WorldWideScience

Sample records for high recharge category

  1. High-performance aqueous rechargeable batteries based on zinc ...

    Indian Academy of Sciences (India)

    A new aqueous Zn–NiCo2O4 rechargeable battery system with a high voltage, consisting of NiCo2O4 as cathode and metal Zn as anode, is proposed for the first time. It is cheap and environmental friendly, and its energy density is about 202.8 Wh kg–1. The system still maintains excellent capacity retention of about 85% ...

  2. High Recharge Areas in the Choushui River Alluvial Fan (Taiwan Assessed from Recharge Potential Analysis and Average Storage Variation Indexes

    Directory of Open Access Journals (Sweden)

    Jui-Pin Tsai

    2015-03-01

    Full Text Available High recharge areas significantly influence the groundwater quality and quantity in regional groundwater systems. Many studies have applied recharge potential analysis (RPA to estimate groundwater recharge potential (GRP and have delineated high recharge areas based on the estimated GRP. However, most of these studies define the RPA parameters with supposition, and this represents a major source of uncertainty for applying RPA. To objectively define the RPA parameter values without supposition, this study proposes a systematic method based on the theory of parameter identification. A surrogate variable, namely the average storage variation (ASV index, is developed to calibrate the RPA parameters, because of the lack of direct GRP observations. The study results show that the correlations between the ASV indexes and computed GRP values improved from 0.67 before calibration to 0.85 after calibration, thus indicating that the calibrated RPA parameters represent the recharge characteristics of the study area well; these data also highlight how defining the RPA parameters with ASV indexes can help to improve the accuracy. The calibrated RPA parameters were used to estimate the GRP distribution of the study area, and the GRP values were graded into five levels. High and excellent level areas are defined as high recharge areas, which composed 7.92% of the study area. Overall, this study demonstrates that the developed approach can objectively define the RPA parameters and high recharge areas of the Choushui River alluvial fan, and the results should serve as valuable references for the Taiwanese government in their efforts to conserve the groundwater quality and quantity of the study area.

  3. High pressure water electrolysis for space station EMU recharge

    Science.gov (United States)

    Lance, Nick; Puskar, Michael; Moulthrop, Lawrence; Zagaja, John

    1988-01-01

    A high pressure oxygen recharge system (HPORS), is being developed for application on board the Space Station. This electrolytic system can provide oxygen at up to 6000 psia without a mechanical compressor. The Hamilton standard HPORS based on a solid polymer electrolyte system is an extension of the much larger and succesful 3000 psia system of the U.S. Navy. Cell modules have been successfully tested under conditions beyond which spacecraft may encounter during launch. The control system with double redundancy and mechanical backups for all electronically controlled components is designed to ensure a safe shutdown.

  4. Review: Recharge rates and chemistry beneath playas of the High Plains aquifer, USA

    Science.gov (United States)

    Gurdak, Jason J.; Roe, Cassia D.

    2010-12-01

    Playas are ephemeral, closed-basin wetlands that are hypothesized as an important source of recharge to the High Plains aquifer in central USA. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on groundwater from the High Plains aquifer has prompted many questions regarding the contribution and quality of recharge from playas to the High Plains aquifer. As a result, there has been considerable scientific debate about the potential for water to infiltrate the relatively impermeable playa floors, travel through the unsaturated zone sediments that are tens of meters thick, and subsequently recharge the High Plains aquifer. This critical review examines previously published studies on the processes that control recharge rates and chemistry beneath playas. Reported recharge rates beneath playas range from less than 1.0 to more than 500 mm/yr and are generally 1-2 orders of magnitude higher than recharge rates beneath interplaya settings. Most studies support the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this review provide science-based implications for management of playas and groundwater resources of the High Plains aquifer and directions for future research.

  5. High-performance aqueous rechargeable batteries based on zinc ...

    Indian Academy of Sciences (India)

    Administrator

    and environment-friendly energy storage system. Battery is the most versatile ... safe but limited in energy density.2 Therefore, new aque- ous rechargeable battery ... The working electrodes were prepared by coating slur- ries of active material ...

  6. High-performance rechargeable batteries with fast solid-state ion conductors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.

    2017-06-27

    A high-performance rechargeable battery using ultra-fast ion conductors. In one embodiment the rechargeable battery apparatus includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanomaterial in the enclosure, and a heat transfer unit.

  7. Rechargeable Lithium-Ion Based Batteries and Thermal Management for Airborne High Energy Electric Lasers (Preprint)

    National Research Council Canada - National Science Library

    Fellner, Joseph P; Miller, Ryan M; Shanmugasundaram, Venkatrama

    2006-01-01

    ...). Rechargeable lithium-ion polymer batteries, for applications such as remote-control aircraft, are achieving simultaneously high energy density and high power density (>160 Whr/kg at > 1.0 kW/kg...

  8. Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA

    Science.gov (United States)

    Lauffenburger, Zachary H.; Gurdak, Jason J.; Hobza, Christopher M.; Woodward, Duane; Wolf, Cassandra

    2018-01-01

    Understanding the controls of agriculture and climate change on recharge rates is critically important to develop appropriate sustainable management plans for groundwater resources and coupled irrigated agricultural systems. In this study, several physical (total potential (ψT) time series) and chemical tracer and dating (3H, Cl−, Br−, CFCs, SF6, and 3H/3He) methods were used to quantify diffuse recharge rates beneath two rangeland sites and irrigation recharge rates beneath two irrigated corn sites along an east-west (wet-dry) transect of the northern High Plains aquifer, Platte River Basin, central Nebraska. The field-based recharge estimates and historical climate were used to calibrate site-specific Hydrus-1D models, and irrigation requirements were estimated using the Crops Simulation Model (CROPSIM). Future model simulations were driven by an ensemble of 16 global climate models and two global warming scenarios to project a 2050 climate relative to the historical baseline 1990 climate, and simulate changes in precipitation, irrigation, evapotranspiration, and diffuse and irrigation recharge rates. Although results indicate statistical differences between the historical variables at the eastern and western sites and rangeland and irrigated sites, the low warming scenario (+1.0 °C) simulations indicate no statistical differences between 2050 and 1990. However, the high warming scenarios (+2.4 °C) indicate a 25% and 15% increase in median annual evapotranspiration and irrigation demand, and decreases in future diffuse recharge by 53% and 98% and irrigation recharge by 47% and 29% at the eastern and western sites, respectively. These results indicate an important threshold between the low and high warming scenarios that if exceeded could trigger a significant bidirectional shift in 2050 hydroclimatology and recharge gradients. The bidirectional shift is that future northern High Plains temperatures will resemble present central High Plains

  9. Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA

    Science.gov (United States)

    Sophocleous, M.

    2005-01-01

    Sustainable use of groundwater must ensure not only that the future resource is not threatened by overuse, but also that natural environments that depend on the resource, such as stream baseflows, riparian vegetation, aquatic ecosystems, and wetlands are protected. To properly manage groundwater resources, accurate information about the inputs (recharge) and outputs (pumpage and natural discharge) within each groundwater basin is needed so that the long-term behavior of the aquifer and its sustainable yield can be estimated or reassessed. As a first step towards this effort, this work highlights some key groundwater recharge studies in the Kansas High Plains at different scales, such as regional soil-water budget and groundwater modeling studies, county-scale groundwater recharge studies, as well as field-experimental local studies, including some original new findings, with an emphasis on assumptions and limitations as well as on environmental factors affecting recharge processes. The general impact of irrigation and cultivation on recharge is to appreciably increase the amount of recharge, and in many cases to exceed precipitation as the predominant source of recharge. The imbalance between the water input (recharge) to the High Plains aquifer and the output (pumpage and stream baseflows primarily) is shown to be severe, and responses to stabilize the system by reducing water use, increasing irrigation efficiency, adopting water-saving land-use practices, and other measures are outlined. Finally, the basic steps necessary to move towards sustainable use of groundwater in the High Plains are delineated, such as improving the knowledge base, reporting and providing access to information, furthering public education, as well as promoting better understanding of the public's attitudinal motivations; adopting the ecosystem and adaptive management approaches to managing groundwater; further improving water efficiency; exploiting the full potential of dryland and

  10. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E; Hwang, Jaehee

    2015-02-10

    An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  11. Plans, Patterns, and Move Categories Guiding a Highly Selective Search

    Science.gov (United States)

    Trippen, Gerhard

    In this paper we present our ideas for an Arimaa-playing program (also called a bot) that uses plans and pattern matching to guide a highly selective search. We restrict move generation to moves in certain move categories to reduce the number of moves considered by the bot significantly. Arimaa is a modern board game that can be played with a standard Chess set. However, the rules of the game are not at all like those of Chess. Furthermore, Arimaa was designed to be as simple and intuitive as possible for humans, yet challenging for computers. While all established Arimaa bots use alpha-beta search with a variety of pruning techniques and other heuristics ending in an extensive positional leaf node evaluation, our new bot, Rat, starts with a positional evaluation of the current position. Based on features found in the current position - supported by pattern matching using a directed position graph - our bot Rat decides which of a given set of plans to follow. The plan then dictates what types of moves can be chosen. This is another major difference from bots that generate "all" possible moves for a particular position. Rat is only allowed to generate moves that belong to certain categories. Leaf nodes are evaluated only by a straightforward material evaluation to help avoid moves that lose material. This highly selective search looks, on average, at only 5 moves out of 5,000 to over 40,000 possible moves in a middle game position.

  12. Managed aquifer recharge experiences with shallow wells: first analysis of the experimental activities in the high Vicenza plain (Northern Italy)

    OpenAIRE

    Lorenzo Altissimo; Silvia Bertoldo; Francesca Campagnolo; Giancarlo Gusmaroli; Teresa Muraro; Andrea Sottani

    2014-01-01

    In recent decades, groundwater resources of the high Vicenza plain were subjected to an increasing extraction rate and, at the same time, to a lower quantity of groundwater recharge. The result is a decreasing flow from the plain springs and a high reduction in piezometric levels of the middle and lower Venetian aquifers. In order to restore the balance of groundwater resources in the Vicenza area, the Vicenza Province has promoted experimental activities aimed to increase the recharge of the...

  13. High voltage rechargeable magnesium batteries having a non-aqueous electrolyte

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E.; Hwang, Jaehee

    2016-03-22

    A rechargable magnesium battery having an non-aqueous electrolyte is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  14. Water circulation within a high-Arctic glaciated valley (Petunia Bay, Central Spitsbergen): Recharge of a glacial river

    Science.gov (United States)

    Marciniak, Marek; Dragon, Krzysztof; Chudziak, Łukasz

    2014-05-01

    This article presents an investigation of the runoff of a glacial river located in the high Arctic region of Spitsbergen. The Ebba River runoff was measured during three melting seasons of 2007, 2008 and 2009. The most important component of the river recharge is the flow of melting water from glaciers (76-82% of total river runoff). However, the other components (surface water and groundwater) also made a significant contribution to the river recharge. The contribution of groundwater flow in total river runoff was estimated by measurements performed in four groups of piezometers located in different parts of the valley. The hydrogeological parameters that characterize shallow aquifer (thickness of the active layer, hydraulic conductivity, groundwater level fluctuations) were recognized by direct field measurements. The groundwater recharging river was the most variable recharge component, and ranged from 1% of the total runoff at the beginning of the melting season to even 27% at the end of summer.

  15. A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    Science.gov (United States)

    Appleby, A. J.; Dhar, H. P.; Kim, Y. J.; Murphy, O. J.

    1989-01-01

    The nickel-hydrogen secondary battery system, developed in the early 1970s, has become the system of choice for geostationary earth orbit (GEO) applications. However, for low earth orbit (LEO) satellites with long expected lifetimes the nickel positive limits performance. This requires derating of the cell to achieve very long cycle life. A new system, rechargeable MnO2-Hydrogen, which does not require derating, is described here. For LEO applications, it promises to have longer cycle life, high rate capability, a higher effective energy density, and much lower self-discharge behavior than those of the nickel-hydrogen system.

  16. Interbasin flow revisited: The contribution of local recharge to high-discharge springs, Death Valley, CA

    Science.gov (United States)

    Anderson, Katherine; Nelson, Stephen; Mayo, Alan; Tingey, David

    2006-05-01

    Springs in the Furnace Creek area (Texas, Travertine, and Nevares Springs) of Death Valley National Park exhibit high discharge rates and depleted δ18O VSMOW (˜-13‰) and δD VSMOW (˜-102‰) values. Isotopic depletion of this magnitude and large spring fluxes (˜10,000 L/min) suggests that modern local recharge in the arid Furnace Creek drainage cannot be responsible for spring fluxes. An alternate explanation, interbasin flow, is difficult to envisage due to the stratigraphic and structural relationships of bedrock in intervening ranges, although it is the most common conceptual model for Furnace Creek spring flows. High-flux springs at Furnace Creek nonetheless respond modestly to modern climate in terms of discharge rate and isotopic composition. Hydrographs show a climate response and variations in time-series stable isotope data of widely spaced springs track one another. Small, but measurable quantities of tritium (water for these springs may be, there appears to be a subtle, but recent climatic influence. Estimates of flow at nearby mountain springs produce discharge rates per square kilometer of catchment that, by analogy, could support from 20 to 300% of the flow at large Death Valley springs under the current climate. Yet, 14C model ages suggest valley-bottom springs at Furnace Creek (5500-14,500 yr) contain a large component of older water, suggesting that much of the water was recharged during a pluvial period (Younger Dryas?) when net infiltration would have been much higher and isotopically depleted. 14C model ages are also of similar age, or younger, than many 'up gradient' waters, rather than being older as would be expected for interbasin flow. Chemical evolution models of solutes are consistent with both local recharge and interbasin transfer from Ash Meadows. However, when considered with isotopic constraints, interbasin flow becomes obviously untenable. Estimates of the thickness of alluvium and semi-consolidated Tertiary units in the

  17. Recharge heterogeneity and high intensity rainfall events increase contamination risk for Mediterranean groundwater resources

    Science.gov (United States)

    Hartmann, Andreas; Jasechko, Scott; Gleeson, Tom; Wada, Yoshihide; Andreo, Bartolomé; Barberá, Juan Antonio; Brielmann, Heike; Charlier, Jean-Baptiste; Darling, George; Filippini, Maria; Garvelmann, Jakob; Goldscheider, Nico; Kralik, Martin; Kunstmann, Harald; Ladouche, Bernard; Lange, Jens; Mudarra, Matías; Francisco Martín, José; Rimmer, Alon; Sanchez, Damián; Stumpp, Christine; Wagener, Thorsten

    2017-04-01

    Karst develops through the dissolution of carbonate rock and results in pronounced spatiotemporal heterogeneity of hydrological processes. Karst groundwater in Europe is a major source of fresh water contributing up to half of the total drinking water supply in some countries like Austria or Slovenia. Previous work showed that karstic recharge processes enhance and alter the sensitivity of recharge to climate variability. The enhanced preferential flow from the surface to the aquifer may be followed by enhanced risk of groundwater contamination. In this study we assess the contamination risk of karst aquifers over Europe and the Mediterranean using simulated transit time distributions. Using a new type of semi-distributed model that considers the spatial heterogeneity of karst hydraulic properties, we were able to simulate karstic groundwater recharge including its heterogeneous spatiotemporal dynamics. The model is driven by gridded daily climate data from the Global Land Data Assimilation System (GLDAS). Transit time distributions are calculated using virtual tracer experiments. We evaluated our simulations by independent information on transit times derived from observed time series of water isotopes of >70 karst springs over Europe. The simulations indicate that, compared to humid, mountain and desert regions, the Mediterranean region shows a stronger risk of contamination in Europe because preferential flow processes are most pronounced given thin soil layers and the seasonal abundance of high intensity rainfall events in autumn and winter. Our modelling approach includes strong simplifications and its results cannot easily be generalized but it still highlights that the combined effects of variable climate and heterogeneous catchment properties constitute a strong risk on water quality.

  18. Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries

    Directory of Open Access Journals (Sweden)

    Xiao Zhu

    2017-11-01

    Full Text Available Novel carbon materials, carbon nanotubes (CNTs and porous graphene (PG, were exploited and used as conductive additives to improve the rate performance of LiMn2O4 cathode for the rechargeable aqueous Zn/LiMn2O4 battery, namely the rechargeable hybrid aqueous battery (ReHAB. Thanks to the long-range conductivity and stable conductive network provided by CNTs, the rate and cycling performances of LiMn2O4 cathode in ReHAB are highly improved—up to about 100 mAh·g−1 capacity is observed at 10 C (1 C = 120 mAh·g−1. Except for CNTs, porous graphene (PG with a high surface area, an abundant porous structure, and an excellent electrical conductivity facilitates the transportation of Li ions and electrons, which can also obviously enhance the rate capability of the ReHAB. This is important because the ReHAB could be charged/discharged in a few minutes, and this leads to potential application of the ReHAB in automobile industry.

  19. A high-voltage and non-corrosive ionic liquid electrolyte used in rechargeable aluminum battery.

    Science.gov (United States)

    Wang, Huali; Gu, Sichen; Bai, Ying; Chen, Shi; Wu, Feng; Wu, Chuan

    2016-10-03

    As a promising post-lithium battery, rechargeable aluminum battery has the potential to achieve a three-electron reaction with fully use of metal aluminum. Alternative electrolytes are strongly needed for further development of rechargeable aluminum batteries, since typical AlCl3-contained imidazole-based ionic liquids are moisture sensitive, corrosive, and with low oxidation voltage. In this letter, a kind of non-corrosive and water-stable ionic liquid obtained by mixing 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]OTF) with the corresponding aluminum salt (Al(OTF)3) is studied. This ionic liquid electrolyte has a high oxidation voltage (3.25V vs Al3+/Al) and high ionic conductivity, and a good electrochemical performance is also achieved. A new strategy, which first use corrosive AlCl3-based electrolyte to construct a suitable passageway on the Al anode for Al3+, and then use non-corrosive Al(OTF)3-based electrolyte to get stable Al/electrolyte interface, is put forward.

  20. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    Science.gov (United States)

    O'Leary, David R.; Izbicki, John A.; Metzger, Loren F.

    2015-11-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency's secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100-2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  1. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    Science.gov (United States)

    O'Leary, David; Izbicki, John A.; Metzger, Loren F.

    2015-01-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency’s secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100–2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  2. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie; Lowe, Michael A.; Abruña, Héctor D.

    2011-01-01

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering

  3. Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA

    Science.gov (United States)

    Fryar, Alan; Mullican, William; Macko, Stephen

    2001-11-01

    The unconfined High Plains (Ogallala) aquifer is the largest aquifer in the USA and the primary water supply for the semiarid southern High Plains of Texas and New Mexico. Analyses of water and soils northeast of Amarillo, Texas, together with data from other regional studies, indicate that processes during recharge control the composition of unconfined groundwater in the northern half of the southern High Plains. Solute and isotopic data are consistent with a sequence of episodic precipitation, concentration of solutes in upland soils by evapotranspiration, runoff, and infiltration beneath playas and ditches (modified locally by return flow of wastewater and irrigation tailwater). Plausible reactions during recharge include oxidation of organic matter, dissolution and exsolution of CO2, dissolution of CaCO3, silicate weathering, and cation exchange. Si and 14C data suggest leakage from perched aquifers to the High Plains aquifer. Plausible mass-balance models for the High Plains aquifer include scenarios of flow with leakage but not reactions, flow with reactions but not leakage, and flow with neither reactions nor leakage. Mechanisms of recharge and chemical evolution delineated in this study agree with those noted for other aquifers in the south-central and southwestern USA. Résumé. L'aquifère libre des Hautes Plaines (Ogallala) est le plus vaste aquifère des états-Unis et la ressource de base pour l'eau potable de la région semi-aride du sud des Hautes Plaines du Texas et du Nouveau-Mexique. Des analyses de l'eau et des sols prélevés au nord-est d'Amarillo (Texas), associées à des données provenant d'autres études dans cette région, indiquent que des processus intervenant au cours de l'infiltration contrôlent la composition de l'eau de la nappe libre dans la moitié septentrionale du sud des Hautes Plaines. Les données chimiques et isotopiques sont compatibles avec une séquence de précipitation épisodique, avec la reconcentration en solut

  4. Managed aquifer recharge experiences with shallow wells: first analysis of the experimental activities in the high Vicenza plain (Northern Italy

    Directory of Open Access Journals (Sweden)

    Lorenzo Altissimo

    2014-09-01

    Full Text Available In recent decades, groundwater resources of the high Vicenza plain were subjected to an increasing extraction rate and, at the same time, to a lower quantity of groundwater recharge. The result is a decreasing flow from the plain springs and a high reduction in piezometric levels of the middle and lower Venetian aquifers. In order to restore the balance of groundwater resources in the Vicenza area, the Vicenza Province has promoted experimental activities aimed to increase the recharge of the aquifer in the high Vicenza plain and in the River Agno valley, using infiltration wells, forested infiltration areas, infiltration trenches, subsurface fields and infiltration canals. All recharge plants are fed by irrigation water, managed by agricultural consortia only during periods of water surplus. Construction works were preceded by specific geological and hydrogeological investigations to verify the suitability for recharge, with the purpose of optimizing the available economic resources. For the protection of the aquifer system, a chemical background of infiltration water was assessed with periodical chemical-physical and microbiological surveys. After the activation date, a monthly monitoring program started to verify the quality of both surface and groundwater, collecting samples in monitoring wells downstream the infiltration structures. The input flow rate entering the various systems, monitored by automatic instruments either in the superficial structure and in groundwater, have provided interesting information about the volumes and the quality of water. These scientific experiences appear to be very helpful in case of future applications for other sites, especially during critical hydrologic period.

  5. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  6. New Nanostructured Li 2 S/Silicon Rechargeable Battery with High Specific Energy

    KAUST Repository

    Yang, Yuan; McDowell, Matthew T.; Jackson, Ariel; Cha, Judy J.; Hong, Seung Sae; Cui, Yi

    2010-01-01

    Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode

  7. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  8. A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.

    Science.gov (United States)

    Peng, Cheng; Guan, Chengzhi; Lin, Jun; Zhang, Shiyu; Bao, Hongliang; Wang, Yu; Xiao, Guoping; Chen, George Zheng; Wang, Jian-Qiang

    2018-06-11

    The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we describe a low-cost and high-temperature rechargeable iron-oxygen battery containing a bi-phase electrolyte of molten carbonate and solid oxide. This new design merges the merits of a solid-oxide fuel cell and molten metal-air battery, offering significantly improved battery reaction kinetics and power capability without compromising the energy capacity. The as-fabricated battery prototype can be charged at high current density, and exhibits excellent stability and security in the highly charged state. It typically exhibits specific energy, specific power, energy density, and power density of 129.1 Wh kg -1 , 2.8 kW kg -1 , 388.1 Wh L -1 , and 21.0 kW L -1 , respectively, based on the mass and volume of the molten salt. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Micro-Intertexture Carbon-Free Iron Sulfides as Advanced High Tap Density Anodes for Rechargeable Batteries.

    Science.gov (United States)

    Xiao, Ying; Hwang, Jang-Yeon; Sun, Yang-Kook

    2017-11-15

    Numerous materials have been considered as promising electrode materials for rechargeable batteries; however, developing efficient materials to achieving good cycling performance and high volumetric energy capacity simultaneously remains a great challenge. Considering the appealing properties of iron sulfides, which include low cost, high theoretical capacity, and favorable electrochemical conversion mechanism, in this work, we demonstrate the feasibility of carbon-free microscale Fe 1-x S as high-efficiency anode materials for rechargeable batteries by designing hierarchical intertexture architecture. The as-prepared intertexture Fe 1-x S microspheres constructed from nanoscale units take advantage of both the long cycle life of nanoscale units and the high tap density (1.13 g cm -3 ) of the micro-intertexture Fe 1-x S. As a result, high capacities of 1089.2 mA h g -1 (1230.8 mA h cm -3 ) and 624.7 mA h g -1 (705.9 mA h cm -3 ) were obtained after 100 cycles at 1 A g -1 in Li-ion and Na-ion batteries, respectively, demonstrating one of the best performances for iron sulfide-based electrodes. Even after deep cycling at 20 A g -1 , satisfactory capacities could be retained. Related results promote the practical application of metal sulfides as high-capacity electrodes with high rate capability for next-generation rechargeable batteries.

  10. Rocks, Clays, Water, and Salts: Highly Durable, Infinitely Rechargeable, Eminently Controllable Thermal Batteries for Buildings

    Directory of Open Access Journals (Sweden)

    Alan W. Rempel

    2013-01-01

    Full Text Available Materials that store the energy of warm days, to return that heat during cool nights, have been fundamental to vernacular building since ancient times. Although building with thermally rechargeable materials became a niche pursuit with the advent of fossil fuel-based heating and cooling, energy and climate change concerns have sparked new enthusiasm for these substances of high heat capacity and moderate thermal conductivity: stone, adobe, rammed earth, brick, water, concrete, and more recently, phase-change materials. While broadly similar, these substances absorb and release heat in unique patterns characteristic of their mineralogies, densities, fluidities, emissivities, and latent heats of fusion. Current architectural practice, however, shows little awareness of these differences and the resulting potential to match materials to desired thermal performance. This investigation explores that potential, illustrating the correspondence between physical parameters and thermal storage-and-release patterns in direct-, indirect-, and isolated-gain passive solar configurations. Focusing on heating applications, results demonstrate the superiority of water walls for daytime warmth, the tunability of granite and concrete for evening warmth, and the exceptional ability of phase-change materials to sustain near-constant heat delivery throughout the night.

  11. ATR-FTIR as a potential tool for controlling high quality vinegar categories

    DEFF Research Database (Denmark)

    Ríos-Reina, Rocío; Callejón, Raquel M.; Oliver-Pozo, Celia

    2017-01-01

    potential as a rapid, cost-effective and non-destructive tool for characterizing different categories of high-quality vinegars. Spectra from 67 wine vinegars belonging to the PDOs “Vinagre de Jerez” and “Vinagre Condado de Huelva”, including their different established categories, were analyzed in the 4000......–600 cm−1 infrared region. Changes associated to categories were observed in the region 1800–900 cm−1. These changes were assigned to certain compounds that increase during aging (e.g. acetic acids, alcohols, esters) or are characteristic of Pedro Ximenez category (e.g. sugars, furfural). Principal...

  12. A global view of the phase transitions of SnO2 in rechargeable batteries based on results of high throughput calculations

    KAUST Repository

    Cheng, Yingchun; Nie, Anmin; Gan, Liyong; Zhang, Qingyun; Schwingenschlö gl, Udo

    2015-01-01

    Lithium, sodium and magnesium have attracted wide attention as potential ions for rechargeable batteries. The Materials Project database of high throughput first principles calculations is used to investigate the phase transitions of SnO2 during ion

  13. Heterogeneity in Perceptual Category Learning by High Functioning Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Eduardo eMercado

    2015-06-01

    Full Text Available Previous research suggests that high functioning children with Autism Spectrum Disorder (ASD sometimes have problems learning categories, but often appear to perform normally in categorization tasks. The deficits that individuals with ASD show when learning categories have been attributed to executive dysfunction, general deficits in implicit learning, atypical cognitive strategies, or abnormal perceptual biases and abilities. Several of these psychological explanations for category learning deficits have been associated with neural abnormalities such as cortical underconnectivity. The present study evaluated how well existing neurally-based theories account for atypical perceptual category learning shown by high functioning children with ASD across multiple category learning tasks involving novel, abstract shapes. Consistent with earlier results, children’s performances revealed two distinct patterns of learning and generalization associated with ASD: one was indistinguishable from performance in typically developing children; the other revealed dramatic impairments. These two patterns were evident regardless of training regimen or stimulus set. Surprisingly, some children with ASD showed both patterns. Simulations of perceptual category learning could account for the two observed patterns in terms of differences in neural plasticity. However, no current psychological or neural theory adequately explains why a child with ASD might show such large fluctuations in category learning ability across training conditions or stimulus sets.

  14. Highly rechargeable lithium-CO{sub 2} batteries with a boron- and nitrogen-codoped holey-graphene cathode

    Energy Technology Data Exchange (ETDEWEB)

    Qie, Long; Xu, Jiantie; Dai, Liming [Center of Advanced Science and Engineering for Carbon, Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH (United States); Lin, Yi [National Institute of Aerospace, Hampton, VA (United States); Connell, John W. [Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, VA (United States)

    2017-06-06

    Metal-air batteries, especially Li-air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO{sub 2} (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li{sub 2}CO{sub 3}, making the battery less rechargeable. To make the Li-CO{sub 2} batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO{sub 2} reduction and evolution reactions and investigate the electrochemical behavior of Li-CO{sub 2} batteries. Here, we demonstrate a rechargeable Li-CO{sub 2} battery with a high reversibility by using B,N-codoped holey graphene as a highly efficient catalyst for CO{sub 2} reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as-prepared Li-CO{sub 2} batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long-term cycling stability over 200 cycles at a high current density of 1.0 A g{sup -1}. Our results open up new possibilities for the development of long-term Li-air batteries reusable under ambient conditions, and the utilization and storage of CO{sub 2}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Highly Rechargeable Lithium-CO2 Batteries with a Boron- and Nitrogen-Codoped Holey-Graphene Cathode.

    Science.gov (United States)

    Qie, Long; Lin, Yi; Connell, John W; Xu, Jiantie; Dai, Liming

    2017-06-06

    Metal-air batteries, especially Li-air batteries, have attracted significant research attention in the past decade. However, the electrochemical reactions between CO 2 (0.04 % in ambient air) with Li anode may lead to the irreversible formation of insulating Li 2 CO 3 , making the battery less rechargeable. To make the Li-CO 2 batteries usable under ambient conditions, it is critical to develop highly efficient catalysts for the CO 2 reduction and evolution reactions and investigate the electrochemical behavior of Li-CO 2 batteries. Here, we demonstrate a rechargeable Li-CO 2 battery with a high reversibility by using B,N-codoped holey graphene as a highly efficient catalyst for CO 2 reduction and evolution reactions. Benefiting from the unique porous holey nanostructure and high catalytic activity of the cathode, the as-prepared Li-CO 2 batteries exhibit high reversibility, low polarization, excellent rate performance, and superior long-term cycling stability over 200 cycles at a high current density of 1.0 A g -1 . Our results open up new possibilities for the development of long-term Li-air batteries reusable under ambient conditions, and the utilization and storage of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Heterogeneity in perceptual category learning by high functioning children with autism spectrum disorder.

    Science.gov (United States)

    Mercado, Eduardo; Church, Barbara A; Coutinho, Mariana V C; Dovgopoly, Alexander; Lopata, Christopher J; Toomey, Jennifer A; Thomeer, Marcus L

    2015-01-01

    Previous research suggests that high functioning (HF) children with autism spectrum disorder (ASD) sometimes have problems learning categories, but often appear to perform normally in categorization tasks. The deficits that individuals with ASD show when learning categories have been attributed to executive dysfunction, general deficits in implicit learning, atypical cognitive strategies, or abnormal perceptual biases and abilities. Several of these psychological explanations for category learning deficits have been associated with neural abnormalities such as cortical underconnectivity. The present study evaluated how well existing neurally based theories account for atypical perceptual category learning shown by HF children with ASD across multiple category learning tasks involving novel, abstract shapes. Consistent with earlier results, children's performances revealed two distinct patterns of learning and generalization associated with ASD: one was indistinguishable from performance in typically developing children; the other revealed dramatic impairments. These two patterns were evident regardless of training regimen or stimulus set. Surprisingly, some children with ASD showed both patterns. Simulations of perceptual category learning could account for the two observed patterns in terms of differences in neural plasticity. However, no current psychological or neural theory adequately explains why a child with ASD might show such large fluctuations in category learning ability across training conditions or stimulus sets.

  17. Advanced Materials Enabled by Atomic Layer Deposition for High Energy Density Rechargeable Batteries

    Science.gov (United States)

    Chen, Lin

    In order to meet the ever increasing energy needs of society and realize the US Department of Energy (DOE)'s target for energy storage, acquiring a fundamental understanding of the chemical mechanisms in batteries for direct guidance and searching novel advanced materials with high energy density are critical. To realize rechargeable batteries with superior energy density, great cathodes and excellent anodes are required. LiMn2O4 (LMO) has been considered as a simpler surrogate for high energy cathode materials like NMC. Previous studies demonstrated that Al2O3 coatings prepared by atomic layer deposition (ALD) improved the capacity of LMO cathodes. This improvement was attributed to a reduction in surface area and diminished Mn dissolution. However, here we propose a different mechanism for ALD Al 2O3 on LMO based on in-situ and ex-situ investigations coupled with density functional theory calculations. We discovered that Al2O 3 not only coats the LMO, but also dopes the LMO surface with Al leading to changes in the Mn oxidation state. Different thicknesses of Al2O 3 were deposited on nonstoichiometric LiMn2O4 for electrochemical measurements. The LMO treated with one cycle of ALD Al2O3 (1xAl 2O3 LMO) to produce a sub-monolayer coating yielded a remarkable initial capacity, 16.4% higher than its uncoated LMO counterpart in full cells. The stability of 1xAl2O3 LMO is also much better as a result of stabilized defects with Al species. Furthermore, 4xAl 2O3 LMO demonstrates remarkable capacity retention. Stoichiometric LiMn2O4 was also evaluated with similar improved performance achieved. All superior results, accomplished by great stability and reduced Mn dissolution, is thanks to the synergetic effects of Al-doping and ALD Al2O 3 coating. Turning our attention to the anode, we again utilized aluminum oxide ALD to form conformal films on lithium. We elaborately designed and studied, for the first time, the growth mechanism during Al2O3 ALD on lithium metal in

  18. Thermal-permeability structure and recharge conditions of the Mutnovsky high-temperature geothermal field (Kamchatka, Russia)

    Science.gov (United States)

    Kiryukhin, A. V.; Polyakov, A. Y.; Usacheva, O. O.; Kiryukhin, P. A.

    2018-05-01

    The Mutnovsky geothermal area is part of the Eastern Kamchatka active volcano belt. Mutnovsky, 80 kY old and an aging strato-volcano (a complex of 4 composite volcanic cones), acts as a magma- and water-injector into the 25-km-long North Mutnovsky extension zone. Magmatic injection events (dykes) are associated with plane-oriented MEQ (Micro Earth Quakes) clusters, most of them occurring in the NE sector of the volcano (2 × 10 km2) at elevations from -4 to -2 km, while some magmatic injections occur at elevations from -6.0 to -4.0 km below the Mutnovsky production field. Water recharge of production reservoirs is from the Mutnovsky volcano crater glacier (+1500 to +1800 masl), which was confirmed by water isotopic data (δD, δ18O) of production wells at an earlier stage of development. The Mutnovsky (Dachny) 260-310 °C high-temperature production geothermal reservoir with a volume of 16 km3 is at the junction of NNE- and NE-striking normal faults, which coincides with the current dominant dyke injection orientation. TOUGH2-modeling estimates of the reservoir properties are as follows: the reservoir permeability is 90-600 e-15 m2, the deep upflow recharge is 80 kg/s and the enthalpy is 1420 kJ/kg. Modeling was used to reproduce the history of the Mutnovsky (Dachny) reservoir exploitation since 1983 with an effective power of 48 MWe by 2016. Modeling also showed that the reservoir is capable of yielding 65-83 MWe of sustainable production until 2055, if additional production drilling in the SE part of the field is performed. Moreover, this power value may increase to 87-105 MWe if binary technologies are applied. Modeling also shows that the predicted power is sensitive to local meteoric water influx during development. Conceptual iTOUGH2-EOS1sc thermal hydrodynamic modeling of the Mutnovsky magma-hydrothermal system as a whole reasonably explains its evolution over the last 1500-5000 years in terms of heat recharge (dyke injection from the Mutnovsky-4 funnel) and

  19. Interlayer-Spacing-Regulated VOPO4 Nanosheets with Fast Kinetics for High-Capacity and Durable Rechargeable Magnesium Batteries.

    Science.gov (United States)

    Zhou, Limin; Liu, Qi; Zhang, Zihe; Zhang, Kai; Xiong, Fangyu; Tan, Shuangshuang; An, Qinyou; Kang, Yong-Mook; Zhou, Zhen; Mai, Liqiang

    2018-06-25

    Owing to the low-cost, safety, dendrite-free formation, and two-electron redox properties of magnesium (Mg), rechargeable Mg batteries are considered as promising next-generation secondary batteries with high specific capacity and energy density. However, the clumsy Mg 2+ with high polarity inclines to sluggish Mg insertion/deinsertion, leading to inadequate reversible capacity and rate performance. Herein, 2D VOPO 4 nanosheets with expanded interlayer spacing (1.42 nm) are prepared and applied in rechargeable magnesium batteries for the first time. The interlayer expansion provides enough diffusion space for fast kinetics of MgCl + ion flux with low polarization. Benefiting from the structural configuration, the Mg battery exhibits a remarkable reversible capacity of 310 mAh g -1 at 50 mA g -1 , excellent rate capability, and good cycling stability (192 mAh g -1 at 100 mA g -1 even after 500 cycles). In addition, density functional theory (DFT) computations are conducted to understand the electrode behavior with decreased MgCl + migration energy barrier compared with Mg 2+ . This approach, based on the regulation of interlayer distance to control cation insertion, represents a promising guideline for electrode material design on the development of advanced secondary multivalent-ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrically rechargeable zinc/air battery: a high specific energy system

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, F; Sauter, J -C; Masanz, G; Mueller, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This contribution describes our research and development efforts towards the demonstration of a light-weight, low-cost 12 V/20 Ah electrically rechargeable Zn/air battery. We successfully developed electrodes having active areas of up to 200 cm{sup 2}. Deep discharge cycles at different currents as well as current-voltage curves are reported for a 10 cell Zn/air battery (serial connection) with a rated capacity of 20 Ah. Based on the discharge cycle at a power of 19 W, and the weight of the battery, a specific energy of more than 90 Wh/kg could be evaluated for the whole system. (author) 4 figs., 1 tab., 5 refs.

  1. Radioactive gas standby treatment apparatus with high efficiency rechargeable charcoal filter

    International Nuclear Information System (INIS)

    Hickey, T.N.; Spulgis, I.S.

    1975-01-01

    Described is a standby gas treatment system for removal of radioactive release from a nuclear containment structure not only during normal purge operations but also in the event of a design basis accident. Ventiduct trains arranged in parallel so that one is redundant are each operative to extract dust in excess of 0.3 microns and adsorb radioactive iodine and compounds thereof at 99.9 percent plus efficiency. A rechargeable gasketless charcoal filter in each train can be filled or emptied without removing the filter enclosures per se. Laminar flow filter beds entirely encapsulate the gas stream to provide low gas velocity and even distribution across the charcoal cage without channeling, thereby securing long residence time

  2. Radioactive gas standby treatment apparatus with high efficiency rechargeable charcoal filter

    International Nuclear Information System (INIS)

    Hickey, T.N.; Spulgis, I.S.

    1976-01-01

    A description is given of a standby gas treatment system for removal of radioactive release from a nuclear containment structure not only during normal purge operations but also in the event of a design basis accident. Ventiduct trains arranged in parallel so that one is redundant are each operative to extract dust in excess of 0.3 microns and adsorb radioactive iodine and compounds thereof at 99.9 percent plus efficiency. A rechargeable gasketless charcoal filter in each train can be filled or emptied without removing the filter enclosures per se. Laminar flow filter beds entirely encapsulate the gas stream to provide low gas velocity and even distribution across the charcoal cage without channeling, thereby securing long residence time. 2 claims, 9 drawing figures

  3. Aquifer recharge from infiltration basins in a highly urbanized area: the river Po Plain (Italy)

    Science.gov (United States)

    Masetti, M.; Nghiem, S. V.; Sorichetta, A.; Stevenazzi, S.; Santi, E. S.; Pettinato, S.; Bonfanti, M.; Pedretti, D.

    2015-12-01

    Due to the extensive urbanization in the Po Plain in northern Italy, rivers need to be managed to alleviate flooding problems while maintaining an appropriate aquifer recharge under an increasing percentage of impermeable surfaces. During the PO PLain Experiment field campaign in July 2015 (POPLEX 2015), both active and under-construction infiltration basins have been surveyed and analyzed to identify appropriate satellite observations that can be integrated to ground based monitoring techniques. A key strategy is to have continuous data time series on water presence and level within the basin, for which ground based monitoring can be costly and difficult to be obtained consistently.One of the major and old infiltration basin in the central Po Plain has been considered as pilot area. The basin is active from 2003 with ground based monitoring available since 2009 and supporting the development of a calibrated unsaturated-saturated two-dimensional numerical model simulating the infiltration dynamics through the basin.A procedure to use satellite data to detect surface water change is under development based on satellite radar backscatter data with an appropriate incidence angle and polarization combination. An advantage of satellite radar is that it can observe surface water regardless of cloud cover, which can be persistent during rainy seasons. Then, the surface water change is correlated to the reservoir water stage to determine water storage in the basin together with integrated ground data and to give quantitative estimates of variations in the local water cycle.We evaluated the evolution of the infiltration rate, to obtain useful insights about the general recharge behavior of basins that can be used for informed design and maintenance. Results clearly show when the basin becomes progressively clogged by biofilms that can reduce the infiltration capacity of the basin by as much as 50 times compared to when it properly works under clean conditions.

  4. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery

    Science.gov (United States)

    Xu, Xin; Meng, Zhen; Zhu, Xueling; Zhang, Shunlong; Han, Wei-Qiang

    2018-03-01

    Pyrite FeS2 has long been used as commercial primary lithium batteries at room temperature. To achieve rechargeable FeS2 battery, biomass-carbon@FeS2 composites are prepared using green and renewable auricularia auricula as carbon source through the process of carbonization and sulfuration. The auricularia auricula has strong swelling characteristics to absorb aqueous solution which can effectively absorb Fe ions into its body. FeS2 homogeneously distributed in biomass carbon matrix performs high electronic and ionic conductivity. The specific capacity of biomass-carbon@FeS2 composites remains 850 mAh g-1 after 80 cycles at 0.5C and 700 mAh g-1 at the rate of 2C after 150 cycles. Biomass-carbon@FeS2 composites exhibit high-rate capacity in lithium-ion battery.

  5. Spongelike Nanosized Mn 3 O 4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries

    KAUST Repository

    Gao, Jie

    2011-07-12

    Mn3O4 has been investigated as a high-capacity anode material for rechargeable lithium ion batteries. Spongelike nanosized Mn 3O4 was synthesized by a simple precipitation method and characterized by powder X-ray diffraction, Raman scattering and scanning electron microscopy. Its electrochemical performance, as an anode material, was evaluated by galvanostatic discharge-charge tests. The results indicate that this novel type of nanosized Mn3O4 exhibits a high initial reversible capacity (869 mA h/g) and significantly enhanced first Coulomb efficiency with a stabilized reversible capacity of around 800 mA h/g after over 40 charge/discharge cycles. © 2011 American Chemical Society.

  6. Assessment of groundwater recharge potential zone using GIS approach in Purworejo regency, Central Java province, Indonesia

    Science.gov (United States)

    Aryanto, Daniel Eko; Hardiman, Gagoek

    2018-02-01

    Floods and droughts in Purworejo regency are an indication of problems in groundwater management. The current development progress has led to land conversion which has an impact on the problem of water infiltration in Purworejo regency. This study aims to determine the distribution of groundwater recharge potential zones by using geographic information system as the basis for ground water management. The groundwater recharge potential zone is obtained by overlaying all the thematic maps that affect the groundwater infiltration. Each thematic map is weighted according to its effect on groundwater infiltration such as land-use - 25%, rainfall - 20%, litology - 20%, soil - 15%, slope - 10%, lineament - 5%, and river density - 5% to find groundwater recharge potential zones. The groundwater recharge potential zones thus obtained were divided into five categories, viz., very high, high, medium, low and very low zones. The results of this study may be useful for better groundwater planning and management.

  7. High-Capacity Micrometer-Sized Li 2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    KAUST Repository

    Yang, Yuan

    2012-09-19

    Li 2S is a high-capacity cathode material for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 order of magnitude higher than traditional metal oxides/phosphates cathodes. However, Li 2S is usually considered to be electrochemically inactive due to its high electronic resistivity and low lithium-ion diffusivity. In this paper, we discover that a large potential barrier (∼1 V) exists at the beginning of charging for Li 2S. By applying a higher voltage cutoff, this barrier can be overcome and Li 2S becomes active. Moreover, this barrier does not appear again in the following cycling. Subsequent cycling shows that the material behaves similar to common sulfur cathodes with high energy efficiency. The initial discharge capacity is greater than 800 mAh/g for even 10 μm Li 2S particles. Moreover, after 10 cycles, the capacity is stabilized around 500-550 mAh/g with a capacity decay rate of only ∼0.25% per cycle. The origin of the initial barrier is found to be the phase nucleation of polysulfides, but the amplitude of barrier is mainly due to two factors: (a) charge transfer directly between Li 2S and electrolyte without polysulfide and (b) lithium-ion diffusion in Li 2S. These results demonstrate a simple and scalable approach to utilizing Li 2S as the cathode material for rechargeable lithium-ion batteries with high specific energy. © 2012 American Chemical Society.

  8. New Nanostructured Li 2 S/Silicon Rechargeable Battery with High Specific Energy

    KAUST Repository

    Yang, Yuan

    2010-04-14

    Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, sulfur-based cathodes have to be paired with metallic lithium anodes as the lithium source, which can result in serious safety issues. Here we report a novel lithium metal-free battery consisting of a Li 2S/mesoporous carbon composite cathode and a silicon nanowire anode. This new battery yields a theoretical specific energy of 1550 Wh kg ?1, which is four times that of the theoretical specific energy of existing lithium-ion batteries based on LiCoO2 cathodes and graphite anodes (∼410 Wh kg?1). The nanostructured design of both electrodes assists in overcoming the issues associated with using sulfur compounds and silicon in lithium-ion batteries, including poor electrical conductivity, significant structural changes, and volume expansion. We have experimentally realized an initial discharge specific energy of 630 Wh kg ?1 based on the mass of the active electrode materials. © 2010 American Chemical Society.

  9. A connectionist model of category learning by individuals with high-functioning autism spectrum disorder.

    Science.gov (United States)

    Dovgopoly, Alexander; Mercado, Eduardo

    2013-06-01

    Individuals with autism spectrum disorder (ASD) show atypical patterns of learning and generalization. We explored the possible impacts of autism-related neural abnormalities on perceptual category learning using a neural network model of visual cortical processing. When applied to experiments in which children or adults were trained to classify complex two-dimensional images, the model can account for atypical patterns of perceptual generalization. This is only possible, however, when individual differences in learning are taken into account. In particular, analyses performed with a self-organizing map suggested that individuals with high-functioning ASD show two distinct generalization patterns: one that is comparable to typical patterns, and a second in which there is almost no generalization. The model leads to novel predictions about how individuals will generalize when trained with simplified input sets and can explain why some researchers have failed to detect learning or generalization deficits in prior studies of category learning by individuals with autism. On the basis of these simulations, we propose that deficits in basic neural plasticity mechanisms may be sufficient to account for the atypical patterns of perceptual category learning and generalization associated with autism, but they do not account for why only a subset of individuals with autism would show such deficits. If variations in performance across subgroups reflect heterogeneous neural abnormalities, then future behavioral and neuroimaging studies of individuals with ASD will need to account for such disparities.

  10. High-throughput screening of a diversity collection using biodefense category A and B priority pathogens.

    Science.gov (United States)

    Barrow, Esther W; Clinkenbeard, Patricia A; Duncan-Decocq, Rebecca A; Perteet, Rachel F; Hill, Kimberly D; Bourne, Philip C; Valderas, Michelle W; Bourne, Christina R; Clarkson, Nicole L; Clinkenbeard, Kenneth D; Barrow, William W

    2012-08-01

    One of the objectives of the National Institutes of Allergy and Infectious Diseases (NIAID) Biodefense Program is to identify or develop broad-spectrum antimicrobials for use against bioterrorism pathogens and emerging infectious agents. As a part of that program, our institution has screened the 10 000-compound MyriaScreen Diversity Collection of high-purity druglike compounds against three NIAID category A and one category B priority pathogens in an effort to identify potential compound classes for further drug development. The effective use of a Clinical and Laboratory Standards Institute-based high-throughput screening (HTS) 96-well-based format allowed for the identification of 49 compounds that had in vitro activity against all four pathogens with minimum inhibitory concentration values of ≤16 µg/mL. Adaptation of the HTS process was necessary to conduct the work in higher-level containment, in this case, biosafety level 3. Examination of chemical scaffolds shared by some of the 49 compounds and assessment of available chemical databases indicates that several may represent broad-spectrum antimicrobials whose activity is based on novel mechanisms of action.

  11. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan; Yang, Yuan; Cha, Judy J.; Hong, Seung Sae; Cui, Yi

    2011-01-01

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber

  12. Sex Differences in Emotional Evaluation of Film Clips: Interaction with Five High Arousal Emotional Categories

    Science.gov (United States)

    Maffei, Antonio; Vencato, Valentina; Angrilli, Alessandro

    2015-01-01

    The present study aimed to investigate gender differences in the emotional evaluation of 18 film clips divided into six categories: Erotic, Scenery, Neutral, Sadness, Compassion, and Fear. 41 female and 40 male students rated all clips for valence-pleasantness, arousal, level of elicited distress, anxiety, jittery feelings, excitation, and embarrassment. Analysis of positive films revealed higher levels of arousal, pleasantness, and excitation to the Scenery clips in both genders, but lower pleasantness and greater embarrassment in women compared to men to Erotic clips. Concerning unpleasant stimuli, unlike men, women reported more unpleasantness to the Compassion, Sadness, and Fear compared to the Neutral clips and rated them also as more arousing than did men. They further differentiated the films by perceiving greater arousal to Fear than to Compassion clips. Women rated the Sadness and Fear clips with greater Distress and Jittery feelings than men did. Correlation analysis between arousal and the other emotional scales revealed that, although men looked less aroused than women to all unpleasant clips, they also showed a larger variance in their emotional responses as indicated by the high number of correlations and their relatively greater extent, an outcome pointing to a masked larger sensitivity of part of male sample to emotional clips. We propose a new perspective in which gender difference in emotional responses can be better evidenced by means of film clips selected and clustered in more homogeneous categories, controlled for arousal levels, as well as evaluated through a number of emotion focused adjectives. PMID:26717488

  13. Sex Differences in Emotional Evaluation of Film Clips: Interaction with Five High Arousal Emotional Categories.

    Directory of Open Access Journals (Sweden)

    Antonio Maffei

    Full Text Available The present study aimed to investigate gender differences in the emotional evaluation of 18 film clips divided into six categories: Erotic, Scenery, Neutral, Sadness, Compassion, and Fear. 41 female and 40 male students rated all clips for valence-pleasantness, arousal, level of elicited distress, anxiety, jittery feelings, excitation, and embarrassment. Analysis of positive films revealed higher levels of arousal, pleasantness, and excitation to the Scenery clips in both genders, but lower pleasantness and greater embarrassment in women compared to men to Erotic clips. Concerning unpleasant stimuli, unlike men, women reported more unpleasantness to the Compassion, Sadness, and Fear compared to the Neutral clips and rated them also as more arousing than did men. They further differentiated the films by perceiving greater arousal to Fear than to Compassion clips. Women rated the Sadness and Fear clips with greater Distress and Jittery feelings than men did. Correlation analysis between arousal and the other emotional scales revealed that, although men looked less aroused than women to all unpleasant clips, they also showed a larger variance in their emotional responses as indicated by the high number of correlations and their relatively greater extent, an outcome pointing to a masked larger sensitivity of part of male sample to emotional clips. We propose a new perspective in which gender difference in emotional responses can be better evidenced by means of film clips selected and clustered in more homogeneous categories, controlled for arousal levels, as well as evaluated through a number of emotion focused adjectives.

  14. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  15. A method to quench and recharge avalanche photo diodes for use in high rate situations

    International Nuclear Information System (INIS)

    Regan, T.O.; Fenker, H.C.; Thomas, J.; Oliver, J.

    1992-06-01

    We present a new method of using Avalanche Photo Diodes (APDS) for low level light detection in Geiger mode in high rate situations such as those encountered at the Superconducting Super Collider (SSC). The new technique is readily adaptable to implementation in CMOS VLSI

  16. "Electron/Ion Sponge"-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries.

    Science.gov (United States)

    Liu, Jilei; Chen, Zhen; Chen, Shi; Zhang, Bowei; Wang, Jin; Wang, Huanhuan; Tian, Bingbing; Chen, Minghua; Fan, Xiaofeng; Huang, Yizhong; Sum, Tze Chien; Lin, Jianyi; Shen, Ze Xiang

    2017-07-25

    One key challenge facing room temperature Na-ion batteries lies in identifying earth-abundant, environmentally friendly and safe materials that can provide efficient Na + storage sites in Na-ion batteries. Herein, we report such a material, polyoxometalate Na 2 H 8 [MnV 13 O 38 ] (NMV), with entirely different composition and structure from those cathode compounds reported before. Ex-situ XPS and FTIR analyses reveal that NMV cathode behaves like an "electron/Na-ion sponge", with 11 electrons/Na + acceptability per mole, which has a decisive contribution to the high capacity. The extraordinary structural features, evidenced by X-ray crystallographic analysis, of Na 2 H 8 [MnV 13 O 38 ] with a flexible 2D lamellar network and 1D open channels provide diverse Na ion migration pathways, yielding good rate capability. First-principle calculations demonstrate that a super-reduced state, [MnV 13 O 38 ] 20- , is formed with slightly expanded size (ca. 7.5%) upon Na + insertion compared to the original [MnV 13 O 38 ] 9- . This "ion sponge" feature ensures the good cycling stability. Consequently, benefiting from the combinations of "electron/ion sponge" with diverse Na + diffusion channels, when revealed as the cathode materials for Na-ion batteries, Na 2 H 8 [MnV 13 O 38 ]/G exhibits a high specific capacity (ca. 190 mA h/g at 0.1 C), associates with a good rate capability (130 mA h/g at 1 C), and a good capacity retention (81% at 0.2 C). Our results promote better understanding of the storage mechanism in polyoxometalate host, enrich the existing rechargeable SIBs cathode chemistry, and enlighten an exciting direction for exploring promising cathode materials for Na-ion batteries.

  17. High energy density layered-spinel hybrid cathodes for lithium ion rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S., E-mail: sbasumajumder@yahoo.com [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Dahiya, P.P.; Akhtar, Mainul [Materials Science Center, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Ray, S.K. [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Chang, J.K. [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Majumder, S.B. [Materials Science Center, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India)

    2016-11-15

    Highlights: • Structural integration of layered domains in spinel matrix of the composite particles. • Highest discharge capacity (275 mAh g{sup −1}) in composite with 30.0 mole% Li{sub 2}MnO{sub 3}. • Reasonably good rate capability of layered-spinel composite cathode. • Capacity fading with cycling is related to cubic to tetragonal structural phase transition. - Abstract: High energy density Li{sub 2}MnO{sub 3} (layered)–LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} (spinel) composite cathodes have been synthesized using auto-combustion route. Rietveld refinements together with the analyses of high resolution transmission electron micrographs confirm the structural integration of Li{sub 2}MnO{sub 3} nano-domains into the LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} matrix of the composite cathodes. The discharge capacity of the composite cathodes are due to the intercalation of Li{sup +} ion in the tetrahedral (8a) and octahedral (16c) sites of the spinel component and also the insertion of Li{sup +} in the freshly prepared MnO{sub 2} lattice, formed after Li{sub 2}O extraction from the Li{sub 2}MnO{sub 3} domains. The capacity fading of the composite cathodes are explained to be due to the layered to spinel transition of the Li{sub 2}MnO{sub 3} component and Li{sup +} insertion into the octahedral site of the spinel lattices which trigger cubic to tetragonal phase transition resulting volume expansion which eventually retard the Li{sup +} intercalation with cycling.

  18. Verifying the Rechargeability of Li-CO2 Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N-Doped Graphene.

    Science.gov (United States)

    Zhang, Zhang; Wang, Xin-Gai; Zhang, Xu; Xie, Zhaojun; Chen, Ya-Nan; Ma, Lipo; Peng, Zhangquan; Zhou, Zhen

    2018-02-01

    Li-CO 2 batteries could skillfully combine the reduction of "greenhouse effect" with energy storage systems. However, Li-CO 2 batteries still suffer from unsatisfactory electrochemical performances and their rechargeability is challenged. Here, it is reported that a composite of Ni nanoparticles highly dispersed on N-doped graphene (Ni-NG) with 3D porous structure, exhibits a superior discharge capacity of 17 625 mA h g -1 , as the air cathode for Li-CO 2 batteries. The batteries with these highly efficient cathodes could sustain 100 cycles at a cutoff capacity of 1000 mA h g -1 with low overpotentials at the current density of 100 mA g -1 . Particularly, the Ni-NG cathodes allow to observe the appearance/disappearance of agglomerated Li 2 CO 3 particles and carbon thin films directly upon discharge/charge processes. In addition, the recycle of CO 2 is detected through in situ differential electrochemical mass spectrometry. This is a critical step to verify the electrochemical rechargeability of Li-CO 2 batteries. Also, first-principles computations further prove that Ni nanoparticles are active sites for the reaction of Li and CO 2 , which could guide to design more advantageous catalysts for rechargeable Li-CO 2 batteries.

  19. 76 FR 57627 - Special Conditions: Cessna Aircraft Company Model M680 Airplane; Rechargeable Lithium-Ion Battery...

    Science.gov (United States)

    2011-09-16

    ... currently approved for installation in transport-category airplanes. Large, high-capacity, rechargeable... electrolytes. The electrolyte can serve as a source of fuel for an external fire if the cell container is..., are established to ensure the availability of electrical power from the batteries when needed...

  20. The equivalence of gravitational potential and rechargeable battery for high-altitude long-endurance solar-powered aircraft on energy storage

    International Nuclear Information System (INIS)

    Gao, Xian-Zhong; Hou, Zhong-Xi; Guo, Zheng; Fan, Rong-Fei; Chen, Xiao-Qian

    2013-01-01

    Highlights: • The scope of this paper is to apply solar energy to achieve the high-altitude long-endurance flight. • The equivalence of gravitational potential and rechargeable battery is discussed. • Four kinds of factors have been discussed to compare the two method of energy storage. • This work can provide some governing principles for the application of solar-powered aircraft. - Abstract: Applying solar energy is one of the most promising methods to achieve the aim of High-altitude Long-endurance (HALE) flight, and solar-powered aircraft is usually taken by the research groups to develop HALE aircraft. However, the crucial factor which constrains the solar-powered aircraft to achieve the aim of HALE is the problem how to fulfill the power requirement under weight constraint of rechargeable batteries. Motivated by the birds store energy from thermal by gaining height, the method of energy stored by gravitational potential for solar-powered aircraft have attracted great attentions in recent years. In order to make the method of energy stored in gravitational potential more practical in solar-powered aircraft, the equivalence of gravitational potential and rechargeable battery for aircraft on energy storage has been analyzed, and four kinds of factors are discussed in this paper: the duration of solar irradiation, the charging rate, the energy density of rechargeable battery and the initial altitude of aircraft. This work can provide some governing principles for the solar-powered aircraft to achieve the unlimited endurance flight, and the endurance performance of solar-powered aircraft may be greatly improved by the application of energy storage using gravitational potential

  1. Transformer Recharging with Alpha Channeling in Tokamaks

    International Nuclear Information System (INIS)

    Fisch, N.J.

    2009-01-01

    Transformer recharging with lower hybrid waves in tokamaks can give low average auxiliary power if the resistivity is kept high enough during the radio frequency (rf) recharging stage. At the same time, operation in the hot ion mode via alpha channeling increases the effective fusion reactivity. This paper will address the extent to which these two large cost saving steps are compatible.

  2. Association of obesity categories and high blood pressure in a rural adult Chinese population.

    Science.gov (United States)

    Zhao, Y; Zhang, M; Luo, X; Yin, L; Pang, C; Feng, T; Ren, Y; Wang, B; Zhang, L; Li, L; Zhang, H; Yang, X; Han, C; Wu, D; Zhou, J; Shen, Y; Wang, C; Zhao, J; Hu, D

    2016-10-01

    Limited information is available on the prevalence of obesity and high blood pressure (HBP) in rural China. We conducted a cross-sectional survey in a rural adult Chinese population during July to August of 2007 and 2008. The relationship between various obesity categories and HBP was analysed by gender for 20 194 participants. Obesity categories were classified as general and central obesity in terms of body mass index (BMI) and waist circumference (WC), respectively; cross-classification of BMI and WC created another four groups: both BMI and WC normal (BNWN), BMI obesity and WC normal (BOWN), BMI normal and WC obesity (BNWO), and both BMI and WC obesity (BOWO). The rates of HBP for BNWN, BOWN, BNWO and BOWO groups were 20.8, 63.3, 39.8 and 48.7%, respectively, for men and 20.1, 28.0, 34.7 and 54.2%, respectively, for women. As compared with BNWN group, the adjusted odds ratio (OR) and 95% confidence interval (CI) of BOWN and BOWO for having HBP in men were 6.227 (2.712-14.300) and 4.842 (4.036-5.808), respectively. As compared with BNWN women, BNWO and BOWO women showed increased risk of HBP (adjusted OR=1.342, 95%CI=1.139-1.581 and adjusted OR=4.530, 95%CI=4.004-5.124, respectively). The prevalence of general and central obesity was strongly related to HBP. Men with obese BMI but normal WC may be at increased risk of HBP. Women should pay more attention to changes in visceral adipose distribution and keep both BMI and WC values within normal ranges to reduce obesity-related health problems.

  3. Management decision of optimal recharge water in groundwater artificial recharge conditions- A case study in an artificial recharge test site

    Science.gov (United States)

    He, H. Y.; Shi, X. F.; Zhu, W.; Wang, C. Q.; Ma, H. W.; Zhang, W. J.

    2017-11-01

    The city conducted groundwater artificial recharge test which was taken a typical site as an example, and the purpose is to prevent and control land subsidence, increase the amount of groundwater resources. To protect groundwater environmental quality and safety, the city chose tap water as recharge water, however, the high cost makes it not conducive to the optimal allocation of water resources and not suitable to popularize widely. To solve this, the city selects two major surface water of River A and B as the proposed recharge water, to explore its feasibility. According to a comprehensive analysis of the cost of recharge, the distance of the water transport, the quality of recharge water and others. Entropy weight Fuzzy Comprehensive Evaluation Method is used to prefer tap water and water of River A and B. Evaluation results show that water of River B is the optimal recharge water, if used; recharge cost will be from 0.4724/m3 to 0.3696/m3. Using Entropy weight Fuzzy Comprehensive Evaluation Method to confirm water of River B as optimal water is scientific and reasonable. The optimal water management decisions can provide technical support for the city to carry out overall groundwater artificial recharge engineering in deep aquifer.

  4. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  5. Contested Categories

    DEFF Research Database (Denmark)

    Drawing on social science perspectives, Contested Categories presents a series of empirical studies that engage with the often shifting and day-to-day realities of life sciences categories. In doing so, it shows how such categories remain contested and dynamic, and that the boundaries they create...

  6. Multiple recharge processes to heterogeneous Mediterranean coastal aquifers and implications on recharge rates evolution in time

    Science.gov (United States)

    Santoni, S.; Huneau, F.; Garel, E.; Celle-Jeanton, H.

    2018-04-01

    Climate change is nowadays widely considered to have major effects on groundwater resources. Climatic projections suggest a global increase in evaporation and higher frequency of strong rainfall events especially in Mediterranean context. Since evaporation is synonym of low recharge conditions whereas strong rainfall events are more favourable to recharge in heterogeneous subsurface contexts, a lack of knowledge remains then on the real ongoing and future drinking groundwater supply availability at aquifers scale. Due to low recharge potential and high inter-annual climate variability, this issue is strategic for the Mediterranean hydrosystems. This is especially the case for coastal aquifers because they are exposed to seawater intrusion, sea-level rise and overpumping risks. In this context, recharge processes and rates were investigated in a Mediterranean coastal aquifer with subsurface heterogeneity located in Southern Corsica (France). Aquifer recharge rates from combining ten physical and chemical methods were computed. In addition, hydrochemical and isotopic investigations were carried out through a monthly two years monitoring combining major ions and stable isotopes of water in rain, runoff and groundwater. Diffuse, focused, lateral mountain system and irrigation recharge processes were identified and characterized. A predominant focused recharge conditioned by subsurface heterogeneity is evidenced in agreement with variable but highly favourable recharge rates. The fast water transfer from the surface to the aquifer implied by this recharge process suggests less evaporation, which means higher groundwater renewal and availability in such Mediterranean coastal aquifers.

  7. A global view of the phase transitions of SnO2 in rechargeable batteries based on results of high throughput calculations

    KAUST Repository

    Cheng, Yingchun

    2015-08-28

    Lithium, sodium and magnesium have attracted wide attention as potential ions for rechargeable batteries. The Materials Project database of high throughput first principles calculations is used to investigate the phase transitions of SnO2 during ion intercalation and extraction. Various intermediate phases are predicted to be formed during the first intercalation, whereas in later cycles other intermediate phases are encountered. The volume expansions after intercalation and extraction are analyzed. We show that different lithium and sodium oxide products found in recent experiments are due to different oxygen chemical potentials.

  8. A Full-Text-Based Search Engine for Finding Highly Matched Documents Across Multiple Categories

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report demonstrates the full-text-based search engine that works on any Web-based mobile application. The engine has the capability to search databases across multiple categories based on a user's queries and identify the most relevant or similar. The search results presented here were found using an Android (Google Co.) mobile device; however, it is also compatible with other mobile phones.

  9. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Science.gov (United States)

    2010-10-01

    ... (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS... equipment for tanks carrying high melting point NLSs: Category B. Unless waived under § 153.491, for a ship to have its Certificate of Inspection or Certificate of Compliance endorsed allowing a tank to carry...

  10. Atypical category processing and hemispheric asymmetries in high-functioning children with autism: revealed through high-density EEG mapping.

    Science.gov (United States)

    Fiebelkorn, Ian C; Foxe, John J; McCourt, Mark E; Dumas, Kristina N; Molholm, Sophie

    2013-05-01

    Behavioral evidence for an impaired ability to group objects based on similar physical or semantic properties in autism spectrum disorders (ASD) has been mixed. Here, we recorded brain activity from high-functioning children with ASD as they completed a visual-target detection task. We then assessed the extent to which object-based selective attention automatically generalized from targets to non-target exemplars from the same well-known object class (e.g., dogs). Our results provide clear electrophysiological evidence that children with ASD (N=17, aged 8-13 years) process the similarity between targets (e.g., a specific dog) and same-category non-targets (SCNT) (e.g., another dog) to a lesser extent than do their typically developing (TD) peers (N=21). A closer examination of the data revealed striking hemispheric asymmetries that were specific to the ASD group. These findings align with mounting evidence in the autism literature of anatomic underconnectivity between the cerebral hemispheres. Years of research in individuals with TD have demonstrated that the left hemisphere (LH) is specialized toward processing local (or featural) stimulus properties and the right hemisphere (RH) toward processing global (or configural) stimulus properties. We therefore propose a model where a lack of communication between the hemispheres in ASD, combined with typical hemispheric specialization, is a root cause for impaired categorization and the oft-observed bias to process local over global stimulus properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Wireless rechargeable sensor networks

    CERN Document Server

    Yang, Yuanyuan

    2015-01-01

    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  12. Progress in aqueous rechargeable batteries

    OpenAIRE

    Jilei Liu; Chaohe Xu; Zhen Chen; Shibing Ni; Ze Xiang Shen

    2018-01-01

    Over the past decades, a series of aqueous rechargeable batteries (ARBs) were explored, investigated and demonstrated. Among them, aqueous rechargeable alkali-metal ion (Li+, Na+, K+) batteries, aqueous rechargeable-metal ion (Zn2+, Mg2+, Ca2+, Al3+) batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. B...

  13. High security ion-lithium batteries with rapid recharge for the terrestrial transport and energy storage; Batteries de type ion-lithium de haute securite a recharge rapide pour le transport terrestre et le stockage d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, Karim; Dontigny, M.; Charest, P.; Guerfi, A.; Trotier, J.; Mathieu, M.C.; Zhu, W.; Petitclerc, M.; Veillette, R.; Serventi, A.; Hovington, P.; Lagace, M.; Trudeau, M.; Vijh, A.

    2010-09-15

    Electrical terrestrial transport is today a hub of innovation and growth for Hydro-Quebec. In the perspective of electrification of terrestrial transports, battery remains the critical factor of future success of rechargeable electrical vehicles. For nearly 20 years, Hydro-Quebec, via its research institute, has worked at developing battery material for the lithium-ion technology. Two types of Li-ion batteries have been developed: the energy battery and the power battery. [French] Le transport terrestre electrique est aujourd'hui un pole d'innovation et de croissance pour Hydro-Quebec. Dans la perspective de l'electrification des transports terrestres, la batterie demeure le facteur critique du succes futur des vehicules electriques rechargeables. Depuis pres de 20 ans, Hydro-Quebec, par le biais de son Institut de recherche, travaille au developpement de materiaux de batteries destinees a la technologie lithium-ion. Deux types de batteries Li-ion ont ete mises au point : la batterie d'energie et la batterie de puissance.

  14. CuCr2O4@rGO Nanocomposites as High-Performance Cathode Catalyst for Rechargeable Lithium-Oxygen Batteries

    Science.gov (United States)

    Liu, Jiandi; Zhao, Yanyan; Li, Xin; Wang, Chunge; Zeng, Yaping; Yue, Guanghui; Chen, Qiang

    2018-06-01

    Rechargeable lithium-oxygen batteries have been considered as a promising energy storage technology because of their ultra-high theoretical energy densities which are comparable to gasoline. In order to improve the electrochemical properties of lithium-oxygen batteries (LOBs), especially the cycling performance, a high-efficiency cathode catalyst is the most important component. Hence, we aim to demonstrate that CuCr2O4@rGO (CCO@rGO) nanocomposites, which are synthesized using a facile hydrothermal method and followed by a series of calcination processes, are an effective cathode catalyst. The obtained CCO@rGO nanocomposites which served as the cathode catalyst of the LOBs exhibited an outstanding cycling performance for over 100 cycles with a fixed capacity of 1000 mAh g-1 at a current density of 200 mA g-1. The enhanced properties were attributed to the synergistic effect between the high catalytic efficiency of the spinel-structured CCO nanoparticles, the high specific surface area, and high conductivity of the rGO.[Figure not available: see fulltext.

  15. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  16. Organizational Categories as Viewing Categories

    OpenAIRE

    Mik-Meyer, Nanna

    2005-01-01

    This paper explores how two Danish rehabilitation organizations textual guidelines for assessment of clients’ personality traits influence the actual evaluation of clients. The analysis will show how staff members produce institutional identities corresponding to organizational categories, which very often have little or no relevance for the clients evaluated. The goal of the article is to demonstrate how the institutional complex that frames the work of the organizations produces the client ...

  17. High production volume chemical Amine Oxide [C8-C20] category environmental risk assessment

    DEFF Research Database (Denmark)

    Sanderson, Hans; Tibazarwa, Caritas; Greggs, William

    2009-01-01

    and personal care products. Given the lack of persistence or bioaccumulation, and the low likelihood of these chemicals partitioning to soil, the focus of the environmental assessment is on the aquatic environment. In the United States, the E-FAST model is used to estimate effluent concentrations in the United......An environmental assessment of amine oxides has been conducted under the OECD SIDS High Production Volume (HPV) Program via the Global International Council of Chemical Associations (ICCA) Amine Oxides Consortium. Amine oxides are primarily used in conjunction with surfactants in cleaning...... States from manufacturing facilities and from municipal facilities resulting from consumer product uses. Reasonable worst-case ratios of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) range from 0.04 to 0.003, demonstrating that these chemicals are a low risk...

  18. Advances of aqueous rechargeable lithium-ion battery: A review

    Science.gov (United States)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  19. Summary of groundwater-recharge estimates for Pennsylvania

    Science.gov (United States)

    Stuart O. Reese,; Risser, Dennis W.

    2010-01-01

    rainfall, have favorable surface conditions for infiltration, and are less susceptible to the influences of high temperatures, and thus, evapotranspiration. Areas that have less recharge in Pennsylvania are typically those with less precipitation, less permeable soils, and higher temperatures that are conducive to greater rates of evapotranspiration.

  20. A Rechargeable Hydrogen Battery.

    Science.gov (United States)

    Christudas Dargily, Neethu; Thimmappa, Ravikumar; Manzoor Bhat, Zahid; Devendrachari, Mruthunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Gautam, Manu; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam

    2018-04-27

    We utilize proton-coupled electron transfer in hydrogen storage molecules to unlock a rechargeable battery chemistry based on the cleanest chemical energy carrier molecule, hydrogen. Electrochemical, spectroscopic, and spectroelectrochemical analyses evidence the participation of protons during charge-discharge chemistry and extended cycling. In an era of anthropogenic global climate change and paramount pollution, a battery concept based on a virtually nonpolluting energy carrier molecule demonstrates distinct progress in the sustainable energy landscape.

  1. Fast reactor recharging device

    International Nuclear Information System (INIS)

    Artemiev, L.N.; Kurilkin, V.V.

    1979-01-01

    Disclosure is made of a device for recharging a fast-neutron reactor, intended for the transfer of fuel assemblies and rods of the control and safety system, having profiled heads to be gripped on the outside. The device comprises storage drums whose compartments for rods of the control and safety system are identical to compartments for fuel assemblies. In order to store and transport rods of the control and safety system from the storage drums to the recharging mechanism provision is made for sleeve-type holders. When placed in such a holder, the dimensions of a rod of the control and safety system are equal to those of a fuel assembly. To join a holder to a rod of the control and safety system, on the open end of each holder there is mounted a collet, whereas on the surface of each rod of the control and safety system, close to its head, there is provided an encircling groove to interact with the collet. The grip of the recharging mechanism is provided with a stop interacting with the collet in order to open the latter and withdraw the safety and control system rod from its holder

  2. Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge.

    Science.gov (United States)

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2011-04-01

    In the paper the combination process of ozonation, slow sand filtration (SSF) and nanofiltration (NF) was investigated with respect to dissolved organic matter (DOM) removal as high quality pre-treatment option for artificial groundwater recharge. With the help of ozonation leading to breakdown of the large organic molecules, SSF preferentially removes soluble microbial by-product-like substances and DOM with molecular weight (MW) less than 1.0 kDa. NF, however, removes aromatic, humic acid-like and fulvic acid-like substances efficiently and specially removes DOM with MW above 1.0 kDa. The residual DOM of the membrane permeate is dominated by small organics with MW 500 Da, which can be further reduced by the aquifer treatment, despite of the very low concentration. Consequently, the O(3)/SSF/NF system offers a complementary process in DOM removal. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) can be reduced from 6.5±1.1 to 0.7±0.3 mg L(-1) and from 267±24 to 52±6 μg L(-1), respectively. The very low DOC concentration of 0.6±0.2 mg L(-1) and THMFP of 44±4 μg L(-1) can be reached after the aquifer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Outcomes after chemotherapy with WHO category II regimen in a population with high prevalence of drug resistant tuberculosis.

    Directory of Open Access Journals (Sweden)

    Francine Matthys

    Full Text Available Standard short course chemotherapy is recommended by the World Health Organization to control tuberculosis worldwide. However, in settings with high drug resistance, first line standard regimens are linked with high treatment failure. We evaluated treatment outcomes after standardized chemotherapy with the WHO recommended category II retreatment regimen in a prison with a high prevalence of drug resistant tuberculosis (TB. A cohort of 233 culture positive TB patients was followed through smear microscopy, culture, drug susceptibility testing and DNA fingerprinting at baseline, after 3 months and at the end of treatment. Overall 172 patients (74% became culture negative, while 43 (18% remained positive at the end of treatment. Among those 43 cases, 58% of failures were determined to be due to treatment with an inadequate drug regimen and 42% to either an initial mixed infection or re-infection while under treatment. Overall, drug resistance amplification during treatment occurred in 3.4% of the patient cohort. This study demonstrates that treatment failure is linked to initial drug resistance, that amplification of drug resistance occurs, and that mixed infection and re-infection during standard treatment contribute to treatment failure in confined settings with high prevalence of drug resistance.

  4. Study of environmental isotope distribution in the Aswan High Dam Lake (Egypt) for estimation of evaporation of lake water and its recharge to adjacent groundwater

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Nada, A.; Awad, M.; Hamza, M.; Salem, W.M.

    1993-01-01

    Oxygen-18 ( 18 O) and deuterium isotopes were used to estimate the evaporation from the Aswan High Dam Lake and to investigate the inter-relation between the lake water and adjacent groundwater. According to stable isotopic analysis of samples taken in 1988 and 1989, the lake can be divided into two sections. In the first section extending between Abu Simbel and a point between El-Alaki and Krosko, a remarkable vertical gradient of 18 O and deuterium isotopic composition was observed. The second northern sector extending to the High Dam is characterised by a lower vertical isotopic gradient. In this sector in general, higher values of 18 O and deuterium contents were found at the top and lower values at the bottom. Also a strong horizontal increase of the heavy isotope content was observed. Thus, in the northern section evaporation is of dominating influence on the isotopic composition of the lake water. With the help of an evaporation pan experiment it was possible to calibrate the evaporative isotope enrichment in the lake and to facilitate a preliminary estimate of evaporative losses of lake water. The evaporation from the lake was estimated to be about 19% of the input water flow rate. The groundwater around the lake was investigated and samples from production wells and piezometers were subjected to isotopic analysis. The results indicate that recent recharge to the groundwater aquifer is limited to wells near to the lake and up to a maximum distance of about 10 km. The contribution of recent Nile water to the groundwater in these wells was estimated to range between 23 and 70%. Beyond this distance, palaeowater was observed with highly depleted deuterium and 18 O contents, which was also confirmed by 14c dating. The age of palaeo groundwater in this area can reach values of more than 26,000 years. Recommendations are given for efficient water management of the lake water. (Author)

  5. High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery

    International Nuclear Information System (INIS)

    Tang, Haoqing; Zan, Lingxing; Zhu, Jiangtao; Ma, Yiheng; Zhao, Naiqin; Tang, Zhiyuan

    2016-01-01

    Lithium zinc titanate (Li_2ZnTi_3O_8) is an important titanium material of promising candidates for anode materials with superior electrochemical performance and thus has attracted extensive attention. Herein, high capacity, stable Li_2ZnTi_3O_8/La_2O_3 nanocomposite for lithium-ion battery anode is prepared by a facile strategy. Compared to unmodified Li_2ZnTi_3O_8, the Li_2ZnTi_3O_8/La_2O_3 electrode display a high specific capacity of 188.6 mAh g"−"1 and remain as high as 147.7 mAh g"−"1 after 100 cycles at 2.0 A g"−"1. Moreover, a reversible capacity of 76.3 mAh g"−"1 can be obtained after 1000 cycles at 2.0 A g"−"1 and the retention is 42.7% for Li_2ZnTi_3O_8/La_2O_3, which is much higher than un-coated Li_2ZnTi_3O_8. The superior lithium storage performances of the Li_2ZnTi_3O_8/La_2O_3 can be ascribed to the stable layer of protection, small particle size and large surface area. Cyclic voltammograms result reveals that the La_2O_3 coating layer reduces the polarization and improves the electrochemical activity of anode. - Highlights: • Nano layer La_2O_3 coated Li_2ZnTi_3O_8 particles have been prepared via a suspension mixing process followed by heat treatment. • Coated Li_2ZnTi_3O_8 has enhanced high rate capability, cyclic stability and long lifespan performance. • Electrochemical properties were tested in a charge/discharge voltage range of 3.0–0.05 V (vs. Li/Li"+).

  6. Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity

    International Nuclear Information System (INIS)

    Zhu, Jiadeng; Lu, Yao; Chen, Chen; Ge, Yeqian; Jasper, Samuel; Leary, Jennifer D.; Li, Dawei; Jiang, Mengjin; Zhang, Xiangwu

    2016-01-01

    Hematite iron oxide (α-Fe_2O_3) is considered to be a prospective anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity (1007 mAh g"−"1), nontoxicity, and low cost. However, the low electrical conductivity and large volume change during Li insertion/extraction of α-Fe_2O_3 hinder its use in practical batteries. In this study, carbon-coated α-Fe_2O_3 nanofibers, prepared via an electrospinning method followed by a thermal treatment process, are employed as the anode material for LIBs. The as-prepared porous nanofibers with a carbon content of 12.5 wt% show improved cycling performance and rate capability. They can still deliver a high and stable capacity of 715 mAh g"−"1 even at superior high current density of 1000 mA g"−"1 after 200 cycles with a large Coulombic efficiency of 99.2%. Such improved electrochemical performance can be assigned to their unique porous fabric structure as well as the conductive carbon coating which shorten the distance for Li ion transport, enhancing Li ion reversibility and kinetic properties. It is, therefore, demonstrated that carbon-coated α-Fe_2O_3 nanofiber prepared under optimized conditions is a promising anode material candidate for LIBs. - Graphical abstract: Carbon-coated α-Fe_2O_3 nanofibers are employed as anode material to achieve high and stable electrochemical performance for lithium-ion batteries, enhancing their commercial viability. - Highlights: • α-Fe_2O_3/C nanofibers were fabricated by electrospinning and thermal treatment. • α-Fe_2O_3/C nanofibers exhibit stable cyclability and good rate capability. • α-Fe_2O_3–C nanofibers maintain high capacity at 1000 mA g"−"1 for 200 cycles. • A capacity retention of 99.2% is achieved by α-Fe_2O_3–C nanofibers after 200 cycles.

  7. Category: BIOTECHNIQUES

    African Journals Online (AJOL)

    ぢいcp

    2011-01-17

    Jan 17, 2011 ... 1Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan ... high cost because of low-yield target products. ..... A few rules can be deduced from our experiments: (1).

  8. High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haoqing, E-mail: tanghaoqing@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zan, Lingxing [Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn 53117 (Germany); Zhu, Jiangtao; Ma, Yiheng [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhao, Naiqin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tang, Zhiyuan, E-mail: zytang46@163.com [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-05-15

    Lithium zinc titanate (Li{sub 2}ZnTi{sub 3}O{sub 8}) is an important titanium material of promising candidates for anode materials with superior electrochemical performance and thus has attracted extensive attention. Herein, high capacity, stable Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} nanocomposite for lithium-ion battery anode is prepared by a facile strategy. Compared to unmodified Li{sub 2}ZnTi{sub 3}O{sub 8}, the Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} electrode display a high specific capacity of 188.6 mAh g{sup −1} and remain as high as 147.7 mAh g{sup −1} after 100 cycles at 2.0 A g{sup −1}. Moreover, a reversible capacity of 76.3 mAh g{sup −1} can be obtained after 1000 cycles at 2.0 A g{sup −1} and the retention is 42.7% for Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3}, which is much higher than un-coated Li{sub 2}ZnTi{sub 3}O{sub 8}. The superior lithium storage performances of the Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} can be ascribed to the stable layer of protection, small particle size and large surface area. Cyclic voltammograms result reveals that the La{sub 2}O{sub 3} coating layer reduces the polarization and improves the electrochemical activity of anode. - Highlights: • Nano layer La{sub 2}O{sub 3} coated Li{sub 2}ZnTi{sub 3}O{sub 8} particles have been prepared via a suspension mixing process followed by heat treatment. • Coated Li{sub 2}ZnTi{sub 3}O{sub 8} has enhanced high rate capability, cyclic stability and long lifespan performance. • Electrochemical properties were tested in a charge/discharge voltage range of 3.0–0.05 V (vs. Li/Li{sup +}).

  9. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage

    Science.gov (United States)

    Wang, Meng; Jiang, Chunlei; Zhang, Songquan; Song, Xiaohe; Tang, Yongbing; Cheng, Hui-Ming

    2018-06-01

    Calcium-ion batteries (CIBs) are attractive candidates for energy storage because Ca2+ has low polarization and a reduction potential (-2.87 V versus standard hydrogen electrode, SHE) close to that of Li+ (-3.04 V versus SHE), promising a wide voltage window for a full battery. However, their development is limited by difficulties such as the lack of proper cathode/anode materials for reversible Ca2+ intercalation/de-intercalation, low working voltages (performance. Here, we report a CIB that can work stably at room temperature in a new cell configuration using graphite as the cathode and tin foils as the anode as well as the current collector. This CIB operates on a highly reversible electrochemical reaction that combines hexafluorophosphate intercalation/de-intercalation at the cathode and a Ca-involved alloying/de-alloying reaction at the anode. An optimized CIB exhibits a working voltage of up to 4.45 V with capacity retention of 95% after 350 cycles.

  10. High Mass-Loading of Sulfur-Based Cathode Composites and Polysulfides Stabilization for Rechargeable Lithium/Sulfur Batteries

    International Nuclear Information System (INIS)

    Hara, Toru; Konarov, Aishuak; Mentbayeva, Almagul; Kurmanbayeva, Indira; Bakenov, Zhumabay

    2015-01-01

    Although sulfur has a high theoretical gravimetric capacity, 1672 mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low mass-loading of active material (sulfur), and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conducting-agent integration is critically important. In this paper, we report that the areal capacity of 4.9 mAh/cm 2 was achieved at sulfur mass loading of 4.1 mg/cm 2 by casting sulfur/polyacrylonitrile/ketjenblack (S/PAN/KB) cathode composite into carbon fiber paper. This is the highest value among published/reported ones even though it does not contain expensive nanosized carbon materials such as carbon nanotubes, graphene, or graphene derivatives, and competitive enough with the conventional LiCoO 2 -based cathodes (e.g., LiCoO 2 , <20 mg/cm 2 corresponding to <2.8 mAh/cm 2 ). Furthermore, the combination of sulfur/PAN-based composite and PAN-based carbon fiber paper enabled the sulfur-based composite to be used even in carbonate-based electrolyte solution that many lithium/sulfur battery researchers avoid the use of it because of severer irreversible active material loss than in electrolyte solutions without carbonate-based solutions, and even at the highest mass-loading ever reported (the more sulfur is loaded, the more decomposed sulfides deposit at an anode surface).

  11. Change of mechanisms of control bars, an activity of high performance in the twelve recharge of the Unit 1

    International Nuclear Information System (INIS)

    Serrano R, H.

    2007-01-01

    One of the activities that are carried out during the fuel loading stage in the reactors of the Laguna Verde Power station (CNLV), it is the change of the control bar mechanisms (CRDs); the importance of giving maintenance to these mechanisms of control bars is that they should be reliable during the reactor operation. The insert of the control bars at one time of less than 7 seconds, it is the time required to carry out a sure reactor shutdown either of automatic way or manual by the operator action this insert of the control bars is through the CRDs that work them completely to insert negative reactivity to the reactor core. In this insert of the bars the neutrons are absorbed that maintain the reaction of self-sustained fission. The neutron absorber material in the control bars is a mixture of boron-gadolinium. It is also through the extraction of control bars like the fission reaction is controlled by means of the neutron density in the core. Extracting the control bars in form controlled by the operator is known as positive reactivity. This activity, that of the change of CRDs can only be carried out in the reload stage, that is to say, when the reactor is out one. The complexity of carrying out the change of those CRDs by its complexity as for radiological support that it demands, has taken to that the involved personnel acquires an experience and ability that it has allowed it to have a high performance. The importance of having this experience and ability, in the following generations, is fundamental for the CNLV, since that it requires to account with personal properly prepared, taking into account that the Safety is our maximum priority. The use of ALARA tools like devices with extension to maintain the distance of the source are key to optimize the personnel's dose; it is also key the support tools of the last technologies like the tele dosimetry, the television closed circuit (CCTV), the bubble suits for the extraction of the CRDs by the inferior part

  12. Emulation of recharge and evapotranspiration processes in shallow groundwater systems

    Science.gov (United States)

    Doble, Rebecca C.; Pickett, Trevor; Crosbie, Russell S.; Morgan, Leanne K.; Turnadge, Chris; Davies, Phil J.

    2017-12-01

    In shallow groundwater systems, recharge and evapotranspiration are highly sensitive to changes in the depth to water table. To effectively model these fluxes, complex functions that include soil and vegetation properties are often required. Model emulation (surrogate modelling or meta-modelling) can provide a means of incorporating detailed conceptualisation of recharge and evapotranspiration processes, while maintaining the numerical tractability and computational performance required for regional scale groundwater models and uncertainty analysis. A method for emulating recharge and evapotranspiration processes in groundwater flow models was developed, and applied to the South East region of South Australia and western Victoria, which is characterised by shallow groundwater, wetlands and coastal lakes. The soil-vegetation-atmosphere transfer (SVAT) model WAVES was used to generate relationships between net recharge (diffuse recharge minus evapotranspiration from groundwater) and depth to water table for different combinations of climate, soil and land cover types. These relationships, which mimicked previously described soil, vegetation and groundwater behaviour, were combined into a net recharge lookup table. The segmented evapotranspiration package in MODFLOW was adapted to select values of net recharge from the lookup table depending on groundwater depth, and the climate, soil and land use characteristics of each cell. The model was found to be numerically robust in steady state testing, had no major increase in run time, and would be more efficient than tightly-coupled modelling approaches. It made reasonable predictions of net recharge and groundwater head compared with remotely sensed estimates of net recharge and a standard MODFLOW comparison model. In particular, the method was better able to predict net recharge and groundwater head in areas with steep hydraulic gradients.

  13. Rechargeable radioactive isotope generator

    International Nuclear Information System (INIS)

    Thornton, A.K.; Cerone, F.E.

    1978-01-01

    The description is given of a rechargeable radioactive isotope generator having the following features: a box containing a transport shield, a shielded generator including elements for the absorption and holding of the parent isotope, an eluant tank, a first pipe causing this tank to communicate with the transport shield, a second pipe causing this transport shield to communicate with the shielded generator and a third pipe placing the shielded generator in communication with the outside of the unit. It also includes a shelf across the external front part of the unit a part of which is shielded by external components, a shielded elution flask in which the eluate is poured and a filter set at a point between the flask and the third pipe [fr

  14. Geostatistical estimates of future recharge for the Death Valley region

    International Nuclear Information System (INIS)

    Hevesi, J.A.; Flint, A.L.

    1998-01-01

    Spatially distributed estimates of regional ground water recharge rates under both current and potential future climates are needed to evaluate a potential geologic repository for high-level nuclear waste at Yucca Mountain, Nevada, which is located within the Death Valley ground-water region (DVGWR). Determining the spatial distribution of recharge is important for regional saturated-zone ground-water flow models. In the southern Nevada region, the Maxey-Eakin method has been used for estimating recharge based on average annual precipitation. Although this method does not directly account for a variety of location-specific factors which control recharge (such as bedrock permeability, soil cover, and net radiation), precipitation is the primary factor that controls in the region. Estimates of recharge obtained by using the Maxey-Eakin method are comparable to estimates of recharge obtained by using chloride balance studies. The authors consider the Maxey-Eakin approach as a relatively simple method of obtaining preliminary estimates of recharge on a regional scale

  15. Comparing potential recharge estimates from three Land Surface Models across the Western US

    Science.gov (United States)

    NIRAULA, REWATI; MEIXNER, THOMAS; AJAMI, HOORI; RODELL, MATTHEW; GOCHIS, DAVID; CASTRO, CHRISTOPHER L.

    2018-01-01

    Groundwater is a major source of water in the western US. However, there are limited recharge estimates available in this region due to the complexity of recharge processes and the challenge of direct observations. Land surface Models (LSMs) could be a valuable tool for estimating current recharge and projecting changes due to future climate change. In this study, simulations of three LSMs (Noah, Mosaic and VIC) obtained from the North American Land Data Assimilation System (NLDAS-2) are used to estimate potential recharge in the western US. Modeled recharge was compared with published recharge estimates for several aquifers in the region. Annual recharge to precipitation ratios across the study basins varied from 0.01–15% for Mosaic, 3.2–42% for Noah, and 6.7–31.8% for VIC simulations. Mosaic consistently underestimates recharge across all basins. Noah captures recharge reasonably well in wetter basins, but overestimates it in drier basins. VIC slightly overestimates recharge in drier basins and slightly underestimates it for wetter basins. While the average annual recharge values vary among the models, the models were consistent in identifying high and low recharge areas in the region. Models agree in seasonality of recharge occurring dominantly during the spring across the region. Overall, our results highlight that LSMs have the potential to capture the spatial and temporal patterns as well as seasonality of recharge at large scales. Therefore, LSMs (specifically VIC and Noah) can be used as a tool for estimating future recharge rates in data limited regions. PMID:29618845

  16. Monitoring and modeling infiltration-recharge dynamics of managed aquifer recharge with desalinated seawater

    Science.gov (United States)

    Ganot, Yonatan; Holtzman, Ran; Weisbrod, Noam; Nitzan, Ido; Katz, Yoram; Kurtzman, Daniel

    2017-09-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015) of continuous intensive MAR (2.45 × 106 m3 discharged to a 10.7 ha area), groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from ˜ 11 to ˜ 0.4 m d-1). This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface - abundant in many MAR operations - are negated by the high-quality desalinated seawater (turbidity ˜ 0.2 NTU, total dissolved solids ˜ 120 mg L-1) or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016) fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.

  17. Progress in aqueous rechargeable batteries

    Directory of Open Access Journals (Sweden)

    Jilei Liu

    2018-01-01

    Full Text Available Over the past decades, a series of aqueous rechargeable batteries (ARBs were explored, investigated and demonstrated. Among them, aqueous rechargeable alkali-metal ion (Li+, Na+, K+ batteries, aqueous rechargeable-metal ion (Zn2+, Mg2+, Ca2+, Al3+ batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. By critically reviewing state-of-the-art technologies and the most promising results so far, we aim to analyze the benefits of ARBs and the critical issues to be addressed, and to promote better development of ARBs.

  18. Estimating the proportion of groundwater recharge from flood events in relation to total annual recharge in a karst aquifer

    Science.gov (United States)

    Dvory, N. Z.; Ronen, A.; Livshitz, Y.; Adar, E.; Kuznetsov, M.; Yakirevich, A.

    2017-12-01

    Sustainable groundwater production from karstic aquifers is primarily dictated by its recharge rate. Therefore, in order to limit over-exploitation, it is essential to accurately quantify groundwater recharge. Infiltration during erratic floods in karstic basins may contribute substantial amount to aquifer recharge. However, the complicated nature of karst systems, which are characterized in part by multiple springs, sinkholes, and losing/gaining streams, present a large obstacle to accurately assess the actual contribution of flood water to groundwater recharge. In this study, we aim to quantify the proportion of groundwater recharge during flood events in relation to the annual recharge for karst aquifers. The role of karst conduits on flash flood infiltration was examined during four flood and artificial runoff events in the Sorek creek near Jerusalem, Israel. The events were monitored in short time steps (four minutes). This high resolution analysis is essential to accurately estimating surface flow volumes, which are of particular importance in arid and semi-arid climate where ephemeral flows may provide a substantial contribution to the groundwater reservoirs. For the present investigation, we distinguished between direct infiltration, percolation through karst conduits and diffused infiltration, which is most affected by evapotranspiration. A water balance was then calculated for the 2014/15 hydrologic year using the Hydrologic Engineering Center - Hydrologic Modelling System (HEC-HMS). Simulations show that an additional 8% to 24% of the annual recharge volume is added from runoff losses along the creek that infiltrate through the karst system into the aquifer. The results improve the understanding of recharge processes and support the use of the proposed methodology for quantifying groundwater recharge.

  19. Determination of recharge modes of aquifers by use of chemical and isotopic tracers. Case study of the contact zone between Western High-Atlas Chain and Souss Plain (SW Morocco

    Directory of Open Access Journals (Sweden)

    Tagma, T.

    2008-06-01

    Full Text Available Determination of the origin of recharge of the unconfined aquifer in the right side of the Souss wadi between Agadir and Taroudant (South-western of Morocco was based on the use of hydrochemical and isotopic analysis of groundwater, surface water and springs of the contact zone between the High-Atlas Chain and the Souss plain.The correspondence in the space evolution of the various chemical elements of evaporitic origin (SO42-, Cl-, Sr2+ in groundwater, piedmont springs, and surface water reveals the existence of recharge water from the adjacent High-Atlas Chain.The various recharge modes of the different aquifers (High Atlas and Souss plain determined by isotopic analysis, shows that the source of groundwater for the unconfined Souss aquifer seems to be composite between a direct infiltration on the High-Atlas tributaries and a remote recharge from the bordering High Atlas aquifers.La determinación del origen de los aportes de agua de la capa freática de la ribera derecha del rio Souss entre Agadir y Taroudant (Suroeste de Marruecos se ha basado en la hidroquímica y el análisis isotópico de las aguas subterráneas, aguas superficiales y manantiales de la zona de contacto entre el Alto Atlas y la llanura de Souss.La correspondencia en la evolución espacial de los diferentes elementos químicos de origen evaporítico (SO42-, Cl-, Sr2+ en las aguas subterráneas, manantiales de pie de monte y aguas superficiales, revela la existencia de una recarga de agua procedente de la cadena del Alto Atlas. El análisis de los modos de recarga de los diferentes acuíferos (Alto Atlas y llanura de Souss determinado por análisis isotópico, demuestra que la alimentación de la capa freática de Souss a partir del Alto Atlas parece ser mixta, compuesta por una infiltración directa de los afluentes del Alto Atlas y una alimentación lejana desde los acuiferos que limitan con el borde del Alto Atlas.

  20. Effects of recharge and discharge on delta2H and delta18O composition and chloride concentration of high arsenic/fluoride groundwater from the Datong Basin, northern China.

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Su, Chunli; Duan, Mengyu

    2013-02-01

    To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin.

  1. A new rechargeable intelligent vehicle detection sensor

    International Nuclear Information System (INIS)

    Lin, L; Han, X B; Ding, R; Li, G; Lu, Steven C-Y; Hong, Q

    2005-01-01

    Intelligent Transportation System (ITS) is a valid approach to solve the increasing transportation issue in cities. Vehicle detection is one of the key technologies in ITS. The ITS collects and processes traffic data (vehicle flow, vehicular speed, vehicle density and occupancy ratios) from vehicle detection sensors buried under the road or installed along the road. Inductive loop detector as one type of the vehicle detector is applied extensively, with the characters of stability, high value to cost ratio and feasibility. On the other hand, most of the existing inductive loop vehicle detection sensors have some weak points such as friability of detective loop, huge engineering for setting and traffic interruption during installing the sensor. The design and reality of a new rechargeable intelligent vehicle detection sensor is presented in this paper against these weak points existing now. The sensor consists of the inductive loop detector, the rechargeable batteries, the MCU (microcontroller) and the transmitter. In order to reduce the installing project amount, make the loop durable and easily maintained, the volume of the detective loop is reduced as much as we can. Communication in RF (radio frequency) brings on the advantages of getting rid of the feeder cable completely and reducing the installing project amount enormously. For saving the cable installation, the sensor is supplied by the rechargeable batteries. The purpose of the intelligent management of the energy and transmitter by means of MCU is to minimize the power consumption and prolong the working period of the sensor. In a word, the new sensor is more feasible with smaller volume, wireless communication, rechargeable batteries, low power consumption, low cost, high detector precision and easy maintenance and installation

  2. A new rechargeable intelligent vehicle detection sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Han, X B [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Ding, R [Tianjin University of Technology and Education, Tianjin 300222 (China); Li, G [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Lu, Steven C-Y [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China); Hong, Q [Inspiring Technology Research Laboratory, Tianjin University, Tianjin 300072 (China)

    2005-01-01

    Intelligent Transportation System (ITS) is a valid approach to solve the increasing transportation issue in cities. Vehicle detection is one of the key technologies in ITS. The ITS collects and processes traffic data (vehicle flow, vehicular speed, vehicle density and occupancy ratios) from vehicle detection sensors buried under the road or installed along the road. Inductive loop detector as one type of the vehicle detector is applied extensively, with the characters of stability, high value to cost ratio and feasibility. On the other hand, most of the existing inductive loop vehicle detection sensors have some weak points such as friability of detective loop, huge engineering for setting and traffic interruption during installing the sensor. The design and reality of a new rechargeable intelligent vehicle detection sensor is presented in this paper against these weak points existing now. The sensor consists of the inductive loop detector, the rechargeable batteries, the MCU (microcontroller) and the transmitter. In order to reduce the installing project amount, make the loop durable and easily maintained, the volume of the detective loop is reduced as much as we can. Communication in RF (radio frequency) brings on the advantages of getting rid of the feeder cable completely and reducing the installing project amount enormously. For saving the cable installation, the sensor is supplied by the rechargeable batteries. The purpose of the intelligent management of the energy and transmitter by means of MCU is to minimize the power consumption and prolong the working period of the sensor. In a word, the new sensor is more feasible with smaller volume, wireless communication, rechargeable batteries, low power consumption, low cost, high detector precision and easy maintenance and installation.

  3. Groundwater Modelling For Recharge Estimation Using Satellite Based Evapotranspiration

    Science.gov (United States)

    Soheili, Mahmoud; (Tom) Rientjes, T. H. M.; (Christiaan) van der Tol, C.

    2017-04-01

    Groundwater movement is influenced by several factors and processes in the hydrological cycle, from which, recharge is of high relevance. Since the amount of aquifer extractable water directly relates to the recharge amount, estimation of recharge is a perquisite of groundwater resources management. Recharge is highly affected by water loss mechanisms the major of which is actual evapotranspiration (ETa). It is, therefore, essential to have detailed assessment of ETa impact on groundwater recharge. The objective of this study was to evaluate how recharge was affected when satellite-based evapotranspiration was used instead of in-situ based ETa in the Salland area, the Netherlands. The Methodology for Interactive Planning for Water Management (MIPWA) model setup which includes a groundwater model for the northern part of the Netherlands was used for recharge estimation. The Surface Energy Balance Algorithm for Land (SEBAL) based actual evapotranspiration maps from Waterschap Groot Salland were also used. Comparison of SEBAL based ETa estimates with in-situ abased estimates in the Netherlands showed that these SEBAL estimates were not reliable. As such results could not serve for calibrating root zone parameters in the CAPSIM model. The annual cumulative ETa map produced by the model showed that the maximum amount of evapotranspiration occurs in mixed forest areas in the northeast and a portion of central parts. Estimates ranged from 579 mm to a minimum of 0 mm in the highest elevated areas with woody vegetation in the southeast of the region. Variations in mean seasonal hydraulic head and groundwater level for each layer showed that the hydraulic gradient follows elevation in the Salland area from southeast (maximum) to northwest (minimum) of the region which depicts the groundwater flow direction. The mean seasonal water balance in CAPSIM part was evaluated to represent recharge estimation in the first layer. The highest recharge estimated flux was for autumn

  4. Economics of Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Robert G. Maliva

    2014-05-01

    Full Text Available Managed aquifer recharge (MAR technologies can provide a variety of water resources management benefits by increasing the volume of stored water and improving water quality through natural aquifer treatment processes. Implementation of MAR is often hampered by the absence of a clear economic case for the investment to construct and operate the systems. Economic feasibility can be evaluated using cost benefit analysis (CBA, with the challenge of monetizing benefits. The value of water stored or treated by MAR systems can be evaluated by direct and indirect measures of willingness to pay including market price, alternative cost, value marginal product, damage cost avoided, and contingent value methods. CBAs need to incorporate potential risks and uncertainties, such as failure to meet performance objectives. MAR projects involving high value uses, such as potable supply, tend to be economically feasible provided that local hydrogeologic conditions are favorable. They need to have low construction and operational costs for lesser value uses, such as some irrigation. Such systems should therefore be financed by project beneficiaries, but dichotomies may exist between beneficiaries and payers. Hence, MAR projects in developing countries may be economically viable, but external support is often required because of limited local financial resources.

  5. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery.

    Science.gov (United States)

    Xu, Nengneng; Liu, Yuyu; Zhang, Xia; Li, Xuemei; Li, Aijun; Qiao, Jinli; Zhang, Jiujun

    2016-09-20

    α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 and CNTs, which can produce a synergetic enhancement. When integrated into the practical primary and electrochemically rechargeable Zn-air batteries, such a hybrid catalyst can give a discharge peak power density as high as 450 mW cm(-2). At 1.0 V of cell voltage, a current density of 324 mA cm(-2) is achieved. This performance is superior to all reported non-precious metal catalysts in literature for zinc-air batteries and significantly outperforms the state-of-the-art platinum-based catalyst. Particularly, the rechargeable Zn-air battery can be fabricated into all-solid-state one through a simple solid-state approach, which exhibits an excellent peak power density of 62 mW cm(-2), and the charge and discharge potentials remain virtually unchanged during the overall cycles, which is comparable to the one with liquid electrolyte.

  6. Hydrogeological evaluation of an over-exploited aquifer in Dhaka, Bangladesh towards the implementation of groundwater artificial recharge

    Science.gov (United States)

    Azizur Rahman, M.; Rusteberg, Bernd; Sauter, Martin

    2010-05-01

    The population of Dhaka City is presently about 12 million and according to present trends in population growth, that number will most likely increase to 17.2 million by the year 2025. A serious water crisis is expected due to the extremely limited quality and quantity of water resources in the region. Previous studies have shown that the current trend in groundwater resource development is non-sustainable due to over-exploitation of the regional aquifer system, resulting in rapidly decreasing groundwater levels of about 2 to 3 meters per year. Today, annual groundwater extraction clearly exceeds natural groundwater recharge. New water management strategies are needed to guarantee future generations of Dhaka City a secured and sustained water supply as well as sustainable development of the city. The implementation of groundwater artificial recharge (AR) is one potential measure. As the first step towards a new water management strategy for Dhaka City, the authors report on the hydrogeological conditions of the greater Dhaka region and from this are able to present the location of potential recharge sites and identify appropriate recharge technologies for AR implementation. The aquifers of greater Dhaka can be grouped in three major categories: Holocene Deposit, Pleistocene Deposit and Plio-Pleistocene Deposit. The aquifers are generally thick and multilayered with relatively high transmissivity and storage coefficients. AR is considered feasible due to the fact these aquifers are alluvium deposit aquifers which characteristically have moderate to high hydraulic conductivity. Low costs for recovery of recharged water and large recharge volume capacity are generally associated with aquifers of unconsolidated sediments. Spatial analysis of the region has shown that Karaniganj, Kotoali, Savar, Dhamrai, Singair upazila, which are situated in greater Dhaka region and close to Dhaka City, could serve as recharge sites to the subsurface by pond infiltration technique. A

  7. Investigation of the Present Recharge Rate and Recharge Origins in the Disi Sandstone Aquifer in Southern Jordan

    International Nuclear Information System (INIS)

    Kilani, S.F.

    2003-01-01

    This study presents a thorough investigation of recharge origins of the strategic Disi sandstone aquifer in southern Jordan. This aquifer is of substantial potential and huge extension most of which lies in Saudi Arabia. Disi groundwater infiltrated in the ground thousands of years ago and is not currently being replenished, therefore crucial management for this resource is very important. This aquifer is foreseen to provide 100 MCM/a of high quality drinking water to the Capital Amman in addition to the current use of about 60 MCM/a for agricultural activities in the area and to meet the water demand in the port of Aqaba. Origins and amount of recharge to groundwater is one critical aspect in resource management. A study to estimate recharge rate was conducted in the Quaternary sediments and sandstone's of Al Quwayra in southern Jordan where the average rainfall is less than 70 mm per year. Environmental chloride, deuterium and nitrate in the sand profiles in the vadose zone were the study tools. The study showed that recharge if present is a result of severe infrequent storm events and that the aquifer does not receive significant direct recharge from rain. The pollutant profiles in the unsaturated zone might give chronology of the recharge history

  8. Virus removal during groundwater recharge: effects of infiltration rate on adsorption of poliovirus to soil.

    OpenAIRE

    Vaughn, J M; Landry, E F; Beckwith, C A; Thomas, M Z

    1981-01-01

    Studies were conducted to determine the influence of infiltration rate on poliovirus removal during groundwater recharge with tertiary-treated wastewater effluents. Experiments were conducted at a uniquely designed, field-situated test recharge basin facility through which some 62,000 m3 of sewage had been previously applied. Recharge at high infiltration rates (75 to 100 cm/h) resulted in the movement of considerable numbers of seeded poliovirus to the groundwater. Moderately reduced infiltr...

  9. Rechargeable lithium/polymer cathode batteries

    Science.gov (United States)

    Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.

    1989-06-01

    Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.

  10. Water-Lubricated Intercalation in V2 O5 ·nH2 O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries.

    Science.gov (United States)

    Yan, Mengyu; He, Pan; Chen, Ying; Wang, Shanyu; Wei, Qiulong; Zhao, Kangning; Xu, Xu; An, Qinyou; Shuang, Yi; Shao, Yuyan; Mueller, Karl T; Mai, Liqiang; Liu, Jun; Yang, Jihui

    2018-01-01

    Low-cost, environment-friendly aqueous Zn batteries have great potential for large-scale energy storage, but the intercalation of zinc ions in the cathode materials is challenging and complex. Herein, the critical role of structural H 2 O on Zn 2+ intercalation into bilayer V 2 O 5 ·nH 2 O is demonstrated. The results suggest that the H 2 O-solvated Zn 2+ possesses largely reduced effective charge and thus reduced electrostatic interactions with the V 2 O 5 framework, effectively promoting its diffusion. Benefited from the "lubricating" effect, the aqueous Zn battery shows a specific energy of ≈144 Wh kg -1 at 0.3 A g -1 . Meanwhile, it can maintain an energy density of 90 Wh kg -1 at a high power density of 6.4 kW kg -1 (based on the cathode and 200% Zn anode), making it a promising candidate for high-performance, low-cost, safe, and environment-friendly energy-storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States

    Directory of Open Access Journals (Sweden)

    Brian F. Thomas

    2016-03-01

    Full Text Available Episodic recharge as a result of infrequent, high intensity precipitation events comprises the bulk of groundwater recharge in arid environments. Climate change and shifts in precipitation intensity will affect groundwater continuity, thus altering groundwater recharge. This study aims to identify changes in the ratio of groundwater recharge and precipitation, the R:P ratio, in the arid southwestern United States to characterize observed changes in groundwater recharge attributed to variations in precipitation intensity. Our precipitation metric, precipitation intensity magnification, was used to investigate the relationship between the R:P ratio and precipitation intensity. Our analysis identified significant changes in the R:P ratio concurrent with decreases in precipitation intensity. The results illustrate the importance of precipitation intensity in relation to groundwater recharge in arid regions and provide further insights for groundwater management in nonrenewable groundwater systems and in a changing climate.

  12. Vesicle-based rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stanish, I.; Singh, A. [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave., S.W., Washington, DC 20375 (United States); Lowy, D.A. [Nova Research, Inc., 1900 Elkin St., Alexandria, VA 22308 (United States); Hung, C.W. [Department of Chemical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2005-05-02

    Vesicle-based rechargeable batteries can be fabricated by mounting polymerized vesicles filled with ferrocyanide or ferricyanide to a conductive surface. The potential can be adjusted by changing the concentration ratio of hydroquinone and benzoquinone bound to the vesicle membranes. These batteries show promise as a means of supplying portable power for future autonomous nanosystems. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  13. 3D hollow sphere Co3O4/MnO2-CNTs: Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery

    Directory of Open Access Journals (Sweden)

    Xuemei Li

    2017-07-01

    Full Text Available There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO2 nanotube-supported Co3O4 nanoparticles and its carbon nanotubes hybrid material (Co3O4/MnO2-CNTs have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co3O4/MnO2, bare MnO2 nanotubes and CNTs, the hybrid Co3O4/MnO2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition (0.1 M KOH. Therefore, high cell performances are achieved which result in an appropriate open circuit voltage (∼1.47 V, a high discharge peak power density (340 mW cm−2 and a large specific capacity (775 mAh g−1 at 10 mA cm−2 for the primary Zn-air battery, a small charge–discharge voltage gap and a high cycle-life (504 cycles at 10 mA cm−2 with 10 min per cycle for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process. Keywords: Bi-functional catalyst, Oxygen reduction reaction, Oxygen evolution reaction, Activity and stability, Rechargeable zinc-air battery

  14. Fate of human viruses in groundwater recharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Landry, E.F.

    1980-03-01

    The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations of viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.

  15. Implications of projected climate change for groundwater recharge in the western United States

    Science.gov (United States)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David J.; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle A.

    2016-03-01

    , process-based numerical models; (2) a generally poor understanding of hydrologic flowpaths and processes in mountain systems; (3) difficulty predicting the response of focused recharge to potential changes in the frequency and intensity of extreme precipitation events; and (4) unconstrained feedbacks between climate, irrigation practices, and recharge in highly developed aquifer systems.

  16. Implications of projected climate change for groundwater recharge in the western United States

    Science.gov (United States)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle Ann

    2016-01-01

    detailed, process-based numerical models; (2) a generally poor understanding of hydrologic flowpaths and processes in mountain systems; (3) difficulty predicting the response of focused recharge to potential changes in the frequency and intensity of extreme precipitation events; and (4) unconstrained feedbacks between climate, irrigation practices, and recharge in highly developed aquifer systems.

  17. SWB Groundwater Recharge Analysis, Catalina Island, California: Assessing Spatial and Temporal Recharge Patterns Within a Mediterranean Climate Zone

    Science.gov (United States)

    Harlow, J.

    2017-12-01

    Groundwater recharge quantification is a key parameter for sustainable groundwater management. Many recharge quantification techniques have been devised, each with advantages and disadvantages. A free, GIS based recharge quantification tool - the Soil Water Balance (SWB) model - was developed by the USGS to produce fine-tuned recharge constraints in watersheds and illuminate spatial and temporal dynamics of recharge. The subject of this research is to examine SWB within a Mediterranean climate zone, focusing on the Catalina Island, California. This project relied on publicly available online resources with the exception the geospatial processing software, ArcGIS. Daily climate station precipitation and temperature data was obtained from the Desert Research Institute for the years 2008-2014. Precipitation interpolations were performed with ArcGIS using the Natural Neighbor method. The USGS-National Map Viewer (NMV) website provided a 30-meter DEM - to interpolate high and low temperature ASCII grids using the Temperature Lapse Rate (TLR) method, to construct a D-8 flow direction grid for downhill redirection of soil-moisture saturated runoff toward non-saturated cells, and for aesthetic map creation. NMV also provided a modified Anderson land cover classification raster. The US Department of Agriculture-National Resource Conservation Service (NRCS) Web Soil Survey website provided shapefiles of soil water capacity and hydrologic soil groups. The Hargreaves and Samani method was implemented to determine evapotranspiration rates. The resulting SWB output data, in the form of ASCII grids are easily added to ArcGIS for quick visualization and data analysis (Figure 1). Calculated average recharge for 2008-2014 was 3537 inches/year, or 0.0174 acre feet/year. Recharge was 10.2% of the islands gross precipitation. The spatial distribution of the most significant recharge is in hotspots which dominate the residential hills above Avalon, followed by grassy/unvegetated areas

  18. Room temperature rechargeable polymer electrolyte batteries

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, M. [EIC Labs., Inc., Norwood, MA (United States); Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-03-01

    Polyacrylonitrile (PAN)- and poly(vinyl chloride) (PVC)-based Li{sup +}-conductive thin-film electrolytes have been found to be suitable in rechargeable Li and Li-ion cells. Li/Li{sub x}Mn{sub 2}O{sub y} and carbon/LiNiO{sub 2} cells fabricated with these electrolytes have demonstrated rate capabilities greater than the C-rate and more than 375 full depth cycles. Two-cell carbon/LiNiO{sub 2} bipolar batteries could be discharged at pulse currents as high as 50 mA/cm{sup 2}. (orig.)

  19. Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater

    Directory of Open Access Journals (Sweden)

    Y. Ganot

    2017-09-01

    Full Text Available We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015 of continuous intensive MAR (2.45  ×  106 m3 discharged to a 10.7 ha area, groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from  ∼  11 to  ∼  0.4 m d−1. This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface – abundant in many MAR operations – are negated by the high-quality desalinated seawater (turbidity  ∼  0.2 NTU, total dissolved solids  ∼  120 mg L−1 or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016 fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.

  20. Categories from scratch

    NARCIS (Netherlands)

    Poss, R.

    2014-01-01

    The concept of category from mathematics happens to be useful to computer programmers in many ways. Unfortunately, all "good" explanations of categories so far have been designed by mathematicians, or at least theoreticians with a strong background in mathematics, and this makes categories

  1. Are isolated wetlands groundwater recharge hotspots?

    Science.gov (United States)

    Webb, A.; Wicks, C. M.; Brantley, S. T.; Golladay, S. W.

    2017-12-01

    Geographically isolated wetlands (GIWs) are a common landscape feature in the mantled karst terrain of the Dougherty Plain physiographic district in Southwestern Georgia. These wetlands support a high diversity of obligate/facultative wetland flora and fauna, including several endangered species. While the ecological value of these wetlands is well documented, the hydrologic effects of GIWs on larger watershed processes, such as water storage and aquifer recharge, are less clear. Our project seeks to understand the spatial and temporal variation in recharge across GIWs on this mantled karst landscape. In particular, our first step is to understand the role of isolated wetlands (presumed sinkholes) in delivering water into the underlying aquifer. Our hypothesis is that many GIWs are actually water-filled sinkholes and are locations of focused recharge feeding either the underlying upper Floridan aquifer or the nearby creeks. If we are correct, then these sinkholes should exhibit "drains", i.e., conduits into the limestone bedrock. Thus, the purposes of our initial study are to image the soil-limestone contact (the buried epikarstic surface) and determine if possible subsurface drains exist. Our field work was conducted at the Joseph W Jones Ecological Research Center. During the dry season, we conducted ground penetrating radar (GPR) surveys as grids and lines across a large wetland and across a field with no surface expression of a wetland or sinkhole. We used GPR (200 MHz antenna) with 1-m spacing between antenna and a ping rate of 1 ping per 40 centimeters. Our results show that the epikarstic surface exhibits a drain underneath the wetland (sinkhole) and that no similar feature was seen under the field, even though the survey grid and spacing were similar. As our project progresses, we will survey additional wetlands occurring across varying soil types to determine the spatial distribution between surface wetlands and subsurface drains.

  2. Determining Changes in Groundwater Quality during Managed Aquifer Recharge

    Science.gov (United States)

    Gambhir, T.; Houlihan, M.; Fakhreddine, S.; Dadakis, J.; Fendorf, S. E.

    2016-12-01

    Managed aquifer recharge (MAR) is becoming an increasingly prevalent technology for improving the sustainability of freshwater supply. However, recharge water can alter the geochemical conditions of the aquifer, mobilizing contaminants native to the aquifer sediments. Geochemical alterations on deep (>300 m) injection of highly treated recycled wastewater for MAR has received limited attention. We aim to determine how residual disinfectants used in water treatment processes, specifically the strong oxidants chloramine and hydrogen peroxide, affect metal mobilization within deep injection wells of the Orange County Water District. Furthermore, as the treated recharge water has very low ionic strength (44.6 mg L-1 total dissolved solids), we tested how differing concentrations of magnesium chloride and calcium chloride affected metal mobilization within deep aquifers. Continuous flow experiments were conducted on columns dry packed with sediments from a deep injection MAR site in Orange County, CA. The effluent was analyzed for shifts in water quality, including aqueous concentrations of arsenic, uranium, and chromium. Interaction between the sediment and oxic recharge solution causes naturally-occurring arsenopyrite to repartition onto iron oxides. The stability of arsenic on the newly precipitated iron oxides is dependent on pH changes during recharge.

  3. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge.

    Science.gov (United States)

    Fakhreddine, Sarah; Dittmar, Jessica; Phipps, Don; Dadakis, Jason; Fendorf, Scott

    2015-07-07

    Mobilization of arsenic and other trace metal contaminants during managed aquifer recharge (MAR) poses a challenge to maintaining local groundwater quality and to ensuring the viability of aquifer storage and recovery techniques. Arsenic release from sediments into solution has occurred during purified recycled water recharge of shallow aquifers within Orange County, CA. Accordingly, we examine the geochemical processes controlling As desorption and mobilization from shallow, aerated sediments underlying MAR infiltration basins. Further, we conducted a series of batch and column experiments to evaluate recharge water chemistries that minimize the propensity of As desorption from the aquifer sediments. Within the shallow Orange County Groundwater Basin sediments, the divalent cations Ca(2+) and Mg(2+) are critical for limiting arsenic desorption; they promote As (as arsenate) adsorption to the phyllosilicate clay minerals of the aquifer. While native groundwater contains adequate concentrations of dissolved Ca(2+) and Mg(2+), these cations are not present at sufficient concentrations during recharge of highly purified recycled water. Subsequently, the absence of dissolved Ca(2+) and Mg(2+) displaces As from the sediments into solution. Increasing the dosages of common water treatment amendments including quicklime (Ca(OH)2) and dolomitic lime (CaO·MgO) provides recharge water with higher concentrations of Ca(2+) and Mg(2+) ions and subsequently decreases the release of As during infiltration.

  4. How to Recharge a Confined Aquifer: An Exploration of Geologic Controls on Groundwater Storage.

    Science.gov (United States)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Decreased snowpack storage and groundwater overdraft in California has increased interest in managed aquifer recharge (MAR) of excess winter runoff to the Central Valley aquifer system, which has unused storage capacity that far exceeds the state's surface reservoirs. Recharge to the productive, confined aquifer system remains a challenge due to the presence of nearly-ubiquitous, multiple silt and clay confining units that limit recharge pathways. However, previous studies have identified interconnected networks of sand and gravel deposits that bypass the confining units and accommodate rapid, high-volume recharge to the confined aquifer system in select locations. We use the variably-saturated, fully-integrated groundwater/surface-water flow code, ParFlow, in combination with a high-resolution, transition probability Markov-chain geostatistical model of the subsurface geologic heterogeneity of the east side of the Sacramento Valley, CA, to characterize recharge potential across a landscape that includes these geologic features. Multiple 180-day MAR simulations show that recharge potential is highly dependent on subsurface geologic structure, with a several order-of-magnitude range of recharge rates and volumes across the landscape. Where there are recharge pathways to the productive confined-aquifer system, pressure propagation in the confined system is widespread and rapid, with multi-kilometer lateral pressure propagation. Although widespread pressure propagation occurs in the confined system, only a small fraction of recharge volume is accommodated there. Instead, the majority of recharge occurs by filling unsaturated pore spaces. Where they outcrop at land surface, high-K recharge pathways fill rapidly, accommodating the majority of recharge during early time. However, these features become saturated quickly, and somewhat counterintuitively, the low-K silt and clay facies accommodate the majority of recharge volume during most of the simulation. These findings

  5. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  6. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water–rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agricultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3–, N2, Cl, SO42–, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well as a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3–, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  7. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    Science.gov (United States)

    Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

    2014-12-01

    Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr-1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower δ18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10

  8. Organic electrode materials for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yanliang; Tao, Zhanliang; Chen, Jun [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Chemistry College, Nankai University, Tianjin (China)

    2012-07-15

    Organic compounds offer new possibilities for high energy/power density, cost-effective, environmentally friendly, and functional rechargeable lithium batteries. For a long time, they have not constituted an important class of electrode materials, partly because of the large success and rapid development of inorganic intercalation compounds. In recent years, however, exciting progress has been made, bringing organic electrodes to the attention of the energy storage community. Herein thirty years' research efforts in the field of organic compounds for rechargeable lithium batteries are summarized. The working principles, development history, and design strategies of these materials, including organosulfur compounds, organic free radical compounds, organic carbonyl compounds, conducting polymers, non-conjugated redox polymers, and layered organic compounds are presented. The cell performances of these materials are compared, providing a comprehensive overview of the area, and straightforwardly revealing the advantages/disadvantages of each class of materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Blocking in Category Learning

    OpenAIRE

    Bott, Lewis; Hoffman, Aaron B.; Murphy, Gregory L.

    2007-01-01

    Many theories of category learning assume that learning is driven by a need to minimize classification error. When there is no classification error, therefore, learning of individual features should be negligible. We tested this hypothesis by conducting three category learning experiments adapted from an associative learning blocking paradigm. Contrary to an error-driven account of learning, participants learned a wide range of information when they learned about categories, and blocking effe...

  10. Category I structures program

    International Nuclear Information System (INIS)

    Endebrock, E.G.; Dove, R.C.

    1981-01-01

    The objective of the Category I Structure Program is to supply experimental and analytical information needed to assess the structural capacity of Category I structures (excluding the reactor cntainment building). Because the shear wall is a principal element of a Category I structure, and because relatively little experimental information is available on the shear walls, it was selected as the test element for the experimental program. The large load capacities of shear walls in Category I structures dictates that the experimental tests be conducted on small size shear wall structures that incorporates the general construction details and characteristics of as-built shear walls

  11. Statewide Groundwater Recharge Modeling in New Mexico

    Science.gov (United States)

    Xu, F.; Cadol, D.; Newton, B. T.; Phillips, F. M.

    2017-12-01

    It is crucial to understand the rate and distribution of groundwater recharge in New Mexico because it not only largely defines a limit for water availability in this semi-arid state, but also is the least understood aspect of the state's water budget. With the goal of estimating groundwater recharge statewide, we are developing the Evapotranspiration and Recharge Model (ETRM), which uses existing spatial datasets to model the daily soil water balance over the state at a resolution of 250 m cell. The input datasets includes PRISM precipitation data, MODIS Normalized Difference Vegetation Index (NDVI), NRCS soils data, state geology data and reference ET estimates produced by Gridded Atmospheric Data downscalinG and Evapotranspiration Tools (GADGET). The current estimated recharge presents diffuse recharge only, not focused recharge as in channels or playas. Direct recharge measurements are challenging and rare, therefore we estimate diffuse recharge using a water balance approach. The ETRM simulated runoff amount was compared with USGS gauged discharge in four selected ephemeral channels: Mogollon Creek, Zuni River, the Rio Puerco above Bernardo, and the Rio Puerco above Arroyo Chico. Result showed that focused recharge is important, and basin characteristics can be linked with watershed hydrological response. As the sparse instruments in NM provide limited help in improving estimation of focused recharge by linking basin characteristics, the Walnut Gulch Experimental Watershed, which is one of the most densely gauged and monitored semiarid rangeland watershed for hydrology research purpose, is now being modeled with ETRM. Higher spatial resolution of field data is expected to enable detailed comparison of model recharge results with measured transmission losses in ephemeral channels. The final ETRM product will establish an algorithm to estimate the groundwater recharge as a water budget component of the entire state of New Mexico. Reference ET estimated by GADGET

  12. Coastal Sediment Distribution Patterns Following Category 5 Hurricanes (Irma and Maria): Pre and Post Hurricane High Resolution Multibeam Surveys of Eastern St. John, US Virgin Islands

    Science.gov (United States)

    Browning, T. N.; Sawyer, D. E.; Russell, P.

    2017-12-01

    In August of 2017 we collected high resolution multibeam data of the seafloor in a large embayment in eastern St. John, US Virgin Islands (USVI). One month later, the eyewall of Category 5 Hurricane Irma directly hit St. John as one of the largest hurricanes on record in the Atlantic Ocean. A week later, Category 5 Hurricane Maria passed over St. John. While the full extent of the impacts are still being assessed, the island experienced a severe loss of vegetation, infrastructure, buildings, roads, and boats. We mobilized less than two months afterward to conduct a repeat survey of the same area on St. John. We then compared these data to document and quantify the sediment influx and movement that occurred in coastal embayments as a result of Hurricanes Irma and Maria. The preliminary result of the intense rain, wind, and storm surge likely yields an event deposit that can be mapped and volumetrically quantified in the bays of eastern St. John. The results of this study allow for a detailed understanding of the post-hurricane pulse of sediment that enters the marine environment, the sediment flux seaward, and the morphological changes to the bay floor.

  13. Quantification of groundwater recharge in urban environments.

    Science.gov (United States)

    Tubau, Isabel; Vázquez-Suñé, Enric; Carrera, Jesús; Valhondo, Cristina; Criollo, Rotman

    2017-08-15

    Groundwater management in urban areas requires a detailed knowledge of the hydrogeological system as well as the adequate tools for predicting the amount of groundwater and water quality evolution. In that context, a key difference between urban and natural areas lies in recharge evaluation. A large number of studies have been published since the 1990s that evaluate recharge in urban areas, with no specific methodology. Most of these methods show that there are generally higher rates of recharge in urban settings than in natural settings. Methods such as mixing ratios or groundwater modeling can be used to better estimate the relative importance of different sources of recharge and may prove to be a good tool for total recharge evaluation. However, accurate evaluation of this input is difficult. The objective is to present a methodology to help overcome those difficulties, and which will allow us to quantify the variability in space and time of the recharge into aquifers in urban areas. Recharge calculations have been initially performed by defining and applying some analytical equations, and validation has been assessed based on groundwater flow and solute transport modeling. This methodology is applicable to complex systems by considering temporal variability of all water sources. This allows managers of urban groundwater to evaluate the relative contribution of different recharge sources at a city scale by considering quantity and quality factors. The methodology is applied to the assessment of recharge sources in the Barcelona city aquifers. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Categories and logical syntax

    NARCIS (Netherlands)

    Klev, Ansten Morch

    2014-01-01

    The notions of category and type are here studied through the lens of logical syntax: Aristotle's as well as Kant's categories through the traditional form of proposition `S is P', and modern doctrines of type through the Fregean form of proposition `F(a)', function applied to argument. Topics

  15. Computing color categories

    NARCIS (Netherlands)

    Yendrikhovskij, S.N.; Rogowitz, B.E.; Pappas, T.N.

    2000-01-01

    This paper is an attempt to develop a coherent framework for understanding, modeling, and computing color categories. The main assumption is that the structure of color category systems originates from the statistical structure of the perceived color environment. This environment can be modeled as

  16. Triangulated categories (AM-148)

    CERN Document Server

    Neeman, Amnon

    2014-01-01

    The first two chapters of this book offer a modern, self-contained exposition of the elementary theory of triangulated categories and their quotients. The simple, elegant presentation of these known results makes these chapters eminently suitable as a text for graduate students. The remainder of the book is devoted to new research, providing, among other material, some remarkable improvements on Brown''s classical representability theorem. In addition, the author introduces a class of triangulated categories""--the ""well generated triangulated categories""--and studies their properties. This

  17. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  18. Recharge at the Hanford Site: Status report

    International Nuclear Information System (INIS)

    Gee, G.W.

    1987-11-01

    A variety of field programs designed to evaluate recharge and other water balance components including precipitation, infiltration, evaporation, and water storage changes, have been carried out at the Hanford Site since 1970. Data from these programs have indicated that a wide range of recharge rates can occur depending upon specific site conditions. Present evidence suggests that minimum recharge occurs where soils are fine-textured and surfaces are vegetated with deep-rooted plants. Maximum recharge occurs where coarse soils or gravels exist at the surface and soils are kept bare. Recharge can occur in areas where shallow-rooted plants dominate the surface, particularly where soils are coarse-textured. Recharge estimates have been made for the site using simulation models. A US Geological Survey model that attempts to account for climate variability, soil storage parameters, and plant factors has calculated recharge values ranging from near zero to an average of about 1 cm/yr for the Hanford Site. UNSAT-H, a deterministic model developed for the site, appears to be the best code available for estimating recharge on a site-specific basis. Appendix I contains precipitation data from January 1979 to June 1987. 42 refs., 11 figs., 11 tabs

  19. NORTH CAROLINA GROUNDWATER RECHARGE RATES 1994

    Science.gov (United States)

    North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, Ground-water recharge in North Carolina: North Carolina State University, as prepared for the NC Department of Environment, Health and Natural Resources (NC DEHNR) Division of Enviromental Management Groundwater S...

  20. Analysis of rare categories

    CERN Document Server

    He, Jingrui

    2012-01-01

    This book focuses on rare category analysis where the majority classes have smooth distributions and the minority classes exhibit the compactness property. It focuses on challenging cases where the support regions of the majority and minority classes overlap.

  1. Consumer Product Category Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Chemical and Product Categories database (CPCat) catalogs the use of over 40,000 chemicals and their presence in different consumer products. The chemical use...

  2. Product Category Management Issues

    OpenAIRE

    Żukowska, Joanna

    2011-01-01

    The purpose of the paper is to present the issues related to category management. It includes the overview of category management definitions and the correct process of exercising it. Moreover, attention is paid to the advantages of brand management, the benefits the supplier and retailer may obtain in this way. The risk element related to this topics is also presented herein. Joanna Żukowska

  3. An investigation into recharge in South African underground collieries

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, P.D.; Usher, B.H. [University of the Free State, Bloemfontein (South Africa). Inst. of Groundwater Studies

    2006-11-15

    The Mineral and Petroleum Act of 2002 states that no closure certificate may be issued to mines unless the management of potential pollution to water resources has been addressed. Continuous recharge into the abandoned collieries occurs, and it is important for collieries that close down to plan their future management strategy accordingly. Research has been initiated to determine the recharge into abandoned mines of different mining depths, methods and size. Collieries of a nature similar to these case studies can thus associate with the recharge values obtained. Water balances are of overriding importance in determining recharge and water loss. These vary from mine to mine. Overriding factors are the method of mining, depth of mining, and surface hydrology. High extraction methods (stooping and longwall) invariably disturb the overlying strata more than bord and pillar methods. A summary of the percentage influx to be expected for the various mining methods is as follows: Shallow bord and pillar: 5-10% of the rainfall; Deep bord and pillar with no subsidence: 3-4% of the rainfall; Stooping: 5-12% of the rainfall; Longwall: 6-15% of the rainfall; Rehabilitated opencast: 14-20% of the rainfall. The actual percentages depend largely on specific circumstances.

  4. Hydrometeorological daily recharge assessment model (DREAM) for the Western Mountain Aquifer, Israel: Model application and effects of temporal patterns

    Science.gov (United States)

    Sheffer, N. A.; Dafny, E.; Gvirtzman, H.; Navon, S.; Frumkin, A.; Morin, E.

    2010-05-01

    Recharge is a critical issue for water management. Recharge assessment and the factors affecting recharge are of scientific and practical importance. The purpose of this study was to develop a daily recharge assessment model (DREAM) on the basis of a water balance principle with input from conventional and generally available precipitation and evaporation data and demonstrate the application of this model to recharge estimation in the Western Mountain Aquifer (WMA) in Israel. The WMA (area 13,000 km2) is a karst aquifer that supplies 360-400 Mm3 yr-1 of freshwater, which constitutes 20% of Israel's freshwater and is highly vulnerable to climate variability and change. DREAM was linked to a groundwater flow model (FEFLOW) to simulate monthly hydraulic heads and spring flows. The models were calibrated for 1987-2002 and validated for 2003-2007, yielding high agreement between calculated and measured values (R2 = 0.95; relative root-mean-square error = 4.8%; relative bias = 1.04). DREAM allows insights into the effect of intra-annual precipitation distribution factors on recharge. Although annual precipitation amount explains ˜70% of the variability in simulated recharge, analyses with DREAM indicate that the rainy season length is an important factor controlling recharge. Years with similar annual precipitation produce different recharge values as a result of temporal distribution throughout the rainy season. An experiment with a synthetic data set exhibits similar results, explaining ˜90% of the recharge variability. DREAM represents significant improvement over previous recharge estimation techniques in this region by providing near-real-time recharge estimates that can be used to predict the impact of climate variability on groundwater resources at high temporal and spatial resolution.

  5. Restoration of Wadi Aquifers by Artificial Recharge with Treated Waste Water

    KAUST Repository

    Missimer, Thomas M.; Drewes, Jö rg E.; Amy, Gary L.; Maliva,, Robert G.; Keller, Stephanie

    2012-01-01

    , such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge

  6. Economic evaluation of type 2 diabetes prevention programmes: Markov model of low- and high-intensity lifestyle programmes and metformin in participants with different categories of intermediate hyperglycaemia.

    Science.gov (United States)

    Roberts, Samantha; Craig, Dawn; Adler, Amanda; McPherson, Klim; Greenhalgh, Trisha

    2018-01-30

    National guidance on preventing type 2 diabetes mellitus (T2DM) in the UK recommends low-intensity lifestyle interventions for individuals with intermediate categories of hyperglycaemia defined in terms of impaired fasting glucose (IFG) or 'at-risk' levels of HbA1c. In a recent systematic review of economic evaluations of such interventions, most studies had evaluated intensive trial-based lifestyle programmes in participants with impaired glucose tolerance (IGT). This study examines the costs and effects of different intensity lifestyle programmes and metformin in participants with different categories of intermediate hyperglycaemia. We developed a decision tree and Markov model (50-year horizon) to compare four approaches, namely (1) a low-intensity lifestyle programme based on current NICE guidance, (2) a high-intensity lifestyle programme based on the US Diabetes Prevention Program, (3) metformin, and (4) no intervention, modelled for three different types of intermediate hyperglycaemia (IFG, IGT and HbA1c). A health system perspective was adopted and incremental analysis undertaken at an individual and population-wide level, taking England as a case study. Low-intensity lifestyle programmes were the most cost-effective (£44/QALY, £195/QALY and £186/QALY compared to no intervention in IGT, IFG and HbA1c, respectively). Intensive lifestyle interventions were also cost-effective compared to no intervention (£2775/QALY, £6820/QALY and £7376/QALY, respectively, in IGT, IFG and HbA1c). Metformin was cost-effective relative to no intervention (£5224/QALY, £6842/QALY and £372/QALY in IGT, IFG and HbA1c, respectively), but was only cost-effective relative to other treatments in participants identified with HbA1c. At a willingness-to-pay threshold of £20,000/QALY, low- and high-intensity lifestyle programmes were cost-effective 98%, 99% and 98% and 81%, 81% and 71% of the time in IGT, IFG and HbA1c, respectively. An England-wide programme for 50-59 year olds

  7. High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO4 Anode.

    Science.gov (United States)

    Wang, Yuesheng; Yang, Shi-Ze; You, Ya; Feng, Zimin; Zhu, Wen; Gariépy, Vincent; Xia, Jiexiang; Commarieu, Basile; Darwiche, Ali; Guerfi, Abdelbast; Zaghib, Karim

    2018-02-28

    Aqueous lithium-ion batteries are emerging as strong candidates for a great variety of energy storage applications because of their low cost, high-rate capability, and high safety. Exciting progress has been made in the search for anode materials with high capacity, low toxicity, and high conductivity; yet, most of the anode materials, because of their low equilibrium voltages, facilitate hydrogen evolution. Here, we show the application of olivine FePO 4 and amorphous FePO 4 ·2H 2 O as anode materials for aqueous lithium-ion batteries. Their capacities reached 163 and 82 mA h/g at a current rate of 0.2 C, respectively. The full cell with an amorphous FePO 4 ·2H 2 O anode maintained 92% capacity after 500 cycles at a current rate of 0.2 C. The acidic aqueous electrolyte in the full cells prevented cathodic oxygen evolution, while the higher equilibrium voltage of FePO 4 avoided hydrogen evolution as well, making them highly stable. A combination of in situ X-ray diffraction analyses and computational studies revealed that olivine FePO 4 still has the biphase reaction in the aqueous electrolyte and that the intercalation pathways in FePO 4 ·2H 2 O form a 2-D mesh. The low cost, high safety, and outstanding electrochemical performance make the full cells with olivine or amorphous hydrated FePO 4 anodes commercially viable configurations for aqueous lithium-ion batteries.

  8. Models as Relational Categories

    Science.gov (United States)

    Kokkonen, Tommi

    2017-11-01

    Model-based learning (MBL) has an established position within science education. It has been found to enhance conceptual understanding and provide a way for engaging students in authentic scientific activity. Despite ample research, few studies have examined the cognitive processes regarding learning scientific concepts within MBL. On the other hand, recent research within cognitive science has examined the learning of so-called relational categories. Relational categories are categories whose membership is determined on the basis of the common relational structure. In this theoretical paper, I argue that viewing models as relational categories provides a well-motivated cognitive basis for MBL. I discuss the different roles of models and modeling within MBL (using ready-made models, constructive modeling, and generative modeling) and discern the related cognitive aspects brought forward by the reinterpretation of models as relational categories. I will argue that relational knowledge is vital in learning novel models and in the transfer of learning. Moreover, relational knowledge underlies the coherent, hierarchical knowledge of experts. Lastly, I will examine how the format of external representations may affect the learning of models and the relevant relations. The nature of the learning mechanisms underlying students' mental representations of models is an interesting open question to be examined. Furthermore, the ways in which the expert-like knowledge develops and how to best support it is in need of more research. The discussion and conceptualization of models as relational categories allows discerning students' mental representations of models in terms of evolving relational structures in greater detail than previously done.

  9. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Chuan Cai

    2009-09-01

    Full Text Available Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  10. Hydrogeological conditions of the Kroparica recharge area, Jelovica, Slovenia

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2003-12-01

    Full Text Available Eastern part of highly karstified plateau of Jelovica (west Slovenia that represents big fissured and karstified aquifer is drained by the group of Kroparica springs that are positioned approximately 1 km in the south of the city Kropa. Kroparica is represented by several springs that mainly flow out from the triasic Ba~a dolomite. Some of them are positioned in the hill slope sediments. In the article litostratigraphical and structural conditions in the background of the springs are represented together with simple hydrogeologicalbalance of Kroparica aquifer recharge. It was determined that the recharge area is between 3,8 and 6,5 km2 and that the average yearly outflow is between 224 and 386 l/s. Maximum outflows are much larger and are higher than some m3/s. High fluctuation of discharges are the consequence of high karstification level of Kroparica aquifer.

  11. Categories of transactions

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter discusses the types of wholesale sales made by utilities. The Federal Energy Regulatory Commission (FERC), which regulates inter-utility sales, divides these sales into two broad categories: requirements and coordination. A variety of wholesale sales do not fall neatly into either category. For example, power purchased to replace the Three Mile Island outage is in a sense a reliability purchase, since it is bought on a long-term firm basis to meet basic load requirements. However, it does not fit the traditional model of a sale considered as part of each utility's long range planning. In addition, this chapter discusses transmission services, with a particular emphasis on wheeling

  12. Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA)

    Science.gov (United States)

    Langston, Abigail L.; Screaton, Elizabeth J.; Martin, Jonathan B.; Bailly-Comte, Vincent

    2012-06-01

    The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.

  13. Flexible rechargeable Ni//Zn battery based on self-supported NiCo2O4 nanosheets with high power density and good cycling stability

    Directory of Open Access Journals (Sweden)

    Haozhe Zhang

    2018-01-01

    Full Text Available The overall electrochemical performances of Ni–Zn batteries are still far from satisfactory, specifically for rate performance and cycling stability Herein, we demonstrated a high-performance flexible Ni//Zn battery with outstanding durability and high power density based on self-supported NiCo2O4 nanosheets as cathode and Zn nanosheets as anode. This Ni//Zn battery is able to deliver a remarkable capacity of 183.1 mAh g−1 and a good cycling performance (82.7% capacity retention after 3500 cycles. More importantly, this battery achieves an admirable power density of 49.0 kW kg−1 and energy density of 303.8 Wh kg−1, substantially higher than most recently reported batteries. With such excellent electrochemical performance, this battery will have great potential as an ultrafast power source in practical application.

  14. A frogspawn-inspired hierarchical porous NaTi2(PO4)3-C array for high-rate and long-life aqueous rechargeable sodium batteries

    Science.gov (United States)

    Zhao, Baidan; Lin, Bo; Zhang, Sen; Deng, Chao

    2015-11-01

    Hollow micro/nano-arrays have attracted tremendous attention in the field of energy conversion and storage, but such structures usually compromise the volumetric energy density of the electrode materials. Frogspawn consists of a spawn core and a transparent jelly shell organized in a hierarchical porous array, which exhibits superior mechanical strength and high-efficiency oxygen permeability. It can be used as a model for designing a new high-performance electrode material, which has advantages such as a high surface area, fast mass transport and superior durability. Herein, we report a frogspawn-like NaTi2(PO4)3/C array prepared by a facile preform impregnation strategy. The framework is formed by a hollow carbon sphere connected by the NaTi2(PO4)3/C skeleton, and its hollow is filled with the NaTi2(PO4)3 nanospheres. The whole hierarchical porous three-dimensional array copies the structure of a frogspawn. This unique structure not only enables easy electrolyte percolation and fast electron/ion transport, but also enhances the reversible capacity and cycling durability. When it is applied as an anode of the aqueous sodium ion battery, it exhibits favorable high rate capability and superior cycling stability, and retains 89% of the initial capacity after two thousand cycles at 20 C. Moreover, the full cell using the frogspawn-inspired NaTi2(PO4)3-C as the anode and Na0.44MnO2 as the cathode is capable of ultralong cycling up to one thousand cycles at alternate 10 and 60 C, which is among the best of state-of-the-art aqueous sodium ion systems. Therefore, the frogspawn-inspired architecture provides a new strategy to the tailored design of polyanion materials for high-power applications.Hollow micro/nano-arrays have attracted tremendous attention in the field of energy conversion and storage, but such structures usually compromise the volumetric energy density of the electrode materials. Frogspawn consists of a spawn core and a transparent jelly shell organized in

  15. Consumer Product Category Database

    Science.gov (United States)

    The Chemical and Product Categories database (CPCat) catalogs the use of over 40,000 chemicals and their presence in different consumer products. The chemical use information is compiled from multiple sources while product information is gathered from publicly available Material Safety Data Sheets (MSDS). EPA researchers are evaluating the possibility of expanding the database with additional product and use information.

  16. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab.

    Science.gov (United States)

    Singh, Amanpreet; Panda, S N; Kumar, K S; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.

  17. Novel peapoded Li4Ti5O12 nanoparticles for high-rate and ultralong-life rechargeable lithium ion batteries at room and lower temperatures

    Science.gov (United States)

    Peng, Liang; Zhang, Huijuan; Fang, Ling; Zhang, Yan; Wang, Yu

    2016-01-01

    In this paper, a novel peapod-like Li4Ti5O12-C composite architecture with high conductivity is firstly designed and synthesized to be used as anode materials for lithium-ion batteries. In the synthesis, Na2Ti3O7 nanotubes act as precursors and sacrificial templates, and glucose molecules serve as the green carbon source, thus the peapod-like Li4Ti5O12-C composite can be fabricated by a facile hydrothermal reaction and the subsequent solid-state process. Compared to the previous reports, the as-prepared samples obtained by our new strategy exhibit excellent electrochemical performances, such as outstanding rate capability (an extremely reversible capability of 148 mA h g-1, 125 mA h g-1 at 30 C and 90 C, respectively) as well as excellent cycling performance (about 5% capacity loss after 5000 cycles at 10 C with 152 mA h g-1 capacity retained). The low-temperature measurements also demonstrate that the electrochemical performances of the peapod-like Li4Ti5O12-C composite are remarkably improved at various rate currents (at the low-temperature of -25 °C, a high Coulombic efficiency of about 99% can be achieved after 500 cycles at 10 C).In this paper, a novel peapod-like Li4Ti5O12-C composite architecture with high conductivity is firstly designed and synthesized to be used as anode materials for lithium-ion batteries. In the synthesis, Na2Ti3O7 nanotubes act as precursors and sacrificial templates, and glucose molecules serve as the green carbon source, thus the peapod-like Li4Ti5O12-C composite can be fabricated by a facile hydrothermal reaction and the subsequent solid-state process. Compared to the previous reports, the as-prepared samples obtained by our new strategy exhibit excellent electrochemical performances, such as outstanding rate capability (an extremely reversible capability of 148 mA h g-1, 125 mA h g-1 at 30 C and 90 C, respectively) as well as excellent cycling performance (about 5% capacity loss after 5000 cycles at 10 C with 152 mA h g-1 capacity

  18. Rechargeable Lithium Metal Cell, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — PSI proposes to develop a rechargeable lithium metal cell with energy density >400Wh/kg. This represents a >70% increase as compared to similarly constructed...

  19. NTS groundwater recharge study, FY 1992

    International Nuclear Information System (INIS)

    Lyles, B.F.; Mihevc, T.M.

    1992-10-01

    Groundwater recharge from precipitation is thought by many scientists to be extremely low in Southem Nevada; however, no direct measurements of recharge have been made to substantiate this hypothesis. Three geomorphic regions have been identified as potential areas of groundwater recharge at the Nevada Test Site (NTS): mesas, washes, and lowlands. Eight recharge monitoring stations have been installed to monitor each of these regions; four of the stations are on Pahute/Rainier Mesa, two stations are in Fortymile Wash, one station is in a transition area between the mesas and the lowlands (Whiterock Spring), and one station is located in Yucca Flat at the bottom of the U-3fd crater. An additional station is proposed for Frenchman Flat near the Area 5 mixed waste facility; however, the instrumentation of that site has been delayed due to the complex permitting process associated with instrument installation near the mixed waste facility. Digital data were collected from eight sites during FY 1992

  20. Three-dimensional sponge-like architectured cupric oxides as high-power and long-life anode material for lithium rechargeable batteries

    International Nuclear Information System (INIS)

    Choi, Chung Seok; Park, Young-Uk; Kim, Hyungsub; Kim, Na Rae; Kang, Kisuk; Lee, Hyuck Mo

    2012-01-01

    Cupric oxide (CuO) nanoparticles (NPs) with three-dimensional (3D) sponge structure are obtained through the sintering of Cu NPs at 360 °C. Their morphology is analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and their crystal structure is checked by X-ray diffraction. CuO NPs have a 3D porous structure. The NPs are assembled to form larger secondary particles with many empty spaces among them, and they have a CuO phase after the heat treatment. CuO NPs with this novel architecture exhibit good electrochemical performance as anode material. The anode material with a sponge-like structure is prepared at 360 °C, as the Li-ion battery exhibits a high electrochemical capacity of 674 mAh g −1 . When the sample is sintered at 360 °C, the charge/discharge capacities increase gradually and cycle up to 50 cycles at a C/10 rate, exhibiting excellent rate capability compared with earlier reported CuO/CuO-composite anodes. Electrochemical impedance spectroscopy (EIS) measurements suggest that the superior electrical conductivity of the sample sintered at 360 °C is the main factor responsible for the improved power capability.

  1. Estimation of alluvial recharge in the semiarid

    OpenAIRE

    Andrade,Tafnes S.; Montenegro,Suzana M. G. L.; Montenegro,Abelardo A. de A.; Rodrigues,Diogo F. B.

    2014-01-01

    In areas where there is irrigated agriculture, the recuperation of water reserves in alluvial aquifers may occur preferentially due to precipitation. Recharging can be evaluated from variation information of water depth measured in piezometers or observation wells. Thus, the aim of this research is to study the recharge in the alluvial aquifer formed by the Mimoso temporary stream in the semiarid region of Pernambuco (PE), Brazil, using the method of the fluctuation of the water level. This s...

  2. Recent progress in rechargeable alkali metalâair batteries

    OpenAIRE

    Xin Zhang; Xin-Gai Wang; Zhaojun Xie; Zhen Zhou

    2016-01-01

    Rechargeable alkali metalâair batteries are considered as the most promising candidate for the power source of electric vehicles (EVs) due to their high energy density. However, the practical application of metalâair batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metalâair batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this ...

  3. Estimating recharge at yucca mountain, nevada, usa: comparison of methods

    International Nuclear Information System (INIS)

    Flint, A. L.; Flint, L. E.; Kwicklis, E. M.; Fabryka-Martin, J. T.; Bodvarsson, G. S.

    2001-01-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for and environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 nun/year near Yucca Crest. Site-scale recharge estimates range from less than I to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface. [References: 57

  4. Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods

    Science.gov (United States)

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Fabryka-Martin, J. T.; Bodvarsson, G.S.

    2002-01-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

  5. Recharge Estimation Using Water, Chloride and Isotope Mass Balances

    Science.gov (United States)

    Dogramaci, S.; Firmani, G.; Hedley, P.; Skrzypek, G.; Grierson, P. F.

    2014-12-01

    Discharge of surplus mine water into ephemeral streams may elevate groundwater levels and alter the exchange rate between streams and underlying aquifers but it is unclear whether volumes and recharge processes are within the range of natural variability. Here, we present a case study of an ephemeral creek in the semi-arid subtropical Hamersley Basin that has received continuous mine discharge for more than five years. We used a numerical model coupled with repeated measurements of water levels, chloride concentrations and the hydrogen and oxygen stable isotope composition (δ2H and δ18O) to estimate longitudinal evapotranspiration and recharge rates along a 27 km length of Weeli Wolli Creek. We found that chloride increased from 74 to 120 mg/L across this length, while δ18O increased from -8.24‰ to -7.00‰. Groundwater is directly connected to the creek for the first 13 km and recharge rates are negligible. Below this point, the creek flows over a highly permeable aquifer and water loss by recharge increases to a maximum rate of 4.4 mm/d, which accounts for ~ 65% of the total water discharged to the creek. Evapotranspiration losses account for the remaining ~35%. The calculated recharge from continuous flow due to surplus water discharge is similar to that measured for rainfall-driven flood events along the creek. Groundwater under the disconnected section of the creek is characterised by a much lower Cl concentration and more depleted δ18O value than mining discharge water but is similar to flood water generated by large episodic rainfall events. Our results suggest that the impact of recharge from continuous flow on the creek has not extended beyond 27 km from the discharge point. Our approach using a combination of hydrochemical and isotope methods coupled with classical surface flow hydraulic modelling allowed evaluation of components of water budget otherwise not possible in a highly dynamic system that is mainly driven by infrequent but large episodic

  6. Can height categories replace weight categories in striking martial arts competitions? A pilot study.

    Science.gov (United States)

    Dubnov-Raz, Gal; Mashiach-Arazi, Yael; Nouriel, Ariella; Raz, Raanan; Constantini, Naama W

    2015-09-29

    In most combat sports and martial arts, athletes compete within weight categories. Disordered eating behaviors and intentional pre-competition rapid weight loss are commonly seen in this population, attributed to weight categorization. We examined if height categories can be used as an alternative to weight categories for competition, in order to protect the health of athletes. Height and weight of 169 child and adolescent competitive karate athletes were measured. Participants were divided into eleven hypothetical weight categories of 5 kg increments, and eleven hypothetical height categories of 5 cm increments. We calculated the coefficient of variation of height and weight by each division method. We also calculated how many participants fit into corresponding categories of both height and weight, and how many would shift a category if divided by height. There was a high correlation between height and weight (r = 0.91, p<0.001). The mean range of heights seen within current weight categories was reduced by 83% when participants were divided by height. When allocating athletes by height categories, 74% of athletes would shift up or down one weight category at most, compared with the current categorization method. We conclude that dividing young karate athletes by height categories significantly reduced the range of heights of competitors within the category. Such categorization would not cause athletes to compete against much heavier opponents in most cases. Using height categories as a means to reduce eating disorders in combat sports should be further examined.

  7. Proposed artificial recharge studies in northern Qatar

    Science.gov (United States)

    Kimrey, J.O.

    1985-01-01

    The aquifer system in northern Qatar comprises a water-table aquifer in the Rus Formation which is separated by an aquitard from a partially confined aquifer in the top of the overlying Umm er Radhuma Formation. These two aquifers are composed of limestone and dolomite of Eocene and Paleocene age and contain a fragile lens of freshwater which is heavily exploited as a source of water for agricultural irrigation. Net withdrawals are greatly in excess of total recharge, and quality of ground water is declining. Use of desalinated seawater for artificial recharge has been proposed for the area. Artificial recharge, on a large scale, could stabilize the decline in ground-water quality while allowing increased withdrawals for irrigation. The proposal appears technically feasible. Recharge should be by injection to the Umm er Radhuma aquifer whose average transmissivity is about 2,000 meters squared per day (as compared to an average of about 200 meters squared per day for the Rus aquifer). Implementation of artificial recharge should be preceded by a hydrogeologic appraisal. These studies should include test drilling, conventional aquifer tests, and recharge-recovery tests at four sites in northern Qatar. (USGS)

  8. Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh

    Science.gov (United States)

    Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke

    2016-04-01

    Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater

  9. Basic category theory

    CERN Document Server

    Leinster, Tom

    2014-01-01

    At the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties all three together. The book is suitable for use in courses or for independent study. Assuming relatively little mathematical background, it is ideal for beginning graduate students or advanced undergraduates learning category theory for the first time. For each new categorical concept, a generous supply of examples is provided, taken from different parts of mathematics. At points where the leap in abstraction is particularly great (such as the Yoneda lemma), the reader will find careful and extensive explanations. Copious exercises are included.

  10. CHURCH, Category, and Speciation

    Directory of Open Access Journals (Sweden)

    Rinderknecht Jakob Karl

    2018-01-01

    Full Text Available The Roman Catholic definition of “church”, especially as applied to groups of Protestant Christians, creates a number of well-known difficulties. The similarly complex category, “species,” provides a model for applying this term so as to neither lose the centrality of certain examples nor draw a hard boundary to rule out border cases. In this way, it can help us to more adequately apply the complex ecclesiology of the Second Vatican Council. This article draws parallels between the understanding of speciation and categorization and the definition of Church since the council. In doing so, it applies the work of cognitive linguists, including George Lakoff, Zoltan Kovecses, Giles Fauconnier and Mark Turner on categorization. We tend to think of categories as containers into which we sort objects according to essential criteria. However, categories are actually built inductively by making associations between objects. This means that natural categories, including species, are more porous than we assume, but nevertheless bear real meaning about the natural world. Taxonomists dispute the border between “zebras” and “wild asses,” but this distinction arises out of genetic and evolutionary reality; it is not merely arbitrary. Genetic descriptions of species has also led recently to the conviction that there are four species of giraffe, not one. This engagement will ground a vantage point from which the Council‘s complex ecclesiology can be more easily described so as to authentically integrate its noncompetitive vision vis-a-vis other Christians with its sense of the unique place held by Catholic Church.

  11. Visual memory needs categories

    OpenAIRE

    Olsson, Henrik; Poom, Leo

    2005-01-01

    Capacity limitations in the way humans store and process information in working memory have been extensively studied, and several memory systems have been distinguished. In line with previous capacity estimates for verbal memory and memory for spatial information, recent studies suggest that it is possible to retain up to four objects in visual working memory. The objects used have typically been categorically different colors and shapes. Because knowledge about categories is stored in long-t...

  12. Libertarianism & Category-Mistake

    OpenAIRE

    Carlos G. Patarroyo G.

    2009-01-01

    This paper offers a defense against two accusations according to which libertarianism incurs in a category-mistake. The philosophy of Gilbert Ryle will be used to explain the reasons which ground these accusations. Further, it will be shown why, although certain sorts of libertarianism based on agent-causation or Cartesian dualism incur in these mistakes, there is at least one version of libertarianism to which this criticism does not necessarily apply: the version that seeks to find in physi...

  13. Convergence semigroup categories

    Directory of Open Access Journals (Sweden)

    Gary Richardson

    2013-09-01

    Full Text Available Properties of the category consisting of all objects of the form (X, S, λ are investigated, where X is a convergence space, S is a commutative semigroup, and λ: X × S → X is a continuous action. A “generalized quotient” of each object is defined without making the usual assumption that for each fixed g ∈ S, λ(., g : X  → X is an injection.

  14. Categories and Commutative Algebra

    CERN Document Server

    Salmon, P

    2011-01-01

    L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.

  15. Ground-water recharge in Fortymile Wash near Yucca Mountain, Nevada, 1992--1993

    International Nuclear Information System (INIS)

    Savard, C.S.

    1994-01-01

    Quantification of the ground-water recharge from streamflow in the Fortymile Wash watershed will contribute to regional ground-water studies. Regional ground-water studies are an important component in the studies evaluating the ground-water flow system as a barrier to the potential migration of radionuclides from the potential underground high-level nuclear waste repository. Knowledge gained in understanding the ground-water recharge mechanisms and pathways in the Pah Canyon area, which is 10 km to the northeast of Yucca Mountain, may transfer to Yucca site specific studies. The current data collection network in Fortymile Canyon does not permit quantification of ground-water recharge, however a qualitative understanding of ground-water recharge was developed from these data

  16. Spatial and temporal infiltration dynamics during managed aquifer recharge.

    Science.gov (United States)

    Racz, Andrew J; Fisher, Andrew T; Schmidt, Calla M; Lockwood, Brian S; Los Huertos, Marc

    2012-01-01

    Natural groundwater recharge is inherently difficult to quantify and predict, largely because it comprises a series of processes that are spatially distributed and temporally variable. Infiltration ponds used for managed aquifer recharge (MAR) provide an opportunity to quantify recharge processes across multiple scales under semi-controlled conditions. We instrumented a 3-ha MAR infiltration pond to measure and compare infiltration patterns determined using whole-pond and point-specific methods. Whole-pond infiltration was determined by closing a transient water budget (accounting for inputs, outputs, and changes in storage), whereas point-specific infiltration rates were determined using heat as a tracer and time series analysis at eight locations in the base of the pond. Whole-pond infiltration, normalized for wetted area, rose rapidly to more than 1.0 m/d at the start of MAR operations (increasing as pond stage rose), was sustained at high rates for the next 40 d, and then decreased to less than 0.1 m/d by the end of the recharge season. Point-specific infiltration rates indicated high spatial and temporal variability, with the mean of measured values generally being lower than rates indicated by whole-pond calculations. Colocated measurements of head gradients within saturated soils below the pond were combined with infiltration rates to calculate soil hydraulic conductivity. Observations indicate a brief period of increasing saturated hydraulic conductivity, followed by a decrease of one to two orders of magnitude during the next 50 to 75 d. Locations indicating the most rapid infiltration shifted laterally during MAR operation, and we suggest that infiltration may function as a "variable source area" processes, conceptually similar to catchment runoff. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  17. Evaluating the Impacts of Grassland Conversions to Experimental Forest on Groundwater Recharge in the Nebraska Sand Hills

    Science.gov (United States)

    Adane, Zablon A.

    The Nebraska Sand Hills grasslands provide the greatest groundwater recharge rates in the High Plains Aquifer. However, the grasslands and their ecological services have become vulnerable to land use change and degradation. This study used a series of field data to investigate the effects of grassland conversions to forest on recharge rates in a century-old experimental forest in the Sand Hills. The results show that the impact of grassland conversion on recharge was dependent on the species and plantation density. Estimated recharge rates beneath the dense plantations represent reductions of 86-94% relative to the native grassland. Results of 1H Nuclear Magnetic Resonance spectral analysis suggested that the surface soil organic carbon beneath pine plantations also contain up to 3 times the ratio of hydrophobic components than the native grasslands and may alter the soil hydraulic properties. This investigation further uncovered a previously overlooked feedback between the effect of soil organic carbon chemical shift generated by the ponderosa pine needle litter decomposition; namely that the alteration may have a link to reduced groundwater recharge rates. Thus, a global optimizer algorithm was used to estimate the effective soil hydraulic parameters from monthly soil moisture contents and recharge rates were then estimated through HYDRUS 1-D numerical modeling for grassland and pine forest soils. The impact of grassland conversion to pine was an overall reduction of groundwater recharge by nearly 100%. These outcomes highlight the significance of the grasslands for recharge, in the Sand Hills and the sustainability of the High Plains Aquifer.

  18. Comparing two K-category assignments by a K-category correlation coefficient

    DEFF Research Database (Denmark)

    Gorodkin, Jan

    2004-01-01

    Predicted assignments of biological sequences are often evaluated by Matthews correlation coefficient. However, Matthews correlation coefficient applies only to cases where the assignments belong to two categories, and cases with more than two categories are often artificially forced into two...... categories by considering what belongs and what does not belong to one of the categories, leading to the loss of information. Here, an extended correlation coefficient that applies to K-categories is proposed, and this measure is shown to be highly applicable for evaluating prediction of RNA secondary...

  19. The effect of modeled recharge distribution on simulated groundwater availability and capture.

    Science.gov (United States)

    Tillman, F D; Pool, D R; Leake, S A

    2015-01-01

    Simulating groundwater flow in basin-fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin-fill aquifers by direct infiltration and transport through faults and fractures in the high-elevation areas, by flowing overland through high-elevation areas to infiltrate at basin-fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin-fill aquifers by calibrating a groundwater-flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady-state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. LIBERTARISMO & ERROR CATEGORIAL

    Directory of Open Access Journals (Sweden)

    Carlos G. Patarroyo G.

    2009-01-01

    Full Text Available En este artículo se ofrece una defensa del libertarismo frente a dos acusaciones según las cuales éste comete un error categorial. Para ello, se utiliza la filosofía de Gilbert Ryle como herramienta para explicar las razones que fundamentan estas acusaciones y para mostrar por qué, pese a que ciertas versiones del libertarismo que acuden a la causalidad de agentes o al dualismo cartesiano cometen estos errores, un libertarismo que busque en el indeterminismo fisicalista la base de la posibilidad de la libertad humana no necesariamente puede ser acusado de incurrir en ellos.

  1. Libertarianism & Category-Mistake

    Directory of Open Access Journals (Sweden)

    Carlos G. Patarroyo G.

    2009-12-01

    Full Text Available This paper offers a defense against two accusations according to which libertarianism incurs in a category-mistake. The philosophy of Gilbert Ryle will be used to explain the reasons which ground these accusations. Further, it will be shown why, although certain sorts of libertarianism based on agent-causation or Cartesian dualism incur in these mistakes, there is at least one version of libertarianism to which this criticism does not necessarily apply: the version that seeks to find in physical indeterminism the grounding of human free will.

  2. Libertarismo & Error Categorial

    OpenAIRE

    PATARROYO G, CARLOS G

    2009-01-01

    En este artículo se ofrece una defensa del libertarismo frente a dos acusaciones según las cuales éste comete un error categorial. Para ello, se utiliza la filosofía de Gilbert Ryle como herramienta para explicar las razones que fundamentan estas acusaciones y para mostrar por qué, pese a que ciertas versiones del libertarismo que acuden a la causalidad de agentes o al dualismo cartesiano cometen estos errores, un libertarismo que busque en el indeterminismo fisicalista la base de la posibili...

  3. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    International Nuclear Information System (INIS)

    Ling, Chen; Zhang, Ruigang

    2017-01-01

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg 2+ -intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO 2 in magnesium cells. In recent years, the cathodic performance of MnO 2 was impressively improved to the capacity of >150–200 mAh g −1 at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO 2 cathode has been changed and how it paved the road to the improvement of cathode performance.

  4. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Chen, E-mail: chen.ling@toyota.com; Zhang, Ruigang [Toyota Research Institute of North America, Ann Arbor, MI (United States)

    2017-11-03

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg{sup 2+}-intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO{sub 2} in magnesium cells. In recent years, the cathodic performance of MnO{sub 2} was impressively improved to the capacity of >150–200 mAh g{sup −1} at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO{sub 2} cathode has been changed and how it paved the road to the improvement of cathode performance.

  5. Residence Times in Central Valley Aquifers Recharged by Dammed Rivers

    Science.gov (United States)

    Loustale, M.; Paukert Vankeuren, A. N.; Visser, A.

    2017-12-01

    Groundwater is a vital resource for California, providing between 30-60% of the state's water supply. Recent emphasis on groundwater sustainability has induced a push to characterize recharge rates and residence times for high priority aquifers, including most aquifers in California's Central Valley. Flows in almost all rivers from the western Sierra to the Central Valley are controlled by dams, altering natural flow patterns and recharge to local aquifers. In eastern Sacramento, unconfined and confined shallow aquifers (depth recharged by a losing reach of the Lower American River, despite the presence of levees with slurry cut-off walls.1 Flow in the Lower American River is controlled through the operation of the Folsom and Nimbus Dams, with a minimum flow of 500 cfs. Water table elevation in wells in close proximity to the river are compared to river stage to determine the effect of river stage on groundwater recharge rates. Additionally, Tritium-3Helium dates and stable isotopes (∂18O and ∂2H) have been measured in monitoring wells 200- 2400 ft lateral distance from the river, and depths of 25 -225 feet BGS. Variation in groundwater age in the vertical and horizontal directions are used to determine groundwater flow path and velocity. These data are then used to calculate residence time of groundwater in the unconfined and confined aquifer systems for the Central Valley in eastern Sacramento. Applying groundwater age tracers can benefit future compliance metrics of the California Sustainable Groundwater Resources Act (SGMA), by quantifying river seepage rates and impacts of groundwater management on surface water resources. 1Moran et al., UCRL-TR-203258, 2004.

  6. Issue and challenges facing rechargeable thin film lithium batteries

    International Nuclear Information System (INIS)

    Patil, Arun; Patil, Vaishali; Shin, Dong Wook; Choi, Ji-Won; Paik, Dong-Soo; Yoon, Seok-Jin

    2008-01-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium batteries are the systems of choice, offering high energy density, flexible, lightweight design and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based thin film rechargeable batteries highlight ongoing research strategies and discuss the challenges that remain regarding the discovery of nanomaterials as electrolytes and electrodes for lithium batteries also this article describes the possible evolution of lithium technology and evaluates the expected improvements, arising from new materials to cell technology. New active materials under investigation and electrode process improvements may allow an ultimate final energy density of more than 500 Wh/L and 200 Wh/kg, in the next 5-6 years, while maintaining sufficient power densities. A new rechargeable battery technology cannot be foreseen today that surpasses this. This report will provide key performance results for thin film batteries and highlight recent advances in their development

  7. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  8. Recharge Area of Groundwater of Jakarta Basin

    International Nuclear Information System (INIS)

    Wandowo; Abidin, Zainal; Alip; Djiono

    2002-01-01

    Groundwater inside the earth contained in a porous and permeable layers called aquifers. Depend on the hydrogeological structure, the aquifers may be composed of independent layers separated each other by impermeable boundaries. Such a condition may effect the location of recharge where water is able to infiltrate and goes to the aquifers. The objective of this research is to find out and to locate the recharge area of Jakarta basin by utilizing stable isotopes 2H and 18O . The work was done by collecting shallow and deep groundwater samples throughout Jabotabek area and precipitations from different altitudes. Since the stable isotopes composition of precipitation is subject to the altitude, the recharge area would be able to be identified by assessing the correlation of stable isotopes composition of precipitation and corresponding groundwater population. The data obtained from this study suggested that shallow groundwater is originated from local recharge while deep groundwater is recharged from the area having altitude of 125 -230 meters, it correspond to the area between Depok and Bogor

  9. Modeling Recharge - can it be Done?

    Science.gov (United States)

    Verburg, K.; Bond, W. J.; Smith, C. J.; Dunin, F. X.

    2001-12-01

    In sub-humid areas where rainfall is relatively low and sporadic, recharge (defined as water movement beyond the active root zone) is the small difference between the much larger numbers rainfall and evapotranspiration. It is very difficult to measure and often modeling is resorted to instead. But is modeling this small number any less difficult than measurement? In Australia there is considerable debate over the magnitude of recharge under different agricultural systems because of its contribution to rising saline groundwater levels following the clearing of native vegetation in the last 100 years. Hence the adequacy of measured and modeled estimates of recharge is under close scrutiny. Results will be presented for the water balance of an intensively monitored 8 year sequence of crops and pastures. Measurements included meteorological inputs, evapotranspiration measured with a pair of weighing lysimeters, and soil water content was measured with TDR and neutron moisture meter. Recharge was estimated from the percolate removed from the lysimeters as well as, when conditions were suitable, from soil water measurements and combined soil water and evapotranspiration measurements. This data was simulated using a comprehensive soil-plant-atmosphere model (APSIM). Comparison with field measurements shows that the recharge can be simulated with an accuracy similar to that with which it can be measured. However, is either sufficiently accurate for the applications for which they are required?

  10. Effect of temporal averaging of meteorological data on predictions of groundwater recharge

    Directory of Open Access Journals (Sweden)

    Batalha Marcia S.

    2018-06-01

    Full Text Available Accurate estimates of infiltration and groundwater recharge are critical for many hydrologic, agricultural and environmental applications. Anticipated climate change in many regions of the world, especially in tropical areas, is expected to increase the frequency of high-intensity, short-duration precipitation events, which in turn will affect the groundwater recharge rate. Estimates of recharge are often obtained using monthly or even annually averaged meteorological time series data. In this study we employed the HYDRUS-1D software package to assess the sensitivity of groundwater recharge calculations to using meteorological time series of different temporal resolutions (i.e., hourly, daily, weekly, monthly and yearly averaged precipitation and potential evaporation rates. Calculations were applied to three sites in Brazil having different climatological conditions: a tropical savanna (the Cerrado, a humid subtropical area (the temperate southern part of Brazil, and a very wet tropical area (Amazonia. To simplify our current analysis, we did not consider any land use effects by ignoring root water uptake. Temporal averaging of meteorological data was found to lead to significant bias in predictions of groundwater recharge, with much greater estimated recharge rates in case of very uneven temporal rainfall distributions during the year involving distinct wet and dry seasons. For example, at the Cerrado site, using daily averaged data produced recharge rates of up to 9 times greater than using yearly averaged data. In all cases, an increase in the time of averaging of meteorological data led to lower estimates of groundwater recharge, especially at sites having coarse-textured soils. Our results show that temporal averaging limits the ability of simulations to predict deep penetration of moisture in response to precipitation, so that water remains in the upper part of the vadose zone subject to upward flow and evaporation.

  11. Tracers Reveal Recharge Elevations, Groundwater Flow Paths and Travel Times on Mount Shasta, California

    Directory of Open Access Journals (Sweden)

    Elizabeth Peters

    2018-01-01

    Full Text Available Mount Shasta (4322 m is famous for its spring water. Water for municipal, domestic and industrial use is obtained from local springs and wells, fed by annual snow melt and sustained perennially by the groundwater flow system. We examined geochemical and isotopic tracers in samples from wells and springs on Mount Shasta, at the headwaters of the Sacramento River, in order to better understand the hydrologic system. The topographic relief in the study area imparts robust signatures of recharge elevation to both stable isotopes of the water molecule (δ18O and δD and to dissolved noble gases, offering tools to identify recharge areas and delineate groundwater flow paths. Recharge elevations determined using stable isotopes and noble gas recharge temperatures are in close agreement and indicate that most snowmelt infiltrates at elevations between 2000 m and 2900 m, which coincides with areas of thin soils and barren land cover. Large springs in Mt Shasta City discharge at an elevation more than 1600 m lower. High elevation springs (>2000 m yield very young water (<2 years while lower elevation wells (1000–1500 m produce water with a residence time ranging from 6 years to over 60 years, based on observed tritium activities. Upslope movement of the tree line in the identified recharge elevation range due to a warming climate is likely to decrease infiltration and recharge, which will decrease spring discharge and production at wells, albeit with a time lag dependent upon the length of groundwater flow paths.

  12. Groundwater recharge in irrigated semi-arid areas: quantitative hydrological modelling and sensitivity analysis

    Science.gov (United States)

    Jiménez-Martínez, Joaquín; Candela, Lucila; Molinero, Jorge; Tamoh, Karim

    2010-12-01

    For semi-arid regions, methods of assessing aquifer recharge usually consider the potential evapotranspiration. Actual evapotranspiration rates can be below potential rates for long periods of time, even in irrigated systems. Accurate estimations of aquifer recharge in semi-arid areas under irrigated agriculture are essential for sustainable water-resources management. A method to estimate aquifer recharge from irrigated farmland has been tested. The water-balance-modelling approach was based on VisualBALAN v. 2.0, a computer code that simulates water balance in the soil, vadose zone and aquifer. The study was carried out in the Campo de Cartagena (SE Spain) in the period 1999-2008 for three different groups of crops: annual row crops (lettuce and melon), perennial vegetables (artichoke) and fruit trees (citrus). Computed mean-annual-recharge values (from irrigation+precipitation) during the study period were 397 mm for annual row crops, 201 mm for perennial vegetables and 194 mm for fruit trees: 31.4, 20.7 and 20.5% of the total applied water, respectively. The effects of rainfall events on the final recharge were clearly observed, due to the continuously high water content in soil which facilitated the infiltration process. A sensitivity analysis to assess the reliability and uncertainty of recharge estimations was carried out.

  13. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.

    Science.gov (United States)

    Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek; Nakai, Izumi; Komaba, Shinichi

    2011-03-30

    Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface.

  14. Radioecological aspects in artificial groundwater recharge

    Energy Technology Data Exchange (ETDEWEB)

    Matthess, G [Kiel Univ. (Germany, F.R.). Geologisch-Palaeontologisches Inst. und Museum; Neumayr, V [Institut fuer Wasser-, Boden- und Lufthygiene, Frankfurt am Main (Germany, F.R.)

    1980-01-01

    In increasing extent surface waters, especially those of rivers and streams, are contaminated by radionuclides. Therefore it is necessary to investigate the possibility of impairment of the quality of artificially recharged groundwater and drinking water by radionuclides. Hazards for man are possible by drinking water, that was affected by waste and during exposition to air, as well as indirectly by irrigation water and the food chain. In a model calculation using realistic conditions the order of magnitude of these hazards for man by incorporation of radioactively contaminated artificially recharged drinking water are to be assessed. Here the parameters are discussed which must be considered in such an assessment. The model includes the use of river water for artificial recharge. All models and assessments assume the most unfavourable preconditions, which may lead to an impact to man.

  15. Using groundwater levels to estimate recharge

    Science.gov (United States)

    Healy, R.W.; Cook, P.G.

    2002-01-01

    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  16. Beyond the Categories.

    Science.gov (United States)

    Weeks, Jeffrey

    2015-07-01

    Shushu is a Turkish Cypriot drag performance artist and the article begins with a discussion of a short film about him by a Greek Cypriot playwright, film maker, and gay activist. The film is interesting in its own right as a documentary about a complex personality, but it is also relevant to wider discussion of sexual and gender identity and categorization in a country divided by history, religion, politics, and military occupation. Shushu rejects easy identification as gay or transgender, or anything else. He is his own self. But refusing a recognized and recognizable identity brings problems, and I detected a pervasive mood of melancholy in his portrayal. The article builds from this starting point to explore the problematic nature of identities and categorizations in the contemporary world. The analysis opens with the power of words and language in defining and classifying sexuality. The early sexologists set in motion a whole catalogue of categories which continue to shape sexual thinking, believing that they were providing a scientific basis for a more humane treatment of sexual variations. This logic continues in DSM-5. The historical effect, however, has been more complex. Categorizations have often fixed individuals into a narrow band of definitions and identities that marginalize and pathologize. The emergence of radical sexual-social movements from the late 1960s offered new forms of grassroots knowledge in opposition to the sexological tradition, but at first these movements worked to affirm rather than challenge the significance of identity categories. Increasingly, however, identities have been problematized and challenged for limiting sexual and gender possibilities, leading to the apparently paradoxical situation where sexual identities are seen as both necessary and impossible. There are emotional costs both in affirming a fixed identity and in rejecting one. Shushu is caught in this dilemma, leading to the pervasive sense of loss that shapes the

  17. Impacts of vegetation change on groundwater recharge

    Science.gov (United States)

    Bond, W. J.; Verburg, K.; Smith, C. J.

    2003-12-01

    Vegetation change is the accepted cause of increasing river salt concentrations and the salinisation of millions of hectares of farm land in Australia. Replacement of perennial native vegetation by annual crops and pastures following European settlement has altered the water balance causing increased groundwater recharge and mobilising the naturally saline groundwater. The Redesigning Agriculture for Australian Landscapes Program, of which the work described here is a part, was established to develop agricultural practices that are more attuned to the delicate water balance described above. Results of field measurements will be presented that contrast the water balance characteristics of native vegetation with those of conventional agricultural plants, and indicate the functional characteristics required of new agricultural practices to reduce recharge. New agricultural practices may comprise different management of current crops and pastures, or may involve introducing totally new species. In either case, long-term testing is required to examine their impact on recharge over a long enough climate record to encompass the natural variability of rainfall that is characteristic of most Australian farming regions. Field experimentation therefore needs to be complemented and extended by computer simulation. This requires a modelling approach that is more robust than conventional crop modelling because (a) it needs to be sensitive enough to predict small changes in the residual recharge term, (b) it needs to be able to simulate a variety of vegetation in different sequences, (c) it needs to be able to simulate continuously for several decades of input data, and (d) it therefore needs to be able to simulate the period between crops, which often has a critical impact on recharge. The APSIM simulation framework will be used to illustrate these issues and to explore the effect of different vegetation combinations on recharge.

  18. Rechargeable batteries materials, technologies and new trends

    CERN Document Server

    Zhang, Zhengcheng

    2015-01-01

    This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write

  19. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site

  20. Language categories in Russian morphology

    OpenAIRE

    زهرایی زهرایی

    2009-01-01

    When studying Russian morphology, one can distinguish two categories. These categories are “grammatical” and “lexico-grammatical”. Grammatical categories can be specified through a series of grammatical features of words. Considering different criteria, Russian grammarians and linguists divide grammatical categories of their language into different types. In determining lexico-grammatical types, in addition to a series of grammatical features, they also consider a series of lexico-semantic fe...

  1. Apparatus for reading and recharging condenser ionization chambers

    International Nuclear Information System (INIS)

    McCall, R.C.

    1977-01-01

    A metering circuit for a condenser ionization chamber is disclosed for simultaneously recharging the ionization chamber and reading out the amount of charge required to recharge the chamber. During the recharging process, the amount of charge necessary to recharge the ionization chamber capacitor is placed on an integrating capacitor in the metering apparatus. The resultant voltage across the integrating capacitor is a measure of the radiation to which the ionization chamber was exposed. 9 claims, 1 figure

  2. Alloys of clathrate allotropes for rechargeable batteries

    Science.gov (United States)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  3. Modelling of rechargeable NiMH batteries

    NARCIS (Netherlands)

    Ledovskikh, A.; Verbitskiy, E.; Ayeb, A.; Notten, P.H.L.

    2003-01-01

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical–chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation.

  4. The rechargeable aluminum-ion battery

    KAUST Repository

    Jayaprakash, N.; Das, S. K.; Archer, L. A.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl3 in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V2O5 nano-wire cathode against an aluminium metal anode. The battery delivered a

  5. Groundwater Recharge, Evapotranspiration and Surface Runoff ...

    African Journals Online (AJOL)

    Bheema

    Using WetSpass Modeling Method in Illala Catchment, Northern Ethiopia ... Recharge is estimated by chloride ion mass balance method, empirical method, ..... environmental conditions of the catchment by applying some soil and water ... meteorological data in Ethiopia: Journal of engineers and architects, Addis Ababa,.

  6. Borehole environmental tracers for evaluating net infiltration and recharge through desert bedrock

    Science.gov (United States)

    Heilweil, V.M.; Solomon, D.K.; Gardner, P.M.

    2006-01-01

    Permeable bedrock aquifers in arid regions are being increasingly developed as water supplies, yet little is generally known about recharge processes and spatial and temporal variability. Environmental tracers from boreholes were used in this study to investigate net infiltration and recharge to the fractured Navajo Sandstone aquifer. Vadose zone tracer profiles at the Sand Hollow study site in southwestern Utah look similar to those of desert soils at other sites, indicating the predominance of matrix flow. However, recharge rates are generally higher in the Navajo Sandstone than in unconsolidated soils in similar climates because the sandstone matrix allows water movement but not root penetration. Water enters the vadose zone either as direct infiltration of precipitation through exposed sandstone and sandy soils or as focused infiltration of runoff. Net infiltration and recharge exhibit extreme spatial variability. High-recharge borehole sites generally have large amounts of vadose zone tritium, low chloride concentrations, and small vadose zone oxygen-18 evaporative shifts. Annual net-infiltration and recharge rates at different locations range from about 1 to 60 mm as determined using vadose zone tritium, 0 to 15 mm using vadose zone chloride, and 3 to 60 mm using groundwater chloride. Environmental tracers indicate a cyclical net-infiltration and recharge pattern, with higher rates earlier in the Holocene and lower rates during the late Holocene, and a return to higher rates during recent decades associated with anomalously high precipitation during the latter part of the 20th century. The slightly enriched stable isotopic composition of modern groundwater indicates this recent increase in precipitation may be caused by a stronger summer monsoon or winter southern Pacific El Nin??o storm track. ?? Soil Science Society of America.

  7. Natural vs. artificial groundwater recharge, quantification through inverse modeling

    Directory of Open Access Journals (Sweden)

    H. Hashemi

    2013-02-01

    Full Text Available Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady- and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events, the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system, the recharge volume can be increased even for small flood events, while the recharge through the river channel increases only for major flood events.

  8. Induced recharge of an artesian glacial-drift aquifer at Kalamazoo, Michigan

    Science.gov (United States)

    Reed, J.E.; Deutsch, Morris; Wiitala, S.W.

    1966-01-01

    increased to about 600 gpm. The principal effect of induced recharge on the two aquifers was to reduce the amount and rate of drawdown. Therefore, where water levels and artesian pressures can be maintained at high stages, the result is lower pumping costs and increased rates of withdrawal during periods of peak demand.

  9. Arsenic release during managed aquifer recharge (MAR)

    Science.gov (United States)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  10. Monitoring and modeling infiltration-recharge dynamics of managed aquifer recharge with desalinated seawater

    OpenAIRE

    Ganot, Yonatan; Holtzman, Ran; Weisbrod, Noam; Nitzan, Ido; Katz, Yoram; Kurtzman, Daniel

    2016-01-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors and observation...

  11. Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater

    OpenAIRE

    Ganot, Y.; Ganot, Y.; Holtzman, R.; Weisbrod, N.; Nitzan, I.; Katz, Y.; Kurtzman, D.

    2017-01-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil senso...

  12. An approach to identify urban groundwater recharge

    Directory of Open Access Journals (Sweden)

    E. Vázquez-Suñé

    2010-10-01

    Full Text Available Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, .... The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i Identification of potential recharge sources, (ii Selection of tracers, (iii Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%, the sewage network losses (30%, rainfall, concentrated in the non-urbanized areas (17%, from runoff infiltration (20%, and the Besòs River (11%. Regarding species, halogens (chloride, fluoride and bromide, sulfate, total nitrogen, and stable isotopes (18O, 2H, and 34S behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.

  13. Movement of water infiltrated from a recharge basin to wells.

    Science.gov (United States)

    O'Leary, David R; Izbicki, John A; Moran, Jean E; Meeth, Tanya; Nakagawa, Brandon; Metzger, Loren; Bonds, Chris; Singleton, Michael J

    2012-01-01

    Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 µg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers. Ground Water © 2011, National Ground Water Association. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  14. Ground-water recharge in the arid and semiarid southwestern United States

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Niño and Pacific Decadal Oscillations strongly, but irregularly, control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of naturally occurring multidecadal droughts unlike any in the modern instrumental record. Any anthropogenically induced climate change will likely reduce ground-water recharge through diminished snowpack at higher elevations. Future changes in El Niño and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Current land-use modifications influence ground-water recharge through vegetation, irrigation, and impermeable area. High mountain ranges bounding the study area—the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east—provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive Paleozoic aquifers in mountainous recharge

  15. Ground-water recharge from small intermittent streams in the western Mojave Desert, California: Chapter G in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    Science.gov (United States)

    Izbicki, John A.; Johnson, Russell U.; Kulongoski, Justin T.; Predmore, Steven; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Population growth has impacted ground-water resources in the western Mojave Desert, where declining water levels suggest that recharge rates have not kept pace with withdrawals. Recharge from the Mojave River, the largest hydrographic feature in the study area, is relatively well characterized. In contrast, recharge from numerous smaller streams that convey runoff from the bounding mountains is poorly characterized. The current study examined four representative streams to assess recharge from these intermittent sources. Hydraulic, thermal, geomorphic, chemical, and isotopic data were used to study recharge processes, from streamflow generation and infiltration to percolation through the unsaturated zone. Ground-water movement away from recharge areas was also assessed.Infiltration in amounts sufficient to have a measurable effect on subsurface temperature profiles did not occur in every year in instrumented study reaches. In addition to streamflow availability, results showed the importance of sediment texture in controlling infiltration and eventual recharge. Infiltration amounts of about 0.7 meters per year were an approximate threshold for the occurrence of ground-water recharge. Estimated travel times through the thick unsaturated zones underlying channels reached several hundred years. Recharging fluxes were influenced by stratigraphic complexity and depositional dynamics. Because of channel meandering, not all water that penetrates beneath the root zone can be assumed to become recharge on active alluvial fans.Away from study washes, elevated chloride concentrations and highly negative water potentials beneath the root zone indicated negligible recharge from direct infiltration of precipitation under current climatic conditions. In upstream portions of washes, generally low subsurface chloride concentrations and near-zero water potentials indicated downward movement of water toward the water table, driven primarily by gravity. Recharging conditions did not

  16. Groundwater Recharge Process in the Morondava Sedimentary Basin, Southwestern Madagascar

    International Nuclear Information System (INIS)

    Mamifarananahary, E.; Rajaobelison, J.; Ramaroson, V.; Rahobisoa, J.J.

    2007-01-01

    The groundwater recharge process in the Morondava Sedimentary basin was determined using chemical and isotopic tools. The results showed that the main recharge into shallow aquifer is from infiltration of evaporated water. Into deeper aquifer, it is done either from direct infiltration of rainfall from recharge areas on the top of the hill in the East towards the low-lying discharge areas in the West, or from vertical infiltration of evaporated shallow groundwater. The tritium contents suggest that recharge from shallow aquifers is from recent rainfall with short residence time while recharge into deeper aquifers is from older rainfall with longer residence time.

  17. Characterizing Heterogeneity in Infiltration Rates During Managed Aquifer Recharge.

    Science.gov (United States)

    Mawer, Chloe; Parsekian, Andrew; Pidlisecky, Adam; Knight, Rosemary

    2016-11-01

    Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO-DTS) observations and the phase shift of the diurnal temperature signal between two vertically co-located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO-DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO-DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high-spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R 2  = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates. © 2016, National Ground Water Association.

  18. Low-grade squamous intraepithelial lesion, cannot exclude high-grade squamous intraepithelial lesion: a category with an increased outcome of high-grade lesions: use as a quality assurance measure.

    Science.gov (United States)

    Nishino, Ha T; Wilbur, David C; Tambouret, Rosemary H

    2012-08-01

    "Low-grade squamous intraepithelial lesion (LSIL), cannot exclude high-grade squamous intraepithelial lesion" (LSIL-H) is an increasingly used, equivocal interpretive category in gynecologic cytology. In an effort to evaluate its potential usefulness as a measure of quality assurance, we studied patterns of use of the LSIL-H diagnosis compared with "LSIL" and "high-grade squamous intraepithelial lesion" (HSIL) with corresponding histologic outcomes for 10 cytopathologists in our practice. In our laboratory, while the overall rate of associated cervical intraepithelial neoplasia 2 or greater on histologic follow-up for LSIL-H was intermediate between that of LSIL and HSIL, the outcomes for individual cytopathologists varied widely. Monitoring this particular utilization-outcome data with periodic confidential feedback to individual cytopathologists offers an opportunity for practice improvement within a laboratory and serves as an additional measure of quality assurance. These data may be useful for establishing and/or realigning the diagnostic criteria for this equivocal cytologic interpretation endorsed by a pathology practice.

  19. Geochemical Processes During Managed Aquifer Recharge With Desalinated Seawater

    Science.gov (United States)

    Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.

    2018-02-01

    We study geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW). The DSW, post-treated at the desalination plant by calcite dissolution (remineralization) to meet the Israeli water quality standards, is recharged into the Israeli Coastal Aquifer through an infiltration pond. Water quality monitoring during two MAR events using suction cups and wells inside the pond indicates that cation exchange is the dominant subsurface reaction, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the shallow groundwater composition is similar to the recharged DSW, except for enrichment of Mg2+, Na+, Ca2+, and HCO3-. A calibrated variably-saturated reactive transport model is used to predict the geochemical evolution during 50 years of MAR for two water quality scenarios: (i) post-treated DSW (current practice) and (ii) soft DSW (lacking the remineralization post-treatment process). The latter scenario was aimed to test soil-aquifer-treatment (SAT) as an alternative post-treatment technique. Both scenarios provide an enrichment of ˜2.5 mg L-1 in Mg2+ due to cation exchange, compared to practically zero Mg2+ currently found in the Israeli DSW. Simulations of the alternative SAT scenario provide Ca2+ and HCO3- remineralization due to calcite dissolution at levels that meet the Israeli standard for DSW. The simulated calcite content reduction in the sediments below the infiltration pond after 50 years of MAR was low (<1%). Our findings suggest that remineralization using SAT for DSW is a potentially sustainable practice at MAR sites overlying calcareous sandy aquifers.

  20. Groundwater recharge in the Kolokani-Nara region in Mali

    International Nuclear Information System (INIS)

    Dincer, T.; Dray, M.; Zuppi, G.M.; Guerre, A.; Tazioli, G.S.; Traore, S.

    1984-01-01

    The area studied is part of the Nara, Kolokani, Banamba and Koulikoro regions and lies between the Mauritanian frontier and Bamako. It is a Sahel zone devoid of active surface hydrography, the annual rainfall varying between 1000 mm in the south and 400 mm in the north. The altitude decreases from 600 m to 250 m from the Mandingues Plateaux to the Nara plain. The Nara area consists of a basin filled with Cambrian schists containing seams of dolomitic limestones and sandstones cemented by limestone. The thickness of the series is thought to be about 300-500 m. The area of the Mandingues Plateaux is composed of Lower Cambrian sandstone-schist formations with a thickness of several hundred metres, covered with a crust of weathering. The two formations have aquifers of the same type - they are discontinuous with predominantly fissure-type permeability. The permeable zones in the Cambrian schist aquifers are more discontinuous than those in the Cambrian sandstones and are less developed in depth. The recharge conditions, on the other hand, are quite good on account of the sand cover which allows rapid infiltration of rain water. The Lower Cambrian aquifer is highly heterogeneous but much less discontinuous. The transfer of groundwater takes place at the level of small local sub-basins over short distances. The hydrogeological and hydrogeochemical data point to the existence of recent recharge and mixing with older water. The groundwater renewal rate indicates, in many cases, limited water reserves. Infiltration is associated, in some cases, with storms of greater intensity and, in other cases, also with small sudden showers. Under natural conditions, the infiltrated water is generally used up by evapotranspiration. Under conditions of exploitation, a fraction of this recharge is recovered either almost directly or indirectly by replacement of the water taken from the fissured zones of the substratum. (author)

  1. Managed Aquifer Recharge (MAR in Sustainable Urban Water Management

    Directory of Open Access Journals (Sweden)

    Declan Page

    2018-02-01

    Full Text Available To meet increasing urban water requirements in a sustainable way, there is a need to diversify future sources of supply and storage. However, to date, there has been a lag in the uptake of managed aquifer recharge (MAR for diversifying water sources in urban areas. This study draws on examples of the use of MAR as an approach to support sustainable urban water management. Recharged water may be sourced from a variety of sources and in urban centers, MAR provides a means to recycle underutilized urban storm water and treated wastewater to maximize their water resource potential and to minimize any detrimental effects associated with their disposal. The number, diversity and scale of urban MAR projects is growing internationally due to water shortages, fewer available dam sites, high evaporative losses from surface storages, and lower costs compared with alternatives where the conditions are favorable, including water treatment. Water quality improvements during aquifer storage are increasingly being documented at demonstration sites and more recently, full-scale operational urban schemes. This growing body of knowledge allows more confidence in understanding the potential role of aquifers in water treatment for regulators. In urban areas, confined aquifers provide better protection for waters recharged via wells to supplement potable water supplies. However, unconfined aquifers may generally be used for nonpotable purposes to substitute for municipal water supplies and, in some cases, provide adequate protection for recovery as potable water. The barriers to MAR adoption as part of sustainable urban water management include lack of awareness of recent developments and a lack of transparency in costs, but most importantly the often fragmented nature of urban water resources and environmental management.

  2. The rechargeable aluminum-ion battery

    KAUST Repository

    Jayaprakash, N.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl3 in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V2O5 nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g-1 in the first cycle and 273 mAh g-1 after 20 cycles, with very stable electrochemical behaviour. © The Royal Society of Chemistry 2011.

  3. Quantifying Potential Groundwater Recharge In South Texas

    Science.gov (United States)

    Basant, S.; Zhou, Y.; Leite, P. A.; Wilcox, B. P.

    2015-12-01

    Groundwater in South Texas is heavily relied on for human consumption and irrigation for food crops. Like most of the south west US, woody encroachment has altered the grassland ecosystems here too. While brush removal has been widely implemented in Texas with the objective of increasing groundwater recharge, the linkage between vegetation and groundwater recharge in South Texas is still unclear. Studies have been conducted to understand plant-root-water dynamics at the scale of plants. However, little work has been done to quantify the changes in soil water and deep percolation at the landscape scale. Modeling water flow through soil profiles can provide an estimate of the total water flowing into deep percolation. These models are especially powerful with parameterized and calibrated with long term soil water data. In this study we parameterize the HYDRUS soil water model using long term soil water data collected in Jim Wells County in South Texas. Soil water was measured at every 20 cm intervals up to a depth of 200 cm. The parameterized model will be used to simulate soil water dynamics under a variety of precipitation regimes ranging from well above normal to severe drought conditions. The results from the model will be compared with the changes in soil moisture profile observed in response to vegetation cover and treatments from a study in a similar. Comparative studies like this can be used to build new and strengthen existing hypotheses regarding deep percolation and the role of soil texture and vegetation in groundwater recharge.

  4. Identifying demand effects in a large network of product categories

    NARCIS (Netherlands)

    Gelper, S.E.C.; Wilms, I.; Croux, C.

    2016-01-01

    Planning marketing mix strategies requires retailers to understand within- as well as cross-category demand effects. Most retailers carry products in a large variety of categories, leading to a high number of such demand effects to be estimated. At the same time, we do not expect cross-category

  5. Subject categories and scope descriptions

    International Nuclear Information System (INIS)

    2002-01-01

    This document is one in a series of publications known as the ETDE/INIS Joint Reference Series. It defines the subject categories and provides the scope descriptions to be used for categorization of the nuclear literature for the preparation of INIS and ETDE input by national and regional centres. Together with the other volumes of the INIS Reference Series it defines the rules, standards and practices and provides the authorities to be used in the International Nuclear Information System and ETDE. A complete list of the volumes published in the INIS Reference Series may be found on the inside front cover of this publication. This INIS/ETDE Reference Series document is intended to serve two purposes: to define the subject scope of the International Nuclear Information System (INIS) and the Energy Technology Data Exchange (ETDE) and to define the subject classification scheme of INIS and ETDE. It is thus the guide to the inputting centres in determining which items of literature should be reported, and in determining where the full bibliographic entry and abstract of each item should be included in INIS or ETDE database. Each category is identified by a category code consisting of three alphanumeric characters. A scope description is given for each subject category. The scope of INIS is the sum of the scopes of all the categories. With most categories cross references are provided to other categories where appropriate. Cross references should be of assistance in finding the appropriate category; in fact, by indicating topics that are excluded from the category in question, the cross references help to clarify and define the scope of the category to which they are appended. A Subject Index is included as an aid to subject classifiers, but it is only an aid and not a means for subject classification. It facilitates the use of this document, but is no substitute for the description of the scope of the subject categories

  6. Reaction chemistry in rechargeable Li-O2 batteries.

    Science.gov (United States)

    Lim, Hee-Dae; Lee, Byungju; Bae, Youngjoon; Park, Hyeokjun; Ko, Youngmin; Kim, Haegyeom; Kim, Jinsoo; Kang, Kisuk

    2017-05-22

    The seemingly simple reaction of Li-O 2 batteries involving lithium and oxygen makes this chemistry attractive for high-energy-density storage systems; however, achieving this reaction in practical rechargeable Li-O 2 batteries has proven difficult. The reaction paths leading to the final Li 2 O 2 discharge products can be greatly affected by the operating conditions or environment, which often results in major side reactions. Recent research findings have begun to reveal how the reaction paths may be affected by the surrounding conditions and to uncover the factors contributing to the difficulty in achieving the reactions of lithium and oxygen. This progress report describes the current state of understanding of the electrode reaction mechanisms in Li-O 2 batteries; the factors that affect reaction pathways; and the effect of cell components such as solvents, salts, additives, and catalysts on the discharge product and its decomposition during charging. This comprehensive review of the recent progress in understanding the reaction chemistry of the Li-O 2 system will serve as guidelines for future research and aid in the development of reliable high-energy-density rechargeable Li-O 2 batteries.

  7. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques

    Directory of Open Access Journals (Sweden)

    I.P. Senanayake

    2016-01-01

    Full Text Available The demand for fresh water in Hambantota District, Sri Lanka is rapidly increasing with the enormous amount of ongoing development projects in the region. Nevertheless, the district experiences periodic water stress conditions due to seasonal precipitation patterns and scarcity of surface water resources. Therefore, management of available groundwater resources is critical, to fulfil potable water requirements in the area. However, exploitation of groundwater should be carried out together with artificial recharging in order to maintain the long term sustainability of water resources. In this study, a GIS approach was used to delineate potential artificial recharge sites in Ambalantota area within Hambantota. Influential thematic layers such as rainfall, lineament, slope, drainage, land use/land cover, lithology, geomorphology and soil characteristics were integrated by using a weighted linear combination method. Results of the study reveal high to moderate groundwater recharge potential in approximately 49% of Ambalantota area.

  8. Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity

    Science.gov (United States)

    Narulita, Ida; Ningrum, Widya

    2018-02-01

    Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

  9. A novel parameter for evaluation on power performance of Ni-MH rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lian-Xing; Tang, Xin-Cun [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Luo, Zhuo; Song, Xia-Wei; Liu, Hong-Tao [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2010-04-15

    In the work, two novel conceptions of ''capacity quality'' (CQ) and ''capacity quality coefficient'' ({lambda}) were defined to evaluate cycling power capabilities of Ni-MH rechargeable batteries when considering the effect of the kinetic limitation. For convenient comparison, the capacity quality coefficient ({lambda}) and the efficiency of charge/discharge ({eta}) were in parallel applied to characterize cycling capabilities based on the data from BYD H-3/4AAA800 Ni-MH batteries at 1C-3.5C. The results show that there is an obvious difference between {lambda} and {eta} which served as evaluation indexes for rechargeable batteries, and that the secondary battery with good capacity quality also has a good cycling capability and rate capability, especially at high rate. The introduced capacity quality not only subtly covered kinetic information of the rechargeable batteries but also factually reflected stability of the electrode materials. (author)

  10. How categories come to matter

    DEFF Research Database (Denmark)

    Leahu, Lucian; Cohn, Marisa; March, Wendy

    2013-01-01

    In a study of users' interactions with Siri, the iPhone personal assistant application, we noticed the emergence of overlaps and blurrings between explanatory categories such as "human" and "machine". We found that users work to purify these categories, thus resolving the tensions related to the ...... initial data analysis, due to our own forms of latent purification, and outline the particular analytic techniques that helped lead to this discovery. We thus provide an illustrative case of how categories come to matter in HCI research and design.......In a study of users' interactions with Siri, the iPhone personal assistant application, we noticed the emergence of overlaps and blurrings between explanatory categories such as "human" and "machine". We found that users work to purify these categories, thus resolving the tensions related...

  11. The composition of category conjunctions.

    Science.gov (United States)

    Hutter, Russell R C; Crisp, Richard J

    2005-05-01

    In three experiments, the authors investigated the impression formation process resulting from the perception of familiar or unfamiliar social category combinations. In Experiment 1, participants were asked to generate attributes associated with either a familiar or unfamiliar social category conjunction. Compared to familiar combinations, the authors found that when the conjunction was unfamiliar, participants formed their impression less from the individual constituent categories and relatively more from novel emergent attributes. In Experiment 2, the authors replicated this effect using alternative experimental materials. In Experiment 3, the effect generalized to additional (orthogonally combined) gender and occupation categories. The implications of these findings for understanding the processes involved in the conjunction of social categories, and the formation of new stereotypes, are discussed.

  12. A new, high energy rechargeable lithium ion battery with a surface-treated Li1.2Mn0.54Ni0.13Co0.13O2 cathode and a nano-structured Li4Ti5O12 anode

    International Nuclear Information System (INIS)

    Liu, Xiaoyu; Huang, Tao; Yu, Aishui

    2015-01-01

    Through elaborate design, a new rechargeable lithium ion battery has been developed by comprising a surface-treated Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode and a nano-structured Li 4 Ti 5 O 12 anode. After precondition Na 2 S 2 O 8 treatment, the initial coulombic efficiency of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode has been significantly increased and can be compatible with that of the nano-structured Li 4 Ti 5 O 12 anode. The optimization of structure and morphology for both active electrode materials result in their remarkable electrochemical performances in respective lithium half-cells. Ultimately, the rechargeable lithium ion full battery consisting of both electrodes delivers a specific capacity of 99.0 mAh g −1 and a practical energy density of 201 Wh kg −1 , based on the total weight of both active electrode materials. Furthermore, as a promising candidate in the lithium ion battery field, this full battery also achieves highly attractive electrochemical performance with high coulombic efficiency, excellent cycling stability and outstanding rate capability. Thus the proposed battery displays broad practical application prospects for next generation of high-energy lithium ion battery. - Highlights: • The Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode is surface-treated by Na 2 S 2 O 8 . • The nano-sized Li 4 Ti 5 O 12 anode is obtained by a solid-state method. • A new Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 /Li 4 Ti 5 O 12 lithium ion battery is developed. • The battery shows high coulombic efficiency, specific capacity and energy density. • The battery shows high capacity retention rate and good high-rate capability

  13. Feasibility of groundwater recharge dam projects in arid environments

    Science.gov (United States)

    Jaafar, H. H.

    2014-05-01

    A new method for determining feasibility and prioritizing investments for agricultural and domestic recharge dams in arid regions is developed and presented. The method is based on identifying the factors affecting the decision making process and evaluating these factors, followed by determining the indices in a GIS-aided environment. Evaluated parameters include results from field surveys and site visits, land cover and soils data, precipitation data, runoff data and modeling, number of beneficiaries, domestic irrigation demand, reservoir objectives, demography, reservoirs yield and reliability, dam structures, construction costs, and operation and maintenance costs. Results of a case study on more than eighty proposed dams indicate that assessment of reliability, annualized cost/demand satisfied and yield is crucial prior to investment decision making in arid areas. Irrigation demand is the major influencing parameter on yield and reliability of recharge dams, even when only 3 months of the demand were included. Reliability of the proposed reservoirs as related to their standardized size and net inflow was found to increase with increasing yield. High priority dams were less than 4% of the total, and less priority dams amounted to 23%, with the remaining found to be not feasible. The results of this methodology and its application has proved effective in guiding stakeholders for defining most favorable sites for preliminary and detailed design studies and commissioning.

  14. Linking denitrification and infiltration rates during managed groundwater recharge.

    Science.gov (United States)

    Schmidt, Calla M; Fisher, Andrew T; Racz, Andrew J; Lockwood, Brian S; Huertos, Marc Los

    2011-11-15

    We quantify relations between rates of in situ denitrification and saturated infiltration through shallow, sandy soils during managed groundwater recharge. We used thermal methods to determine time series of point-specific flow rates, and chemical and isotopic methods to assess denitrification progress. Zero order denitrification rates between 3 and 300 μmol L(-1) d(-1) were measured during infiltration. Denitrification was not detected at times and locations where the infiltration rate exceeded a threshold of 0.7 ± 0.2 m d(-1). Pore water profiles of oxygen and nitrate concentration indicated a deepening of the redoxocline at high flow rates, which reduced the thickness of the zone favorable for denitrification. Denitrification rates were positively correlated with infiltration rates below the infiltration threshold, suggesting that for a given set of sediment characteristics, there is an optimal infiltration rate for achieving maximum nitrate load reduction and improvements to water supply during managed groundwater recharge. The extent to which results from this study may be extended to other managed and natural hydrologic settings remains to be determined, but the approach taken in this study should be broadly applicable, and provides a quantitative link between shallow hydrologic and biogeochemical processes.

  15. Interactions between deep bedrock aquifers and surface water in function of recharge and topography: a numerical study

    Science.gov (United States)

    Goderniaux, P.; Davy, P.; Le Borgne, T.; Bresciani, E.; Jimenez-Martinez, J.

    2011-12-01

    In crystalline rock regions, such as Brittany (France), important reserves of groundwater into deep fractured aquifers are increasingly used and provide high quality water compared to shallow aquifers which can be subject to agricultural contamination. However, recharge processes of these deep aquifers and interactions with surface water are not yet fully understood. In some areas, intensive pumping is carried out without guarantee of the resource quantity and quality. Understanding these processes is crucial for sustainable management of the resource. In this study, we study how deep groundwater fluxes, pathways, ages, and river-aquifer interactions vary according to recharge. We assume that water flowing from the ground surface is distributed between shallow more permeable layers and deep layers. This repartition mostly depends on recharge rates. With high recharge, groundwater levels are high and subsurface streamlines are relatively short between recharge areas and existing draining rivers, which constitutes a very dense network. Therefore, most of the groundwater fluxes occur through the more permeable shallow layers. With low recharge, groundwater levels are lower, and river and shallow permeable levels are partly disconnected from each other. This induces a general increase of the groundwater streamlines length from the recharge areas to more sporadic discharge areas, and more fluxes occur through the deep layers. Recharge conditions and river-aquifer interactions have changed over the last thousands of years, due to change in precipitation, temperatures, existence of permafrost, etc. They have strongly influenced deep groundwater fluxes and can explain current groundwater age and flux distribution. To study these interactions, a regional-scale finite difference flow model was implemented. The model covers an area of 1400 km 2 , a depth of 1 km, and the topography is characteristic of Brittany. As rivers are mainly fed by groundwater drainage, seepages faces

  16. A validation of the 3H/3He method for determining groundwater recharge

    Science.gov (United States)

    Solomon, D. K.; Schiff, S. L.; Poreda, R. J.; Clarke, W. B.

    1993-09-01

    Tritium and He isotopes have been measured at a site where groundwater flow is nearly vertical for a travel time of 100 years and where recharge rates are spatially variable. Because the mid-1960s 3H peak (arising from aboveground testing of thermonuclear devices) is well-defined, the vertical groundwater velocity is known with unusual accuracy at this site. Utilizing 3H and its stable daughter 3He to determine groundwater ages, we compute a recharge rate of 0.16 m/yr, which agrees to within about 5% of the value based on the depth of the 3H peak (measured both in 1986 and 1991) and two-dimensional modeling in an area of high recharge. Zero 3H/3He age occurs at a depth that is approximately equal to the average depth of the annual low water table, even though the capillary fringe extends to land surface during most of the year at the study site. In an area of low recharge (0.05 m/yr) where the 3H peak (and hence the vertical velocity) is also well-defined, the 3H/3He results could not be used to compute recharge because samples were not collected sufficiently far above the 3H peak; however, modeling indicates that the 3H/3He age gradient near the water table is an accurate measure of vertical velocities in the low-recharge area. Because 3H and 3He have different diffusion coefficients, and because the amount of mechanical mixing is different in the area of high recharge than in the low-recharge area, we have separated the dispersive effects of mechanical mixing from molecular diffusion. We estimate a longitudinal dispersivity of 0.07 m and effective diffusion coefficients for 3H (3HHO) and 3He of 2.4×10-5 and 1.3×10-4 m2/day, respectively. Although the 3H/3He age gradient is an excellent indicator of vertical groundwater velocities above the mid-1960s 3H peak, dispersive mixing and diffusive loss of 3He perturb the age gradient near and below the 3H peak.

  17. How do Category Managers Manage?

    DEFF Research Database (Denmark)

    Hald, Kim Sundtoft; Sigurbjornsson, Tomas

    2013-01-01

    The aim of this research is to explore the managerial role of category managers in purchasing. A network management perspective is adopted. A case based research methodology is applied, and three category managers managing a diverse set of component and service categories in a global production...... firm is observed while providing accounts of their progress and results in meetings. We conclude that the network management classification scheme originally deve loped by Harland and Knight (2001) and Knight and Harland (2005) is a valuable and fertile theoretical framework for the analysis...

  18. Climatic controls on diffuse groundwater recharge across Australia

    Directory of Open Access Journals (Sweden)

    O. V. Barron

    2012-12-01

    Full Text Available Reviews of field studies of groundwater recharge have attempted to investigate how climate characteristics control recharge, but due to a lack of data have not been able to draw any strong conclusions beyond that rainfall is the major determinant. This study has used numerical modelling for a range of Köppen-Geiger climate types (tropical, arid and temperate to investigate the effect of climate variables on recharge for different soil and vegetation types. For the majority of climate types, the correlation between the modelled recharge and total annual rainfall is weaker than the correlation between recharge and the annual rainfall parameters reflecting rainfall intensity. Under similar soil and vegetation conditions for the same annual rainfall, annual recharge in regions with winter-dominated rainfall is greater than in regions with summer-dominated rainfall. The importance of climate parameters other than rainfall in recharge estimation is highest in the tropical climate type. Mean annual values of solar radiation and vapour pressure deficit show a greater importance in recharge estimation than mean annual values of the daily mean temperature. Climate parameters have the lowest relative importance in recharge estimation in the arid climate type (with cold winters and the temperate climate type. For 75% of all soil, vegetation and climate types investigated, recharge elasticity varies between 2 and 4 indicating a 20% to 40% change in recharge for a 10% change in annual rainfall. Understanding how climate controls recharge under the observed historical climate allows more informed choices of analogue sites if they are to be used for climate change impact assessments.

  19. Startup Report for Ground Water Extraction, Treatment, and Recharge System

    National Research Council Canada - National Science Library

    Lamb, Steve

    1997-01-01

    The document presents startup procedures, observations and measurements conducted during the startup of the Groundwater Extraction, Treatment and Recharge System, built for the 162nd Fighter Wing, Air...

  20. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  1. Color categories and color appearance

    Science.gov (United States)

    Webster, Michael A.; Kay, Paul

    2011-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue–green boundary, to test whether chromatic differences across the boundary were perceptually exaggerated. This task did not require overt judgments of the perceived colors, and the tendency to group showed only a weak and inconsistent categorical bias. In a second case, we analyzed results from two prior studies of hue scaling of chromatic stimuli (De Valois, De Valois, Switkes, & Mahon, 1997; Malkoc, Kay, & Webster, 2005), to test whether color appearance changed more rapidly around the blue–green boundary. In this task observers directly judge the perceived color of the stimuli and these judgments tended to show much stronger categorical effects. The differences between these tasks could arise either because different signals mediate color grouping and color appearance, or because linguistic categories might differentially intrude on the response to color and/or on the perception of color. Our results suggest that the interaction between language and color processing may be highly dependent on the specific task and cognitive demands and strategies of the observer, and also highlight pronounced individual differences in the tendency to exhibit categorical responses. PMID:22176751

  2. Advanced Rechargeable Lithium Sulfur Dioxide Cell

    Science.gov (United States)

    1991-11-01

    AD-A274 908IIIIlIIIE McDonald , P. Harris, F. Goebel, S. Hossi ierra, M. Guentert, C. Todino 7 ad r nse TECHNICAL PRODUCTS INCY DTIC ELECTE JAN26 1994...Pawcatuck, CT 06379 94-02298 1425 Best Available Copy I ADVANCED RECHARGEABLE LITHIUM SULFUR DIOXIDE CELL I R.C. McDonald , P. Harris, F. Goebel, S. Hossain...20 minutes. The electrochemical measurements were carried out using a I Starbuck 20-station cycler system which is connected to a computer to monitor

  3. Evolution of strategies for modern rechargeable batteries.

    Science.gov (United States)

    Goodenough, John B

    2013-05-21

    This Account provides perspective on the evolution of the rechargeable battery and summarizes innovations in the development of these devices. Initially, I describe the components of a conventional rechargeable battery along with the engineering parameters that define the figures of merit for a single cell. In 1967, researchers discovered fast Na(+) conduction at 300 K in Na β,β''-alumina. Since then battery technology has evolved from a strongly acidic or alkaline aqueous electrolyte with protons as the working ion to an organic liquid-carbonate electrolyte with Li(+) as the working ion in a Li-ion battery. The invention of the sodium-sulfur and Zebra batteries stimulated consideration of framework structures as crystalline hosts for mobile guest alkali ions, and the jump in oil prices in the early 1970s prompted researchers to consider alternative room-temperature batteries with aprotic liquid electrolytes. With the existence of Li primary cells and ongoing research on the chemistry of reversible Li intercalation into layered chalcogenides, industry invested in the production of a Li/TiS2 rechargeable cell. However, on repeated recharge, dendrites grew across the electrolyte from the anode to the cathode, leading to dangerous short-circuits in the cell in the presence of the flammable organic liquid electrolyte. Because lowering the voltage of the anode would prevent cells with layered-chalcogenide cathodes from competing with cells that had an aqueous electrolyte, researchers quickly abandoned this effort. However, once it was realized that an oxide cathode could offer a larger voltage versus lithium, researchers considered the extraction of Li from the layered LiMO2 oxides with M = Co or Ni. These oxide cathodes were fabricated in a discharged state, and battery manufacturers could not conceive of assembling a cell with a discharged cathode. Meanwhile, exploration of Li intercalation into graphite showed that reversible Li insertion into carbon occurred

  4. Homological algebra in -abelian categories

    Indian Academy of Sciences (India)

    Deren Luo

    2017-08-16

    Aug 16, 2017 ... Homological algebra in n-abelian categories. 627. We recall the Comparison lemma, together with its dual, plays a central role in the sequel. Lemma 2.1 [13, Comparison lemma 2.1]. Let C be an additive category and X ∈ Ch. ≥0(C) a complex such that for all k ≥ 0the morphism dk+1. X is a weak cokernel ...

  5. When does fading enhance perceptual category learning?

    Science.gov (United States)

    Pashler, Harold; Mozer, Michael C

    2013-07-01

    Training that uses exaggerated versions of a stimulus discrimination (fading) has sometimes been found to enhance category learning, mostly in studies involving animals and impaired populations. However, little is known about whether and when fading facilitates learning for typical individuals. This issue was explored in 7 experiments. In Experiments 1 and 2, observers discriminated stimuli based on a single sensory continuum (time duration and line length, respectively). Adaptive fading dramatically improved performance in training (unsurprisingly) but did not enhance learning as assessed in a final test. The same was true for nonadaptive linear fading (Experiment 3). However, when variation in length (predicting category membership) was embedded among other (category-irrelevant) variation, fading dramatically enhanced not only performance in training but also learning as assessed in a final test (Experiments 4 and 5). Fading also helped learners to acquire a color saturation discrimination amid category-irrelevant variation in hue and brightness, although this learning proved transitory after feedback was withdrawn (Experiment 7). Theoretical implications are discussed, and we argue that fading should have practical utility in naturalistic category learning tasks, which involve extremely high dimensional stimuli and many irrelevant dimensions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  6. Data categories for marine planning

    Science.gov (United States)

    Lightsom, Frances L.; Cicchetti, Giancarlo; Wahle, Charles M.

    2015-01-01

    The U.S. National Ocean Policy calls for a science- and ecosystem-based approach to comprehensive planning and management of human activities and their impacts on America’s oceans. The Ocean Community in Data.gov is an outcome of 2010–2011 work by an interagency working group charged with designing a national information management system to support ocean planning. Within the working group, a smaller team developed a list of the data categories specifically relevant to marine planning. This set of categories is an important consensus statement of the breadth of information types required for ocean planning from a national, multidisciplinary perspective. Although the categories were described in a working document in 2011, they have not yet been fully implemented explicitly in online services or geospatial metadata, in part because authoritative definitions were not created formally. This document describes the purpose of the data categories, provides definitions, and identifies relations among the categories and between the categories and external standards. It is intended to be used by ocean data providers, managers, and users in order to provide a transparent and consistent framework for organizing and describing complex information about marine ecosystems and their connections to humans.

  7. Aquifer Recharge Estimation In Unsaturated Porous Rock Using Darcian And Geophysical Methods.

    Science.gov (United States)

    Nimmo, J. R.; De Carlo, L.; Masciale, R.; Turturro, A. C.; Perkins, K. S.; Caputo, M. C.

    2016-12-01

    Within the unsaturated zone a constant downward gravity-driven flux of water commonly exists at depths ranging from a few meters to tens of meters depending on climate, medium, and vegetation. In this case a steady-state application of Darcy's law can provide recharge rate estimates.We have applied an integrated approach that combines field geophysical measurements with laboratory hydraulic property measurements on core samples to produce accurate estimates of steady-state aquifer recharge, or, in cases where episodic recharge also occurs, the steady component of recharge. The method requires (1) measurement of the water content existing in the deep unsaturated zone at the location of a core sample retrieved for lab measurements, and (2) measurement of the core sample's unsaturated hydraulic conductivity over a range of water content that includes the value measured in situ. Both types of measurements must be done with high accuracy. Darcy's law applied with the measured unsaturated hydraulic conductivity and gravitational driving force provides recharge estimates.Aquifer recharge was estimated using Darcian and geophysical methods at a deep porous rock (calcarenite) experimental site in Canosa, southern Italy. Electrical Resistivity Tomography (ERT) and Vertical Electrical Sounding (VES) profiles were collected from the land surface to water table to provide data for Darcian recharge estimation. Volumetric water content was estimated from resistivity profiles using a laboratory-derived calibration function based on Archie's law for rock samples from the experimental site, where electrical conductivity of the rock was related to the porosity and water saturation. Multiple-depth core samples were evaluated using the Quasi-Steady Centrifuge (QSC) method to obtain hydraulic conductivity (K), matric potential (ψ), and water content (θ) estimates within this profile. Laboratory-determined unsaturated hydraulic conductivity ranged from 3.90 x 10-9 to 1.02 x 10-5 m

  8. On-Farm, Almond Orchard Flooding as a Viable Aquifer Recharge Alternative

    Science.gov (United States)

    Ulrich, C.; Nico, P. S.; Wu, Y.; Newman, G. A.; Conrad, M. E.; Dahlke, H. E.

    2017-12-01

    In 2014, California legislators passed the Sustainable Groundwater Management Act (SGMA), which requires groundwater sustainability agencies (areas) to identify/prioritize water basins, develop current and projected water use/needs, develop a groundwater management plan, develop fees, etc. One of the challenges for implementing SGMA is the lack of data that can support alternative groundwater recharge methods such as on-farm flooding. Prior to anthropogenic river control, river floodplains captured excess water during overbank flow in the rainy season in the CA central valley. Today levees and canals strategically route rainy season high flows to the delta/ocean when irrigation water is not needed. Utilizing farmland once again as infiltration basins for groundwater banking and aquifer recharge could be a viable answer to California's depleted central valley aquifers. Prior to 2017, U.C. Davis had partnered with the Almond Board of California (ABC) and local growers to study the efficacy of agricultural flooding and the effects on annual almond crops (. LBNL joined this team to help understand the conveyance of recharge water, using electrical resistivity tomography (ERT), into the subsurface (i.e. localized fast paths, depth of infiltration, etc.) during flooding events. The fate of the recharge water is what is significant to understanding the viability of on-farm flooding as an aquifer recharge option. In this study two orchards (in Delhi and Modesto, CA), each approximately 2 acres, were flooded during the almond tree dormant period (January), to recharge 2 acre/ft of water into the local aquifers. ERT was used to characterize (soil structure) and monitor water infiltration over a single flooding event to investigate the fate of applied water. Data were collected every hour prior to flooding (baseline), during, and after all flood water had infiltrated (about 5 days total). Our time-lapse ERT results show a heterogeneous soil structure that leads to non

  9. Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal

    Science.gov (United States)

    Prada, Susana; Cruz, J. Virgílio; Figueira, Celso

    2016-05-01

    The hydrogeology of volcanic islands remains poorly understood, despite the fact that populations that live on them rely on groundwater as a primary water source. This situation is exacerbated by their complex structure, geological heterogeneity, and sometimes active volcanic processes that hamper easy analysis of their hydrogeological dynamics. Stable isotope analysis is a powerful tool that has been used to assess groundwater dynamics in complex terrains. In this work, stable isotopes are used to better understand the hydrogeology of Madeira Island and provide a case-study that can serve as a basis for groundwater studies in other similar settings. The stable isotopic composition (δ18O and δ2H) of rain at the main recharge areas of the island is determined, as well as the sources and altitudes of recharge of several springs, groundwater in tunnels and wells. The water in tunnels was found to be recharged almost exclusively by rain in the deforested high plateaus, whilst several springs associated with shallow perched aquifers are recharged from rain and cloud water interception by the vegetated slopes. Nevertheless some springs thought to be sourced from deep perched aquifers, recharge in the central plateaus, and their isotopic composition is similar to the water in the tunnels. Recharge occurs primarily during autumn and winter, as evidenced by the springs and tunnels Water Lines (WL). The groundwater in wells appears to originate from runoff from rain that falls along the slopes that infiltrates near the streams' mouths, where the wells are located. This is evident by the evaporation line along which the wells plot. Irrigation water is also a possible source of recharge. The data is compatible with the hydrogeological conceptual model of Madeira. This work also shows the importance of cloud water interception as a net contributor to groundwater recharge, at least in the perched aquifers that feed numerous springs. As the amount of rainfall is expected to

  10. From Perceptual Categories to Concepts: What Develops?

    Science.gov (United States)

    Sloutsky, Vladimir M.

    2010-01-01

    People are remarkably smart: they use language, possess complex motor skills, make non-trivial inferences, develop and use scientific theories, make laws, and adapt to complex dynamic environments. Much of this knowledge requires concepts and this paper focuses on how people acquire concepts. It is argued that conceptual development progresses from simple perceptual grouping to highly abstract scientific concepts. This proposal of conceptual development has four parts. First, it is argued that categories in the world have different structure. Second, there might be different learning systems (sub-served by different brain mechanisms) that evolved to learn categories of differing structures. Third, these systems exhibit differential maturational course, which affects how categories of different structures are learned in the course of development. And finally, an interaction of these components may result in the developmental transition from perceptual groupings to more abstract concepts. This paper reviews a large body of empirical evidence supporting this proposal. PMID:21116483

  11. Artificial recharge of groundwater and its role in water management

    Science.gov (United States)

    Kimrey, J.O.

    1989-01-01

    This paper summarizes and discusses the various aspects and methods of artificial recharge with particular emphasis on its uses and potential role in water management in the Arabian Gulf region. Artificial recharge occurs when man's activities cause more water to enter an aquifer, either under pumping or non-pumping conditions, than otherwise would enter the aquifer. Use of artificial recharge can be a practical means of dealing with problems of overdraft of groundwater. Methods of artificial recharge may be grouped under two broad types: (a) water spreading techniques, and (b) well-injection techniques. Successful use of artificial recharge requires a thorough knowledge of the physical and chemical characteristics of the aquifier system, and extensive onsite experimentation and tailoring of the artificial-recharge technique to fit the local or areal conditions. In general, water spreading techniques are less expensive than well injection and large quantities of water can be handled. Water spreading can also result in significant improvement in quality of recharge waters during infiltration and movement through the unsaturated zone and the receiving aquifer. In comparison, well-injection techniques are often used for emplacement of fresh recharge water into saline aquifer zones to form a manageable lens of fresher water, which may later be partially withdrawn for use or continue to be maintained as a barrier against salt-water encroachment. A major advantage in use of groundwater is its availability, on demand to wells, from a natural storage reservoir that is relatively safe from pollution and from damage by sabotage or other hostile action. However, fresh groundwater occurs only in limited quantities in most of the Arabian Gulf region; also, it is heavily overdrafted in many areas, and receives very little natural recharge. Good use could be made of artificial recharge by well injection in replenishing and managing aquifers in strategic locations if sources of

  12. Estimation of potential rainfall recharge in the pothwar area

    International Nuclear Information System (INIS)

    Afzal, M.; Yaseen, M.

    2015-01-01

    Groundwater recharge is complex phenomenon to understand and describe because it cannot be seen with open eyes. We have to depend some theoretical assumptions to understand this complicated hidden natural underground water movement process. There are many factors affecting and controlling the water movement in soil profile. Groundwater use in district chakwal is of a fundamental importance to meet the rapidly expanding drinking and agricultural water requirements. The man factors contributing to groundwater recharge in chakwal are rainfall, evapotranspiration and geology. due to the semi arid climatic conditions of the area, this resource is almost the only key to economic development. There are a number of dug wells in the area where water is getting stored during rainy season. source and processes of recharge in humid areas are different compared with semi-arid areas. Due to the main resource of available water in the area, the potential groundwater recharge estimation could be good exercise to visulize the amount of rainwater entering the ground. For groundwater recharge estimation there are a number of simple and advanced techniques available. In the present study simple methods were used to estimate potential recharge due to available limited resources. Rainfall runoff, gravimetric and water table fluctuation methods were used to quantify rainfall recharge during the monsoon season. The average potential recharge estimated was 60% of the rainfall of 148 mm. Rainfall runoff and gravimetric methods were found to be comparable for short period potential recharge estimation while water table fluctuation method gives actual recharge and require longer period data. Potential recharge values were higher for area having grassland type vegetation and low for area covering shrubs and tick vegetation. (author)

  13. Development of Managed Aquifer Recharge in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Zhou, Y.; Sun, X.; Wang, W.

    2014-10-01

    China has a long history in managed aquifer recharge (MAR). The historic development can be divided into 4 stages based on a summary of typical MAR projects. The first stage is MAR applied to agricultural production, the second is MAR applied to industrial production and alleviation of agricultural problems, the third is MAR applied to ecological protection and the increase in urban water supplies, and the fourth is multi-source MAR. In addition, geothermal reinjection and ground source heat pumps are also effective uses of MAR. Nevertheless, the MAR framework is defective, there is a lack of water quality studies, and the recharge rate of most projects is low. However, China has achieved a great effect on industrial and agricultural production, ecological protection, drinking water supplies and urban reclaimed water reuse, amongst others. But there are still many issues to be improved. A feasible, convenient and economic technique of MAR which fits local hydrogeological conditions needs to be developed and guidelines for both MARs and management regulations to ensure the successful running of MAR projects also need to be established. MAR will make a great difference to improving potable water quality, alleviating geological hazards, long distance water diversion, urban water supplies, agriculture irrigation, etc. (Author)

  14. Spring-recharging in the Himalayas

    International Nuclear Information System (INIS)

    Joshi, Anil P.

    2009-01-01

    in the settlement of mountain villages in the Himalayas. In fact, in many places, it was the single factor that determined the location of the villages and naturally rainwater has been the source which recharge the catchments of the springs. Forest cover keeps these catchment areas alive for the slow and constant recharging of the springs. In the recent past due to continuous deforestation, the catchment areas have been drastically reduced. Eventually, these denuded lands were unable to conserve water, which has resulted in the drying-up and dying of many mountain springs. Certainly, this became a major threat to both the natural habitats of the springs, as well as to the survival of the communities. In order to meet the water needs of the villages, the government-development agencies devised a distribution system in which water was diverted from regions with an adequate supply to those deprived of water. This approach to remedy the water shortage brought about significant water conflicts, as the rights to water resources were not well defined. This system also did not adequately address water-management and distribution lines for the water resources

  15. Novel S-35 Intrinsic Tracer Method for Determining Groundwater Travel Time near Managed Aquifer Recharge Facilities

    Science.gov (United States)

    Urióstegui, S. H.; Bibby, R. K.; Esser, B. K.; Clark, J. F.

    2013-12-01

    Identifying groundwater travel times near managed aquifer recharge (MAR) facilities is a high priority for protecting public and environmental health. For MAR facilities in California that incorporate tertiary wastewater into their surface-spreading recharge practices, the target subsurface residence time is >9 months to allow for the natural inactivation and degradation of potential contaminants (less time is needed for full advanced treated water). Established intrinsic groundwater tracer techniques such as tritium/helium-3 dating are unable to resolve timescales of method using a naturally occurring radioisotope of sulfur, sulfur-35 (S-35). After its production in the atmosphere by cosmic ray interaction with argon, S-35 enters the hydrologic cycle as dissolved sulfate through precipitation The short half-life of S-35 (3 months) is ideal for investigating recharge and transport of MAR groundwater on the method, however, has not been applied to MAR operations because of the difficulty in measuring S-35 with sufficient sensitivity in high-sulfate waters. We have developed a new method and have applied it at two southern California MAR facilities where groundwater travel times have previously been characterized using deliberate tracers: 1) Rio Hondo Spreading Grounds in Los Angeles County, and 2) Orange County Groundwater Recharge Facilities in Orange County. Reasonable S-35 travel times of method also identified seasonal patterns in subsurface travel times, which may not be revealed by a deliberate tracer study that is dependent on the hydrologic conditions during the tracer injection period.

  16. Estimating natural recharge in San Gorgonio Pass watersheds, California, 1913–2012

    Science.gov (United States)

    Hevesi, Joseph A.; Christensen, Allen H.

    2015-12-21

    A daily precipitation-runoff model was developed to estimate spatially and temporally distributed recharge for groundwater basins in the San Gorgonio Pass area, southern California. The recharge estimates are needed to define transient boundary conditions for a groundwater-flow model being developed to evaluate the effects of pumping and climate on the long-term availability of groundwater. The area defined for estimating recharge is referred to as the San Gorgonio Pass watershed model (SGPWM) and includes three watersheds: San Timoteo Creek, Potrero Creek, and San Gorgonio River. The SGPWM was developed by using the U.S. Geological Survey INFILtration version 3.0 (INFILv3) model code used in previous studies of recharge in the southern California region, including the San Gorgonio Pass area. The SGPWM uses a 150-meter gridded discretization of the area of interest in order to account for spatial variability in climate and watershed characteristics. The high degree of spatial variability in climate and watershed characteristics in the San Gorgonio Pass area is caused, in part, by the high relief and rugged topography of the area.

  17. Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries.

    Science.gov (United States)

    Mei, Jun; Liao, Ting; Kou, Liangzhi; Sun, Ziqi

    2017-12-01

    The exponential increase in research focused on two-dimensional (2D) metal oxides has offered an unprecedented opportunity for their use in energy conversion and storage devices, especially for promising next-generation rechargeable batteries, such as lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), as well as some post-lithium batteries, including lithium-sulfur batteries, lithium-air batteries, etc. The introduction of well-designed 2D metal oxide nanomaterials into next-generation rechargeable batteries has significantly enhanced the performance of these energy-storage devices by providing higher chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier-/charge-transport kinetics, which have greatly promoted the development of nanotechnology and the practical application of rechargeable batteries. Here, the recent progress in the application of 2D metal oxide nanomaterials in a series of rechargeable LIBs, NIBs, and other post lithium-ion batteries is reviewed relatively comprehensively. Current opportunities and future challenges for the application of 2D nanomaterials in energy-storage devices to achieve high energy density, high power density, stable cyclability, etc. are summarized and outlined. It is believed that the integration of 2D metal oxide nanomaterials in these clean energy devices offers great opportunities to address challenges driven by increasing global energy demands. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Karst Aquifer in Qatar and its bearing on Natural Rainfall Recharge

    Science.gov (United States)

    Baalousha, Husam; Ackerer, Philippe

    2017-04-01

    Qatar is an arid country with little rainfall and high evaporation. Surface water is non-existent so aquifer is the only source of natural water. The annual long-term averages of rainfall and evaporation are 80 mm and more than 2000 mm, respectively. Despite the low rainfall and high evaporation, natural recharge from rainfall occurs at an average of approximately 50 million m3 per year. Rainfall recharge in Qatar takes in land depressions that occur all over the country. These depressions are a result of land collapse due to sinkholes and cavity in the limestone formation. In the northern part of the country, karst features occur as a result of dissolution of limestone, which leads to land depressions. Results of this study shows groundwater recharge occurs in land depression areas, especially in the northern part of the country, where surface runoff accumulates in these land depressions and recharges the aquifer. This paper was made possible by NPRP grant # [NPRP 9-030-1-008] from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the author[s]."

  19. Radiation protection in category III large gamma irradiators

    International Nuclear Information System (INIS)

    Costa, Neivaldo; Furlan, Gilberto Ribeiro; Itepan, Natanael Marcio

    2011-01-01

    This article discusses the advantages of category III large gamma irradiator compared to the others, with emphasis on aspects of radiological protection, in the industrial sector. This category is a kind of irradiators almost unknown to the regulators authorities and the industrial community, despite its simple construction and greater radiation safety intrinsic to the model, able to maintain an efficiency of productivity comparable to those of category IV. Worldwide, there are installed more than 200 category IV irradiators and there is none of a category III irradiator in operation. In a category III gamma irradiator, the source remains fixed in the bottom of the tank, always shielded by water, negating the exposition risk. Taking into account the benefits in relation to radiation safety, the category III large irradiators are highly recommended for industrial, commercial purposes or scientific research. (author)

  20. Prior knowledge of category size impacts visual search.

    Science.gov (United States)

    Wu, Rachel; McGee, Brianna; Echiverri, Chelsea; Zinszer, Benjamin D

    2018-03-30

    Prior research has shown that category search can be similar to one-item search (as measured by the N2pc ERP marker of attentional selection) for highly familiar, smaller categories (e.g., letters and numbers) because the finite set of items in a category can be grouped into one unit to guide search. Other studies have shown that larger, more broadly defined categories (e.g., healthy food) also can elicit N2pc components during category search, but the amplitude of these components is typically attenuated. Two experiments investigated whether the perceived size of a familiar category impacts category and exemplar search. We presented participants with 16 familiar company logos: 8 from a smaller category (social media companies) and 8 from a larger category (entertainment/recreation manufacturing companies). The ERP results from Experiment 1 revealed that, in a two-item search array, search was more efficient for the smaller category of logos compared to the larger category. In a four-item search array (Experiment 2), where two of the four items were placeholders, search was largely similar between the category types, but there was more attentional capture by nontarget members from the same category as the target for smaller rather than larger categories. These results support a growing literature on how prior knowledge of categories affects attentional selection and capture during visual search. We discuss the implications of these findings in relation to assessing cognitive abilities across the lifespan, given that prior knowledge typically increases with age. © 2018 Society for Psychophysiological Research.

  1. 30 CFR 57.4203 - Extinguisher recharging or replacement.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Extinguisher recharging or replacement. 57.4203 Section 57.4203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Prevention and Control Firefighting Equipment § 57.4203 Extinguisher recharging or replacement. Fire...

  2. 30 CFR 56.4203 - Extinguisher recharging or replacement.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Extinguisher recharging or replacement. 56.4203 Section 56.4203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Prevention and Control Firefighting Equipment § 56.4203 Extinguisher recharging or replacement. Fire...

  3. Nondestructive control of residual stresses during welding and recharge processes

    International Nuclear Information System (INIS)

    Suarez, J.C.; Fernandez, L.M.; Cruz, C.; Merino, F.; Aragon, B.

    1993-01-01

    In this work, the stress state of material during welding and recharge processes is controlled with the help of Barkhausen effect. The changes, occurred in the longitudinal and transversal stress profile are show during deposition of welding rings. It is proved that the stress state of the base-material depends on the amount of recharge layers, deposited on it

  4. Comparing groundwater recharge and base flow in the Bukmoongol ...

    Indian Academy of Sciences (India)

    model, also known as the Rorabaugh Method. (Rorabaugh 1960; Daniel 1976; Rutledge 2007b), estimates groundwater recharges for each stream- flow peak using the recession-curve-displacement method. It is based on an analytical model that describes groundwater discharge subsequent to recharge to the water table ...

  5. Comparing groundwater recharge and base flow in the Bukmoongol ...

    Indian Academy of Sciences (India)

    Groundwater recharge and base flow using different investigated methods are simulated in the 15-ha Bukmoongol small-forested watershed located at the southern part of Korea.The WHAT system, PART,RORA,PULSE,BFI,and RAP software are used to estimate groundwater recharge or base flow and base flow index from ...

  6. Category O for quantum groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Mazorchuk, Volodymyr

    2015-01-01

    We study the BGG-categories O_q associated to quantum groups. We prove that many properties of the ordinary BGG-category O for a semisimple complex Lie algebra carry over to the quantum case. Of particular interest is the case when q is a complex root of unity. Here we prove a tensor decomposition...... for simple modules, projective modules, and indecomposable tilting modules. Using the known Kazhdan–Lusztig conjectures for O and for finite-dimensional U_q-modules we are able to determine all irreducible characters as well as the characters of all indecomposable tilting modules in O_q . As a consequence......, we also recover the known result that the generic quantum case behaves like the classical category O....

  7. Availability of streamflow for recharge of the basal aquifer in the Pearl Harbor area, Hawaii

    Science.gov (United States)

    Hirashima, George Tokusuke

    1971-01-01

    The Pearl Harbor area is underlain by an extensive basal aquifer that contains large supplies of fresh water. Because of the presence of a cap rock composed of sedimentary material that is less permeable than the basaltic lava of the basal aquifer, seaward movement of ground water is retarded. The cap rock causes the basal water to stand at a high level; thus, the lens of fresh water that floats on sea water is thick. Discharge from the basal ground-water body, which includes pumpage from wells and shafts, averaged 250 million gallons per day during 1931-65. Because the water level in the basal aquifer did not decline progressively, recharge to the ground-water body must have been approximately equal to discharge. Although pumping for agricultural use has decreased since 1931, net ground-water discharge has increased because of a large increase in pumping for urban use. Substitution of ground water for surface water in the irrigation of sugarcane has also contributed to a net increase in ground-water discharge. The development of Mililani Town will further increase discharge. The increase in ground-water discharge may cause an increase in chloride content of the water pumped from wells near the shore of Pearl Harbor unless the increased discharge is balanced by increased recharge to the local aquifer. The aquifer is recharged by direct infiltration and deep percolation of rain, principally in the high forested area, by infiltration and percolation of irrigation water applied in excess of plant requirements, by seepage of water through streambeds, and possibly by ground-water inflow from outside the area. Recharge is greatest in the uplands, where rainfall is heavy and where much infiltration takes place before rainwater collects in the middle and lower reaches of stream channels. Once water collects in and saturates the alluvium of stream channels, additional inflow to the streams will flow out to sea, only slightly decreased by seepage. Average annual direct

  8. Global synthesis of groundwater recharge in semiarid and arid regions

    Science.gov (United States)

    Scanlon, Bridget R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I.

    2006-01-01

    Global synthesis of the findings from ∼140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40–374 000 km2) range from 0·2 to 35 mm year−1, representing 0·1–5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to ∼720 m year−1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Niño Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Niños (1977–1998) relative to periods dominated by La Niñas (1941–1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year−1 during the Sahel drought (1970–1986) to 150 mm year−1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (≥10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in

  9. FINANCIAL CONTROL AS A CATEGORY

    Directory of Open Access Journals (Sweden)

    Andrey Yu. Volkov

    2014-01-01

    Full Text Available The article reveals the basics of “financial control” as a category. The main attention is concentrated on the “control” itself (asa term, multiplicity of interpretation of“financial control” term and its juristic-practical matching. The duality of financial control category is detected. The identity of terms “financial control” and “state financial control” is justified. The article also offers ways of development of financial control juristical regulation.

  10. Indicative energy technology assessment of advanced rechargeable batteries

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; Hazeldine, Tom

    2015-01-01

    Highlights: • Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated. • Energy, environmental, economic, and technical appraisal techniques were employed. • Li-Ion Polymer (LIP) batteries exhibited the most attractive energy and power metrics. • Lithium-Ion batteries (LIB) and LIP batteries displayed the lowest CO 2 and SO 2 emissions per kW h. • Comparative costs for LIB, LIP and ZEBRA batteries were estimated against Nickel–Cadmium cells. - Abstract: Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated in terms of various energy, environmental, economic, and technical criteria. Their suitability for different applications, such as electric vehicles (EV), consumer electronics, load levelling, and stationary power storage, have also been examined. In order to gain a sense of perspective regarding the performance of the ARBT [including Lithium-Ion batteries (LIB), Li-Ion Polymer (LIP) and Sodium Nickel Chloride (NaNiCl) {or ‘ZEBRA’} batteries] they are compared to more mature Nickel–Cadmium (Ni–Cd) batteries. LIBs currently dominate the rechargeable battery market, and are likely to continue to do so in the short term in view of their excellent all-round performance and firm grip on the consumer electronics market. However, in view of the competition from Li-Ion Polymer their long-term future is uncertain. The high charge/discharge cycle life of Li-Ion batteries means that their use may grow in the electric vehicle (EV) sector, and to a lesser extent in load levelling, if safety concerns are overcome and costs fall significantly. LIP batteries exhibited attractive values of gravimetric energy density, volumetric energy density, and power density. Consequently, they are likely to dominate the consumer electronics market in the long-term, once mass production has become established, but may struggle to break into other sectors unless their charge/discharge cycle life and cost are improved

  11. Combined geophysical methods for mapping infiltration pathways at the Aurora Water Aquifer recharge and recovery site

    Science.gov (United States)

    Jasper, Cameron A.

    Although aquifer recharge and recovery systems are a sustainable, decentralized, low cost, and low energy approach for the reclamation, treatment, and storage of post- treatment wastewater, they can suffer from poor infiltration rates and the development of a near-surface clogging layer within infiltration ponds. One such aquifer recharge and recovery system, the Aurora Water site in Colorado, U.S.A, functions at about 25% of its predicted capacity to recharge floodplain deposits by flooding infiltration ponds with post-treatment wastewater extracted from river bank aquifers along the South Platte River. The underwater self-potential method was developed to survey self-potential signals at the ground surface in a flooded infiltration pond for mapping infiltration pathways. A method for using heat as a groundwater tracer within the infiltration pond used an array of in situ high-resolution temperature sensing probes. Both relatively positive and negative underwater self-potential anomalies are consistent with observed recovery well pumping rates and specific discharge estimates from temperature data. Results from electrical resistivity tomography and electromagnetics surveys provide consistent electrical conductivity distributions associated with sediment textures. A lab method was developed for resistivity tests of near-surface sediment samples. Forward numerical modeling synthesizes the geophysical information to best match observed self- potential anomalies and provide permeability distributions, which is important for effective aquifer recharge and recovery system design, and optimization strategy development.

  12. Investigation of Groundwater Flow Variations near a Recharge Pond with Repeat Deliberate Tracer Experiments

    Directory of Open Access Journals (Sweden)

    Jordan F Clark

    2014-06-01

    Full Text Available Determining hydraulic connections and travel times between recharge facilities and production wells has become increasingly important for permitting and operating managed aquifer recharge (MAR sites, a water supply strategy that transfers surface water into aquifers for storage and later extraction. This knowledge is critical for examining water quality changes and assessing the potential for future contamination. Deliberate tracer experiments are the best method for determining travel times and identifying preferential flow paths between recharge sites over the time scales of weeks to a few years. This paper compares the results of two deliberate tracer experiments at Kraemer Basin, Orange County, CA, USA. Results from the first experiment, which was conducted in October 1998, showed that a region of highly transmissive sedimentary material extends down gradient from the basin for more than 3 km [1]. Mean groundwater velocities were determined to be approximately 2 km/year in this region based on the arrival time of the tracer center of mass. A second experiment was initiated in January 2008 to determine if travel times from this basin to monitoring and production wells changed during the past decade in response to new recharge conditions. Results indicate that flow near Kraemer Basin was stable, and travel times to most wells determined during both experiments agree within the experimental uncertainty.

  13. The recharge area concept: A strategy for siting nuclear waste repositories

    International Nuclear Information System (INIS)

    Sheng, G.; Toth, J.

    2000-01-01

    The Recharge Area Concept is the proposition that in Canadian-Shield type natural environments recharge areas of regional groundwater flow systems are superior for high-level nuclear waste repositories to other types of groundwater flow regimes, especially to areas of groundwater discharge. This conclusion is reached from an analysis of basinal groundwater flow models. The calculations were made for a two-dimensional flank of a fully saturated topographic basin, 20 km long and 4 km deep, in which groundwater is driven by gravity. Variants of hydraulic-conductivity distributions were considered: 1) homogeneous; 2) stratified; and 3) stratified-faulted. The faults attitudes were changed by steps from vertical to horizontal for different variants. The model is assumed conceptually to represent the crystalline-rock environment of the Canadian Shield. The hydrogeologic performances of hypothetical repositories placed 500 m deep in the recharge and discharge areas were characterized by thirteen parameters. The principal advantages of recharge- over discharge-area locations are: 1) longer travel paths and return-flow times from repository to surface; 2) robustness of predicted values of performance parameters; 3) field-verifiability of favourable hydrogeologic conditions (amounting to an implicit validation of the calculated minimum values of return-flow times); 4) site acceptance based on quantifiable and observable flow-controlling parameters; and 5) simple logistics and favourable economics of site selection and screening. As a by-product of modeling, it is demonstrated that the presence of old water is not an indication of stagnancy. (author)

  14. Design and Testing of Recharge Wells in a Coastal Aquifer: Summary of Field Scale Pilot Tests

    Directory of Open Access Journals (Sweden)

    Joseph Guttman

    2017-01-01

    Full Text Available Surplus water from seawater desalination plants along the Israeli Coast can be injected underground for seasonal storage. Two pilot projects were established to simulate the movement of air bubbles and changes in the well hydraulic parameters during pumping and recharging. The study showed that it is impossible to remove the smaller air bubbles (dissolved air that are created during the injection process, even when the injection pipe is fully saturated. The pumping tests showed that there were large differences in the well hydraulic parameters between the pumping and the recharge tests despite that they were conducted at the same well. Two mechanisms are responsible for the reduction in the aquifer coefficients during the recharge event. The first mechanism is the pressures that the injected water needs to overcome; the aquifer pressure and the pore water pressure it is supposed to replace at the time of the injection. The second mechanism is the pressure that the injected water needs to overcome the clogging process. It is expressed as the high water level inside the recharge well in comparison to the small rising of the water level in the observation wells. This research gives good insight into the injection mechanism through wells and is essential for any further development of injection facilities and for the operation and management protocols.

  15. Nanocarbon networks for advanced rechargeable lithium batteries.

    Science.gov (United States)

    Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

    2012-10-16

    Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting

  16. Recent and ancient recharge deciphered by multi-dating tracer technique

    Science.gov (United States)

    Dogramaci, Shawan; Cook, Peter; Mccallum, Jimes; Purtchert, Roland

    2017-04-01

    Determining groundwater residence time from environmental tracer concentrations obtained from open bores or long screened intervals is fraught with difficulty because the sampled water represents variety of ages. Information on the distribution of groundwater age is commonly obtained by measuring more than one tracer. We examined the use of the multi-tracer technique representing different time frames (39Ar, 85Kr, 14C, 3H, CFC 11- CFC-12 CFC-113, SF6 and Cl,) to decipher the groundwater ages sampled from long screened bores in a regional aquifer in the Pilbara region of northwest Australia. We then applied a technique that assumes limited details of the form of the age distribution. Tracer concentrations suggest that groundwater samples are a mixture of young and old water - the former is inferred to represent localised recharge from an adjacent creek, and the latter to be diffuse recharge. Using our method, we were able to identify distinct age components in the groundwater. The results suggest the presence of four distinct age groups; zero and 20 years, 50 to 100 years, 100 to 600 years and approximately 1000 years old. These relatively high recharge events were consistent with local recharge sources (50-100 years) and confirmed by palaeo-climate record obtained from lake sediments. We found that although the ages of these components were well constrained, the relative proportions of each component was highly sensitive to errors of environmental tracer data. Our results show that the method we implemented can identify distinct age groups in groundwater samples without prior knowledge of the age distribution. The presence of distinct recharge times gives insight into groundwater flow conditions over long periods of time.

  17. Relative Impacts of Low Permeability Subsurface Deposits on Recharge Basin Infiltration Rates

    Science.gov (United States)

    Oconnell, P.; Becker, M.; Pham, C.; Rodriguez, G.; Hutchinson, A.; Plumlee, M.

    2017-12-01

    Artificial recharge of aquifers through spreading basins has become an important component of water management in semi-arid climates. The rate at which water can be recharged in these basins is limited by the natural vertical permeability of the underlying deposits which may be highly variable both laterally and vertically. To help understand hydrostratigraphic controls on recharge, a newly constructed basin was surveyed and instrumented. Prior to flooding the basin, lithology was characterized by shallow hand coring, direct push coring, ground penetrating radar, and electrical resistivity. After flooding, recharge was monitored through piezometers, electrical resistivity, and a network of fiber optic distributed temperature sensing (DTS). The DTS network used temperature as a tracer to measure infiltration rate on 25 cm intervals both laterally and vertically. Several hundred paired DTS time series datasets (from fiber optic cables located at 0 and 0.5 meters below ground surface) were processed with the cross-wavelet transform (XWT) to calculate spatially and temporally continuous infiltration rates, which can be interpolated and animated to visualize heterogeneity. Time series data from 8-meter deep, vertically oriented DTS cables reveal depth intervals where infiltration rates vary. Inverted resistivity sections from repeated dipole-dipole surveys along the sidewall of a spreading basin exhibit a positive correlation with the distribution of relatively high and low infiltration rates, indicating zones of preferential downward (efficient) and lateral (inefficient) flow, respectively. In contrast to other monitored basins, no perching was observed in the vertically oriented DTS cables. The variation in recharge across the basin and the appearance of subsurface lateral flow can be explained in context of the alluvial depositional environment.

  18. International Conference on Category Theory

    CERN Document Server

    Pedicchio, Maria; Rosolini, Guiseppe

    1991-01-01

    With one exception, these papers are original and fully refereed research articles on various applications of Category Theory to Algebraic Topology, Logic and Computer Science. The exception is an outstanding and lengthy survey paper by Joyal/Street (80 pp) on a growing subject: it gives an account of classical Tannaka duality in such a way as to be accessible to the general mathematical reader, and to provide a key for entry to more recent developments and quantum groups. No expertise in either representation theory or category theory is assumed. Topics such as the Fourier cotransform, Tannaka duality for homogeneous spaces, braided tensor categories, Yang-Baxter operators, Knot invariants and quantum groups are introduced and studies. From the Contents: P.J. Freyd: Algebraically complete categories.- J.M.E. Hyland: First steps in synthetic domain theory.- G. Janelidze, W. Tholen: How algebraic is the change-of-base functor?.- A. Joyal, R. Street: An introduction to Tannaka duality and quantum groups.- A. Jo...

  19. Learnable Classes of Categorial Grammars.

    Science.gov (United States)

    Kanazawa, Makoto

    Learnability theory is an attempt to illuminate the concept of learnability using a mathematical model of learning. Two models of learning of categorial grammars are examined here: the standard model, in which sentences presented to the learner are flat strings of words, and one in which sentences are presented in the form of functor-argument…

  20. Language universals without universal categories

    NARCIS (Netherlands)

    Croft, W.; van Lier, E.

    2012-01-01

    In this article, the authors present their views on an article by author Sandra Chung related to lexical categories. According to them, Chung's article critiques an analysis of word classes in Chamorro by author Donald M. Topping. They discuss the restatements made by Chung on Topping's criteria for

  1. Auditory and phonetic category formation

    NARCIS (Netherlands)

    Goudbeek, Martijn; Cutler, A.; Smits, R.; Swingley, D.; Cohen, Henri; Lefebvre, Claire

    2017-01-01

    Among infants' first steps in language acquisition is learning the relevant contrasts of the language-specific phonemic repertoire. This learning is viewed as the formation of categories in a multidimensional psychophysical space. Research in the visual modality has shown that for adults, some kinds

  2. The Rechargeability of Silicon-Air Batteries

    Science.gov (United States)

    2012-06-01

    an Si-air electrochemical cell a source of water for other applications. Metal-air batteries, silicon-air, electrochemistry , rechargeable batteries UU...be based on constant amount of water in the IL.  The electrochemistry has to be based on more robust reference electrode. Some use of ferrocence...MgO  -569.4  -601.7  3942  6859  Zn  Zn + 1/2O2 ZnO   -320.8  -350.7  1363  9677  Si  Si + O2 SiO2  -856.5  -910.9  8470  21090  7 electrode. RTIL

  3. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  4. Spatial and Temporal Variability of Groundwater Recharge in a Sandstone Aquifer in a Semi-Arid Region

    Science.gov (United States)

    Manna, F.; Murray, S.; Abbey, D.; Martin, P.; Cherry, J.; Parker, B. L.

    2017-12-01

    Groundwater recharge estimates are required to constrain groundwater fluxes over a 11.5 km2 site, located on an upland ridge of southern California. The site is a decommissioned industrial research facility that features chemical contamination of the underlying sedimentary bedrock aquifer and recharge values are necessary to quantify the volumetric flow rate available to transport contaminants. As a first step to assess recharge, Manna et al. (2016) used to chloride mass balance method based on on-site measurements of bulk atmospheric chloride deposition comprised of dry fallout and precipitation, 1490 groundwater samples, and measurements of chloride in surface water runoff. However, this study only provided site-wide long-term average value and did not address spatial and temporal variability of recharge. To this purpose, a spatially distributed hydrological model was used to reflect the site-specific conditions and represent the transient nature of recharge, runoff, storage and evapotranspiration over a 20-year period in a catchment (2.16 km2) of the study area. The integrated model was developed using MIKESHE employing a 20 by 20 m finite difference grid and using on-site measured physical and hydrological input parameters. We found that recharge is highly variable across the study area, with values that span over three orders of magnitude. The main factors affecting recharge are land use and topography: lower recharge values were found in vegetated areas, whereas higher values were found in areas with exposed bedrock at the surface and along the main drainages of the catchment. Analyzing the seasonal variability of the water budget components, evapotranspiration is the dominant process throughout the year and recharge occurs episodically only during the winter season. These results are validated by the comparison of measured and simulated water levels and overland flow rates and are consistent with a previous study carried out at the site using the chloride

  5. Artificial groundwater recharge as integral part of a water resources system in a humid environment

    Science.gov (United States)

    Kupfersberger, Hans; Stadler, Hermann

    2010-05-01

    In Graz, Austria, artificial groundwater recharge has been operated as an integral part of the drinking water supply system for more than thirty years. About 180 l/s of high quality water from pristine creeks (i.e. no pre-treatment necessary) are infiltrated via sand and lawn basins and infiltration trenches into two phreatic aquifers to sustain the extraction of approximately 400 l/s. The remaining third of drinking water for roughly 300.000 people is provided by a remote supply line from the East alpine karst region Hochschwab. By this threefold model the water supply system is less vulnerable to external conditions. In the early 1980's the infiltration devices were also designed as a hydraulic barrier against riverbank infiltration from the river Mur, which at that time showed seriously impaired water quality due to upstream paper mills. This resulted into high iron and manganese groundwater concentrations which lead to clogging of the pumping wells. These problems have been eliminated in the meantime due to the onsite purification of paper mill effluents and the construction of many waste water treatment plants. The recharge system has recently been thoroughly examined to optimize the operation of groundwater recharge and to provide a basis for further extension. The investigations included (i) field experiments and laboratory analyses to improve the trade off between infiltration rate and elimination capacities of the sand filter basins' top layer, (ii) numerical groundwater modelling to compute the recovery rate of the recharged water, the composition of the origin of the pumped water, emergency scenarios due to the failure of system parts, the transient capture zones of the withdrawal wells and the coordination of recharge and withdrawal and (iii) development of an online monitoring setup combined with a decision support system to guarantee reliable functioning of the entire structure. Additionally, the depreciation, maintenance and operation costs of the

  6. Geochemical processes during managed aquifer recharge with desalinated seawater

    Science.gov (United States)

    Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.

    2017-12-01

    In this work we study the geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW) to an infiltration pond at the Menashe site, located above the Israeli coastal aquifer. The DSW is post-treated by calcite dissolution (remineralization) in order to meet the Israeli desalinated water quality criteria. Suction cups and monitoring wells inside the pond were used to monitor water quality during two MAR events on 2015 and 2016. Results show that cation exchange is dominant, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the composition of the shallow groundwater is similar to the recharged DSW, but with enrichment of Mg2+, Na+, Ca2+ and HCO3-. A calibrated variably-saturated reactive transport model was used to predict the geochemical evolution during 50 years of MAR with two water quality scenarios: post-treated DSW and soft DSW (without post-treatment). The latter scenario was aimed to test soil-aquifer-treatment as an alternative post-treatment technique. In terms of water quality, the results of the two scenarios were found within the range of the desalinated water criteria. Mg2+ enrichment was stable ( 2.5 mg L-1), higher than the zero concentration found in the Israeli DSW. Calcite content reduction was low (<1%) along the variably-saturated profile, after 50 years of MAR. This suggests that using soil-aquifer-treatment as a remineralization technique for DSW is potentially a sustainable practice, which is limited only by the current hydraulic capacity of the Menashe MAR site.

  7. A new, high energy rechargeable lithium ion battery with a surface-treated Li{sub 1.2}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} cathode and a nano-structured Li{sub 4}Ti{sub 5}O{sub 12} anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoyu; Huang, Tao; Yu, Aishui, E-mail: asyu@fudan.edu.cn

    2015-11-05

    Through elaborate design, a new rechargeable lithium ion battery has been developed by comprising a surface-treated Li{sub 1.2}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} cathode and a nano-structured Li{sub 4}Ti{sub 5}O{sub 12} anode. After precondition Na{sub 2}S{sub 2}O{sub 8} treatment, the initial coulombic efficiency of Li{sub 1.2}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} cathode has been significantly increased and can be compatible with that of the nano-structured Li{sub 4}Ti{sub 5}O{sub 12} anode. The optimization of structure and morphology for both active electrode materials result in their remarkable electrochemical performances in respective lithium half-cells. Ultimately, the rechargeable lithium ion full battery consisting of both electrodes delivers a specific capacity of 99.0 mAh g{sup −1} and a practical energy density of 201 Wh kg{sup −1}, based on the total weight of both active electrode materials. Furthermore, as a promising candidate in the lithium ion battery field, this full battery also achieves highly attractive electrochemical performance with high coulombic efficiency, excellent cycling stability and outstanding rate capability. Thus the proposed battery displays broad practical application prospects for next generation of high-energy lithium ion battery. - Highlights: • The Li{sub 1.2}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} cathode is surface-treated by Na{sub 2}S{sub 2}O{sub 8}. • The nano-sized Li{sub 4}Ti{sub 5}O{sub 12} anode is obtained by a solid-state method. • A new Li{sub 1.2}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2}/Li{sub 4}Ti{sub 5}O{sub 12} lithium ion battery is developed. • The battery shows high coulombic efficiency, specific capacity and energy density. • The battery shows high capacity retention rate and good high-rate capability.

  8. Spatial and temporal variability of groundwater recharge in Geba basin, Northern Ethiopia

    Science.gov (United States)

    Yenehun, Alemu; Walraevens, Kristine; Batelaan, Okke

    2017-10-01

    WetSpa, a physically based, spatially distributed watershed model, has been used to study the spatial and temporal variation of recharge in the Geba basin, Northern Ethiopia. The model covers an area of about 4, 249 km2 and integrates elevation, soil and land-use data, hydrometeorological and river discharge data. The Geba basin has a highly variable topography ranging from 1000 to 3280 m with an average slope of 12.9%. The area is characterized by a distinct wet and long dry season with a mean annual precipitation of 681 mm and temperatures ranging between 6.5 °C and 32 °C. The model was simulated on daily basis for nearly four years (January 1, 2000 to December 18, 2003). It resulted in a good agreement between measured and simulated streamflow hydrographs with Nash-Sutcliffe efficiency of almost 70% and 85% for, respectively, the calibration and validation. The water balance terms show very strong spatial and temporal variability, about 3.8% of the total precipitation is intercepted by the plant canopy; 87.5% infiltrates into the soil (of which 13% percolates, 2.7% flows laterally off and 84.2% evapotranspired from the root zone), and 7.2% is surface runoff. The mean annual recharge varies from about 45 mm (2003) to 208 mm (2001), with average of 98.6 mm/yr. On monthly basis, August has the maximum (73 mm) and December the lowest (0.1 mm) recharge. The mean annual groundwater recharge spatially varies from 0 to 371 mm; mainly controlled by the distribution of rainfall amount, followed by soil and land-use, and to a certain extent, slope. About 21% of Geba has a recharge larger than 120 mm and 1% less than 5 mm.

  9. Fate of N-nitrosodimethylamine in recycled water after recharge into anaerobic aquifer.

    Science.gov (United States)

    Patterson, B M; Pitoi, M M; Furness, A J; Bastow, T P; McKinley, A J

    2012-03-15

    Laboratory and field experiments were undertaken to assess the fate of N-nitrosodimethylamine (NDMA) in aerobic recycled water that was recharged into a deep anaerobic pyritic aquifer, as part of a managed aquifer recharge (MAR) strategy. Laboratory studies demonstrated a high mobility of NDMA in the Leederville aquifer system with a retardation coefficient of 1.1. Anaerobic degradation column and (14)C-NDMA microcosm studies showed that anaerobic conditions of the aquifer provided a suitable environment for the biodegradation of NDMA with first-order kinetics. At microgram per litre concentrations, inhibition of biodegradation was observed with degradation half-lives (260±20 days) up to an order of magnitude greater than at nanogram per litre concentrations (25-150 days), which are more typical of environmental concentrations. No threshold effects were observed at the lower ng L(-1) concentrations with NDMA concentrations reduced from 560 ng L(-1) to recharge bore. These microcosm experiments showed a faster degradation rate than anaerobic microcosms, with a degradation half-life of 8±2 days, after a lag period of approximately 10 days. Results from a MAR field trial recharging the Leederville aquifer with aerobic recycled water showed that NDMA concentrations reduced from 2.5±1.0 ng L(-1) to 1.3±0.4 ng L(-1) between the recharge bore and a monitoring location 20 m down gradient (an estimated aquifer residence time of 10 days), consistent with data from the aerobic microcosm experiment. Further down gradient, in the anaerobic zone of the aquifer, NDMA degradation could not be assessed, as NDMA concentrations were too close to their analytical detection limit (<1 ng L(-1)). Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  10. Delineation of groundwater recharge areas, western Cape Cod, Massachusetts

    Science.gov (United States)

    Masterson, John P.; Walter, Donald A.

    2000-01-01

    The unconfined sand-and-gravel aquifer in western Cape Cod, Massachusetts, which is the sole source of water supply for the communities in the area, is recharged primarily from precipitation. The rate of recharge from precipitation is estimated to be about 26 inches per year (in/yr), or about 60 percent of the precipitation rate. This recharge rate yields a flow through the aquifer of about 180 million gallons per day (Mgal/d). Groundwater flows radially outward from the top of the water-table mound in the north-central part of the flow system toward the coast, as indicated by the water-table contours on the large map on this sheet. Recharge that reaches the water table near the top of the mound travels deeper through the aquifer than recharge that reaches the water table closer to the coast. All recharge to the aquifer ultimately discharges to pumping wells, streams, or coastal areas; however, some of this recharge may flow first through kettle ponds before eventually reaching these discharge points.

  11. Quantifying potential recharge in mantled sinkholes using ERT.

    Science.gov (United States)

    Schwartz, Benjamin F; Schreiber, Madeline E

    2009-01-01

    Potential recharge through thick soils in mantled sinkholes was quantified using differential electrical resistivity tomography (ERT). Conversion of time series two-dimensional (2D) ERT profiles into 2D volumetric water content profiles using a numerically optimized form of Archie's law allowed us to monitor temporal changes in water content in soil profiles up to 9 m in depth. Combining Penman-Monteith daily potential evapotranspiration (PET) and daily precipitation data with potential recharge calculations for three sinkhole transects indicates that potential recharge occurred only during brief intervals over the study period and ranged from 19% to 31% of cumulative precipitation. Spatial analysis of ERT-derived water content showed that infiltration occurred both on sinkhole flanks and in sinkhole bottoms. Results also demonstrate that mantled sinkholes can act as regions of both rapid and slow recharge. Rapid recharge is likely the result of flow through macropores (such as root casts and thin gravel layers), while slow recharge is the result of unsaturated flow through fine-grained sediments. In addition to developing a new method for quantifying potential recharge at the field scale in unsaturated conditions, we show that mantled sinkholes are an important component of storage in a karst system.

  12. Aquifer recharging in South Carolina: radiocarbon in environmental hydrogeology

    International Nuclear Information System (INIS)

    Stone, P.A.; Knox, R.L.; Mathews, T.D.

    1985-01-01

    Radiocarbon activities of dissolved inorganic carbon (and tritium activities where infiltration rates are rapid and aquifers shallow) provide relatively unambiguous and inexpensive evidence for identification of significant recharge areas. Such evidence is for the actual occurrence of modern recharge in the aquifer and thus is less inferential than stratigraphic or potentiometric evidence. These underutilized isotopic techniques are neither arcane nor complex and have been more-or-less standardized by earlier researchers. In South Carolina, isotopic evidence has been used from both calcareous and siliceous sedimentary aquifers and fractured crystalline rock aquifers. The Tertiary limestone aquifer is shown not to be principally recharged in its subcrop area, unlike conditions assumed for many other sedimentary aquifers in southeastern United States, and instead receives considerable lateral recharge from interfingering updip Tertiary sand aquifers in the middle coastal plain. Induced recharging at Hilton Head Island is mixing ancient relict water and modern recharge water. Recharging to deeper portions of the Cretaceous Middendorf basal sand aquifer occurs at least as far coastward as the middle coastal plain, near sampling sites that stratigraphically appear to be confined. Pronounced mineralization of water in fractured rocks cannot be considered as evidence of ancient or relict ground water that is isolated from modern contaminants, some of these waters contain considerable radiocarbon and hydrogen-bomb tritium

  13. Groundwater recharge: The intersection between humanity and hydrogeology

    Science.gov (United States)

    Smerdon, Brian D.; Drewes, Jörg E.

    2017-12-01

    Groundwater recharge is an essential part of subsurface water circulation and the beginning of groundwater flow systems that can vary in duration from days to millennia. Globally, there is a growing body of evidence suggesting that many of Earth's aquifers contain 'fossil' groundwater that was recharged more than 12,000 years ago (Jasechko et al., 2017), and a very small portion of groundwater that was recharged within the last 50 years (Gleeson et al., 2015). Together, this information demonstrates the irregular distribution of groundwater circulation within the Earth and the wide variability of recharge conditions that replenish aquifer systems (Befus et al., 2017). Knowledge of groundwater recharge rates and distribution are needed for evaluating and regulating the quantity and quality of water resources, understanding consequences of landscapes use, identifying where managed aquifer recharge can augment supply, and predicting how groundwater systems will respond to a changing climate. In-turn, these topics are of central importance for the health of humans and ecosystems, and security of food and energy. Yet, despite the global importance, quantifying groundwater recharge remains challenging as it cannot be measured directly, and there is uncertainty associated with all currently known estimation methods (Scanlon et al., 2002).

  14. The Definition of Groundwater Recharge Area Using GIS Approach -A Case Study of Choshuihsi Alluvial Fan, Taiwan

    Science.gov (United States)

    Tsai, JuiPin; Chen, Yu Wen; Chang, Liang Cheng; Chiang, Chun Jung; Chen, Jui Er; Chen, You Cheng

    2013-04-01

    Groundwater recharge areas are regions with high permeability that accept surface water more readily than other regions. If the land use/cover were changed, it would affect the groundwater recharge. Also, if this area were polluted, the contamination easily infiltrates into the groundwater system. Therefore, the goal of this study is to delineate the recharge area of Choshuihsi Alluvial Fan. This study applies 6 recharge potential scale factors, including land use/land cover, soil, drainage density, annual average rainfall, hydraulic conductivity and aquifer thickness to estimate the infiltration ability and storage capacity of study area. The fundamental data of these factors were digitized using GIS (Geographic Information System) technology and their GIS maps were created. Then each of these maps was translated to a score map ranged from 1 to 100. Moreover, these score maps are integrated as a recharge potential map using arithmetic average, and this map shows recharge potential in 5 levels, such as very poor, poor, moderate, good and excellent. The result shows that majority of "good" and "excellent" areas is located at the top of the fan. This is because the land use of top-fan is agricultural and its surface soil type is gravel and coarse. The top-fan, which is close to mountain areas, has a higher average annual rainfall than other areas. Also, the aquifer thickness of top-fan is much thicker than other areas. The percentage of the areas ranged as "good" and above is 9.63% of total area, and most areas located at top-fan. As a result, we suggest that the top-fan of study area should be protected and more field surveys are required to accurately delineate the recharge area boundary.

  15. Quantifying Uncertainty in Estimation of Potential Recharge in Tropical and Temperate Catchments using a Crop Model and Microwave Remote Sensing

    Science.gov (United States)

    Krishnan Kutty, S.; Sekhar, M.; Ruiz, L.; Tomer, S. K.; Bandyopadhyay, S.; Buis, S.; Guerif, M.; Gascuel-odoux, C.

    2012-12-01

    Groundwater recharge in a semi-arid region is generally low, but could exhibit high spatial variability depending on the soil type and plant cover. The potential recharge (the drainage flux just beneath the root zone) is found to be sensitive to water holding capacity and rooting depth (Rushton, 2003). Simple water balance approaches for recharge estimation often fail to consider the effect of plant cover, growth phases and rooting depth. Hence a crop model based approach might be better suited to assess sensitivity of recharge for various crop-soil combinations in agricultural catchments. Martinez et al. (2009) using a root zone modelling approach to estimate groundwater recharge stressed that future studies should focus on quantifying the uncertainty in recharge estimates due to uncertainty in soil water parameters such as soil layers, field capacity, rooting depth etc. Uncertainty in the parameters may arise due to the uncertainties in retrieved variables (surface soil moisture and leaf area index) from satellite. Hence a good estimate of parameters as well as their uncertainty is essential for a reliable estimate of the potential recharge. In this study we focus on assessing the sensitivity of crop and soil types on the potential recharge by using a generic crop model STICS. The effect of uncertainty in the soil parameters on the estimates of recharge and its uncertainty is investigated. The multi-layer soil water parameters and their uncertainty is estimated by inversion of STICS model using the GLUE approach. Surface soil moisture and LAI either retrieved from microwave remote sensing data or measured in field plots (Sreelash et al., 2012) were found to provide good estimates of the soil water properties and therefore both these data sets were used in this study to estimate the parameters and the potential recharge for a combination of soil-crop systems. These investigations were made in two field experimental catchments. The first one is in the tropical semi

  16. Grammatical Constructions as Relational Categories.

    Science.gov (United States)

    Goldwater, Micah B

    2017-07-01

    This paper argues that grammatical constructions, specifically argument structure constructions that determine the "who did what to whom" part of sentence meaning and how this meaning is expressed syntactically, can be considered a kind of relational category. That is, grammatical constructions are represented as the abstraction of the syntactic and semantic relations of the exemplar utterances that are expressed in that construction, and it enables the generation of novel exemplars. To support this argument, I review evidence that there are parallel behavioral patterns between how children learn relational categories generally and how they learn grammatical constructions specifically. Then, I discuss computational simulations of how grammatical constructions are abstracted from exemplar sentences using a domain-general relational cognitive architecture. Last, I review evidence from adult language processing that shows parallel behavioral patterns with expert behavior from other cognitive domains. After reviewing the evidence, I consider how to integrate this account with other theories of language development. Copyright © 2017 Cognitive Science Society, Inc.

  17. A Formal Calculus for Categories

    DEFF Research Database (Denmark)

    Cáccamo, Mario José

    This dissertation studies the logic underlying category theory. In particular we present a formal calculus for reasoning about universal properties. The aim is to systematise judgements about functoriality and naturality central to categorical reasoning. The calculus is based on a language which...... extends the typed lambda calculus with new binders to represent universal constructions. The types of the languages are interpreted as locally small categories and the expressions represent functors. The logic supports a syntactic treatment of universality and duality. Contravariance requires a definition...... of universality generous enough to deal with functors of mixed variance. Ends generalise limits to cover these kinds of functors and moreover provide the basis for a very convenient algebraic manipulation of expressions. The equational theory of the lambda calculus is extended with new rules for the definitions...

  18. Seismic Category I Structures Program

    International Nuclear Information System (INIS)

    Endebrock, E.G.; Dove, R.C.; Anderson, C.A.

    1984-01-01

    The Seismic Category I Structures Program currently being carried out at the Los Alamos National Laboratory is sponsored by the Mechanical/Structural Engineering Branch, Division of Engineering Technology of the Nuclear Regulatory Commission (NRC). This project is part of a program designed to increase confidence in the assessment of Category I nuclear power plant structural behavior beyond the design limit. The program involves the design, construction, and testing of heavily reinforced concrete models of auxiliary buildings, fuel-handling buildings, etc., but doe not include the reactor containment building. The overall goal of the program is to supply to the Nuclear Regulatory Commission experimental information and a validated procedure to establish the sensitivity of the dynamic response of these structures to earthquakes of magnitude beyond the design basis earthquake

  19. Different Categories of Business Risk

    Directory of Open Access Journals (Sweden)

    Simona-Valeria TOMA

    2011-11-01

    Full Text Available Every business organisation involves some element of risk. Unmitigated risks can result in lost opportunity, financial losses, loss of reputation, or loss of the right to operate in a jurisdiction. Like any other risk type, understanding business risks is quite important for every business to garner profits instead of facing losses. A business risk is a universal risk type; this means that every business in the world faces business risks. Therefore, it is imperative to understand the different categories of business risk in order to create the appropriate strategies. The aim of this paper is to describe the most important categories of business risks and to make sure that every type of risk receives equal treatment and consideration.

  20. Virtue Ethics: The Misleading Category

    OpenAIRE

    Martha Nussbaum

    1998-01-01

    Virtue ethics is frequently considered to be a single category of ethical theory, and a rival to Kantianismand Utilitarianism. I argue that this approach is a mistake, because both Kantians and Utilitarians can, and do, have an interest in the virtues and the forrnation of character. But even if we focus on the group of ethical theorists who are most commonly called "virtue theorists" because they reject the guidance of both Kantianism and Utilitarianism, and derive inspiration from ancient G...

  1. Virtue Ethics: The Misleading Category

    OpenAIRE

    Nussbaum, Martha

    2013-01-01

    Virtue ethics is frequently considered to be a single category of ethical theory, and a rival to Kantianismand Utilitarianism. I argue that this approach is a mistake, because both Kantians and Utilitarians can, and do, have an interest in the virtues and the forrnation of character. But even if we focus on the group of ethical theorists who are most commonly called "virtue theorists" because they reject the guidance of both Kantianism and Utilitarianism, and derive inspiration from ancient G...

  2. 1999 who's who category index

    International Nuclear Information System (INIS)

    1999-01-01

    A classified index and alphabetical directory of Canadian corporate entities involved in the production, manufacturing, conversion, service, retail sales, research and development, transportation, insurance, legal and communications aspects of propane in Canada is provided. The alphabetical directory section provides the usual business information (name, postal address, phone, fax, e-mail and Internet addresses), names of principal officers, affiliations, products or services produced or marketed, and the category under which the company is listed in the classified index

  3. Recharge and discharge calculations to characterize the groundwater hydrologic balance

    International Nuclear Information System (INIS)

    Liddle, R.G.

    1998-01-01

    Several methods are presented to quantify the ground water component of the hydrologic balance; including (1) hydrograph separation techniques, (2) water budget calculations, (3) spoil discharge techniques, and (4) underground mine inflow studies. Stream hydrograph analysis was used to calculate natural groundwater recharge and discharge rates. Yearly continuous discharge hydrographs were obtained for 16 watersheds in the Cumberland Plateau area of Tennessee. Baseflow was separated from storm runoff using computerized hydrograph analysis techniques developed by the USGS. The programs RECESS, RORA, and PART were used to develop master recession curves, calculate ground water recharge, and ground water discharge respectively. Station records ranged from 1 year of data to 60 years of data with areas of 0.67 to 402 square miles. Calculated recharge ranged from 7 to 28 inches of precipitation while ground water discharge ranged from 6 to 25 inches. Baseflow ranged from 36 to 69% of total flow. For sites with more than 4 years of data the median recharge was 20 inches/year and the 95% confidence interval for the median was 16.4 to 23.8 inches of recharge. Water budget calculations were also developed independently by a mining company in southern Tennessee. Results showed about 19 inches of recharge is available on a yearly basis. A third method used spoil water discharge measurements to calculate average recharge rate to the mine. Results showed 21.5 inches of recharge for this relatively flat area strip mine. In a further analysis it was shown that premining soil recharge rates of 19 inches consisted of about 17 inches of interflow and 2 inches of deep aquifer recharge while postmining recharge to the spoils had almost no interflow component. OSM also evaluated underground mine inflow data from northeast Tennessee and southeast Kentucky. This empirical data showed from 0.38 to 1.26 gallons per minute discharge per unit acreage of underground workings. This is the

  4. What Does the Right Hemisphere Know about Phoneme Categories?

    Science.gov (United States)

    Wolmetz, Michael; Poeppel, David; Rapp, Brenda

    2011-01-01

    Innate auditory sensitivities and familiarity with the sounds of language give rise to clear influences of phonemic categories on adult perception of speech. With few exceptions, current models endorse highly left-hemisphere-lateralized mechanisms responsible for the influence of phonemic category on speech perception, based primarily on results…

  5. Category Formation in Autism: Can Individuals with Autism Form Categories and Prototypes of Dot Patterns?

    Science.gov (United States)

    Gastgeb, Holly Zajac; Dundas, Eva M.; Minshew, Nancy J.; Strauss, Mark S.

    2012-01-01

    There is a growing amount of evidence suggesting that individuals with autism have difficulty with categorization. One basic cognitive ability that may underlie this difficulty is the ability to abstract a prototype. The current study examined prototype and category formation with dot patterns in high-functioning adults with autism and matched…

  6. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  7. Identification of areas of recharge and discharge using Landsat-TM satellite imagery and aerial photography mapping techniques

    Science.gov (United States)

    Salama, R. B.; Tapley, I.; Ishii, T.; Hawkes, G.

    1994-10-01

    Aerial photographs (AP) and Landsat (TM) colour composites were used to map the geomorphology, geology and structures of the Salt River System of Western Australia. Geomorphic features identified are sand plains, dissected etchplain, colluvium, lateritic duricrust and rock outcrops. The hydrogeomorphic units include streams, lakes and playas, palaeochannels and palaeodeltas. The structural features are linear and curvilinear lineaments, ring structures and dolerite dykes. Suture lines control the course of the main river channel. Permeable areas around the circular granitic plutons were found to be the main areas of recharge in the uplands. Recharge was also found to occur in the highly permeable areas of the sandplains. Discharge was shown to be primarily along the main drainage lines, on the edge of the circular sandplains, in depressions and in lakes. The groundwater occurrence and hydrogeological classification of the recharge potential of the different units were used to classify the mapped areas into recharge and discharge zones. The results also show that TM colour composites provide a viable source of data comparable with AP for mapping and delineating areas of recharge and discharge on a regional scale.

  8. Determining the impacts of experimental forest plantation on groundwater recharge in the Nebraska Sand Hills (USA) using chloride and sulfate

    Science.gov (United States)

    Adane, Z. A.; Gates, J. B.

    2015-02-01

    Although impacts of land-use changes on groundwater recharge have been widely demonstrated across diverse environmental settings, most previous research has focused on the role of agriculture. This study investigates recharge impacts of tree plantations in a century-old experimental forest surrounded by mixed-grass prairie in the Northern High Plains (Nebraska National Forest), USA. Recharge was estimated using solute mass balance methods from unsaturated zone cores beneath 10 experimental plots with different vegetation and planting densities. Pine and cedar plantation plots had uniformly lower moisture contents and higher solute concentrations than grasslands. Cumulative solute concentrations were greatest beneath the plots with the highest planting densities (chloride concentrations 225-240 % and sulfate concentrations 175-230 % of the grassland plot). Estimated recharge rates beneath the dense plantations (4-10 mm yr-1) represent reductions of 86-94 % relative to the surrounding native grassland. Relationships between sulfate, chloride, and moisture content in the area's relatively homogenous sandy soils confirm that the unsaturated zone solute signals reflect partitioning between drainage and evapotranspiration in this setting. This study is among the first to explore afforestation impacts on recharge beneath sandy soils and sulfate as a tracer of deep drainage.

  9. Bacterial community and groundwater quality changes in an anaerobic aquifer during groundwater recharge with aerobic recycled water.

    Science.gov (United States)

    Ginige, Maneesha P; Kaksonen, Anna H; Morris, Christina; Shackelton, Mark; Patterson, Bradley M

    2013-09-01

    Managed aquifer recharge offers the opportunity to manage groundwater resources by storing water in aquifers when in surplus and thus increase the amount of groundwater available for abstraction during high demand. The Water Corporation of Western Australia (WA) is undertaking a Groundwater Replenishment Trial to evaluate the effects of recharging aerobic recycled water (secondary treated wastewater subjected to ultrafiltration, reverse osmosis, and ultraviolet disinfection) into the anaerobic Leederville aquifer in Perth, WA. Using culture-independent methods, this study showed the presence of Actinobacteria, Alphaproteobacteria, Bacilli, Betaproteobacteria, Cytophaga, Flavobacteria, Gammaproteobacteria, and Sphingobacteria, and a decrease in microbial diversity with an increase in depth of aquifer. Assessment of physico-chemical and microbiological properties of groundwater before and after recharge revealed that recharging the aquifer with aerobic recycled water resulted in elevated redox potentials in the aquifer and increased bacterial numbers, but reduced microbial diversity. The increase in bacterial numbers and reduced microbial diversity in groundwater could be a reflection of an increased denitrifier and sulfur-oxidizing populations in the aquifer, as a result of the increased availability of nitrate, oxygen, and residual organic matter. This is consistent with the geochemical data that showed pyrite oxidation and denitrification within the aquifer after recycled water recharge commenced. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    Science.gov (United States)

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  11. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode.

    Science.gov (United States)

    Zhu, L M; Lei, A W; Cao, Y L; Ai, X P; Yang, H X

    2013-01-21

    An all-organic rechargeable battery is realized by use of polyparaphenylene as both cathode- and anode-active material. This new battery can operate at a high voltage of 3.0 V with fairly high capacity, offering a renewable and cheaper alternative to conventional batteries.

  12. Web-based global inventory of managed aquifer recharge applications

    NARCIS (Netherlands)

    Stefan, Catalin; Ansems, Nienke

    2017-01-01

    Managed aquifer recharge (MAR) is being successfully implemented worldwide for various purposes: to increase groundwater storage, improve water quality, restore groundwater levels, prevent salt water intrusion, manage water distribution systems, and enhance ecological benefits. To better understand

  13. Impact of recharge water temperature on bioclogging during managed aquifer recharge: a laboratory study

    Science.gov (United States)

    Xia, Lu; Gao, Zongjun; Zheng, Xilai; Wei, Jiuchuan

    2018-04-01

    To investigate the effect of recharge water temperature on bioclogging processes and mechanisms during seasonal managed aquifer recharge (MAR), two groups of laboratory percolation experiments were conducted: a winter test and a summer test. The temperatures were controlled at 5±2 and 15±3 °C, and the tests involved bacterial inoculums acquired from well water during March 2014 and August 2015, for the winter and summer tests, respectively. The results indicated that the sand columns clogged 10 times faster in the summer test due to a 10-fold larger bacterial growth rate. The maximum concentrations of total extracellular polymeric substances (EPS) in the winter test were approximately twice those in the summer test, primarily caused by a 200 μg/g sand increase of both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). In the first half of the experimental period, the accumulation of bacteria cells and EPS production induced rapid bioclogging in both the winter and summer tests. Afterward, increasing bacterial growth dominated the bioclogging in the summer test, while the accumulation of LB-EPS led to further bioclogging in the winter test. The biological analysis determined that the dominant bacteria in experiments for both seasons were different and the bacterial community diversity was 50% higher in the winter test than that for summer. The seasonal inoculums could lead to differences in the bacterial community structure and diversity, while recharge water temperature was considered to be a major factor influencing the bacterial growth rate and metabolism behavior during the seasonal bioclogging process.

  14. Analysis of confidence in continental-scale groundwater recharge estimates for Africa using a distributed water balance model

    Science.gov (United States)

    Mackay, Jonathan; Mansour, Majdi; Bonsor, Helen; Pachocka, Magdalena; Wang, Lei; MacDonald, Alan; Macdonald, David; Bloomfield, John

    2014-05-01

    There is a growing need for improved access to reliable water in Africa as population and food production increases. Currently approximately 300 million people do not have access to a secure source of safe drinking water. To meet these current and future demands, groundwater will need to be increasingly abstracted; groundwater is more reliable than surface water sources due to its relatively long response time to meteorological stresses and therefore is likely to be a more secure water resource in a more variable climate. Recent studies also quantified the volumes of groundwater potentially available which suggest that, if exploited, groundwater could help to meet the demand for fresh water. However, there is still considerable uncertainty as to how these resources may respond in the future due to changes in groundwater recharge and abstraction. Understanding and quantifying groundwater recharge is vital as it forms a primary indicator of the sustainability of underlying groundwater resources. Computational hydrological models provide a means to do this, but the complexity of recharge processes in Africa mean that these simulations are often highly uncertain. This study aims to evaluate our confidence in simulating groundwater recharge over Africa based on a sensitivity analysis using a distributed hydrological model developed by the British Geological Survey, ZOODRM. The model includes land surface, canopy, river, soil and groundwater components. Each component is able to exchange water and as such, forms a distributed water balance of Africa. The components have been parameterised using available spatial datasets of African vegetation, land-use, soil and hydrogeology while the remaining parameters have been estimated by calibrating the model to available river flow data. Continental-scale gridded precipitation and potential evapotranspiration datasets, based on remotely sensed and ground observations, have been used to force the model. Following calibration, the

  15. Wearable textile battery rechargeable by solar energy.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  16. Groundwater recharge and flow on Montserrat, West Indies: Insights from groundwater dating

    OpenAIRE

    Hemmings, Brioch; Gooddy, Daren; Whitaker, Fiona; George Darling, W.; Jasim, Alia; Gottsmann, Joachim

    2015-01-01

    Study region Montserrat, Lesser Antilles, Caribbean. Study focus Analysis of δ2H and δ18O isotopes, and chlorofluorocarbon (CFC) anthropogenic tracers in Montserrat groundwater provides insights into the age and provenance of the spring waters. New hydrological insights δ2H and δ18O analysis indicates uniform recharge elevations for groundwaters on Montserrat. CFC-11 and CFC-12 analysis reveals age differences between isotopically similar, high elevation springs and low eleva...

  17. A category of its own?

    DEFF Research Database (Denmark)

    Elklit, Jørgen; Roberts, Nigel S.

    1996-01-01

    of these systems on the proportionality of the representation of political parties are, indeed, comparable. The four electoral systems were the basis of their countries' general elections during 1994. The results of these elections are used for analyses and discussions of the relative importance of the differences......At first sight, the electoral systems in Denmark, Germany, South Africa and Sweden may seem different and attaempt to categorize them together odd. All four, however, belong to the same category, which Arend Lijphart calls 'proportional representation two-tier districting systems', and the effects...

  18. Functional categories in comparative linguistics

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    , Roger M. 1979. Linguistic knowledge and cultural knowledge: some doubts and speculation. American Anthropologist 81-1, 14-36. Levinson, Stephen C. 1997. From outer to inner space: linguistic categories and non-linguistic thinking. In J. Nuyts and E. Pederson (eds.), Language and Conceptualization, 13......). Furthermore certain ‘ontological categories’ are language-specific (Malt 1995). For example, speakers of Kalam (New Guinea) do not classify the cassowary as a bird, because they believe it has a mythical kinship relation with humans (Bulmer 1967).       In this talk I will discuss the role of functional...

  19. 14 CFR 23.3 - Airplane categories.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories. (a) The normal category is limited to airplanes that have a seating configuration, excluding pilot...

  20. Recharge signal identification based on groundwater level observations.

    Science.gov (United States)

    Yu, Hwa-Lung; Chu, Hone-Jay

    2012-10-01

    This study applied a method of the rotated empirical orthogonal functions to directly decompose the space-time groundwater level variations and determine the potential recharge zones by investigating the correlation between the identified groundwater signals and the observed local rainfall records. The approach is used to analyze the spatiotemporal process of piezometric heads estimated by Bayesian maximum entropy method from monthly observations of 45 wells in 1999-2007 located in the Pingtung Plain of Taiwan. From the results, the primary potential recharge area is located at the proximal fan areas where the recharge process accounts for 88% of the spatiotemporal variations of piezometric heads in the study area. The decomposition of groundwater levels associated with rainfall can provide information on the recharge process since rainfall is an important contributor to groundwater recharge in semi-arid regions. Correlation analysis shows that the identified recharge closely associates with the temporal variation of the local precipitation with a delay of 1-2 months in the study area.

  1. Seasonal variation in natural recharge of coastal aquifers

    Science.gov (United States)

    Mollema, Pauline N.; Antonellini, Marco

    2013-06-01

    Many coastal zones around the world have irregular precipitation throughout the year. This results in discontinuous natural recharge of coastal aquifers, which affects the size of freshwater lenses present in sandy deposits. Temperature data for the period 1960-1990 from LocClim (local climate estimator) and those obtained from the Intergovernmental Panel on Climate Change (IPCC) SRES A1b scenario for 2070-2100, have been used to calculate the potential evapotranspiration with the Thornthwaite method. Potential recharge (difference between precipitation and potential evapotranspiration) was defined at 12 locations: Ameland (The Netherlands), Auckland and Wellington (New Zealand); Hong Kong (China); Ravenna (Italy), Mekong (Vietnam), Mumbai (India), New Jersey (USA), Nile Delta (Egypt), Kobe and Tokyo (Japan), and Singapore. The influence of variable/discontinuous recharge on the size of freshwater lenses was simulated with the SEAWAT model. The discrepancy between models with continuous and with discontinuous recharge is relatively small in areas where the total annual recharge is low (258-616 mm/year); but in places with Monsoon-dominated climate (e.g. Mumbai, with recharge up to 1,686 mm/year), the difference in freshwater-lens thickness between the discontinuous and the continuous model is larger (up to 5 m) and thus important to consider in numerical models that estimate freshwater availability.

  2. Influence of recharge basins on the hydrology of Nassau and Suffolk Counties, Long Island, New York

    Science.gov (United States)

    Seaburn, G.E.; Aronson, D.A.

    1974-01-01

    An investigation of recharge basins on Long Island was made by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation, Nassau County Department of Public Works, Suffolk County Department of Environmental Control, and Suffolk County Water Authority. The major objectives of the study were to (1) catalog basic physical data on the recharge basins in use on Long Island, (2) measure quality and quantity of precipitation and inflow, (3) measure infiltration rates at selected recharge basins, and (4) evaluate regional effects of recharge basins on the hydrologic system of Long Island. The area of study consists of Nassau and Suffolk Counties -- about 1,370 square miles -- in eastern Long Island, N.Y. Recharge basins, numbering more than 2,100 on Long Island in 1969, are open pits in moderately to highly permeable sand and gravel deposits. These pits are used to dispose of storm runoff from residential, industrial, and commercial areas, and from highways, by infiltration of the water through the bottom and sides of the basins. The hydrology of three recharge basins on Long Island -- Westbury, Syosset, and Deer Park basins -- was studied. The precipitation-inflow relation showed that the average percentages of precipitation flowing into each basin were roughly equivalent to the average percentages of impervious areas in the total drainage areas of the basins. Average percentages of precipitation flowing into the basins as direct runoff were 12 percent at the Westbury basin, 10 percent at the Syosset basin, and 7 percent at the Deer Park basin. Numerous open-bottomed storm-water catch basins at Syosset and Deer Park reduced the proportion of inflow to those basins, as compared with the Westbury basin, which has only a few open-bottomed catch basins. Inflow hydrographs for each basin typify the usual urban runoff hydrograph -- steeply rising and falling limbs, sharp peaks, and short time bases. Unit hydrographs for the

  3. Soil Water Balance and Recharge Monitoring at the Hanford Site – FY 2010 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Saunders, Danielle L.; Herrington, Ricky S.; Felmy, Diana

    2010-10-27

    This report summarizes the recharge data collected in FY 2010 at five locations on the Hanford Site in southeastern Washington State. Average monthly precipitation and temperature conditions in FY 2010 were near normal and did not present an opportunity for increased recharge. The recharge monitoring data confirmed those conditions, showing normal behavior in water content, matric head, and recharge rates. Also provided in this report is a strategy for recharge estimation for the next 5 years.

  4. Social Impact of Recharging Activity in Long-Term HRI and Verbal Strategies to Manage User Expectations During Recharge

    Directory of Open Access Journals (Sweden)

    Amol Deshmukh

    2018-04-01

    Full Text Available Social robots perform tasks to help humans in their daily activities. However, if they fail to fulfill expectations this may affect their acceptance. This work investigates the service degradation caused by recharging, during which the robot is socially inactive. We describe two studies conducted in an ecologically valid office environment. In the first long-term study (3 weeks, we investigated the service degradation caused by the recharging behavior of a social robot. In the second study, we explored the social strategies used to manage users’ expectations during recharge. Our findings suggest that the use of verbal strategies (transparency, apology, and politeness can make robots more acceptable to users during recharge.

  5. Aspect as a Communicative Category

    DEFF Research Database (Denmark)

    Durst-Andersen, Per

    2018-01-01

    On the basis of internal evidence from primarily the use of imperfective forms and external evidence from primarily first language acquisition, it is argued that English, Russian, and French aspect differ from one another, because they go back to an obligatory choice among three possible communic......On the basis of internal evidence from primarily the use of imperfective forms and external evidence from primarily first language acquisition, it is argued that English, Russian, and French aspect differ from one another, because they go back to an obligatory choice among three possible...... communicative directions: should a grammatical category be grounded in the speaker's experience of a situation, in the situation referred to or in the hearer as information about the situation? The progressive vs. non-progressive distinction in English is acquired in the present tense of atelic (simplex) verbs...... to the meta-distinction between atelic (simplex) and telic (complex) verbs. It is second-person oriented. The specific order arrived at reflects the Peircean categories of Firstness, Secondness, and Thirdness and their predictions. This can account for the fact that the English and Russian types can be found...

  6. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate

    Science.gov (United States)

    Scholl, M.A.; Cozzarelli, I.M.; Christenson, S.C.

    2006-01-01

    Natural attenuation of contaminants in groundwater depends on an adequate supply of electron acceptors to stimulate biodegradation. In an alluvial aquifer contaminated with leachate from an unlined municipal landfill, the mechanism of recharge infiltration was investigated as a source of electron acceptors. Water samples were collected monthly at closely spaced intervals in the top 2 m of the saturated zone from a leachate-contaminated well and an uncontaminated well, and analyzed for ??18O, ??2H, non-volatile dissolved organic carbon (NVDOC), SO42-, NO3- and Cl-. Monthly recharge amounts were quantified using the offset of the ??18O or ??2H from the local meteoric water line as a parameter to distinguish water types, as evaporation and methanogenesis caused isotopic enrichment in waters from different sources. Presence of dissolved SO42- in the top 1 to 2??m of the saturated zone was associated with recharge; SO42- averaged 2.2??mM, with maximum concentrations of 15??mM. Nitrate was observed near the water table at the contaminated site at concentrations up to 4.6??mM. Temporal monitoring of ??2H and SO42- showed that vertical transport of recharge carried SO42- to depths up to 1.75??m below the water table, supplying an additional electron acceptor to the predominantly methanogenic leachate plume. Measurements of ??34S in SO42- indicated both SO42- reduction and sulfide oxidation were occurring in the aquifer. Depth-integrated net SO42- reduction rates, calculated using the natural Cl- gradient as a conservative tracer, ranged from 7.5 ?? 10- 3 to 0.61??mM??d- 1 (over various depth intervals from 0.45 to 1.75??m). Sulfate reduction occurred at both the contaminated and uncontaminated sites; however, median SO42- reduction rates were higher at the contaminated site. Although estimated SO42- reduction rates are relatively high, significant decreases in NVDOC were not observed at the contaminated site. Organic compounds more labile than the leachate NVDOC may be

  7. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.

    Science.gov (United States)

    Scholl, Martha A; Cozzarelli, Isabelle M; Christenson, Scott C

    2006-08-10

    Natural attenuation of contaminants in groundwater depends on an adequate supply of electron acceptors to stimulate biodegradation. In an alluvial aquifer contaminated with leachate from an unlined municipal landfill, the mechanism of recharge infiltration was investigated as a source of electron acceptors. Water samples were collected monthly at closely spaced intervals in the top 2 m of the saturated zone from a leachate-contaminated well and an uncontaminated well, and analyzed for delta(18)O, delta(2)H, non-volatile dissolved organic carbon (NVDOC), SO(4)(2-), NO(3)(-) and Cl(-). Monthly recharge amounts were quantified using the offset of the delta(18)O or delta(2)H from the local meteoric water line as a parameter to distinguish water types, as evaporation and methanogenesis caused isotopic enrichment in waters from different sources. Presence of dissolved SO(4)(2-) in the top 1 to 2 m of the saturated zone was associated with recharge; SO(4)(2-) averaged 2.2 mM, with maximum concentrations of 15 mM. Nitrate was observed near the water table at the contaminated site at concentrations up to 4.6 mM. Temporal monitoring of delta(2)H and SO(4)(2-) showed that vertical transport of recharge carried SO(4)(2-) to depths up to 1.75 m below the water table, supplying an additional electron acceptor to the predominantly methanogenic leachate plume. Measurements of delta(34)S in SO(4)(2-) indicated both SO(4)(2-) reduction and sulfide oxidation were occurring in the aquifer. Depth-integrated net SO(4)(2-) reduction rates, calculated using the natural Cl(-) gradient as a conservative tracer, ranged from 7.5x10(-3) to 0.61 mM.d(-1) (over various depth intervals from 0.45 to 1.75 m). Sulfate reduction occurred at both the contaminated and uncontaminated sites; however, median SO(4)(2-) reduction rates were higher at the contaminated site. Although estimated SO(4)(2-) reduction rates are relatively high, significant decreases in NVDOC were not observed at the contaminated

  8. Estimation of groundwater recharge to chalk and sandstone aquifers using simple soil models

    Science.gov (United States)

    Ragab, R.; Finch, J.; Harding, R.

    1997-03-01

    On the assumption that the water draining below the root zone is potentially available for groundwater recharge, two current UK methods for estimating annual groundwater recharge have been compared with a new soil model using data from four sites under permanent grass in the UK: two sites representative of the Chalk aquifer at Bridgest Farm (Hampshire) and Fleam Dyke (Cambridgeshire), and two sites on the Triassic sandstone at Bicton College (Devon) and Bacon Hall (Shropshire). A Four Root Layers Model (FRLM), the Penman-Grindley model and the UK Meteorological Office Rainfall and Evaporation Calculation System (MORECS) were used. The new soil model was run with potential evaporation as input both from the MORECS and from the Penman-Monteith equation. The models were run for the Chalk sites both with and without a bypass flow of 15% of rainfall. Bypass was not considered for the sandstone sites. The performance of the models was tested against neutron probes measurements of soil moisture deficits. In addition, the annual groundwater recharge estimated from the models was compared with the published values obtained from the 'zero flux plane' method. Generally, the Penman-Grindley model was more successful in predicting the time for soil to return to its field capacity than in predicting the magnitude of the soil moisture deficit. The annual groundwater recharge was predicted with reasonable accuracy. The MORECS relatively tended to overestimate the soil moisture deficits and to delay the time at which the soil returns to its field capacity. The consequences were underestimates of annual groundwater recharge, owing either to the higher values of potential evaporation calculated from the MORECS or tothe high available water capacity values associated with the soils under consideration. The new soil model (FRLM) predicts the soil moisture deficits successfully and hence is reliable in estimating the annual groundwater recharge. The model is capable of doing this with

  9. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ 18 O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18 O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18 O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ 18 O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18 O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18 O gradients in our groundwater isotope map

  10. Estimating spatially and temporally varying recharge and runoff from precipitation and urban irrigation in the Los Angeles Basin, California

    Science.gov (United States)

    Hevesi, Joseph A.; Johnson, Tyler D.

    2016-10-17

    /yr) accounted for 66 percent of the combined water inflow of 551 mm/yr, including 488 mm/yr from precipitation and 63 mm/yr from urban irrigation. The simulated ET rate varied from a minimum of 0 mm/yr for impervious areas to high values of more than 1,000 mm/yr for many areas, including the south-facing slopes of the San Gabriel Mountains, stream channels underlain by permeable soils and thick root zones, and pervious locations receiving inflows both from urban irrigation and surface water. Runoff was the next largest outflow, averaging 145 mm/yr for the 100-year period, or 26 percent of the combined precipitation and urban-irrigation inflow. Recharge averaged 45 mm/yr, or about 8 percent of the combined inflow from precipitation and urban irrigation.Simulation results indicated that recharge in response to urban irrigation was an important component of spatially distributed recharge, contributing an average of 56 percent of the total recharge to the eight LABWM subdomains containing the Los Angeles groundwater study area. The 100‑year average recharge rate for the eight subdomains was 41 mm/yr, or 8,473 hectare-meters per year (ha-m/yr), with urban irrigation included in the simulation compared to a recharge rate of 18 mm/yr, or 3,741 ha-m/yr, with urban irrigation excluded. In contrast to recharge, the effect of urban irrigation on runoff was slight; runoff was 72,667 ha-m/yr with urban irrigation included compared to 72,618 ha-m/yr with urban irrigation excluded, an increase of only 48 ha-m/yr (about 0.1 percent).Simulation results also indicated that potential recharge from hilly drainages outside of, but bordering and tributary to, the lower-lying area of the Los Angeles groundwater study area, in this study referred to as mountain-front recharge, could provide an important contribution to the total recharge for the groundwater basins. The time-averaged recharge rate was similar to the combined direct and mountain-front recharge components estimated in a previous study

  11. Source of gross-alpha radioactivity anomalies in recharge wells, central Florida phosphate district. Final report

    International Nuclear Information System (INIS)

    Oural, C.R.; Brooker, H.R.; Upchurch, S.B.

    1986-01-01

    The central Florida phosphate industry utilizes recharge wells to mitigate withdrawals of water from the Florida aquifer and to dewater the surficial aquifer prior to mining. From a water-management point of view, these wells are efficient and serve a vital function. Recent monitoring of the radiation environment in these wells, however, casts doubts on the safety of the wells. While most of the wells conform to state and federal standards for radium, gross-alpha radiation frequently exceeds standards. The purpose of the study was to determine the radionuclide(s) responsible for the high gross-alpha radiation and to identify a method for sampling of the recharge wells that would standardize data across the phosphate district. It was found that excess gross alpha is primarily due to polonium-210. Since gross alpha and polonium-210 measurements are quite sensitive to methods of sample collections, preservation and analyses, standard procedures for sample processing are presented in the report

  12. VOCl as a Cathode for Rechargeable Chloride Ion Batteries.

    Science.gov (United States)

    Gao, Ping; Reddy, M Anji; Mu, Xiaoke; Diemant, Thomas; Zhang, Le; Zhao-Karger, Zhirong; Chakravadhanula, Venkata Sai Kiran; Clemens, Oliver; Behm, R Jürgen; Fichtner, Maximilian

    2016-03-18

    A novel room temperature rechargeable battery with VOCl cathode, lithium anode, and chloride ion transporting liquid electrolyte is described. The cell is based on the reversible transfer of chloride ions between the two electrodes. The VOCl cathode delivered an initial discharge capacity of 189 mAh g(-1) . A reversible capacity of 113 mAh g(-1) was retained even after 100 cycles when cycled at a high current density of 522 mA g(-1) . Such high cycling stability was achieved in chloride ion batteries for the first time, demonstrating the practicality of the system beyond a proof of concept model. The electrochemical reaction mechanism of the VOCl electrode in the chloride ion cell was investigated in detail by ex situ X-ray diffraction (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results confirm reversible deintercalation-intercalation of chloride ions in the VOCl electrode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Measuring artificial recharge with fiber optic distributed temperature sensing.

    Science.gov (United States)

    Becker, Matthew W; Bauer, Brian; Hutchinson, Adam

    2013-01-01

    Heat was used as a tracer to measure infiltration rates from a recharge basin. The propagation of diurnal oscillation of surface water temperature into the basin bed was monitored along a transect using Fiber Optic Distributed Temperature Sensing (FODTS). The propagation rate was related to downward specific discharge using standard theory of heat advection and dispersion in saturated porous media. An estimate of the temporal variation of heat propagation was achieved using a wavelet transform to find the phase lag between the surface temperature diurnal oscillation and the correlated oscillation at 0.33 and 0.98 m below the bed surface. The wavelet results compared well to a constant velocity model of thermal advection and dispersion during periods of relatively constant discharge rates. The apparent dispersion of heat was found to be due primarily to hydrodynamic mechanisms rather than thermal diffusion. Specific discharge estimates using the FODTS technique also compared well to water balance estimates over a four month period, although there were occasional deviations that have yet to be adequately explained. The FODTS technique is superior to water balance in that it produces estimates of infiltration rate every meter along the cable transect, every half hour. These high resolution measurements highlighted areas of low infiltration and demonstrated the degradation of basin efficiency due to source waters of high suspended solids. FODTS monitoring promises to be a useful tool for diagnosing basin performance in an era of increasing groundwater demand. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  14. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry.

    Science.gov (United States)

    Lu, Ke; Hu, Ziyu; Ma, Jizhen; Ma, Houyi; Dai, Liming; Zhang, Jintao

    2017-09-13

    Graphitic carbons have been used as conductive supports for developing rechargeable batteries. However, the classic ion intercalation in graphitic carbon has yet to be coupled with extrinsic redox reactions to develop rechargeable batteries. Herein, we demonstrate the preparation of a free-standing, flexible nitrogen and phosphorus co-doped hierarchically porous graphitic carbon for iodine loading by pyrolysis of polyaniline coated cellulose wiper. We find that heteroatoms could provide additional defect sites for encapsulating iodine while the porous carbon skeleton facilitates redox reactions of iodine and ion intercalation. The combination of ion intercalation with redox reactions of iodine allows for developing rechargeable iodine-carbon batteries free from the unsafe lithium/sodium metals, and hence eliminates the long-standing safety issue. The unique architecture of the hierarchically porous graphitic carbon with heteroatom doping not only provides suitable spaces for both iodine encapsulation and cation intercalation but also generates efficient electronic and ionic transport pathways, thus leading to enhanced performance.Carbon-based electrodes able to intercalate Li + and Na + ions have been exploited for high performing energy storage devices. Here, the authors combine the ion intercalation properties of porous graphitic carbons with the redox chemistry of iodine to produce iodine-carbon batteries with high reversible capacities.

  15. Standardization of radioactive waste categories

    International Nuclear Information System (INIS)

    1970-01-01

    A large amount of information about most aspects of radioactive waste management has been accumulated and made available to interested nations in recent years. The efficiency of this service has been somewhat hampered because the terminology used to describe the different types of radioactive waste has varied from country to country and indeed from installation to installation within a given country. This publication is the outcome of a panel meeting on Standardization of Radioactive Waste Categories. It presents a simple standard to be used as a common language between people working in the field of waste management at nuclear installations. The purpose of the standard is only to act as a practical tool for increasing efficiency in communicating, collecting and assessing technical and economical information in the common interest of all nations and the developing countries in particular. 20 refs, 1 fig., 3 tabs

  16. MO-Co@N-Doped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn-Air Battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Biaohua [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029 P. R. China; He, Xiaobo [Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164 P. R. China; Yin, Fengxiang [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164 P. R. China; Wang, Hao [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Liu, Di-Jia [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Shi, Ruixing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Chen, Jinnan [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China; Yin, Hongwei [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 P. R. China

    2017-06-14

    A highly efficient bifunctional oxygen catalyst is required for practical applications of fuel cells and metal-air batteries, as oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are their core electrode reactions. Here, the MO-Co@ N-doped carbon (NC, M = Zn or Co) is developed as a highly active ORR/OER bifunctional catalyst via pyrolysis of a bimetal metal-organic framework containing Zn and Co, i.e., precursor (CoZn). The vital roles of inactive Zn in developing highly active bifunctional oxygen catalysts are unraveled. When the precursors include Zn, the surface contents of pyridinic N for ORR and the surface contents of Co-N-x and Co3+/Co2+ ratios for OER are enhanced, while the high specific surface areas, high porosity, and high electrochemical active surface areas are also achieved. Furthermore, the synergistic effects between Zn-based and Co-based species can promote the well growth of multiwalled carbon nanotubes (MWCNTs) at high pyrolysis temperatures (>= 700 degrees C), which is favorable for charge transfer. The optimized CoZn-NC-700 shows the highly bifunctional ORR/OER activity and the excellent durability during the ORR/OER processes, even better than 20 wt% Pt/C (for ORR) and IrO2 (for OER). CoZn-NC-700 also exhibits the prominent Zn-air battery performance and even outperforms the mixture of 20 wt% Pt/C and IrO2.

  17. Groundwater recharge and discharge scenarios for a nuclear waste repository in bedded salt

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Steinborn, T.L.; Thorson, L.D.

    1979-01-01

    Twelve potential scenarios have been identified whereby groundwater may enter or exit a nuclear waste repository in bedded salt. The 12 scenarios may be grouped into 4 categories or failure modes: dissolution, fracturing, voids, and penetration. Dissolution modes include breccia pipe and breccia blanket formation, and dissolution around boreholes. Fracture modes include flow through preexisting or new fractures and the effects of facies changes. Voids include interstitial voids (pores) and fluid inclusions. Penetration modes include shaft and borehole sealing failures, undetected boreholes, and new mines or wells constructed after repository decommissioning. The potential importance of thermal effects on groundwater flow patterns and on the recharge-discharge process is discussed. The appropriate levels of modeling effort, and the interaction between the adequacy of the geohydrologic data base and the warranted degree of model complexity are also discussed

  18. Benefits and Economic Costs of Managed Aquifer Recharge in California

    Directory of Open Access Journals (Sweden)

    Debra Perrone

    2016-07-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss2art4Groundwater management is important and challenging, and nowhere is this more evident than in California. Managed aquifer recharge (MAR projects can play an important role in ensuring California manages its groundwater sustainably. Although the benefits and economic costs of surface water storage have been researched extensively, the benefits and economic costs of MAR have been little researched. Historical groundwater data are sparse or proprietary within the state, often impairing groundwater analyses. General obligation bonds from ballot propositions offer a strategic means of mining information about MAR projects, because the information is available publicly. We used bond-funding applications to identify anticipated MAR project benefits and proposed economic costs. We then compared these costs with actual project costs collected from a survey, and identified factors that promote or limit MAR. Our analysis indicates that the median proposed economic cost for MAR projects in California is $410 per acre-foot per year ($0.33 per cubic meter per year. Increasing Water Supply, Conjunctive Use, and Flood Protection are the most common benefits reported. Additionally, the survey indicates that (1 there are many reported reasons for differences between proposed and actual costs ($US 2015 and (2 there is one primary reason for differences between proposed recharge volumes and actual recharge volumes (AFY: availability of source water for recharge. Although there are differences between proposed and actual costs per recharge volume ($US 2015/AFY, the ranges for proposed costs per recharge volume and actual costs per recharge volume for the projects surveyed generally agree. The two most important contributions to the success of a MAR project are financial support and good communication with stakeholders.

  19. Removal of organic micropollutants in an artificial recharge system

    Science.gov (United States)

    Valhondo, C.; Nödler, K.; Köck-Schulmeyer, M.; Hernandez, M.; Licha, T.; Ayora, C.; Carrera, J.

    2012-04-01

    Emerging contaminants including pharmaceutically active compounds (PhACs), personal care products (PCPs) and pesticides are increasingly being identified in the environment. Emerging pollutants and their transformation products show low concentration in the environment (ng/L), but the effects of the mixtures and lifelong exposure to humans are currently unknown. Many of these contaminants are removed under aerobic conditions in water treatment plants. However, several pharmaceuticals and metabolites present in wastewater are not eliminated by conventional treatment processes. Several lab studies, however, show that the behaviour of many of these micropollutants is affected by the dominant redox conditions. However, data from field experiments are limited and sometimes contradictory. Artificial recharge is a widespread technology to increase the groundwater resources. In this study we propose a design to enhance the natural remediation potential of the aquifer with the installation of a reactive layer at the bottom of the infiltration pond. This layer is a mixture of compost, aquifer material, clay and iron oxide. This layer is intended to provide an extra amount of DOC to the recharge water and to promote biodegradation by means of the development of different redox zones along the travel path through the unsaturated zone and within the aquifer. Moreover, compost, clay and iron oxide of the layer are assumed to increase sorption surfaces for neutral, cationic and anionic compounds, respectively. The infiltration system is sited in Sant Vicenç dels Horts (Barcelona, Spain). It consists of a decantation pond, receiving raw water from the Llobregat River (highly affected from treatment plant effluents), and an infiltration pond (5600 m2). The infiltration rate is around 1 m3/m2/day. The system is equipped with a network of piezometers, suction cups and tensiometers. Infiltration periods have been performed before and after the installation of the reactive layer

  20. Transitioning Groundwater from an Extractive Resource to a Managed Water Storage Resource: Geology and Recharge in Sedimentary Basins

    Science.gov (United States)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders

  1. Impact of sub-horizontal discontinuities and vertical heterogeneities on recharge processes in a weathered crystalline aquifer in southern India

    Science.gov (United States)

    Nicolas, Madeleine; Selles, Adrien; Bour, Olivier; Maréchal, Jean-Christophe; Crenner, Marion; Wajiduddin, Mohammed; Ahmed, Shakeel

    2017-04-01

    In the face of increasing demands for irrigated agriculture, many states in India are facing water scarcity issues, leading to severe groundwater depletion. Because perennial water resources in southern India consist mainly of crystalline aquifers, understanding how recharge takes place and the role of preferential flow zones in such heterogeneous media is of prime importance for successful and sustainable aquifer management. Here we investigate how vertical heterogeneities and highly transmissive sub-horizontal discontinuities may control groundwater flows and recharge dynamics. Recharge processes in the vadose zone were examined by analysing the propagation of an infiltration front and mass transfers resulting from the implementation of a managed aquifer recharge (MAR) structure. Said structure was set up in the Experimental Hydrogeological Park in Telangana (Southern India), a well-equipped and continuously monitored site, which is periodically supplied with surface water deviated from the nearby Musi river, downstream of Hyderabad. An initial volume balance equation was applied to quantify the overall inputs from the MAR structure into the groundwater system, which was confirmed using a chloride mass balance approach. To understand how this incoming mass is then distributed within the aquifer, we monitored the evolution of water volumes in the tank, and the resulting lateral propagation front observed in the surrounding borehole network. Borehole logs of temperature and conductivity were regularly performed to identify preferential flow paths. As a result we observed that mass transfers take place in the way of preferential lateral flow through the most transmissive zones of the profile. These include the interface between the lower portion of the upper weathered horizon (the saprolite) and the upper part of the underlying fissured granite, as well as the first flowing fractures. This leads to a rapid lateral transfer of recharge, which allows quick

  2. Estimation of Groundwater Recharge in a Japanese Headwater Area by Intensive Collaboration of Field Survey and Modelling Work

    Science.gov (United States)

    Yano, S.; Kondo, H.; Tawara, Y.; Yamada, T.; Mori, K.; Yoshida, A.; Tada, K.; Tsujimura, M.; Tokunaga, T.

    2017-12-01

    It is important to understand groundwater systems, including their recharge, flow, storage, discharge, and withdrawal, so that we can use groundwater resources efficiently and sustainably. To examine groundwater recharge, several methods have been discussed based on water balance estimation, in situ experiments, and hydrological tracers. However, few studies have developed a concrete framework for quantifying groundwater recharge rates in an undefined area. In this study, we established a robust method to quantitatively determine water cycles and estimate the groundwater recharge rate by combining the advantages of field surveys and model simulations. We replicated in situ hydrogeological observations and three-dimensional modeling in a mountainous basin area in Japan. We adopted a general-purpose terrestrial fluid-flow simulator (GETFLOWS) to develop a geological model and simulate the local water cycle. Local data relating to topology, geology, vegetation, land use, climate, and water use were collected from the existing literature and observations to assess the spatiotemporal variations of the water balance from 2011 to 2013. The characteristic structures of geology and soils, as found through field surveys, were parameterized for incorporation into the model. The simulated results were validated using observed groundwater levels and resulted in a Nash-Sutcliffe Model Efficiency Coefficient of 0.92. The results suggested that local groundwater flows across the watershed boundary and that the groundwater recharge rate, defined as the flux of water reaching the local unconfined groundwater table, has values similar to the level estimated in the `the lower soil layers on a long-term basis. This innovative method enables us to quantify the groundwater recharge rate and its spatiotemporal variability with high accuracy, which contributes to establishing a foundation for sustainable groundwater management.

  3. Crystallization Conditions at Cascade and Other Arc Volcanoes: The Role of Recharge, and Ultimate, Proximal and Immediate Causes of Eruption

    Science.gov (United States)

    Putirka, K. D.

    2016-12-01

    A number of hypotheses have been offered to explain why volcanoes erupt. These include magma mixing, mafic recharge, or partial crystallization, any of which can drive parts or all of a system to vapor saturation, and so add to a magma's buoyancy. Age dates indicate long pre-eruption storage times for felsic magmas erupted at arcs, indicating that mafic recharge magmas, which can reinvigorate such systems, is a possible eruption trigger. However, plutonic systems reveal numerous recharge events that have no obvious ties to eruption (Coint et al. 2013; Putirka et al. 2014). And crystallization conditions at some arc systems support the implicit view, that recharge might be a necessary, but not a sufficient condition for eruption. At several Cascade volcanoes, Cpx and Amp crystals record coolings of 100-300oC. The Cpx grains derive exclusively from mafic enclaves, while Amp grains derive from both host and enclave materials. These considerable coolings call for a time lag following recharge, and indicate that vapor saturation is a proximal, although not necessarily an immediate cause of eruption. But we cannot discount recharge altogether. At the Cascades and at other arcs, Cpx crystalizes throughout the middle and upper crust, mostly from the surface down to 15 km. And high Fo olivine grains provide evidence for very hot magmas that intrude the upper mantle and lower crust, and possibly the middle crust, if hydrous. Volcanic pathways thus clearly extend into the middle crust, and at times, well below the Moho. It is unclear to what extent these deep pathways are hydraulically connected to the surface, or the role of deep-seated processes in initiating or sustaining eruptions. Progress in understanding these pathways, and triggering mechanisms, requires our differentiating "ultimate", "proximal" and "immediate" causes, and determining which of various magmatic processes provide necessary or sufficient conditions for eruption.

  4. Phosphidation of Li4Ti5O12 nanoparticles and their electrochemical and biocompatible superiority for lithium rechargeable batteries.

    Science.gov (United States)

    Jo, Mi Ru; Nam, Ki Min; Lee, Youngmin; Song, Kyeongse; Park, Joon T; Kang, Yong-Mook

    2011-11-07

    Phosphidated-Li(4)Ti(5)O(12) shows high capacity with a significantly enhanced kinetics opening new possibilities for ultra-fast charge/discharge of lithium rechargeable batteries. The in vitro cytotoxicity test proves its fabulous cell viability, indicating that the toxicity problem of nanoparticles can be also solved by phosphidation. This journal is © The Royal Society of Chemistry 2011

  5. California GAMA Special Study: Importance of River Water Recharge to Selected Groundwater Basins

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ate [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, Jean E. [California State Univ. East Bay (CalState), Hayward, CA (United States); Singleton, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-21

    River recharge represents 63%, 86% and 46% of modern groundwater in the Mojave Desert, Owens Valley, and San Joaquin Valley, respectively. In pre-modern groundwater, river recharge represents a lower fraction: 36%, 46%, and 24% respectively. The importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a total increase of recharge of 40%, caused by river water irrigation return flows. This emphasizes the importance of recharge of river water via irrigation for renewal of groundwater resources. Mountain front recharge and local precipitation contribute to recharge of desert groundwater basins in part as the result of geological features focusing scarce precipitation promoting infiltration. River water recharges groundwater systems under lower temperatures and with larger water table fluctuations than local precipitation recharge. Surface storage is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast recharge, compared to the large capacity for subsurface storage. Groundwater banking of seasonal surface water flows therefore appears to be a natural and promising method for increasing the resilience of water supply systems. The distinct isotopic and noble gas signatures of river water recharge, compared to local precipitation recharge, reflecting the source and mechanism of recharge, are valuable constraints for numerical flow models.

  6. Extending Wireless Rechargeable Sensor Network Life without Full Knowledge.

    Science.gov (United States)

    Najeeb, Najeeb W; Detweiler, Carrick

    2017-07-17

    When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes' power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values.

  7. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    Science.gov (United States)

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life.

  8. Policy and Economics of Managed Aquifer Recharge and Water Banking

    Directory of Open Access Journals (Sweden)

    Sharon B. Megdal

    2015-02-01

    Full Text Available Managed Aquifer Recharge (MAR and water banking are of increasing importance to water resources management. MAR can be used to buffer against drought and changing or variable climate, as well as provide water to meet demand growth, by making use of excess surface water supplies and recycled waters. Along with hydrologic and geologic considerations, economic and policy analyses are essential to a complete analysis of MAR and water banking opportunities. The papers included in this Special Issue fill a gap in the literature by revealing the range of economic and policy considerations relevant to the development and implementation of MAR programs. They illustrate novel techniques that can be used to select MAR locations and the importance and economic viability of MAR in semi-arid to arid environments. The studies explain how MAR can be utilized to meet municipal and agricultural water demands in water-scarce regions, as well as assist in the reuse of wastewater. Some papers demonstrate how stakeholder engagement, ranging from consideration of alternatives to monitoring, and multi-disciplinary analyses to support decision-making are of high value to development and implementation of MAR programs. The approaches discussed in this collection of papers, along with the complementary and necessary hydrologic and geologic analyses, provide important inputs to water resource managers.

  9. Evaluating groundwater recharge variations under climate change in an endorheic basin of the Andean plateau

    Science.gov (United States)

    Blin, N.; Hausner, M. B.; Suarez, F. I.

    2017-12-01

    In arid and semi-arid regions, where surface water and precipitations are scarce, groundwater is the main source of drinking water that sustains human and natural ecosystems. Therefore, it is very important to consider the potential impacts of climate change that threaten the availability of this resource. The purpose of this study is to investigate the variations caused by climate change on the recharge of the regional groundwater aquifer at the Huasco salt flat, located in the Chilean Andean plateau. The Huasco salt flat basin has ecosystems sustained by wetlands that depend on the groundwater levels of this aquifer. Due to this reason, the Chilean government has declared this zone as protected. Hence, the assurance of the future availability of the groundwater resource becomes extremely important. The sustainable management of this resource requires reasonable estimates of recharge and evapotranspiration, which are highly dependent on the characteristics and processes occurring in the vadose zone, i.e., topography, soil type and land use, and their temporal and spatial variations are significant in arid regions. With this aim, a three-dimensional groundwater model, implemented in SWAT-MODFLOW, was developed to couple the saturated system with the vadose zone. The model was calibrated and validated using historic data. General circulation models (GCMs) were used as scenarios inputs of recharge to the groundwater model. Future simulations were run by applying an offset to the historic air temperatures and to the precipitation. These offsets were determined using a delta hybrid approach based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble archive. The obtained results were downscaled to the 0.125º latitude x 0.125º longitude grid cell containing the basin of the Huasco salt flat. The hybrid approach considered the 10th, 50th and 90th percentiles of the projected temperature and precipitation output as three scenarios of climate

  10. Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab.

    Science.gov (United States)

    Keesari, Tirumalesh; Sharma, Diana A; Rishi, Madhuri S; Pant, Diksha; Mohokar, Hemant V; Jaryal, Ajay Kumar; Sinha, U K

    2017-11-01

    Groundwater samples collected from the alluvial aquifers of southwest Punjab, both shallow and deep zones were measured for environmental tritium ( 3 H) and stable isotopes ( 2 H and 18 O) to evaluate the source of recharge and aquifer dynamics. The shallow groundwater shows wide variation in isotopic signature (δ 18 O: -11.3 to -5.0‰) reflecting multiple sources of recharge. The average isotopic signature of shallow groundwaters (δ 18 O: -6.73 ± 1.03‰) is similar to that of local precipitation (-6.98 ± 1.66‰) indicating local precipitation contributes to a large extent compared to other sources. Other sources have isotopically distinct signatures due to either high altitude recharge (canal sources) or evaporative enrichment (irrigation return flow). Deep groundwater shows relatively depleted isotopic signature (δ 18 O: -8.6‰) and doesn't show any evaporation effect as compared to shallow zone indicating recharge from precipitation occurring at relatively higher altitudes. Environmental tritium indicates that both shallow ( 3 H: 5 - 10 T.U.) and deeper zone ( 3 H: 1.5 - 2.5 T.U.) groundwaters are modern. In general the inter-aquifer connections seem to be unlikely except a few places. Environmental isotope data suggests that shallow groundwater is dynamic, local and prone to changes in land use patterns while deep zone water is derived from distant sources, less dynamic and not impacted by surface manifestations. A conceptual groundwater flow diagram is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries

    Science.gov (United States)

    Armstrong, A. Robert; Bruce, Peter G.

    1996-06-01

    RECHARGEABLE lithium batteries can store more than twice as much energy per unit weight and volume as other rechargeable batteries1,2. They contain lithium ions in an electrolyte, which shuttle back and forth between, and are intercalated by, the electrode materials. The first commercially successful rechargeable lithium battery3, introduced by the Sony Corporation in 1990, consists of a carbon-based negative electrode, layered LiCoO2 as the positive electrode, and a non-aqueous liquid electrolyte. The high cost and toxicity of cobalt compounds, however, has prompted a search for alternative materials that intercalate lithium ions. One such is LiMn2O4, which has been much studied as a positive electrode material4-7 the cost of manganese is less than 1% of that of cobalt, and it is less toxic. Here we report the synthesis and electrochemical performance of a new material, layered LiMnO2, which is structurally analogous to LiCoO2. The charge capacity of LiMnO2 (~270mAhg-1) compares well with that of both LiCoO2 and LiMn2O4, and preliminary results indicate good stability over repeated charge-discharge cycles.

  12. A rechargeable Na–CO 2 /O 2 battery enabled by stable nanoparticle hybrid electrolytes

    KAUST Repository

    Xu, Shaomao

    2014-09-10

    © the Partner Organisations 2014. We report on rechargeable batteries that use metallic sodium as the anode, a mixture of CO2 and O2 as the active material in the cathode, and an organic-inorganic hybrid liquid as electrolyte. The batteries are attractive among energy storage technologies because they provide a mechanism for simultaneously capturing CO2 emissions while generating electrical energy. Through in and ex situ chemical analysis of the cathode we show that NaHCO3 is the principal discharge product, and that its relative instability permits cell recharging. By means of differential electrochemical mass spectrometry (DEMS) based on 12C and 13C we further show that addition of as little as 10% of 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone)imide ionic liquid tethered to SiO2 nanoparticles extends the high-voltage stability of the electrolyte by at least 1 V, allowing recharge of the Na-CO2/O2 cells. This journal is

  13. Increasing the utility of regional water table maps: a new method for estimating groundwater recharge

    Science.gov (United States)

    Gilmore, T. E.; Zlotnik, V. A.; Johnson, M.

    2017-12-01

    Groundwater table elevations are one of the most fundamental measurements used to characterize unconfined aquifers, groundwater flow patterns, and aquifer sustainability over time. In this study, we developed an analytical model that relies on analysis of groundwater elevation contour (equipotential) shape, aquifer transmissivity, and streambed gradient between two parallel, perennial streams. Using two existing regional water table maps, created at different times using different methods, our analysis of groundwater elevation contours, transmissivity and streambed gradient produced groundwater recharge rates (42-218 mm yr-1) that were consistent with previous independent recharge estimates from different methods. The three regions we investigated overly the High Plains Aquifer in Nebraska and included some areas where groundwater is used for irrigation. The three regions ranged from 1,500 to 3,300 km2, with either Sand Hills surficial geology, or Sand Hills transitioning to loess. Based on our results, the approach may be used to increase the value of existing water table maps, and may be useful as a diagnostic tool to evaluate the quality of groundwater table maps, identify areas in need of detailed aquifer characterization and expansion of groundwater monitoring networks, and/or as a first approximation before investing in more complex approaches to groundwater recharge estimation.

  14. Seasonal Variation of Infiltration Rates in a Managed Aquifer Recharge System: A Belgian Example

    Science.gov (United States)

    Samanta, S.; Sheng, Z.; Munster, C. L.; Houtte, E. V.

    2017-12-01

    Managed Aquifer Recharge (MAR) is a powerful tool in addressing water resources management issues. The Torreele water reuse facility is using MAR to address the problem of water sustainability in a coastal aquifer of Belgium. The Torreele MAR facility uses infiltration ponds to maintain the groundwater level and to prevent saltwater intrusion into the aquifer. The source of recharge is treated wastewater from the Torreele wastewater treatment plant (TWWTP) located 1.2 km inland. The TWWTP uses a state-of-the-art filtration mechanism with a combination of ultrafiltration (UF) and Reverse Osmosis (RO) techniques to assure that recharge water is of very high quality. Data collected at the Torreele MAR facility indicates reduced infiltration rates during the winter season when pond water temperatures vary from 1 to 10ºC. The proposed hypothesis for these lower infiltration rates may be a reduction in hydraulic conductivity due to changes in water viscosity. This study involves the determination of relationship between water temperature, infiltration rates, and hydraulic conductivity at the Torreele MAR facility. The results of this study will lead to an effective administration of the facility and provide an extensive understanding of the system.

  15. Evaluating the performance of water purification in a vegetated groundwater recharge basin maintained by short-term pulsed infiltration events.

    Science.gov (United States)

    Mindl, Birgit; Hofer, Julia; Kellermann, Claudia; Stichler, Willibald; Teichmann, Günter; Psenner, Roland; Danielopol, Dan L; Neudorfer, Wolfgang; Griebler, Christian

    2015-01-01

    Infiltration of surface water constitutes an important pillar in artificial groundwater recharge. However, insufficient transformation of organic carbon and nutrients, as well as clogging of sediments often cause major problems. The attenuation efficiency of dissolved organic carbon (DOC), nutrients and pathogens versus the risk of bioclogging for intermittent recharge were studied in an infiltration basin covered with different kinds of macrovegetation. The quality and concentration of organic carbon, major nutrients, as well as bacterial biomass, activity and diversity in the surface water, the porewater, and the sediment matrix were monitored over one recharge period. Additionally, the numbers of viral particles and Escherichia coli were assessed. Our study showed a fast establishment of high microbial activity. DOC and nutrients have sustainably been reduced within 1.2 m of sediment passage. Numbers of E. coli, which were high in the topmost centimetres of sediment porewater, dropped below the detection limit. Reed cover was found to be advantageous over bushes and trees, since it supported higher microbial activities along with a good infiltration and purification performance. Short-term infiltration periods of several days followed by a break of similar time were found suitable for providing high recharge rates, and good water purification without the risk of bioclogging.

  16. Quantifying and modelling the contribution of streams that recharge the Querença-Silves aquifer in the south of Portugal

    Directory of Open Access Journals (Sweden)

    N. Salvador

    2012-11-01

    Full Text Available The water balance of the mesocenozoic aquifers of the Algarve, in the south of Portugal has traditionally been estimated considering only direct ("autogenic" recharge from rainfall occurring in the area of the aquifers. Little importance has been attributed to so-called allogenic recharge, originating from streambed infiltration from runoff generated outside the aquifers, particularly in the Palaeozoic rocks to the north where runoff is high. The Querença-Silves (QS aquifer is the most important aquifer of the region both for irrigation and public water supply. Several important and sensitive surface/groundwater ecotones and associated groundwater dependent ecosystems exist at the springs of the natural discharge areas of the aquifer system. A numerical flow model has been in constant development over the last few years and currently is able to reproduce the aquifer's responses to estimated direct recharge and abstraction for the years 2001–2010. However, recharge calculations for the model do not take into account allogenic recharge infiltration along influent reaches of streams. The quantification of allogenic recharge may further improve the assessment of water availability and exploitation risks. In this paper an attempt is made to quantify the average annual contribution of allogenic recharge to the QS aquifer, based on monitoring data of the principal water courses that cross the aquifer system. Significant uncertainties related to surface runoff generated within the aquifer area, as well as areal recharge were identified and the consequences for the optimization of spatial distribution of transmissivity in the groundwater flow model are also addressed.

  17. Electrochemical performances of LiNi1−xMnxPO4 (x = 0.05–0.2) olivine cathode materials for high voltage rechargeable lithium ion batteries

    DEFF Research Database (Denmark)

    Karthikprabhu, S.; Karuppasamy, K.; Vikraman, Dhanasekaran

    2018-01-01

    This study demonstrated to synthesis of carbon-free lithium nickel phosphate (LiNiPO4) and its analogue of manganese doped LiNi1−xMnxPO4 (x = 0.05–0.2) cathode materials by a facile polyol method and their suitability for use in high voltage lithium ion batteries (LIBs). The physicochemical...

  18. Antisocial behavior: Dimension or category(ies?

    Directory of Open Access Journals (Sweden)

    Biro Mikloš

    2008-01-01

    Full Text Available Classificatory systems (DSM-IV, ICD-10 use different criteria for defining a rather common antisocial disorder, traditionally referred as psychopathy. Most empirical studies of this phenomenon use Cleckley's operational definition that was applied and amended in Hare's revised Psychopathy Checklist (PCL-R. In modern literature, the fact that there is less than a perfect correspondence between classificatory systems and Hare's PCL-R is often cited as an indication that antisocial behavior is not confined to a distinct category of people but is rather a continuous personality dimension. In order to further elucidate the nosology of antisocial behaviors, a Psychopathy Assessment Questionnaire (PAQ based on Cleckley - Hare's criteria and consisting of 40 binary items was administered to 339 men (135 prisoners and 204 members of the general population. Four distinct clusters of respondents were identified by means of hierarchical cluster analysis: Psychopathic type (characterized by high positive scores on dimension of Unemotionality; Antisocial type (characterized by high positive scores on Social deviance dimension; Adapted type (characterized by negative scores on all dimensions; and Hyper-controlled type (characterized by extremely negative scores on dimension Social deviance accompanied with positive scores on Unemotionality dimension. Additional comparison with MMPI profiles which classified prison sample in two groups ("Psychopathic profiles" and "Non- Psychopathic profiles" shows that there is no expected compatibility between MMPI and PAQ. We conclude that Antisocial type can be treated as a distinct category, while Psychopathic type displays characteristics of dimensional distribution.

  19. The Micro-Category Account of Analogy

    Science.gov (United States)

    Green, Adam E.; Fugelsang, Jonathan A.; Kraemer, David J. M.; Dunbar, Kevin N.

    2008-01-01

    Here, we investigate how activation of mental representations of categories during analogical reasoning influences subsequent cognitive processing. Specifically, we present and test the central predictions of the "Micro-Category" account of analogy. This account emphasizes the role of categories in aligning terms for analogical mapping. In a…

  20. Individual differences in attention during category learning

    NARCIS (Netherlands)

    Lee, M.D.; Wetzels, R.

    2010-01-01

    A central idea in many successful models of category learning—including the Generalized Context Model (GCM)—is that people selectively attend to those dimensions of stimuli that are relevant for dividing them into categories. We use the GCM to re-examine some previously analyzed category learning

  1. Recent Developments in Synthesis of xLi2MnO3 · (1 − x)LiMO2 (M = Ni, Co, Mn) Cathode Powders for High-Energy Lithium Rechargeable Batteries

    International Nuclear Information System (INIS)

    Doan, The Nam Long; Yoo, Kimoon; Hoang, Tuan K. A.; Chen, P.

    2014-01-01

    Lithium-rich layered powders, Li 2 MnO 3 -stabilized LiMO 2 (M = Ni, Co, Mn), are attractive cathode candidates for the next generations of high-energy lithium-ion batteries. However, most of the state-of-the-art preparation procedures are complicated and require multiple energy-intensive reaction steps. Thus, elucidating a low-cost synthetic protocol is important for the application of these materials in future lithium-ion batteries. Recent developments in the synthesis procedures of lithium-rich layered powders are discussed and future directions are pointed out in this review.

  2. Estimating ground water recharge from topography, hydrogeology, and land cover.

    Science.gov (United States)

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  3. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  4. Bundles of C*-categories and duality

    OpenAIRE

    Vasselli, Ezio

    2005-01-01

    We introduce the notions of multiplier C*-category and continuous bundle of C*-categories, as the categorical analogues of the corresponding C*-algebraic notions. Every symmetric tensor C*-category with conjugates is a continuous bundle of C*-categories, with base space the spectrum of the C*-algebra associated with the identity object. We classify tensor C*-categories with fibre the dual of a compact Lie group in terms of suitable principal bundles. This also provides a classification for ce...

  5. Modelling of recharge and pollutant fluxes to urban groundwaters

    International Nuclear Information System (INIS)

    Thomas, Abraham; Tellam, John

    2006-01-01

    Urban groundwater resources are of considerable importance to the long-term viability of many cities world-wide, yet prediction of the quantity and quality of recharge is only rarely attempted at anything other than a very basic level. This paper describes the development of UGIf, a simple model written within a GIS, designed to provide estimates of spatially distributed recharge and recharge water quality in unconfined but covered aquifers. The following processes (with their calculation method indicated) are included: runoff and interception (curve number method); evapotranspiration (Penman-Grindley); interflow (empirical index approach); volatilization (Henry's law); sorption (distribution coefficient); and degradation (first order decay). The input data required are: meteorological data, landuse/cover map with event mean concentration attributes, geological maps with hydraulic and geochemical attributes, and topographic and water table elevation data in grid form. Standard outputs include distributions of: surface runoff, infiltration, potential recharge, ground level slope, interflow, actual recharge, pollutant fluxes in surface runoff, travel times of each pollutant through the unsaturated zone, and the pollutant fluxes and concentrations at the water table. The process of validation has commenced with a study of the Triassic Sandstone aquifer underlying Birmingham, UK. UGIf predicts a similar average recharge rate for the aquifer as previous groundwater flow modelling studies, but with significantly more spatial detail: in particular the results indicate that recharge through paved areas may be more important than previously thought. The results also highlight the need for more knowledge/data on the following: runoff estimation; interflow (including the effects of lateral flow and channelling on flow times and therefore chemistry); evapotranspiration in paved areas; the nature of unsaturated zone flow below paved areas; and the role of the pipe network

  6. Converging modalities ground abstract categories: the case of politics.

    Science.gov (United States)

    Farias, Ana Rita; Garrido, Margarida V; Semin, Gün R

    2013-01-01

    Three studies are reported examining the grounding of abstract concepts across two modalities (visual and auditory) and their symbolic representation. A comparison of the outcomes across these studies reveals that the symbolic representation of political concepts and their visual and auditory modalities is convergent. In other words, the spatial relationships between specific instances of the political categories are highly overlapping across the symbolic, visual and auditory modalities. These findings suggest that abstract categories display redundancy across modal and amodal representations, and are multimodal.

  7. Modeling of water transfer to aquifers: application to the determination of groundwater recharge by inversion in a complex hydrogeological system

    International Nuclear Information System (INIS)

    Hassane-Mamadou-Maina, Fadji-Zaouna

    2016-01-01

    Groundwater is the main available water resource for many countries; they are mainly replenished by water from precipitation, called groundwater recharge. Due to its great importance, management of groundwater resources is more essential than ever, and is achieved through mathematical models which offer us a better understanding of physical phenomena as well as their prediction. Hydrogeological Systems are generally complex thus characterized by a highly variable dynamic over time and space. These complexities have attracted the attention of many hydro geologists and many sophisticated models that can handle these issues and describe these Systems accurately were developed. Unfortunately, modeling groundwater recharge is still a challenge in groundwater resource management. Generally, groundwater models are used to simulate aquifers flow without a good estimation of recharge and its spatial-temporal distribution. as groundwater recharge rates show spatial-temporal variability due to climatic conditions, land use, and hydrogeological heterogeneity, these methods have limitations in dealing with these characteristics. To overcome these limitations, a coupled model which simulates flow in the unsaturated zone and recharge as well as groundwater flow was developed. The flow in the unsaturated zone is solved either with resolution of Richards equation or with empirical models while the diffusivity equation governs flow in the saturated zone. Robust numerical methods were used to solve these equations: we apply nonconforming finite element to solve the diffusivity equation and we used an accurate and efficient method for solving the Richards equation. In the natural environments, parameters that control these hydrological mechanisms aren't accurately known or even unknowns, only variations of piezometric heads are commonly available. Hence, ail parameters related to unsaturated and saturated flows will be identified by using only these piezometric data

  8. Identifying the role of human-induced land-use change while assessing drought effects on groundwater recharge

    Science.gov (United States)

    Verbeiren, Boud; Weerasinghe, Imeshi; Vanderhaegen, Sven; Canters, Frank; Uljee, Inge; Engelen, Guy; Jacquemin, Ingrid; Tychon, Bernard; Vangelis, Harris; Tsakiris, George; Batelaan, Okke; Huysmans, Marijke

    2015-04-01

    Drought is mainly regarded as a purely natural phenomenon, driven by the natural variation in precipitation or rather the lack of precipitation. Nowadays many river catchments are, however, altered by human activities having direct effects on the catchment landscape and hydrological response. In case of the occurrence of drought events in those catchments it becomes more complex to determine the effects of drought. To what extent is the hydrological response a direct result of the natural phenomenon and what is the role of the human factor? In this study we focus on the effects of droughts on groundwater recharge. Reliable estimation of groundwater recharge in space and time is of utmost importance for sustainable management of groundwater resources. Groundwater recharge forms the main source for replenishing aquifers. The main factors influencing groundwater recharge are the soil and topographic characteristics, land use and climate. While the first two influencing factors are relatively static, the latter two are (highly) dynamic. Differentiating between the contributions of each of these influencing factors to groundwater recharge is a challenging but important task. On the one hand, the occurrence of meteorological drought events is likely to cause direct, potentially deteriorating, effects on groundwater recharge. On the other hand, this is also the case for on-going land-use dynamics such as extensive urbanisation. The presented methodology aims at distinguishing in space and time between climate (drought-related) and land-use (human-induced) effects, enabling to assess the effects of drought on groundwater recharge. The physically-based water balance model WetSpass is used to calculate groundwater recharge in a distributed way (space and time) for the Dijle-Demer catchments in Belgium. The key issue is to determine land-use dynamics in a consistent way. A land-use timeseries is build based on four base maps. Via a change trajectory analysis the consistency

  9. PRECEDENCE AS A PSYCHOLINGUISTIC CATEGORY

    Directory of Open Access Journals (Sweden)

    Panarina Nadezhda Sergeevna

    2015-06-01

    . In summary, any speech act assumes particular correlation and content of meaning components. Presence of culturological component in meaning structure represents specific nature of speech activity structural elements. Therefore, precedence is a psycholinguistic category, which must be considered taking into account structural features of a particular speech activity.

  10. Rechargeable MnO/sub 2/ battery systems

    International Nuclear Information System (INIS)

    Wroblowa, H.S.

    1987-01-01

    Sixty years after Volta used for the first time (1800) zinc as an electrode, Leclanche patented a MnO/sub 2/NH/sub 4/Cl/Zn cell with a zinc rod negative, which was then shortly replaced by the amalgamated zinc can. Although the original patents for wet and dry alkaline systems were filed already towards the end of 19th and during the first two decades of the 20th century, the first alkaline commercial battery (Herbert's crown cell), appeared only in the early fifties. Since then the introduction of large area zinc electrodes and voluminous work leading to the development of positive electrodes with highest possible reactivity, i.e., capable of releasing a maximum charge at a maximum voltage difference between terminals over longest periods of time, coupled with growing demands of the electronic industries led to the emergence of a several billion dollar primary cell market of which alkaline MnO/sub 2//Zn cells are capturing a rapidly increasing share and are expected to fully dominate the dry cell market. Their better performance/cost ratio compensates for a cost higher than that of their Leclanche type counterparts. The prospects of better utilization of this more expensive system, problems of energy wste4 and of waste disposal of the ever increasing numbers of throw-away batteries, prompted numerous attempts to produce a rechargeable MnO/sub 2//Zn system capable not only of high reactivity, i.e., high power drains, but also applicable for several commercial uses

  11. Removal of geosmin and 2-methylisoborneol during managed aquifer recharge: Batch and column studies

    KAUST Repository

    Maeng, Sungkyu; Abel, Chol D T; Sharma, Saroj K.; Park, Nosuk; Amy, Gary L.

    2012-01-01

    Managed aquifer recharge is a robust barrier in the multi-barrier approach to supply safe drinking water. The removal performance of gesomin and 2-methylisoborneol through managed aquifer recharge was investigated using batch and column experiments

  12. Percolation pond as a method of managed aquifer recharge in a ...

    Indian Academy of Sciences (India)

    Raicy Mani Christy

    2017-07-17

    Jul 17, 2017 ... Percolation ponds have become very popular methods of managed aquifer recharge due to their low ... effect of recharge structures by some researchers .... qualitative comparison of observed responses of .... Two types of.

  13. Preferential flow and mixing process in the chemical recharge in subsurface catchments: observations and modeling

    Science.gov (United States)

    Gascuel-Odoux, C.; Rouxel, M.; Molenat, J.; Ruiz, L.; Aquilina, L.; Faucheux, M.; Labasque, T.; Sebilo, M.

    2012-04-01

    Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (Kerbernez, Brittany, France), a headwater catchment included in the Observatory for Research on Environment AgrHyS (Agro-Hydro-System) and a part of the French Network of catchments for environmental research (SOERE RBV focused on the Critical Zone). These systems are strongly constrained by anthropogenic pressures (agriculture) and are characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling along two transects in the permanent water table as well as in what we call the "fluctuating zone", characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming

  14. Cr{sub 2}O{sub 5} as new cathode for rechargeable sodium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu-Yong; Chien, Po-Hsiu; Rose, Alyssa M.; Zheng, Jin [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Hung, Ivan; Gan, Zhehong [Centre of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 (United States); Hu, Yan-Yan, E-mail: hu@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Centre of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 (United States)

    2016-10-15

    Chromium oxide, Cr{sub 2}O{sub 5}, was synthesized by pyrolyzing CrO{sub 3} at 350 °C and employed as a new cathode in rechargeable sodium ion batteries. Cr{sub 2}O{sub 5}/Na rechargeable batteries delivered high specific capacities up to 310 mAh/g at a current density of C/16 (or 20 mA/g). High-resolution solid-state {sup 23}Na NMR both qualitatively and quantitatively revealed the reversible intercalation of Na ions into the bulk electrode and participation of Na ions in the formation of the solid-electrolyte interphase largely at low potentials. Amorphization of the electrode structure occurred during the first discharge revealed by both NMR and X-ray diffraction data. CrO{sub 3}-catalyzed electrolyte degradation and loss in electronic conductivity led to gradual capacity fading. The specific capacity stabilized at >120 mAh/g after 50 charge-discharge cycles. Further improvement in electrochemical performance is possible via electrode surface modification, polymer binder incorporation, or designs of new morphologies. - Graphical abstract: Electrochemical profile of a Cr{sub 2}O{sub 5}/Na battery cell and high-resolution solid-state {sup 23}Na MAS NMR spectrum of a Cr{sub 2}O{sub 5} electrode discharged to 2 V. - Highlights: • Cr{sub 2}O{sub 5} was synthesized and used as a new cathode in rechargeable Na ion batteries. • A high capacity of 310 mAh/g and an energy density of 564 Wh/kg were achieved. • High-resolution solid-state {sup 23}Na NMR was employed to follow the reaction mechanisms.

  15. Alkaline solid polymer electrolytes and their application to rechargeable batteries; Electrolytes solides polymeres alcalins application aux generateurs electrochimiques rechargeables

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, S

    1996-03-15

    A new family of solid polymer electrolytes (SPE) based on polyoxyethylene (POE), KOH and water is investigated in view of its use in rechargeable batteries. After a short review on rechargeable batteries, the preparation of various electrolyte compositions is described. Their characterization by differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction and microscopy confirm a multi-phasic structure. Conductivity measurements give values up to 10 sup -3 S cm sup -1 at room temperature. Their use in cells with nickel as negative electrode and cadmium or zinc as positive electrode has been tested; cycling possibility has been shown to be satisfactory. (C.B.) 113 refs.

  16. Change of mechanisms of control bars, an activity of high performance in the twelve recharge of the Unit 1; Cambio de mecanismos de barras de control, una actividad de alto desempeno en la doceava recarga de la Unidad 1

    Energy Technology Data Exchange (ETDEWEB)

    Serrano R, H. [Gerencia de Centrales Nucleares, Km. 62.5, Car. 180 Cardel-Nautla, Alto Lucero, Veracruz (Mexico)]. e-mail: hsr98581@cfe.gob.mx

    2007-07-01

    One of the activities that are carried out during the fuel loading stage in the reactors of the Laguna Verde Power station (CNLV), it is the change of the control bar mechanisms (CRDs); the importance of giving maintenance to these mechanisms of control bars is that they should be reliable during the reactor operation. The insert of the control bars at one time of less than 7 seconds, it is the time required to carry out a sure reactor shutdown either of automatic way or manual by the operator action this insert of the control bars is through the CRDs that work them completely to insert negative reactivity to the reactor core. In this insert of the bars the neutrons are absorbed that maintain the reaction of self-sustained fission. The neutron absorber material in the control bars is a mixture of boron-gadolinium. It is also through the extraction of control bars like the fission reaction is controlled by means of the neutron density in the core. Extracting the control bars in form controlled by the operator is known as positive reactivity. This activity, that of the change of CRDs can only be carried out in the reload stage, that is to say, when the reactor is out one. The complexity of carrying out the change of those CRDs by its complexity as for radiological support that it demands, has taken to that the involved personnel acquires an experience and ability that it has allowed it to have a high performance. The importance of having this experience and ability, in the following generations, is fundamental for the CNLV, since that it requires to account with personal properly prepared, taking into account that the Safety is our maximum priority. The use of ALARA tools like devices with extension to maintain the distance of the source are key to optimize the personnel's dose; it is also key the support tools of the last technologies like the tele dosimetry, the television closed circuit (CCTV), the bubble suits for the extraction of the CRDs by the inferior

  17. Estimation of Hydraulic Parameters and Aquifer Properties for a Managed Aquifer Recharge Pilot Study in The Lower Mississippi River Basin

    Science.gov (United States)

    Ozeren, Y.; Rigby, J.; Holt, R. M.

    2017-12-01

    Mississippi River Valley Alluvial Aquifer (MRVAA) is the major irrigation water resource in the in the lower Mississippi River basin. MRVAA has been significantly depleted in the last two decades due to excessive pumping. A wide range of measures to ensure sustainable groundwater supply in the region is currently under investigation. One of the possible solution under consideration is to use Managed Aquifer Recharge (MAR) by artificial recharge. The proposed artificial recharge technique in this study is to collect water through bank filtration, transfer water via pipeline to the critically low groundwater areas by a set of injection wells. A pilot study in the area is underway to investigate the possibility of artificial recharge in the area. As part of this study, a pumping test was carried out on an existing irrigation well along banks of Tallahatchie River near Money, MS. Geophysical surveys were also carried out in the pilot study area. Hydraulic response of the observation wells was used to determine stream bed conductance and aquifer parameters. The collected hydraulic parameters and aquifer properties will provide inputs for small-scale, high-resolution engineering model for abstraction-injection hydraulics along river. Here, preliminary results of the pilot study is presented.

  18. Using electrical resistivity tomography to assess the effectiveness of managed aquifer recharge in a salinized coastal aquifer.

    Science.gov (United States)

    García-Menéndez, Olga; Ballesteros, Bruno J; Renau-Pruñonosa, Arianna; Morell, Ignacio; Mochales, Tania; Ibarra, Pedro I; Rubio, Félix M

    2018-01-27

    Over 40 years, the detrital aquifer of the Plana de Castellón (Spanish Mediterranean coast) has been subjected to seawater intrusion because of long dry periods combined with intensive groundwater exploitation. Against this backdrop, a managed artificial recharge (MAR) scheme was implemented to improve the groundwater quality. The large difference between the electrical conductivity (EC) of the ambient groundwater (brackish water due to marine intrusion) and the recharge water (freshwater) meant that there was a strong contrast between the resistivities of the brackish water saturated zone and the freshwater saturated zone. Electrical resistivity tomography (ERT) can be used for surveying similar settings to evaluate the effectiveness of artificial recharge schemes. By integrating geophysical data with lithological information, EC logs from boreholes, and hydrochemical data, we can interpret electrical resistivity (ER) with groundwater EC values and so identify freshwater saturated zones. Using this approach, ERT images provided a high-resolution spatial characterization and an accurate picture of the shape and extent of the recharge plume of the MAR site. After 5 months of injection, a freshwater plume with an EC of 400-600 μS/cm had formed that extended 400 m in the W-E direction, 250 m in the N-S direction, and to a depth of 40 m below piezometric level. This study also provides correlations between ER values with different lithologies and groundwater EC values that can be used to support other studies.

  19. Analysis of electric vehicle driver recharging demand profiles and subsequent impacts on the carbon content of electric vehicle trips

    International Nuclear Information System (INIS)

    Robinson, A.P.; Blythe, P.T.; Bell, M.C.; Hübner, Y.; Hill, G.A.

    2013-01-01

    This paper quantifies the recharging behaviour of a sample of electric vehicle (EV) drivers and evaluates the impact of current policy in the north east of England on EV driver recharging demand profiles. An analysis of 31,765 EV trips and 7704 EV recharging events, constituting 23,805 h of recharging, were recorded from in-vehicle loggers as part of the Switch EV trials is presented. Altogether 12 private users, 21 organisation individuals and 32 organisation pool vehicles were tracked over two successive six month trial periods. It was found that recharging profiles varied between the different user types and locations. Private users peak demand was in the evening at home recharging points. Organisation individual vehicles were recharged primarily upon arrival at work. Organisation pool users recharged at work and public recharging points throughout the working day. It is recommended that pay-as-you-go recharging be implemented at all public recharging locations, and smart meters be used to delay recharging at home and work locations until after 23:00 h to reduce peak demand on local power grids and reduce carbon emissions associated with EV recharging. - Highlights: • Study of EV driver recharging habits in the north east of England. • 7704 electric vehicle recharging events, comprising 23,805 h were collected. • There was minimal recharging during off- peak hours. • Free parking and electricity at point of use encouraged daytime recharging. • Need for financial incentives and smart solutions to better manage recharging demand peaks

  20. Procedural-Based Category Learning in Patients with Parkinson's Disease: Impact of Category Number and Category Continuity

    Directory of Open Access Journals (Sweden)

    J. Vincent eFiloteo

    2014-02-01

    Full Text Available Previously we found that Parkinson's disease (PD patients are impaired in procedural-based category learning when category membership is defined by a nonlinear relationship between stimulus dimensions, but these same patients are normal when the rule is defined by a linear relationship (Filoteo et al., 2005; Maddox & Filoteo, 2001. We suggested that PD patients' impairment was due to a deficit in recruiting ‘striatal units' to represent complex nonlinear rules. In the present study, we further examined the nature of PD patients' procedural-based deficit in two experiments designed to examine the impact of (1 the number of categories, and (2 category discontinuity on learning. Results indicated that PD patients were impaired only under discontinuous category conditions but were normal when the number of categories was increased from two to four. The lack of impairment in the four-category condition suggests normal integrity of striatal medium spiny cells involved in procedural-based category learning. In contrast, and consistent with our previous observation of a nonlinear deficit, the finding that PD patients were impaired in the discontinuous condition suggests that these patients are impaired when they have to associate perceptually distinct exemplars with the same category. Theoretically, this deficit might be related to dysfunctional communication among medium spiny neurons within the striatum, particularly given that these are cholinergic neurons and a cholinergic deficiency could underlie some of PD patients’ cognitive impairment.

  1. Evaluation of Universitas Indonesia’s Recharge Pond Performance and Potential Utilization for Raw Water Source

    OpenAIRE

    Nyoman Suwartha; Resky Pramadin

    2012-01-01

    The UI recharge pond has been constructed 5 years ago. However, monitoring and evaluation activities on its performances are very lack. Aims of this study are to understand the recharge rate, and to evaluate existing quantity and water quality of the pond during dry and rainy season. Measurement of water depth, rainfall intensity, and evaporation is conducted to determine water availability, recharge rate, and water balance of the recharge pond. Amount of surface water is collected from recha...

  2. Feature-Based versus Category-Based Induction with Uncertain Categories

    Science.gov (United States)

    Griffiths, Oren; Hayes, Brett K.; Newell, Ben R.

    2012-01-01

    Previous research has suggested that when feature inferences have to be made about an instance whose category membership is uncertain, feature-based inductive reasoning is used to the exclusion of category-based induction. These results contrast with the observation that people can and do use category-based induction when category membership is…

  3. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  4. Chemical and microbiological monitoring of a sole-source aquifer intended for artificial recharge, Nassau County, New York

    Science.gov (United States)

    Katz, Brian G.; Mallard, Gail E.

    1980-01-01

    In late 1980, approximately 4 million gallons per day of highly treated wastewater will be used to recharge the groundwater reservoir in central Nassau County through a system of 10 recharge basins and 5 shallow injection wells. To evaluate the impact of large-scale recharge with reclaimed water on groundwater quality, the U.S. Geological Survey has collected hydrologic and water-quality data from a 1-square-mile area around the recharge site to provide a basis for future comparison. Extensive chemical and microbiological analyses are being made on samples from 48 wells screened in the upper glacial (water-table) aquifer and the upper part of the underlying Magothy (public-supply) aquifer. Preliminary results indicate that water from the upper glacial aquifer contains significant concentrations of nitrate and low-molecular-weight chlorinated hydrocarbons and detectable concentrations of organochlorine insecticides and polychlorinated biphenyls. At present, no fecal contamination is evident in either aquifer in the area studied. In the few samples containing fecal indicator bacteria, the numbers were low. Nonpoint sources provide significant loads of organic and inorganic compounds; major sources include cesspool and septic-tank effluent, cesspool and septic-tank cleaners and other over-the-counter domestic organic solvents, fertilizers, insecticides for termite and other pest control, and stormwater runoff to recharge basins. The water-table aquifer is composed mainly of stratified, well-sorted sand and gravel and, as a result, is highly permeable. In the 1-square-mile area studied, some contaminants seem to have traveled 200 feet downward to the bottom of the water-table aquifer and into the upper part of the public-supply aquifer. (USGS)

  5. Verification of Rapid Focused-Recharge in Depressions of Kuwait and the Arabian Peninsula Using Thermal and VNIR Remote Sensing

    Science.gov (United States)

    Rotz, R. R.; Milewski, A.

    2013-12-01

    In the Arabian Peninsula, freshwater recharge from rainfall is infrequent. Recharge is typically focused in small depressions that fill with seasonal runoff and potentially form freshwater lenses. This phenomenon has been verified in the Raudhatain watershed in Kuwait. This study aims to substantiate previously hypothesized lens locations and detect water in the subsurface by using thermal remote sensing and rainfall data. Potential freshwater lenses (~142) have been previously postulated throughout Kuwait and Saudi Arabia, but lack verification due to inadequate monitoring networks. We hypothesize that due to water's unique heat capacity, recharge zones can be detected by identifying areas with lower changes in surface radiance values than neighboring dry areas between day and night after peak or sustained rainfall. If successful, recharge zones and freshwater lenses can be identified and verified in remote hyper-arid regions. We collected 320 high-resolution (15m - 90m), low cloud cover (lens locations, runoff channels, agricultural regions, and wetlands were detected in areas where radiance values change between 0.067 - 2.25 Wsr-1m-2 from day to night scenes and verified by Google Earth (15m), Landsat (30m), and ASTER VNIR (15m) images. Additionally, two seasonal peak rainfall (~35mm/day) events positively correlate with the surface radiance difference values. Surface radiance values for dry areas adjacent to the postulated lens locations range between 2.25 - 12.2 Wsr-1m-2. Results demonstrate the potential for shallow groundwater detection through the presence of ephemeral water bodies in hyper-arid regions en masse; however, the absence of comparable diurnal images limits data in these regions. Linking high rainfall events with low diurnal surface radiance images is ideal for capturing the presence of temporary surface runoff and recharge zones. Expanded research on hyper-arid regions including thermal values, proposed lens locations, and in-situ data will

  6. A synopsis of climate change effects on groundwater recharge

    Science.gov (United States)

    Smerdon, Brian D.

    2017-12-01

    Six review articles published between 2011 and 2016 on groundwater and climate change are briefly summarized. This synopsis focuses on aspects related to predicting changes to groundwater recharge conditions, with several common conclusions between the review articles being noted. The uncertainty of distribution and trend in future precipitation from General Circulation Models (GCMs) results in varying predictions of recharge, so much so that modelling studies are often not able to predict the magnitude and direction (increase or decrease) of future recharge conditions. Evolution of modelling approaches has led to the use of multiple GCMs and hydrologic models to create an envelope of future conditions that reflects the probability distribution. The choice of hydrologic model structure and complexity, and the choice of emissions scenario, has been investigated and somewhat resolved; however, recharge results remain sensitive to downscaling methods. To overcome uncertainty and provide practical use in water management, the research community indicates that modelling at a mesoscale, somewhere between watersheds and continents, is likely ideal. Improvements are also suggested for incorporating groundwater processes within GCMs.

  7. Regional Assessment of Groundwater Recharge in the Lower Mekong Basin

    Directory of Open Access Journals (Sweden)

    Guillaume Lacombe

    2017-12-01

    Full Text Available Groundwater recharge remains almost totally unknown across the Mekong River Basin, hindering the evaluation of groundwater potential for irrigation. A regional regression model was developed to map groundwater recharge across the Lower Mekong Basin where agricultural water demand is increasing, especially during the dry season. The model was calibrated with baseflow computed with the local-minimum flow separation method applied to streamflow recorded in 65 unregulated sub-catchments since 1951. Our results, in agreement with previous local studies, indicate that spatial variations in groundwater recharge are predominantly controlled by the climate (rainfall and evapotranspiration while aquifer characteristics seem to play a secondary role at this regional scale. While this analysis suggests large scope for expanding agricultural groundwater use, the map derived from this study provides a simple way to assess the limits of groundwater-fed irrigation development. Further data measurements to capture local variations in hydrogeology will be required to refine the evaluation of recharge rates to support practical implementations.

  8. Managed Aquifer Recharge in Italy: present and prospects.

    Science.gov (United States)

    Rossetto, Rudy

    2015-04-01

    On October the 3rd 2014, a one-day Workshop on Managed Aquifer Recharge (MAR) experiences in Italy took place at the GEOFLUID fair in Piacenza. It was organized within the framework of the EIP AG 128 - MAR Solutions - Managed Aquifer Recharge Strategies and Actions and the EU FPVII MARSOL. The event aimed at showcasing present experiences on MAR in Italy while at the same time starting a network among all the Institutions involved. In this contribution, we discuss the state of MAR application in Italy and summarize the outcomes of that event. In Italy aquifer recharge is traditionally applied unintentionally, by increasing riverbank filtration or because of excess irrigation. A certain interest for artificial recharge of aquifers arose at the end of the '70s and the beginning of the '80s and tests have been carried out in Tuscany, Veneto and Friuli Venezia Giulia. During the last years some projects on aquifer recharge were co-financed by the European Commission mainly through the LIFE program. Nearly all of them use the terminology of artificial recharge instead of MAR. They are: - TRUST (Tool for regional - scale assessment of groundwater storage improvement in adaptation to climate change, LIFE07 ENV/IT/000475; Marsala 2014); - AQUOR (Implementation of a water saving and artificial recharging participated strategy for the quantitative groundwater layer rebalance of the upper Vicenza's plain - LIFE 2010 ENV/IT/380; Mezzalira et al. 2014); - WARBO (Water re-born - artificial recharge: innovative technologies for the sustainable management of water resources, LIFE10 ENV/IT/000394; 2014). While the TRUST project dealt in general with aquifer recharge, AQUOR and WARBO focused essentially on small scale demonstration plants. Within the EU FPVII-ENV-2013 MARSOL project (Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; 2014), a dedicated monitoring and decision support system is under development to manage recharge at a large scale

  9. Trench infiltration for managed aquifer recharge to permeable bedrock

    Science.gov (United States)

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  10. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.

    Science.gov (United States)

    Zlotnik, Vitaly A; Kacimov, Anvar; Al-Maktoumi, Ali

    2017-11-01

    Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip. The solution, based on the Dupiuit-Forchheimer approximation, Green's function method, and coordinate transformations is convenient for computing. This solution reveals important MAR traits in variance with Hantush's solution: mounding is limited in time and space; elevation of the mound is strongly affected by the dip angle; and the peak of the mound moves over time. These findings have important practical implications for assessment of various MAR scenarios, including waterlogging potential and determining proper rates of recharge. Computations are illustrated for several characteristic MAR settings. © 2017, National Ground Water Association.

  11. Vegetation induced diel signal and its meaning in recharge and discharge regions

    Science.gov (United States)

    Gribovszki, Zoltán; Tóth, Tibor; Csáfordi, Péter; Szabó, András; Móricz, Norbert; Kalicz, Péter

    2017-04-01

    water table or soil moisture measurements can only be achieved by understanding the different hydrological characteristics of recharge and discharge zones. In the context of climate change higher temperature and longer dry periods induced higher evapotranspiration constrain will probably reduce the groundwater level and so the spatial extent of shallow groundwater areas (reachable groundwater resources for vegetation). Therefore the better understanding of hydrological impact of different surface covers in shallow groundwater areas in changing climate is crucial, not only from water resources management point of view, but also from the viewpoint of agricultural and forest production or survival of forests with high water demand. This research has been mainly supported by the Agroclimate.2 VKSZ_12-1-2013-0034 project. The research of Zoltán Gribovszki was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 'National Excellence Program'.

  12. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size DATES: The meeting...

  13. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  14. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. DATES: The meeting will...

  15. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held...

  16. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  17. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-04-05

    ... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held May...

  18. Catchment-scale groundwater recharge and vegetation water use efficiency

    Science.gov (United States)

    Troch, P. A. A.; Dwivedi, R.; Liu, T.; Meira, A.; Roy, T.; Valdés-Pineda, R.; Durcik, M.; Arciniega, S.; Brena-Naranjo, J. A.

    2017-12-01

    Precipitation undergoes a two-step partitioning when it falls on the land surface. At the land surface and in the shallow subsurface, rainfall or snowmelt can either runoff as infiltration/saturation excess or quick subsurface flow. The rest will be stored temporarily in the root zone. From the root zone, water can leave the catchment as evapotranspiration or percolate further and recharge deep storage (e.g. fractured bedrock aquifer). Quantifying the average amount of water that recharges deep storage and sustains low flows is extremely challenging, as we lack reliable methods to quantify this flux at the catchment scale. It was recently shown, however, that for semi-arid catchments in Mexico, an index of vegetation water use efficiency, i.e. the Horton index (HI), could predict deep storage dynamics. Here we test this finding using 247 MOPEX catchments across the conterminous US, including energy-limited catchments. Our results show that the observed HI is indeed a reliable predictor of deep storage dynamics in space and time. We further investigate whether the HI can also predict average recharge rates across the conterminous US. We find that the HI can reliably predict the average recharge rate, estimated from the 50th percentile flow of the flow duration curve. Our results compare favorably with estimates of average recharge rates from the US Geological Survey. Previous research has shown that HI can be reliably estimated based on aridity index, mean slope and mean elevation of a catchment (Voepel et al., 2011). We recalibrated Voepel's model and used it to predict the HI for our 247 catchments. We then used these predicted values of the HI to estimate average recharge rates for our catchments, and compared them with those estimated from observed HI. We find that the accuracies of our predictions based on observed and predicted HI are similar. This provides an estimation method of catchment-scale average recharge rates based on easily derived catchment

  19. Constraints on the Hydrologic Settings and Recharge of the Freshwater Lenses in Kuwait

    Science.gov (United States)

    Milewski, A.; Sultan, M.; Al-Dousari, A.

    2010-12-01

    The majority of the World’s arid and semi-arid countries receive rare, yet extreme, precipitation events. Recharge is minimal due to high evaporation and low infiltration rates. We show that Kuwait experiences geologic and hydrologic settings that are quite different, conditions that promote groundwater recharge. Kuwait is generally flat (slope: 2m/km) and is largely covered (80% of Kuwait’s land) by alluvial deposits with high infiltration capacities; these conditions inhibit runoff and promote infiltration and recharge of aquifers. On the average Kuwait receives 200 mm/yr over a few, but intensive events. Groundwater flows from the SW to the NE and the salinity increases along the flow gradient reaching salinities of 150,000 TDS in the NE. The presence of saline and hypersaline groundwater on local and/or regional scales in arid and hyperarid environments is usually considered as unwelcome news to hydrogeologists. That is not the case everywhere in Kuwait. In the southern regions, infiltrating fresh water mixes with the saline groundwater (TDS: 5,000 to 10,000) in the unconfined aquifers rendering it unsuitable for drinking and irrigation purposes, whereas in the northern regions, infiltrating water form lenses of fresh water on top of the highly saline (TDS >35,000) unconfined aquifers. Using the Raudhatain Watershed (3,696 km^2) in northern Kuwait as our test site, and knowing the locations of fresh water lenses in the watershed, we identified settings which facilitate the formation of these lenses and used these criteria to identify additional potential occurrences. Identified criteria include the presence of gentle slopes, permeable surface material, infrequent yet intensive (>20mm/hr) precipitation events, drainage depressions to collect the limited runoff, and presence of regional unconfined saline aquifers. Approximately 20 locations (size: 3 km2 to 150 km^2) were identified. Over the investigated period (1998- 2006), 25 precipitation events were

  20. TV MEDIA ANALYSIS FOR BANKING CATEGORY (2012)

    OpenAIRE

    Alexandra Elena POȘTOACĂ; Dorian – Laurențiu FLOREA

    2014-01-01

    This article represents a short overview of the media landscape for the banking category in Romania in 2012. Unlike the other categories (for example FMCG – fast moving consumer goods), the banking category is more complex because every bank can communicate for a wider range of products (credits, deposits, packages dedicated to students, pensioners and other types of banking products). In the first part of this paper, there will be presented some theoretical notions about media planning a...

  1. Ecohydrologic process modeling of mountain block groundwater recharge.

    Science.gov (United States)

    Magruder, Ian A; Woessner, William W; Running, Steve W

    2009-01-01

    Regional mountain block recharge (MBR) is a key component of alluvial basin aquifer systems typical of the western United States. Yet neither water scientists nor resource managers have a commonly available and reasonably invoked quantitative method to constrain MBR rates. Recent advances in landscape-scale ecohydrologic process modeling offer the possibility that meteorological data and land surface physical and vegetative conditions can be used to generate estimates of MBR. A water balance was generated for a temperate 24,600-ha mountain watershed, elevation 1565 to 3207 m, using the ecosystem process model Biome-BGC (BioGeochemical Cycles) (Running and Hunt 1993). Input data included remotely sensed landscape information and climate data generated with the Mountain Climate Simulator (MT-CLIM) (Running et al. 1987). Estimated mean annual MBR flux into the crystalline bedrock terrain is 99,000 m(3) /d, or approximately 19% of annual precipitation for the 2003 water year. Controls on MBR predictions include evapotranspiration (radiation limited in wet years and moisture limited in dry years), soil properties, vegetative ecotones (significant at lower elevations), and snowmelt (dominant recharge process). The ecohydrologic model is also used to investigate how climatic and vegetative controls influence recharge dynamics within three elevation zones. The ecohydrologic model proves useful for investigating controls on recharge to mountain blocks as a function of climate and vegetation. Future efforts will need to investigate the uncertainty in the modeled water balance by incorporating an advanced understanding of mountain recharge processes, an ability to simulate those processes at varying scales, and independent approaches to calibrating MBR estimates. Copyright © 2009 The Author(s). Journal compilation © 2009 National Ground Water Association.

  2. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  3. Influence of the flux axial form on the conversion rate and duration of cycle between recharging for ThPu and U{sub nat} fuels in CANDU reactors; Influence de la forme axiale du flux sur le taux de conversion et la duree du cycle entre rechargements pour du combustible ThPu et U{sub nat} dans les reacteurs CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Richard [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier / CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2007-01-15

    To face the increasing world power demand the world nuclear sector must be continuously updated and developed as well. Thus reactors of new types are introduced and advanced fuel cycles are proposed. The technological and economic feasibility and the transition of the present power park to a renewed park require thorough studies and scenarios, which are highly dependent on the reactor performances. The conversion rate and cycle span between recharging are important parameters in the scenarios studies. In this frame, we have studied the utilisation of thorium in the CANDU type reactors and particularly the influence of axial form of the flux, i.e. of the recharging mode, on the conversion rate and duration of the cycle between recharging. The results show that up to a first approximation the axial form of the flux resulting from the neutron transport calculations for assessing the conversion rate is not necessary to be taken into account. However the time span between recharging differs up to several percents if the axial form of the flux is taken into consideration in transport calculations. Thus if the burnup or the recharging frequency are parameters which influence significantly the deployment scenarios of a nuclear park an approach more refined than a simple transport evolution in a typical cell/assembly is recommended. Finally, the results of this study are not more general than for the assumed conditions but they give a thorough calculation method valid for any recharging/fuel combination in a CANDU type reactor.

  4. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions through 2007

    Science.gov (United States)

    Heilweil, Victor M.; Ortiz, Gema; Susong, David D.

    2009-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily as an aquifer storage and recovery project by the Washington County Water Conservancy District (WCWCD). Since its inception in 2002 through 2007, surface-water diversions of about 126,000 acre-feet to Sand Hollow Reservoir have resulted in a generally rising reservoir stage and surface area. Large volumes of runoff during spring 2005-06 allowed the WCWCD to fill the reservoir to a total storage capacity of more than 50,000 acre-feet, with a corresponding surface area of about 1,300 acres and reservoir stage of about 3,060 feet during 2006. During 2007, reservoir stage generally decreased to about 3,040 feet with a surface-water storage volume of about 30,000 acre-feet. Water temperature in the reservoir shows large seasonal variation and has ranged from about 3 to 30 deg C from 2003 through 2007. Except for anomalously high recharge rates during the first year when the vadose zone beneath the reservoir was becoming saturated, estimated ground-water recharge rates have ranged from 0.01 to 0.09 feet per day. Estimated recharge volumes have ranged from about 200 to 3,500 acre-feet per month from March 2002 through December 2007. Total ground-water recharge during the same period is estimated to have been about 69,000 acre-feet. Estimated evaporation rates have varied from 0.04 to 0.97 feet per month, resulting in evaporation losses of 20 to 1,200 acre-feet per month. Total evaporation from March 2002 through December 2007 is estimated to have been about 25,000 acre-feet. Results of water-quality sampling at monitoring wells indicate that by 2007, managed aquifer recharge had arrived at sites 37 and 36, located 60 and 160 feet from the reservoir, respectively. However, different peak arrival dates for specific conductance, chloride, chloride/bromide ratios, dissolved oxygen, and total dissolved-gas pressures at each monitoring well indicate the complicated nature of

  5. Evaluation of potential gas clogging associated with managed aquifer recharge from a spreading basin, southwestern Utah, U.S.A.

    Science.gov (United States)

    Heilweil, Victor M.; Marston, Thomas

    2013-01-01

    Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and managed aquifer recharge via infiltration from surface basin spreading to the underlying Navajo Sandstone. The total volume of estimated recharge from 2002 through 2011 was 131 Mm3., resulting in groundwater levels rising as much as 40 m. Hydraulic and hydrochemical data from the reservoir and various monitoring wells in Sand Hollow were used to evaluate the timing and location or reservoir recharge moving through the aquifer, along either potential clogging from trapped gases in pore throats, siltation, or algal mats. Several hyrdochemical tracers indicated this recharge had arrived at four monitoring wells located within about 300 m of the reservoir by 2012. At these wells, peak total dissolved-gas pressures exceeded two atmospheres (>1,500 mm mercury) and dissolved oxygen approached three times atmospherically equilibrated concentrations (>25 mg/L). these field parameters indicate that large amounts of gas trapped in pore spaces beneath the water table have dissolved. Lesser but notable increases in these dissolved-gas parameters (without increases in other indicators such as chloride-to-bromide ratios) at monitoring wells farther away (>300 m) indicate moderate amounts of in-situ sir entrapment and dissolution caused by the rise in regional groundwater levels. This is confirmed by hydrochemical difference between these sites and wells closer to the reservoir where recharge had already arrived. As the reservoir was being filled by 2002, managed aquifer recharge rates were initially very high (1.5 x 10-4 cm/s) with the vadose zone becoming saturated beneath and surrounding the reservoir. These rates declined to less than 3.5 x 10-6 cm/s during 2008. The 2002-08 decrease was likely associated with a declining regional hydraulic gradient and clogging. Increasing recharge rates during mid-2009 through 2010 may have been partly caused by dissolution of air bubbles

  6. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia

    International Nuclear Information System (INIS)

    Kebede, Seifu; Travi, Yves; Alemayehu, Tamiru; Ayenew, Tenalem

    2005-01-01

    Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO 2 influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na-HCO 3 type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca-Mg-HCO 3 type waters. Despite the high altitude (mean altitude ∼2500 masl) and the relatively low mean annual air temperature (18 deg. C) of the region compared to Sahelian Africa, there is no commensurate depletion in δ 18 O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted δ 18 O groundwaters. Altitudinal depletion of δ 18 O is 0.1%o/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude

  7. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Kebede, Seifu [Laboratory of Hydrogeology, University of Avignon, 33 Rue Louis Pasteur, 84000 Avignon (France) and Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)]. E-mail: seifu.kebede@univ-avignon.fr; Travi, Yves [Laboratory of Hydrogeology, University of Avignon, 33 Rue Louis Pasteur, 84000 Avignon (France); Alemayehu, Tamiru [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Ayenew, Tenalem [Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2005-09-15

    Geochemical and environmental isotope data were used to gain the first regional picture of groundwater recharge, circulation and its hydrochemical evolution in the upper Blue Nile River basin of Ethiopia. Q-mode statistical cluster analysis (HCA) was used to classify water into objective groups and to conduct inverse geochemical modeling among the groups. Two major structurally deformed regions with distinct groundwater circulation and evolution history were identified. These are the Lake Tana Graben (LTG) and the Yerer Tullu Wellel Volcanic Lineament Zone (YTVL). Silicate hydrolysis accompanied by CO{sub 2} influx from deeper sources plays a major role in groundwater chemical evolution of the high TDS Na-HCO {sub 3} type thermal groundwaters of these two regions. In the basaltic plateau outside these two zones, groundwater recharge takes place rapidly through fractured basalts, groundwater flow paths are short and they are characterized by low TDS and are Ca-Mg-HCO {sub 3} type waters. Despite the high altitude (mean altitude {approx}2500 masl) and the relatively low mean annual air temperature (18 deg. C) of the region compared to Sahelian Africa, there is no commensurate depletion in {delta} {sup 18}O compositions of groundwaters of the Ethiopian Plateau. Generally the highland areas north and east of the basin are characterized by relatively depleted {delta} {sup 18}O groundwaters. Altitudinal depletion of {delta} {sup 18}O is 0.1%o/100 m. The meteoric waters of the Blue Nile River basin have higher d-excess compared to the meteoric waters of the Ethiopian Rift and that of its White Nile sister basin which emerges from the equatorial lakes region. The geochemically evolved groundwaters of the YTVL and LTG are relatively isotopically depleted when compared to the present day meteoric waters reflecting recharge under colder climate and their high altitude.

  8. Evaluation of the potential impact of climate changes on groundwater recharge in Karkheh river basin (Khuzestan, Iran)

    Science.gov (United States)

    Abrishamchi, A.; Beigi, E.; Tajrishy, M.; Abrishamchi, A.

    2009-12-01

    Groundwater is an important natural resource for human beings and ecosystems, especially in arid semi arid regions with scarce water resources and high climate variability. This vital resource is under stress in terms of both quantity and quality due to increased demands as well as the drought. Wise groundwater management requires vulnerability and susceptibility assessment of groundwater resources to natural and anthropogenic phenomena such as drought, over-abstraction and quality deterioration both in the current climatic situation and in the context of climate change. There is enough evidence that climate change is expected to affect all elements of hydrologic cycle and have negative effects on water resources due to increased variability in extreme hydrologic events of droughts and floods. .In this study impact of climate change on groundwater recharge in Karkheh river basin in province of Khuzestan, Iran, has been investigated using a physically-based methodology that can be used for predicting both temporal and spatial varying groundwater recharge. To ensure the sustainability of the land and water resources developments, assessment of the possible impacts of climate change on hydrology and water resources in the basin is necessary. Quantifying groundwater recharge is essential for management of groundwater resources. Recharge was estimated by using the hydrological evaluation of landfill performance (HELP3) water budget model. Model’s parameters were calibrated and validated using observational data in 1990-1998. The impact of climate change was modeled using downscaled precipitation and temperature from runs of CGCM2 model. These data were derived from two scenarios, A2 and B2 for three periods: 2010-2039, 2040-2069, and 2070-2099. Results of the study indicate that due to global warming evapotranspiration rates will increase and winter-precipitation will fall, spring-snowmelt will shift toward winter and consequently it will cause recharge to increase

  9. Are Fruit Juice Categories Separable?

    OpenAIRE

    Knight, Erika P.; House, Lisa; Lee, Jonq-Ying; Spreen, Thomas H.

    2008-01-01

    Supermarket shelves are saturated with numerous varieties and brands of juice beverages. This high level of assortment has dramatically changed beverage consumption patterns and trends throughout the United States. In fact, during 2004-2005, energy and sport drinks experienced significant increases in sales, 65.9% and 20.6 %, respectively. During the same period of time, refrigerated juice sales increased a mere 2.2%, shelved non-fruit drinks decreased 0.9%, bottled juices and cocktails both ...

  10. Experimental study on the artificial recharge of semiconfined aquifers involved in deep excavation engineering

    Science.gov (United States)

    Zheng, G.; Cao, J. R.; Cheng, X. S.; Ha, D.; Wang, F. J.

    2018-02-01

    Artificial recharge measures have been adopted to control the drawdown of confined aquifers and the ground subsidence caused by dewatering during deep excavation in Tianjin, Shanghai and other regions in China. However, research on recharge theory is still limited. Additionally, confined aquifers consisting of silt and silty sand in Tianjin have lower hydraulic conductivities than those consisting of sand or gravel, and the feasibility and effectiveness of recharge methods in these semiconfined aquifers urgently require investigation. A series of single-well and multiwell pumping and recharge tests was conducted at a metro station excavation site in Tianjin. The test results showed that it was feasible to recharge silt and silty sand semiconfined aquifers, and, to a certain extent, the hydrogeological parameters obtained from the pumping tests could be used to predict the water level rise during single-well recharge. However, the predicted results underestimated the water level rise near the recharge well (within 7 m) by approximately 10-25%, likely because the permeability coefficient around the well was reduced during the recharge process. Pressured recharge significantly improved the efficiency of the recharge process. Maintaining the recharge and pumping rates at a nearly equal level effectively controlled the surrounding surface and building settlement. However, the surrounding surface subsidence tended to rapidly develop when recharge stopped. Therefore, the recharge process should continue and gradually stop after the pumping stops. The twin-well combined recharge technique can be used to control the head loss of an aquifer when one of the recharge wells requires pumping to solve the associated clogging problems.

  11. Development of a rechargeable optical hydrogen peroxide sensor - sensor design and biological application

    DEFF Research Database (Denmark)

    Koren, Klaus; Jensen, Peter Østrup; Kühl, Michael

    2016-01-01

    and readout strategy, H2O2 can be measured with high spatial (∼500 μm) and temporal (∼30 s) resolution. The sensor has a broad applicability both in complex environmental and biomedical systems, as demonstrated by (i) H2O2 concentration profile measurements in natural photosynthetic biofilms under light....... Quantifying H2O2 within biological samples is challenging and often not possible. Here we present a quasi-reversible fiber-optic sensor capable of measuring H2O2 concentrations ranging from 1-100 μM within different biological samples. Based on a Prussian blue/white redox cycle and a simple sensor recharging...

  12. Natural recharge of groundwater captured in the hilly area of Kinshasa: Hydrochemical and isotopic approaches

    International Nuclear Information System (INIS)

    Mabiala, M.P.; Nlandu, W.J.; Ndembo, L.J.

    2005-01-01

    The stable isotopic content of daily precipitation sampled at Mount Amba (CGEA) shows large variations principally due to climatic conditions during rain events and to the type of air masses, which generaed the precipitation. The isotopic values of groundwater suggest, throughout the study zone, a rapid and easy recharge of the aquifers by direct infiltration precipitation. In some places, isotopic enrichment content could be attributed to evaporation processes during precipation. Groundwater is generally of chloride and sodium type. They are chemically good for drinking water, but localised high concentrations in nitrates indicate a risk of pollution of the aquifer.

  13. Testing the Efficiency of Markov Chain Monte Carlo with People Using Facial Affect Categories

    Science.gov (United States)

    Martin, Jay B.; Griffiths, Thomas L.; Sanborn, Adam N.

    2012-01-01

    Exploring how people represent natural categories is a key step toward developing a better understanding of how people learn, form memories, and make decisions. Much research on categorization has focused on artificial categories that are created in the laboratory, since studying natural categories defined on high-dimensional stimuli such as…

  14. 76 FR 27609 - Reduction of Foreign Tax Credit Limitation Categories Under Section 904(d); Correction

    Science.gov (United States)

    2011-05-12

    ... Reduction of Foreign Tax Credit Limitation Categories Under Section 904(d); Correction AGENCY: Internal... foreign tax credit limitation categories under section 904(d) of the Internal Revenue Code. DATES: This... in and Losses With Respect to the Pre-2007 Separate Category for High Withholding Tax Interest...

  15. Gas transport below artificial recharge ponds: insights from dissolved noble gases and a dual gas (SF6 and 3He) tracer experiment.

    Science.gov (United States)

    Clark, Jordan F; Hudson, G Bryant; Avisar, Dror

    2005-06-01

    A dual gas tracer experiment using sulfur hexafluoride (SF6) and an isotope of helium (3He) and measurements of dissolved noble gases was performed at the El Rio spreading grounds to examine gas transport and trapped air below an artificial recharge pond with a very high recharge rate (approximately 4 m day(-1)). Noble gas concentrations in the groundwater were greater than in surface water due to excess air formation showing that trapped air exists below the pond. Breakthrough curves of SF6 and 3He at two nearby production wells were very similar and suggest that nonequilibrium gas transfer was occurring between the percolating water and the trapped air. At one well screened between 50 and 90 m below ground, both tracers were detected after 5 days and reached a maximum at approximately 24 days. Despite the potential dilution caused by mixing within the production well, the maximum concentration was approximately 25% of the mean pond concentration. More than 50% of the SF6 recharged was recovered by the production wells during the 18 month long experiment. Our results demonstrate that at artificial recharge sites with high infiltration rates and moderately deep water tables, transport times between recharge locations and wells determined with gas tracer experiments are reliable.

  16. One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.

    Science.gov (United States)

    Mai, Liqiang; Sheng, Jinzhi; Xu, Lin; Tan, Shuangshuang; Meng, Jiashen

    2018-04-17

    Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally

  17. Spatiotemporal variation of the surface water effect on the groundwater recharge in a low-precipitation region: Application of the multi-tracer approach to the Taihang Mountains, North China

    Science.gov (United States)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2017-02-01

    Groundwater recharge variations in time and space are crucial for effective water management, especially in low-precipitation regions. To determine comprehensive groundwater recharge processes in a catchment with large seasonal hydrological variations, intensive field surveys were conducted in the Wangkuai Reservoir watershed located in the Taihang Mountains, North China, during three different times of the year: beginning of the rainy season (June 2011), mid-rainy season (August 2012), and dry season (November 2012). Oxygen and hydrogen isotope and chemical analyses were conducted on the groundwater, spring water, stream water, and reservoir water of the Wangkuai Reservoir watershed. The results were processed using endmember mixing analysis to determine the amount of contribution of the groundwater recharging processes. Similar isotopic and chemical signatures between the surface water and groundwater in the target area indicate that the surface water in the mountain-plain transitional area and the Wangkuai Reservoir are the principal groundwater recharge sources, which result from the highly permeable geological structure of the target area and perennial large-scale surface water, respectively. Additionally, the widespread and significant effect of the diffuse groundwater recharge on the Wangkuai Reservoir was confirmed with the deuterium (d) excess indicator and the high contribution throughout the year, calculated using endmember mixing analysis. Conversely, the contribution of the stream water to the groundwater recharge in the mountain-plain transitional area clearly decreases from the beginning of the rainy season to the mid-rainy season, whereas that of the precipitation increases. This suggests that the main groundwater recharge source shifts from stream water to episodic/continuous heavy precipitation in the mid-rainy season. In other words, the surface water and precipitation commonly affect the groundwater recharge in the rainy season, whereas the

  18. Performance evaluation of a dual-flow recharge filter for improving groundwater quality.

    Science.gov (United States)

    Samuel, Manoj P; Senthilvel, S; Mathew, Abraham C

    2014-07-01

    A dual-flow multimedia stormwater filter integrated with a groundwater recharge system was developed and tested for hydraulic efficiency and pollutant removal efficiency. The influent stormwater first flows horizontally through the circular layers of planted grass and biofibers. Subsequently, the flow direction changes to a vertical direction so that water moves through layers of pebbles and sand and finally gets recharged to the deep aquifers. The media in the sequence of vegetative medium:biofiber to pebble:sand were filled in nine proportions and tested for the best performing combination. Three grass species, viz., Typha (Typha angustifolia), Vetiver (Chrysopogon zizanioides), and St. Augustine grass (Stenotaphrum secundatum), were tested as the best performing vegetative medium. The adsorption behavior of Coconut (Cocos nucifera) fiber, which was filled in the middle layer, was determined by a series of column and batch studies.The dual-flow filter showed an increasing trend in hydraulic efficiency with an increase in flowrate. The chemical removal efficiency of the recharge dual-flow filter was found to be very high in case of K+ (81.6%) and Na+ (77.55%). The pH normalizing efficiency and electrical conductivity reduction efficiency were also recorded as high. The average removal percentage of Ca2+ was moderate, while that of Mg2+ was very low. The filter proportions of 1:1 to 1:2 (plant:fiber to pebble:sand) showed a superior performance compared to all other proportions. Based on the estimated annual costs and returns, all the financial viability criteria (internal rate of return, net present value, and benefit-cost ratio) were found to be favorable and affordable to farmers in terms of investing in the developed filtration system.

  19. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progresses and perspectives.

    Science.gov (United States)

    Zhang, Heng; Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei; Rodriguez-Martínez, Lide M; Armand, Michel

    2018-02-14

    Lithium metal (Li°) - based rechargeable batteries (LMBs), such as Li° anode vs. intercalation and/or conversion type cathode batteries, lithium-sulphur (Li-S), and lithium-oxygen (O2)/air (Li-O2/air) are becoming increasingly important for electrifying the modern transportation system, enabling sustainable mobility in the near future. Though some rechargeable LMBs batteries (e.g., Li°/LiFePO4 batteries from Bolloré Bluecar®, Li-S batteries from OXIS Energy and Sion Power) are already commercially viable in niche applications, their large-scale deployment is still hampered due to the existence of a number of formidable challenges, including lithium dendrite growth, electrolyte instability towards high voltage intercalation type cathode, poor electronic and ionic conductivities of sulphur (S8) and O2, as well as their corresponding reduction products (e.g., Li2S and Li2O), dissolution and shuttling of polysulphide (PS) intermediates etc. This ultimately results in short cycle life, low coulombic/energy efficiency, poor safety, and a high self-discharge rate. Among other mitigating strategies, the use of electrolyte additives is considered as one of the most economical, and effective approach for circumventing these dilemmas. Set out to offer an in-depth insight into the rapidly growing research on the account of electrolyte additives for rechargeable LMBs, this review presents an overview of the various functional additives, that are being applied in Li-anode/intercalation cathode-based, Li-S and Li-O2 batteries. This review is believed to assess the status quo of the research and thereby arouse new thoughts and opportunities, opening new avenues for the practical realization of these appealing devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fluoride in weathered rock aquifers of southern India: Managed Aquifer Recharge for mitigation.

    Science.gov (United States)

    Brindha, K; Jagadeshan, G; Kalpana, L; Elango, L

    2016-05-01

    Climatic condition, geology, and geochemical processes in an area play a major role on groundwater quality. Impact of these on the fluoride content of groundwater was studied in three regions-part of Nalgonda district in Telangana, Pambar River basin, and Vaniyar River basin in Tamil Nadu, southern India, which experience semi-arid climate and are predominantly made of Precambrian rocks. High concentration of fluoride in groundwater above 4 mg/l was recorded. Human exposure dose for fluoride through groundwater was higher in Nalgonda than the other areas. With evaporation and rainfall being one of the major contributors for high fluoride apart from the weathering of fluoride rich minerals from rocks, the effect of increase in groundwater level on fluoride concentration was studied. This study reveals that groundwater in shallow environment of all three regions shows dilution effect due to rainfall recharge. Suitable managed aquifer recharge (MAR) methods can be adopted to dilute the fluoride rich groundwater in such regions which is explained with two case studies. However, in deep groundwater, increase in fluoride concentration with increase in groundwater level due to leaching of fluoride rich salts from the unsaturated zone was observed. Occurrence of fluoride above 1.5 mg/l was more in areas with deeper groundwater environment. Hence, practicing MAR in these regions will increase the fluoride content in groundwater and so physical or chemical treatment has to be adopted. This study brought out the fact that MAR cannot be practiced in all regions for dilution of ions in groundwater and that it is essential to analyze the fluctuation in groundwater level and the fluoride content before suggesting it as a suitable solution. Also, this study emphasizes that long-term monitoring of these factors is an important criterion for choosing the recharge areas.

  1. Biased Allocation of Faces to Social Categories

    NARCIS (Netherlands)

    Dotsch, R.; Wigboldus, D.H.J.; Knippenberg, A.F.M. van

    2011-01-01

    Three studies show that social categorization is biased at the level of category allocation. In all studies, participants categorized faces. In Studies 1 and 2, participants overallocated faces with criminal features-a stereotypical negative trait-to the stigmatized Moroccan category, especially if

  2. The ethnic category from a linguistic perspective

    Directory of Open Access Journals (Sweden)

    Răzvan Săftoiu

    2017-03-01

    Full Text Available In this paper, I put forward an analysis from a linguistic perspective of an ethnic category in Romania that is defined by at least two terms: gypsy and Romany. The concept of category refers to the members of a particular group that sets apart from other groups by a set of specific elements acknowledged at the level of a larger community. In interaction, individuals frequently use categories and the set of features that a certain category is characterized by, since it is easier to deal with sets of knowledge than with references for each individual separately. The analysis is based on a series of expressions and phrases, proverbs and jokes which were (or still are getting about in the Romanian space and which delineated, at the level of the collective mentality, the image of an ethnic category whose name (still oscillates between two terms. The texts were grouped depending on the different stereotypes associated with the ethnic category under discussion, by highlighting the pejorative connotations of the uses of the term gypsy in relation to the ethnic category Romany, a significance-free category that can be ‘filled up’ by elements that can sketch a positive image.

  3. Shape configuration and category-specificity

    DEFF Research Database (Denmark)

    Gerlach, Christian; Law, Ian; Paulson, Olaf B.

    2006-01-01

    a recent account of category-specificity and lends support to the notion that category-specific impairments can occur for both natural objects and artefacts following damage to pre-semantic stages in visual object recognition. The implications of the present findings are discussed in relation to theories...

  4. Conformal field theories and tensor categories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics

    2014-08-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  5. Color descriptors for object category recognition

    NARCIS (Netherlands)

    van de Sande, K.E.A.; Gevers, T.; Snoek, C.G.M.

    2008-01-01

    Category recognition is important to access visual information on the level of objects. A common approach is to compute image descriptors first and then to apply machine learning to achieve category recognition from annotated examples. As a consequence, the choice of image descriptors is of great

  6. Operadic categories and duoidal Deligne's conjecture

    Czech Academy of Sciences Publication Activity Database

    Batanin, M.; Markl, Martin

    2015-01-01

    Roč. 285, 5 November (2015), s. 1630-1687 ISSN 0001-8708 Institutional support: RVO:67985840 Keywords : operadic category * duoidal category * Deligne's conjecture Subject RIV: BA - General Mathematics Impact factor: 1.405, year: 2015 http://www.sciencedirect.com/science/article/pii/S0001870815002467

  7. Conformal field theories and tensor categories. Proceedings

    International Nuclear Information System (INIS)

    Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph

    2014-01-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  8. Connections between realcompactifications in various categories ...

    African Journals Online (AJOL)

    The author gives a detailed analysis of the relation between the theories of realcompactications and compactications in the category of ditopological texture spaces and in the categories of bitopological spaces and topological spaces. Keywords: Bitopology, texture, ditopology, Stone-Čech compactication, Hewitt real- ...

  9. Finding biomedical categories in Medline®

    Directory of Open Access Journals (Sweden)

    Yeganova Lana

    2012-10-01

    Full Text Available Abstract Background There are several humanly defined ontologies relevant to Medline. However, Medline is a fast growing collection of biomedical documents which creates difficulties in updating and expanding these humanly defined ontologies. Automatically identifying meaningful categories of entities in a large text corpus is useful for information extraction, construction of machine learning features, and development of semantic representations. In this paper we describe and compare two methods for automatically learning meaningful biomedical categories in Medline. The first approach is a simple statistical method that uses part-of-speech and frequency information to extract a list of frequent nouns from Medline. The second method implements an alignment-based technique to learn frequent generic patterns that indicate a hyponymy/hypernymy relationship between a pair of noun phrases. We then apply these patterns to Medline to collect frequent hypernyms as potential biomedical categories. Results We study and compare these two alternative sets of terms to identify semantic categories in Medline. We find that both approaches produce reasonable terms as potential categories. We also find that there is a significant agreement between the two sets of terms. The overlap between the two methods improves our confidence regarding categories predicted by these independent methods. Conclusions This study is an initial attempt to extract categories that are discussed in Medline. Rather than imposing external ontologies on Medline, our methods allow categories to emerge from the text.

  10. Appropriate Pupilness: Social Categories Intersecting in School

    Science.gov (United States)

    Kofoed, Jette

    2008-01-01

    The analytical focus in this article is on how social categories intersect in daily school life and how intersections intertwine with other empirically relevant categories such as normality, pupilness and (in)appropriatedness. The point of empirical departure is a daily ritual where teams for football are selected. The article opens up for a…

  11. Diagnostic Categories in Autobiographical Accounts of Illness.

    Science.gov (United States)

    Kelly, Michael P

    2015-01-01

    Working within frameworks drawn from the writings of Immanuel Kant, Alfred Schutz, and Kenneth Burke, this article examines the role that diagnostic categories play in autobiographical accounts of illness, with a special focus on chronic disease. Four lay diagnostic categories, each with different connections to formal medical diagnostic categories, serve as typifications to make sense of the way the lifeworld changes over the course of chronic illness. These diagnostic categories are used in conjunction with another set of typifications: lay epidemiologies, lay etiologies, lay prognostics, and lay therapeutics. Together these serve to construct and reconstruct the self at the center of the lifeworld. Embedded within the lay diagnostic categories are narratives of progression, regression, or stability, forms of typification derived from literary and storytelling genres. These narratives are developed by the self in autobiographical accounts of illness.

  12. Modular categories and 3-manifold invariants

    International Nuclear Information System (INIS)

    Tureav, V.G.

    1992-01-01

    The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds

  13. SUSTAIN: a network model of category learning.

    Science.gov (United States)

    Love, Bradley C; Medin, Douglas L; Gureckis, Todd M

    2004-04-01

    SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.

  14. The effects of artificial recharge on groundwater levels and water quality in the west hydrogeologic unit of the Warren subbasin, San Bernardino County, California

    Science.gov (United States)

    Stamos, Christina L.; Martin, Peter; Everett, Rhett; Izbicki, John A.

    2013-01-01

    Between the late 1940s and 1994, groundwater levels in the Warren subbasin, California, declined by as much as 300 feet because pumping exceeded sparse natural recharge. In response, the local water district, Hi-Desert Water District, implemented an artificial-recharge program in early 1995 using imported water from the California State Water Project. Subsequently, the water table rose by as much as 250 feet; however, a study done by the U.S. Geological Survey found that the rising water table entrained high-nitrate septic effluent, which caused nitrate (as nitrogen) concentrations in some wells to increase to more than the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter.. A new artificial-recharge site (site 3) was constructed in 2006 and this study, which started in 2004, was done to address concerns about the possible migration of nitrates in the unsaturated zone. The objectives of this study were to: (1) characterize the hydraulic, chemical, and microbiological properties of the unsaturated zone; (2) monitor changes in water levels and water quality in response to the artificial-recharge program at site 3; (3) determine if nitrates from septic effluent infiltrated through the unsaturated zone to the water table; (4) determine the potential for nitrates within the unsaturated zone to mobilize and contaminate the groundwater as the water table rises in response to artificial recharge; and (5) determine the presence and amount of dissolved organic carbon because of its potential to react with disinfection byproducts during the treatment of water for public use. Two monitoring sites were installed and instrumented with heat-dissipation probes, advanced tensiometers, suction-cup lysimeters, and wells so that the arrival and effects of recharging water from the State Water Project through the 250 to 425 foot-thick unsaturated zone and groundwater system could be closely observed. Monitoring site YVUZ-1 was located between two

  15. AMUC: Associated Motion capture User Categories.

    Science.gov (United States)

    Norman, Sally Jane; Lawson, Sian E M; Olivier, Patrick; Watson, Paul; Chan, Anita M-A; Dade-Robertson, Martyn; Dunphy, Paul; Green, Dave; Hiden, Hugo; Hook, Jonathan; Jackson, Daniel G

    2009-07-13

    The AMUC (Associated Motion capture User Categories) project consisted of building a prototype sketch retrieval client for exploring motion capture archives. High-dimensional datasets reflect the dynamic process of motion capture and comprise high-rate sampled data of a performer's joint angles; in response to multiple query criteria, these data can potentially yield different kinds of information. The AMUC prototype harnesses graphic input via an electronic tablet as a query mechanism, time and position signals obtained from the sketch being mapped to the properties of data streams stored in the motion capture repository. As well as proposing a pragmatic solution for exploring motion capture datasets, the project demonstrates the conceptual value of iterative prototyping in innovative interdisciplinary design. The AMUC team was composed of live performance practitioners and theorists conversant with a variety of movement techniques, bioengineers who recorded and processed motion data for integration into the retrieval tool, and computer scientists who designed and implemented the retrieval system and server architecture, scoped for Grid-based applications. Creative input on information system design and navigation, and digital image processing, underpinned implementation of the prototype, which has undergone preliminary trials with diverse users, allowing identification of rich potential development areas.

  16. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    Science.gov (United States)

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total

  17. Evaluating two infiltration gallery designs for managed aquifer recharge using secondary treated wastewater.

    Science.gov (United States)

    Bekele, Elise; Toze, Simon; Patterson, Bradley; Fegg, Wolfgang; Shackleton, Mark; Higginson, Simon

    2013-03-15

    As managed aquifer recharge (MAR) becomes increasingly considered for augmenting water-sensitive urban areas, fundamental knowledge of the achievable scale, longevity and maintenance requirements of different options will become paramount. This paper reports on a 39 month pilot scale MAR scheme that infiltrated secondary treated wastewater through unsaturated sand into a limestone and sand aquifer. Two types of infiltration gallery were constructed to compare their hydraulic performance, one using crushed, graded gravel, the other using an engineered leach drain system (Atlantis Leach System(®)). Both galleries received 25 kL of nutrient-rich, secondary treated wastewater per day. The Atlantis gallery successfully infiltrated 17 ML of treated wastewater over three years. The slotted distribution pipe in the gravel gallery became clogged with plant roots after operating for one year. The infiltration capacity of the gravel gallery could not be restored despite high pressure cleaning, thus it was replaced with an Atlantis system. Reduction in the infiltration capacity of the Atlantis system was only observed when inflow was increased by about 3 fold for two months. The performance of the Atlantis system suggests it is superior to the gravel gallery, requiring less maintenance within at least the time frame of this study. The results from a bromide tracer test revealed a minimum transport time of 3.7 days for the recharged water to reach the water table below 9 m of sand and limestone. This set a limit on the time available for attenuation by natural treatment within the unsaturated zone before it recharged groundwater. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Recharge beneath low-impact design rain gardens and the influence of El Niño Southern Oscillation on urban, coastal groundwater resources

    Science.gov (United States)

    Newcomer, M. E.; Gurdak, J. J.

    2011-12-01

    Groundwater resources in urban, coastal environments are highly vulnerable to increased human pressures and climate variability. Impervious surfaces, such as buildings, roads, and parking lots prevent infiltration, reduce recharge to underlying aquifers, and increase contaminants in surface runoff that often overflow sewage systems. To mitigate these effects, cities worldwide are adopting low impact design (LID) approaches that direct runoff into natural vegetated systems, such as rain gardens that reduce, filter, and slow stormwater runoff, and are hypothesized to increase infiltration and recharge rates to aquifers. The effects of LID on recharge rates and quality is unknown, particularly during intense precipitation events for cities along the Pacific coast in response to interannual variability of the El Niño Southern Oscillation (ENSO). Using vadose zone monitoring sensors and instruments, I collected and monitored soil, hydraulic, and geochemical data to quantify the rates and quality of infiltration and recharge to the California Coastal aquifer system beneath a LID rain garden and traditional turf-lawn setting in San Francisco, CA. The data were used to calibrate a HYDRUS-3D model to simulate recharge rates under historical and future variability of ENSO. Understanding these processes has important implications for managing groundwater resources in urban, coastal environments.

  19. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries.

    Science.gov (United States)

    Wang, Yang; Fu, Jing; Zhang, Yining; Li, Matthew; Hassan, Fathy Mohamed; Li, Guang; Chen, Zhongwei

    2017-10-26

    Exploring highly efficient bifunctional electrocatalysts toward the oxygen reduction and evolution reactions is essential for the realization of high-performance rechargeable zinc-air batteries. Herein, a novel nanofibrous bifunctional electrocatalyst film, consisting of metallic manganese sulfide and cobalt encapsulated by nitrogen-doped carbon nanofibers (CMS/NCNF), is prepared through a continuous electrospinning method followed by carbonization treatment. The CMS/NCNF bifunctional catalyst shows both comparable ORR and OER performances to those of commercial precious metal-based catalysts. Furthermore, the free-standing CMS/NCNF fibrous thin film is directly used as the air electrode in a solid-state zinc-air battery, which exhibits superior flexibility while retaining stable battery performance at different bending angles. This study provides a versatile design route for the rational design of free-standing bifunctional catalysts for direct use as the air electrode in rechargeable zinc-air batteries.

  20. Study of groundwater recharge in Rechna Doab using isotope techniques

    International Nuclear Information System (INIS)

    Sajjad, M.I.; Tasneem, M.A.; Ahmed, M.; Hussain, S.D.; Khan, I.H.; Akram, W.

    1992-04-01

    Isotopic studies were performed in the Rechna Doab area to understand the recharge mechanism, investigate the relative contributions from various sources such as rainfall, rivers and canal system and to estimate the turn over times and replenishment rate of groundwater. The isotopic data suggest that the groundwater in the project area can be divided into different zones each having its own characteristic isotopic composition. The enriched isotopic values show rain recharge and depleted isotopic values are associated with river/canal system while the intermediate isotopic values show a mixing of two or more sources of water. The major contribution, however, comes from canal system. The isotopic data suggest that there is no quick movement of groundwater in the area. 18 figs. (author)

  1. Water quality management of aquifer recharge using advanced tools.

    Science.gov (United States)

    Lazarova, Valentina; Emsellem, Yves; Paille, Julie; Glucina, Karl; Gislette, Philippe

    2011-01-01

    Managed aquifer recharge (MAR) with recycled water or other alternative resources is one of the most rapidly growing techniques that is viewed as a necessity in water-short areas. In order to better control health and environmental effects of MAR, this paper presents two case studies demonstrating how to improve water quality, enable reliable tracing of injected water and better control and manage MAR operation in the case of indirect and direct aquifer recharge. Two water quality management strategies are illustrated on two full-scale case studies, including the results of the combination of non conventional and advanced technologies for water quality improvement, comprehensive sampling and monitoring programs including emerging pollutants, tracer studies using boron isotopes and integrative aquifer 3D GIS hydraulic and hydrodispersive modelling.

  2. Observation versus classification in supervised category learning.

    Science.gov (United States)

    Levering, Kimery R; Kurtz, Kenneth J

    2015-02-01

    The traditional supervised classification paradigm encourages learners to acquire only the knowledge needed to predict category membership (a discriminative approach). An alternative that aligns with important aspects of real-world concept formation is learning with a broader focus to acquire knowledge of the internal structure of each category (a generative approach). Our work addresses the impact of a particular component of the traditional classification task: the guess-and-correct cycle. We compare classification learning to a supervised observational learning task in which learners are shown labeled examples but make no classification response. The goals of this work sit at two levels: (1) testing for differences in the nature of the category representations that arise from two basic learning modes; and (2) evaluating the generative/discriminative continuum as a theoretical tool for understand learning modes and their outcomes. Specifically, we view the guess-and-correct cycle as consistent with a more discriminative approach and therefore expected it to lead to narrower category knowledge. Across two experiments, the observational mode led to greater sensitivity to distributional properties of features and correlations between features. We conclude that a relatively subtle procedural difference in supervised category learning substantially impacts what learners come to know about the categories. The results demonstrate the value of the generative/discriminative continuum as a tool for advancing the psychology of category learning and also provide a valuable constraint for formal models and associated theories.

  3. Defect Engineering toward Atomic Co-Nx -C in Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries.

    Science.gov (United States)

    Tang, Cheng; Wang, Bin; Wang, Hao-Fan; Zhang, Qiang

    2017-10-01

    Rechargeable flexible solid Zn-air battery, with a high theoretical energy density of 1086 Wh kg -1 , is among the most attractive energy technologies for future flexible and wearable electronics; nevertheless, the practical application is greatly hindered by the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) kinetics on the air electrode. Precious metal-free functionalized carbon materials are widely demonstrated as the most promising candidates, while it still lacks effective synthetic methodology to controllably synthesize carbocatalysts with targeted active sites. This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co-N x -C active sites via defect engineering. As-fabricated Co/N/O tri-doped graphene catalysts with highly active sites and hierarchical porous scaffolds exhibit superior ORR/OER bifunctional activities and impressive applications in rechargeable Zn-air batteries. Specifically, when integrated into a rechargeable and flexible solid Zn-air battery, a high open-circuit voltage of 1.44 V, a stable discharge voltage of 1.19 V, and a high energy efficiency of 63% at 1.0 mA cm -2 are achieved even under bending. The defect engineering strategy provides a new concept and effective methodology for the full utilization of nanocarbon materials with various structural features and further development of advanced energy materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Water Conservation and Artificial Recharge of Aquifers in India

    Energy Technology Data Exchange (ETDEWEB)

    Chandha, D. K.

    2014-10-01

    India has proud traditions and wisdom which have evolved over thousands of years for developing technologies for water conservation and groundwater recharge using surplus monsoon precipitation runoff. This is imperative as the average rainfall/precipitation period is about 27 days/year and with uneven distribution across the country. Groundwater development is now the mainstay for sustaining agricultural production and rural water supplies. As such, groundwater development is increasing at an exponential rate and the estimated draft is now 231 000 hm{sup 3} with the result that almost 15% of the groundwater development areas are showing a continuous decline of water levels. There is an anomalous situation whereby water levels are declining in 831 blocks (assessment units) out of a total of 5 723 blocks across the country, and availability of excessive 864 000 hm{sup 3} runoff in different river basins brings floods and creates water logging in some parts of the country. This non-utilizable water can be planned for creating small surface water storage and to create additional sub-surface storage through groundwater recharge. At present, total water available is estimated at 660 000 hm{sup 3} and the minimum estimated water demand will be 843 000 hm{sup 3} in 2025 and 973 000 hm{sup 3} in 2050. Therefore, if India wants sustainable food supplies and to meet domestic/industrial water requirements, there is no other option than to implement projects for water conservation/groundwater recharge. Although a number of forward looking steps have been planned by the government and other institutions, many lacunae have been observed which need to be addressed for the successful implementation of water conservation and recharge programmes. This paper discusses various practices from the pre-historic to the present day, with case studies showing technological intervention. (Author)

  5. Natural groundwater recharge and water balance at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayer, M.J.; Gee, G.W.; Kanyid, M.J.

    1990-01-01

    The purpose of this report is to present water-balance data collected in 1988 and 1989 from the 300 Area Buried Waste Test Facility and Grass Site, and the 200 East Area closed-bottom lysimeter. This report is an annual update of previous recharge status reports by Gee, Rockhold, and Downs, and Gee. Data from several other lysimeter sites are included for comparison. 43 refs., 28 figs., 7 tabs

  6. Managed aquifer recharge: rediscovering nature as a leading edge technology.

    Science.gov (United States)

    Dillon, P; Toze, S; Page, D; Vanderzalm, J; Bekele, E; Sidhu, J; Rinck-Pfeiffer, S

    2010-01-01

    Use of Managed Aquifer Recharge (MAR) has rapidly increased in Australia, USA, and Europe in recent years as an efficient means of recycling stormwater or treated sewage effluent for non-potable and indirect potable reuse in urban and rural areas. Yet aquifers have been relied on knowingly for water storage and unwittingly for water treatment for millennia. Hence if 'leading edge' is defined as 'the foremost part of a trend; a vanguard', it would be misleading to claim managed aquifer recharge as a leading edge technology. However it has taken a significant investment in scientific research in recent years to demonstrate the effectiveness of aquifers as sustainable treatment systems to enable managed aquifer recharge to be recognised along side engineered treatment systems in water recycling. It is a 'cross-over' technology that is applicable to water and wastewater treatment and makes use of passive low energy processes to spectacularly reduce the energy requirements for water supply. It is robust within limits, has low cost, is suitable from village to city scale supplies, and offers as yet almost untapped opportunities for producing safe drinking water supplies where they do not yet exist. It will have an increasingly valued role in securing water supplies to sustain cities affected by climate change and population growth. However it is not a universal panacea and relies on the presence of suitable aquifers and sources of water together with effective governance to ensure human health and environment protection and water resources planning and management. This paper describes managed aquifer recharge, illustrates its use in Australia, outlining economics, guidelines and policies, and presents some of the knowledge about aquifer treatment processes that are revealing the latent value of aquifers as urban water infrastructure and provide a driver to improving our understanding of urban hydrogeology.

  7. The impact of category structure and training methodology on learning and generalizing within-category representations.

    Science.gov (United States)

    Ell, Shawn W; Smith, David B; Peralta, Gabriela; Hélie, Sébastien

    2017-08-01

    When interacting with categories, representations focused on within-category relationships are often learned, but the conditions promoting within-category representations and their generalizability are unclear. We report the results of three experiments investigating the impact of category structure and training methodology on the learning and generalization of within-category representations (i.e., correlational structure). Participants were trained on either rule-based or information-integration structures using classification (Is the stimulus a member of Category A or Category B?), concept (e.g., Is the stimulus a member of Category A, Yes or No?), or inference (infer the missing component of the stimulus from a given category) and then tested on either an inference task (Experiments 1 and 2) or a classification task (Experiment 3). For the information-integration structure, within-category representations were consistently learned, could be generalized to novel stimuli, and could be generalized to support inference at test. For the rule-based structure, extended inference training resulted in generalization to novel stimuli (Experiment 2) and inference training resulted in generalization to classification (Experiment 3). These data help to clarify the conditions under which within-category representations can be learned. Moreover, these results make an important contribution in highlighting the impact of category structure and training methodology on the generalization of categorical knowledge.

  8. A Higher-Order Calculus for Categories

    DEFF Research Database (Denmark)

    Cáccamo, Mario José; Winskel, Glynn

    2001-01-01

    A calculus for a fragment of category theory is presented. The types in the language denote categories and the expressions functors. The judgements of the calculus systematise categorical arguments such as: an expression is functorial in its free variables; two expressions are naturally isomorphic...... in their free variables. There are special binders for limits and more general ends. The rules for limits and ends support an algebraic manipulation of universal constructions as opposed to a more traditional diagrammatic approach. Duality within the calculus and applications in proving continuity are discussed...... with examples. The calculus gives a basis for mechanising a theory of categories in a generic theorem prover like Isabelle....

  9. Kuranishi spaces as a 2-category

    OpenAIRE

    Joyce, Dominic

    2015-01-01

    This is a survey of the author's in-progress book arXiv:1409.6908. 'Kuranishi spaces' were introduced in the work of Fukaya, Oh, Ohta and Ono in symplectic geometry (see e.g. arXiv:1503.07631), as the geometric structure on moduli spaces of $J$-holomorphic curves. We propose a new definition of Kuranishi space, which has the nice property that they form a 2-category $\\bf Kur$. Thus the homotopy category Ho$({\\bf Kur})$ is an ordinary category of Kuranishi spaces. Any Fukaya-Oh-Ohta-Ono (FOOO)...

  10. Categories of space in music and lifestyles

    Directory of Open Access Journals (Sweden)

    Milenković Pavle

    2015-01-01

    Full Text Available This paper discusses the connection between categories of space in music, music production and lifestyles. The relations between the symbolic space of social connections and musical contents in the social space of various status interactions is complex and contradictory. Category of space in the music exists in four forms. Categories of space in the description of the experience of the musical works, as well as in the way of music production (spacing are the integral part of the special way of consumption of these works (home Hi-Fi, and represent the social status, ways of cultural consumption and habitus in general.

  11. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    OpenAIRE

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanof...

  12. Evaluating recharge to an ephemeral dryland stream using a hydraulic model and water, chloride and isotope mass balance

    Science.gov (United States)

    Dogramaci, Shawan; Firmani, Giovanni; Hedley, Paul; Skrzypek, Grzegorz; Grierson, Pauline F.

    2015-02-01

    Dewatering associated with mining below water table to achieve dry mining conditions may exert significant pressure on water balance in terms of lowering the water table and change in the dynamics of interactions between surface water and groundwater. The discharge of surplus mine water into ephemeral streams may also affect the water balance, by elevating groundwater levels and altering the exchange rate between streams and underlying aquifers. However, it is unclear whether volumes and recharge processes are within the range of natural variability. Here, we present a case study of an ephemeral creek in the semi-arid Hamersley Basin of northwest Australia that has received continuous mine discharge for more than six years. We used a numerical model coupled with repeated measurements of water levels, chloride concentrations and the hydrogen and oxygen stable isotope composition (δ2H and δ18O) to estimate longitudinal evapotranspiration and recharge rates along a 27 km length of Weeli Wolli Creek. We found that chloride increased from 73 to 120 mg/L across this length, while δ18O increased from -8.2‰ to -7.00‰. Groundwater is directly connected to the creek for the first 13 km and recharge rates are negligible. Below this point, the creek flows over a highly permeable aquifer and water loss by recharge increases to a maximum rate of 4.4 mm/d, which accounts for ∼65% of the total water discharged to the creek. Evapotranspiration losses account for the remaining ∼35%. The calculated recharge from continuous flow due to surplus water discharge is similar to that measured for rainfall-driven flood events along the creek. Groundwater under the disconnected section of the creek is characterised by a much lower Cl concentration and more depleted δ18O value than mining discharge water but is similar to flood water generated by large episodic rainfall events. Our results suggest that the impact of recharge from continuous flow on the water balance of the creek

  13. Multiple batch recharging for industrial CZ silicon growth

    Science.gov (United States)

    Fickett, B.; Mihalik, G.

    2001-05-01

    The Czochralski (CZ) crystal growth process used in the Siemens Solar Industries’ (SSI) Vancouver, WA facility was non-continuous. Each furnace run's production was limited by the size of the starting charge. Once the charge was depleted, the furnace was shut down, cooled, and set back up for the next run. A recharge system was developed which transforms standard CZ growth into a semi-continuous process. Now when the charge is depleted, the crucible can be refilled in situ as the grown ingot is being removed from the furnace. SSI has demonstrated up to 14 recharge cycles in a single run. The resulting benefits included: significant cost reduction, increased yield, increased throughput, reduced energy consumption, improved process capability, reduced material handling requirements, and reduced labor. The recharge system also enables the use of granular silicon, which requires less than 30% of the energy required when manufacturing silicon-starting materials. This significantly reduces the energy “pay-back” time associated with SSI's finished product, photovoltaic panels.

  14. Handling the decline of ground water using artificial recharge areas

    Science.gov (United States)

    Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky

    2017-11-01

    Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.

  15. Uncertainties in the simulation of groundwater recharge at different scales

    Directory of Open Access Journals (Sweden)

    H. Bogena

    2005-01-01

    Full Text Available Digital spatial data always imply some kind of uncertainty. The source of this uncertainty can be found in their compilation as well as the conceptual design that causes a more or less exact abstraction of the real world, depending on the scale under consideration. Within the framework of hydrological modelling, in which numerous data sets from diverse sources of uneven quality are combined, the various uncertainties are accumulated. In this study, the GROWA model is taken as an example to examine the effects of different types of uncertainties on the calculated groundwater recharge. Distributed input errors are determined for the parameters' slope and aspect using a Monte Carlo approach. Landcover classification uncertainties are analysed by using the conditional probabilities of a remote sensing classification procedure. The uncertainties of data ensembles at different scales and study areas are discussed. The present uncertainty analysis showed that the Gaussian error propagation method is a useful technique for analysing the influence of input data on the simulated groundwater recharge. The uncertainties involved in the land use classification procedure and the digital elevation model can be significant in some parts of the study area. However, for the specific model used in this study it was shown that the precipitation uncertainties have the greatest impact on the total groundwater recharge error.

  16. Seismicity Induced by Groundwater Recharge at Mt. Hood, Oregon, and its Implications for Hydrogeologic Properties.

    Science.gov (United States)

    Saar, M. O.; Manga, M.

    2002-12-01

    Earthquakes induced by human-caused changes in fluid pressure have been documented for many years. Examples include seismicity induced by filling reservoirs and by fluid injection or extraction. Less well-documented are seismic events that potentially are triggered by natural variations in groundwater recharge rates (e.g., Wolf et al., BSSA, 1997; Jimenez and Garcia-Fernandez, JVGR, 2000; Audin et al., GRL, 2002). Large groundwater recharge rates can occur in Volcanic Arcs such as the Oregon Cascades where annual precipitation is > 2 m of which > 50 % infiltrates the ground mostly during snowmelt in spring. As a result, infiltration rates of > 1 m per year concentrated during a few months can occur. Near-surface porosities are about 5-10 %. Thus, groundwater levels may fluctuate annually by about 10-20 m resulting in seasonal pore fluid pressure variations of about 1-2 x 105 Pa. Such large-amplitude, narrow-duration fluid pressure signals may allow investigation of seismicity induced by pore fluid pressure diffusion without the influence of engineered systems such as reservoirs. This kind of in-situ study of natural systems over large representative elementary volumes may allow determination of hydrologic parameters at spatial and temporal scales that are relevant for regional hydrogeology. Furthermore, natural hydrologic triggering of earthquakes that persist for decades provides insight into the state of stress in the crust and suggest long-term near-critical failure conditions. Here, we approximate the temporal variations in groundwater recharge with discharge in runoff-dominated streams at high elevations that show a peak in discharge during snow melt. Seismicity is evaluated as time series of daily number of earthquakes and seismic moments. Both stream discharge and seismicity are compared at equivalent frequency bands by applying segmented least-squares polynomial fits to the data. We find statistically significant correlation between groundwater recharge and

  17. Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid India.

    Science.gov (United States)

    Sishodia, Rajendra P; Shukla, Sanjay; Wani, Suhas P; Graham, Wendy D; Jones, James W

    2018-09-01

    Simultaneous effects of future climate and irrigation intensification on surface and groundwater systems are not well understood. Efforts are needed to understand the future groundwater availability and associated surface flows under business-as-usual management to formulate policy changes to improve water sustainability. We combine measurements with integrated modeling (MIKE SHE/MIKE11) to evaluate the effects of future climate (2040-2069), with and without irrigation expansion, on water levels and flows in an agricultural watershed in low-storage crystalline aquifer region of south India. Demand and supply management changes, including improved efficiency of irrigation water as well as energy uses, were evaluated. Increased future rainfall (7-43%, from 5 Global Climate Models) with no further expansion of irrigation wells increased the groundwater recharge (10-55%); however, most of the recharge moved out of watershed as increased baseflow (17-154%) with a small increase in net recharge (+0.2mm/year). When increased rainfall was considered with projected increase in irrigation withdrawals, both hydrologic extremes of well drying and flooding were predicted. A 100-year flow event was predicted to be a 5-year event in the future. If irrigation expansion follows the historical trends, earlier and more frequent well drying, a source of farmers' distress in India, was predicted to worsen in the future despite the recharge gains from increased rainfall. Storage and use of excess flows, improved irrigation efficiency with flood to drip conversion in 25% of irrigated area, and reduced energy subsidy (free electricity for 3.5h compared to 7h/day; $1 billion savings) provided sufficient water savings to support future expansion in irrigated areas while mitigating well drying as well as flooding. Reductions in energy subsidy to fund the implementation of economically desirable (high benefit-cost ratio) demand (drip irrigation) and supply (water capture and storage

  18. Evaluation of artificial groundwater recharge effects with MIKE-SHE: a case study.

    Science.gov (United States)

    Leal, M.; Martínez-García, I.; Carreño, F.; de Bustamante, I.; Lillo, J.

    2012-04-01

    In many areas where the technical and financial resources are limited, the treatment and disposal of wastewater comprise a problem. With increasing frequency, the wastewater reuse is considered as another alternative for water management alternative. In this way, the wastewater is converted into an added value resource. Treated wastewater infiltration into the soil could be a viable tertiary treatment, especially for small communities where the availability of land is not a problem and the wastewater has not industrial waste contribution and is highly biodegradable. The Experimental Plant of Carrión de los Céspedes (Seville, Spain) develops non-conventional wastewater treatments for small villages. Currently, a project regarding wastewater reutilization for aquifer recharge through a horizontal permeable reactive barrier and a subsequent soil infiltration is being carried out. One of the aspects to be evaluated within this context is the impact on aquifer. Consequently, the main goal of the present study is to assess the effects on the water flow derived from the future recharge activities by using the MIKE-SHE hydrological code. The unsaturated and saturated zones have been integrated in the model, which requires geological, land use, topography, piezometric head, soil and climate data to build up the model. The obtained results from the model show that with the annual recharge volume contributed by the experimental plant (3 m3 or 0.19 L/s) there is no effect in the groundwater flow. A volume of 400 m3/year (25 L/s) would be required to yield a variation in the piezometric head and therefore, in the groundwater flow i.e. a volume about 100 times larger than the estimated is necessary. To calibrate the model, simulated piezometric head values have been compared to the measured field data at a number of locations. In the calibration, the percent error had to be lower than 15 % at each location. Future works concerning groundwater quality and reactive transport

  19. Quantification of groundwater recharge through application of pilot techniques in the unsaturated zone.

    Science.gov (United States)

    Kallioras, Andreas; Piepenbrink, Matthias; Schuth, Christoph; Pfletschinger, Heike; Dietrich, Peter; Koeniger, Franz; Rausch, Randolf

    2010-05-01

    Accurate determination of groundwater recharge is a key issue for the "smart mining" of groundwater resources. Groundwater recharge estimation techniques depend on the investigated hydrologic zone, and therefore main approaches are based on (a) unsaturated zone, (b) saturated zone and (c) surface water studies. This research contributes to the determination of groundwater recharge by investigating the infiltration of groundwater through the unsaturated zone. The investigations are conducted through the application of a combination of different pilot field as well as lab techniques. The field techniques include the installation of specially designed Time Domain Reflectometry (TDR) sensors, at different depths within the unsaturated zone for in-situ and continuous measurements of the volumetric pore water content. Additionally, the extraction of pore water -for analysis of its isotopic composition- from multilevel undisturbed soil samples through significant depths within the unsaturated zone column, enables the dating of the groundwater age through the determination of its isotopic composition. The in-situ investigation of the unsaturated zone is complemented by the determination of high resolution temperature profiles. The installation of the pilot TDR sensors is achieved by using direct push methods at significant depths within the unsaturated zone, providing continuous readings of the soil moisture content. The direct push methods are also ideal for multilevel sampling of undisturbed -without using any drilling fluids which affect the isotopic composition of the containing pore water- soil and consequent extraction of the included pore water for further isotopic determination. The pore water is extracted by applying the method of azeotropic distillation; a method which has the least isotopic fractionation effects on groundwater samples. The determination of different isotopic signals such as 18O, 2H, 3H, and 36Cl, aims to the investigation of groundwater transit

  20. Nano-sized copper tungstate thin films as positive electrodes for rechargeable Li batteries

    International Nuclear Information System (INIS)

    Li Chilin; Fu Zhengwen

    2008-01-01

    Nano-sized CuWO 4 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrode with both LiClO 4 liquid electrolyte and LiPON solid electrolyte in rechargeable lithium batteries. An initial discharge capacity of 192 and 210 mAh/g is obtainable for CuWO 4 film electrode with and without coated LiPON in liquid electrolyte, respectively. An all-solid-state cell with Li/LiPON/CuWO 4 layers shows a high-volume rate capacity of 145 μAh/cm 2 μm in first discharge, and overcomes the unfavorable electrochemical degradation observed in liquid electrolyte system. A two-step reactive mechanism is investigated by both transmission electron microscopy and selected area electron diffraction techniques. Apart from the extrusion and injection of Cu 2+ /Cu 0 , additional capacity can be achieved by the reversible reactivity of (WO 4 ) 2- framework. The chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry. Nano-CuWO 4 thin film is expected to be a promising positive electrode material for high-performance rechargeable thin-film lithium batteries

  1. Impact of surface water recharge on the design of a groundwater monitoring system for the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wood, T.R.

    1990-01-01

    Recent hydrogeologic studies have been initiated to characterize the hydrogeologic conditions at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Measured water levels in wells penetrating the Snake River Plain aquifer near the RWMC and the corresponding direction of flow show change over time. This change is related to water table mounding caused by recharge from excess water diverted from the Big Lost River for flood protection during high flows. Water levels in most wells near the RWMC rise on the order of 10 ft (3 m) in response to recharge, with water in one well rising over 60 ft (18 m). Recharge changes the normal south-southwest direction of flow to the east. Design of the proposed groundwater monitoring network for the RWMC must account for the variable directions of groundwater flow. 11 refs., 9 figs., 2 tabs

  2. Rechargeable sodium all-solid-state battery

    International Nuclear Information System (INIS)

    Zhou, Weidong; Li, Yutao; Xin, Sen; Goodenough, John B.

    2017-01-01

    A reversible plating/stripping of a dendrite-free metallic-sodium anode with a reduced anode/ceramic interfacial resistance is created by a thin interfacial interlayer formed in situ or by the introduction of a dry polymer film. Wetting of the sodium on the interfacial interlayer suppresses dendrite formation and growth at different discharge/charge C-rates. Furthermore, all-solid-state batteries were obtained with a high cycling stability and Coulombic efficiency at 65 °C.

  3. Words can slow down category learning.

    Science.gov (United States)

    Brojde, Chandra L; Porter, Chelsea; Colunga, Eliana

    2011-08-01

    Words have been shown to influence many cognitive tasks, including category learning. Most demonstrations of these effects have focused on instances in which words facilitate performance. One possibility is that words augment representations, predicting an across the-board benefit of words during category learning. We propose that words shift attention to dimensions that have been historically predictive in similar contexts. Under this account, there should be cases in which words are detrimental to performance. The results from two experiments show that words impair learning of object categories under some conditions. Experiment 1 shows that words hurt performance when learning to categorize by texture. Experiment 2 shows that words also hurt when learning to categorize by brightness, leading to selectively attending to shape when both shape and hue could be used to correctly categorize stimuli. We suggest that both the positive and negative effects of words have developmental origins in the history of word usage while learning categories. [corrected

  4. Category-specificity in visual object recognition

    DEFF Research Database (Denmark)

    Gerlach, Christian

    2009-01-01

    Are all categories of objects recognized in the same manner visually? Evidence from neuropsychology suggests they are not: some brain damaged patients are more impaired in recognizing natural objects than artefacts whereas others show the opposite impairment. Category-effects have also been...... demonstrated in neurologically intact subjects, but the findings are contradictory and there is no agreement as to why category-effects arise. This article presents a Pre-semantic Account of Category Effects (PACE) in visual object recognition. PACE assumes two processing stages: shape configuration (the...... binding of shape elements into elaborate shape descriptions) and selection (among competing representations in visual long-term memory), which are held to be differentially affected by the structural similarity between objects. Drawing on evidence from clinical studies, experimental studies...

  5. Visual object recognition and category-specificity

    DEFF Research Database (Denmark)

    Gerlach, Christian

    This thesis is based on seven published papers. The majority of the papers address two topics in visual object recognition: (i) category-effects at pre-semantic stages, and (ii) the integration of visual elements into elaborate shape descriptions corresponding to whole objects or large object parts...... (shape configuration). In the early writings these two topics were examined more or less independently. In later works, findings concerning category-effects and shape configuration merge into an integrated model, termed RACE, advanced to explain category-effects arising at pre-semantic stages in visual...... in visual long-term memory. In the thesis it is described how this simple model can account for a wide range of findings on category-specificity in both patients with brain damage and normal subjects. Finally, two hypotheses regarding the neural substrates of the model's components - and how activation...

  6. Uniform Reserve Training and Retirement Category Administration

    National Research Council Canada - National Science Library

    Kohner, D

    1997-01-01

    This Instruction implement policy as provided in DoD Directive 1215.6, assigns responsibilities and prescribes procedures that pertain to the designation and use of uniform Reserve component (RC) categories (RCCs...

  7. Topoi the categorial analysis of logic

    CERN Document Server

    Goldblatt, Robert

    2013-01-01

    A classic exposition of a branch of mathematical logic that uses category theory, this text is suitable for advanced undergraduates and graduate students and accessible to both philosophically and mathematically oriented readers.

  8. Mechanisms of recharge in a fractured porous rock aquifer in a semi-arid region

    Science.gov (United States)

    Manna, Ferdinando; Walton, Kenneth M.; Cherry, John A.; Parker, Beth L.

    2017-12-01

    Eleven porewater profiles in rock core from an upland exposed sandstone vadose zone in southern California, with thickness varying between 10 and 62 m, were analyzed for chloride (Cl) concentration to examine recharge mechanisms, estimate travel times in the vadose zone, assess spatial and temporal variability of recharge, and determine effects of land use changes on recharge. As a function of their location and the local terrain, the profiles were classified into four groups reflecting the range of site characteristics. Century- to millennium-average recharge varied from 4 to 23 mm y-1, corresponding to different average Cl concentrations in the vadose zone and in groundwater, the contribution of diffuse flow (estimated at 80%) and preferential flow (20%) to the total recharge was quantified. This model of dual porosity recharge was tested by simulating transient Cl transport along a physically based narrow column using a discrete fracture-matrix numerical model. Using a new approach based on partitioning both water and Cl between matrix and fracture flow, porewater was dated and vertical displacement rates estimated to range in the sandstone matrix from 3 to 19 cm y-1. Moreover, the temporal variability of recharge was estimated and, along each profile, past recharge rates calculated based on the sequence of Cl concentrations in the vadose zone. Recharge rates increased at specific times coincident with historical changes in land use. The consistency between the timing of land use modifications and changes in Cl concentration and the match between observed and simulated Cl concentration values in the vadose zone provide confidence in porewater age estimates, travel times, recharge estimates, and reconstruction of recharge histories. This study represents an advancement of the application of the chloride mass balance method to simultaneously determine recharge mechanisms and reconstruct location-specific recharge histories in fractured porous rock aquifers. The

  9. Predicting groundwater recharge for varying land cover and climate conditions - a global meta-study

    Science.gov (United States)

    Mohan, Chinchu; Western, Andrew W.; Wei, Yongping; Saft, Margarita

    2018-05-01

    Groundwater recharge is one of the important factors determining the groundwater development potential of an area. Even though recharge plays a key role in controlling groundwater system dynamics, much uncertainty remains regarding the relationships between groundwater recharge and its governing factors at a large scale. Therefore, this study aims to identify the most influential factors of groundwater recharge, and to develop an empirical model to estimate diffuse rainfall recharge at a global scale. Recharge estimates reported in the literature from various parts of the world (715 sites) were compiled and used in model building and testing exercises. Unlike conventional recharge estimates from water balance, this study used a multimodel inference approach and information theory to explain the relationship between groundwater recharge and influential factors, and to predict groundwater recharge at 0.5° resolution. The results show that meteorological factors (precipitation and potential evapotranspiration) and vegetation factors (land use and land cover) had the most predictive power for recharge. According to the model, long-term global average annual recharge (1981-2014) was 134 mm yr-1 with a prediction error ranging from -8 to 10 mm yr-1 for 97.2 % of cases. The recharge estimates presented in this study are unique and more reliable than the existing global groundwater recharge estimates because of the extensive validation carried out using both independent local estimates collated from the literature and national statistics from the Food and Agriculture Organization (FAO). In a water-scarce future driven by increased anthropogenic development, the results from this study will aid in making informed decisions about groundwater potential at a large scale.

  10. Converging modalities ground abstract categories: the case of politics.

    Directory of Open Access Journals (Sweden)

    Ana Rita Farias

    Full Text Available Three studies are reported examining the grounding of abstract concepts across two modalities (visual and auditory and their symbolic representation. A comparison of the outcomes across these studies reveals that the symbolic representation of political concepts and their visual and auditory modalities is convergent. In other words, the spatial relationships between specific instances of the political categories are highly overlapping across the symbolic, visual and auditory modalities. These findings suggest that abstract categories display redundancy across modal and amodal representations, and are multimodal.

  11. Mixed quantum states in higher categories

    Directory of Open Access Journals (Sweden)

    Chris Heunen

    2014-12-01

    Full Text Available There are two ways to describe the interaction between classical and quantum information categorically: one based on completely positive maps between Frobenius algebras, the other using symmetric monoidal 2-categories. This paper makes a first step towards combining the two. The integrated approach allows a unified description of quantum teleportation and classical encryption in a single 2-category, as well as a universal security proof applicable simultaneously to both scenarios.

  12. Derivation of plutonium-239 materials disposition categories

    International Nuclear Information System (INIS)

    Brough, W.G.

    1995-01-01

    At this time, the Office of Fissile Materials Disposition within the DOE, is assessing alternatives for the disposition of excess fissile materials. To facilitate the assessment, the Plutonium-Bearing Materials Feed Report for the DOE Fissile Materials Disposition Program Alternatives report was written. The development of the material categories and the derivation of the inventory quantities associated with those categories is documented in this report

  13. Monoidal categories and topological field theory

    CERN Document Server

    Turaev, Vladimir

    2017-01-01

    This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery gr...

  14. Binary iron sulfides as anode materials for rechargeable batteries: Crystal structures, syntheses, and electrochemical performance

    Science.gov (United States)

    Xu, Qian-Ting; Li, Jia-Chuang; Xue, Huai-Guo; Guo, Sheng-Ping

    2018-03-01

    Effective utilization of energy requires the storage and conversion device with high ability. For well-developed lithium ion batteries (LIBs) and highly developing sodium ion batteries (SIBs), this ability especially denotes to high energy and power densities. It's believed that the capacity of a full cell is mainly contributed by anode materials. So, to develop inexpensive anode materials with high capacity are meaningful for various rechargeable batteries' better applications. Iron is a productive element in the crust, and its oxides, sulfides, fluorides, and oxygen acid salts are extensively investigated as electrode materials for batteries. In view of the importance of electrode materials containing iron, this review summarizes the recent achievements on various binary iron sulfides (FeS, FeS2, Fe3S4, and Fe7S8)-type electrodes for batteries. The contents are mainly focused on their crystal structures, synthetic methods, and electrochemical performance. Moreover, the challenges and some improvement strategies are also discussed.

  15. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.

    Science.gov (United States)

    Yu, Seung-Ho; Feng, Xinran; Zhang, Na; Seok, Jeesoo; Abruña, Héctor D

    2018-02-20

    , sulfides, fluorides, phosphides, and nitrides can undergo conversion reactions yielding materials with high theoretical capacity (generally from 500 to 1500 mA h g -1 ). In particular, a number of transition metal oxides and sulfides have shown excellent electrochemical properties as high-capacity anode materials. In addition, some transition metal fluorides have shown great potential as cathode materials for Li rechargeable batteries. In this Account we present mechanistic studies, with emphasis on the use of operando methods, of selected examples of conversion-type materials as both potentially high-energy-density anodes and cathodes in EES applications. We also include examples of the conceptually similar conversion-type reactions involving chalcogens and halogens, with emphasis on the Li-S system. In this case we focus on the problems arising from the low electrical conductivities of elemental sulfur and Li 2 S and the "redox shuttle" phenomena of polysulfides. In addition to mechanistic insights from the use of operando methods, we also cover several key strategies in electrode materials design such as controlling the size, morphology, composition, and architecture.

  16. Double recharge of pions on a deuterium

    International Nuclear Information System (INIS)

    Nichitiu, F.; Falomkin, I.V.; Shcherbakov, Yu.A.

    1987-01-01

    Assumptions on the dibaryon nature of the existing narrow resonances below the threshold of the NΔ-state with masses 1935, 1965, 2015 MeV are considered. New proposals on construction of the particle systematics with a new particle (R-particle of mass 1025 MeV, J=1/2, T=3/2) are used to draw a conclusion that double charge exchange is possible on deuterium and helium-3 if dibaryons or new R-particles are born in the final state. Attention is paid to a possible decay of these particles through a weak channel. A search for double charge exchange of pions on hydrogen and deuterium using a laser-illuminated streamer chamber of high pressure is proposed

  17. Land-use change and managed aquifer recharge effects on the hydrogeochemistry of two contrasting atoll island aquifers, Roi-Namur Island, Republic of the Marshall Islands

    International Nuclear Information System (INIS)

    Hejazian, Mehrdad; Gurdak, Jason J.; Swarzenski, Peter; Odigie, Kingsley O.; Storlazzi, Curt D.

    2017-01-01

    Freshwater resources on low-lying atoll islands are highly vulnerable to climate change and sea-level rise. In addition to rainwater catchment, groundwater in the freshwater lens is a critically important water resource on many atoll islands, especially during drought. Although many atolls have high annual rainfall rates, dense natural vegetation and high evapotranspiration rates can limit recharge to the freshwater lens. Here we evaluate the effects of land-use/land-cover change and managed aquifer recharge on the hydrogeochemistry and supply of groundwater on Roi-Namur Island, Republic of the Marshall Islands. Roi-Namur is an artificially conjoined island that has similar hydrogeology on the Roi and Namur lobes, but has contrasting land-use/land-cover and managed aquifer recharge only on Roi. Vegetation removal and managed aquifer recharge operations have resulted in an estimated 8.6 × 10"5 m"3 of potable groundwater in the freshwater lens on Roi, compared to only 1.6 × 10"4 m"3 on Namur. We use groundwater samples from a suite of 33 vertically nested monitoring wells, statistical testing, and geochemical modeling using PHREEQC to show that the differences in land-use/land-cover and managed aquifer recharge on Roi and Namur have a statistically significant effect on several groundwater-quality parameters and the controlling geochemical processes. Results also indicate a six-fold reduction in the dissolution of carbonate rock in the freshwater lens and overlying vadose zone of Roi compared to Namur. Mixing of seawater and the freshwater lens is a more dominant hydrogeochemical process on Roi because of the greater recharge and flushing of the aquifer with freshwater as compared to Namur. In contrast, equilibrium processes and dissolution-precipitation non-equilibrium reactions are more dominant on Namur because of the longer residence times relative to the rate of geochemical reactions. Findings from Roi-Namur Island support selective land

  18. An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances

    Directory of Open Access Journals (Sweden)

    Feng Wu

    2018-01-01

    Full Text Available Aluminum (Al metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries (RABs using Al metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase (SEI layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V2O5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency (CE. This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.

  19. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone

    Science.gov (United States)

    Kennedy, Jeffrey R.; Ferre, Ty P.A.; Creutzfeldt, Benjamin

    2016-01-01

    Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).

  20. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes

    Science.gov (United States)

    Luo, Mingming; Chen, Zhihua; Zhou, Hong; Zhang, Liang; Han, Zhaofeng

    2018-03-01

    To be better understand the hydrological and thermal behavior of karst systems in South China, seasonal variations in flow, hydrochemistry and stable isotope ratios of five karst springs were used to delineate flow paths and recharge processes, and to interpret their thermal response. Isotopic data suggest that mean recharge elevations are 200-820 m above spring outlets. Springs that originate from high elevations have lower NO3 - concentrations than those originating from lower areas that have more agricultural activity. Measured Sr2+ concentrations reflect the strontium contents of the host carbonate aquifer and help delineate the spring catchment's saturated zone. Seasonal variations of NO3 - and Sr2+ concentrations are inversely correlated, because the former correlates with event water and the latter with baseflow. The mean annual water temperatures of springs were only slightly lower than the local mean annual surface temperature at the outlet elevations. These mean spring temperatures suggest a vertical gradient of 6 °C/vertical km, which resembles the adiabatic lapse rate of the Earth's stable atmosphere. Seasonal temperature variations in the springs are in phase with surface air temperatures, except for Heilongquan (HLQ) spring. Event-scale variations of thermal response are dramatically controlled by the circulation depth of karst systems, which determines the effectiveness of heat exchange. HLQ spring undergoes the deepest circulation depth of 820 m, and its thermal responses are determined by the thermally effective regulation processes at higher elevations and the mixing processes associated with thermally ineffective responses at lower elevations.

  1. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte.

    Science.gov (United States)

    Dong, Xiaoli; Yu, Hongchuan; Ma, Yuanyuan; Bao, Junwei Lucas; Truhlar, Donald G; Wang, Yonggang; Xia, Yongyao

    2017-02-21

    Rechargeable batteries with organic electrodes are preferred to those with transition-metal-containing electrodes for their environmental friendliness, and resource availability, but all such batteries reported to date are based on organic electrolytes, which raise concerns of safety and performance. Here an aqueous-electrolyte all-organic rechargeable battery is reported, with a maximum operating voltage of 2.1 V, in which polytriphenylamine (PTPAn) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA)-derived polyimide (PNTCDA) serve as cathode and anode material, respectively. A key feature of the design is use of a "water-in-salt" electrolyte to bind "free" water; this impedes the side reaction of water oxidation, thereby enabling excellent reversibility in aqueous solution. The battery can deliver a maximum energy density of 52.8 Wh kg -1 , which is close to most of the all-organic batteries with organic electrolytes. The battery exhibits a supercapacitor-like high power of 32 000 W kg -1 and a long cycle life (700 cycles with capacity retention of 85 %), due to the kinetics not being limited by ion diffusion at either electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.

    Science.gov (United States)

    Fang, Xin; Peng, Huisheng

    2015-04-01

    As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Identification of critical contaminants in wastewater effluent for managed aquifer recharge.

    Science.gov (United States)

    Yuan, Jie; Van Dyke, Michele I; Huck, Peter M

    2017-04-01

    Managed aquifer recharge (MAR) using highly treated effluent from municipal wastewater treatment plants has been recognized as a promising strategy for indirect potable water reuse. Treated wastewater effluent can contain a number of residual contaminants that could have adverse effects on human health, and some jurisdictions have regulations in place to govern these. For those that do not, but where reuse may be under consideration, it is of crucial importance to develop a strategy for identifying priority contaminants, which can then be used to understand the water treatment technologies that might be required. In this study, a multi-criteria approach to identify critical contaminants in wastewater effluent for MAR was developed and applied using a case study site located in southern Ontario, Canada. An important aspect of this approach was the selection of representative compounds for each group of contaminants, based on potential for occurrence in wastewater and expected health or environmental impacts. Due to a lack of MAR regulations in Canada, the study first proposed potential recharge water quality targets. Predominant contaminants, potential additional contaminants, and potential emerging contaminants, which together comprise critical contaminants for MAR with reclaimed water, were then selected based on the case study wastewater effluent monitoring data and literature data. This paper proposes an approach for critical contaminant selection, which will be helpful to guide future implementation of MAR projects using wastewater treatment plant effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A rechargeable Li-CO{sub 2} battery with a gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chao; Guo, Ziyang; Yang, Bingchang; Liu, Yao; Wang, Yonggang; Xia, Yongyao [Dept. of Chemistry and Shanghai Key Lab. of Molecular Catalysis and Innovative Materials, Inst. of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan Univ. (China)

    2017-07-24

    The utilization of CO{sub 2} in Li-CO{sub 2} batteries is attracting extensive attention. However, the poor rechargeability and low applied current density have remained the Achilles' heel of this energy device. The gel polymer electrolyte (GPE), which is composed of a polymer matrix filled with tetraglyme-based liquid electrolyte, was used to fabricate a rechargeable Li-CO{sub 2} battery with a carbon nanotube-based gas electrode. The discharge product of Li{sub 2}CO{sub 3} formed in the GPE-based Li-CO{sub 2} battery exhibits a particle-shaped morphology with poor crystallinity, which is different from the contiguous polymer-like and crystalline discharge product in conventional Li-CO{sub 2} battery using a liquid electrolyte. Accordingly, the GPE-based battery shows much improved electrochemical performance. The achieved cycle life (60 cycles) and rate capability (maximum applied current density of 500 mA g{sup -1}) are much higher than most of previous reports, which points a new way to develop high-performance Li-CO{sub 2} batteries. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Large catchment area recharges Titan's Ontario Lacus

    Science.gov (United States)

    Dhingra, Rajani D.; Barnes, Jason W.; Yanites, Brian J.; Kirk, Randolph L.

    2018-01-01

    We seek to address the question of what processes are at work to fill Ontario Lacus while other, deeper south polar basins remain empty. Our hydrological analysis indicates that Ontario Lacus has a catchment area spanning 5.5% of Titan's surface and a large catchment area to lake surface area ratio. This large catchment area translates into large volumes of liquid making their way to Ontario Lacus after rainfall. The areal extent of the catchment extends to at least southern mid-latitudes (40°S). Mass conservation calculations indicate that runoff alone might completely fill Ontario Lacus within less than half a Titan year (1 Titan year = 29.5 Earth years) assuming no infiltration. Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations of clouds over the southern mid and high-latitudes are consistent with precipitation feeding Ontario's large catchment area. This far-flung rain may be keeping Ontario Lacus filled, making it a liquid hydrocarbon oasis in the relatively dry south polar region.

  6. Hydrodynamic analysis of the artificial recharge of aquifers during the planning stage. Results obtained in the Quaternary aquifer in the Valley of the Guadalquivir (Spain); Analisis hidrodinamico de la recarga artificial de acuiferos durante la etapa de planificacion. Resultados obtenidos en el acuifero cuaternario del valle del Guadalquivir (Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Murillo, J. M.

    2014-10-01

    This paper shows a study on the viability of an artificial recharge in the flood-plain aquifer of the Guadalquivir River (Andalucia, Spain). The method used to the evaluation of the artificial recharge project is as follows: A simple model (one cell). The code has been made on the use of an EXCEL spreadsheet. A distributed parameters-flow model using a standard code (Modflow). A pilot recharge plant. The simple model has been applied in different zones. The model has only 5 parameters. It evaluates the artificial recharge by means of the depletion coefficient. The model was calibrated for a monthly time-step, although the water balances in the soil and in the aquifer were calculated daily. The calibration the distributed parameter-flow model shows a high transmissivity, storage coefficient and porosity. The pilot recharge plant is a trench with recharge wells within it. The water available for recharge is obtained from an irrigation canal. A network of control points has been established to monitor the piezometric levels. The results obtained show a high storage coefficient and porosity. These parameters show a rapid groundwater velocity. Finally, the paper compares and contrasts the results obtained with the simple model, distributed parameter- flow model and the pilot recharge plant. The results are quite similar. The groundwater velocity is rapid. Water remains in the aquifer for a few days before returning to the river. (Author)

  7. Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors

    Directory of Open Access Journals (Sweden)

    Z. Zomlot

    2015-09-01

    New hydrological insights for the region: The average resulting recharge is 235 mm/year and occurs mainly in winter. The overall moderate correlation between base flow estimates and modeled recharge rates indicates that base flow is a reasonable proxy of recharge. Groundwater recharge variation was explained in order of importance by precipitation, soil texture and vegetation cover; while base flow variation was strongly controlled by vegetation cover and groundwater depth. The results of this study highlight the important role of spatial variables in estimation of recharge and base flow. In addition, the prominent role of vegetation makes clear the potential importance of land-use changes on recharge and hence the need to include a proper strategy for land-use change in sustainable management of groundwater resources.

  8. Recharge estimation in semi-arid karst catchments: Central West Bank, Palestine

    Science.gov (United States)

    Jebreen, Hassan; Wohnlich, Stefan; Wisotzky, Frank; Banning, Andre; Niedermayr, Andrea; Ghanem, Marwan

    2018-03-01

    Knowledge of groundwater recharge constitutes a valuable tool for sustainable management in karst systems. In this respect, a quantitative evaluation of groundwater recharge can be considered a pre-requisite for the optimal operation of groundwater resources systems, particular for semi-arid areas. This paper demonstrates the processes affecting recharge in Palestine aquifers. The Central Western Catchment is one of the main water supply sources in the West Bank. Quantification of potential recharge rates are estimated using chloride mass balance (CMB) and empirical recharge equations over the catchment. The results showing the spatialized recharge rate, which ranges from 111-216 mm/year, representing 19-37% of the long-term mean annual rainfall. Using Water Balance models and climatological data (e. g. solar radiation, monthly temperature, average monthly relative humidity and precipitation), actual evapotranspiration (AET) is estimated. The mean annual actual evapotranspiration was about 66-70% of precipitation.

  9. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  10. An aqueous rechargeable formate-based hydrogen battery driven by heterogeneous Pd catalysis.

    Science.gov (United States)

    Bi, Qing-Yuan; Lin, Jian-Dong; Liu, Yong-Mei; Du, Xian-Long; Wang, Jian-Qiang; He, He-Yong; Cao, Yong

    2014-12-01

    The formate-based rechargeable hydrogen battery (RHB) promises high reversible capacity to meet the need for safe, reliable, and sustainable H2 storage used in fuel cell applications. Described herein is an additive-free RHB which is based on repetitive cycles operated between aqueous formate dehydrogenation (discharging) and bicarbonate hydrogenation (charging). Key to this truly efficient and durable H2 handling system is the use of highly strained Pd nanoparticles anchored on graphite oxide nanosheets as a robust and efficient solid catalyst, which can facilitate both the discharging and charging processes in a reversible and highly facile manner. Up to six repeated discharging/charging cycles can be performed without noticeable degradation in the storage capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Groundwater recharge and flow on Montserrat, West Indies: Insights from groundwater dating

    Directory of Open Access Journals (Sweden)

    Brioch Hemmings

    2015-09-01

    New hydrological insights: δ2H and δ18O analysis indicates uniform recharge elevations for groundwaters on Montserrat. CFC-11 and CFC-12 analysis reveals age differences between isotopically similar, high elevation springs and low elevation aquifer waters. Low CFC concentrations within a confined low elevation aquifer suggest water ages of ∼45 years. High CFC concentrations in the northern and western springs are explained by rapid infiltration of cool (high CFC concentration rainfall into saturated compartments, with flow through the vadose zone to the phreatic zone dominated by compartment flow. Lower CFC concentrations in a number of aligned warmer springs suggest a contribution from older, warmer waters from depth. Temperatures and CFC concentrations indicate older component supply rates of up to 8 L/s to the highest yielding spring on Centre Hills, with contributions of up to 75% in the warmest spring waters.

  12. Isotope techniques to identify recharge areas of springs for rainwater harvesting in the mountainous region of Gaucher area, Chamoli district, Uttarakhand

    International Nuclear Information System (INIS)

    Shivanna, K.; Tirumalesh, K.; Noble, J.; Joseph, T.B.; Singh, Gursharan; Joshi, A.P.; Khati, V.S.

    2008-01-01

    Environmental isotope techniques have been employed to identify the recharge areas of springs in India, in order to construct artificial recharge structures for rainwater harvesting and groundwater augmentation for their rejuvenation. A model project was taken up in the mountainous region of Gaucher area, Chamoli District, Uttarakhand for this purpose. The springs in this regions are seasonal and are derived from seepage waters flowing through the shallow weathered and fractured zone. The chemistry of high-altitude springs is similar to that of precipitation, whereas water-rock interactions contributes to increased mineralization in low-altitude springs. The stable isotopic variation in precipitation suggests that the altitude effect for Gaucher area is -0.55% for δ 18 O and -3.8% for δ 2 H per 100 m rise in altitude. Based on local geology, geomorphology, hydrochemistry and isotope information, the possible recharge areas inferred for valleys 1, 2 and 3 are located at altitudes of 1250, 1330 and 1020 m amsl respectively. Water conservation and recharge structures such as subsurface dykes, check bunds and contour trenches were constructed at the identified recharge areas in the respective valleys for controlling the subsurface flow, rainwater harvesting and groundwater augmentation respectively. As a result, during and after the following monsoon, the discharge rates of the springs not only increased significantly, but also did not dry up even during the dry period. The study shows that the isotope techniques can be effectively used in identifying recharge areas of springs in the Himalayan region. It also demonstrates the advantage of isotope techniques over conventional methods. (author)

  13. The Simulation of the Recharging Method Based on Solar Radiation for an Implantable Biosensor.

    Science.gov (United States)

    Li, Yun; Song, Yong; Kong, Xianyue; Li, Maoyuan; Zhao, Yufei; Hao, Qun; Gao, Tianxin

    2016-09-10

    A method of recharging implantable biosensors based on solar radiation is proposed. Firstly, the models of the proposed method are developed. Secondly, the recharging processes based on solar radiation are simulated using Monte Carlo (MC) method and the energy distributions of sunlight within the different layers of human skin have been achieved and discussed. Finally, the simulation results are verified experimentally, which indicates that the proposed method will contribute to achieve a low-cost, convenient and safe method for recharging implantable biosensors.

  14. Estimating shallow groundwater recharge in the headwaters of the Liverpool Plains using SWAT

    OpenAIRE

    Sun, H.; Cornish, P.S.

    2005-01-01

    Metadata only record A physically based catchment model (SWAT) was used for recharge estimation in the headwaters of the Liverpool Plains in NSW, Australia. The study used water balance modelling at the catchment scale to derive parameters for long-term recharge estimation. The derived parameters were further assessed at a subcatchment scale. Modelling results suggest that recharge occurs only in wet years, and is dominated by a few significant years or periods. The results were matched by...

  15. Soil Water Balance and Recharge Monitoring at the Hanford Site - FY09 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Saunders, Danielle L.; Strickland, Christopher E.; Waichler, Scott R.; Clayton, Ray E.

    2009-09-28

    Recharge provides the primary driving force for transporting contaminants from the vadose zone to underlying aquifer systems. Quantification of recharge rates is important for assessing contaminant transport and fate and for evaluating remediation alternatives. This report describes the status of soil water balance and recharge monitoring performed by Pacific Northwest National Laboratory at the Hanford Site for Fiscal Year 2009. Previously reported data for Fiscal Years 2004 - 2008 are updated with data collected in Fiscal Year 2009 and summarized.

  16. Energy information data base: energy categories

    International Nuclear Information System (INIS)

    1980-03-01

    Citations entered into DOE's computerized bibliographic information system are assigned six-digit subject category numbers to group information broadly for storage, retrieval, and manipulation. These numbers are used in the preparation of printed documents, such as bibliographies and abstract journals, to arrange the citations and as searching aids in the on-line system, DOE/RECON. This document has been prepared for use by those individuals responsible for the assignment of category numbers to documents being entered into the Technical Information Center (TIC) system, those individuals and organizations processing magnetic tape copies of the files, those individuals doing on-line searching for information in TIC-created files, and others who, having no access to RECON, need printed copy. The six-digit numbers assigned to documents are listed, along with the category names and text to define the scope of interest. Asterisks highlight those categories added or changed since the previous printing, and a subject index further details the subject content of each category

  17. TV MEDIA ANALYSIS FOR BANKING CATEGORY (2012

    Directory of Open Access Journals (Sweden)

    Alexandra Elena POȘTOACĂ

    2014-04-01

    Full Text Available This article represents a short overview of the media landscape for the banking category in Romania in 2012. Unlike the other categories (for example FMCG – fast moving consumer goods, the banking category is more complex because every bank can communicate for a wider range of products (credits, deposits, packages dedicated to students, pensioners and other types of banking products. In the first part of this paper, there will be presented some theoretical notions about media planning and media analyses in order for the lecturer to easily go through the second part of the article. The second part of the paper will only refer to TV analyses. This media channel owns the highest budget share in our category, and also in the media mix of every important player, active in the Romanian market. The analyses will show which bank communicated most effectively, which is the most important spender on TV, what banking products had the largest budget allocated, which is the pattern for this category when it comes to allocating audience points for each day interval and so on. The starting point of this analyses is based on the secondary data obtained from InfoSys+ which is the world’s leading TV analyses software, used in more than 29 countries by 8000+ users.

  18. Brand importance across product categories in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Formánek Tomáš

    2016-04-01

    Full Text Available This paper deals with customer loyalty to brands and provides an analysis of brand-related attitudes among Czech consumers. Brand loyalty is a very important aspect of competitive marketing and we contribute an empirically supported point of view on the topic. Based on primary data from a complex consumer survey carried out for the purpose of this study, we investigate the extent of brand loyalty across different product categories, mostly fast moving consumer goods (FMCG. For convenience, the analysis of our survey-data may be divided in two main areas. First, product categories are ranked according to their potential power to attract customers’ interest and loyalty towards brands. When loyalty programs are prepared, it is important to discern product categories where loyalty potential is weak from those categories that attract consumer loyalty. Second, sociodemographic features and lifestyle factors from the survey are evaluated with respect to different product categories, by means of logistic regression and subsequent average partial effect (APE analysis. A detailed and practically oriented interpretation of the empirical results is provided by the authors. However, both corporate marketers and academic readers can use the tables with empirical estimation outputs that are provided in this article to draw their own conclusions, which may be focused on the product category of interest and/or focused on any specific consumer group that is of particular interest. Among other topics, this paper emphasizes the fact that brand loyalty is a highly complex phenomenon and that it can and should be analysed from different perspectives.

  19. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Savard, C.S.

    1998-01-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches

  20. The aquifer recharge: an overview of the legislative and planning aspect.

    Science.gov (United States)

    De Giglio, O; Caggiano, G; Apollonio, F; Marzella, A; Brigida, S; Ranieri, E; Lucentini, L; Uricchio, V F; Montagna, M T

    2018-01-01

    In most regions of the world, safeguarding