groups: (1 control (no treatment; (2 chemical additive (sodium benzoate, potassium sorbate, sodium acetate; (3 a mixed biological inoculant containing Lactobacillus buchneri, L. plantarum, and Pediococcus acidilacti; and (4 a mixed biological inoculant containing L. buchneri, L. plantarum, and L. rhamnosus. An untreated variation was also ensiled. Two different densities were adjusted during ensiling. After opening, the temperature was measured for seven days and O2 and CO2 concentrations were analysed. The findings show that the chemical additive very effectively prevented silage from reheating and deteriorating. Aerobic reheating of silage was also successfully inhibited through biological additives and high density.

  5. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  6. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.P., E-mail: thpfys@126.com [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L. [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Qian, M., E-mail: ma.qian@rmit.edu.au [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Centre for Additive Manufacturing, Melbourne, VIC 3001 (Australia)

    2015-06-11

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways.

  7. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    International Nuclear Information System (INIS)

    Tang, H.P.; Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L.; Qian, M.

    2015-01-01

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways

  8. The creep life of superheater and reheater tubes under varying pressure conditions in operational boilers

    International Nuclear Information System (INIS)

    Mizen, D.C.; Plastow, B.

    1975-01-01

    The first of each manufacturer's 500 MW boilers supplied to the CEGB (Central Electricity Generating Board) have been subjected to an extensive programme of tests for performance optimization and safe operation. Around 250 thermocouples on superheater and reheater tubes have in each case been monitored as part of the exercise. The readings are corrected and used to compute creep rupture damage based on internationally agreed stress rupture data and a simple cumulative damage concept. Comparison of the design creep rupture life and the cumulative life consumed has in several applications been invaluable in influencing operating procedures and arranging tube modifications or replacements, so that loss of generation by creep rupture failure is minimized. (author)

  9. 13%Cr internal hardware cracks of 1300 MW moisture separator reheater

    International Nuclear Information System (INIS)

    Gauchet, J.P.; Chatelain, M.; Marceau, J.; Guignard, S.; Charbonnel, A.; Vandershaeghe, A.; Roguet, D.

    1994-01-01

    Degradations have been observed on fixing bearing pads of 13% Cr steel plates which protect against erosion-corrosion the inner part of vessels of 1300 MW moisture separator reheaters. These cracks are located between the parent metal sheet and the HAZ of the welds between 13% Cr steel plate and the 18/10 austenitic support washer which assure the fixation on the vessel. They were like an intergranular network and corresponded to a stress intergranular corrosion phenomenon under stream-water. This phenomenon is possible with a very local dechromisation of some 13% Cr grain boundaries which are sometimes enriched with aluminium coming from the parent metal of the steel plate. Two studies have been undertaken: - a mechanical analysis of the behaviour and loading stresses of fixing bearing pads in order to reduce the stress levels which reveal the cracks; - welding tests with different filler metals in order to remove the dechromised and aluminium enriched ares which ar potential corrosion zones. Another solutions for ''in service'' and future devices have been tested and are described. (authors). 9 figs

  10. Suppressing gravitino thermal production with a temperature-dependent messenger coupling

    International Nuclear Information System (INIS)

    Badziak, Marcin; Dalianis, Ioannis; Lalak, Zygmunt

    2016-01-01

    We show that the constraints on GMSB theories from the gravitino cosmology can be significantly relaxed if the messenger-spurion coupling is temperature dependent. We demonstrate this novel mechanism in a scenario in which this coupling depends on the VEV of an extra singlet field S that interacts with the thermalized plasma which can result in a significantly suppressed gravitino production rate. In such a scenario the relic gravitino abundance is determined by the thermal dynamics of the S field and it is easy to fit the observed dark matter abundance evading the stringent constraints on the reheating temperature, thus making gravitino dark matter consistent with thermal leptogenesis.

  11. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  12. Martensite formation in Fe-C alloys at cryogenic temperatures

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Somers, Marcel A. J.

    2017-01-01

    at a rate of 0.0083 K s− 1; (iv) as for (iii) but (re-)heating at 0.167 K s− 1 interrupted by an isothermal step. Data was coupled with hardness measurements and demonstrates that the re-heating conditions from 77 K significantly influence the fraction of austenite retained at the end of the thermal cycle....

  13. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  14. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  15. Development of shelf stable pork sausages using hurdle technology and their quality at ambient temperature (37±1°C) storage.

    Science.gov (United States)

    Thomas, R; Anjaneyulu, A S R; Kondaiah, N

    2008-05-01

    Shelf stable pork sausages were developed using hurdle technology and their quality was evaluated during ambient temperature (37±1°C) storage. Hurdles incorporated were low pH, low water activity, vacuum packaging and post package reheating. Dipping in potassium sorbate solution prior to vacuum packaging was also studied. Reheating increased the pH of the sausages by 0.17units as against 0.11units in controls. Incorporation of hurdles significantly decreased emulsion stability, cooking yield, moisture and fat percent, yellowness and hardness, while increasing the protein percent and redness. Hurdle treatment reduced quality deterioration during storage as indicated by pH, TBARS and tyrosine values. About 1 log reduction in total plate count was observed with the different hurdles as were reductions in the coliform, anaerobic, lactobacilli and Staphylococcus aureus counts. pH, a(w) and reheating hurdles inhibited yeast and mold growth up to day 3, while additional dipping in 1% potassium sorbate solution inhibited their growth throughout the 9 days storage. Despite low initial sensory appeal, the hurdle treated sausages had an overall acceptability in the range 'very good' to 'good' up to day 6.

  16. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  17. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  18. ORTAP: a nuclear steam supply system simulation for the dynamic analysis of high temperature gas cooled reactor transients

    International Nuclear Information System (INIS)

    Cleveland, J.C.; Hedrick, R.A.; Ball, S.J.; Delene, J.G.

    1977-01-01

    ORTAP was developed to predict the dynamic behavior of the high temperature gas cooled reactor (HTGR) Nuclear Steam Supply System for normal operational transients and postulated accident conditions. It was developed for the Nuclear Regulatory Commission (NRC) as an independent means of obtaining conservative predictions of the transient response of HTGRs over a wide range of conditions. The approach has been to build sufficient detail into the component models so that the coupling between the primary and secondary systems can be accurately represented and so that transients which cover a wide range of conditions can be simulated. System components which are modeled in ORTAP include the reactor core, a typical reheater and steam generator module, a typical helium circulator and circulator turbine and the turbine generator plant. The major plant control systems are also modeled. Normal operational transients which can be analyzed with ORTAP include reactor start-up and shutdown, normal and rapid load changes. Upset transients which can be analyzed with ORTAP include reactor trip, turbine trip and sudden reduction in feedwater flow. ORTAP has also been used to predict plant response to emergency or faulted conditions such as primary system depressurization, loss of primary coolant flow and uncontrolled removal of control poison from the reactor core

  19. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  20. Power and efficiency in a regenerative gas-turbine cycle with multiple reheating and intercooling stages

    Science.gov (United States)

    Calvo Hernández, A.; Roco, J. M. M.; Medina, A.

    1996-06-01

    Using an improved Brayton cycle as a model, a general analysis accounting for the efficiency and net power output of a gas-turbine power plant with multiple reheating and intercooling stages is presented. This analysis provides a general theoretical tool for the selection of the optimal operating conditions of the heat engine in terms of the compressor and turbine isentropic efficiencies and of the heat exchanger efficiency. Explicit results for the efficiency, net power output, optimized pressure ratios, maximum efficiency, maximum power, efficiency at maximum power, and power at maximum efficiency are given. Among others, the familiar results of the Brayton cycle (one compressor and one turbine) and of the corresponding Ericsson cycle (infinite compressors and infinite turbines) are obtained as particular cases.

  1. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  2. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  3. Optimum Performance Enhancing Strategies of the Gas Turbine Based on the Effective Temperatures

    Directory of Open Access Journals (Sweden)

    Ibrahim Thamir K.

    2016-01-01

    Full Text Available Gas turbines (GT have come to play a significant role in distributed energy systems due to its multi-fuel capability, compact size and low environmental impact and reduced cost. Nevertheless, the low electrical efficiency, typically about 30% (LHV, is an important obstruction to the development of the GT plants. New strategies are designed for the GT plant, to increase the overall performance based on the operational modeling and optimization of GT power plants. The enhancing strategies effect on the GT power plant’s performance (with intercooler, two-shaft, reheat and regenerative based on the real power plant of GT. An analysis based on thermodynamics has been carried out on the modifications of the cycle configurations’ enhancements. Then, the results showed the effect of the ambient and turbine inlet temperatures on the performance of the GT plants to select an optimum strategy for the GT. The performance model code to compare the strategies of the GT plants were developed utilizing the MATLAB software. The results show that, the best thermal efficiency occurs in the intercooler-regenerative-reheated GT strategy (IRHGT; it decreased from 51.5 to 48%, when the ambient temperature increased (from 273 to 327K. Furthermore, the thermal efficiency of the GT for the strategies without the regenerative increased (about 3.3%, while thermal efficiency for the strategies with regenerative increased (about 22% with increased of the turbine inlet temperature. The lower thermal efficiency occurs in the IHGT strategy, while the higher thermal efficiency occurs in the IRHGT strategy. However, the power output variation is more significant at a higher value of the turbine inlet temperature. The simulation model gives a consistent result compared with Baiji GT plant. The extensive modeling performed in this study reveals that; the ambient temperature and turbine inlet temperature are strongly influenced on the performance of GT plant.

  4. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  5. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  6. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  7. Exergy based parametric analysis of a combined reheat regenerative thermal power plant and water–LiBr vapor absorption refrigeration system

    International Nuclear Information System (INIS)

    Gogoi, T.K.; Talukdar, K.

    2014-01-01

    Highlights: • Exergy analysis of a combined power–absorption cooling system is provided. • Exergetic efficiency of the power cycle and absorption cooling system are calculated. • Irreversibility in each component and total system irreversibility are calculated. • Effect of operating parameters on exergetic performance and irreversibility is analyzed. • Optimum operating parameters are identified based on energy and exergy based results. - Abstract: In this paper, exergy analysis of a combined reheat regenerative steam turbine (ST) based power cycle and water–LiBr vapor absorption refrigeration system (VARS) is presented. Exergetic efficiency of the power cycle and VARS, energy utilization factor (EUF) of the combined system (CS) and irreversibility in each system component are calculated. The effect of fuel flow rate, boiler pressure, cooling capacity and VARS components’ temperature on performance, component and total system irreversibility is analyzed. The second law based results indicate optimum performance at 150 bar boiler pressure and VARS generator, condenser, evaporator and absorber temperature of 80 °C, 37.5 °C, 15 °C and 35 °C respectively. The present exergy based results conform well to the first law based results obtained in a previous analysis done on the same combined system. Irreversibility distribution among various power cycle components shows the highest irreversibility in the cooling tower. Irreversibility of the exhaust flue gas leaving the boiler and the boiler are the next major contributors. Among the VARS components, exergy destruction in the generator is the highest followed by irreversibility contribution of the absorber, condenser and the evaporator

  8. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  9. Quantum electrodynamics at high temperature. 2

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1988-01-01

    The photon sector of QED in d = 3 spatial dimensions is analyzed at high temperature thereby generalizing nontrivially a previous study for d = 1. The imaginary time formalism and an improved renormalized perturbation theory which incorporates second order Debye screening are used. General results are presented for the leading high temperature contributions to all renormalized connected photon Green's functions for fixed external momenta (much smaller than the temperature) to all orders in the improved perturbation theory. Those leading contributions are ultraviolet finite, infrared convergent and gauge invariant, and display an interesting form of dimensional reduction at high temperature. A new path integral representations is given for the high temperature partition function with an external photon source, which is shown to generate all leading high temperature Green's functions mentioned above, and, so, it displays neatly the kind of dimensional reduction which makes QED to become simpler at high temperature. This limiting partition function corresponds to an imaginary time dependent electron positron field interacting with an electromagnetic field at zero imaginary time, and it depends on the renormalized electron mass and electric charge, the second order contribution to the usual renormalization constant Z 3 and a new mass term, which is associated to the photon field with vanishing Lorentz index. The new mass term corresponds to a finite number of diagrams in the high temperature improved perturbation theory and carriers ultraviolet divergences which are compensated for by other contributions (so that the leading high temperature Green's functions referred to above are ultraviolet finite). The dominant high temperature contributions to the renormalized thermodynamic potential to all perturbative orders: i) are given in terms of the above leading high-temperature contributions to the photon Green's functions (except for a few diagrams of low order in the

  10. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  11. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  12. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  13. On the fate of the Standard Model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Luigi Delle; Marzo, Carlo [Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Via Arnesano, 73100 Lecce (Italy); INFN - Sezione di Lecce,via Arnesano, 73100 Lecce (Italy); Urbano, Alfredo [SISSA - International School for Advanced Studies,via Bonomea 256, 34136 Trieste (Italy)

    2016-05-10

    In this paper we revisit and update the computation of thermal corrections to the stability of the electroweak vacuum in the Standard Model. At zero temperature, we make use of the full two-loop effective potential, improved by three-loop beta functions with two-loop matching conditions. At finite temperature, we include one-loop thermal corrections together with resummation of daisy diagrams. We solve numerically — both at zero and finite temperature — the bounce equation, thus providing an accurate description of the thermal tunneling. Assuming a maximum temperature in the early Universe of the order of 10{sup 18} GeV, we find that the instability bound excludes values of the top mass M{sub t}≳173.6 GeV, with M{sub h}≃125 GeV and including uncertainties on the strong coupling. We discuss the validity and temperature-dependence of this bound in the early Universe, with a special focus on the reheating phase after inflation.

  14. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  15. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  16. Low temperature molten salt synthesis of Y2Sn2O7 anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Nithyadharseni, P.; Reddy, M.V.; Ozoemena, Kenneth I.; Balakrishna, R. Geetha; Chowdari, B.V.R.

    2015-01-01

    Highlights: • For the first time Y 2 Sn 2 O 7 compound was prepared at very low temperature by molten salt method. • We studied the effect of reheating on electrochemical properties. • All the compounds showed particle size of below 500 nm. • The all compounds showed a stable and good capacity retention during cycling. - Abstract: For the first time, yttrium tin oxide (Y 2 Sn 2 O 7 ) compound is prepared at low temperature (400 °C) with cubic pyrochlore structure via molten salt method using KOH as a flux for their electrochemical applications. The final product is reheated at three different temperatures of 600, 800 and 1000 °C for 6 h in air, are physically and chemically characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical studies of galvanostatic cycling (GC), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Galvanostatic cycling of Y 2 Sn 2 O 7 compounds are carried out with three different current densities of 60, 100 and 250 mA g −1 and the potential range of 0.005–1.0 V vs. Li. The EIS is carried out to study the electrode kinetics during discharge and charge at various voltages and corresponding variation of resistance and capacitance values are discussed.

  17. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  18. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  19. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  20. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  1. Effect of pre-cooking methods on the chemical and sensory deterioration of ready-to-eat chicken patties during chilled storage and microwave reheating.

    Science.gov (United States)

    Ferreira, Valquíria C S; Morcuende, David; Madruga, Marta S; Hernández-López, Silvia H; Silva, Fábio A P; Ventanas, Sonia; Estévez, Mario

    2016-06-01

    The effects of pre-cooking methods, namely, boiling (BL), roasting (RT) and grilling (GR), refrigerated storage (14 days/+4 °C) and microwave reheating on chicken patties were studied. Physical, chemical and sensory parameters were evaluated in order to correlate the chemical deterioration of ready-to-eat chicken patties with the acceptance of the odor. Chemical deterioration was evaluated through the chemical composition, Maillard compounds, Thiobarbituric acid-reactive substances (TBARS) and volatiles. Sensory deterioration (odor liking) was performed by an acceptance test with hedonic scale. According to the TBARS values and volatile compounds generated in the head space during the examined stages, the pre-cooking method and the storage time had a significant effect on lipid oxidation, whereas reheating in a microwave had a negligible impact. At each succeeding processing stage, panelists gave lower odor scores to all samples and no significant differences were found between treatments at any stage. RT and GR patties showed less intense chemical changes and presented higher acceptation scores by the sensory panel than BL patties. Thus, the choice of pre-cooking method and control of storage conditions plays a key role in the inhibition of oxidative changes in ready-to-eat chicken patties.

  2. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  3. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  4. Advanced High Temperature Structural Seals

    Science.gov (United States)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  5. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  6. Scale hierarchy in high-temperature QCD

    CERN Document Server

    Akerlund, Oscar

    2013-01-01

    Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature $T_c$. At high temperature $T \\gg T_c$, the smallness of the running coupling $g$ induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales $T$, $g T$ and $g^2 T$. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few $T_c$ appears surprising a posteriori.

  7. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  8. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  9. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  10. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  11. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  12. Viability study for application of combined reheater cycle (CRC) to fluidized bed combustion plants; Estudio de Viabilidad para la Aplicacion del Ciclo de Recalentamiento Combinado (CRC) a Plantas de Combustion de Lecho Fuido Atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Basically, the project try to analyze the application viability of a first reheating in steam cycles of little power plants, useful mainly for biomass and wastes, in our case with coal blends; and a second reheating of the steam in conventional and fluidized bed combustion plants. Using in both cases the thermic energy of the exhaust gases from one gas turbine. The advantages of the CRC cycle are: (1) Reduction of the moisture in the turbine, increasing the energy efficiency and blade protection. (2) To take advantage of the waste gas energy from the gas turbine in optimum way. (3) Great operation flexibility under good efficiency results. In general, the system can use the synergy between gas, coal and waste energies with the highest global efficiency. (Author)

  13. High-Temperature Corrosion Behavior of Alloy 617 in Helium Environment of Very High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Lee, Gyeong-Geun; Jung, Sujin; Kim, Daejong; Jeong, Yong-Whan; Kim, Dong-Jin

    2012-01-01

    Alloy 617 is a Ni-base superalloy and a candidate material for the intermediate heat exchanger (IHX) of a very high temperature gas reactor (VHTR) which is one of the next generation nuclear reactors under development. The high operating temperature of VHTR enables various applications such as mass production of hydrogen with high energy efficiency. Alloy 617 has good creep resistance and phase stability at high temperatures in an air environment. However, it was reported that the mechanical properties decreased at a high temperature in an impure helium environment. In this study, high-temperature corrosion tests were carried out at 850°C-950°C in a helium environment containing the impurity gases H_2, CO, and CH_4, in order to examine the corrosion behavior of Alloy 617. Until 250 h, Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures. The activation energy for oxidation in helium environment was 154 kJ/mol. The SEM and EDS results elucidated a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbides. The thickness and depths of degraded layers also showed a parabolic relationship with time. A normal grain growth was observed in the Cr-rich surface oxide layer. When corrosion tests were conducted in a pure helium environment, the oxidation was suppressed drastically. It was elucidated that minor impurity gases in the helium would have detrimental effects on the high temperature corrosion behavior of Alloy 617 for the VHTR application.

  14. Transitionless Enhanced Confinement and the Role of Radial Electric Field Shear

    International Nuclear Information System (INIS)

    Coppi, B.; Ernst, D.R.; Bell, M.G.; Bell, R.E.; Budny, R.V.

    1999-01-01

    Evidence for the role of radial electric field shear in enhanced confinement regimes attained without sharp bifurcations or transitions is presented. Temperature scans at constant density, created in the reheat phase following deuterium pellet injection into supershot plasmas in the Tokamak Fusion Test Reactor [J.D. Strachan, et al., Phys. Rev. Lett. 58 (1987) 1004] are simulated using a first-principles transport model. The slow reheat of the ion temperature profile, during which the temperature nearly doubles, is not explained by relatively comprehensive models of transport due to Ion Temperature Gradient Driven Turbulence (ITGDT), which depends primarily on the (unchanging) electron density gradient. An extended model, including the suppression of toroidal ITGDT by self-consistent radial electric field shear, does reproduce the reheat phase

  15. Fiscal 2000 report on the development of high-efficiency refuse-fueled power generation technology; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu 2000 nendo hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts were made to develop a refuse gasification/fusion power generation technology to contribute to the effective utilization of unexploited energy and to reduction in greenhouse gas emissions. Developed in the technology of elevating steam temperature were the evaluation of high-temperature corrosion of SH materials and a high temperature dust removing system, dechlorination technology for the thermolysis process, and a ceramic-made high-temperature air heater. For the avoidance of exhaust gas reheating, development was carried out for a low-temperature denitration unit, stable refuse feeding system for reduction in the self-heat melting critical calorific value, waste plastic injection technology for reduction in the amount of external fuel injection, and so forth. The effect of the developed element technologies were evaluated and a detailed feasibility study was conducted for a refuse gas conversion power generation system using gas engine power generation for minor-scale general waste treatment facilities. In the survey of the trend of refuse-fueled power generation technologies, trend in Japan and advanced refuse-fueled power generation systems and their introduction in Europe and America were investigated. (NEDO)

  16. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Science.gov (United States)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse

    2017-10-17

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  17. Power plant and system for accelerating a cross compound turbine in such plant, especially one having an HTGR steam supply

    International Nuclear Information System (INIS)

    Jaegtnes, K.O.; Braytenbah, A.S.

    1977-01-01

    An electric power plant having a cross compound steam turbine and a steam source that includes a high temperature gas-cooled nuclear reactor is described. The steam turbine includes high and intermediate-pressure portions which drive a first generating means, and a low-pressure portion which drives a second generating means. The steam source supplies superheat steam to the high-pressure turbine portion, and an associated bypass permits the superheat steam to flow from the source to the exhaust of the high-pressure portion. The intermediate and low-pressure portions use reheat steam; an associated bypass permits reheat steam to flow from the source to the low-pressure exhaust. An auxiliary turbine driven by steam exhausted from the high-pressure portion and its bypass drives a gas blower to propel the coolant gas through the reactor. While the bypass flow of reheat steam is varied to maintain an elevated pressure of reheat steam upon its discharge from the source, both the first and second generating means and their associated turbines are accelerated initially by admitting steam to the intermediate and low-pressure portions. The electrical speed of the second generating means is equalized with that of the first generating means, whereupon the generating means are connected and acceleration proceeds under control of the flow through the high-pressure portion. 29 claims, 2 figures

  18. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  19. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  20. Cosmological consequences of nearly conformal dynamics at the TeV scale

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Servant, Géraldine

    2011-01-01

    Nearly conformal dynamics at the TeV scale as motivated by the hierarchy problem can be characterized by a stage of significant supercooling at the electroweak epoch. This has important cosmological consequences. In particular, a common assumption about the history of the universe is that the reheating temperature is high, at least high enough to assume that TeV-mass particles were once in thermal equilibrium. However, as we discuss in this paper, this assumption is not well justified in some models of strong dynamics at the TeV scale. We then need to reexamine how to achieve baryogenesis in these theories as well as reconsider how the dark matter abundance is inherited. We argue that baryonic and dark matter abundances can be explained naturally in these setups where reheating takes place by bubble collisions at the end of the strongly first-order phase transition characterizing conformal symmetry breaking, even if the reheating temperature is below the electroweak scale ∼ 100 GeV. In particular, non-thermal production of heavy WIMPs during bubble collisions becomes a well-motivated possibility. We also discuss inflation as well as gravity wave smoking gun signatures of this class of models

  1. A test of the 40Ar/39Ar age spectrum technique on some terrestrial materials

    Science.gov (United States)

    Lanphere, M.A.; Brent, Dalrymple G.

    1971-01-01

    40Ar/39Ar age spectra were determined for 10 terrestrial rock and mineral samples whose geologic history is known from independent evidence. The spectra for six mineral and whole rock samples, including biotite, feldspar, hornblende, muscovite, and granodiorite, that have experienced post-crystallization heating did not reveal the age of crystallization in any obvious way. Minima in the spectra, however, give reasonable maximum ages for reheating and high-temperature maxima can be interpreted as minimum crystallization ages. High-temperature ages of microcline and albite that have not been reheated are approximately 10% younger than the known crystallization age. Apparently there are no domains in these feldspars that have retained radiogenic 40Ar quantitatively. Spectra from two diabase samples that contain significant quantities of excess argon might mistakenly be interpreted as spectra from reheated samples and do not give the age of emplacement. The 40Ar/39Ar age spectrum technique may be a potentially valuable tool for the study of geologic areas with complex histories, but the interpretation of age spectra from terrestrial samples seems to be more difficult than suggested by some previous studies. ?? 1971.

  2. Rapid Tempering of Martensitic Stainless Steel AISI420: Microstructure, Mechanical and Corrosion Properties

    Science.gov (United States)

    Abbasi-Khazaei, Bijan; Mollaahmadi, Akbar

    2017-04-01

    In this research, the effect of rapid tempering on the microstructure, mechanical properties and corrosion resistance of AISI 420 martensitic stainless steel has been investigated. At first, all test specimens were austenitized at 1050 °C for 1 h and tempered at 200 °C for 1 h. Then, the samples were rapidly reheated by a salt bath furnace in a temperature range from 300 to 1050 °C for 2 min and cooled in air. The tensile tests, impact, hardness and electrochemical corrosion were carried out on the reheated samples. Scanning electron microscopy was used to study the microstructure and fracture surface. To investigate carbides, transmission electron microscopy and also scanning electron microscopy were used. X-ray diffraction was used for determination of the retained austenite. The results showed that the minimum properties such as the tensile strength, impact energy, hardness and corrosion resistance were obtained at reheating temperature of 700 °C. Semi-continuous carbides in the grain boundaries were seen in this temperature. Secondary hardening phenomenon was occurred at reheating temperature of 500 °C.

  3. A Delay Time Measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) for a High Temperature Experiment

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Sang Baik

    2010-01-01

    The temperature measurement of very high temperature core melt is of importance in a high temperature as the molten pool experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, which the thermocouple, one of the contact methods, is restricted to under 2000 .deg. C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. In order to solve these problems, the delay time technique of ultrasonic wavelets due to high temperature has two sorts of stage. As a first stage, a delay time measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) is suggested. As a second stage, a molten material temperature was measured up to 2300 .deg. C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are performed by special equipment and some experiments supported by KRISS (Korea Research Institute of Standard and Science)

  4. More on cosmological constraints on spontaneous R-symmetry breaking models

    International Nuclear Information System (INIS)

    Hamada, Yuta; Kobayashi, Tatsuo; Kamada, Kohei; Ecole Polytechnique Federale de Lausanne; Ookouchi, Yutaka

    2013-10-01

    We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the U(1) R breaking scale f a is constrained as f a 12-14 GeV regardless of the value of R-axion mass.

  5. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  6. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-01-01

    Very-High-Temperature Reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at helium temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  7. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-08-01

    Very-high-temperature reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at reactor coolant temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  8. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  9. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  10. High-temperature metallography setup

    International Nuclear Information System (INIS)

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  11. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  12. Quintessential inflation on the brane and the relic gravity wave background

    International Nuclear Information System (INIS)

    Sami, M.; Sahni, V.

    2004-01-01

    Quintessential inflation describes a scenario in which both inflation and dark energy (quintessence) are described by the same scalar field. In conventional braneworld models of quintessential inflation gravitational particle-production is used to reheat the universe. This reheating mechanism is very inefficient and results in an excessive production of gravity waves which violate nucleosynthesis constraints and invalidate the model. We describe a new method of realizing quintessential inflation on the brane in which inflation is followed by 'instant preheating' (Felder, Kofman and Linde 1999). The larger reheating temperature in this model results in a smaller amplitude of relic gravity waves which is consistent with nucleosynthesis bounds. The relic gravity wave background has a 'blue' spectrum at high frequencies and is a generic byproduct of successful quintessential inflation on the brane

  13. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  14. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  15. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  16. Stability of High Temperature Standard Platinum Resistance Thermometers at High Temperatures

    OpenAIRE

    Y. A. ABDELAZIZ; F. M. MEGAHED

    2010-01-01

    An investigation of the stability of high temperature standard platinum resistance thermometers HTSPRTs has been carried out for two different designs thermometers (with nominal resistance 0.25 Ω and 2.5 Ω) from two different suppliers. The thermometers were heated for more than 160 hours at temperatures above 960 0C using a vertical furnace with a ceramic block. A study was made of the influence of the heat treatment on the stability of the resistance at the triple point of water, and on the...

  17. Significance of reheat cracks to the integrity of pressure vessels for light-water reactors

    International Nuclear Information System (INIS)

    Canonico, D.A.

    1977-01-01

    Reheat cracks usually manifest themselves as macroscopic defects, which are centimeters long and deep, and are detectable by the usual nondestructive examination (NDE) procedures or as microscopic grain boundary decohesions (GBD) that are beyond the limit of detection by commercial NDE procedures. This report has concentrated on the significance of the microscopic cracks that may go undetected. The probability that GBD exist in the heat-affected zones (HAZ) of weldments of pressure vessel steels is high; particularly in SA 508 Class 2 weldments. A sample of the HAZ from the prolongation-weldment from the Heavy Section Steel Technology program Intermediate Test Vessel (ITV) No. 4 was examined by the Staatliche Materialprufungsanstalt (MPA). They reported GBD 5 mm (0.2 in.) long. This prompted an examination of the HAZ from the ITV vessel that had been tested to failure at 24 0 C (75 0 F). During testing, the region of the weld which contained the flaw that initiated the failure was strained up to 0.5%. A metallographic examination of this region of the weldment revealed GBD, but none of the size reported by the MPA. Further, there was no evidence that the GBD had extended as a consequence of the tests. Fracture toughness tests were made of the HAZ of welds from ITV-4. The electron-beam welding procedure, which permits more accurate siting of the crack, was used. Fracture toughness values in excess of 220 MPa root m (200 ksi root in.) were obtained at -18 0 C

  18. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  19. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  20. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  1. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  2. High-frequency applications of high-temperature superconductor thin films

    Science.gov (United States)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  3. High-frequency applications of high-temperature superconductor thin films

    International Nuclear Information System (INIS)

    Klein, N.

    2002-01-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz. (author)

  4. Inverse method for temperature and stress monitoring in complex-shaped bodies

    International Nuclear Information System (INIS)

    Duda, Piotr; Taler, Jan E- mail: aler@ss5.mech.pk.edu.pl; Roos, Eberhard

    2004-01-01

    The purpose of this work is to formulate a space marching method, which an be used to solve inverse multidimensional heat conduction problems. The method is designed to reconstruct the transient temperature distribution in a hole construction element based on measured temperatures taken at selected points on the outer surface of the construction element. Next, the Finite element Method is used to calculate thermal stresses and stresses caused by other loads such as, for instance, internal pressure. The developed method or solving temperature and total stress distribution is tested using the measured temperatures generated from a direct solution. Transient temperature nd total stress distributions obtained from the method presented below are compared with the values obtained from the direct solution. Finally, the resented method is experimentally verified during the cooling of a hick-walled cylindrical element. The model of a pressure vessel was reheated at 300 deg.C and then cooled by cold water injection. The comparison of results obtained from the inverse method with experimental data hows the high accuracy of the developed method. The presented method allows o optimize the power block's start-up and shut-down operations, contributes o the reduction of heat loss during these operations and to the extension of power block's life. The fatigue and creep usage factor can be computed in an n-line mode. The presented method herein can be applied to monitoring systems that work in conventional as well as in nuclear power plants

  5. Imprints of quantum gravity on large field inflation and reheating

    Energy Technology Data Exchange (ETDEWEB)

    Rompineve Sorbello, Fabrizio

    2017-04-18

    In this thesis we investigate the feasibility and phenomenology of transplanckian field displacements during Inflation as well as the production of very light fields during Reheating. We begin by focusing on realisations of axion inflation in the complex structure moduli sector of Type IIB String Theory (ST) flux compactifications. Firstly, we analyse the problem of backreaction of complex structure moduli on the inflationary trajectory in a concrete model of axion monodromy inflation. Secondly, we propose a realisation of natural inflation where the inflaton arises as a combination of two axions. In both cases we find sufficiently flat inflationary potentials over a limited, but transplanckian field range. However, our realisation of axion monodromy inflation requires a potentially large, though realisable, number of tunings to ensure that the inflationary shift symmetry is only weakly broken. The consequences of the Weak Gravity Conjecture (WGC) for axion monodromy inflation are then explored. We find that the conjecture provides a bound on the inflationary field range, but does not forbid transplanckian displacements. Moreover, we provide a strategy to generalise the WGC to general p-form gauge theories in ST. Finally, we focus on the physics of the early post-inflationary phase. We show that axion monodromy inflation can lead to a phase decomposition, followed by the radiation of potentially detectable gravitational waves. We also propose a strategy to evade the overproduction of Dark Radiation in the Large Volume Scenario of moduli stabilisation, by means of flavour branes wrapping the bulk cycle of the compactification manifold.

  6. Review on fatigue behavior of high-strength concrete after high temperature

    Science.gov (United States)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  7. Two-Layer Linear MPC Approach Aimed at Walking Beam Billets Reheating Furnace Optimization

    Directory of Open Access Journals (Sweden)

    Silvia Maria Zanoli

    2017-01-01

    Full Text Available In this paper, the problem of the control and optimization of a walking beam billets reheating furnace located in an Italian steel plant is analyzed. An ad hoc Advanced Process Control framework has been developed, based on a two-layer linear Model Predictive Control architecture. This control block optimizes the steady and transient states of the considered process. Two main problems have been addressed. First, in order to manage all process conditions, a tailored module defines the process variables set to be included in the control problem. In particular, a unified approach for the selection on the control inputs to be used for control objectives related to the process outputs is guaranteed. The impact of the proposed method on the controller formulation is also detailed. Second, an innovative mathematical approach for stoichiometric ratios constraints handling has been proposed, together with their introduction in the controller optimization problems. The designed control system has been installed on a real plant, replacing operators’ mental model in the conduction of local PID controllers. After two years from the first startup, a strong energy efficiency improvement has been observed.

  8. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  9. High-temperature uncertainty

    International Nuclear Information System (INIS)

    Timusk, T.

    2005-01-01

    Recent experiments reveal that the mechanism responsible for the superconducting properties of cuprate materials is even more mysterious than we thought. Two decades ago, Georg Bednorz and Alex Mueller of IBM's research laboratory in Zurich rocked the world of physics when they discovered a material that lost all resistance to electrical current at the record temperature of 36 K. Until then, superconductivity was thought to be a strictly low-temperature phenomenon that required costly refrigeration. Moreover, the IBM discovery - for which Bednorz and Mueller were awarded the 1987 Nobel Prize for Physics - was made in a ceramic copper-oxide material that nobody expected to be particularly special. Proposed applications for these 'cuprates' abounded. High-temperature superconductivity, particularly if it could be extended to room temperature, offered the promise of levitating trains, ultra-efficient power cables, and even supercomputers based on superconducting quantum interference devices. But these applications have been slow to materialize. Moreover, almost 20 years on, the physics behind this strange state of matter remains a mystery. (U.K.)

  10. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  11. HYFIRE: a tokamak/high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.P.; Benenati, R.; Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

    1981-01-01

    The HYFIRE studies to date have investigated a number of technical approaches for using the thermal energy produced in a high-temperature Tokamak blanket to provide the electrical and thermal energy required to drive a high-temperature (> 1000 0 C) water electrolysis process. Current emphasis is on two design points, one consistent with electrolyzer peak inlet temperatures of 1400 0 C, which is an extrapolation of present experience, and one consistent with a peak electrolyzer temperature of 1100 0 C. This latter condition is based on current laboratory experience with high-temperature solid electrolyte fuel cells. Our major conclusion to date is that the technical integration of fusion and high-temperature electrolysis appears to be feasible and that overall hydrogen production efficiencies of 50 to 55% seem possible

  12. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  13. Borehole Stability in High-Temperature Formations

    Science.gov (United States)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  14. Ion filter for high temperature cleaning

    International Nuclear Information System (INIS)

    Kutomi, Yasuhiro; Nakamori, Masaharu.

    1994-01-01

    A porous ceramic pipe mainly comprising alumina is used as a base pipe, and then crud and radioactive ion adsorbing materials in high temperature and high pressure water mainly comprising a FeTiO 3 compound are flame-coated on the outer surface thereof to a film thickness of about 100 to 300μ m as an aimed value by an acetylene flame-coating method. The flame-coated FeTiO 3 layer is also porous, so that high temperature and high pressure water to be cleaned can pass through from the inside to the outside of the pipe. Cruds can be removed and radioactive ions can be adsorbed during passage. Since all the operations can be conducted at high temperature and high pressure state, cooling is no more necessary for the high temperature and high pressure water to be cleaned, heat efficiency of the plant can be improved and a cooling facility can be saved. Further, since the flame-coating of FeTiO 3 to the porous ceramic pipe can be conducted extremely easily compared with production of a sintering product, cost for the production of filter elements can be saved remarkably. (T.M.)

  15. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  16. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  17. High Temperature Operational Experiences of Helium Experimental Loop

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung-Deok; Kim, Eung-Seon; Kim, Min Hwan

    2015-01-01

    The development of high temperature components of VHTR is very important because of its higher operation temperature than that of a common light water reactor and high pressure industrial process. The development of high temperature components requires the large helium loop. Many countries have high temperature helium loops or a plan for its construction. Table 1 shows various international state-of-the-art of high temperature and high pressure gas loops. HELP performance test results show that there is no problem in operation of HELP at the very high temperature experimental condition. These experimental results also provide the basic information for very high temperature operation with bench-scale intermediate heat exchanger prototype in HELP. In the future, various heat exchanger tests will give us the experimental data for GAMMA+ validation about transient T/H behavior of the IHX prototype and the optimization of the working fluid in the intermediate loop

  18. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  19. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  20. "Green" High-Temperature Polymers

    Science.gov (United States)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  1. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  2. Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik; Haglind, Fredrik

    2014-01-01

    The Kalina split-cycle is a thermodynamic process for converting thermal energy into electrical power. It uses an ammonia–water mixture as a working fluid (like a conventional Kalina cycle) and has a varying ammonia concentration during the pre-heating and evaporation steps. This second feature results in an improved match between the heat source and working fluid temperature profiles, decreasing the entropy generation in the heat recovery system. The present work compares the thermodynamic performance of this power cycle with the conventional Kalina process, and investigates the impact of varying boundary conditions by conducting an exergy analysis. The design parameters of each configuration were determined by performing a multi-variable optimisation. The results indicate that the Kalina split-cycle with reheat presents an exergetic efficiency by 2.8% points higher than a reference Kalina cycle with reheat, and by 4.3% points without reheat. The cycle efficiency varies by 14% points for a variation of the exhaust gas temperature of 100 °C, and by 1% point for a cold water temperature variation of 30 °C. This analysis also pinpoints the large irreversibilities in the low-pressure turbine and condenser, and indicates a reduction of the exergy destruction by about 23% in the heat recovery system compared to the baseline cycle. - Highlights: • The thermodynamic performance of the Kalina split-cycle is assessed. • The Kalina split-cycle is compared to the Kalina cycle, with and without reheat. • An exergy analysis is performed to evaluate its thermodynamic performance. • The impact of varying boundary conditions is investigated. • The Kalina split-cycle displays high exergetic efficiency for low- and medium-temperature applications

  3. More on cosmological constraints on spontaneous R-symmetry breaking models

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Theorie des Phenomenes Physiques; Ookouchi, Yutaka [Kyushu Univ., Fukuoka (Japan). Faculty of Arts and Science

    2013-10-15

    We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the U(1){sub R} breaking scale f{sub a} is constrained as f{sub a}<10{sup 12-14} GeV regardless of the value of R-axion mass.

  4. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  5. Development of VHTR high temperature piping in KHI

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Takano, Shiro

    1981-01-01

    The high temperature pipings used for multi-purpose high temperature gas-cooled reactors are the internally insulated pipings for transporting high temperature, high pressure helium at 1000 deg C and 40 kgf/cm 2 , and the influences exerted by their performance as well as safety to the plants are very large. Kawasaki Heavy Industries, Ltd., has engaged in the development of the high temperature pipings for VHTRs for years. In this report, the progress of the development, the test carried out recently and the problems for future are described. KHI manufactured and is constructing a heater and internally insulated helium pipings for the large, high temperature structure testing loop constructed by Japan Atomic Energy Research Institute. The design concept for the high temperature pipings is to separate the temperature boundary and the pressure boundary, therefore, the double walled construction with internal heat insulation was adopted. The requirements for the high temperature pipings are to prevent natural convection, to prevent bypass flow, to minimize radiation heat transfer and to reduce heat leak through insulator supporters. The heat insulator is composed of two layers, metal laminate insulator and fiber insulator of alumina-silica. The present state of development of the high temperature pipings for VHTRs is reported. (Kako, I.)

  6. Mechanism of high-temperature resistant water-base mud

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P

    1981-01-01

    Based on experiments, the causes and laws governing the changes in the performance of water-base mud under high temperature are analyzed, and the requisites and mechanism of treating agents resisting high temperature are discussed. Ways and means are sought for inhibiting, delaying and making use of the effect of high temperature on the performance of mud, while new ideas and systematic views have been expressed on the preparation of treating agents and set-up of a high temperature resistant water-base mud system. High temperature dispersion and high temperature surface inactivation of clay in the mud, as well as their effect and method of utilization are reviewed. Subjects also touched upon include degradation and cross-linking of the high-temperature resistant treating agents, their use and effect. Based on the above, the preparation of a water-base and system capable of resisting 180 to 250/sup 0/C is recommended.

  7. CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank

    International Nuclear Information System (INIS)

    Tashkun, S.A.; Perevalov, V.I.

    2011-01-01

    We present a high-resolution, high-temperature version of the Carbon Dioxide Spectroscopic Databank called CDSD-4000. The databank contains the line parameters (positions, intensities, air- and self-broadened half-widths, coefficients of temperature dependence of air- and self-broadened half-widths, and air-broadened pressure shifts) of the four most abundant isotopologues of CO 2 . A reference temperature is 296 K and an intensity cutoff is 10 -27 cm -1 /molecule cm -2 at 4000 K. The databank has 628,324,454 entries, covers the 226-8310 cm -1 spectral range and designed for the temperature range 2500-5000 K. Format of CDSD-4000 is similar to that of HITRAN-2008. The databank has been generated within the framework of the method of effective operators and based on the global fittings of spectroscopic parameters (parameters of the effective Hamiltonians and effective dipole moment operators) to observed data collected from the literature. The databank is useful for studying high-temperature radiative properties of CO 2 , including exoplanets atmospheres, aerothemal modeling for Mars entry missions, high-temperature laboratory spectra, and industrial applications. CDSD-4000 is freely accessible via the Internet site (ftp://ftp.iao.ru/pub/CDSD-4000).

  8. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  9. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  10. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  11. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  12. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  13. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  14. Contribution to high-temperature chromatography and high-temperature-gas-chromatography-mass spectrometry of lipids

    International Nuclear Information System (INIS)

    Aichholz, R.

    1998-04-01

    This thesis describes the use of high temperature gas chromatography for the investigation of unusual triacylglycerols, cyanolipids and bees waxes. The used glass capillary columns were pretreated and coated with tailor made synthesized high temperature stable polysiloxane phases. The selective separation properties of the individual columns were tested with a synthetic lipid mixture. Suitable derivatization procedures for the gaschromatographic analyses of neutral lipids, containing multiple bonds as well as hydroxy-, epoxy-, and carboxyl groups, were developed and optimized. Therefore conjugated olefinic-, conjugated olefinic-acetylenic-, hydroxy-, epoxy-, and conjugated olefinic keto triacylglycerols in miscellaneous plant seed oils as well as hydroxy monoesters, diesters and hydroxy diesters in bees waxes could be analysed directly with high temperature gas chromatography for the first time. In order to elucidate the structures of separated lipid compounds, high temperature gas chromatography was coupled to mass spectrometry and tandem mass spectrometry, respectively. Comparable analytical systems are hitherto not commercial available. Therefore instrumental prerequisites for a comprehensive and detailed analysis of seed oils and bees waxes were established. In GC/MS commonly two ionization methods are used, electron impact ionization and chemical ionization. For the analysis of lipids the first is of limited use only. Due to intensive fragmentation only weak molecular ions are observed. In contrast, the chemical ionization yields in better results. Dominant quasi molecular ions enable an unambiguous determination of the molecular weight. Moreover, characteristic fragment ions provide important indications of certain structural features of the examined compounds. Nevertheless, in some cases the chromatographic resolution was insufficient in order to separate all compounds present in natural lipid mixtures. Owing to the selected detection with mass spectrometry

  15. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  16. First high-temperature electronics products survey 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  17. Deformation of high-temperature superconductors

    International Nuclear Information System (INIS)

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  18. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  19. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  20. Close-Spaced High Temperature Knudsen Flow.

    Science.gov (United States)

    1986-07-15

    radiant heat source assembly was substituted for the brazed molybdenum one in order to achieve higher radiant heater temperatures . 2.1.4 Experimental...at very high temperature , and ground flat. The molybdenum is then chemically etched to the desired depth using an etchant which does not affect...RiB6 295 -CLSE PCED HIGH TEMPERATURE KNUDSEN FLOU(U) RASOR I AiASSOCIATES INC SUNNYVALE CA J 8 MCVEY 15 JUL 86 NSR-224 AFOSR-TR-87-1258 F49628-83-C

  1. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chunrui [Univ. of Texas, San Antonio, TX (United States); Enriquez, Erik [Univ. of Texas, San Antonio, TX (United States); Wang, Haibing [Univ. of Texas, San Antonio, TX (United States); Xu, Xing [Univ. of Texas, San Antonio, TX (United States); Bao, Shangyong [Univ. of Texas, San Antonio, TX (United States); Collins, Gregory [Univ. of Texas, San Antonio, TX (United States)

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo2O5+d (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  2. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  3. 1981 Annual status report. High-temperature materials

    International Nuclear Information System (INIS)

    1981-01-01

    The high temperature materials programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. A range of engineering studies is being carried out. A data bank storing factual data on alloys for high temperature applications is being developed and has reached the operational phase

  4. 1982 Annual status report: high-temperature materials

    International Nuclear Information System (INIS)

    Van de Voorde, M.

    1983-01-01

    The High Temperature Materials Programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. Materials and engineering studies include: corrosion with or without load, mechanical properties under static or dynamic loads, surface protection creep of tubular components in corrosive environments and high temperature materials data bank

  5. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  6. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  7. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  8. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1989-08-01

    The current program represents a joint effort between the Electric Power Research Institute (EPRI) in the USA, the Central Research Institute of Electric Power Industry (CRIEPI) in Japan, and the Central Electricity Generating Board (CEGB) in the UK. The goal is to develop an interim high-temperature flaw assessment procedure for high-temperature reactor components. This is to be accomplished through exploratory experimental and analytical studies of high-temperature crack growth. The state-of-the-art assessment and the fracture mechanics database for both types 304 and 316 stainless steels, completed in 1988, serve as a foundation for the present work. Work in the three participating organizations is progressing roughly on schedule. Results to-date are presented in this document. Fundamental tests results are discussed in Section 2. Section 3 focuses on results of exploratory subcritical crack growth tests. Progress in subcritical crack growth modeling is reported in Section 4. Exploratory failure tests are outlined in Section 5. 21 refs., 70 figs., 7 tabs

  9. Older Adults and Food Safety

    Science.gov (United States)

    ... cook meat and poultry to higher temperatures. Ham, cook before eating* 145 °F Ham, fully cooked, to reheat 140 °F Poultry, whole, parts or ground 165 °F Fish 145 °F Egg dishes, casseroles 160 °F Leftovers, to reheat 165 ° ...

  10. High-temperature ductility of electro-deposited nickel

    Science.gov (United States)

    Dini, J. W.; Johnson, H. R.

    1977-01-01

    Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.

  11. High temperature materials characterization

    Science.gov (United States)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  12. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    Science.gov (United States)

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  13. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  14. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  15. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  16. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  17. A novel SOI pressure sensor for high temperature application

    International Nuclear Information System (INIS)

    Li Sainan; Liang Ting; Wang Wei; Hong Yingping; Zheng Tingli; Xiong Jijun

    2015-01-01

    The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 °C in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors. (semiconductor devices)

  18. Research on weld cracking of TP321H stainless steel pipeline under elevated temperature

    International Nuclear Information System (INIS)

    Pan, Jian-hua; Fan, Zhi-cao; Zong, Ning-sheng

    2016-01-01

    The failure of pipeline which adopted material type TP321H austenitic stainless steel and occurred cracking after servicing at elevated temperature for less than two years had been investigated. The cracks were appeared repeatedly although they had been repaired for several times. The pipeline stress analysis was conducted to determine stress levels of cracking positions by finite element analysis software ABAQUS. The mechanical properties of base metals and welds including tensile and charpy impact tests were carried out. The test results showed that ductility of welds cut from the serviced pipeline was very poor. The microstructure investigations suggested that it was intergranular crack located in the HAZ near fusion line. It could be determined that it was reheat cracking based on some other works such as metallographic inspection, SEM, X-ray diffraction, etc. Welds analysis results showed that the welding of pipeline had not been in accord with right qualification of welding procedure leading to poor welding quality. The cracking reasons and preventive measures were discussed. Several suggestions were proposed to help extend service lifetime of the stainless steel pipeline under elevated temperature condition. - Highlights: • The pipeline is calculated by finite element analysis software ABAQUS. • Various tests are made, such as mechanical property, SEM, EDS, X-ray diffraction. • It is reheat cracking or stress relief cracking for the pipeline failure. • The stress levels of pipeline should be as low as possible. • The lifetime of pipeline would be shorten obviously due to poor weld quality.

  19. High temperature thermometric phosphors for use in a temperature sensor

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  20. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  1. Potentialities of high temperature reactors (HTR)

    International Nuclear Information System (INIS)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  2. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank

    Science.gov (United States)

    Lyulin, O. M.; Perevalov, V. I.

    2017-11-01

    We present a high-resolution, high-temperature version of the Acetylene Spectroscopic Databank called ASD-1000. The databank contains the line parameters (position, intensity, Einstein coefficient for spontaneous emission, term value of the lower states, self- and air-broadening coefficients, temperature dependence exponents of the self- and air-broadening coefficients) of the principal isotopologue of C2H2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-27 cm-1/(molecule cm-2) at 1000 K. The databank has 33,890,981 entries and covers the 3-10,000 cm-1 spectral range. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as their temperature dependence exponents were calculated using the empirical equations. The databank is useful for studying high-temperature radiative properties of C2H2. ASD-1000 is freely accessible via the Internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/ASD1000/.

  3. High-Temperature Lead-Free Solder Alternatives: Possibilities and Properties

    DEFF Research Database (Denmark)

    High-temperature solders have been widely used as joining materials to provide stable interconnections that resist a severe thermal environment and also to facilitate the drive for miniaturization. High-lead containing solders have been commonly used as high-temperature solders. The development...... of high-temperature lead-free solders has become an important issue for both the electronics and automobile industries because of the health and environmental concerns associated with lead usage. Unfortunately, limited choices are available as high-temperature lead-free solders. This work outlines...... the criteria for the evaluation of a new high-temperature lead-free solder material. A list of potential ternary high-temperature lead-free solder alternatives based on the Au-Sn and Au-Ge systems is proposed. Furthermore, a comprehensive comparison of the high-temperature stability of microstructures...

  4. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  5. Survey of high-temperature nuclear heat application

    International Nuclear Information System (INIS)

    Kirch, N.; Schaefer, M.

    1984-01-01

    Nuclear heat application at high temperatures can be divided into two areas - use of high-temperature steam up to 550 deg. C and use of high-temperature helium up to about 950 deg. C. Techniques of high-temperature steam and heat production and application are being developed in several IAEA Member States. In all these countries the use of steam for other than electricity production is still in a project definition phase. Plans are being discussed about using steam in chemical industries, oil refineries and for new synfuel producing plants. The use of nuclear generated steam for oil recovery from sands and shale is also being considered. High-temperature nuclear process heat production gives new possibilities for the application of nuclear energy - hard coals, lignites, heavy oils, fuels with problems concerning transport, handling and pollution can be converted into gaseous or liquid energy carriers with no loss of their energy contents. The main methods for this conversion are hydrogasification with hydrogen generated by nuclear heated steam reformers and steam gasification. These techniques will allow countries with large coal resources to replace an important part of their natural gas and oil consumption. Even countries with no fossil fuels can benefit from high-temperature nuclear heat - hydrogen production by thermochemical water splitting, nuclear steel making, ammonia production and the chemical heat-pipe system are examples in this direction. (author)

  6. Hardness of high-pressure high-temperature treated single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kawasaki, S.; Nojima, Y.; Yokomae, T.; Okino, F.; Touhara, H.

    2007-01-01

    We have performed high-pressure high-temperature (HPHT) treatments of high quality single-walled carbon nanotubes (SWCNTs) over a wide pressure-temperature range up to 13 GPa-873 K and have investigated the hardness of the HPHT-treated SWCNTs using a nanoindentation technique. It was found that the hardness of the SWCNTs treated at pressures greater than 11 GPa and at temperatures higher than 773 K is about 10 times greater than that of the SWCNTs treated at low temperature. It was also found that the hardness change of the SWCNTs is related to the structural change by the HPHT treatments which was based on synchrotron X-ray diffraction measurements

  7. High temperature resistant cermet and ceramic compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  8. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  9. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  10. Development of high temperature turbine

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kitao; Nouse, Hiroyuki; Yoshida, Toyoaki; Minoda, Mitsuhiro; Matsusue, Katsutoshi; Yanagi, Ryoji

    1988-07-01

    For the contribution to the development of FJR710, high by-pass ratio turbofan engine, with the study for many years of the development of high efficiency turbine for the jet engine, the first technical prize from the Energy Resource Research Committee was awarded in April, 1988. This report introduced its technical contents. In order to improve the thermal efficiency and enlarge the output, it is very effective to raise the gas temperature at the inlet of gas turbine. For its purpose, by cooling the nozzle and moving blades and having those blades operate at lower temperature than that of the working limitation, they realized, for the first time in Japan, the technique of cooling turbine to heighten the operational gas temperature. By that technique, it was enabled to raise the gas temperature at the inlet of turbine, to 1,350/sup 0/C from 850/sup 0/C. This report explain many important points of study covering the basic test, visualizing flow experiment, material discussion and structural design in the process of development. (9 figs)

  11. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  12. New temperature monitoring devices for high-temperature irradiation experiments in the high flux reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, M.; Futterer, M. A.; Lapetite, J. M. [European Commission Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Fourrez, S. [THERMOCOAX SAS, BP 26, Planquivon, 61438 Flers Cedex (France); Morice, R. [Laboratoire National de Metrologie et d' Essais, 1 rue Gaston Boissier, 75724 Paris (France)

    2009-07-01

    Within the European High Temperature Reactor Technology Network (HTR-TN) and related projects a number of HTR fuel irradiations are planned in the High Flux Reactor Petten (HFR), The Netherlands, with the objective to explore the potential of recently produced fuel for even higher temperature and burn-up. Irradiating fuel under defined conditions to extremely high burn-ups will provide a better understanding of fission product release and failure mechanisms if particle failure occurs. After an overview of the irradiation rigs used in the HFR, this paper sums up data collected from previous irradiation tests in terms of thermocouple data. Some research and development work for further improvement of thermocouples and other on-line instrumentation will be outlined. (authors)

  13. Simulation of a combustion process of a billet reheating furnace; Simulacao do processo de combustao de um forno de reaquecimento de tarugos

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Eduardo Sergio da Silva; Barros, Jose Eduardo Mautone [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica; Ribeiro, Vicente Aleixo Pinheiro [ArcelorMittal Monlevade, Serra, ES (Brazil); Moura Junior, Jose dos Reis Vieira de [ArcelorMittal Long Carbon Americas (Luxembourg); Belisario, Leandro Pego [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2010-07-01

    Real data-based energy balances with few simplifications are a powerful tool for furnaces energy performance evaluation, helping technical people to guide efforts in energy consumption issues, and consequently, in a final product cost reduction. This paper presents a methodology to simulate the combustion process in several operational conditions of a walking-hearth reheat furnace for billets in rolling mill facilities. The computational model consists, basically, in a dynamical solution which measured input variables are supplied from the furnaces supervisory and compared to measures by instruments in the system. Finally, it is made a variability analysis of the furnace and heat exchangers efficiencies.. (author)

  14. Spin Hall magnetoresistance at high temperatures

    International Nuclear Information System (INIS)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-01-01

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y 3 Fe 5 O 12 (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface

  15. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  16. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  17. Symposium on high temperature and materials chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions

  18. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  19. Dual turbine power plant and method of operating such plant, especially one having an HTGR steam supply

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1977-01-01

    A power plant including dual steam turbine-generators connected to pass superheat and reheat steam from a steam generator which derives heat from the coolant gas of a high temperature gas-cooled nuclear reactor is described. Associated with each turbine is a bypass line to conduct superheat steam in parallel with a high pressure turbine portion, and a bypass line to conduct superheat steam in parallel with a lower pressure turbine portion. Auxiliary steam turbines pass a portion of the steam flow to the reheater of the steam generator and drive gas blowers which circulate the coolant gas through the reactor and the steam source. Apparatus and method are disclosed for loading or unloading a turbine-generator while the other produces a steady power output. During such loading or unloading, the steam flows through the turbine portions are coordinated with the steam flows through the bypass lines for protection of the steam generator, and the pressure of reheated steam is regulated for improved performance of the gas blowers. 33 claims, 5 figures

  20. Performance analysis of a potassium-steam two stage vapour cycle

    International Nuclear Information System (INIS)

    Mitachi, Kohshi; Saito, Takeshi

    1983-01-01

    It is an important subject to raise the thermal efficiency in thermal power plants. In present thermal power plants which use steam cycle, the plant thermal efficiency has already reached 41 to 42 %, steam temperature being 839 K, and steam pressure being 24.2 MPa. That is, the thermal efficiency in a steam cycle is facing a limit. In this study, analysis was made on the performance of metal vapour/steam two-stage Rankine cycle obtained by combining a metal vapour cycle with a present steam cycle. Three different combinations using high temperature potassium regenerative cycle and low temperature steam regenerative cycle, potassium regenerative cycle and steam reheat and regenerative cycle, and potassium bleed cycle and steam reheat and regenerative cycle were systematically analyzed for the overall thermal efficiency, the output ratio and the flow rate ratio, when the inlet temperature of a potassium turbine, the temperature of a potassium condenser, and others were varied. Though the overall thermal efficiency was improved by lowering the condensing temperature of potassium vapour, it is limited by the construction because the specific volume of potassium in low pressure section increases greatly. In the combinatipn of potassium vapour regenerative cycle with steam regenerative cycle, the overall thermal efficiency can be 58.5 %, and also 60.2 % if steam reheat and regenerative cycle is employed. If a cycle to heat steam with the bled vapor out of a potassium vapour cycle is adopted, the overall thermal efficiency of 63.3 % is expected. (Wakatsuki, Y.)

  1. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  2. High Temperature Strength of Oxide Dispersion Strengthened Aluminium

    DEFF Research Database (Denmark)

    Clauer, A.H.; Hansen, Niels

    1984-01-01

    constant (except for the material with the lowest oxide content). The high temperature values of the modulus-corrected yield stresses are approximately two-thirds of the low temperature value. During high temperature creep, there is a definite indication of a threshold stress. This threshold stress......The tensile flow stress of coarse-grained dispersion strengthened Al-Al2O3 materials were measured as a function of temperature (77–873 K) and volume fraction (0.19-0.92 vol.%) of aluminium oxide. For the same material, the creep strength was determined as a function of temperature in the range 573......–873 K. The modulus-corrected yield stress (0.01 offset) is found to be temperature independent at low temperature (195–472 K). Between 473 and 573 K, the yield stress starts to decrease with increasing temperature. At high temperatures (573–873 K), the modulus-corrected yield stress is approximately...

  3. High Temperature, Wireless Seismometer Sensor for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  4. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  5. Effect of In-situ Cure on Measurement of Glass Transition Temperatures in High-temperature Thermosetting Polymers

    Science.gov (United States)

    2015-01-01

    TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...illustrated the difficulties inherent in measurement of the glass transition temperature of this high-temperature thermosetting polymer via dynamic...copyright protection in the United States. EFFECT OF IN-SITU CURE ON MEASUREMENT OF GLASS TRANSITION TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING

  6. Quantitative Temperature Dependence of Longitudinal Spin Seebeck Effect at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ken-ichi Uchida

    2014-11-01

    Full Text Available We report temperature-dependent measurements of longitudinal spin Seebeck effects (LSSEs in Pt/Y_{3}Fe_{5}O_{12} (YIG/Pt systems in a high temperature range from room temperature to above the Curie temperature of YIG. The experimental results show that the magnitude of the LSSE voltage in the Pt/YIG/Pt systems rapidly decreases with increasing the temperature and disappears above the Curie temperature. The critical exponent of the LSSE voltage in the Pt/YIG/Pt systems at the Curie temperature is estimated to be 3, which is much greater than that for the magnetization curve of YIG. This difference highlights the fact that the mechanism of the LSSE cannot be explained in terms of simple static magnetic properties in YIG.

  7. Patented installations for the production of methane and natural manures

    Energy Technology Data Exchange (ETDEWEB)

    Milquet, F

    1951-12-01

    Current processes are reviewed and a new technique is described which maintains economically a constant temperature of 40/sup 0/C in the tanks by complete isolation in winter as in summer and periodic reheating of the mass. The tanks were buried underground and had double metal walls with low density cellular concrete between them. The covers were of thick cork, permanently fixed, and coated with an impermeable substance. Reheating was necessary only once during the fermentation, whereas with tanks above ground it had to be carried out more often and more vigorously. Straw was the raw material and the products were highly profitable quantities of methane and artificial manure.

  8. Microstructural Characterization and Mechanical Properties Analysis of Weld Metals with Two Ni Contents During Post-Weld Heat Treatments

    Science.gov (United States)

    Wu, Da-yong; Han, Xiu-lin; Tian, Hong-tao; Liao, Bo; Xiao, Fu-ren

    2015-05-01

    This study designed post-weld heat treatments, including reheating and tempering, associated with hot bending to investigate the microstructures, toughness, and hardness of two weld metals with different Ni contents (transformation temperature and increased the proportion of acicular ferrite (AF). Furthermore, a high Ni content promoted the martensite/austenite (M/A) constituent formation after reheating. The promotion of the M/A formation increased the number of cementite particles, and accelerated cementite coarsening during tempering. The large-angle grain boundary density from the AF improved the toughness despite the negative effect of cementite. The strengthening contributions were calculated, and the grain refinement was the greatest. The high Ni content decreased the effective grain size with a 2 deg tolerance angle, thus enhancing the grain refinement contribution.

  9. Packaging Technologies for High Temperature Electronics and Sensors

    Science.gov (United States)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  10. Promising materials for HTGR high temperature heat exchangers

    International Nuclear Information System (INIS)

    Kuznetsov, E.V.; Tokareva, T.B.; Ryabchenkov, A.V.; Novichkova, O.V.; Starostin, Yu.D.

    1989-01-01

    The service conditions for high-temperature heat-exchangers with helium coolant of HTGRs and requirements imposed on materials for their production are discussed. The choice of nickel-base alloys with solid-solution hardening for long-term service at high temperatures is grounded. Results of study on properties and structure of types Ni-25Cr-5W-5Mo and Ni-20Cr-20W alloy in the temperature range of 900 deg. - 1,000 deg. C are given. The ageing of Ni-25Cr-5W-5Mo alloy at 900 deg. - 950 deg. C results in decreased corrosion-mechanical properties and is caused by the change of structural metal stability. Alloy with 20% tungsten retains a high stability of both structure and properties after prolonged exposure in helium at above temperatures. The alloy has also increased resistance to delayed fracture and low-cycle fatigue at high temperatures. The developed alloy of type Ni-20Cr-20W with microalloying is recommended for production of tubes for HTGR high-temperature heat-exchangers with helium coolant. (author). 3 refs, 8 figs

  11. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  12. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  13. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  14. High-temperature fusion of a multielectron leviton

    Science.gov (United States)

    Moskalets, Michael

    2018-04-01

    The state of electrons injected onto the surface of the Fermi sea depends on temperature. The state is pure at zero temperature and is mixed at finite temperature. In the case of a single-electron injection, such a transformation can be detected as a decrease in shot noise with increasing temperature. In the case of a multielectron injection, the situation is subtler. The mixedness helps the development of quantum-mechanical exchange correlations between injected electrons, even if such correlations are absent at zero temperature. These correlations enhance the shot noise, which in part counteracts the reduction of noise with temperature. Moreover, at sufficiently high temperatures, the correlation contribution to noise predominates over the contribution of individual particles. As a result, in the system of N electrons, the apparent charge (which is revealed via the shot noise) is changed from e at zero temperature to N e at high temperatures. It looks like the exchange correlations glue electrons into one particle of total charge and energy. This point of view is supported by both charge noise and heat noise. Interestingly, in the macroscopic limit, N →∞ , the correlation contribution completely suppresses the effect of temperature on noise.

  15. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  16. HYFIRE: a tokamak-high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Horn, F.; Isaacs, H.; Lazareth, O.W.; Makowitz, H.; Usher, J.

    1980-01-01

    Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 0 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constituents, H 2 and O 2 , electrical input is required. Fourteen hundred degree steam coupled with 40% power efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  17. HYFIRE: a tokamak-high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Horn, F.; Isaacs, H.; Lazareth, O.W.; Makowitz, H.; Usher, J.

    1980-01-01

    Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 0 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constituents, H 2 and O 2 , electrical input is required. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  18. New Waste Calciner High Temperature Operation

    International Nuclear Information System (INIS)

    Swenson, M.C.

    2000-01-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm

  19. High-temperature plasma physics

    International Nuclear Information System (INIS)

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics

  20. Short steel and concrete columns under high temperatures

    Directory of Open Access Journals (Sweden)

    A. E. P. G. A. Jacintho

    Full Text Available The growing demand for knowledge about the effect of high temperatures on structures has stimulated increasing research worldwide. This article presents experimental results for short composite steel and concrete columns subjected to high temperatures in ovens with or without an axial compression load, numerically analyzes the temperature distribution in these columns after 30 and 60 minutes and compares them with experimental results. The models consist of concrete-filled tubes of three different thicknesses and two different diameters, and the concrete fill has conventional properties that remained constant for all of the models. The stress-strain behavior of the composite columns was altered after exposure to high temperatures relative to the same columns at room temperature, which was most evident in the 60-minute tests due to the higher temperatures reached. The computational analysis adopted temperature rise curves that were obtained experimentally.

  1. Dynamic high-temperature characterization of an iridium alloy in tension

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jin, Helena [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Ruhr Univ., Bochum (Germany)

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  2. Development of high-efficiency wastes-burning electric power generating technology. Volume 2. Report for fiscal 1999; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu 1999 nendo hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In high-efficiency power generation using general wastes and combustible industrial wastes as fuel, development has been performed on a wastes gasifying and melting power generation technology. This technology is capable of suppressing generation of dioxines, recovering slag that can be utilized effectively, and reducing ash volume, by thermally decomposing the wastes and melting combustion ash at elevated temperatures by using thermally decomposed gases. With regard to the evaluation on high temperature corrosiveness of SH materials and the development of a high temperature dust removing system, a steam heater was designed, fabricated, and installed in a model plant, wherein the operation test has been performed for about 1,620 hours. For the technology of dechlorination during a thermal decomposition process, dechlorination rate of 90% was confirmed at 425 degrees C or higher in a demonstration plant. In addition, developments were made on a low temperature denitration device to avoid re-heating of waste gases, a stable wastes supply system to reduce quantity of self-heated melt limiting heat generation, and a waste plastics blowing technology to reduce external fuel charge quantity. Furthermore, a survey was carried out on the trends in wastes electric power generation technologies. (NEDO)

  3. Study Progress of Physiological Responses in High Temperature Environment

    Science.gov (United States)

    Li, K.; Zheng, G. Z.; Bu, W. T.; Wang, Y. J.; Lu, Y. Z.

    2017-10-01

    Certain workers are exposed to high temperatures for a long time. Heat stress will result in a series of physiological responses, and cause adverse effects on the health and safety of workers. This paper summarizes the physiological changes of cardiovascular system, core temperature, skin temperature, water-electrolyte metabolism, alimentary system, neuroendocrine system, reaction time and thermal fatigue in high temperature environments. It can provide a theoretical guidance for labor safety in high temperature environment.

  4. Applications of high-temperature superconductivity

    International Nuclear Information System (INIS)

    Malozemoff, A.P.; Gallagher, W.J.; Schwall, R.E.

    1987-01-01

    The new high temperature superconductors open up possibilities for applications in magnets, power transmission, computer interconnections, Josephson devices and instrumentation, among many others. The success of these applications hinges on many interlocking factors, including critical current density, critical fields, allowable processing temperatures, mechanical properties and chemical stability. An analysis of some of these factors suggests which applications may be the easiest to realize and which may have the greatest potential

  5. Reduction of heat losses on the skid pipe system of reheating furnaces in the steel industry; Verringerung der Waermeverluste am Tragrohrsystem von Waermeoefen in der Stahlindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Michael; Huegel, Frank [FBB Engineering GmbH, Moenchengladbach (Germany)

    2011-06-15

    New technology can improve the energy efficiency of thermo processing equipment, innovative technology can ultimately help to reduce CO{sub 2} emissions from existing facilities and simultaneously ensure that the equipment can also operate more economically. The result of consequent development at FBB ENGINEERING GmbH for insulation of skid pipe systems of reheating furnaces in steel industry (walking beam -, pusher type furnace) are efficient pre-fabricated shells made of ultra-light weight castable FLB-11/150-I1 with thermo technical optimized sandwich design that lead to significant and sustainable reduction of heat losses and are responsible for high energy saving potential. Thermo technical CFD simulations, laboratory tests, field trials and complete installations of skid pipe systems show that compared to dense castable heat loss in the skid pipe cooling systems can be reduced up to 30 % and more with pre-fabricated shells made of ultra-light weight castable FLB-11/150-I1. (orig.)

  6. Structural behavior of reinforced concrete structures at high temperatures

    International Nuclear Information System (INIS)

    Yamazaki, N.; Yamazaki, M.; Mochida, T.; Mutoh, A.; Miyashita, T.; Ueda, M.; Hasegawa, T.; Sugiyama, K.; Hirakawa, K.; Kikuchi, R.; Hiramoto, M.; Saito, K.

    1995-01-01

    To establish a method to predict the behavior of reinforced concrete structures subjected simultaneously to high temperatures and external loads, this paper presents the results obtained in several series of tests carried out recently in Japan. This paper reports on the material properties of concrete and steel bars under high temperatures. It also considers the heat transfer properties of thick concrete walls under transient high temperatures, and the structural behavior of reinforced concrete beams subjected to high temperatures. In the tests, data up to 800 C were obtained for use in developing a computational method to estimate the non-linear behavior of reinforced concrete structures exposed to high temperatures. (orig.)

  7. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  8. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  9. High temperature superconductors applications in telecommunications

    International Nuclear Information System (INIS)

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-01-01

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T c superconductors

  10. Elevated temperature erosion studies on some materials for high temperature applications

    International Nuclear Information System (INIS)

    Zhou Jianren.

    1991-01-01

    The surface degradation of materials due to high temperature erosion or combined erosion corrosion is a serious problem in many industrial and aeronautical applications. As such, it has become an important design consideration in many situations. The materials investigated in the present studies are stainless steels, Ti-6Al-4V, alumina ceramics, with and without silicate glassy phase, and zirconia. These are some of the potential materials for use in the high temperature erosive-corrosive environments. The erosion or erosion-corrosion experiments were performed in a high temperature sand-blast type of test rig. The variables studied included the temperature, material composition, heat treatment condition, impingement velocity and angle, erodent concentration, etc. The morphological features of the eroded or eroded-corroded surfaces, substrate deformation, and oxide characteristics were studied by optical and scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, thermogravimetric analysis. The scratch test, single ball impact, and indentation tests were used to understand the behavior of oxide film in particle impacts. Based on these studies, the understanding of the mechanisms involved in the mechanical or combined mechanical and chemical actions in erosion was developed

  11. Higgs mass implications on the stability of the electroweak vacuum

    CERN Document Server

    Elias-Miro, Joan; Giudice, Gian F; Isidori, Gino; Riotto, Antonio; Strumia, Alessandro

    2012-01-01

    We update instability and metastability bounds of the Standard Model electroweak vacuum in view of the recent ATLAS and CMS Higgs results. For a Higgs mass in the range 124--126 GeV, and for the current central values of the top mass and strong coupling constant, the Higgs potential develops an instability around $10^{11}$ GeV, with a lifetime much longer than the age of the Universe. However, taking into account theoretical and experimental errors, stability up to the Planck scale cannot be excluded. Stability at finite temperature implies an upper bound on the reheat temperature after inflation, which depends critically on the precise values of the Higgs and top masses. A Higgs mass in the range 124--126 GeV is compatible with very high values of the reheating temperature, without conflict with mechanisms of baryogenesis such as leptogenesis. We derive an upper bound on the mass of heavy right-handed neutrinos by requiring that their Yukawa couplings do not destabilize the Higgs potential.

  12. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  13. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1978-01-01

    A new development in heat transfer is reported. It is concerned with heat transfer from a gaseous mixture that contains a condensable vapor and is at very high temperature. In the past, heat transfer associated with either a condensable mixture at low temperature or a noncondensable mixture at high temperature has been investigated. The former reduces to the classical problem of fog formation in, say, atmosphere where the rate of condensation is diffusion controlled (molecular or conductive diffusions). In the presence of noncondensable gases, heat transfer to a cooler boundary by this mechanism is known to be drastically reduced. In the latter case, where the high temperature mixture is noncondensable, radiative transfer may become dominant and a vast amount of existing literature exists on this class of problem. A fundamentally different type of problem of relevance to recent advances in open cycle MHD power plants and breeder reactor safety is considered. In the advanced coal-fired power plant using MHD as a topping cycle, a condensable mixture is encountered at temperatures of 2000 to 3000 0 . Condensation of the vaporized slag and seed materials at such a high temperature can take place in the MHD generator channel as well as in the radiant boiler. Similarly, in breeder reactor accident analyses involving hypothetical core disruptive accidents, a UO 2 vapor mixture at 400 0 K or higher is often considered. Since the saturation temperature of UO 2 at one atmosphere is close to 4000 0 K, condensation is also likely at a very high temperature. Accordingly, an objective of the present work is to provide an understanding of heat transfer and condensation mechanics insystems containing a high temperature condensable mixture. The results of the study show that, when a high temperature mixture is in contact with a cooler surface, a thermal boundary layer develops rapidly because of intensive radiative cooling from the mixture

  14. High temperature electronic gain device

    International Nuclear Information System (INIS)

    McCormick, J.B.; Depp, S.W.; Hamilton, D.J.; Kerwin, W.J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments is described. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube

  15. Reheat cracking of austenitic stainless steels - pre-strain effect on intergranular damage; Fissuration en relaxation des aciers inoxydables austenitiques - influence de l'ecrouissage sur l'endommagement intergranulaire

    Energy Technology Data Exchange (ETDEWEB)

    Auzoux, Q

    2004-01-01

    Welding process induces strain in 316 stainless steel affected zones. Their microstructure was reproduce by rolling of three different steels (316L, 316L(N) et 316H). Traction, creep and relaxation tests were performed at 550 deg C and 600 deg C on smooth, notched and pre-cracked specimens. Pre-strain by rolling increases the hardness and the creep resistance because of the high dislocation density but decreases ductility because of the fast development of intergranular damage. This embrittlement leads to crack propagation during relaxation tests on pre-strained steels without distinction in respect to their carbon or nitrogen content. A new intergranular damage model was built using local micro-cracks measurements and finite elements analysis. Pre-strain effect and stress triaxiality ratio effect are reproduced by the modelling so that the reheat cracking risk near welds can now be estimated. (author)

  16. High Temperature Superconductor Resonator Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  17. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  18. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  19. Structural instabilities of high temperature alloys and their use in advanced high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Schuster, H.; Ennis, P.J.; Nickel, H.; Czyrska-Filemonowicz, A.

    1989-01-01

    High-temperature, iron-nickel and nickel based alloys are the candidate heat exchanger materials for advanced high temperature gas-cooled reactors supplying process heat for coal gasification, where operation temperatures can reach 850-950 deg. C and service lives of more than 100,000 h are necessary. In the present paper, typical examples of structural changes which occur in two representative alloys (Alloy 800 H, Fe-32Ni-20Cr and Alloy 617, Ni-22Cr-12Co-9Mo-1Al) during high temperature exposure will be given and the effects on the creep rupture properties discussed. At service temperatures, precipitation of carbides occurs which has a significant effect on the creep behaviour, especially in the early stages of creep when the precipitate particles are very fine. During coarsening of the carbides, carbides at grain boundaries restrict grain boundary sliding which retards the development of creep damage. In the service environments, enhanced carbide precipitation may occur due to the ingress of carbon from the environment (carburization). Although the creep rate is not adversely affected, the ductility of the carburized material at low and intermediate temperatures is very low. During simulated service exposures, the formation of surface corrosion scales, the precipitation of carbides and the formation of internal oxides below the surface leads to depletion of the matrix in the alloying elements involved in the corrosion processes. In thin-walled tubes the depletion of Cr due to Cr 2 O 3 formation on the surface can lead to a loss of creep strength. An additional depletion effect resulting from environmental-metal reactions is the loss of carbon (decarburization) which may occur in specific environments. The compositions of the cooling gases which decarburize the material have been determined; they are to be avoided during reactor operation

  20. Mechanical properties of concrete for power reactor at high temperatures

    International Nuclear Information System (INIS)

    Kawase, Kiyotaka; Tanaka, Hitoshi; Nakano, Masayuki

    1985-01-01

    The purpose of this study is to investigate the mechanical properties of concrete for power reactor at high temperature. This paper presents the creep behavior of concrete at high temperature and the cause by which a specified aggregate is broken at a specified high temperature. The creep coefficient at high temperature is smaller than that at ordinary temperature. (author)

  1. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  2. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  3. High Temperature Electrostrictive Ceramics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  4. HTGR fuel behavior at very high temperature

    International Nuclear Information System (INIS)

    Kashimura, Satoru; Ogawa, Touru; Fukuda, Kousaku; Iwamoto, Kazumi

    1986-03-01

    Fuel behavior at very high temperature simulating abnormal transient of the reactor operation and accidents have been investigated on TRISO coating LEU oxide particle fuels at JAERI. The test simulating the abnormal transient was carried out by irradiation of loose coated particles above 1600 deg C. The irradiation test indicated that particle failure was principally caused by kernel migration. For simulation of the core heat-up accident, two experiments of out-of-pile heating were made. Survival temperature limits were measured and fuel performance at very high temperature were investigated by the heatings. Study on the fuel behavior under reactivity initiated accident was made by NSRR(Nuclear Safety Research Reactor) pulse irradiation, where maximum temperature was higher than 2800 deg C. It was found in the pulse irradiation experiments that the coated particles incorporated in the compacts did not so severely fail unlike the loose coated particles at ultra high temperature above 2800 deg C. In the former particles UO 2 material at the center of the kernel vaporized, leaving a spherical void. (author)

  5. High-temperature morphology of stepped gold surfaces

    International Nuclear Information System (INIS)

    Bilalbegovic, G.; Tosatti, E.; Ercolessi, F.

    1992-04-01

    Molecular dynamics simulations with a classical many-body potential are used to study the high-temperature stability of stepped non-melting metal surfaces. We have studied in particular the Au(111) vicinal surfaces in the (M+1, M-1, M) family and the Au(100) vicinals in the (M, 1, 1) family. Some vicinal orientations close to the non-melting Au(111) surface become unstable close to the bulk melting temperature and facet into a mixture of crystalline (111) regions and localized surface-melted regions. On the contrary, we do not find high-temperature faceting for vicinals close to Au(100), also a non-melting surface. These (100) vicinal surfaces gradually disorder with disappearance of individual steps well below the bulk melting temperature. We have also studied the high-temperature stability of ledges formed by pairs of monoatomic steps of opposite sign on the Au(111) surface. It is found that these ledges attract each other, so that several of them merge into one larger ledge, whose edge steps then act as a nucleation site for surface melting. (author). 43 refs, 8 figs

  6. Viscoelastic creep of high-temperature concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

  7. High Temperature Electro-Mechanical Devices For Nuclear Applications

    International Nuclear Information System (INIS)

    Robertson, D.

    2010-01-01

    Nuclear power plants require a number of electro-mechanical devices, for example, Control Rod Drive Mechanisms (CRDM's) to control the raising and lowering of control rods and Reactor Coolant Pumps (RCP's) to circulate the primary coolant. There are potential benefits in locating electro-mechanical components in areas of the plant with high ambient temperatures. One such benefit is the reduced need to make penetrations in pressure vessels leading to simplified plant design and improved inherent safety. The feature that limits the ambient temperature at which most electrical machines may operate is the material used for the electrical insulation of the machine windings. Conventional electrical machines generally use polymer-based insulation that limits the ambient temperature they can operate in to below 200 degrees Celsius. This means that when a conventional electrical machine is required to operate in a hot area it must be actively cooled necessitating additional systems. This paper presents data gathered during investigations undertaken by Rolls-Royce into the design of high temperature electrical machines. The research was undertaken at Rolls-Royce's University Technology Centre in Advanced Electrical Machines and Drives at Sheffield University. Rolls- Royce has also been investigating high temperature wire and encapsulants and latterly techniques to provide high temperature insulation to terminations. Rolls-Royce used the experience gained from these tests to produce a high temperature electrical linear actuator at sizes representative of those used in reactor systems. This machine was tested successfully at temperatures equivalent to those found inside the reactor vessel of a pressurised water reactor through a full series of operations that replicated in service duty. The paper will conclude by discussing the impact of the findings and potential electro-mechanical designs that may utilise such high temperature technologies. (authors)

  8. Generating high temperature tolerant transgenic plants: Achievements and challenges.

    Science.gov (United States)

    Grover, Anil; Mittal, Dheeraj; Negi, Manisha; Lavania, Dhruv

    2013-05-01

    Production of plants tolerant to high temperature stress is of immense significance in the light of global warming and climate change. Plant cells respond to high temperature stress by re-programming their genetic machinery for survival and reproduction. High temperature tolerance in transgenic plants has largely been achieved either by over-expressing heat shock protein genes or by altering levels of heat shock factors that regulate expression of heat shock and non-heat shock genes. Apart from heat shock factors, over-expression of other trans-acting factors like DREB2A, bZIP28 and WRKY proteins has proven useful in imparting high temperature tolerance. Besides these, elevating the genetic levels of proteins involved in osmotic adjustment, reactive oxygen species removal, saturation of membrane-associated lipids, photosynthetic reactions, production of polyamines and protein biosynthesis process have yielded positive results in equipping transgenic plants with high temperature tolerance. Cyclic nucleotide gated calcium channel proteins that regulate calcium influxes across the cell membrane have recently been shown to be the key players in induction of high temperature tolerance. The involvement of calmodulins and kinases in activation of heat shock factors has been implicated as an important event in governing high temperature tolerance. Unfilled gaps limiting the production of high temperature tolerant transgenic plants for field level cultivation are discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    Science.gov (United States)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  10. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  11. High Temperature Terahertz Detectors Realized by a GaN High Electron Mobility Transistor

    Science.gov (United States)

    Hou, H. W.; Liu, Z.; Teng, J. H.; Palacios, T.; Chua, S. J.

    2017-04-01

    In this work, a high temperature THz detector based on a GaN high electron mobility transistor (HEMT) with nano antenna structures was fabricated and demonstrated to be able to work up to 200 °C. The THz responsivity and noise equivalent power (NEP) of the device were characterized at 0.14 THz radiation over a wide temperature range from room temperature to 200 °C. A high responsivity Rv of 15.5 and 2.7 kV/W and a low NEP of 0.58 and 10 pW/Hz0.5 were obtained at room temperature and 200 °C, respectively. The advantages of the GaN HEMT over other types of field effect transistors for high temperature terahertz detection are discussed. The physical mechanisms responsible for the temperature dependence of the responsivity and NEP of the GaN HEMT are also analyzed thoroughly.

  12. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.

    Science.gov (United States)

    Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W

    2015-03-16

    The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Summary: High Temperature Downhole Motor

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  14. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  15. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  16. High-Temperature Graphite/Phenolic Composite

    Science.gov (United States)

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  17. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  18. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    International Nuclear Information System (INIS)

    Liu Chuan-Jiang; Zheng Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO 4 ) phase precipitates at 250–320°C in the pressure range of 1.0–1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO 4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T−0.7126 (250°C≤T≤320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature. (geophysics, astronomy, and astrophysics)

  19. High temperature effects on compact-like structures

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, E.E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2016-08-15

    In this work we investigate the transition from kinks to compactons at high temperatures. We deal with a family of models, described by a real scalar field with standard kinematics, controlled by a single parameter, real and positive. The family of models supports kink-like solutions, and the solutions tend to become compact when the parameter increases to larger and larger values. We study the one-loop corrections at finite temperature, to see how the thermal effects add to the effective potential. The results suggest that the symmetry is restored at very high temperatures. (orig.)

  20. Research On Bi-Based High-Temperature Superconductors

    Science.gov (United States)

    Banks, Curtis; Doane, George B., III; Golben, John

    1993-01-01

    Brief report describes effects of melt sintering on Bi-based high-temperature superconductor system, as well as use of vibrating-sample magnetometer to determine hysteresis curves at 77 K for partially melt-sintered samples. Also discussed is production of high-temperature superconducting thin films by laser ablation: such films potentially useful in detection of signals of very low power.

  1. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    Science.gov (United States)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  2. Containerless processing at high temperatures using acoustic levitation

    Science.gov (United States)

    Rey, C. A.; Merkley, D. R.; Hampton, S.; Devos, J.; Mapes-Riordan, D.; Zatarski, M.

    1991-01-01

    Advanced techniques are presented which facilitate the development of inert or reducing atmospheres in excess of 2000 K in order to improve processing of containerless capabilities at higher temperatures and to provide more contamination-free environments. Recent testing, in the laboratory and aboard the NASA KC-135 aircraft, of a high-temperature acoustic positioner demonstrated the effectiveness of a specimen motion damping system and of specimen spin control. It is found that stable positioning can be achieved under ambient and heated conditions, including the transient states of heat-up and cool-down. An incorporated high-temperature levitator was found capable of processing specimens of up to 6-mm diameter in a high-purity environment without the contaminating effects of a container at high temperatures and with relative quiescence.

  3. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  4. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  5. High temperature tests for graphite materials

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This study was performed within the framework of the EURISOL for facilities SPIRAL-II (GANIL, France) and SPES (LNL, Italy), and aims to investigate the anticipated strength properties of fine-grained graphite at elevated temperatures. It appears that the major parameters that affect to the lifetime of a graphite target of this IP are the temperature and heating time. High temperature tests were conducted to simulate the heating under the influence of a beam of heavy particles by passing thro...

  6. Present status of high temperature engineering test and research, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    High temperature gas-cooled reactors have excellent features such as the generation of high temperature close to 1000degC, very high inherent safety and high fuel burnup. By the advanced basic research under high temperature irradiation condition, the creation of various new technologies which become the momentum of future technical innovation can be expected. The construction of the high temperature engineering test reactor (HTTR) was decided in 1987, which aims at the thermal output of 30 MW and the coolant temperature at reactor exit of 950degC. The initial criticality is scheduled in 1998. Japan Atomic Energy Research Institute has advanced the high temperature engineering test and research, and plans the safety verifying test of the HTTR, the test of connecting heat utilization plants and so on. In this report, mainly the results obtained for one year from May, 1993 are summarized. The outline of the high temperature engineering test and development of the HTTR technologies are reported. (K.I.)

  7. A high temperature testing system for ceramic composites

    Science.gov (United States)

    Hemann, John

    1994-01-01

    Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.

  8. High temperature transient deformation of mixed oxide fuels

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1986-01-01

    The purpose of this paper is to present recent experimental results on fuel creep under transient conditions at high temperatures. The effect of temperature, stress, heating rate, density and grain size were considered. An empirical formulation is derived for the relationship between strain, stress, temperature and heating rate. This relationship provides a means for incorporating stress relief into the analysis of fuel-cladding interaction during an overpower transient. The effect of sample density and initial grain size is considered by varying the sample parameters. Previously derived steady-state creep relationships for the high temperature creep of mixed oxide fuel were combined with the time dependency of creep found for UO 2 to calculate a transient creep relationship for mixed oxide fuel. These calculated results were found to be in good agreement with the measured high temperature transient creep results

  9. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  10. 3D printed high performance strain sensors for high temperature applications

    Science.gov (United States)

    Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul

    2018-01-01

    Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.

  11. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 kDa w...

  12. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  13. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  14. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  15. Proceedings, phenomenology and applications of high temperature superconductors

    International Nuclear Information System (INIS)

    Bedell, K.S.

    1991-01-01

    Phenomenology and Applications of High Temperature Superconductors, The Los Alamos Symposium: 1991, was sponsored by the Los Alamos National Laboratory, Center for Materials Science, the Advanced Studies Program on High Temperature Superconductivity Theory (ASP) and the Exploratory Research and Development Center. This is the second symposium in the series. High Temperature Superconductivity, The Los Alamos Symposium: 1989, also published by Addison Wesley, focused on the cutting-edge theoretical and experimental issues in high temperature superconductors. This symposium, with its focus on the phenomenology and applications of high temperature superconductors, gives a complementary review of the aspects of the field closely related to the impact of high temperature superconductors on technology. The objective of ASP is to advance the field on a broad front with no specific point of view by bringing a team of leading academic theorists into a joint effort with the theoretical and experimental scientists of a major DOE national laboratory. The ASP consisted of fellows led by Robert Schrieffer (UCSB and now FSU) joined by David Pines (University of illinois), Elihu Abrahams (Rutgers), Sebastian Doniach (Stanford), and Maurice Rice (ETH, Zurich) and theoretical and experimental staff of Los Alamos National Laboratory. This synergism of academic, laboratory, theoretical and experimental research produced a level of interaction and excitement that would not be possible otherwise. This publication and the previous one in the series are just examples of how this approach to advancing science can achieve significant contributions

  16. Seismic test of high temperature piping for HTGR

    International Nuclear Information System (INIS)

    Kobatake, Kiyokazu; Midoriyama, Shigeru; Ooka, Yuzi; Suzuki, Michiaki; Katsuki, Taketsugu

    1983-01-01

    Since the high temperature pipings for the high temperature gas-cooled reactor contain helium gas at 1000 deg C and 40 kgf/cm 2 , the double-walled pipe type consisting of the external pipe serving as the pressure boundary and the internal pipe with heat insulating structure was adopted. Accordingly, their aseismatic design is one of the important subjects. Recently, for the purpose of grasping the vibration characteristics of these high temperature pipings and obtaining the data required for the aseismatic design, two specimens, that is, a double-walled pipe model and a heat-insulating structure, were made, and the vibration test was carried out on them, using a 30 ton vibration table of Kawasaki Heavy Industries Ltd. In the high temperature pipings of the primary cooling system for the multi-purpose, high temperature gas-cooled experimental reactor, the external pipes of 32 B bore as the pressure boundary and the internal pipes of 26 B bore with internal heat insulation consisting of double layers of fiber and laminated metal insulators as the temperature boundary were adopted. The testing method and the results are reported. As the spring constant of spacers is larger and clearance is smaller, the earthquake wave response of double-walled pipes is smaller, and it is more advantageous. The aseismatic property of the heat insulation structure is sufficient. (Kako, I.)

  17. PETIs as High-Temperature Resin-Transfer-Molding Materials

    Science.gov (United States)

    Connell, John N.; Smith, Joseph G., Jr.; Hergenrother, Paul M.

    2005-01-01

    Compositions of, and processes for fabricating, high-temperature composite materials from phenylethynyl-terminated imide (PETI) oligomers by resin-transfer molding (RTM) and resin infusion have been developed. Composites having a combination of excellent mechanical properties and long-term high-temperature stability have been readily fabricated. These materials are particularly useful for the fabrication of high-temperature structures for jet-engine components, structural components on highspeed aircraft, spacecraft, and missiles. Phenylethynyl-terminated amide acid oligomers that are precursors of PETI oligomers are easily made through the reaction of a mixture of aromatic diamines with aromatic dianhydrides at high stoichiometric offsets and 4-phenylethynylphthalic anhydride (PEPA) as an end-capper in a polar solvent such as N-methylpyrrolidinone (NMP). These oligomers are subsequently cyclodehydrated -- for example, by heating the solution in the presence of toluene to remove the water by azeotropic distillation to form low-molecular-weight imide oligomers. More precisely, what is obtained is a mixture of PETI oligomeric species, spanning a range of molecular weights, that exhibits a stable melt viscosity of less than approximately 60 poise (and generally less than 10 poise) at a temperature below 300 deg C. After curing of the oligomers at a temperature of 371 deg C, the resulting polymer can have a glass-transition temperature (Tg) as high as 375 C, the exact value depending on the compositions.

  18. High-Temperature Vibration Damper

    Science.gov (United States)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  19. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Wojcik, C.C.

    1991-01-01

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  20. Gauge coupling unification and nonequilibrium thermal dark matter.

    Science.gov (United States)

    Mambrini, Yann; Olive, Keith A; Quevillon, Jérémie; Zaldívar, Bryan

    2013-06-14

    We study a new mechanism for the production of dark matter in the Universe which does not rely on thermal equilibrium. Dark matter is populated from the thermal bath subsequent to inflationary reheating via a massive mediator whose mass is above the reheating scale T(RH). To this end, we consider models with an extra U(1) gauge symmetry broken at some intermediate scale (M(int) ≃ 10(10)-10(12) GeV). We show that not only does the model allow for gauge coupling unification (at a higher scale associated with grand unification) but it can provide a dark matter candidate which is a standard model singlet but charged under the extra U(1). The intermediate scale gauge boson(s) which are predicted in several E6/SO(10) constructions can be a natural mediator between dark matter and the thermal bath. We show that the dark matter abundance, while never having achieved thermal equilibrium, is fixed shortly after the reheating epoch by the relation T(RH)(3)/M(int)(4). As a consequence, we show that the unification of gauge couplings which determines M(int) also fixes the reheating temperature, which can be as high as T(RH) ≃ 10(11) GeV.

  1. Thermodynamic Temperature of High-Temperature Fixed Points Traceable to Blackbody Radiation and Synchrotron Radiation

    Science.gov (United States)

    Wähmer, M.; Anhalt, K.; Hollandt, J.; Klein, R.; Taubert, R. D.; Thornagel, R.; Ulm, G.; Gavrilov, V.; Grigoryeva, I.; Khlevnoy, B.; Sapritsky, V.

    2017-10-01

    Absolute spectral radiometry is currently the only established primary thermometric method for the temperature range above 1300 K. Up to now, the ongoing improvements of high-temperature fixed points and their formal implementation into an improved temperature scale with the mise en pratique for the definition of the kelvin, rely solely on single-wavelength absolute radiometry traceable to the cryogenic radiometer. Two alternative primary thermometric methods, yielding comparable or possibly even smaller uncertainties, have been proposed in the literature. They use ratios of irradiances to determine the thermodynamic temperature traceable to blackbody radiation and synchrotron radiation. At PTB, a project has been established in cooperation with VNIIOFI to use, for the first time, all three methods simultaneously for the determination of the phase transition temperatures of high-temperature fixed points. For this, a dedicated four-wavelengths ratio filter radiometer was developed. With all three thermometric methods performed independently and in parallel, we aim to compare the potential and practical limitations of all three methods, disclose possibly undetected systematic effects of each method and thereby confirm or improve the previous measurements traceable to the cryogenic radiometer. This will give further and independent confidence in the thermodynamic temperature determination of the high-temperature fixed point's phase transitions.

  2. Macroscopic phase separation in high-temperature superconductors

    Science.gov (United States)

    Wen, Hai-Hu

    2000-01-01

    High-temperature superconductivity is recovered by introducing extra holes to the Cu-O planes, which initially are insulating with antiferromagnetism. In this paper I present data to show the macroscopic electronic phase separation that is caused by either mobile doping or electronic instability in the overdoped region. My results clearly demonstrate that the electronic inhomogeneity is probably a general feature of high-temperature superconductors. PMID:11027323

  3. Review - X-ray diffraction measurements in high magnetic fields and at high temperatures

    Directory of Open Access Journals (Sweden)

    Yoshifuru Mitsui, Keiichi Koyama and Kazuo Watanabe

    2009-01-01

    Full Text Available A system was developed measuring x-ray powder diffraction in high magnetic fields up to 5 T and at temperatures from 283 to 473 K. The stability of the temperature is within 1 K over 6 h. In order to examine the ability of the system, the high-field x-ray diffraction measurements were carried out for Si and a Ni-based ferromagnetic shape-memory alloy. The results show that the x-ray powder diffraction measurements in high magnetic fields and at high temperatures are useful for materials research.

  4. Platform for high temperature materials (PHiTEM)

    International Nuclear Information System (INIS)

    Baluc, N.; Hoffelner, W.; Michler, J.

    2007-01-01

    Advanced energy power systems like Generation IV fission reactors, thermonuclear fusion reactors, solar thermal/solar chemical reactors, gas turbines and coal gasification systems require materials that can operate at high temperatures in extreme environments: irradiation, corrosion, unidirectional and cyclic loads. On the path to development of new and adequate high temperature materials, understanding of damage formation and evolution and of damage effects is indispensable. Damage of materials in components takes place on different time and length scales. Component failure is usually a macroscopic event. Macroscopic material properties and their changes with time (e.g., hardening, creep embrittlement, corrosion) are determined by the micro- to nano-properties of the material. The multi scale is an ambitious and challenging attempt to take these facts into consideration by developing an unified model of the material behaviour. This requires, however, dedicated tools to test and analyse materials on different scales. The platform for high temperatures materials is being set up within the framework of collaboration between the EPFL, the PSI and the EMPA. It has three main goals: 1) Establish a platform that allows the multi scale characterization of relationships between microstructure and mechanical properties of advanced, high temperature materials, with a focus on irradiated, i.e. radioactive, materials, by combining the use of a focused ion beam and a nano indentation device with multi scale modelling and simulations. 2) Use the methods developed and the results gained for existing materials for developing improved high temperature materials to be used in advanced and sustainable future energy power plants. 3) Become an attractive partner for industry by providing a wide knowledge base, flexibility in answering technical questions and skills to better understand damage in already existing plants and to support development of new products at the industrial scale

  5. High temperature radioisotope capsule

    International Nuclear Information System (INIS)

    Bradshaw, G.B.

    1976-01-01

    A high temperature radioisotope capsule made up of three concentric cylinders, with the isotope fuel located within the innermost cylinder is described. The innermost cylinder has hemispherical ends and is constructed of a tantalum alloy. The intermediate cylinder is made of a molybdenum alloy and is capable of withstanding the pressure generated by the alpha particle decay of the fuel. The outer cylinder is made of a platinum alloy of high resistance to corrosion. A gas separates the innermost cylinder from the intermediate cylinder and the intermediate cylinder from the outer cylinder

  6. Modular high-temperature reactor launched (and wallchart)

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1987-01-01

    In view of the need for a technically unsophisticated, safe and economic reactor system, the KWU group has integrated the experience gained from German light-water reactor engineering and from successful operation of the German AVR experimental high-temperature reactor into the development of the High-Temperature Reactor (HTR)-module. The main components are illustrated and explained and technical data for the HTR-module is given. Safety is also considered. This includes graphs of core heat-up temperature for pebble-bed HTR and a graph of the temperature load of the fuel elements. The operation, control and applications are considered. The latter includes use in combined heat and power generation and community heating. Feasibility studies have shown that the HTR-module is cheaper, comparatively, than coal-fired power stations. (U.K.)

  7. A high temperature reactor for ship propulsion

    International Nuclear Information System (INIS)

    Lobet, P.; Seigel, R.; Thompson, A.C.; Beadnell, R.M.; Beeley, P.A.

    2002-01-01

    The initial thermal hydraulic and physics design of a high temperature gas cooled reactor for ship propulsion is described. The choice of thermodynamic cycle and thermal power is made to suit the marine application. Several configurations of a Helium cooled, Graphite moderated reactor are then analysed using the WIMS and MONK codes from AEA Technology. Two geometries of fuel elements formed using micro spheres in prismatic blocks, and various arrangements of control rods and poison rods are examined. Reactivity calculations through life are made and a pattern of rod insertion to flatten the flux is proposed and analysed. Thermal hydraulic calculations are made to find maximum fuel temperature under high power with optimized flow distribution. Maximum temperature after loss of flow and temperatures in the reactor vessel are also computed. The temperatures are significantly below the known limits for the type of fuel proposed. It is concluded that the reactor can provide the required power and lifetime between refueling within likely space and weight constraints. (author)

  8. Effect of microstructure on the high temperature strength of nitride

    Indian Academy of Sciences (India)

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Rakshit P K Das. Composites Volume ... The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural ...

  9. High temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  10. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  11. Assessing the High Temperature, High Pressure Subsurface for Anaerobic Methane Oxidation

    Science.gov (United States)

    Harris, R. L.; Bartlett, D.; Byrnes, A. W.; Walsh, K. M.; Lau, C. Y. M.; Onstott, T. C.

    2017-12-01

    The anaerobic oxidation of methane (AOM) is an important sink in the global methane (CH4) budget. ANMEs are known to oxidize CH4 either independently or in consortia with bacteria, coupling the reduction of electron acceptors such as, SO42-, NO2-, NO3-, Mn4+, or Fe3+. To further constrain the contribution of AOM to the global CH4 budget, it is important to assess unexplored environments where AOM is thermodynamically possible such as the high pressure, high temperature deep biosphere. Provided plausible electron acceptor availability, increased temperature and pCH4 yield favorable Gibbs free energies for AOM reactions and the production of ATP (Fig. 1). To date, only sulfate-dependent AOM metabolism has been documented under high temperature conditions (50-72˚C), and AOM has not been assessed above 10.1 MPa. Given that ANMEs share close phylogenetic and metabolic heritage with methanogens and that the most heat-tolerant microorganism known is a barophilic methanogen, there possibly exist thermophilic ANMEs. Here we describe preliminary results from high pressure, high temperature stable isotope tracer incubation experiments on deep biosphere samples. Deep sub-seafloor sediments collected by IODP 370 from the Nankai Trough (257 - 865 m below seafloor) and deep fracture fluid from South Africa (1339 m below land surface) were incubated anaerobically in hydrostatic pressure vessels at 40 MPa in simulated in situ temperatures (40˚ - 80˚C). Sediments and fracture fluid were incubated in sulfate-free artificial seawater, a 2:98 13CH4:N2 headspace, and treated with one of the potential electron acceptors listed above in addition to kill and endogenous activity (i.e. no added electron acceptor) controls. Stable isotope analysis of dissolved inorganic carbon (DIC) suggests that AOM occurred within 60 days of incubation for all investigated electron acceptors and temperatures except 50˚C. Sulfate-dependent AOM rates are consistent with those previously reported in the

  12. Analysis on High Temperature Aging Property of Self-brazing Aluminum Honeycomb Core at Middle Temperature

    Directory of Open Access Journals (Sweden)

    ZHAO Huan

    2016-11-01

    Full Text Available Tension-shear test was carried out on middle temperature self-brazing aluminum honeycomb cores after high temperature aging by micro mechanical test system, and the microstructure and component of the joints were observed and analyzed using scanning electron microscopy and energy dispersive spectroscopy to study the relationship between brazing seam microstructure, component and high temperature aging properties. Results show that the tensile-shear strength of aluminum honeycomb core joints brazed by 1060 aluminum foil and aluminum composite brazing plate after high temperature aging(200℃/12h, 200℃/24h, 200℃/36h is similar to that of as-welded joints, and the weak part of the joint is the base metal which is near the brazing joint. The observation and analysis of the aluminum honeycomb core microstructure and component show that the component of Zn, Sn at brazing seam is not much affected and no compound phase formed after high temperature aging; therefore, the main reason for good high temperature aging performance of self-brazing aluminum honeycomb core is that no obvious change of brazing seam microstructure and component occurs.

  13. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  14. A summary of high-temperature electronics research and development

    International Nuclear Information System (INIS)

    Thome, F.V.; King, D.B.

    1991-01-01

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab

  15. Resonance integral calculations for high temperature reactors

    International Nuclear Information System (INIS)

    Blake, J.P.H.

    1960-02-01

    Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)

  16. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1991-01-01

    The results of positron annihilation measurements as a function of temperature, across Tc, in a variety of high temperature superconductors such as Y-Ba-Cu-O (Y1237), Y-Ba-Cu-O (Y1248), Bi-Sr-Ca-Cu-O, Tl-Ba-Ca-Cu-O, Ba-K-Bi-O and Nd-Ce-Cu-O are presented. It is shown that the variation of annihilation parameters in the superconducting state is correlated with the diposition of the positron density distribution with respect to the superconducting CuO planes. An increase in positron lifetime is observed below Tc when the positrons probe the CuO planes whereas a decrease in lifetime is observed when the positron density overlaps predominantly with the apical oxygen atom. With this correlation, the different temperature variation of annihilation parameters, seen in the various high temperature superconductors, is understood in terms of a local charge transfer from the planar oxygen atom to the apical oxygen atom. The significance of these results in the context of various theoretical models of high temperature superconductivity is discussed. In addition, the application of positron annihilation spectroscopy to the study of oxygen defects in the Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O and Nd-Ce-Cu-O is presented. (author). 53 refs., 17 figs., 2 tabs

  17. A high-temperature silicon-on-insulator stress sensor

    International Nuclear Information System (INIS)

    Wang Zheyao; Tian Kuo; Zhou Youzheng; Pan Liyang; Liu Litian; Hu Chaohong

    2008-01-01

    A piezoresistive stress sensor is developed using silicon-on-insulator (SOI) wafers and calibrated for stress measurement for high-temperature applications. The stress sensor consists of 'silicon-island-like' piezoresistor rosettes that are etched on the SOI layer. This eliminates leakage current and enables excellent electrical insulation at high temperature. To compensate for the measurement errors caused by the misalignment of the piezoresistor rosettes with respect to the crystallographic axes, an anisotropic micromachining technique, tetramethylammonium hydroxide etching, is employed to alleviate the misalignment issue. To realize temperature-compensated stress measurement, a planar diode is fabricated as a temperature sensor to decouple the temperature information from the piezoresistors, which are sensitive to both stress and temperature. Design, fabrication and calibration of the piezoresistors are given. SOI-related characteristics such as piezoresistive coefficients and temperature coefficients as well as the influence of the buried oxide layer are discussed in detail

  18. Evolution of sputtered tungsten coatings at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika; Rinnerbauer, Veronika; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan; Senkevich, Jay J. [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Tucker, Charles; Ives, Thomas; Shrader, Ronney [Materion Corporation, Buellton, California 93427 (United States)

    2013-11-15

    Sputtered tungsten (W) coatings were investigated as potential high temperature nanophotonic material to replace bulk refractory metal substrates. Of particular interest are materials and coatings for thermophotovoltaic high-temperature energy conversion applications. For such applications, high reflectance of the substrate in the infrared wavelength range is critical in order to reduce losses due to waste heat. Therefore, the reflectance of the sputtered W coatings was characterized and compared at different temperatures. In addition, the microstructural evolution of sputtered W coatings (1 and 5 μm thick) was investigated as a function of anneal temperature from room temperature to 1000 °C. Using in situ x-ray diffraction analysis, the microstrain in the two samples was quantified, ranging from 0.33% to 0.18% for the 1 μm sample and 0.26% to 0.20% for the 5 μm sample, decreasing as the temperature increased. The grain growth could not be as clearly quantified due to the dominating presence of microstrain in both samples but was in the order of 20 to 80 nm for the 1 μm sample and 50 to 100 nm for the 5 μm sample, as deposited. Finally, the 5 μm thick layer was found to be rougher than the 1 μm thick layer, with a lower reflectance at all wavelengths. However, after annealing the 5 μm sample at 900 °C for 1 h, its reflectance exceeded that of the 1 μm sample and approached that of bulk W found in literature. Overall, the results of this study suggest that thick coatings are a promising alternative to bulk substrates as a low cost, easily integrated platform for nanostructured devices for high-temperature applications, if the problem of delamination at high temperature can be overcome.

  19. High Temperature Materials Interim Data Qualification Report

    International Nuclear Information System (INIS)

    Lybeck, Nancy

    2010-01-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: (1) Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing - 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. (2) Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram - 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  20. High temperature resistant nanofiber by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Li Ya

    2015-01-01

    Full Text Available Heat-resisting nanofibers have many potential applications in various industries, and the bubbfil spinning is the best candidate for mass-production of such materials. Polyether sulfone/zirconia solution with a bi-solvent system is used in the experiment. Experimental result reveals that polyether sulfone/zirconia nanofibers have higher resistance to high temperature than pure polyether sulfone fibers, and can be used as high-temperature-resistant filtration materials.

  1. Elasticity of fluorite at high temperatures

    Science.gov (United States)

    Eke, J.; Tennakoon, S.; Mookherjee, M.

    2017-12-01

    Fluorite (CaF2) is a simple halide with cubic space group symmetry (Fm-3m) and is often used as an internal pressure calibrant in moderate high-pressure/high-temperature experiments [1]. In order to gain insight into the elastic behavior of fluorite, we have conducted Resonant Ultrasound Spectroscopy (RUS) on a single crystal of fluorite with rectangular parallelepiped geometry. Using single crystal X-ray diffraction, we aligned the edges of the rectangular parallelepiped with [-1 1 1], [-1 1 -2], and [-1 -1 0] crystallographic directions. We conducted the RUS measurements up to 620 K. RUS spectra are influenced by the geometry, density, and the full elastic moduli tensor of the material. In our high-temperature RUS experiments, the geometry and density were constrained using thermal expansion from previous studies [2]. We determined the elasticity by minimizing the difference between observed resonance and calculated Eigen frequency using Rayleigh-Ritz method [3]. We found that at room temperature, the single crystal elastic moduli for fluorite are 170, 49, and 33 GPa for C11, C12, and C44 respectively. At room temperatures, the aggregate bulk modulus (K) is 90 GPa and the shear modulus (G) is 43 GPa. We note that the elastic moduli and sound wave velocities decrease linearly as a function of temperature with dVP /dT and dVS /dT being -9.6 ×10-4 and -5.0 ×10-4 km/s/K respectively. Our high-temperature RUS results are in good agreement with previous studies on fluorite using both Ultrasonic methods and Brillouin scattering [4,5]. Acknowledgement: This study is supported by US NSF awards EAR-1639552 and EAR-1634422. References: [1] Speziale, S., Duffy, T. S. 2002, Phys. Chem. Miner., 29, 465-472; [2] Roberts, R. B., White, G. K., 1986, J. Phys. C: Solid State Phys., 19, 7167-7172. [3] Migliori, A., Maynard, J. D., 2005, Rev. Sci. Instrum., 76, 121301. [4] Catlow, C. R. A., Comins, J. D., Germano, F. A., Harley, R. T., Hayes, W., 1978, J. Phys. C Solid State Phys

  2. InGaN High-Temperature Photovoltaic Cells

    Science.gov (United States)

    Starikov, David

    2015-01-01

    This Phase II project developed Indium-Gallium-Nitride (InGaN) photovoltaic cells for high-temperature and high-radiation environments. The project included theoretical and experimental refinement of device structures produced in Phase I as well as modeling and optimization of solar cell device processing. The devices have been tested under concentrated air mass zero (AM0) sunlight, at temperatures from 100 degC to 250 degC, and after exposure to ionizing radiation. The results are expected to further verify that InGaN can be used for high-temperature and high-radiation solar cells. The large commercial solar cell market could benefit from the hybridization of InGaN materials to existing solar cell technology, which would significantly increase cell efficiency without relying on highly toxic compounds. In addition, further development of this technology to even lower bandgap materials for space applications would extend lifetimes of satellite solar cell arrays due to increased radiation hardness. This could be of importance to the Departmentof Defense (DoD) and commercial satellite manufacturers.

  3. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  4. Nuclear shell effects at high temperatures

    International Nuclear Information System (INIS)

    Davidson, N.J.; Miller, H.G.

    1993-01-01

    In discussing the disappearance of nuclear shell effects at high temperatures, it is important to distinguish between the ''smearing out'' of the single-particle spectrum with increasing temperature and the vanishing of shell related structures in many-body quantities such as the excitation energy per nucleon. We propose a semiempirical method to obtain an upper bound on the temperature required to smooth the single-particle spectrum, and point out that shell effects in many-body parameters may persist above this temperature. We find that the temperature required to smear out the single-particle spectrum is approximately 1 MeV for heavy nuclei (A approx-gt 150) and about 3--4 MeV for light nuclei (A approx-lt 50), in reasonable agreement with the estimate of 41/πA 1/3 obtained from calculations with harmonic oscillator potentials. These temperatures correspond to many-body excitation energies of approximately 20 and 60 MeV, respectively

  5. Reactor G1: high power experiments

    International Nuclear Information System (INIS)

    Laage, F. de; Teste du Baillet, A.; Veyssiere, A.; Wanner, G.

    1957-01-01

    therefore comprise four distinct parts: 1- 34 T. pile. Study of principal effects at high temperatures. Measurement of power. 2- 100 T. pile. Measurement of power. Thermodynamic study. Temperature distribution. 3- 34 T. pile. Flux charts at high temperatures. 4- Brief study of the cooling system. Experimental installation. (1) See report on reheating. (author) [fr

  6. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    Science.gov (United States)

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  7. Long duration performance of high temperature irradiation resistant thermocouples

    International Nuclear Information System (INIS)

    Rempe, J.; Knudson, D.; Condie, K.; Cole, J.; Wilkins, S.C.

    2007-01-01

    Many advanced nuclear reactor designs require new fuel, cladding, and structural materials. Data are needed to characterize the performance of these new materials in high temperature, radiation conditions. However, traditional methods for measuring temperature in-pile degrade at temperatures above 1100 C degrees. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple that contains alloys of molybdenum and niobium. To verify the performance of INL's recommended thermocouple design, a series of high temperature (from 1200 to 1800 C) long duration (up to six months) tests has been initiated. This paper summarizes results from the tests that have been completed. Data are presented from 4000 hour tests conducted at 1200 and 1400 C that demonstrate the stability of this thermocouple (less than 2% drift). In addition, post test metallographic examinations are discussed which confirm the compatibility of thermocouple materials throughout these long duration, high temperature tests. (authors)

  8. NASA space applications of high-temperature superconductors

    Science.gov (United States)

    Heinen, Vernon O.; Sokoloski, Martin M.; Aron, Paul R.; Bhasin, Kul B.

    1992-01-01

    The application of superconducting technology in space has been limited by the requirement of cooling to near liquid helium temperatures. The only means of attaining these temperatures has been with cryogenic fluids which severely limits mission lifetime. The development of materials with superconducting transition temperatures (T sub c) above 77 K has made superconducting technology more attractive and feasible for employment in aerospace systems. Potential applications of high-temperature superconducting technology in cryocoolers and remote sensing, communications, and power systems are discussed.

  9. High temperature phase transitions without infrared divergences

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1993-09-01

    The most commonly used method for the study of high temperature phase transitions is based on the perturbative evaluation of the temperature dependent effective potential. This method becomes unreliable in the case of a second order or weakly first order phase transition, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. We report on the study of the high temperature phase transition for the N-component φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. An independent check of the results is obtained in the large N limit, and contact with the perturbative approach is established through the study of the Schwinger-Dyson equations. (orig.)

  10. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  11. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  12. High temperature estimation through computer vision

    International Nuclear Information System (INIS)

    Segovia de los R, J.A.

    1996-01-01

    The form recognition process has between his purposes to conceive and to analyze the classification algorithms applied to the image representations, sounds or signals of any kind. In a process with a thermal plasma reactor in which cannot be employed conventional dispositives or methods for the measurement of the very high temperatures. The goal of this work was to determine these temperatures in an indirect way. (Author)

  13. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  14. Stability of High Temperature Standard Platinum Resistance Thermometers at High Temperatures

    Directory of Open Access Journals (Sweden)

    Y. A. ABDELAZIZ

    2010-05-01

    Full Text Available An investigation of the stability of high temperature standard platinum resistance thermometers HTSPRTs has been carried out for two different designs thermometers (with nominal resistance 0.25 Ω and 2.5 Ω from two different suppliers. The thermometers were heated for more than 160 hours at temperatures above 960 0C using a vertical furnace with a ceramic block. A study was made of the influence of the heat treatment on the stability of the resistance at the triple point of water, and on the relative resistance W(Ga at the melting point of gallium. The thermometers showed a correlation between the drift note and the values of W(Ga. It was found also that the HTSPRT which has a sensor with strip shaped support and low nominal resistance is more stable than the HTSPRT which has a sensor in the form of a coil wound on silica cross. The 0.25 Ω thermometer has better stability @ 7x10-6 0C (at TPW after 40 hour. Factors affecting the stability and accuracy of HTSPRT also will be discussed.

  15. 1998 report on development of high-efficiency waste power generation technology. 2. Development of waste gasification and ash melting power generation technology; 1998 nendo kokoritsu haikibutsu hatsuden gijutsu kaihatsu seika hokokusho. Haikibutsu gas ka yoyu hatsuden gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In regard to waste gasification and ash melting power generation, a basic test and examination were conducted in fiscal 1998, with a full-scale development test made ready to start. In the development of technology for raising steam temperature, evaluation of high temperature corrosivity of SH materials and development of high-temperature dust removal system were carried out for example, as were development of dechlorination technology for thermal decomposition process and development of ceramic high-temperature air heater. In the development of technology to prevent exhaust gas reheating, preliminary examination was made on denitrification technologies using a catalyst with superior low-temperature activity. In the development of technology to reduce self-heat melting critical calorific value, investigation and basic test were carried out concerning a stable waste feed system, with a pilot test device experimentally manufactured and tested based on the findings. In the development of technology for reducing external fuel input, examination and analysis were performed on pretreatment techniques for waste plastics, with basic data obtained for a waste blowing system project. In addition, the thermal decomposition and combustion characteristics of waste plastics were clarified by the basic test. (NEDO)

  16. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  17. A study on structural analysis of highly corrosive melts at high temperature

    CERN Document Server

    Ohtori, N

    2002-01-01

    When sodium is burned at high temperature in the atmosphere, it reacts simultaneously with H sub 2 O in the atmosphere so that it can produce high temperature melt of sodium hydroxide as a solvent. If this melt includes peroxide ion (O sub 2 sup 2 sup -), it will be a considerably active and corrosive for iron so that several sodium iron double oxides will be produced as corrosion products after the reaction with steel structures. The present study was carried out in order to investigate the ability of presence of peroxide ion in sodium hydroxide solvent at high temperature and that of identification of the several corrosion products using laser Raman spectroscopy. The measurement system with ultraviolet laser was developed simultaneously in the present work to improve the ability of the measurement at high temperature. As results from the measurements, the possibility of the presence of peroxide ion was shown up to 823K in sodium peroxide and 823K in the melt of sodium hydroxide mixed with sodium peroxide. A...

  18. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    Science.gov (United States)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  19. Applicability of newly developed 610MPa class heavy thickness high strength steel to boiler pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Norihiko; Kaihara, Shoichiro; Ishii, Jun [Ishikawajima-Harima Heavy Industries Corp., Yokohama (Japan); Kajigaya, Ichiro [Ishikawajima-Harima Heavy Industries Corp., Tokyo (Japan); Totsuka, Takehiro; Miyazaki, Takashi [Ishikawajima-Harima Heavy Industries Corp., Aioi (Japan)

    1995-11-01

    Construction of a 350 MW Class PFBC (Pressurized Fluidized Bed Combustion) boiler plant is under planning in Japan. Design temperature and pressure of the vessel are maximum 350 C and 1.69 MPa, respectively. As the plate thickness of the vessel exceeds over 100 mm, high strength steel plate of good weldability and less susceptible to reheat cracking was required and developed. The steel was aimed to satisfy the tensile strength over 610 MPa at 350 C after postweld heat treatment (PWHT), with good notch toughness. The authors investigated the welding performances of the newly developed steel by using 150 mm-thick plate welded by pulsed-MAG and SAW methods. It was confirmed that the newly developed steel and its welds possess sufficient strength and toughness after PWHT, and applicable to the actual pressure vessel.

  20. Design methods for high temperature power plant structures

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1984-01-01

    The subject is discussed under the headings: introduction (scope of paper - reviews of design methods and design criteria currently in use for both nuclear and fossil fuelled power plant; examples chosen are (a) BS 1113, representative of design codes employed for power station boiler plant; (b) ASME Code Case N47, which is being developed for high temperature nuclear reactors, especially the liquid metal fast breeder reactor); design codes for power station boilers; Code Case N47 (design in the absence of thermal shock and thermal fatigue; design against cyclic loading at high temperature; further research in support of high temperature design methods and criteria for LMFBRs); concluding remarks. (U.K.)

  1. Robust Design of Terminal ILC with H∞ Mixed Sensitivity Approach for a Thermoforming Oven

    Directory of Open Access Journals (Sweden)

    Guy Gauthier

    2008-01-01

    Full Text Available This paper presents a robust design approach for terminal iterative learning control (TILC. This robust design uses the H∞ mixed-sensitivity technique. An industrial application is described where TILC is used to control the reheat phase of plastic sheets in a thermoforming oven. The TILC adjusts the heater temperature setpoints such that, at the end of the reheat cycle, the surface temperature map of the plastic sheet will converge to the desired one. Simulation results are included to show the effectiveness of the control law.

  2. High-temperature brazing, present situation and development trends - brazing alloys

    International Nuclear Information System (INIS)

    Lugscheider, E.

    1980-01-01

    The range of application of high-temperature brazing is described. The process is defined. High-temperature nickel-base brazing alloys (alloying constituents, types of products. properties of the brazing alloys) and high-temperature brazing alloys for special metals and ceramics are dealt with. (orig.) [de

  3. Report of year 2000 version on basic study for promotion of joint implementation. Energy conservation by renovation of reheating furnace at 'SIDEX' S.A. Galati Steel Plant, Romania

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The purpose of this project is to perform a feasibility study on energy conservation by renovation of reheating furnace at 'SIDEX' S.A. Galati Steel Plant, and discuss the possibility of the future joint implementation project. This project is intended to contribute to reduction in greenhouse effect gas emission in Romania through energy conservation in industries, and introduction of the Japanese energy saving technologies. Furthermore, this project would be capable of contributing to modernization of the industries to achieve sustainable economic growth in Romania, where the joint implementation will be performed in the future. The fuel consumption per ton in the conventionally used reheating furnaces is actually about three times as much as in the same furnaces in Japan. Speaking of electric power consumption, it is about four times as much. The renovation will result in reduction of fuel consumption to the same level as in steel mills in Japan. This will reduce the import of natural gas by 59 million Nm{sup 3} annually after the project will have been implemented, and reduction is expected in CO2 of about 170,000 tons (on the basis of conversion to petroleum). The second effect is reduction of oxidation scale on surfaces of steel products generated in the furnaces at 3% or more presently to about 1%, which corresponds to steel products of more than 20,000 tons. (NEDO)

  4. An explanation of the irreversibility behavior in the highly- anisotropic high-temperature superconductors

    International Nuclear Information System (INIS)

    Gray, K.E.; Kim, D.H.

    1991-01-01

    The wide temperature range of the reversible, lossy state of the new high-temperature superconductors in a magnetic field was recognized soon after their discovery. This behavior, which had gone virtually undetected in conventional superconductors, has generated considerable interest, both for a fundamental understanding of the HTS and because it degrades the performance of HTS for finite-field applications. We show that recently proposed explanation of this behavior for the highly-anisotropic high-temperature superconductors, as a dimensional crossover of the magnetic vortices, is strongly supported by recent experiments on a Bi 2 Sr 2 CaCu 2 O x single crystal using the high-Q mechanical oscillator techniques

  5. Containment of high temperature plasmas

    International Nuclear Information System (INIS)

    Bass, R.W.; Ferguson, H.R.P.; Fletcher, H. Jr.; Gardner, J.; Harrison, B.K.; Larsen, K.M.

    1973-01-01

    Apparatus is described for confining a high temperature plasma which comprises: 1) envelope means shaped to form a toroidal hollow chamber containing a plasma, 2) magnetic field line generating means for confining the plasma in a smooth toroidal shape without cusps. (R.L.)

  6. PLA recycling by hydrolysis at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari, E-mail: sara.frattari@uniroma1.it; Fausto, Gironi [Department of Chemical Engineering Materials Environment, University of Rome “La Sapienza”, Via Eudossiana 18– 00184 Roma (Italy)

    2016-05-18

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  7. Emission spectroscopy of highly ionized high-temperature plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Belevtsev, A A; Chinnov, V F; Isakaev, E Kh [Associated Institute for High Temperatures, Russian Academy of Sciences Izhorskaya 13/19, Moscow, 125412 (Russian Federation)

    2006-08-01

    This paper deals with advanced studies on the optical emission spectroscopy of atmospheric pressure highly ionized high-temperature argon and nitrogen plasma jets generated by a powerful arc plasmatron. The emission spectra are taken in the 200-1000 nm range with a spectral resolution of {approx}0.01-0.02 nm. The exposure times are 6 x 10{sup -6}-2 x 10{sup -2} s, the spatial resolution is 0.02-0.03 mm. The recorded jet spectra are abundant in spectral lines originating from different ionization stages. In nitrogen plasmas, tens of vibronic bands are also observed. To interpret and process these spectra such that plasma characteristics can be derived, a purpose-developed automated processing system is applied. The use of a CCD camera at the spectrograph output allows a simultaneous recording of the spectral and chord intensity distributions of spectral lines, which can yet belong to the overlapped spectra of the first and second orders of interference. The modern optical diagnostic means and methods used permit the determination of spatial distributions of electron number densities and temperatures and evaluation of rotational temperatures. The radial profiles of the irradiating plasma components can also be obtained. Special attention is given to the method of deriving rotational temperatures using vibronic bands with an incompletely identified rotational structure.

  8. A study on heat resistance of high temperature resistant coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liping; Wang, Xueying; Zhang, Qibin; Qin, Yanlong; Lin, Zhu [Research Institute of Engineering Technology of CNPC, Tianjin (China)

    2005-04-15

    A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes,the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper

  9. A study on heat resistance of high temperature resistant coating

    International Nuclear Information System (INIS)

    Zhang, Liping; Wang, Xueying; Zhang, Qibin; Qin, Yanlong; Lin, Zhu

    2005-01-01

    A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes,the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper

  10. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  11. Polymer nanocomposites for high-temperature composite repair

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Xia [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (Tg) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

  12. Effect of separation and drainage of condensate on dehumidification in a refrigerated dryer; Reito joshitsuki ni okeru gyoshukusui bunri/haishutsu noryoku no joshitsu seino ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Goto, H.; Ichinose, T. [SMC Corp., Tokyo (Japan); Tanzawa, Y.; Hashizume, T. [Waseda Univ., Tokyo (Japan). Science and Engineering Research Lab.

    1995-11-15

    The representative refrigerated dryer as the compressed air dryers is one in which air was cooled at rather low temperature by working medium of refrigerators, and the dew point was decreased with increase of pressure, and air with low relative humility called as the dried air was obtained again by heating. In this paper, for clarifying effect of separation and drainage of condensate on dehumidification in a refrigerated dryer in relation to shape of a main cooler and a precool-reheater and air temperature of each part, calculation and experimental investigation were conducted. In a refrigerated dryer, condensate happened in the precool part of a precool-reheater and a main cooler, and this would give rise to reduce of separation and drainage of condensate and increase of thermal loads of each heat exchange, and would made dehumidification low. For a fact that decrease of separation and drainage of condensate in a main cooler would bring out heat conduction with phase change in the reheating part of a precool-reheater, it has a profitable side, but it is not desirable for ability of dryers. 6 refs., 9 figs., 1 tab.

  13. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  14. Toughness of submerged arc weld metals of controlled rolled NB bearing steel

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Shiga, A.; Kamada, A.; Tsuboi, J.

    1982-01-01

    The toughness and the hardness of reheated weld metals depend on the maximum reheating temperature. When the maximum reheating temperature is 500 to 700 0 C, the hardness of single pass weld metal increases and the toughness decreases because of fine Nb- and V-carbonitride precipitation. When the maximum reheating temperature is over 800 0 C, the hardness and the toughness remain almost unchanged. The stress relieving treatment of single pass weld metal at 600 0 C for 1 up to about 100 hours causes the increase in hardness and then decreases the hardness gradually. It needs over 500 hours to obtain the same hardness value as that of as-welded metal. The addition of Ti to weld metal is very effective to improve the toughness, however excess Ti increases the hardness of stress relieved weld metal by precipitating as fine Ti-carbonitride. Therefore Ti addition should be restricted within the lowest limit required to improve as-welded metal toughness. The optimum Ti content is about 0.020% in the case of weld metal of which oxygen content is 350 ppM or so. In multipass welding, the hardness of weld metal affected by subsequent weld heat cycle varies from pass to pass, because Nb and V content change with the passes as the result of the change in dilution from base metal. The most hardened zone is observed in the reheated first pass weld metal, in which Nb and V content are the highest. Good weld metal toughness would be obtained by lowering dilution from base metal and taking advantage of grain refinement by subsequent passes

  15. Properties of high temperature SQUIDS

    International Nuclear Information System (INIS)

    Falco, C.M.; Wu, C.T.

    1978-01-01

    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb 3 Sn is outlined, and comments are made on directions future work should take

  16. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  17. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.

    Science.gov (United States)

    Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng

    2018-02-01

    Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A porous ceramic membrane tailored high-temperature supercapacitor

    Science.gov (United States)

    Zhang, Xin; He, Benlin; Zhao, Yuanyuan; Tang, Qunwei

    2018-03-01

    The supercapacitor that can operate at high-temperature are promising for markedly increase in capacitance because of accelerated charge movement. However, the state-of-the-art polymer-based membranes will decompose at high temperature. Inspired by solid oxide fuel cells, we present here the experimental realization of high-temperature supercapacitors (HTSCs) tailored with porous ceramic separator fabricated by yttria-stabilized zirconia (YSZ) and nickel oxide (NiO). Using activated carbon electrode and supporting electrolyte from potassium hydroxide (KOH) aqueous solution, a category of symmetrical HTSCs are built in comparison with a conventional polymer membrane based device. The dependence of capacitance performance on temperature is carefully studied, yielding a maximized specific capacitance of 272 F g-1 at 90 °C for the optimized HTSC tailored by NiO/YSZ membrane. Moreover, the resultant HTSC has relatively high durability when suffer repeated measurement over 1000 cycles at 90 °C, while the polymer membrane based supercapacitor shows significant reduction in capacitance at 60 °C. The high capacitance along with durability demonstrates NiO/YSZ membrane tailored HTSCs are promising in future advanced energy storage devices.

  19. Thermal Protective Coating for High Temperature Polymer Composites

    Science.gov (United States)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  20. High-Temperature Switched-Reluctance Electric Motor

    Science.gov (United States)

    Montague, Gerald; Brown, Gerald; Morrison, Carlos; Provenza, Andy; Kascak, Albert; Palazzolo, Alan

    2003-01-01

    An eight-pole radial magnetic bearing has been modified into a switched-reluctance electric motor capable of operating at a speed as high as 8,000 rpm at a temperature as high as 1,000 F (=540 C). The motor (see figure) is an experimental prototype of starter-motor/generator units that have been proposed to be incorporated into advanced gas turbine engines and that could operate without need for lubrication or active cooling. The unique features of this motor are its electromagnet coils and, to some extent, its control software. Heretofore, there has been no commercial-off-the-shelf wire capable of satisfying all of the requirements for fabrication of electromagnet coils capable of operation at temperatures up to 1,000 F (=540 C). The issues addressed in the development of these electromagnet coils included thermal expansion, oxidation, pliability to small bend radii, micro-fretting, dielectric breakdown, tensile strength, potting compound, thermal conduction, and packing factor. For a test, the motor was supported, along with a rotor of 18 lb (.8-kg) mass, 3-in. (.7.6-cm) diameter, 21-in. (.53-cm) length, on bearings packed with high-temperature grease. The motor was located at the mid span of the rotor and wrapped with heaters. The motor stator was instrumented with thermocouples. At the time of reporting the information for this article, the motor had undergone 14 thermal cycles between room temperature and 1,000 F (.540 C) and had accumulated operating time >27.5 hours at 1,000 F (=540 C). The motor-controller hardware includes a personal computer equipped with analog-to-digital input and digital-to-analog output cards. The controller software is a C-language code that implements a switched-reluctance motor-control principle: that is, it causes the coils to be energized in a sequence timed to generate a rotating magnetic flux that creates a torque on a scalloped rotor. The controller can operate in an open- or closed-loop mode. In addition, the software has

  1. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  2. Evaluation of corrosion inhibitors for high temperature decontamination applications

    International Nuclear Information System (INIS)

    Sathyaseelan, V.S.; Rufus, A.L.; Velmurugan, S.

    2015-01-01

    Normally, chemical decontamination of coolant systems of nuclear power reactors is carried out at temperatures less than 90 °C. At these temperatures, though magnetite dissolves effectively, the rate of dissolution of chromium and nickel containing oxides formed over stainless steel and other non-carbon steel coolant system surfaces is not that appreciable. A high temperature dissolution process using 5 mM NTA at 160 °C developed earlier by us was very effective in dissolving the oxides such as ferrites and chromites. However, the corrosion of structural materials such as carbon steel (CS) and stainless steel (SS) also increased beyond the acceptable limits at elevated temperatures. Hence, the control of base metal corrosion during the high temperature decontamination process is very important. In view of this, it was felt essential to investigate and develop a suitable inhibitor to reduce the corrosion that can take place on coolant structural material surfaces during the high temperature decontamination applications with weak organic acids. Three commercial inhibitors viz., Philmplus 5K655, Prosel PC 2116 and Ferroqest were evaluated at ambient and at 160 °C temperature in NTA formulation. Preliminary evaluation of these corrosion inhibitors carried out using electrochemical techniques showed maximum corrosion inhibition efficiency for Philmplus. Hence, it was used for high temperature applications. A concentration of 500 ppm was found to be optimum at 160 °C and at this concentration it showed an inhibition efficiency of 62% for CS. High temperature dissolution of oxides such as Fe 3 O 4 and NiFe 2 O 4 , which are relevant to nuclear reactors, was also carried out and the rate of dissolution observed was less in the presence of Philmplus. Studies were also carried out to evaluate hydrazine as a corrosion inhibitor for high temperature applications. The results revealed that for CS inhibition efficiency of hydrazine is comparable to that of Philmplus, while

  3. Light relativistic bound states in high temperature QCD

    International Nuclear Information System (INIS)

    Zahed, Ismail

    1991-01-01

    The nonperturbative structure of high temperature QCD is combined with generalized sum-rules arguments to analyse gauge invariant correlation functions in real time. It is shown that for a plausible choice of condensates, QCD at high temperature exhibits color singlet excitations as opposed to merely screened quarks and gluons. (author). 14 refs.; 2 figs

  4. Thermodynamic and elastic properties of hexagonal ZnO under high temperature

    International Nuclear Information System (INIS)

    Wang, Feng; Wu, Jinghe; Xia, Chuanhui; Hu, Chenghua; Hu, Chunlian; Zhou, Ping; Shi, Lingna; Ji, Yanling; Zheng, Zhou; Liu, Xiankun

    2014-01-01

    Highlights: • A new method is applied to predict crystal constants of hexagonal crystal under high temperature. • Elastic properties of ZnO under high temperature are obtained exactly. • Thermodynamic properties of ZnO under high temperature are attained too. - Abstract: Studies on thermodynamic and elastic properties of hexagonal ZnO (wurtzite structure) under high temperature have not been reported usually from no matter experimental or theoretic methods. In this work, we study these properties by ab-initio together with quasi-harmonic Debye model. The value of C v tends to the Petit and Dulong limit at high temperature under any pressure, 49.73 J/mol K. And C v is greatly limited by pressure at intermediate temperatures. Nevertheless, the limit effect on C v caused by pressure is not obvious under low as well as very high temperature. The thermal expansions along a or c axis are almost same under temperature, which increase with temperature like a parabola. C 11 , C 33 , C 12 and C 13 decrease with temperature a little, which means that mechanics properties are weakened respectively

  5. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. Pt. 2

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1985-01-01

    The reactive impurities H 2 O, CO, H 2 and CH 4 which are present in the primary coolant helium of high temperature gas-cooled reactors can cause scale formation, internal oxidation and carburization or decarburization of the high temperature structural alloys. In Part 1 of this contribution a theoretical model was presented, which allows the explanation and prediction of the observed corrosion effects. The model is based on a classical stability diagram for chromium, modified to account for deviations from equilibrium conditions caused by kinetic factors. In this paper it is shown how a stability diagram for a commercial alloy can be constructed and how this can be used to correlate the corrosion results with the main experimental parameters, temperature, gas and alloy composition. Using the theoretical model and the presented experimental results, conditions are derived under which a protective chromia based surface scale will be formed which prevents a rapid transfer of carbon between alloy and gas atmosphere. It is shown that this protective surface oxide can only be formed if the carbon monoxide pressure in the gas exceeds a critical value. Psub(CO), which depends on temperature and alloy composition. Additions of methane only have a limited effect provided that the methane/water ratio is not near to, or greater than, a critical value of around 100/1. The influence of minor alloying additions of strong oxide forming elements, commonly present in high temperature alloys, on the protective properties of the chromia surface scales and the kinetics of carbon transfer is illustrated. (orig.) [de

  6. A Snapshot View of High Temperature Superconductivity 2002

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Univ. of California, San Diego, CA (United States); Bansil, Arun [Northeastern Univ., Boston, MA (United States); Basov, Dimitri N. [Univ. of California, San Diego, CA (United States)

    2002-04-05

    This report outlines the conclusions of a workshop on High Temperature Superconductivity held April 5-8, 2002 in San Diego. The purpose of this report is to outline and highlight some outstanding and interesting issues in the field of High Temperature Superconductivity. The range of activities and new ideas that arose within the context of High Temperature Superconductors is so vast and extensive that it is impossible to summarize it in a brief document. Thus, this report does not pretend to be all-inclusive and cover all areas of activity. It is a restricted snapshot and it only presents a few viewpoints. The complexity and difficulties with high temperature superconductivity are well illustrated by the Buddhist parable of the blind men trying to describe “experimentally” an elephant. These very same facts clearly illustrate that this is an extremely active field, with many unanswered questions, and with a great future potential for discoveries and progress in many (sometimes unpredictable) directions. It is very important to stress that, independently of any current or future applications, this is a very important area of basic research.

  7. Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures

    Science.gov (United States)

    Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.

    2011-01-01

    Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on

  8. Structural analysis technology for high-temperature design

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1977-01-01

    Results from an ongoing program devoted to the development of verified high-temperature structural design technology applicable to nuclear reactor systems are described. The major aspects addressed by the program are (1) deformation behavior; (2) failure associated with creep rupture, brittle fracture, fatigue, creep-fatigue interactions, and crack propagation; and (3) the establishment of appropriate design criteria. This paper discusses information developed in the deformation behavior category. The material considered is type 304 stainless steel, and the temperatures range to 1100 0 F (593 0 C). In essence, the paper considers the ingredients necessary for predicting relatively high-temperature inelastic deformation behavior of engineering structures under time-varying temperature and load conditions and gives some examples. These examples illustrate the utility and acceptability of the computational methods identified and developed for prediting essential features of complex inelastic behaviors. Conditions and responses that can be encountered under nuclear reactor service conditions and invoked in the examples. (Auth.)

  9. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  10. Higgs mass implications on the stability of the electroweak vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Elias-Miro, Joan [IFAE and Dep. de Fisica, Univ. Aut. de Barcelona, 08193 Bellaterra, Barcelona (Spain); Espinosa, Jose R. [IFAE and Dep. de Fisica, Univ. Aut. de Barcelona, 08193 Bellaterra, Barcelona (Spain); ICREA, Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain); Giudice, Gian F. [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Isidori, Gino, E-mail: gino.isidori@lnf.infn.it [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, Frascati (Italy); Riotto, Antonio [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padua (Italy); Strumia, Alessandro [Dipartimento di Fisica dell' Universita di Pisa and INFN (Italy); National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia)

    2012-03-19

    We update instability and metastability bounds of the Standard Model electroweak vacuum in view of the recent ATLAS and CMS Higgs results. For a Higgs mass in the range 124-126 GeV, and for the current central values of the top mass and strong coupling constant, the Higgs potential develops an instability around 10{sup 11} GeV, with a lifetime much longer than the age of the Universe. However, taking into account theoretical and experimental errors, stability up to the Planck scale cannot be excluded. Stability at finite temperature implies an upper bound on the reheat temperature after inflation, which depends critically on the precise values of the Higgs and top masses. A Higgs mass in the range 124-126 GeV is compatible with very high values of the reheating temperature, without conflict with mechanisms of baryogenesis such as leptogenesis. We derive an upper bound on the mass of heavy right-handed neutrinos by requiring that their Yukawa couplings do not destabilize the Higgs potential.

  11. High-Temperature Hybrid Rotor Support System Developed

    Science.gov (United States)

    Montague, Gerald T.

    2004-01-01

    The Army Research Laboratory Vehicle Technology Directorate and the NASA Glenn Research Center demonstrated a unique high-speed, high-temperature rotor support system in September 2003. Advanced turbomachinery is on its way to surpassing the capabilities of rolling-element bearings and conventional dampers. To meet these demands, gas turbine engines of the future will demand increased efficiency and thrust-to-weight ratio, and reduced specific fuel consumption and noise. The more-electric engine replaces oil-lubricated bearings, dampers, gears, and seals with electrical devices. One such device is the magnetic bearing. The Vehicle Technology Directorate and Glenn have demonstrated the operation of a radial magnetic bearing in combination with a hydrostatic bearing at 1000 F at 31,000 rpm (2.3 MDN1). This unique combination takes advantage of a high-temperature rub surface in the event of electrical power loss or sudden overloads. The hydrostatic bearings allow load sharing with the magnetic bearing. The magnetic-hydrostatic bearing combination eliminates wear and high contact stress from sudden acceleration of the rolling-element bearings and overheating. The magnetic bearing enables high damping, adaptive vibration control, and precise rotor positioning, diagnostics, and health monitoring. A model of the test facility used at Glenn for this technology demonstration is shown. A high-temperature heteropolar radial magnetic bearing is located at the center of gravity of the test rotor. There is a 0.022-in. radial air gap between the rotor and stator. Two rub surface hydrostatic bearings were placed on either side of the magnetic bearing. The rotor is supported by a 0.002-in. hydrostatic air film and the magnetic field. The prototype active magnetic bearing cost $24,000 to design and fabricate and a set of four high temperature, rub-surface, hydrostatic bearings cost $28,000. This work was funded by the Turbine-Based Combined Cycle program.

  12. Electrode for improving electrochemical measurements in high temperature water

    International Nuclear Information System (INIS)

    Sengarsai, T.

    2005-01-01

    A silver/silver-chloride (Ag/AgCl) reference electrode was specially designed and constructed in a body of oxidized titanium for potentiometric measurements under high-temperature and high-pressure conditions. To avoid the thermal decomposition of silver-chloride, the electrode is designed to maintain the reference element at low temperature while it is still connected to high-temperature process zone via a non-isothermal electrolyte bridge. This configuration leads to the development of a thermal gradient along the length of the electrode. At room temperature, the stability of the Ag/AgCl reference electrode versus a standard calomel electrode (SCE) is maintained with an accuracy of 5 mV. The electrode's performance at high temperature and pressure (up to 300 o C and 1500 psi) was examined by measuring the potential difference against platinum, which acted as a reversible hydrogen electrode (RHE). Comparison of the experimental and theoretical values verifies the reliability and reproducibility of the electrode. Deviation from the Nernst equation is considered and related to the thermal liquid junction potential (TLJP). An empirical correction factor is used to maintain the Ag/AgCl potential within an acceptable accuracy limit of ±20 mV at high temperature. (author)

  13. Containerless high temperature property measurements by atomic fluorescence

    Science.gov (United States)

    Schiffman, R. A.; Walker, C. A.

    1984-01-01

    Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.

  14. Solid State Track Recorder fission rate measurements at high neutron fluence and high temperature

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.

    1985-01-01

    Solid State Track Recorder (SSTR) techniques have been used to measure 239-Pu, 235-U, and 237-Np fission rates for total neutron fluences approaching 5 x 10 17 n/cm 2 at temperatures in the range 680 to 830 0 F. Natural quartz crystal SSTRs were used to withstand the high temperature environment and ultra low-mass fissionable deposits of the three isotopes were required to yield scannable track densities at the high neutron fluences. The results of these high temperature, high neutron fluence measurements are reported

  15. High temperature microscope (1961); Microscopie a haute temperature (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-06-15

    The purpose of this work is the realization of an apparatus for observation of radioactive metallic samples at high temperature and low pressure. The operating conditions are as follows: to limit oxidation of the metal, pressure of about 10{sup -6} mm of Hg is maintained in the furnace. In case the oxidation of the sample would be too important, on ultra vacuum. device could be used; working temperatures range between room temperature and 1200 deg. C; furnace temperature is regulated; observation is done ever in polarized light or interference contrast; to insure protection of the operator, the apparatus is placed in a glove-box. With that apparatus, we have observed the {alpha}{yields}{beta}, {beta}{yields}{gamma} transformations of uranium. A movie has been done. (author) [French] Le but de ce travail est la realisation d'une appareillage permettant l'observation a chaud et sous vide d'echantillons metalliques radioactifs. Cet appareillage fonctionne dans les conditions suivantes: l'echantillon est chauffe sous une pression de l'ordre de 10{sup -6} mm de mercure afin de limiter l'oxydation du materiau examine. L'utilisation eventuelle d'un groupe de pompage pour ultra vide est prevue; l'echantillon peut etre porte a une temperature comprise entre quelques degres et 1200 deg. C; la temperature du four est regulee; l'observation s'effectue soit en lumiere polarisee soit en contraste interferentiel; l'appareil est dipose dans une boite a gants afin d'assurer la protection de l'operateur contre les poussieres radioactives; Les transformations {alpha}{yields}{beta}, {beta}{yields}{gamma} de l'uranium ont ete observees. Un film a ete realise. (auteur)

  16. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    International Nuclear Information System (INIS)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander; Clausen, Sønnik

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1–200 bar and temperature range 300–1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients of a CO_2–N_2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated spectra, as well as published experimental data. - Highlights: • A ceramic gas cell designed for gas measurements up to 1300 K and 200 bar. • The first recorded absorption spectrum of CO_2 at 1000 K and 101 bar is presented. • Voigt profiles might suffice in the modeling of radiation from CO_2 in combustion.

  17. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1991-08-01

    Described is the background work performed jointly by the Electric Power Research Institute in the United States, the Central Research Institute of Electric Power Industry in Japan and Nuclear Electric plc in the United Kingdom with the purpose of developing a high-temperature flaw assessment procedure for reactor components. Existing creep-fatigue crack-growth models are reviewed, and the most promising methods are identified. Sources of material data are outlined, and results of the fundamental deformation and crack-growth tests are discussed. Results of subcritical crack-growth exploratory tests, creep-fatigue crack-growth tests under repeated thermal transient conditions, and exploratory failure tests are presented and contrasted with the analytical modeling. Crack-growth assessment methods are presented and applied to a typical liquid-metal reactor component. The research activities presented herein served as a foundation for the Flaw Assessment Guide for High-Temperature Reactor Components Subjected to Creep-Fatigue Loading published separately. 30 refs., 108 figs., 13 tabs

  18. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    Xiangcheng eSun

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  19. Behavior of a cycle-integrated system. Heat recovery in RTL plants; Verhalten von Kreislauf-Verbund-Systemen. Waermerueckgewinnung in RLT-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Rauser, Hanns Christoph [HCR Consulting, Ingenieurbuero fuer Kaelte- und Klimatechnik, Bietigheim-Bissingen (Germany)

    2010-09-15

    The contribution under consideration reports on the behaviour of a cycle-integrated system and derives criteria for the attaining high degrees of temperature changes. Since cycle-integrated system also realizes a reheating and a re-cooling apart from a heat recovery, also the behaviour of such a system is presented according to feeding coldness and warmth into the cycle.

  20. Initial stages of high temperature metal oxidation

    International Nuclear Information System (INIS)

    Yang, C.Y.; O'Grady, W.E.

    1981-01-01

    The application of XPS and UPS to the study of the initial stages of high temperature (> 350 0 C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS