WorldWideScience

Sample records for high radon emanation

  1. Radon emanation from soils

    International Nuclear Information System (INIS)

    Markkanen, M.; Arvela, H.

    1992-01-01

    The results of gamma spectrometric sample measurements of radon ( 222 Rn) emanation coefficients and radium concentrations ( 226 Ra) from about 800 Finnish soil samples are presented. The radon emanation rate was measured in about 400 soil samples, using radon-tight cans and Lucas cells. The effects of water content and temperature on radon emanation were investigated, using various samples of different soil types. Radon emanation and the effect of water content on radon emanation were investigated separately for different grain sizes (samples of till). The results provide some information on radon emanation in different soil types and relate emanation in laboratory conditions to conditions in ground soil. In routine measurements of radon emanation from soil samples, use of a 5% water content was considered advisable. The correction coefficients of radon emanation varied between 0.3 and 1.5, depending on the water content and soil type. At 5% water content, hardly any difference was found between radon emanation at temperatures of 20 and 1 o C. Radon emanation was found to be an inverse function of grain sizes larger than 0.5 mm in diameter. (author)

  2. Study of radon emanation from uranium mill tailings. Relations between radon emanating power and physicochemical properties of the material

    International Nuclear Information System (INIS)

    Pellegrini, D.

    1999-01-01

    The uranium extraction from ores leads to large amounts of mill tailings still containing radionuclides, such as thorium-230 and radium-226, which generate radon-222. Without protective action, radon exposition may be high enough to cause concern for health of populations living in the vicinity of an uranium mill tailings disposal. This exposition pathway has therefore to be taken into account in the radiological impact studies. The emanating power, i.e. the part of radon atoms which escape from the solid particles, is directly involved in the radon source term evaluation. It may be determined for a given material by laboratory measurements. Emanating powers from 0.08 to 0.33 have been obtained for mill tailings from Jouac (Limousin, France), at various moisture contents. In order to reduce the relations of dependence between some of the emanation parameters, more simple phases, kaolinite and polymeric resins, have been studied. Those experiments have led us to the selection of the mechanisms and the parameters to consider for the development of an emanation modelling. The whole of the results obtained point out the radon sorption, in various proportions depending on the materials. The moisture content influence on the emanation from materials containing fine particles have been confirmed: the emanation increases with this parameter until a continuous water film surrounding the particles have been formed, and then become constant. This 'water effect' occurs in a moisture content range, which depends on the material porosity. Elsewhere, the presence of amorphous phases may led to a high radon emanation. (author)

  3. Uranium-bearing wastes and their radon emanation

    International Nuclear Information System (INIS)

    Sasaki, Tomozo; Imamura, Mitsutaka; Gunji, Yasuyoshi

    2007-01-01

    There are no data available with regard to radon emanation coefficients for uranium-bearing wastes; such data are needed for the assessment of radiation exposure from radon that will be generated in the distant future as one uranium progeny at shallow land disposal sites for uranium-bearing wastes. There are many kinds of uranium-bearing wastes. However, it is not necessary to measure the radon emanation coefficients for all of them for two reasons. First, the radon emanation coefficients for uranium-bearing wastes contaminated by dissolved uranium are determined by the uranium chemical form, the manner of uranium deposition on the waste matrix, and the size of the particles which constitute the waste matrix. Therefore, only a few representative measurements are sufficient for such uranium-bearing wastes. Second, it is possible to make theoretical calculations of radon emanation coefficients for uranium-bearing wastes contaminated by UO 2 particles before sintering. In the present study, simulated uranium-bearing wastes contaminated by dissolved uranium were prepared, their radon emanation coefficients were measured and radon emanation coefficients were calculated theoretically for uranium-bearing wastes contaminated by UO 2 particles before sintering. The obtained radon emanation coefficients are distributed at higher values than those for ubiquitous soils and rocks in the natural environment. Therefore, it is not correct to just compare uranium concentrations among uranium-bearing wastes, ubiquitous soils and rocks in terms of radiation exposure. The radon emanation coefficients obtained in the present study have to be employed together with the uranium concentration in uranium-bearing wastes in order to achieve proper assessment of radiation exposure. (author)

  4. Radon emanation chamber: High sensitivity measurements for the SuperNEMO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soulé, B. [Université Bordeaux 1, Centre d' Etudes Nucléaires de Bordeaux Gradignan, UMR 5797, Chemin du Solarium, Le Haut-Vigneau, BP120, F-33175 Gradignan (France); Collaboration: SuperNEMO Collaboration; and others

    2013-08-08

    Radon is a well-known source of background in ββ0ν experiments due to the high Q{sub β} value of one of its daughter nucleus, {sup 214}Bi. The SuperNEMO collaboration requires a maximum radon contamination of 0.1 mBq/m{sup 3} inside its next-generation double beta decay detector. To reach such a low activity, a drastic screening process has been set for the selection of the detector's materials. In addition to a good radiopurity, a low emanation rate is required. To test this parameter, a Radon Emanation Setup is running at CENBG. It consists in a large emanation chamber connected to an electrostatic detector. By measuring large samples and having a low background level, this setup reaches a sensitivity of a few μ Bq. m{sup −2}. d{sup −1} and is able to qualify materials used in the construction of the SuperNEMO detector.

  5. Radon emanation coefficients in sandy soils

    International Nuclear Information System (INIS)

    Holy, K.; Polaskova, A.; Baranova, A.; Sykora, I.; Hola, O.

    1998-01-01

    In this contribution the results of the study of an influence of the water content on the emanation coefficient for two sandy soil samples are reported. These samples were chosen on the because of the long-term continual monitoring of the 222 Rn concentration just in such types of soils and this radon concentration showed the significant variations during a year. These variations are chiefly given in connection with the soil moisture. Therefore, the determination of the dependence of the emanation coefficient of radon on the water content can help to evaluate the influence of the soil moisture variations of radon concentrations in the soil air. The presented results show that the emanation coefficient reaches the constant value in the wide interval of the water content for both sandy soil samples. Therefore, in the common range of the soil moisture (5 - 20 %) it is impossible to expect the variations of the radon concentration in the soil air due to the change of the emanation coefficient. The expressive changes of the radon concentration in the soil air can be observed in case of the significant decrease of the emanation coefficient during the soil drying when the water content decreases under 5 % or during the complete filling of the soil pores by the water. (authors)

  6. Radon emanation from backfilled mill tailings in underground uranium mine.

    Science.gov (United States)

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar

    2014-04-01

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Anomalous radon emanation linked to preseismic electromagnetic phenomena

    Directory of Open Access Journals (Sweden)

    Y. Omori

    2007-10-01

    Full Text Available Anomalous emanation of radon (222Rn was observed preceding large earthquakes and is considered to be linked to preseismic electromagnetic phenomena (e.g. great changes of atmospheric electric field and ionospheric disturbances. Here we analyze atmospheric radon concentration and estimate changes of electrical conditions in atmosphere due to preseismic radon anomaly. The increase of radon emanation obeys crustal damage evolution, following a power-law of time-to-earthquake. Moreover, the radon emanation decreases the atmospheric electric field by 40%, besides influencing the maximum strength of atmospheric electric field by 104–105 V/m enough to trigger ionospheric disturbances. These changes are within the ranges observed or explaining electromagnetic phenomena associated with large earthquakes.

  8. Study of radon emanation from uranium mill tailings. Relations between radon emanating power and physicochemical properties of the material; Etude de l'emanation du radon a partir de residus de traitement de minerais d'uranium. Mise en evidence de relations entre le facteur d'emanation et les caracteristiques du materiau

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, D

    1999-07-01

    The uranium extraction from ores leads to large amounts of mill tailings still containing radionuclides, such as thorium-230 and radium-226, which generate radon-222. Without protective action, radon exposition may be high enough to cause concern for health of populations living in the vicinity of an uranium mill tailings disposal. This exposition pathway has therefore to be taken into account in the radiological impact studies. The emanating power, i.e. the part of radon atoms which escape from the solid particles, is directly involved in the radon source term evaluation. It may be determined for a given material by laboratory measurements. Emanating powers from 0.08 to 0.33 have been obtained for mill tailings from Jouac (Limousin, France), at various moisture contents. In order to reduce the relations of dependence between some of the emanation parameters, more simple phases, kaolinite and polymeric resins, have been studied. Those experiments have led us to the selection of the mechanisms and the parameters to consider for the development of an emanation modelling. The whole of the results obtained point out the radon sorption, in various proportions depending on the materials. The moisture content influence on the emanation from materials containing fine particles have been confirmed: the emanation increases with this parameter until a continuous water film surrounding the particles have been formed, and then become constant. This 'water effect' occurs in a moisture content range, which depends on the material porosity. Elsewhere, the presence of amorphous phases may led to a high radon emanation. (author)

  9. Variation of Radon Emanation in Workplaces as a Function of Room Parameters

    International Nuclear Information System (INIS)

    Norafatin Khalid; Amran Abdul Majid; Aznan Fazli Ismail; Muhamad Samudi Yasir; Redzuwan Yahaya; Izzaty Azani Mustafa

    2013-01-01

    Modern life style requires people to spend most of their time indoors either in a house or in the workplace. Most modern buildings are made from soil based material which may consist of low concentration of naturally occurring radioactive materials (NORM). It is known that one of the daughters of natural uranium is 226 Ra which eventually produce radon ( 222 Rn) gas. Recently, more evidence has linked lung cancer to exposure to high levels of radon and also to cigarette-smoking. Consequently, this research was conducted to study the radon emanation rates in different workplaces. The radon emanations in 27 rooms with three different dimension (54 m 3 , 210 m 3 and 351 m 3 ) and different building materials were determined for 96 hours using Sun Nuclear Radon Monitor. The radon emanations in the rooms studied were found to be in the range of 20.6 Bq m -3 hour -1 to 134.3 Bq m -3 hour -1 .The increase in humidity was found to significantly increase the radon emanation rates in the building, whereas the increase in temperature will result the decrease of radon emanation rates. In addition, the findings shows that the radon emanation rates in building were higher during the night until early in the morning which is in agreement with the findings on humidity and temperature factors. (author)

  10. Radon emanation fractions from concretes containing fly ash and metakaolin

    International Nuclear Information System (INIS)

    Taylor-Lange, Sarah C.; Juenger, Maria C.G.; Siegel, Jeffrey A.

    2014-01-01

    Radon ( 222 Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ± 5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. - Highlights: • Fly ash or metakaolin SCMs can neutralize or reduce concrete emanation fractions. • The specific activity of constituents is a poor predictor of the concrete emanation fraction. • Exhalation from fly ash concretes represents a small fraction of the total indoor radon concentration

  11. Radon emanation characteristics of uranium mill tailings

    International Nuclear Information System (INIS)

    Nielson, K.K.; Freeman, H.D.; Hartley, J.N.; Mauch, M.L.; Rogers, V.C.

    1982-01-01

    Radon emanation from uranium mill tailings was examined with respect to the mechanisms of emanation and the physical properties of the tailings which affect emanation. Radon emanation coefficients were measured at ambient moisture on 135 samples from the 1981 field test site at the Grand Junction tailings pile. These coefficients showed a similar trend with moisture to those observed previously with uranium ores, and averaged 0.10 + or - 0.02 at dryness and 0.38 + or - 0.04 for all samples having greater than five weight-percent moisture. Small differences were noted between the maximum values of the coefficients for the sand and slime fractions of the tailings. Separate measurements on tailings from the Vitro tailings pile exhibited much lower emanation coefficients for moist samples, and similar coefficients for dry samples. Alternative emanation measurement techniques were examined and procedures are recommended for use in future work

  12. Radon emanation fractions from concretes containing fly ash and metakaolin.

    Science.gov (United States)

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. © 2013.

  13. Estimation of radon emanation coefficient for soil and flyash

    International Nuclear Information System (INIS)

    Sahu, S.K.; Swarnkar, M.; Ajmal, P.Y.; Pandit, G.G.; Puranik, V.D.

    2012-01-01

    Since terrestrial materials include radium ( 226 Ra) originating from the decay of uranium ( 238 U), all such materials release radon ( 222 Rn) to varying degrees. When a radium atom decays to radon, the energy generated is strong enough to send the radon atom a distance of about 40 nanometers-this is known as alpha recoil. For a radon atom to escape the radium atom must be within the recoil distance from the grain surface of flyash or soil and the direction of recoil must send the radon atom toward the outside of the grain. Therefore, all of the radon atoms generated by the radium contained in flyash or soil grain are actually not released into pore spaces and mobilized. The fraction of radon atoms generated from radium decay that are released from into flyash or soil pore space is defined as the radon emanation coefficient or emanating power, of the material. Grain size and shape are two of the important factors that control the radon emanation coefficient because they determine in part how much uranium and radium is near enough to the surface of the grain to allow the newly-formed radon to escape into a pore space. In a porous medium, where the radon is in radioactive equilibrium with its parent radium, the emanation coefficient is given by the expression: where C 0 is the undiluted radon activity concentration in the pores of the medium, and C Ra is the radium activity concentration of the sample. The 226 Ra activity concentration of the flyash and soil sample were determined by using the g-spectrometry. C 0 was determined by the can experiment using LR-115 for flyash and soil samples. The C 0 values for flyash and soil samples were found to be 245.7 Bq/m 3 and 714.3 Bq/m 3 respectively. The radon emanation coefficient for flyash was found to be 0.0024 while that for soil was 0.0092. Therefore the soil sample was found to be four times higher radon emanation coefficient than flyash which is in line with the results reported in the literatures. This may suggest

  14. Effects of various tailings covers on radon gas emanation from pyritic uranium tailings

    International Nuclear Information System (INIS)

    Dave, N.K.; Lim, T.P.

    1987-01-01

    Radon emanation studies were carried out at an inactive pyritic uranium tailings site in Elliot Lake, Ontario, Canada, to evaluate the effects of various existing dry and wet covers on radon flux rates. Measurements were taken using activated charcoal cartridges for various surface covers consisting of bare, vegetated, acidophilic moss with high degree of water saturation, compacted crushed rock and gravel, and winter snow. The results showed that at a given site, there was no significant difference in radon emanation rates between various tailings covers and bare tailings. In particular, no increase In radon emanation rates from vegetated areas compared to bare tailings was observed. Radon emanation rates varied spatially depending on tailings grain size, porosity, moisture content and on pressure and water table variations. The emanation rates were higher for tailings with low water contents compared to those for wet and moss covered tailings

  15. Emanation of radon-222 in uraniferous phosphorite from Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Santos, M.L.O.; França, E.J.; Amaral, D.S.; Silva, K.E.M.; Hazin, C.A.; Farias, E.E.G.

    2017-01-01

    The concentration of radon-222 activity available for transport to the surface through the pore space can be defined as radon emanation. From the decay of radium-226, whose half-life is 1850 years, it is associated with the development of neoplasia, such as lung cancer. In the Metropolitan Region of Recife, sedimentary rocks known as phosphorites have been known since 1959, so, from the radiometric characterization of the Paulista and Igarassu Municipality, in Pernambuco, emanation tests were carried out, aiming to determine the emanation power of radon in samples of uraniferous phosphorite from the Recife Metropolitan Region. Initially, 6 independent samples of phosphorites with activity concentration of 226 Ra> 400 Bq kg -1 were comminuted. Portions of 5g were conditioned in a radon chamber with 500 mL volume for measurements. The linear fit of the model converged after 200 interactions with selection of the best fit by the Chi-Square test, through the Origin® 8.0 program. After analysis of the samples, radon emanation power was estimated in the range of 7% to 15%, with a mean value of 10.8%. The methodology used to determine the emanation parameters in samples of uraniferous phosphorite was adequate, observing an inversely proportional relation between the concentration of the radium-226 and the emanation power

  16. Detailed radon emanation mapping in Northern Latium

    International Nuclear Information System (INIS)

    Aumento, F.

    1993-01-01

    Detailed radon surveys over 5,000 km 2 of Northern Latium, covering the northern part of the volcanic province of Central Italy, commenced in the mid eighties as part of a geothermal exploration programme; the surveys have subsequently been continued and amplified with environmental protection in mind. The area is now covered by ground emission maps, radon levels in water supplies, emissions from the different lithologies and concentrations in houses. The high uraniferous content of the volcanics, the porous nature of the ubiquitous pyroclastics, and active geothermal systems in the area combine to convey to ground level high concentrations of radon. The emissions show strong lateral variations which are geologically and tectonically controlled, such that only detailed surveys reveal the extent and locations of anomalous radon emanations. Unfortunately, long ago towns often developed in strategic locations. For Northern Latium this means on volcanic highs formed by faulted tuff blocks, two geological features associated with particularly high radon emissions. As a result, in contrast to the low average indoor radon concentrations for the greater part of Italy, in some of these town the average values exceed 450 Bq/m 3 . (author). 1 fig

  17. Radon emanation in tectonically active areas

    International Nuclear Information System (INIS)

    King, C.Y.

    1980-01-01

    Subsurface radon emanation has been continuously monitored for up to three years by the Track Etch method in shallow dry holes at more than 60 sites along several tectonic faults in central California and at 9 sites near the Kilauea volcano in Hawaii. The measured emanation in these tectonically active areas shows large long-term variations that may be related mainly to crustal strain changes

  18. Calculation of radon emanation from a radiferous pile

    International Nuclear Information System (INIS)

    Zettwoog, Pierre.

    1980-07-01

    The theory of unidimensional diffusion of radon in a porous medium, either radiferous or not, is presented taking into account the effects of humidity and the adsorption of radon on the medium. Experimental procedures for determining the two main characteristics of diffusion in a medium, the relaxation length of the diffusion of radon and the emanating power, are described [fr

  19. Radon emanation on San Andreas Fault

    International Nuclear Information System (INIS)

    King, C.-Y.

    1978-01-01

    It is stated that subsurface radon emanation monitored in shallow dry holes along an active segment of the San Andreas fault in central California shows spatially coherent large temporal variations that seem to be correlated with local seismicity. (author)

  20. Measurement of radon emanation of drainage layer media by liquid scintillation counting

    International Nuclear Information System (INIS)

    Turtiainen, T.

    2009-01-01

    Slab-on-ground is a typical base floor construction type in Finland. The drainage layer between the slab and soil is a layer of sand, gravel or crushed stone. This layer has a minimum thickness of 200 mm and is sometimes even 600 mm thick, and thus may be a significant contributor to indoor air radon. In order to investigate radon emanation from the drainage layer material, a simple laboratory test was developed. Many organic solvents have high Ostwald coefficients for radon, i.e., the ratio of the volume of gas absorbed to the volume of the absorbing liquid, which enables direct absorption of radon into a liquid scintillation cocktail. Here, we first present equations relating to the processes of gas transfer in emanation measurement by direct absorption into liquid scintillation cocktails. In order to optimize the method for emanation measurement, four liquid scintillation cocktails were assessed for their ability to absorb radon from air. A simple apparatus consisting of a closed glass container holding an open liquid scintillation vial was designed and the diffusion/absorption rate and Ostwald coefficient were determined for a selected cocktail. Finally, a simple test was developed based on this work. (author)

  1. Quantitative aspects of highly emanating geologic materials and their role in creating high indoor radon. Final report, April 1, 1994--March 31, 1996

    International Nuclear Information System (INIS)

    Gundersen, L.C.S.; Schumann, R.R.; Gates, A.E.; Price, P.

    1996-01-01

    Indoor radon hot spots, areas where indoor radon commonly exceeds 20 pCi/L, are often caused by unusually highly emanating soils or rock and their interaction with ambient climatic conditions and a building's architecture. Highly emanating soils and rocks include glacial deposits; dry fractured clays; black shales; limestone-derived soils; karst and cave areas, fractured or sheared granitic crystalline rocks; mine tailings; uraniferous backfill; and most uranium deposits. The above list probably accounts for 90% of the Nation's indoor radon over 20 pCi/L. In several of these high indoor radon areas, there appears to be a link between the nature of the radon source in the ground, the architecture of the home, and the relative magnitude and ease of mitigation of the indoor air problem. Quantification of geologic materials in terms of their radon potential with respect to climatic and architectural considerations has never been accomplished. Recent studies have attempted semi-quantitative rankings but rigorous analysis has not been done. In this investigation the authors have attempted to develop the quantitative aspects of geologic materials for prediction of very high indoor radon at several scales of observation from national to census tract

  2. Study of radon exhalation and emanation rates from fly ash samples

    International Nuclear Information System (INIS)

    Raj Kumari; Jain, Ravinder; Kant, Krishan; Gupta, Nitin; Garg, Maneesha; Yadav, Mani Kant

    2013-01-01

    Fly ash, a by-product of burnt coal is technologically important material being used for manufacturing of bricks, sheets, cement, land filling etc. The increased interest in measuring radon exhalation and emanation rates in fly ash samples is due to its health hazards and environmental pollution and the same have been measured to assess the radiological impact of radon emanated from fly ash disposal sites. Samples of fly ash from different thermal power stations in northern India and National Council for Cement and Building Materials (NCB) were collected and analysed for the measurements. For the measurement, alpha sensitive LR-115 type II plastic track detectors were used. Gamma spectrometry and can technique was used for the measurements. The experimental data show that fly ash samples emanate radon in significant amount and this consequently, may result in increased radon levels in dwellings built by using fly ash bricks and excessive radiation exposure to workers residing in the surroundings of fly ash dumping sites. (author)

  3. A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash

    International Nuclear Information System (INIS)

    Sakoda, Akihiro; Ishimori, Yuu; Yamaoka, Kiyonori

    2011-01-01

    To our knowledge, this paper is the most comprehensive review to cover most studies, published in the past three decades at least, of radon emanation measurements. The radon emanation fraction, a possibility of radon atoms generated in a material escaping from its grains, has been widely measured for a variety of materials. The aim of this review is to organize a huge number of such data accumulated. The representative values of the emanation fraction for minerals, rocks, soils, mill tailings and fly ashes were derived to be 0.03, 0.13, 0.20, 0.17 and 0.03, respectively. Current knowledge of the emanation processes was also summarized to discuss their affected factors. - Highlights: → Recent radon emanation measurements were thoroughly reviewed. → Averages of radon emanation fractions: 0.03 (mineral), 0.13 (rock), 0.20 (soil), 0.17 (mill tailing) and 0.03 (fly ash). → Grain-size effect was not significantly found for size larger than 1 μm. → Pore water generally enhances the emanation fraction by a factor of 5 or less. → Definition of 'radon emanation' should be shared among researchers.

  4. Radon emanation rate in construction materials and various design of house

    International Nuclear Information System (INIS)

    Ahmad Asyraf Osman

    2012-01-01

    Indoor air quality are important factors that need to be addressed because it can affect the health and comfort of occupants in it. Among the major sources of indoor air pollution are radon gas. Radiological risk due to radon gas due to its intake into the human body is the major cause of lung cancer. This study was conducted to determine the radon emanation rate that occurs naturally in the building materials and its contains in several kinds of house. Construction materials studied are sand, gravel, cement and bricks. Terrace houses, double storey terrace houses, flats and wooden houses were studied in radon emanation in various types of houses. Radon emanation rates in building materials in a variety of home and the home measured using Sun Nuclear radon monitor (model 1029) and radon gas concentrations are measured in units of Bq m -3 . From the results, granites have recorded the highest radon emissions that is 2.67 μBq kg -1 s -1 , followed by sand with 2.53 μBq kg -1 s -1 . The bricks emission rate were recorded was 2.47 μBq kg -1 s -1 , while Cement recorded the lowest with only 1.46 μBq kg -1 s -1 . In study of radon in a variety of home, the results showed that the single storey terrace houses recorded the highest reading of 25.67 ± 4.96 Bq m -3 . First level Double storey terrace houses recorded 23.24 ± 3.72 Bq m -3 compared with a second level of two-storey terrace house which recorded emission rate of 16.43 ± 2.53 Bq m -3 . Flats were recorded the second lowest with only 13.07 ± 2.38 Bq m -3 . House that recorded the lowest reading was wooden houses that recorded 9.53 ± 1.96 Bq m -3 . (author)

  5. Modelization of the radon emanation from natural sources in the soil

    International Nuclear Information System (INIS)

    Sabir, A.; Marah, H.; Hlou, L.; Klein, D.; Chambaudet, A.

    1996-01-01

    To evaluate the radon emanation and hence the risk to populations, we have adapted an original mathematical model based on the method of distribute parcels (L. Hlou, These d'etat, Faculte des Sciences, Kenitra, MAROC, 1994). This allows us to follow the migration, in time and space, of a quantity of radon produced in a unit volume as a function of the geological, morphological and structural characteristics of the site studied. Knowing the petrographic and pedologic parameters enables us to calculate the radon concentration in all points inside the soil of the site as well as the radon emanation in the atmosphere. It is therefore possible to calculate the radiological risk for populations brought to live on the site studied. Different applications of this model have been realised in Morocco and in France to demonstrate its efficiency. (author)

  6. Impulsive radon emanation on a creeping segment of the San Andreas fault, California

    International Nuclear Information System (INIS)

    King, C.-Y.

    1984-01-01

    Radon emanation was continuously monitored for several months at two locations along a creeping segment of the San Andreas fault in central California. The recorded emanations showed several impulsive increases that lasted as much as five hours with amplitudes considerably larger than meteorologically induced diurnal variations. Some of the radon increases were accompanied or followed by earthquakes or fault-creep events. They were possibly the result of some sudden outbursts of relatively radon-rich ground gas, sometimes triggered by crustal deformation or vibration. (Auth.)

  7. Radiometric maps of Israel - Partial contribution to the understanding of potential radon emanations

    International Nuclear Information System (INIS)

    Vulkan, U.; Shirav, M.

    1997-01-01

    An airborne radiometric survey over parts of Israel was carried out in 1981. The system was comprised from 10 Nal 4 inch x 4 inch x 16 inch detectors, arranged in 4,4 and 2 sensors, with total volume of 1560 inch 3 , and one 4 inch x 4 inch x 16 inch uplooking Nal detector. Flight nominal height was 400 feet. It was found that the Mount Scopus Group (of Senonian origin) is the main source for high uranium - phosphorite rocks of this group contain up to 150 ppm U. Comparing the eU radiometric map with a map of potential radon emanation from rock units, reveals a fair correlation - high radon emanation usually follow the distribution of the Mount Scopus Group in Israel. The correlation between the two maps is excellent over arid terrain where soil cover is missing, whereas over semi-arid - humid areas (western and northern Israel), where soil and cultivation covers are developed, the eU levels over Mount Scopus Group's outcrops are much lower due to absorption of the radiation, and do not depict the full radon potential. Detailed mapping of radon hazards usually exhibit poor correlation between airborne eU data and direct pore radon measurements, even in arid terrain. This phenomenon is attributed to the fact that a radon ''source rock'' (e.g. phosphorite) could be covered with a few up to some tenths of meters of uranium-barren rock. About 0.5 meter cover is enough to absorb all radiation, causing very low airborne eU readings, while the radon free way in this rock is about 10 meters, yielding high pore radon levels when directly measured

  8. An approach to discriminatively determine thoron and radon emanation rates for a granular material with a scintillation cell

    International Nuclear Information System (INIS)

    Sakoda, Akihiro; Meisenberg, Oliver; Tschiersch, Jochen

    2016-01-01

    A powder sandwich technique was applied to determine thoron ("2"2"0Rn) and radon ("2"2"2Rn) emanation rates for a granular material. The feature of this technique is the sample preparation, in which a granular material is put and fixed between two membrane filters. Airflow is directly given to this sandwich sample, will include thoron and radon emanated from the material, and then is transferred to the detector. This method makes sure that thoron and radon emanated are not retained in pore space within the sample volume, which is crucial for the appropriate emanation test. This technique was first introduced by Kanse et al. (2013) with the intention to measure the emanation of thoron - but not of radon - from materials having much higher "2"2"4Ra activity than "2"2"6Ra. In the present study, the methodology for the discriminative determination of thoron and radon emanation rates from a granular material has been examined using a flow-through scintillation cell and sandwich sample. The mathematical model was developed to differentiate total alpha counts into thoron- and radon-associated counts. With a sample of uranium ore, this model was experimentally validated by comparison between the scintillation cell and a reference detector that can discriminatively measure thoron and radon concentrations. Furthermore, the detection limits and uncertainties were evaluated to discuss the characteristics of this method. Key parameters for improving the determination of thoron and radon emanations were found to be the background radon concentration and the leakage of radon from the measurement system, respectively. It was concluded that the present method is advantageous to a sample that has much higher "2"2"6Ra activity than "2"2"4Ra. - Highlights: • The methodology of appropriate and discriminative measurement of thoron and radon emanation is presented. • Measurement of thoron and radon emanated from a sample was made using a scintillation cell. • Detection limits and

  9. Helium and radon-emanation bibliography. Selected references of geologic interest to uranium exploration

    International Nuclear Information System (INIS)

    Adkisson, C.W.; Reimer, G.M.

    1976-01-01

    Selected references on helium and radon gas emanations and geologically related topics are given. There are 172 references primarily related to helium geology, 129 to radon geology, and 171 to helium and radon. These references are of geologic interest to uranium exploration

  10. Study of radon emanation variations in Morocco soil, correlations with seismic activities and atmospheric parameters

    International Nuclear Information System (INIS)

    Boukhal, H.; Cherkaoui, T.E.; Lferde, M.

    1994-01-01

    In order to verify the possibility of radon signal use in earthquake prediction, a study of radon emanation variation in soil was undertaken. Regular measurements have been carried out in five cities of Morocco ( Rabat, Tetouan, Ifrane, Khouribga, Berchid). The measuring method is based on the solid state nuclear track detectors technique. The good correlation between the different seismic activities and the variations of radon emanation rate in the five stations, have shown the interest of radon use in the earthquake prediction. 1 tab., 2 figs., 2 refs. (author)

  11. Study of radon-222 emanation from sedimentary phosphates and corresponding phosphogypsum. Temperature effect

    International Nuclear Information System (INIS)

    Boujrhal, F.M.

    1993-01-01

    The aim of this study is to examine the effect of temperature on radon emanation from the phosphates of various regions of Morocco, from corresponding phosphogypsum and from teeth fossilized of Youssoufia phosphate. The interpretation of obtained results was carried out by the physicochemical studies with various approaches; the X-ray diffraction analysis, the measurement of the specific surface area and porousness, the determination of the oxygen content by activation analysis with 14 MeV neutron. The thermal treatment between 100 and 900 degrees C conducted to the following points: - An increase of the radon degassing rate, which is first slow when the temperature increase from 20 to 600 degrees C, then becomes brutal beyond this temperature. We attributed this variation to the training effect ( transport effect ) of radon by the others gas susceptible to be released with thermal effect, particularly the CO sub 2. - The reduction of the radon emanation power versus temperature. We could demonstrate a linear correlation between the power emanation and the specific surface area. 122 refs., 102 figs., 20 tabs. (Author)

  12. Connection between radon emanation and some structural properties of coal-slag as building material

    International Nuclear Information System (INIS)

    Somlai, J.; Jobbagy, V.; Somlai, K.; Kovacs, J.; Nemeth, Cs.; Kovacs, T.

    2008-01-01

    Radionuclides of natural origin may accumulate in different industrial waste materials and by-products. The use of coal bottom ash or coal-slag as building material in Hungary is widespread. Because of the elevated radium content of coal-slag, high radon concentration has been detected in buildings containing coal-slag as building material. In two towns, where buildings contain coal-slag with almost the same radium concentration, the indoor radon concentrations have been found to differ significantly. In order to investigate the cause of the difference in the emanation coefficients, slag samples from the two locations were examined for grain-size distribution, density, pore volume, and specific surface. The applied methods were: gamma spectrometry for the radium concentration of the samples; Lucas cell method for the radon emanation; nitrogen absorption-desorption isotherms analyzed using the BET theory and mercury poremeter for the specific surface and pore volume. It was found that the great difference in the emanation coefficients (1.35±0.13% and 14.3±0.92%) of the coal-slag samples is primarily influenced by the pore volume and the specific surface

  13. A study of radon emanation from waste rock at Northern Territory uranium mines

    International Nuclear Information System (INIS)

    Mason, G.C.; Gan, T.H.; Elliott, G.

    1983-01-01

    Field measurements were made of radon emanation rates from waste rock sources at Ranger, Nabarlek and Rum Jungle, three Northern Territory uranium mine sites. The preliminary mean emanation rate was approximately 50 Bq m - 2 s - 2 per percent ore grade

  14. Hazardous waste disposal in relationship to radon gas emanation in atmosphere

    International Nuclear Information System (INIS)

    Fang, H.Y.

    1990-01-01

    Radioactive/toxic radon gas (Rn) produced naturally in the ground by the normal decay of uranium (U) and radium (Ra) is widely distributed in trace amounts in the earth's crust. It is a colorless, odorless and tasteless element and is one of the six generally known noble gases which are inert gases lacking the usual or anticipated chemical or biological action. Most radon gas is concentrated in the oxidation belt which is at a relatively shallow depth from the ground surface. Under normal conditions, the amount of radon gas seeping into the atmosphere or entering into residential buildings is very little and will not be harmful to human health. In recent years, due to population growth, a progressive living standard and industrial progress, many natural farm lands, forests and wetlands have been destroyed by conversion into residential and industrial compounds; consequently, such construction activities and industrial waste disposal changes the dynamic equilibrium of the ecosystem which can trigger and accelerate radon gas emanation and mobilization. This change is the major reason for the problem of indoor radon concentration which has significantly increased in recent years. Recent findings indicate that radon is not a totally inert element as previously thought. It can be influenced by local environments such as temperature, pH value, ion exchange, redox reaction, etc. to some degree. Also radon gas interacts with soil, water, air and others; unfortunately, the interface mechanisms between radon and the environment are not yet clearly understood and little information on these aspects is available. In this paper only the hazardous waste disposal causes for radon emanation are discussed. To deal with such complex phenomena, a new approach is presented that assumes radon gas interaction with the environment through dust in the air and suspensions in the water and soil-water system

  15. Intercomparison of radon emanation in Moroccan and Tunisian phosphate rocks

    International Nuclear Information System (INIS)

    Khalil, A.; Membrey, F.; Klein, D.; Chambaudet, A.; Iraqui, R.

    1992-01-01

    We suggest a method for measuring the emanation of radon gas of phosphates mineral from different origins using solid state track nuclear detectors (CR39 and LR115) with the aim to determinate radioactivity effects on the human. (author)

  16. Theoretical concepts of fractal geometry semkow by radon emanation in solids

    International Nuclear Information System (INIS)

    Cruz G, H.

    1996-01-01

    The objective of this work is to introduce the fractal geometry concept to the study of gaseous emanations in solids, specially with reference to radon emission in mineral grains. The basic elements of fractals theory are developed. A fractal is defined as an auto similar subassembly, which fractal dimension is greater than the topological dimension. Starting from this, and making a brief description of the physicals basis of radon emission in solids, a model between emanation power (E R ) and the ratio s/v (surface to volume), is founded. A Gaussian model is assumed for extent of recoil from alpha decay of Ra-226. Using the results of Pfeifer it is obtained that distribution of pore size is scaled like Br -D-1 , where D: fractal[dimension, B: constant and r: pore radius. After an adequate mathematics expansion, it is found that the expression for emanation power is scaled like r 0 D-3 (r 0 grain radius). We may concluded that if we have a logarithmic graph of E R vs size of grain we can deduce the fractal dimension of the emanation surface. The experimental data of different materials provides an interval into fractal dimension D , between 2.1 to 2.86. (author). 5 refs., 1 tab

  17. The radium distribution in some Swedish soils and its effects on radon emanation

    International Nuclear Information System (INIS)

    Edsfeldt, Cecilia

    2001-08-01

    The aim of this study has been to clarify how the radium distribution in soils affects the radon emanation. The distribution of radium, uranium and thorium has been determined using sequential extractions. In the study, soils from two different locations were investigated. In the first part the applicability of the sequential extraction method for determining Ra distribution in different soil types was investigated, using a simple sequential extraction method. Sampled soils were clay, sand and till from the vicinity of the Stockholm Esker. The main part of Rn emanating Ra was associated with Fe oxides in the soil. The methods applied provided information about the radon risk of the soil, but, in order to gain more information on the processes governing Ra distribution and radon emanation in soils, a more detailed sequential extraction procedure would be desirable. The second part consisted of a detailed study of the radionuclide distribution and the geochemistry in a podzolised glacial till from Kloten in northern Vaestmanland. A more detailed sequential extraction procedure was used, and the specific surface area of samples was measured. Samples were taken from E, B, and C horizons; radium and thorium were enriched in the B horizon, whereas uranium had its maximum concentration in the C horizon. Extractable radium primarily occurred in the exchangeable pool, possibly organically complexed, whereas extractable uranium and thorium were mainly Fe oxide bound. Oxide-bound Ra was important only in the B horizon. The radon emanation was not correlated with the amount of exchangeable Ra, but instead with the oxide bound Ra. However, the amount of oxide-bound Ra was too small to account for all the emanated Rn, thus, exchangeable Ra was interpreted as the main source of emanated Rn. This exchangeable Ra was more emanative in the B horizon than in the C horizon. The explanation is the larger surface area of the B horizon samples; the specific surface area appears to be the

  18. Radon emanation and soil moisture effects on airborne gamma-ray measurements

    International Nuclear Information System (INIS)

    Grasty, R.L.

    1997-01-01

    A theoretical model is developed to explain variations in airborne gamma-ray measurements over a calibration range near Ottawa, Ontario. The gamma-ray flux from potassium and the thorium decay series showed an expected decrease with increasing soil moisture. However, the gamma-ray flux from the uranium decay series was highest in the spring when the ground was water-saturated and even covered with snow. These results are explained through the build-up of radon and its associated gamma-ray-emitting decay products in the clay soil of the calibration range with increasing soil moisture. Similar results were found from airborne measurements over other clay soils. However, measurements over sandy soils showed that the count rates from all three radio elements increased with decreasing soil moisture. This difference between soil types was attributed to the lower radon emanation of the more coarse-grained sandy soils compared to finer-grained clay soils. The theoretical and experimental results demonstrate that any estimate of the natural gamma-ray field caused by radium in the ground must take into consideration the radon emanation coefficient of the soil. The radon diffusion coefficient of the soil must also be considered since it depends strongly on soil moisture. This has significant implications for the assessment of outdoor radiation doses using laboratory analyses of soil samples and the use of ground and airborne gamma-ray measurements for radon potential mapping

  19. Fractal theory of radon emanation from solids

    International Nuclear Information System (INIS)

    Semkow, T.M.

    1991-01-01

    The author developed a fractal theory of Rn emanation from solids, based on α recoil from the α decay of Ra. Range straggling of the recoiling Rn atoms in the solid state is included and the fractal geometry is used to describe the roughness of the emanating surface. A fractal dimension D of the surface and the median projected range become important parameters in calculating the radon emanating power E R from solids. A relation between E R and the specific surface area measured by the gas adsorption is derived for the first time, assuming a uniform distribution of the precursor Ra throughout the samples. It is suggested that the E R measurements can be used to determine D of the surfaces on the scale from tens to hundreds of nm. One obtains, for instance, D = 2.17 ± 0.06 for Lipari volcanic glass and D = 2.83 ± 0.03 for pitchblende. In addition, the author suggests a new process of penetrating recoil and modify the role of indirect recoil. The penetrating recoil may be important for rough surfaces, in which case Rn loses its kinetic energy by penetrating a large number of small surface irregularities. The indirect recoil may be important at the very last stage of energy-loss process, for kinetic energies below ∼ 5 keV

  20. Radon and thoron emanation from various marble materials: impact on the workers

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Amghar, A.

    2005-01-01

    Uranium ( 238 U) and thorium ( 232 Th) concentrations were measured inside different pulverized marble material samples by using a method based on determining detection efficiencies of the CR-39 and LR-115 II solid state nuclear track detectors for the emitted alpha particles. Radon ( 222 Rn) and thoron ( 220 Rn) alpha-activities per unit volume were evaluated inside and outside the marble samples studied. Radon emanation coefficient was determined for the considered marble samples. Alpha- and beta-activities per unit volume of air due to radon, thoron and their progenies were measured in the atmosphere of a marble factory. Equilibrium factors between radon and its progeny and thoron and its decay products were evaluated in the air of the studied marble factory. The committed equivalent doses due to short-lived radon decay products were determined in different regions of the respiratory tract of workers in the considered marble factory

  1. A charcoal canister survey of radon emanation at the rehabilitated uranium mine site at Nabarlek

    International Nuclear Information System (INIS)

    Storm, J.R.; Patterson, J.R.

    1999-01-01

    This paper describes a recent survey of radon emanation measurements from the rehabilitated Nabarlek mine site. It was mined out in 1979, decommissioned in 1995 and provided a good test bed for assessment of rehabilitation in terms of radon flux attenuation. Measurements have been made with charcoal canisters. Studies to measure the radon-220 flux by observing Tl-208 progeny of thoron the effectiveness of trial covers and meteorological considerations will be reported

  2. A charcoal canister survey of radon emanation at the rehabilitated uranium mine site at Nabarlek

    Energy Technology Data Exchange (ETDEWEB)

    Storm, J R; Patterson, J R [University of Adelaide, Adelaide, SA (Australia). Department of Physics and Mathematical Physics

    1999-07-01

    This paper describes a recent survey of radon emanation measurements from the rehabilitated Nabarlek mine site. It was mined out in 1979, decommissioned in 1995 and provided a good test bed for assessment of rehabilitation in terms of radon flux attenuation. Measurements have been made with charcoal canisters. Studies to measure the radon-220 flux by observing Tl-208 progeny of thoron the effectiveness of trial covers and meteorological considerations will be reported.

  3. Theoretical aspects of the Semkow fractal model in the radon emanation in solids

    International Nuclear Information System (INIS)

    Cruz G, H.S.

    1997-01-01

    The basic elements of the Fractals theory are developed. The physical basis of radon emission in solids are described briefly. It is obtained that the emanation power E R of mineral grains is scaled as r 0 D-3 (r 0 : grain radius). From a logarithmic graph E R versus grain size is deduced the fractal dimension of the emanation surface. The experimental data of different materials give an interval in the fractal dimension D between 2.1 and 2.8 (Author)

  4. The effect of time-dependent ventilation and radon (thoron) gas emanation rates in underground uranium mines

    International Nuclear Information System (INIS)

    Bigu, J.

    1987-01-01

    A theoretical radiation mine model, suitable for underground uranium mines, has been investigated. In this model, the rate of ventilation and/or the radon (thoron) gas emanation from mine walls are time-dependent. Several cases of practical interest have been investigated including sinusoidal, linear, exponential, stepwise, or a combination of two or more of the above. Analytical solutions were obtained for the time-dependent radon (thoron) gas emanation rate. However, because of the extreme analytical complexity of the solutions corresponding to the time-dependent ventilation rate case, numerical solutions were found using a special Runge-Kutta procedure and the Hamming's modified predictor-corrector method for the solution of linear initial-value problems. The mine model makes provisions for losses of radioactivity, other than by ventilation and radioactive decay, by, say, plate-out on mine walls, and by other mechanisms. Radioactivity data, i.e., radon, thoron, and their progeny, obtained with the above mine model for a number of ventilation and emanation conditions, are presented. Experimental data obtained in an inactive stope of an underground uranium mine for a time-dependent air flow case are shown. Air flow conditions (ventilation rate) were determined by tracer gas techniques using SF 6

  5. Present knowledge of the effect of cracks on radon emanation from tailings, with implications for mine rehabilitation at Olympic Dam

    International Nuclear Information System (INIS)

    Storm, J.R.; Patterson, J.R.

    1997-01-01

    The weather parameters of air pressure, temperature, rainfall and wind speed affect the rate of radon-222 emanation from the surface of mine tailings. A second set of conditions which form cracks or fissures in tailings and their covers, will also affect the radon flux density and they must be considered in the design of any cover for a rehabilitation program. The Olympic Dam mine expansion program, beginning in 1995, involves a substantial increase in the size of the copper/uranium tailings. As part of monitoring and progressive rehabilitation of the tailings, the rate of emanation of radon-222 from tailings' surfaces was measured, with and without the gross defects of cracking. Theoretical predictions and measurements made in the U.S., are compared with rates of emanation from a cracked surface, modelled as homogeneous with additional surface area due to cracks

  6. Radon Emanation from NORM-Contaminated Pipe Scale, Soil, and Sediment at Petroleum Industry Sites

    International Nuclear Information System (INIS)

    Rood, A.S.; White, G.J.

    1999-01-01

    This report describes a study of radon (Rn) emanation from pipe scale and soil samples contaminated with naturally occurring radioactive material (NORM). Samples were collected at petroleum production sites in Oklahoma, Michigan, Kentucky, and Illinois. For comparison, data are also presented from preliminary studies conducted at sites in Texas and Wyoming. All samples collected were analyzed for their Rn emanation fraction, defined as the fraction of 222Rn produced that enters the interconnected pore space within a medium contaminated with 226Ra before the 222Rn undergoes radioactive decay. This measure represents one of the important parameters that determine the overall Rn activity flux from any solid medium. The goal of this project was to determine whether Rn emanation from pipe scale and soil is similar to emanation from uranium mill tailings

  7. Study of variations of radon emanations from soil in Morocco using solid state nuclear track detectors. Correlations with atmospheric parameters and seismic activities

    International Nuclear Information System (INIS)

    Boukhal, H.

    1993-01-01

    This study investigates the quantity variations of radon emanating from soil in accordance with time. It aims to verify the possibility of the radon sign use in earthquake prediction. Regular measures of radon concentration in soil have been carried out over the two years 1991 and 1992 in five towns of Morocco: Rabat, Tetouan, Ifrane and Khouribga, and in geophysic observatory of Ibn Rochd (Berchid region). The measuring method is based on the solid state nuclear track detectors technique. The obtained results have shown an influence of the atmospheric effects on the radon emanation. The experiment proved that, on one hand, the variations of the aforesaid influence are correlated to variations of the pluviometry and the atmospheric temperature and, on the other hand, there is no notable effect of atmospheric pressure or atmospheric humidity. The good correlations between the different seismic activities and the variations of radon emanation rate in the five measurement stations, have shown the interest of radon use in the earthquake prediction field. 81 refs., 100 figs., 17 tabs.(F. M.)

  8. Correlation between radon gas emanation and porosity in ornamental stones; Correlacao entre emanacao de gas radonio e porosidade de rochas ornamentais do Estado do Ceara, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Leiliane Rufina Pereira de; Artur, Antonio Carlos; Bonotto, Daniel Marcos, E-mail: leili_ane@hotmail.com, E-mail: acartur@rc.unesp.br, E-mail: dbonotto@rc.unesp.br [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil); Nogueira Neto, Jose de Araujo, E-mail: nogueira@ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Geologia

    2014-01-15

    This article makes correlations between levels of gas {sup 222}Rn emanation and corresponding porosity for thirteen samples of granitic rocks ornamental state of Ceara. For both determinations of physical indexes (bulk density, apparent porosity and water absorption, the levels of U, monitoring emanation of radon gas are made for a period of 25 days in confinement conditions of the samples under vacuum and petrographic studies of the characteristics rocks, with emphasis on the microfissural state. The sampled rocks provided low values of radon gas emanation between U 0,2 ppm and 13.6 ppm. The correlations between the various results show that the microporous network of the rock is determinant in the rate of emanation of radon gas, overlapping, including the influence of own levels of U present in the rocks. The results also show that the amount of radon gas emanating from the rock is small enough compared to the decay caused by the amount of {sup 238}U. The proposition of gas emanating relative to the total generated by rocks ranging between 0.4% and a maximum of 4.2%. (author)

  9. Emanation of radon-222 in uraniferous phosphorite from Pernambuco, Brazil; Emanação de radônio-222 em fosforito uranífero de Pernambuco

    Energy Technology Data Exchange (ETDEWEB)

    Santos, M.L.O.; França, E.J.; Amaral, D.S.; Silva, K.E.M.; Hazin, C.A.; Farias, E.E.G., E-mail: emersonemiliano@yahoo.com.br [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2017-07-01

    The concentration of radon-222 activity available for transport to the surface through the pore space can be defined as radon emanation. From the decay of radium-226, whose half-life is 1850 years, it is associated with the development of neoplasia, such as lung cancer. In the Metropolitan Region of Recife, sedimentary rocks known as phosphorites have been known since 1959, so, from the radiometric characterization of the Paulista and Igarassu Municipality, in Pernambuco, emanation tests were carried out, aiming to determine the emanation power of radon in samples of uraniferous phosphorite from the Recife Metropolitan Region. Initially, 6 independent samples of phosphorites with activity concentration of {sup 226}Ra> 400 Bq kg{sup -1} were comminuted. Portions of 5g were conditioned in a radon chamber with 500 mL volume for measurements. The linear fit of the model converged after 200 interactions with selection of the best fit by the Chi-Square test, through the Origin® 8.0 program. After analysis of the samples, radon emanation power was estimated in the range of 7% to 15%, with a mean value of 10.8%. The methodology used to determine the emanation parameters in samples of uraniferous phosphorite was adequate, observing an inversely proportional relation between the concentration of the radium-226 and the emanation power.

  10. Dependence of radon emanation of red mud bauxite processing wastes on heat treatment

    International Nuclear Information System (INIS)

    Jobbagy, V.; Somlai, J.; Kovacs, J.; Szeiler, G.; Kovacs, T.

    2009-01-01

    Natural radioactivity content, radon emanation and some other physical characteristics of red mud were investigated, so that to identify the possibilities of the safe utilization of such material as a building material additive. Based on the radionuclide concentration, red mud is not permitted to be used directly as a building material, however, mixing of a maximum 20% red mud and 80% clay meets the requirements. The main aim of this work was to determine the dependence of the emanation factor of red mud firing temperature and some other parameters. The relevant experimental procedure was carried out in two different ways: without any additional material, and by adding a known amount of sawdust (5-35 wt%) then firing the sample at a given temperature (100-1000 deg. C). The average emanation factor of the untreated dry red mud was estimated to 20%, which decreased to about 5% at a certain heat treatment. Even lower values were found using semi-reductive atmosphere. It has been concluded that all emanation measurements results correlate well to the firing temperature, the specific surface and the pore volume.

  11. Review of high-sensitivity Radon studies

    Science.gov (United States)

    Wojcik, M.; Zuzel, G.; Simgen, H.

    2017-10-01

    A challenge in many present cutting-edge particle physics experiments is the stringent requirements in terms of radioactive background. In peculiar, the prevention of Radon, a radioactive noble gas, which occurs from ambient air and it is also released by emanation from the omnipresent progenitor Radium. In this paper we review various high-sensitivity Radon detection techniques and approaches, applied in the experiments looking for rare nuclear processes happening at low energies. They allow to identify, quantitatively measure and finally suppress the numerous sources of Radon in the detectors’ components and plants.

  12. Radon exhalation of cementitious materials made with coal fly ash: Part 1 - scientific background and testing of the cement and fly ash emanation

    International Nuclear Information System (INIS)

    Kovler, K.; Perevalov, A.; Steiner, V.; Metzger, L.A.

    2005-01-01

    Increased interest in measuring radionuclides and radon concentrations in fly ash, cement and other components of building products is due to the concern of health hazards of naturally occurring radioactive materials (NORM). The current work focuses on studying the influence of fly ash (FA) on radon-exhalation rate (radon flux) from cementitious materials. The tests were carried out on cement paste specimens with different FA contents. The first part of the paper presents the scientific background and describes the experiments, which we designed for testing the radon emanation of the raw materials used in the preparation of the cement-FA pastes. It is found that despite the higher 226 Ra content in FA (more than 3 times, compared with Portland cement) the radon emanation is significantly lower in FA (7.65% for cement vs. 0.52% only for FA)

  13. Radon and thoron emanation measurements and the effect of ground water

    International Nuclear Information System (INIS)

    Carriveau, G.W.; Harbottle, G.

    1980-01-01

    In the past, corrections for annual dose rate calculations have used a qualitative approach to the effect of ground water saturation and radon and thoron loss. An example is presented of how this correction can now be precisely determined using natural gamma-ray activities to determine the amount of emanation from ceramic sherds and soil, both in a dry state and saturated with ground water. The experimental data also provide information concerning disequilibria in 234 Th and 226 Ra regions of the decay series. Additionally, approximate values of uranium and thorium concentrations (sufficiently accurate for authenticity work) are provided

  14. Emanations and 'induced' radioactivity: from mystery to (mis)use

    International Nuclear Information System (INIS)

    Kolar, Z.I.

    1999-01-01

    The natural Rn isotopes were discovered within the period 1899-1902 and at that time referred to as emanations because they came out (emanated) of sources/materials containing actinium, thorium and radium, respectively. The (somewhat mysterious) emanations appeared to disintegrate into radioactive decay products which by depositing at solid surfaces gave rise to 'induced' radioactivity i.e. radioactive substances with various half-lives. Following the discovery of the emanations the volume of the research involving them and their disintegration products grew steeply. The identity of a number of these radioactive products was soon established. Radium emanation was soon used as a source of RaD ( 210 Pb) to be applied as an 'indicator' (radiotracer) for lead in a study on the solubility of lead sulphide and lead chromate. Moreover, radium and its emanation were introduced into the medical practice. Inhaling radon and drinking radon-containing water became an accepted medicinal use (or misuse?) of that gas. Shortly after the turn of the century, the healing (?) action of natural springs (spas) was attributed to their radium emanation, i.e. radon. Bathing in radioactive spring water and drinking it became very popular. Even today, bathing in radon-containing water is still a common medical treatment in Jachymov, Czech Republic. (author)

  15. Effects of barium chloride treatment of uranium mill tailings and ore on radon emanation and 226Ra levels. Progress report

    International Nuclear Information System (INIS)

    Ibrahim, S.A.; Flot, S.L.

    1983-01-01

    The purpose of this study was to investigate the effect of barium chloride treatments on: reduction of 222 Rn emanation from mill wastes; reduction of 226 Ra levels in wastewater; and decreased leachability of 226 Ra from mill wastes. Baseline 226 Ra concentrations were determined for ore and tailings as well as radon emanation fractions. Uranium ore was treated with soluble barium at concentrations of 10, 25, 50, and 100 mg per litre of slurry. The leach-liquor declined in 226 Ra concentration by as much as 50%. When soluble potassium as well as barium was used in the treatment process at equal concentrations of 10, 25, 50, and 100 mg per litre of slurry, a similar reduction was observed. No significant difference was noted between the two treatment regimes. An accelerated leaching experiment was performed on the ore treated with barium chloride. All treatment groups except that treated with 10 mg of soluble barium per litre of slurry showed significant decreases in leachability. Available 222 Rn (corresponds with radon emanation fraction) was measured in treated and untreated ore. Ore treated with concentrations of Ba ++ up to 1.00 mg per gram of ore did not show a statistically significant reduction in available 222 Rn, however when potassium sulfate was also added, a significant decline was noted. This study suggests that barium chloride treatments reduce radon emanation from mill wastes and reduce 226 Ra levels in wastewater. Leachability of 226 Ra from treated samples decreased markedly. 19 references, 8 figures, 7 tables

  16. Detailed effects of particle size and surface area on 222Rn emanation of a phosphate rock.

    Science.gov (United States)

    Haquin, Gustavo; Yungrais, Zohar; Ilzycer, Danielle; Zafrir, Hovav; Weisbrod, Noam

    2017-12-01

    The dependency of radon emanation on soil texture was investigated using the closed chamber method. Ground phosphate rock with a large specific surface area was analyzed, and the presence of inner pores, as well as a high degree of roughness and heterogeneity in the phosphate particles, was found. The average radon emanation of the dry phosphate was 0.145 ± 0.016. The emanation coefficient was highest (0.169 ± 0.019) for the smallest particles (210 μm). The reduction rate followed an inverse power law. As expected, a linear dependence between the emanation coefficient and the specific surface area was found, being lower than predicted for the large specific surface area. This was most likely due to an increase in the embedding effect of radon atoms in adjacent grains separated by micropores. Results indicate that knowledge of grain radium distribution is crucial to making accurate emanation predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Exposure emanation methods of prospecting for mineral deposits

    International Nuclear Information System (INIS)

    Titov, V.L.; Venkov, V.A.; Avdeeva, T.Ya.; Kuvshinnikova, E.I.

    1985-01-01

    Fundamentals of the theory and practice of new methods for prospecting of mineral deposits-exposure emanation surveys are stated. Different modifications of these methods are considered: emanation track method, electron alphametry, technique based on the recording of alpha radiation of radon daughter products and thermoluminescent dosemeters. Advanatges of these methods as compared with the conventional emanation survey using emanometers and methods based on the recording of gamma radiation intensity are shown. Problems of the theory and practical aspects of the concrete modifications application as well as systems for data acquisition and processing fields of the methods application, technique of works performance and survey data interpretation are considered in detail; methods sensitivity, probable mechanisms of radon transport in bowels, role of a depth component of the radiactive emanation concentration field are evaluated. Examples of the method application in practice are given, emanation anomalies and their evaluation methods are classified

  18. Exposure to unusually high indoor radon levels

    International Nuclear Information System (INIS)

    Rasheed, F.N.

    1993-01-01

    Unusually high indoor radon concentrations were reported in a small village in western Tyrol, Austria. The authors have measured the seasonal course of indoor radon concentrations in 390 houses of this village. 71% of houses in winter and 33% in summer, showed radon values on the ground floor above the Austrian action level of 400 Bq/cm 3 . This proportion results in an unusually high indoor radon exposure of the population. The radon source was an 8,700-year-old rock slide of granite gneiss, the largest of the alpine crystalline rocks. It has a strong emanating power because its rocks are heavily fractured and show a slightly increased uranium content. Previous reports show increased lung cancer mortality, myeloid leukemia, kidney cancer, melanoma, and prostate cancer resulting from indoor radon exposure. However, many studies fail to provide accurate information on indoor radon concentrations, classifying them merely as low, intermediate, and high, or they record only minor increases in indoor radon concentrations. Mortality data for 1970-91 were used to calculate age and sex standardized mortality rates (SMR) for 51 sites of carcinoma. The total population of Tyrol were controls. A significantly higher risk was recorded for lung cancer. The high SMR for lung cancer in female subjects is especially striking. Because the numbers were low for the other cancer sites, these were combined in one group to calculate the SMR. No significant increase in SMR was found for this group

  19. Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran.

    Science.gov (United States)

    Bavarnegin, E; Fathabadi, N; Vahabi Moghaddam, M; Vasheghani Farahani, M; Moradi, M; Babakhni, A

    2013-03-01

    Radon exhalation rates from building materials used in high background radiation areas (HBRA) of Ramsar were measured using an active radon gas analyzer with an emanation container. Radon exhalation rates from these samples varied from below the lower detection limit up to 384 Bq.m(-2) h(-1). The (226)Ra, (232)Th and (40)K contents were also measured using a high resolution HPGe gamma- ray spectrometer system. The activity concentration of (226)Ra, (232)Th and (40)K content varied from below the minimum detection limit up to 86,400 Bq kg(-1), 187 Bq kg(-1) and 1350 Bq kg(-1), respectively. The linear correlation coefficient between radon exhalation rate and radium concentration was 0.90. The result of this survey shows that radon exhalation rate and radium content in some local stones used as basements are extremely high and these samples are main sources of indoor radon emanation as well as external gamma radiation from uranium series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Radon emanations: a tectonic indicator in the Dharamsala area of Himalayan Frontal Zone, Himachal Pradesh

    International Nuclear Information System (INIS)

    Dhar, Sunil

    2013-01-01

    While throughout the length of Himalayas good exposures of the tertiary and the pre-Tertiary occurs occur, but in the Dharamsala and its adjoining areas of Himalayan Frontal Zone, tertiary and the pre-Tertiary rocks are present within a short aerial distance. This diverse lithology within a short span of distance along with the structural heterogeneity has made this region of Himalayas tectonically significant. This unique tectano-stratigraphic configuration of this area is primarily attributed to the major faults and folds which are either along the Himalayan trend or transverse to it. Interestingly the area is seismically active and falls in the High Seismic Zone-V of seismic atlas of India. It has been observed that regional thrusts systems and lineaments, control seismo-tectonic activity in the region. Contemporary geomorphological re-adjustments in the form of erosion intensity (meandering/drainage pattern or river incision) as a result of active nature of lineaments have been observed. In addition, due to the rampant seismic activity in the region especially in year 2013, the area has witnessed a sequence of landslides. The study further reveals these the signatures of morphological adjustment coincide with zones which have deciphered higher proportions of radon activity. Because radon transport through rocks is largely dependent on the geology of the area, which includes lithology, compaction, porosity structural/tectonic features like thrusts, faults, joints and fractures. Occurrences of landslide the thrust zones, coupled with high emanations of radon (both in soil and water) alludes attention towards dominant role of neo-tectonic activity in the area. (author)

  1. High indoor radon concentrations in some Swedish waterworks

    International Nuclear Information System (INIS)

    Aakerblom, G.; Hagberg, N.; Mjoenes, L.; Heiberg, A.

    2002-01-01

    High indoor radon concentrations in buildings used for water treatment are not uncommon. When raw water is processed in an open system radon escapes from the water to the indoor air of the premises. It is not unusual that the staff of the waterworks have their offices in the building where the water is processed. If large volumes of water are processed and the evaporated radon can reach the workplaces the indoor radon concentration can be very high even if the radon concentration of the raw water is moderate. Groundwaters from aquifers in bedrock and soil and surface water that has been infiltrated through deposits of sand or gravel have the potential to cause high indoor radon levels. In surface water emanating directly from a lake or a river the radon concentrations are normally too low to cause problems. Three waterworks in central Sweden have been studied, Ludvika, Fredriksberg and Kolbaeck. The radon concentrations in the raw water of these waterworks are from 85 Bq/l to 300 Bq/l. Average indoor radon concentrations exceeding 17,000 Bq/m 3 have been measured in Ludvika with peaks of almost 37,000 Bq/m 3 . In Kolbaeck radon concentrations up to 56,000 Bq/m 3 have been measured. It is quite possible that employees of waterworks can receive doses exceeding 20 mSv per year (calculated according to ICRP:s dose conversion convention). Measurements of radon and gamma radiation from the waterworks are reported and methods to lower the indoor radon concentrations are discussed. (author)

  2. Membrane barriers for radon gas flow restrictions

    International Nuclear Information System (INIS)

    Archibald, J.F.

    1984-08-01

    Research was performed to assess the feasibility of barrier membrane substances, for use within mining or associated high risk environments, in restricting the diffusion transport of radon gas quantities. Specific tests were conducted to determine permeability parameters of a variety of membrane materials with reference to radon flow capabilities. Tests were conducted both within laboratory and in-situ emanation environments where concentrations and diffusion flows of radon gas were known to exist. Equilibrium radon gas concentrations were monitored in initially radon-free chambers adjacent to gas sources, but separated by specified membrane substances. Membrane barrier effectiveness was demonstrated to result in reduced emanation concentrations of radon gas within the sampling chamber atmosphere. Minimum gas concentrations were evidenced where the barrier membrane material was shown to exhibit lowest radon permeability characteristics

  3. Radon sources emanation in granitic soil and saprolite

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.; Flexser, S. [Lawrence Berkeley Lab., CA (United States); Brimhall, G.; Lewis, C. [California Univ., Berkeley, CA (United States). Dept. of Geology and Geophysics

    1993-08-01

    Petrological and geochemical examinations of soil, saprolite, and quartz diorite protolith have been made at the Small Structures field site, Ben Lomond Mountain, California. Variations in Ra in soil and saprolite are mainly controlled by heterogeneities inherited from the parent quartz diorite. Fission-track radiography shows that U is concentrated in the primary accessory minerals, zircon and sphene. However, most importantly for Rn emanation, U is also concentrated in secondary sites: weathered sphene, biotite and plagioclase, grain coatings, and Fe-rich fracture linings which also contain a rare-earth phosphate mineral. This occurrence of U along permeable fracture zones suggests that soil-gas Rn from depth (> 2 m) is a significant contributor to Rn availability near the surface. Zones highest in emanation occur where fine pedogenic phases: gibbsite, amorphous silica, and iron oxyhydroxide are most abundant. Mass balance analyses of this soil-saprolite profile are in progress and preliminary indicate that a high-emanation zone corresponds to the upper portion of a zone of accumulation of U and Ba.

  4. Radon emanation of heterogeneous basin deposits in Kathmandu Valley, Nepal

    Science.gov (United States)

    Girault, Frédéric; Gajurel, Ananta Prasad; Perrier, Frédéric; Upreti, Bishal Nath; Richon, Patrick

    2011-01-01

    Effective radium-226 concentration ( EC Ra) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. EC Ra was measured in the laboratory by radon-222 emanation. The samples ( n = 177) are placed in air-tight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The EC Ra values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg -1, with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg -1. The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent EC Ra values in corresponding stratigraphic sediment layers. EC Ra measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, EC Ra values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg -1 in soils of Syabru-Bensi (Central Nepal), 23 ± 1 Bq kg -1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg -1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg -1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of EC Ra values for these various soils is important for modelling radon exhalation at the ground surface, in particular

  5. Radon emanation of heterogeneous basin deposits in Kathmandu Valley, Nepal

    International Nuclear Information System (INIS)

    Girault, F.; Perrier, F.; Ananta Prasad Gajurel; Bishal Nath Upreti; Richon, P.

    2011-01-01

    Effective radium-226 concentration (EC Ra ) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. EC Ra was measured in the laboratory by radon-222 emanation. The samples (n = 177) are placed in airtight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The EC Ra values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg -1 , with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg -1 . The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent EC Ra values in corresponding stratigraphic sediment layers. EC Ra measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, EC Ra values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg -1 in soils of Syabru-Bensi (Central Nepal), 23 ± 1 Bq kg -1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg -1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg -1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of EC Ra values for these various soils is important for modelling radon exhalation at the ground surface, in particular

  6. Radon emanometry in active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M. (CNRS, IN2P3, BP45/F63170 Aubiere (France)); Cejudo, J. (Instituto Nacional de Investigaciones Nucleares, Mexico City)

    1984-01-01

    Radon emission measurements from active volcanoes has, since 1981, been continuously measured at monitoring stations in Mexico and in Costa Rica. Counting of etched alpha tracks on cellulose nitrate LR-115 detectors give varying results at the several stations. Radon emanation at Chichon, where an explosive eruption occurred in 1982, fell down. Radon detection at the active volcano in Colima shows a pattern of very low emission. At the Costa Rica stations located at Poas, Arenal and Irazu, the radon emanation shows regularity.

  7. Radiometers for radon concentration in air

    International Nuclear Information System (INIS)

    Bartak, J.; Machaj, B.; Pienkos, J.P.

    2002-01-01

    Constant grow of science and technology stimulates development of new improved measuring tools. New measuring demand arise also in radon concentration measurements. Varying rock stress and rock cracks influencing radon emanation encouraged research aimed at use of this phenomenon to predict crumps of mine formation among others based on variation of radon emanation. A measuring set was developed in the Institute of Nuclear Chemistry and Technology enabling long term monitoring of radon concentration in mine bore-hole. The set consists probe and probe controller. Detection threshold of the probe is 230 Bq/m 3 . The set can operate in the environment with methane explosion hazard. A radiometer employing Lucas cell as radiation detector for radon concentration in air was also developed its detection threshold is approx. 10 Bq/m 3 . Replaceable Lucas cell of the radiometer allows for measurement of high as well as low radon concentration in short time interval. (author)

  8. Assessment of (222)Rn emanation from ore body and backfill tailings in low-grade underground uranium mine.

    Science.gov (United States)

    Mishra, Devi Prasad; Sahu, Patitapaban; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2014-02-01

    This paper presents a comparative study of (222)Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity, (226)Ra and moisture contents on (222)Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01 × 10(-3) and 1.03 Bq m(-2) s(-1), respectively. Significant positive linear correlations between (222)Rn emanation rate and the (226)Ra content of ore and tailings were observed. For normalised (226)Ra content, the (222)Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the (226)Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere.

  9. Optimized measurement of radium-226 concentration in liquid samples with radon-222 emanation

    International Nuclear Information System (INIS)

    Perrier, Frédéric; Aupiais, Jean; Girault, Frédéric; Przylibski, Tadeusz A.; Bouquerel, Hélène

    2016-01-01

    Measuring radium-226 concentration in liquid samples using radon-222 emanation remains competitive with techniques such as liquid scintillation, alpha or mass spectrometry. Indeed, we show that high-precision can be obtained without air circulation, using an optimal air to liquid volume ratio and moderate heating. Cost-effective and efficient measurement of radon concentration is achieved by scintillation flasks and sufficiently long counting times for signal and background. More than 400 such measurements were performed, including 39 dilution experiments, a successful blind measurement of six reference test solutions, and more than 110 repeated measurements. Under optimal conditions, uncertainties reach 5% for an activity concentration of 100 mBq L"−"1 and 10% for 10 mBq L"−"1. While the theoretical detection limit predicted by Monte Carlo simulation is around 3 mBq L"−"1, a conservative experimental estimate is rather 5 mBq L"−"1, corresponding to 0.14 fg g"−"1. The method was applied to 47 natural waters, 51 commercial waters, and 17 wine samples, illustrating that it could be an option for liquids that cannot be easily measured by other methods. Counting of scintillation flasks can be done in remote locations in absence of electricity supply, using a solar panel. Thus, this portable method, which has demonstrated sufficient accuracy for numerous natural liquids, could be useful in geological and environmental problems, with the additional benefit that it can be applied in isolated locations and in circumstances when samples cannot be transported. - Highlights: • Radium-226 concentration measured with optimized accumulation in a container. • Radon-222 in air measured precisely with scintillation flasks and long countings. • Method tested by repetition tests, dilution experiments, and successful blind tests. • Estimated conservative detection limit without pre-concentration is 5 mBq L"−"1. • Method is portable, cost

  10. Application of nuclear track detectors for radon related measurments

    International Nuclear Information System (INIS)

    Abu-Jarad, F.A.

    1988-01-01

    The application of nuclear track detectors for radon related measurements is discussed. The ''Can Technique'', used for measuring radon emanation from building materials, walls and soil; the ''Working Level Monitor'', used for measuring short period working levels of radon daughters in houses; and ''Passive Radon Dosimeters'', used to measure radon levels in houses for long term (few months) periods are described. Application of nuclear track detectors for measuring the radon daughters plate-out on the surface of mixing fan blades and walls are discussed. The uranium content of some wall papers was found to be 6 ppm. The variation of radon progeny concentration in the same room was measured and supported by another study through Gas Chromatograph measurements. The independence of radon concentration on room level in high-rise buildings was established. The effect of sub-floor radon emanation on radon concentration in houses is dependent on whether there is sub-floor ventilation or not. (author)

  11. Observation of radon content in soil gas

    International Nuclear Information System (INIS)

    Mino, Kazuo; Nishimura, Susumu

    1979-01-01

    For earthquake prediction, precursory phenomena before the large earthquakes have been investigated in many countries. In China and some other places, they made a success of predictions of the large earthquakes by catching precursory phenomena. Variation of Radon content of underground gas and water is also one of those phenomena. In our country, the decrease of Radon content was observed several days before the large earthquake which occured near Izu Peninsula on January, 14, 1978. We also begin to observe variation of Radon content of underground gas. The purpose of our observation is a study on the Radon gas content before and after earthquakes. According to the results of the test investigation, the change of atmospheric pressure is mutually related with variation of Radon content in soil gas. Effect of atmospheric pressure is about one Eman, which is significant value comparison with the change, before the large earthquake, a few or several Emans. But, when correction of atmospheric pressure's effect was done, the change of Radon content maybe decrease 5/100 Emans. Above result tells the possibility of detecting the precursor of large earthquake, if Radon content change was over a few Emans. (author)

  12. Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran

    International Nuclear Information System (INIS)

    Bavarnegin, E.; Fathabadi, N.; Vahabi Moghaddam, M.; Vasheghani Farahani, M.; Moradi, M.; Babakhni, A.

    2013-01-01

    Radon exhalation rates from building materials used in high background radiation areas (HBRA) of Ramsar were measured using an active radon gas analyzer with an emanation container. Radon exhalation rates from these samples varied from below the lower detection limit up to 384 Bq.m −2 h −1 . The 226 Ra, 232 Th and 40 K contents were also measured using a high resolution HPGe gamma- ray spectrometer system. The activity concentration of 226 Ra, 232 Th and 40 K content varied from below the minimum detection limit up to 86,400 Bq kg −1 , 187 Bq kg −1 and 1350 Bq kg −1 , respectively. The linear correlation coefficient between radon exhalation rate and radium concentration was 0.90. The result of this survey shows that radon exhalation rate and radium content in some local stones used as basements are extremely high and these samples are main sources of indoor radon emanation as well as external gamma radiation from uranium series. -- Highlights: ► In the selection process of local samples, portable scintillometer (NaI) was used. ► The activity concentration of 226 Ra varied from below the MDL up to 86400 Bq kg −1 . ► The activity concentration of 232 Th varied from below the MDL up to 187 Bq kg −1 . ► The activity concentration of 40 K varied from below the MDL up to 1350 Bq kg −1

  13. Radon

    Energy Technology Data Exchange (ETDEWEB)

    Weigel, F [Muenchen Univ. (Germany, F.R.). Inst. fuer Anorganische Chemie

    1978-09-01

    The noble gas radon, formerly called emanation, was discovered a few years after radium. /sup 222/Rn, the longest-lived isotope, has a half-life of 3,82 days. This half life is so short that the experimental techniques available at present (1978) are not sufficient for a characterization of defined radon compounds, even though there are definite indications for the existence of such compounds, and one may expect such radon compounds to be even more stable than the numerous known xenon compounds. - The radon isotopes /sup 219/Rn (Actinon), /sup 220/Rn (Thoron), and /sup 222/Rn (Radon) occur in nature despite their rather short half-lives, because they are continously generated from their mothers /sup 223/Ra, /sup 224/Ra, and /sup 226/Ra, which are in secular equilibrium with long-lived isotopes /sup 235/U, /sup 238/U, and /sup 232/Th, and are in turn continously formed from these long-lived isotopes. Since the radon isotopes are gases, they enter the atmosphere and are carried for long distances with air currents. - Because radon is so short-lived, its practical applications are rather limited. For medical applications, small sealed glass tubes filled with radon are used as radiation sources after the radon has decayed, because the whole series of Po-, Bi-, and Pb-isotopes of the radium decay chain are formed, whose penetrating radiation is useful for therapy. When solids are spiked with Ra isotopes, radon is evolved at a constant rate. On heating such solids, phase transitions show up by sudden increased radon evolution (Hahn's emanation method). - On the basis of nuclear theoretical calculations, there is hardly a chance for the discovery of a long-lived radon species. Therefore, major progress in radon chemistry is hardly to be expected in the near future.

  14. Radon and Thoron emanation testwork on Nolans Rare Earths ores

    International Nuclear Information System (INIS)

    Sonter, Mark; Grose, Jeremy

    2016-01-01

    This paper reports on a series of experiments performed on two bulk ore samples for Arafura Resources' Nolans Rare Earths project, intended to derive information on radon (Rn222) and thoron (Rn220) emanation rates (fluxes) under various circumstances. This data is needed to enable development of predictions of Rn and Tn releases from exposed mine bench ore, ore stockpiles, and tailings, and thus assist in estimation of airborne concentrations within the areas of the future Mine and Processing plant. In turn these estimates will provide guidance on the quantitative risk and the necessity or otherwise of invoking specific control measures, either in design or in operating procedures. This testwork was carried out during the period 2nd to 15th July, at Arafura's Winnellie facility in Darwin. Conclusions are that for uncrushed ore, Rn flux numbers are around 1.0Bq/m"2/s, Tn numbers appear to cluster around 200-300 Bq/m"2/s. Crushing gave no change in Rn flux, Tn flux was doubled for calc-silicate material. Wetting gave significant reductions for both Rn and Tn for ores sampled, and clay capping reduced Rn flux marginally but Tn was reduced by a factor of 100.

  15. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    Science.gov (United States)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  16. Predicting radon flux from uranium mill tailings

    International Nuclear Information System (INIS)

    Freeman, H.D.; Hartley, J.N.

    1983-11-01

    Pacific Northwest Laboratory (PNL), under contract to the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) office, is developing technology for the design of radon barriers for uranium mill tailings piles. To properly design a radon cover for a particular tailings pile, the radon flux emanating from the bare tailings must be known. The tailings characteristics required to calculate the radon flux include radium-226 content, emanating power, bulk density, and radon diffusivity. This paper presents theoretical and practical aspects of estimating the radon flux from an uranium tailings pile. Results of field measurements to verify the calculation methodology are also discussed. 24 references, 4 figures, 4 tables

  17. Investigations of radon and radon daughters in surficial aquifers of florida

    International Nuclear Information System (INIS)

    1991-05-01

    The principal purpose of the investigation was to test the hypothesis that radon soil flux, considered the principal source of indoor radon contamination, has an underlying relationship to the radon content of associated shallow groundwaters. The working hypothesis was that radon build-up in both soil and shallow groundwater is basically a consequence of the same factor, radon emanation from soil grains and the solid surfaces of the aquifers. Groundwater may be advantageous as an indicator of radon potential. Another object of the project was to investigate temporal and spatial trends of radon daughter products in shallow aquifers. After analyzing all of the radon soil, flux, and groundwater measurements made over the two-year study period, it is clear that while there is no direct relationship between either radon soil concentration or flux and groundwater radon. Measurements in wells where polonium is present at very high concentrations have shown that 210Po is largely unsupported by its radioactive predecessor, and that polonium is considerably more variable, in both space and time than other parameters measured in the same wells, including radon

  18. Study of the radon released from open drill holes

    International Nuclear Information System (INIS)

    Pacer, J.C.

    1981-06-01

    The radon emanating from three open drill holes was measured at a site of known uranium mineralization in the Red Desert of south central Wyoming. The radon flux from the soil and drill holes was measured by the accumulator method with activated charcoal cartridges. The surface soil was found to release radon at an average rate of 0.41 atoms/cm 2 /sec; the radon emanating from the holes was more variable than that from the soil. The three holes studied released an average of 47 atoms/cm 2 /sec of radon. This average is equivalent to the radon released to the atmosphere by 14.5 ft 2 of soil. The data indicate that the radon emanated from an open drill hole is not as significant as other possible activities at a drill site (i.e. digging a trench or drilling a hole) or from household activities involving the usage of water

  19. Radon and its hazards

    International Nuclear Information System (INIS)

    Chang Guilan

    2002-01-01

    The author describes basic physical and chemical properties of radon and the emanation, introduces methods of radon measurement, expounds the hazards of non-mine radon accumulation to the health of human being and the protection, as well as the history how the human being recognizes the hazards of radon through the specific data and examples, and finally proposes protecting measures to avoid the hazards of radon to the health of human being, and to do ecologic evaluation of environments

  20. Radon screening for XENON1T

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Sebastian [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2015-07-01

    Radon with its isotope {sup 222}Rn is one of the dominant sources of internal background in liquid xenon detectors searching for low energetic rare events like WIMP-nucleon scattering. In my talk I briefly review the problem posed by {sup 222}Rn and motivate the screening strategy followed by XENON1T. I introduce the radon emanation technique making use of ultra low background proportional counters and present selected results obtained during the design and construction phases of XENON1T. Finally, I sketch advances in radon emanation assay techniques and give a short outlook on upcoming measurements.

  1. Certain problems about radon. Pt.1

    International Nuclear Information System (INIS)

    Wu Huishan

    2005-01-01

    Discussion has been made on certain pointed out problems which presently influence the work and development of radon survey, and certain specific problems have been put forward which should be paid much attention and taken measures. Among the problems, some come from cognition, i.e. two kinds of balance and examination about radon, chief culprit of radon's daughter, multiply control and migration, the significance of radon in the water and soil, important standards for designing and evaluating the sites of construction projects, thoughts on the mechanism of the harm of radon and its daughters, diseases causing of both high and low radon, difficulty of emanation of indoor radon, normal low radon from natural marble; and others must be resolved specifically, i.e. establishment of national radon standards as quickly as possible, improvement of on-the-spot examination technique, national-wide radon survey with multiple disciplines and technology, the research on the mechanism of radon's harm and the establishment national radon study center. (authors)

  2. Radon in geological medium

    Energy Technology Data Exchange (ETDEWEB)

    Hricko, J [GEOCOMPLEX, a.s., Bratislava (Slovakia)

    1996-12-31

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a{sub v} has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km{sup 2}. The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a{sub v} > 50 kBq/m{sup 3}). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs.

  3. Radon in geological medium

    International Nuclear Information System (INIS)

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  4. The carrying out of a radiometric analysis method applicable to Moroccan phosphates. Study of the uranium amounts, of the U/Ra equilibrium ratio and of 222-radon emanation rates

    International Nuclear Information System (INIS)

    Choukri, A.

    1987-01-01

    A radiometric analysis method for the determination of the uranium and the radium amounts in Moroccan phosphate has been carried out, using NaI(Tl) scintillator to detect gamma radiation of 238-U and 235-U radioactive daughters. The analysis results permit to calculate the U/Ra equilibrium ratio and the emanation rates of 222-Rn versus temperature. The U/Ra disequilibria permit to detect the secondary contribution of a recent uranium. The 222-Rn emanation rates are useful in the evaluation of the radiological hazards related to the phosphate radioactivity. This method was applied to study the phosphate Ganntour deposit and showed that the uranium content ranges from 25ppm to 350ppm, that the U/Ra ratio ranges from 0.6 to 2.2 with an exceptional value of 4.5. The emanation rate of natural radon is between 0% and 27%. The radon forced emanation by heating or by adding different acids has also been studied. The phosphate attack with H 2 SO 4 and HNO 3 , using the analysis method, showed that a maximum degassing appears at 0.9cc/g for H 2 SO 4 and 1.1cc/g for HNO 3 . By adding H 2 SO 4 , 30% of uranium (without radium) passed in the solution and by adding HNO 3 uranium and radium are divided among the solid and the liquid phases. 22 refs., 49 figs., 25 tabs. (author)

  5. Radioactive emanations in fumarole gases of a series of volcanoes in Kamchatka

    International Nuclear Information System (INIS)

    Adamchuk, Yu.V.; Firstov, P.P.

    1986-01-01

    The results of measurements of volume activity of emanations in fumarole gases of a series of acting volcanoes in Kamchatka during 1980-1983 are presented. The value of radon concentration in Avachinski volcano fumaroles equal ∼ 2 emanes did not change substantially as compared with the data for 1966. The highest activity (11.5±0.4 emanes) is registered in the Bezymyannyj volcano fumaroles. The emanation site survey of fumarole fields of the second cone of the Great fractured Tolbachinski eruption (GFTE) revealed the narrowly localized zone of radioactive emanation emissions. The radon emission in the above zone in 1981 constitutes (2.3 ± 0.4)x10 -6 Ci/s. Using this estimation, time (34-42 days) and average rate (2.5-3.0 m/h) of depth gases hoisting from magmatic focus are calculated as well as filtration rock characteristics in the narrowly localized near-mouth zone of the second cone of GCTE North outburst in the post eruptive period: permeability coefficient (0.1-4.3 darci), porosity (3-15 %) and mean value of cracks and pores opening (0.6-2.0)x10 -3 cm). The found characteristic values proved to be compared with parameters of crushing zone near epicenters of underground nuclear explosions

  6. Effects of barium chlorine treatment of uranium ore on 222Rn emanation and 226Ra leachability from mill tailings

    International Nuclear Information System (INIS)

    Ibrahim, S.A.; Church, S.L.; Whicker, F.W.

    1985-01-01

    The purpose of this laboratory study was to investigate the effectiveness of barium chloride treatment of uranium ore on 222 Rn emanation from mill tailings, 226 Ra level in waste-water, and the leachability of radium from tailings. It has been shown that barium sulfate is an excellent carrier for radium and that barium sulfate crystals have high retention capacity for radon gas produced by radium trapped within the lattice. Ground uranium ore from a mine in Wyoming was mixed with water to form a 1:1 ratio before barium and potassium chlorides were added at concentrations of 0, 10, 25, 50, and 100 mg per liter of slurry. The ore was then subjected to a simulated mill process using sulfuric acid leaching. The liquid representing tailings pond water was separated and analyzed for 226 Ra and the solid fraction, representing mill tailings, was tested for radon emanation and the leachability of radium by deionized water. This study suggests that barium treatment of uranium ore prior to sulfuric acid leaching could be effective in reducing radon emanation from tailings and also in reducing the 226 Ra concentration of waste-water. Leachability of radium from treated tailings was markedly reduced

  7. Uranium and radon surveys in western Himalaya

    International Nuclear Information System (INIS)

    Virk, H.S.

    1997-01-01

    The water samples from mountain springs, streams and river systems in the western Himalaya were collected and analysed in the laboratory for uranium and radon contents. It is observed that the Himalayan river system is conspicuous by its high dissolved uranium and radium concentration. The water samples contain from 0.89 ppb to 63.4 ppb of uranium and from 34 Bq/I to 364 Bq/I of radon. The radon emanation in soil is measured by the track-etch method, emanometry and alpha-logger technique. The daily and long-term variation of radon was monitored in some mineralized zones of Himachal Pradesh (HP) state with high uranium content in the soil. The maximum values of radon are recorded in Chhinjra, Rameda, Samurkala and Kasol areas of HP. (author)

  8. Radon exhalation rates from slate stone samples in Aravali Range in Haryana

    International Nuclear Information System (INIS)

    Upadhyay, S.B.; Kant, K.; Chakarvarti, S.K.

    2012-01-01

    The slate stone tiles are very popular in covering the walls of the rooms. Radon is released into ambient air from slate stones due to ubiquitous uranium and radium in them, thus increasing the airborne radon concentration. The radioactivity in slates stones is related to radioactivity in the rocks from which the slate stone tiles are formed. In the present investigation, the radon emanated from slate stone samples collected from different slate mines in Aravali range of hills in the Haryana state of Northern India has been estimated. For the measurement of radon concentration emanated from these samples, alpha-sensitive LR-115 type II plastic track detectors have been used. The alpha particles emitted from the radon form tracks in these detectors. After chemical etching the track density of registered tracks is used to calculate radon concentration and exhalation rates of radon using required formulae. The measurements indicate normal to some higher levels of radon concentration emanated from the slat stone samples collected from Aravali range of hills in north India. The results will be discussed in full paper. (author)

  9. Measurement of 222Rn flux, 222Rn emanation and 226Ra concentration from injection well pipe scale

    International Nuclear Information System (INIS)

    Rood, A.S.; Kendrick, D.T.

    1996-01-01

    The presence of Naturally Occurring Radioactive Material (NORM) has been recognized since the early 1930s in petroleum reservoirs and in oil and gas production and processing facilities. NORM was typically observed in barite scale that accumulated on the interior of oil production tubing and in storage tank and heater-treater separation sludge. Recent concern has been expressed over the health impacts from the uncontrolled release of NORM to the public. There are several potential exposure pathways to humans from oil-field NORM. Among these is inhalation of radon gas and its daughter products. For this exposure pathway to be of any significance, radon must first be released from the NORM matrix and diffuse in free air. The radon emanation fraction refers to the fraction of radon atoms produced by the decay of radium, that migrate from the bulk material as free gaseous atoms. The purpose of this investigation was to characterize the radon release rates from NORM-scale contaminated production tubing being stored above ground, characterize the radon emanation fraction of the bulk scale material when removed from the tubing, and characterize the radium concentrations of the scale. Accurate characterization of 222 Rn emanation fractions from pipe scale may dictate the type of disposal options available for this waste. Characterization of radon release from stored pipes will assist in determining if controls are needed for workers or members of the public downwind from the source. Due to the sensitive nature of this data, the location of this facility is not disclosed

  10. Development of a low-level radon reference chamber; Entwicklung einer Low-Level-Radon-Referenzkammer

    Energy Technology Data Exchange (ETDEWEB)

    Linzmaier, Diana

    2013-01-04

    The naturally occurring, radioactive noble gas radon-222 exists worldwide in different activity concentrations in the air. During the decay of radon-222, decay products are generated which are electrically charged and attach to aerosols in the air. Together with the aerosols, the radon is inhaled and exhaled by humans. While the radon is nearly completely exhaled, ca. 20 % of the inhaled aerosols remain in the lungs in one breath cycle. Due to ionizing radiation, in a chain of events, lung cancer might occur. Consequently, radon and its decay products are according to the current findings the second leading cause of lung cancer. At the workplace and in the home measurements of radon activity concentration are performed to determine the radiation exposition of humans. All measurement devices for the determination of radon activity concentration are calibrated above 1000 Bq/m{sup 3}, even though the mean value of the present investigation in Germany shows only 50 Bq/m{sup 3}. For the calibration of measurement devices in the range below 1000 Bq/m{sup 3} over a long time period, the generation of a stable reference atmosphere is presented in this work. Due to a long term calibration (t>5 days) of the measurement devices, smaller uncertainties result for the calibration factor. For the calibration procedure, a so-called low-level radon reference chamber was set up and started operation. The generation of a stable reference atmosphere is effected by means of emanation sources which consist of a radium-226 activity standard. On the basis of {gamma}-spectrometry, the effective emanation coefficient ofthe emanation sources is determined. The traceability of the activity concentration in the reference volume is realized via the activity ofthe radium-226, the emanation coefficient and the volume. With the emanation sources produced, stable reference atmospheres within the range of 150 Bq/m{sup 3} to 1900 Bq/m{sup 3} are achieved. For the realization, maintenance and

  11. Application of the can technique and radon gas analyzer for radon exhalation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I.; Musazay, M.S.; Abu-Jarad, F

    2003-12-01

    A passive 'can technique' and an active radon gas analyzer with an emanation container were applied for radon exhalation rate measurements from different construction materials, viz. five marble seven ceramic and 100 granite tiles used in Saudi Arabia. The marble and ceramic tiles did not show detectable radon exhalation using the active radon gas analyzer system. However the granite tiles showed relatively high radon exhalations, indicating a relatively high uranium content. A comparison of the radon exhalation rates measured by the two techniques showed a linear correlation coefficient of 0.57. The radon exhalation rates from the granites varied from 0.02 to 6.58 Bq m{sup -2} h{sup -1} with an average of 1.35{+-}1.40 Bq m{sup -2} h{sup -1}. The geometric mean and the geometric standard deviation of the frequency distribution were found to be 0.80 and 3.1, respectively. The track density found on the nuclear track detectors in the can technique exposed to the granites, having high exhalation rates, varied linearly with exposure time with a linear correlation coefficient of 0.99. This experimental finding agrees with the theoretical prediction. The can technique showed sensitivity to low radon exhalation rates from ceramic, marble and some granite over a period of 2 months, which were not detectable by the active radon gas analyzer system. The reproducibility of data with both measuring techniques was found to be within a 7% deviation.

  12. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  13. Systematic effects in radon mitigation by sump/pump remediation

    International Nuclear Information System (INIS)

    Groves-Kirkby, C.J.; Denman, A.R.; Groves-Kirkby, C.J.; Woolridge, A.C.; Woolridge, A.C.; Phillips, P.S.; Crockett, R.G.M.; Tornberg, R.

    2006-01-01

    Sump/Pump remediation is widely used in the United Kingdom to mitigate indoor radon gas levels in residential properties. To quantify the effectiveness of this technology, a study was made of radon concentration data from a set of 173 homes situated in radon Affected Areas in and around Northamptonshire, U.K., re-mediated using conventional sump/pump technology. This approach is characterised by a high incidence of satisfactory mitigation outcomes, with more than 75% of the sample exhibiting mitigation factors (defined as the ratio of radon concentrations following and prior to remediation) of 0.2 or better. There is evidence of a systematic trend, where houses with higher initial radon concentrations have higher mitigation factors, suggesting that the total indoor radon concentration within a dwelling can be represented by two components, one susceptible to mitigation by sump/pump remediation, the other remaining essentially unaffected by these remediation strategies. The first component can be identified with ground-radon emanating from the subsoil and bedrock geologies, percolating through the foundations of the dwelling as a component of the soil-gas, potentially capable of being attenuated by sump/pump or radon-barrier remediation. The second contribution is attributed to radon emanating from materials used in the construction of the dwelling, principally concrete and gypsum plaster-board, with a further small contribution from the natural background level, and is essentially unaffected by ground-level remediation strategies. Modelling of such a two-component radon dependency using realistic ground-radon attenuation factors in conjunction with typical structural-radon levels yields behaviour in good agreement with the observed inverse-power dependence of mitigation factor on initial radon concentration. (authors)

  14. Radon emanation over an orebody: search for long-distance transport of radon

    International Nuclear Information System (INIS)

    Fleischer, R.L.; Hart, H.R. Jr.; Mogro-Campero, A.

    1980-01-01

    Discovery of subsurface uranium ore could be facilitated by recognition of measurable concentrations of the radioactive gas 222 Rn near the surface of the earth. Integrated measurements made over several weeks' time show promise of giving greater reproducibility than short-term measurements, which are more subject to meteorological variability. Improved methods of integrated randon measurements-free of 220 Rn, thermal-track fading, and mositure-condensation effects-allow readings that generally are highly stable over time. Sixteen kilometers north of Thoreau, New Mexico, reading taken at 60-cm depth over a 13-month interval for 55 positions give different-but nearly constant-monthly readings at each position; the typical standard deviation was 22 percent. Superimposed on that stable pattern have been three periods during which spatially grouped radon readings increased by a factor of two or more over their normal values. The simplest tenable description of the increases is sporadic puffs of upflowing gas, originating from unknown depths. The measurements are consistent with an upward velocity of flow of about 10 -3 cm/s (centimeters per second). If this velocity is maintained to depth, it is still insufficient to transport detectable amounts of radon from the orebody at 90-m depth, but it would be sufficient to reveal ore at 50 m or less. Downhole measurements of permeability yield values generally too low for signals to be delivered from the orebody by any of the mechanisms already modeled

  15. Recalibration of the 226Ra emanation analysis system

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.; Markun, F.

    1982-01-01

    The 226 Ra emanation system was found to require recalibration. The gain of the various counting systems was established to about +-0.5%. The variance introduced into the analysis by multiple counting systems was low and corresponded to a fractional standard deviation of +-0.5%. The variance introduced into the analysis by both multiple counting systems and multiple counting chambers needs to be redetermined but is less than a fractional standard deviation of +-2%. The newly established calibration factor of 5.66 cpm/pg 226 Ra is about 6% greater than that used previously. The leakage of radon into the greased fittings of the emanation flask which was indicated in an earlier study was not confirmed

  16. From the beginning of radon therapy

    International Nuclear Information System (INIS)

    Schuettmann, W.

    1986-01-01

    The revival of the radon therapy in several countries since the end of the Second World War was the occasion for a review to the beginnings of this special form of radiotherapy. Initially the early history of radioactivity research is described which among others led to the detection of the emanation as a daughter product of radium. After this followed the evidence of the emanation as a constituent of the natural atmosphere. The establishment of its presence in spring-waters led to the knowledge that there are more than average concentrations of emanation in several mineral springs. In the second part of the article the therapeutic use of the natural radon springs initiated by this is described in its development and importance for Austria (Badgastein, St. Joachimsthal) and Germany (Bad Brambach) up to the beginning of the First World War. (author)

  17. The effect of humidity on the detection of radon

    International Nuclear Information System (INIS)

    Money, M.; Heaton, B.

    1976-01-01

    As part of the investigation into the performance of a radon monitoring system the effect of altering the humidity on the levels of radon detected by the system whilst attempting to keep other factors constant, has been investigated. The variations in the levels of radon detected in four experiments, as the humidity of the surrounding atmosphere was artificially raised, are shown graphically together with the variations in temperature and water vapour pressure, as calculated from the relative humidity and saturation vapour pressure. In each case a general rise and fall in radon detected follows a similar rise and fall in humidity, but temperature rise has only a small effect on the radon emanation rate. As the levels of humidity do not alter the rate of emanation it is assumed that the efficiency of collection is altered in some way. Mechanisms are discussed. (U.K.)

  18. A calibration facility for radon fluxmeter

    International Nuclear Information System (INIS)

    Li Xianjie; Qiu Shoukang; Zhou Jianliang; Liu Chunkui; Pan Jialin; Yang Mingli

    1998-01-01

    Calibration facilities for radon fluxmeter with three kinds of different emanation medium have been developed. The stability of radon flux is 5%, 9% (RSD) respectively. The uniformity of radon flux is 4.5%, 8.5% (RSD) respectively. These specifications fulfill the calibration requirement for radon fluxmeter. The determination of radon flux of facility takes full account of eliminating the main error source-attenuation effect (including leakage and back diffusion etc.): not only prevent attenuation and make a relevant correction. Therefore the accuracy of determination is assured. The calibration, intercomparison of radon flux meter and the quantitatively evaluation on the measurement method of radon flux are made to be possible by the successful establishment of this facility. (author)

  19. Radon and radon daughters in South African underground mines

    International Nuclear Information System (INIS)

    Rolle, R.

    1980-01-01

    Radon and the radon daughters are the radionuclides which primarily determine the level of the radiation hazard in underground uranium mines and to a smaller extent in non-uranium mines. Radon is a gas, and its daughters adsorb on aerosol particles which are of respirable size. The hazard thus arises from the alpha decay of radon and its daughters in contact with lung tissue. Radon is itself part of the uranium decay chain. The major radionuclide, 238 U, decays successively through thirteen shorter-lived radionuclides to 206 Pb. Radon is the only gaseous decay product at room temperature; the other twelve are solids. The main hazard presented by the uranium decay chain is normally determined by the radon concentration because gaseous transport can bring alpha emitters close to sensitive tissue. There is no such transport route for the other alpha emitters, and the level of beta and gamma radiation caused by the uranium decay chain generally presents a far lower external radiation hazard. Radon itself is the heaviest of the noble gases, which are He, Ne, Ar, Kr, Xe and Rn. Its chemical reactions are of no concern in regard to its potential hazard in mines as it may be considered inert. It does, however, have a solubility ten times higher than oxygen in water, and this can play a significant part in assisting the movement of the gas from the rock into airways. Radon continuously emanates into mine workings from uranium ores and from the uranium present at low concentrations in practically any rock. It has been found that the control of the exposure level is most effectively achieved by sound ventilation practices. In South African mines the standard of ventilation is generally high and exposure to radon and radon daughters is at acceptably low levels

  20. Techniques and principles for mapping of integrated radon emanation within the earth

    International Nuclear Information System (INIS)

    Fleischer, R.L; Mogro-Campero, A.

    1980-01-01

    Radon signals from within the ground are used in locating subsurface uranium deposits and are of potential use in sensing impending earthquakes. Several factors are documented that affect the reproducibility and reliability of radon measurements, and new methods are described that make current state-of-the-art radon measurements much improved over those obtainable in the past

  1. Transport properties and microstructure changes of talc characterized by emanation

    Czech Academy of Sciences Publication Activity Database

    Pérez-Maqueda, L. A.; Balek, Vladimír; Poyato, J.; Šubrt, Jan; Beneš, M.; Ramírez-Valle, V.; Buntseva, I.M.; Beckman, I. N.; Pérez-Rodríguez, J. L.

    2008-01-01

    Roč. 92, č. 1 (2008), s. 253-258 ISSN 1388-6150 R&D Projects: GA MŠk LC523 Grant - others:MST(ES) MAT 2005-04838 Institutional research plan: CEZ:AV0Z40320502 Keywords : DTA emanation thermal analysis * microstructure changes * radon diffusion Subject RIV: CA - Inorganic Chemistry Impact factor: 1.630, year: 2008

  2. White sand potentially suppresses radon emission from uranium tailings

    Science.gov (United States)

    Abdel Ghany, H. A.; El Aassy, Ibrahim E.; Ibrahim, Eman M.; Gamil, S. H.

    2018-03-01

    Uranium tailings represent a huge radioactive waste contaminant, where radon emanation is considered a major health hazard. Many trials have been conducted to minimize radon exhalation rate by using different covering materials. In the present work, three covering materials, commonly available in the local environment, (kaolin, white sand and bentonite) have been used with different thickness 10, 15, and 20 mm). 238U, 232Th, 40K and the radon exhalation rate were measured by using gamma spectrometry with a Hyper Pure Germanium (HPGe) detector and solid state nuclear track detectors (CR-39). Radon exhalation rate, calculated before and after covering, ranged from 2.80 ± 0.14 to 4.20 ± 0.21 Bq m-2 h-1, and from 0.30 ± 0.01 to 4.00 ± 0.20 Bq m-2 h-1, respectively. Also, the attenuation coefficients of different covering materials and radon emanation were calculated. The obtained results demonstrate that covering of uranium tailings by kaolin, white sand and bentonite has potentially minimized both the radon exhalation rate and the corresponding internal doses.

  3. Measurement of concentrations of radon and its daughters in indoor atmosphere using CR-39 nuclear track detector

    International Nuclear Information System (INIS)

    Khan, A.J.; Sharma, K.C.; Varshney, A.K.; Prasad, Rajendra; Tyagi, R.K.

    1988-01-01

    The concentrations of radon and its daughters in rooms having different environmental conditions are measured using CR-39 nuclear track detector. It has been found that the radon concentration inside the rooms depends on ventilation, sub-soil emanation and the housed materials. The use of internal wall coverings such as plaster, distemper and white washing may reduce the radon emanation inside the rooms. The use of paints on walls is the best for reducing the radon concentration inside the rooms. (author). 11 refs

  4. A study of radon 222 transfer indoors

    International Nuclear Information System (INIS)

    Maximilien, R.; Robe, M.C.; Archimbaud, M.

    1985-01-01

    Indoor exposure can vary considerably depending upon the natural environment (geology, climate), man-made arrangements (building materials, insulation and ventilation systems...) or way of living. In order to specify the sources and assess their respective contribution in a given dwelling, a good knowledge of radon transfer and dispersion processes is required as well as a heavy experimental device (continuous radon and ventilation monitoring...). The study must be limited to some cases selected by a systematic measurement program either because they are representative of dwelling conditions, or preferably on account of their high radon level, the origin of which will be investigated. As a consequence, countermeasures can be developed. A pilot study has been carried out on radon transport in two houses of the Rhone river valley. The two houses -selected among 131 other ones for their high radon levels- are built with the same architectural approach and located very close to each other, yet the factors accounting for domestic exposure are quite different. Indoor parameters are at the origin of various radon concentrations in the case of low natural ventilation; conversely, outdoor parameters only seem to act in the case of high ventilation. For a larger part, however, radon seems to emanate from under the foundations of both houses [fr

  5. Measurements of size distributions of radon progeny for improved quantification of the lung cancer risk emanating from exposure to radon decay products; Messungen der Groessenverteilungen von Radon-Folgeprodukten zur Verbesserung der Quantifizierung des durch Radonexposition verursachten Lungenkrebsrisikos

    Energy Technology Data Exchange (ETDEWEB)

    Haninger, T

    1998-12-31

    A major issue in radiation protection is to protect the population from the harmful effects of exposure to radon and radon progeny. Quantification of the lung cancer risk emanating from exposure to radon decay products in residential and working environments poses problems, as epidemiologic studies yield information deviating from the results obtained by the indirect method of assessment based on dosimetric respiratory tract models. One important task of the publication here was to characterize the various exposure conditions and to quantify uncertainties that may result from application of the ``dose conversion convention``. A special aerosol spectrometer was therefore designed and built in order to measure the size distributions of the short-lived radon decay products in the range between 0.5 nm and 10 000 nm. The aerosol spectrometer consists of a three-step diffusion battery with wire nets, an 11-step BERNER impactor, and a detector system with twelve large-surface proportional detectors. From the measured size distributions, dose conversion coefficients, E/P{sup eq}, were calculated using the PC software RADEP; the RADEP program was developed by BIRCHALL and JAMES and is based on the respiratory tract model of the ICRP. The E/P{sup eq} coefficients indicate the effective dose E per unit exposure P{sup eq} to radon decay products. (orig./CB) [Deutsch] Eines der groessten Probleme des Strahlenschutzes ist der Schutz der Bevoelkerung vor einer Strahlenexposition durch Radon und seine Folgeprodukte. Die Quantifizierung des Lungenkrebsrisikos, das durch Radonexpositionen in Wohnungen und an Arbeitsplaetzen verursacht wird, ist ein grosses Problem, weil epidemiologische Studien ein anderes Ergebnis liefern, als die indirekte Methode der Abschaetzung mit dosimetrischen Atemtrakt-Modellen. Eine wichtige Aufgabe der vorliegenden Arbeit war es, unterschiedliche Expositionsbedingungen zu charakterisieren und die Unsicherheiten zu quantifizieren, die sich aus der

  6. Measurements of size distributions of radon progeny for improved quantification of the lung cancer risk emanating from exposure to radon decay products; Messungen der Groessenverteilungen von Radon-Folgeprodukten zur Verbesserung der Quantifizierung des durch Radonexposition verursachten Lungenkrebsrisikos

    Energy Technology Data Exchange (ETDEWEB)

    Haninger, T.

    1997-12-31

    A major issue in radiation protection is to protect the population from the harmful effects of exposure to radon and radon progeny. Quantification of the lung cancer risk emanating from exposure to radon decay products in residential and working environments poses problems, as epidemiologic studies yield information deviating from the results obtained by the indirect method of assessment based on dosimetric respiratory tract models. One important task of the publication here was to characterize the various exposure conditions and to quantify uncertainties that may result from application of the ``dose conversion convention``. A special aerosol spectrometer was therefore designed and built in order to measure the size distributions of the short-lived radon decay products in the range between 0.5 nm and 10 000 nm. The aerosol spectrometer consists of a three-step diffusion battery with wire nets, an 11-step BERNER impactor, and a detector system with twelve large-surface proportional detectors. From the measured size distributions, dose conversion coefficients, E/P{sup eq}, were calculated using the PC software RADEP; the RADEP program was developed by BIRCHALL and JAMES and is based on the respiratory tract model of the ICRP. The E/P{sup eq} coefficients indicate the effective dose E per unit exposure P{sup eq} to radon decay products. (orig./CB) [Deutsch] Eines der groessten Probleme des Strahlenschutzes ist der Schutz der Bevoelkerung vor einer Strahlenexposition durch Radon und seine Folgeprodukte. Die Quantifizierung des Lungenkrebsrisikos, das durch Radonexpositionen in Wohnungen und an Arbeitsplaetzen verursacht wird, ist ein grosses Problem, weil epidemiologische Studien ein anderes Ergebnis liefern, als die indirekte Methode der Abschaetzung mit dosimetrischen Atemtrakt-Modellen. Eine wichtige Aufgabe der vorliegenden Arbeit war es, unterschiedliche Expositionsbedingungen zu charakterisieren und die Unsicherheiten zu quantifizieren, die sich aus der

  7. Variation of radon concentration in soil with different depth along the high background areas in Kerala

    International Nuclear Information System (INIS)

    Sonia, S.R.; Visnu Prasad, A.K.; Jojo, P.J.; Midhun, M.

    2016-01-01

    Radon is one of the naturally occurring radioactive gases in the environment produced from decay of radium isotopes, which are the decay product of 238 U, 232 Th and 235 U. Hence the concentration of uranium and thorium in the bed rock and soil materials determine the amount of radon produced in the soil. The radon produced in the soil migrates through the mechanism of diffusion and convection through pore spaces in the soil, fractures in the rock and along with weak zones such as shear faults, thrust etc. For some geological situations, radon migrates long distances from its place of origin and can be detected by alpha-particle recorders at the earth's surface. Concentration of radon in an area is governed by the radium content in the minerals, radon emanating power in the material, permeability of the soils and underlying rock, and moisture content in the soil

  8. Radon in service and industrial premises (rooms) of Tashkent

    International Nuclear Information System (INIS)

    Mirahmedova, N.M.; Akimov, V.A.; Mullagalieva, F.G.

    2004-01-01

    Full text: The radon map of the Tashkent is received in some approach on the basis of 800 surveyed inhabited and industrial premises, are designed average for one year radiating doze come on the average city dweller. Is paid attention to huge medical-biological danger natural and technogenesis of radon emanations, the question on acceptance of the special state program 'Radon' is put

  9. Probabilistic neural network algorithm for using radon emanations as an earthquake precursor

    International Nuclear Information System (INIS)

    Gupta, Dhawal; Shahani, D.T.

    2014-01-01

    The investigation throughout the world in past two decades provides evidence which indicate that significance variation of radon and other soil gases occur in association with major geophysical events such as earthquake. The traditional statistical algorithm includes regression to remove the effect of the meteorological parameters from the raw radon and anomalies are calculated either taking the periodicity in seasonal variations or periodicity computed using Fast Fourier Transform. In case of neural networks the regression step is avoided. A neural network model can be found which can learn the behavior of radon with respect to meteorological parameter in order that changing emission patterns may be adapted to by the model on its own. The output of this neural model is the estimated radon values. This estimated radon value is used to decide whether anomalous behavior of radon has occurred and a valid precursor may be identified. The neural network model developed using Radial Basis function network gave a prediction rate of 87.7%. The same was accompanied by huge false alarms. The present paper deals with improved neural network algorithm using Probabilistic Neural Networks that requires neither an explicit step of regression nor use of any specific period. This neural network model reduces the false alarms to zero and gave same prediction rate as RBF networks. (author)

  10. RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY

    Science.gov (United States)

    The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...

  11. Radon as a groundwater tracer in Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Grolander, Sara

    2009-10-15

    caused by the homogenous radon concentrations measured in the Laxemar area. The radon concentrations in near surface water measured in Forsmark showed large variability with both low and high radon concentrations. This large variability in radon concentration could not be explained by the flow pattern of the groundwater since no clear correlation between radon concentration and recharge/discharge classification was found. The radon concentration was also measured at different depths in the soil profile at three locations in the Forsmark area. The results showed large differences with increasing radon concentration with increasing depth. This gradient of radon concentration can be explained largely by the radon emanation potential of the local soil type at different depths. High radon concentrations were found in wells with higher radon emanation potential like till and bedrock. These observations showed the importance of the radon emanation potential of the local soil for the radon concentration in groundwater. The main purpose of this study has been to evaluate the use of radon as a tracer for groundwater flow patterns. The method is based on the ingrowth of radon from its progenitor radium according to the law of radioactive decay. According to this law the radon concentration in groundwater will reach equilibrium conditions after approximately 30 days in contact with the surrounding soil. The equilibrium radon concentration of the near surface groundwater was measured at several location in the Forsmark area and a range of the steady state radon concentration was calculated. The measured steady state radon concentration was then used to evaluate the radon concentrations measured in near surface groundwater in the area. A recharge/discharge classification of the wells was done based on the range of steady state radon concentration and the measured radon concentrations in groundwater. All wells with radon concentration below the steady state radon concentration were

  12. A study of the physico-chemical characteristics of a solid radon 222 source

    International Nuclear Information System (INIS)

    Chuiton, G.

    1990-01-01

    A solid radon 222 source is described; it is made of a manganese oxide impregnated acrylic felt disc on which radium 226 is fixed. The disc is incorporated into a scanning device allowing the passage through the felt of a radon 222 free gas (air or nitrogen) previously led to a relative humidity of air near to saturation. At the device outlet, a stable activity of radon 222 is obtained. The preparation, characteristics and radiochemical stability conditions of the 226 radium source are presented. Following a description of the scanning device, the radon 222 emanation coefficient is studied as a function of the relative humidity of air. The reliability of the device is assessed by an uncertainty calculation for the utilisation conditions recommended. Finally, an approach to the physico-chemical processes governing radon 222 emanation rate in the device is set forth [fr

  13. Radon exhalation and radiometric prospecting on rocks associated with Cu-U mineralizations in the Singhbhum shear zone, Bihar

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, D.; Kumar, Rajeev; Singh, A.K.; Prasad, Rajendra E-mail: aptolrp@amu.up.nic.in

    2001-11-01

    The Singhbhum thrust belt is a 200 km long arcuate orogenic belt in Bihar, eastern India. The huge mineral resources, viz. copper, uranium, magnetite, apatite and molybdenite, etc., make it significant from an economic as well as a geological point of view. The belt hosts three types of mineralization: sulphides of copper and other metals, uranium oxides and apatite-magnetite. Several distinct geological episodes are responsible for the evolution of mineralization and the thrust zone itself. Extensive and reliable radiometric prospecting and assaying have been carried out by us for the past 5 years from Dhobani in the east to Turamdih in the west of the Singhbhum shear zone. The present work indicates uranium mineralization in the Pathargora-Rakha area presently being mined for copper and also within areas in the vicinity of Bhatin. Studies on radon emanation have also been undertaken in some parts of the shear zone which indicate reasonably high radon emanation of the soils and rocks studied. This suggests the need for regular monitoring and suitable controls on the mine environment (air quality) and its vicinity. Radon emanation studies coupled with gamma-ray spectrometry and the subsequent modelling of the radiometric and radon measurements will help in the application of radon as a geophysical tracer in exploration of radioactive ore bodies and in radon risk assessment as well as in delineating active and passive faults and even in petroleum exploration.

  14. Radon in the water from drilled wells. Results from an investigation in Oerebro; Radon i vatten fraan bergborrade brunnar. Resultat fraan en undersoekning i oerebro kommun

    Energy Technology Data Exchange (ETDEWEB)

    Liden, E.; Andersson, Lennart [Regionsjukhuset, Oerebro (Sweden). Yrkes- och miljoemedicinska kliniken; Linden, A. [Svensk Geofysik AB, Falun (Sweden); Aakerblom, G. [Statens Straalskyddsinstitut, Stockholm (Sweden); Aakesson, T. [Miljoe- och haelsoskyddsfoervaltningen, Oerebro (Sweden)

    1995-09-01

    In 1991 a drilled well containing water with a radon count of about 20,000 Bq/l was found in the city of Oerebro in southern Sweden. A study was started to develop measures to decrease the radon content of water, investigate public health risks and determine the prevalence of high-radon waters in Sweden. 1991-94 various techniques were tested to reduce the concentration of radon in water. The efficiency of aerating high-radon drinking water was studied under field conditions using two modified aerators in a well, in a pressure tank, and in a column of pellets. The efficiency varied from 20 to 99%. A survey of radon in water from 269 drilled wells was conducted in the Municipality of Oerebro. In water from 78 wells, the mean concentration of radon was 1336 Bq/l. The emanation of radon during normal household activities was studied in a home supplied with water from a drilled well whose radon count was approx 20,000 Bq/l. A geological investigation revealed the presence of thin Uranium-loaded fissures in the bedrock (granite) surrounding the well. 130 refs, 16 figs, 14 tabs.

  15. Comparative Measurements of Radon Concentration in Soil Using Passive and Active Methods in High Level Natural Radiation Area (HLNRA of Ramsar

    Directory of Open Access Journals (Sweden)

    Amanat B

    2013-12-01

    Full Text Available Background: Radon and its daughters are amongst the most important sources of natural exposure in the world. Soil is one of the signifcant sources of radon/thoron due to both radium and thorium so that the emanated thoron from it may cause in creased uncertainties in radon measurements. Recently, a diffusion chamber has been designed and optimized for passive discriminative measurements of radon/thoron concentrations in soil. Objective: In order to evaluate the capability of the passive method, some com parative measurements (with active methods have been performed. Method: The method is based upon measurements by a diffusion chamber, includ ing two Lexan polycarbonate SSNTDs, which can discriminate the emanated radon/ thorn from the soil by delay method. The comparative measurements have been done in ten selected points of HLNRA of Ramsar in Iran. The linear regression and cor relation between the results of two methods have been studied. Results: The results show that the radon concentrations are within the range of 12.1 to 165 kBq/m3 values. The correlation between the results of active and passive methods was measured by 0.99 value. As well, the thoron concentrations have been measured between 1.9 to 29.5 kBq/m3 values at the points. Conclusion: The sensitivity as well as the strong correlation with active mea surements shows that the new low-cost passive method is appropriate for accurate seasonal measurements of radon and thoron concentration in soil.

  16. Radon hazard map in Bas-Rhin, final report

    International Nuclear Information System (INIS)

    2010-01-01

    After a presentation of radon (geochemical properties, origin, emanation and transfer to surface, related health hazard, exposure factor, modalities for the struggle against radon), of the study context, framework and objective, and of the Bas-Rhin geological context, this report presents the exploited data: definition of the geological uranium potential, direct measurements and geochemical analysis, indicators (lithologic characterization, surface radioactivity, drifting alluvial deposits), factors promoting inhalation, measurements in buildings. It presents and comments maps of the radon geological potential and of radon hazard. It proposes an assessment of radon potential hazard for different areas of the district, and reports measurements performed in Strasbourg, Eckbolsheim, Bischeim and Haguenau

  17. Radon assay for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Rumleskie, Janet [Laurentian University, Greater Sudbury, Ontario (Canada)

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  18. Multiphase radon generation and transport in porous materials

    International Nuclear Information System (INIS)

    Rogers, V.C.; Nielson, K.K.

    1991-01-01

    Radon generation and transport in porous materials involve solid, liquid, and gas phases in the processes of emanation, diffusion, advection, absorption, and adsorption. Oversimplifications, such as representing moist soil systems by air-phase emanation and transport models, cause theoretical inconsistencies and biases in resulting calculations. Detailed Rn rate balance equations for solid, liquid, and gas phases were analyzed and combined using phase equilibrium constants to derive a single diffusive-advective rate balance equation in the traditional form. The emanation, diffusion, and permeability coefficients in the new equation have expanded definitions and interpretations to include Rn phase transfer. Radon adsorption was characterized by an exponential moisture dependence, and diffusion and permeability constants utilized previous moisture relationships. Correct boundary and interface conditions were defined, and the unified theoretical approach was applied to field data from a diffusion-dominated system and to laboratory data from an advection-dominated system. Measured 222 Rn fluxes and concentrations validated the modeled values within the measurement variability in both applications

  19. Radon levels reduced through venting of house foundations

    International Nuclear Information System (INIS)

    Sivborg, P.; Johansson, I.; Strindehag, O.

    1981-01-01

    It has been confirmed that the radon emanation from the ground poses a more importent radiation hazard than the radon contained in the building material. In this article a simple system for ventilation of the gases produced under the foundation of a small houses is described. This ventilation system reduced the radondaughters concentration in a house by a factor of ten. (L.E.)

  20. Radon measurements in underground and ground constructions in Tashkent city

    International Nuclear Information System (INIS)

    Akimov, V.A.; Yafasov, A.Y.; Vasidov, A.; En, Z.; Tillaev, T.; Tsipin, V.Z.

    2002-01-01

    magnitude 8.5 earthquake in 1966. Taken as a whole, not high concentration level of radon in the subway stations and related underground offices suggest that rocks and ores along which the railway and stations are located, and also construction materials used, are of low radioactivity. The radon concentration level in dwellings was evaluated by long term passive measurements using a cup detector sampler with a filtered end. After putting the detector, the open end was closed by a paper filter in order to prevent the detector from dust and other solid particulates and also from the radon progeny plate-out effect on the detector surface. Thus, the device detects only alphas from a radon gas and those daughters, which are produced inside the cup. The detector samplers were suspended on a ceiling on the distance of ∼200 cm from the floor. The detectors were exposed for 15-30 days. After exposition, the plastics were chemically etched in the 6N NaOH solution at 70 degrees centigrade, for 6 hours. We have measured concentration of radon in air of apartments and offices of reinforced concrete multi story buildings, two- and three-story buildings built with combined slag and burnt bricks and also in detached one-story houses built with unburnt bricks and clay. In multi story buildings the radon level was in the range of 16-97 Bq/m 3 , and average radon accumulation was practically independent of floor level, except for first floor, were radon level was higher due to its permeation from basement. In multi story buildings, radon comes mostly from construction materials. Emanation of radon from the ground depends on many factors, among them presence of uranium and radium in rock and ore constituents, soil porosity, availability of cracks and cavities in subsoil, tectonic activity of the region and others. To study season effect on radon level in air of dwellings and offices, the radon measurements were made in winter and summer periods in the same apartments and detached houses

  1. Radon exhalation rates from soil and sand samples collected from the vicinity of Yamuna river

    International Nuclear Information System (INIS)

    Garg, A.K.; Sushil Kumar; Chauhan, Pooja; Chauhan, R.P.

    2011-01-01

    Soil, sand and stones are the most popular building materials for Indian dwellings. Radon is released into ambient air from these materials due to ubiquitous uranium and radium in them, thus increasing the airborne radon concentration. The radioactivity in sand and soils is related to radioactivity in the rocks from which they are formed. These materials contain varying amount of uranium. In the present investigation, the radon emanated from soil and sand samples from different locations in the vicinity of Yamuna river has been estimated. The samples have been collected from different locations near the Yamuna river. The samples collecting sites are from Yamunanagar in Haryana to Delhi. The radon concentration in different samples has been calculated, based upon the data, the mass and the surface exhalation rates of radon emanated from them have also been calculated

  2. Radon as a groundwater tracer in Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Grolander, Sara

    2009-10-01

    caused by the homogenous radon concentrations measured in the Laxemar area. The radon concentrations in near surface water measured in Forsmark showed large variability with both low and high radon concentrations. This large variability in radon concentration could not be explained by the flow pattern of the groundwater since no clear correlation between radon concentration and recharge/discharge classification was found. The radon concentration was also measured at different depths in the soil profile at three locations in the Forsmark area. The results showed large differences with increasing radon concentration with increasing depth. This gradient of radon concentration can be explained largely by the radon emanation potential of the local soil type at different depths. High radon concentrations were found in wells with higher radon emanation potential like till and bedrock. These observations showed the importance of the radon emanation potential of the local soil for the radon concentration in groundwater. The main purpose of this study has been to evaluate the use of radon as a tracer for groundwater flow patterns. The method is based on the ingrowth of radon from its progenitor radium according to the law of radioactive decay. According to this law the radon concentration in groundwater will reach equilibrium conditions after approximately 30 days in contact with the surrounding soil. The equilibrium radon concentration of the near surface groundwater was measured at several location in the Forsmark area and a range of the steady state radon concentration was calculated. The measured steady state radon concentration was then used to evaluate the radon concentrations measured in near surface groundwater in the area. A recharge/discharge classification of the wells was done based on the range of steady state radon concentration and the measured radon concentrations in groundwater. All wells with radon concentration below the steady state radon concentration were

  3. Radon 226 and natural Uranium in potable waters to the Argentina Republic

    International Nuclear Information System (INIS)

    Bomben, A.M.; Palacios, M.A.

    1998-01-01

    157 samples were analyzed in the Buenos Aires City. Gathered in the domiciliary distribution net and private wells. The radon 226 concentration to determines for the radon 226 emanation technique and liquid scintilligraphy. The natural uranium concentration one carries out for fluorimetric methods

  4. Dry radon gas generator

    International Nuclear Information System (INIS)

    Vandrish, G.

    1979-10-01

    A radon gas standard with a source strength of 120037 pCi capable of delivering 121 pCi of radon gas successively to a large number of cells has been developed. The absolute source strength has been calibrated against two radium solution standards and is accurate to 4 percent. A large number of cells (approxiiately 50) may be calibrated conveniently on a daily basis with appropriate corrections for sequential changes in the amount of gas delivered, and a correction for the growth of radon in the standard on successive days. Daily calibration of ten cells or less does not require these corrections. The standard is suitable for field use and the source emanation rate is stable over extreme temperatue and pressure ranges and over six months

  5. A study on the radon concentrations in water in Jeddah (Saudi Arabia) and the associated health effects

    International Nuclear Information System (INIS)

    Tayyeb, Z.A.; Kinsara, A.R.; Farid, S.M.

    1998-01-01

    Several studies have shown that water-borne 222 Rn contributes to indoor air concentrations. A passive radon measurement method was employed to determine radon activity concentrations in the water of Jeddah city (Saudi Arabia). Tap water, flushing water and drinking water, including natural mineral water, artificial mineral water and distilled water, have been investigated for their radon concentrations. It is observed that the radon concentration in natural mineral water samples is the highest and that in flush water, it is the lowest. From these measurements, the corresponding annual effective dose for the stomach and the lung are determined. It is found that the annual effective dose resulting from direct consumption of water is far greater than that due to inhalation of radon emanated from tap water and flushing water. Moreover, it is also seen that the annual effective dose resulting from inhalation of radon emanated from tap water and flushing water is negligible compared to the total annual effective dose for indoor radon in Jeddah. (author)

  6. Analysis of radon protection cover on uranium tailings pile

    International Nuclear Information System (INIS)

    Zhang Zhe

    1993-01-01

    The average radon emanation rate of the whole surface over one year was used for evaluating the radon release of uranium tailings pile. The effective of radon protection cover depends on the shape and property of the tailings pile, the properties of covering and the control of air vadose in the pile. It was indicated that the covering with low diffusion coefficient, small porosity and bad permeability was suitable to cover the pile. The analytical formula of the covering layer thickness was given

  7. Pumping time required to obtain tube well water samples with aquifer characteristic radon concentrations

    International Nuclear Information System (INIS)

    Ricardo, Carla Pereira; Oliveira, Arno Heeren de

    2011-01-01

    Radon is an inert noble gas, which comes from the natural radioactive decay of uranium and thorium in soil, rock and water. Radon isotopes emanated from radium-bearing grains of a rock or soil are released into the pore space. Radon that reaches the pore space is partitioned between the gaseous and aqueous phases. Thus, the groundwater presents a radon signature from the rock that is characteristic of the aquifer. The characteristic radon concentration of an aquifer, which is mainly related to the emanation, is also influenced by the degree of subsurface degassing, especially in the vicinity of a tube well, where the radon concentration is strongly reduced. Looking for the required pumping time to take a tube well water sample that presents the characteristic radon concentration of the aquifer, an experiment was conducted in an 80 m deep tube well. In this experiment, after twenty-four hours without extraction, water samples were collected periodically, about ten minutes intervals, during two hours of pumping time. The radon concentrations of the samples were determined by using the RAD7 Electronic Radon Detector from Durridge Company, a solid state alpha spectrometric detector. It was realized that the necessary time to reach the maximum radon concentration, that means the characteristic radon concentration of the aquifer, is about sixty minutes. (author)

  8. Radon Mapping of the Osijek Town

    International Nuclear Information System (INIS)

    Radolic, V.; Faj, Z.; Smit, G.; Culo, D.; Planinic, J.

    1998-01-01

    After ten years investigation of radon seasonal variations at three very different locations, as well as radon concentration measurements in kindergartens and schools, systematical indoor radon measurements were undertaken in dwellings of Osijek. Indoor radon was measured by means of the LR-115 nuclear track detector at 48 town locations that gave the arithmetic mean of 71.6 Bq m -3 , standard deviation of 44.0 Bq m -3 and geometric mean of 60.1 Bq m -3 , for the radon concentration range from 23 to 186 Bq m -3 . The empirical frequency distribution of radon concentrations, with the class width of 20 Bq m -3 , was in accordance with the theoretical log-normal distribution which was shown with χ 2 - test. The radon map pointed out a region of higher radon concentrations (central part of the town) that was ascribed to the geological soil structure. Thus supposition was confirmed by radon measurement in the soil gas using radon emanators with the LR-115 film that showed the positive correlation between radon concentrations in the soil and indoors. Radon measurements in Osijeks primary schools pointed out a school that had the highest radon concentration (300 Bq m -3 ) considering all the former indoor radon measurements. The radon distribution in the school building was investigated afterwards radon mitigation procedures were undertaken. (author)

  9. Uranium distribution and radon exhalation from Brazilian dimension stones

    International Nuclear Information System (INIS)

    Amaral, P.G.Q.; Galembeck, T.M.B.; Bonotto, D.M.; Artur, A.C.

    2012-01-01

    This paper provides evaluations of the radiometric behavior and exhalation patterns of radon gas in decorative and dimension stones explored in the Brazilian states of Minas Gerais and Espírito Santo, given the importance of determining radon gas concentrations in human-inhabited environments. A total of 10 silicate rock types were studied, featuring different petrographic/petrophysical characteristics given by seven magmatic rocks (three of which are granitic pegmatites) and three metamorphic rocks. The study, comprising radiometric data of U and monitoring of 222 Rn gas exhalation, shows a strong correlation between petrographic parameters and the physical properties of rocks. U levels ranged between 2.9 and 37 ppm, revealing a good coherence between the presence and the absence of radioactive element-bearing accessory minerals for each rock type. The rate of radon exhalation from the stones is related to the petrographic/petrophysical features of each material. By comparing the 222 Rn level generated by a rock to the amount effectively emanated by it, the rate of emanated gas proves to be insignificant; also, a rock that produces more Rn will not always emanate more. Simulations performed to estimate the radon levels inside residences or any given indoor environment showed that nine samples attained values below the 4 pCi/L EPA limit, whereas one was above that limit. - Highlights: ► Integration of distinct radiometric data acquired in dimension stones. ► Dimension stones are extensively commercialized abroad. ► Rn exhalation above the EPA threshold limit of 4 pCi/L.

  10. Uranium distribution and radon exhalation from Brazilian dimension stones

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, P.G.Q.; Galembeck, T.M.B. [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Bonotto, D.M., E-mail: danielbonotto@yahoo.com.br [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil); Artur, A.C. [Departamento de Petrologia e Metalogenia, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista (UNESP), Av. 24-A No. 1515, C.P. 178, CEP 13506-900, Rio Claro, Sao Paulo (Brazil)

    2012-04-15

    This paper provides evaluations of the radiometric behavior and exhalation patterns of radon gas in decorative and dimension stones explored in the Brazilian states of Minas Gerais and Espirito Santo, given the importance of determining radon gas concentrations in human-inhabited environments. A total of 10 silicate rock types were studied, featuring different petrographic/petrophysical characteristics given by seven magmatic rocks (three of which are granitic pegmatites) and three metamorphic rocks. The study, comprising radiometric data of U and monitoring of {sup 222}Rn gas exhalation, shows a strong correlation between petrographic parameters and the physical properties of rocks. U levels ranged between 2.9 and 37 ppm, revealing a good coherence between the presence and the absence of radioactive element-bearing accessory minerals for each rock type. The rate of radon exhalation from the stones is related to the petrographic/petrophysical features of each material. By comparing the {sup 222}Rn level generated by a rock to the amount effectively emanated by it, the rate of emanated gas proves to be insignificant; also, a rock that produces more Rn will not always emanate more. Simulations performed to estimate the radon levels inside residences or any given indoor environment showed that nine samples attained values below the 4 pCi/L EPA limit, whereas one was above that limit. - Highlights: Black-Right-Pointing-Pointer Integration of distinct radiometric data acquired in dimension stones. Black-Right-Pointing-Pointer Dimension stones are extensively commercialized abroad. Black-Right-Pointing-Pointer Rn exhalation above the EPA threshold limit of 4 pCi/L.

  11. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences

    International Nuclear Information System (INIS)

    Kamra, Leena

    2015-01-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10 m in a 68 m deep borehole. The analysis of long time series for 2006–2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=−0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. - Highlights: • Seasonal variability of radon in borehole. • Influence of atmospheric temperature and pressure on radon variability. • Partial correlation coefficient.

  12. Study of the effects of atmospheric parameters on ground radon concentration by track technique

    International Nuclear Information System (INIS)

    Tidjani, Adams

    1988-01-01

    Radon emanation was continuously monitored for 24 months, accompanied by measurements of atmospheric parameters. Integrated measurments of radon concentrations have been performed with LR-115 cellulose nitrate track detectors. The monitoring was conducted at 16 sites distributed around the Dakar University area. Observed changes in radon concentration are interpreted as being caused by changes in meteorological conditions and ocean tides. (author)

  13. Sources and protective measures of indoor radon

    International Nuclear Information System (INIS)

    Gou Quanlu; Wang Hengde

    1993-01-01

    This paper presents the relative contribution to indoor radon 222 Rn of various sources in twenty three rooms of three kinds in Taiyuan area. The results show that the major sources in this area are radon emanation from surfaces of soil and building materials and that from outdoor air, while the contribution of water and gas consumed in the rooms is less important. These results suggest a basis for taking suitable protective measures against indoor radon. Some materials are also recommended which are effective in restraining radon exhalation and low in price, by testing more than ten kinds of materials and comparing them using cost-effectiveness analysis technique, such as painting materials, polyvinyl alcohol (CH 2 :CHOH)n, etc. Their sealing effects on radon exhalation were examined with home-made REM-89 Radon Exhalation Monitor. The deposition effects of negative ion generator and humidifier on radon progeny were also tested. The maximum deposition may reach 70-90%, which proves they are also effective and economical in radon protection. (2 tabs., 3 figs.)

  14. Spatial radon anomalies on active faults in California

    International Nuclear Information System (INIS)

    King, C.-Y.; King, B.-S.; Evans, W.C.; Wei Zhang

    1996-01-01

    Radon emanation has been observed to be anomalously high along active faults in many parts of the world. We tested this relationship by conducting and repeating soil-air radon surveys with a portable radon meter across several faults in California. The results confirm the existence of fault-associated radon anomalies, which show characteristic features that may be related to fault structures but vary in time due to other environmental changes, such as rainfall. Across two creeping faults in San Juan Bautista and Hollister, the radon anomalies showed prominent double peaks straddling the fault-gouge zone during dry summers, but the peak-to-background ratios diminished after significant rain fall during winter. Across a locked segment of the San Andreas fault near Olema, the anomaly has a single peak located several meters southwest of the slip zone associated with the 1906 San Francisco earthquake. Across two fault segments that ruptured during the magnitude 7.5 Landers earthquake in 1992, anomalously high radon concentration was found in the fractures three weeks after the earthquake. We attribute the fault-related anomalies to a slow vertical gas flow in or near the fault zones. Radon generated locally in subsurface soil has a concentration profile that increases three orders of magnitude from the surface to a depth of several meters; thus an upward flow that brings up deeper and radon-richer soil air to the detection level can cause a significantly higher concentration reading. This explanation is consistent with concentrations of carbon dioxide and oxygen, measured in soil-air samples collected during one of the surveys. (Author)

  15. Activity measurements of radon from construction materials.

    Science.gov (United States)

    Fior, L; Nicolosi Corrêa, J; Paschuk, S A; Denyak, V V; Schelin, H R; Soreanu Pecequilo, B R; Kappke, J

    2012-07-01

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60×60×60 cm3 were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of 226Ra, 232Th and 40K. The values for the index of the activity concentration (I), radium equivalent activity (Raeq), and external hazard index (Hext) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Radon anomalies along faults in North of Jordan

    International Nuclear Information System (INIS)

    Al-Tamimi, M.H.; Abumurad, K.M.

    2001-01-01

    Radon emanation was sampled in five locations in a limestone quarry area using SSNTDs CR-39. Radon levels in the soil air at four different well-known traceable fault planes were measured along a traverse line perpendicular to each of these faults. Radon levels at the fault were higher by a factor of 3-10 than away from the faults. However, some sites have broader shoulders than the others. The method was applied along a fifth inferred fault zone. The results show anomalous radon level in the sampled station near the fault zone, which gave a radon value higher by three times than background. This study draws its importance from the fact that in Jordan many cities and villages have been established over an intensive faulted land. Also, our study has considerable implications for the future radon mapping. Moreover, radon gas is proved to be a good tool for fault zones detection

  17. Excess bottom radon 222 distribution in deep ocean passages

    International Nuclear Information System (INIS)

    Sarmiento, J.L.; Broecker, W.S.; Biscaye, P.E.

    1978-01-01

    Radon 222 and STD profiles were obtained as part of the Geosecs program in the Vema Channel in the southwest Atlantic Ocean and in the Samoan, Clarion, and Wake Island passages in the Pacific Ocean. The standing crop of excess radon 222 is higher in the passages than at other nearby locations. The most likely explanation for this is that there is a high flux of radon 222 from the floor of the passages. Since much of the floor is covered with manganese nodules and encrustations, the high flux of radon 222 may be attributable to the high concentrations of radium 226 in the outer few millimeters of such deposits. Laboratory measurements of radon 222 emissivity from maganese encrustations obtained in Vema Channel support this hypothesis. The excess radon 222 in the Vema Channel and Wake Island Passage is found in substantial quantities at heights above bottom greatly exceeding the heights at which excess radon 222 is found in nonpassage areas. The horizontal diffusion of radon emanating from the walls of the passages is unlikely to be the cause of the observed concentrations because the ratio of wall surface area to water volume is very low. The profiles must therefore be a result of exceptionally high apparent vertical mixing in the passages. Further work is needed to determine the nature of this apparent vertical mixing. The excess radon 222 and STD data in all four passages have been fit with an empirical model in which it is assumed that the bouyancy flux is constant with distance above bottom. The fits are very good and yield apparent buoyancy fluxes that are between 1 and 3 orders of magnitude greater than those obtained at nearby stations outside the passages for three of the four passages

  18. Natural radioactivity and radon specific exhalation rate of zircon sands

    International Nuclear Information System (INIS)

    Righi, S.; Verita, S.; Bruzzi, L.; Albertazzi, A.

    2006-01-01

    The study focuses on the radon emanation from zircon sands and their derivatives, which are widely used in many sectors of industry. In particular, the results obtained by experimental measurements on samples of zircon sands and zircon flours commonly used in Italian ceramic industries are reported. Zircon sands contain a significant concentration of natural radioactivity because Th and U may substitute zirconium in the zircon crystal lattice. The relevant routes of exposure of workers to T.E.N.O.R.M. from zircon materials are external radiation and internal exposure, either by inhalation of aerosols in dusty working conditions or by inhalation of radon in workplaces. The main objective of this investigation is to provide experimental data able to better calculate the internal exposure of workers due to radon inhalation. Zircon samples were surveyed for natural radioactivity, radon specific exhalation rate and emanation fraction. Measurements of radioactivity concentration were carried out using γ-spectrometry. Methods used for determining radon consisted in determining the 222 Rn activity accumulated in a vessel after a given accumulation build-up time. The average activity concentrations of 238 U and 232 Th in samples result about 2600 and 550 Bq kg-1, respectively; these concentrations are significantly higher than the world average noticed in soils, rocks and Earth crust. The 222 Rn specific exhalation rates result very low probably due to the low porosity of the material and the consequent difficulty for radon to be released from the zircon crystal lattice. (author)

  19. A study of radon variation in dwelling during 1988

    International Nuclear Information System (INIS)

    Shaikh, A.N.; Ramachandran, T.V.; Muraleedharan, T.S.; Subbaramu, M.C.

    1989-01-01

    Natural radioactivity due to radon and its progeny levels indoors contributes significantly to the total radiation to man. The main source of radon and its progeny in a dwelling is the emanation of radon gas from soil. The temperature and ventilation vary in a dwelling during the year. These parameters influence the indoor radon levels. The seasonal variation of radon was studied in a dwelling as well as in the outside air. The filter paper method and alpha counting, and the solid state track detector technique and track counting were used to study the radon levels. The geometric mean of radon daughters concentrations were 0.5 mWL and 0.8 mWL measured by filter-paper method and SSNTD method respectively. The geometric mean of radon concentrations were 6.2 Bqm -3 and 10.0 Bqm -3 by filter-paper method and SSNTD method respectively. (author). 3 figs., 3 tabs., 13 refs

  20. Radon problem in uranium industry

    International Nuclear Information System (INIS)

    Khan, A.H.; Raghavayya, M.

    1991-01-01

    Radon emission is invariably associated with the mining and processing of uranium ores. Radon (sup(222)Rn) enters mine atmosphere through diffusion from exposed ore body, fractures and fissures in the rocks and is also brought in by ground water. Being the progenitor of a series of short lived radioisotopes it contributes over 70% of the radiation dose to mine workers and thus accounts for nearly 30% of the total radiation doses received by workers in the whole nuclear industry. This paper summarises the data on radon emanation from the ore body, backfilled sands and mine water. Radon and its progeny concentrations in different haulage levels and stopes of the Jaduguda uranium mine are presented to emphasise the need for a well planned ventilation system to control radiation exposure of miners. Results of radon monitoring from a few exploratory uranium mines are included to indicate the need for a good ventilation system from inception of the mining operations. Relative contribution of mine exhaust and tailings surfaces to the environmental radon are also given. Some instruments developed locally for monitoring of radon and its progeny in mines and in the environment are briefly described to indicate the progress made in this field. (author). 17 refs., 2 figs., 6 tabs

  1. Radon and remedial action in Spokane River Valley residences: an interim report

    International Nuclear Information System (INIS)

    Turk, B.H.; Prill, R.J.; Fisk, W.J.; Grimsrud, D.T.; Moed, B.A.; Sextro, R.G.

    1986-03-01

    Fifty-six percent of 46 residences monitored in the Spokane River Valley in eastern Washington/northern Idaho have indoor radon concentrations above the National Council for Radiation Protection (NCRP) guidelines of 8 pCi/1. Indoor levels were over 20 pCi/1 in eight homes, and ranged up to 132 pCi/1 in one house. Radon concentrations declined by factors of 4 to 38 during summer months. Measurements of soil emanation rates, domestic water supply concentrations, and building material flux rates indicate that diffusion of radon does not significantly contribute to the high concentrations observed. Rather, radon entry is dominated by pressure-driven bulk soil gas transport, aggravated by the local subsurface soil composition and structure. A variety of radon control strategies are being evaluated in 14 of these homes. Sub-surface ventilation by depressurization and overpressurization, basement overpressurization, and crawlspace ventilation are capable of successfully reducing radon levels below 5 pCi/1 in these homes. House ventilation is appropriate in buildings with low-moderate concentrations, while sealing of cracks has been relatively ineffective

  2. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    International Nuclear Information System (INIS)

    Baumgartner, A.; Maringer, F.J.; Michai, P.; Kreuziger, M.

    2006-01-01

    In spring 2005 the Federal Office of Metrology and Surveying (B.E.V.) invited all in Austria working radon measuring institutes to an intercomparison exercise at the radon calibration laboratory in the Arsenal. The aim of this intercomparison was on the one hand an objective inquiry and documentation of the current metrological potential on the section of radon measurement in Austria - both quantitative and qualitative- and on the other hand an initiative for the participating laboratories to optimize and improve their applied calibration-, measurement and analyse technique. Ten contacted Austrian radon laboratories were prepared to participate on the radon intercomparison exercise. The intercomparison exercise was carried out from 14. till 29. June at the radon calibration laboratory in the Arsenal of the B.E.V.. As radon emanation source a five stepped arranged, at the Arsenal built radon source was used. The source ( A.D.O.T.T.O. 1 is filled with a certified Ra- 226-standard solution of the Czech Metrological Institute (C.M.I.), Prag. A simple statistic based model was used for the evaluation and assessment of the results from the participants, which consider the statistic nature of the radioactive decay combined uncertainty. Altogether 183 measuring instruments participated the intercomparison exercise. Two reference measuring instruments, 22 active and 159 passive measuring instruments. The active measuring instruments formed 6 types of instruments and as passive radon detectors were 7 different types used from the participants. The positioning of the radon measuring instruments and detectors in the radon calibration laboratory was executed in regard to statistic points of view. From the active measuring instruments 17 could qualify and from the passive methods six from eight participants were in compliance to the given criteria. Radon measurements, which could have financial and economics relating implications (e.g. architectural redevelopment or

  3. Radon measurements over a natural-gas contaminated aquifer

    International Nuclear Information System (INIS)

    Palacios, D.; Fusella, E.; Avila, Y.; Salas, J.; Teixeira, D.; Fernández, G.; Salas, A.; Sajo-Bohus, L.; Greaves, E.; Barros, H.; Bolívar, M.; Regalado, J.

    2013-01-01

    Radon and thoron concentrations in soil pores in a gas production region of the Anzoategui State, Venezuela, were determined by active and passive methods. In this region, water wells are contaminated by natural gas and gas leaks exist in the nearby river. Based on soil gas Radon data surface hydrocarbon seeps were identified. Radon and thoron concentration maps show anomalously high values near the river gas leaks decreasing in the direction of water wells where natural gas is also detected. The area where the highest concentrations of 222 Rn were detected seems to indicate the surface projection of the aquifer contaminated with natural gas. The Radon/Thoron ratio revealed a micro-localized anomaly, indicating the area where the gas comes from deep layers of the subsoil. The radon map determined by the passive method showed a marked positive anomaly around abandoned gas wells. The high anomalous Radon concentration localized near the trails of ascending gas bubbles at the river indicates the zone trough where natural gases are ascending with greater ease, associated with a deep geological fault, being this the main source of methane penetration into the aquifer. It is suggested that the source of the natural gas may be due to leaks at deep sites along the structure of some of the abandoned wells located at the North-East of the studied area. - Highlights: ► High Radon/Thoron ratios were localized near the natural-gas emanations in a river. ► Natural gases are ascending trough a deep geological fault. ► Apparently, the radon anomaly shows the site where natural gas enters the aquifer. ► Natural gas source may be related to leaks in the structure of abandoned gas wells

  4. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    Science.gov (United States)

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Construction materials and Radon

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Loriane, Fior; Schelin, Hugo R.; Pottker, Fabiana; Paula Melo, Vicente de

    2008-01-01

    Full text: Current studies have been performed with the aim to find the correlation of radon concentration in the air and used construction materials. At the first stage of the measurements different samples of materials used in civil construction were studied as a source of radon in the air and at the second step it was studied the radon infiltration insulation using different samples of finishing materials. For 222 Rn concentration measurements related to different construction materials as well as for the studies of radon emanation and its reduction, the sealed cell chambers, of approximately 60 x 60cm 2 , have been built using the ceramic and concrete blocks. This construction has been performed within protected and isolated laboratory environment to maintain the air humidity and temperature stable. These long term measurements have been performed using polycarbonate alpha track passive detectors. The exposure time was set about 15 days considering previous calibration performed at the Institute of Radiation Protection and Dosimetry (IRD/CNEN), where the efficiency of 70% was obtained for the density of alpha particle tracks about 13.8 cm -2 per exposure day and per kBq/m 3 of radon activity concentration. The chemical development of alpha tracks has been achieved by electrochemical etching. The track identification and counting have been done using a code based on the MATLAB Image Processing Toolbox. The cell chambers have been built following four principle steps: 1) Assembling the walls using the blocks and mortar; 2) Plaster installation; 3) Wall surface finishing using the lime; 4) Wall surface insulation by paint. Making the comparison between three layers installed at the masonry walls from concrete and ceramic blocks, it could be concluded that only wall painting with acrylic varnish attended the expectation and reduced the radon emanation flow by the factor of 2.5 approximately. Studied construction materials have been submitted the instant

  6. Radon emanation rate as a function of monazite grain size

    International Nuclear Information System (INIS)

    Yogesan, S.; Stanley, J.D.; Rosli Mahat; Yusof Md Amin

    1995-01-01

    In this study, a sample of monazite from local mining area was divided to 7 parts according to size (μm) and each sample was analysed using silicon surface barrier detector and multichannel analyser. From this study it has found that small grain monazite produced more radon that big grain monazite and radium is distributed on or near the surface of the monazite grain

  7. Environmental and indoor study of Radon concentration in San Joaquin area, Queretaro, Mexico, first results

    International Nuclear Information System (INIS)

    Hinojo Alonso, N.A.; Kotsarenko, A.; Yutsis, V.; Hernandez Silva, G.; Perego, P.; Fazio, M.; Grimalsky, V.; Koshevaya, S.; Foglia, F.; Cortes Silva, A.; García Martínez, R.; Martínez Reyes, J.; Norini, G.; Groppelli, G.

    2013-01-01

    A highly contaminated zone with a maximum over 57,000 Bq/m 3 was discovered in a populated community “Agua de Venados” during the 2009–2011 soil Radon survey in San Joaquin, Queretaro State, Mexico. The indoor Radon monitoring accomplished in 2 different époques in a nearby 4 dwellings has shown an increased Radon hazard in 1 of the 4 buildings (about 300 Bq/m 3 ) during a rainy season and highly elevated indoor Radon levels (over 400 Bq/m 3 ) already in 3 buildings during a dry season. The averaged diurnal indoor Radon variations are in a correlation with the atmospheric pressure and the air humidity and are independent on the air temperature. The maximum indoor Radon hazard for dwellings is estimated for the morning interval 5–10 a.m. - Highlights: ► Emanative zone of 57,000 Bq/m 3 was found in area “Agua de Venados”. ► Indoor Radon level in a nearby dwellings elevates during a dry season. ► Maximum risk for residents was estimated during the daily interval 5–10 a.m

  8. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.

  9. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    International Nuclear Information System (INIS)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables

  10. Radon migration in the ground: a supplementary review

    International Nuclear Information System (INIS)

    Tanner, A.B.

    1980-01-01

    Water is the most important agent in enabling radon isotopes to escape from solid material: Water absorbs kinetic energy of the recoil atom of radon; it is an active agent in altering and hydrating mineral surfaces, thus enhancing their emanating power; and it decreases the adsorption of radon on mineral surfaces. Once in rock and soil pores, radon atoms migrate by diffusion and by transport in varying proportions. In diffusion and transport calculations, it is desirable to use the radon concentration in the interstitial fluid as the concentration parameter and to include porosity explicity. The transport component is important in dry, permeable soils in the upper layers but is much reduced below depths of several tens of meters. Research in disequilibriums in radionuclides of the uranium and thorium series suggests that much assumed migration of 222 Rn is, in fact, a more general migration of uranium and radium isotopes

  11. One cubic metre NIST traceable radon test chamber

    International Nuclear Information System (INIS)

    Kotrappa, P.; Stieff, F.

    2008-01-01

    With the availability of the National Inst. of Standards and Technology (NIST) Radon Emanation Standard with a content of ∼5000 Bq of 226 Ra, it is possible to build a flow through a practical radon test chamber. A standard glove box with four gloves and a transfer port is used. Air is pumped through a flow integrator, water jar for humidification and NIST source holder, and into the glove box through a manifold. A derived theoretical expression provides the calculated radon concentration inside the chamber. The calculation includes a derived decay correction due to the large volume and low flow rate of the system. Several calibrated continuous radon monitors and passive integrating electret ion chambers tested in the chamber agreed fairly well with the calculated radon concentrations. The chamber is suitable for handling the calibration of several detectors at the same time. (authors)

  12. Design, construction and testing of a radon experimental chamber; Diseno, construccion y pruebas de una camara experimental de radon

    Energy Technology Data Exchange (ETDEWEB)

    Chavez B, A; Balcazar G, M

    1991-10-15

    To carry out studies on the radon behavior under controlled and stable conditions it was designed and constructed a system that consists of two parts: a container of mineral rich in Uranium and an experimentation chamber with radon united one to the other one by a step valve. The container of uranium mineral approximately contains 800 gr of uranium with a law of 0.28%; the radon gas emanated by the mineral is contained tightly by the container. When the valve opens up the radon gas it spreads to the radon experimental chamber; this contains 3 accesses that allow to install different types of detectors. The versatility of the system is exemplified with two experiments: 1. With the radon experimental chamber and an associated spectroscopic system, the radon and two of its decay products are identified. 2. The design of the system allows to couple the mineral container to other experimental geometries to demonstrate this fact it was coupled and proved a new automatic exchanger system of passive detectors of radon. The results of the new automatic exchanger system when it leave to flow the radon freely among the container and the automatic exchanger through a plastic membrane of 15 m. are shown. (Author)

  13. A study of radon activity inside some houses in Bangladesh

    International Nuclear Information System (INIS)

    Islam, G.S.; Islam, M.A.; Farid, S.M.; Rahman, A.

    1988-01-01

    The solid state nuclear track detector CR-39 has been used for long term measurements of the radon-222 emanation from building materials and the resultant activity inside houses in Bangladesh. Particular attention is paid to a special type of house with thick walls made entirely of mud. The radon-exhalation rate of the walls of these mud-built houses is found to be consistently higher than that of brick-built houses. (author)

  14. Effect of radon transport in groundwater upon gamma-ray borehole logs

    International Nuclear Information System (INIS)

    Nelson, P.H.; Rachiele, R.; Smith, A.

    1980-09-01

    Granitic rock at an experimental waste storage site at Stripa, Sweden, is unusually high in natural radioelements (40 ppM uranium) with higher concentrations occurring locally in thin chloritic zones and fractures. Groundwater seeping through fractures into open boreholes is consequently highly anomalous in its radon content, with activity as high as one microcurie per liter. When total count gamma-ray logs are run in boreholes where groundwater inflow is appreciable, the result is quite unusual: the radon daughter activity in the water adds considerably to the contribution from the rock, and in fact often dominates the log response. The total gamma activity increases where radon-charged groundwater enters a borehole, and remains at a high level as the water flows along the hole in response to the hydraulic gradient. As a consequence, the gamma log serves as a flow profile, locating zones of water entry (or loss) by an increase (or decrease) in the total gamma activity. A simple model has been developed for flow through a thin crack emanating radon at a rate E showing that the radon concentration of water entering a hole is E/Λh, where Λ is the radon decay rate and h the crack aperture, assuming that the flow rate and crack source area are such that an element of water resides within the source area for several radon half-lives or more. Concentration measurements can provide a measurement of the inflow rate. Data from the 127-mm holes in the time-scale drift behave in this fashion

  15. Result of the intercomparison exercise on radon measuring instruments and radon detectors 'bev- radon ring 2005'

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, A. [Vienna Univ. of Technology, Atominstitut, Wien (Austria); Maringer, F.J.; Michai, P.; Kreuziger, M. [BEV-Federal Office of Metrology and Surveying, Wien (Austria)

    2006-07-01

    In spring 2005 the Federal Office of Metrology and Surveying (B.E.V.) invited all in Austria working radon measuring institutes to an intercomparison exercise at the radon calibration laboratory in the Arsenal. The aim of this intercomparison was on the one hand an objective inquiry and documentation of the current metrological potential on the section of radon measurement in Austria - both quantitative and qualitative- and on the other hand an initiative for the participating laboratories to optimize and improve their applied calibration-, measurement and analyse technique. Ten contacted Austrian radon laboratories were prepared to participate on the radon intercomparison exercise. The intercomparison exercise was carried out from 14. till 29. June at the radon calibration laboratory in the Arsenal of the B.E.V.. As radon emanation source a five stepped arranged, at the Arsenal built radon source was used. The source ( A.D.O.T.T.O. 1 is filled with a certified Ra- 226-standard solution of the Czech Metrological Institute (C.M.I.), Prag. A simple statistic based model was used for the evaluation and assessment of the results from the participants, which consider the statistic nature of the radioactive decay combined uncertainty. Altogether 183 measuring instruments participated the intercomparison exercise. Two reference measuring instruments, 22 active and 159 passive measuring instruments. The active measuring instruments formed 6 types of instruments and as passive radon detectors were 7 different types used from the participants. The positioning of the radon measuring instruments and detectors in the radon calibration laboratory was executed in regard to statistic points of view. From the active measuring instruments 17 could qualify and from the passive methods six from eight participants were in compliance to the given criteria. Radon measurements, which could have financial and economics relating implications (e.g. architectural redevelopment or

  16. Preliminary results on variations of radon concentration associated with rock deformation in a uranium mine

    Science.gov (United States)

    Verdoya, Massimo; Bochiolo, Massimo; Chiozzi, Paolo; Pasquale, Vincenzo; Armadillo, Egidio; Rizzello, Daniele; Chiaberto, Enrico

    2013-04-01

    Time-series of radon concentration and environmental parameters were recently recorded in a uranium mine gallery, located in the Maritime Alps (NW Italy). The mine was bored in metarhyolites and porphyric schists mainly composed by quartz, feldspar, sericite and fluorite. U-bearing minerals are generally concentrated in veins heterogeneously spaced and made of crystals of metaautunite and metatorbernite. Radon air concentration monitoring was performed with an ionization chamber which was placed at the bottom of the gallery. Hourly mean values of temperature, pressure, and relative humidity were also measured. External data of atmospheric temperature, pressure and rainfall were also available from a meteorological station located nearby, at a similar altitude of the mine. The analysis of the time series recorded showed variation of radon concentration, of large amplitude, exhibiting daily and half-daily periods, which do not seem correlated with meteorological records. Searching for the origin of radon concentration changes and monitoring their amplitude as a function of time can provide important clues on the complex emanation process. During this process, radon reaches the air- and water-filled interstices by recoil and diffusion, where its migration is directed towards lower concentration regions, following the local gradient. The radon emanation from the rock matrix could also be controlled by stress changes acting on the rate of migration of radon into fissures, and fractures. This may yield emanation boosts due to rock extension and the consequent crack broadening, and emanation decrease when joints between cracks close. Thus, besides interaction and mass transfer with the external atmospheric environment, one possible explanation for the periodic changes in radon concentrations in the investigated mine, could be the variation of rock deformation related to lunar-solar tides. The large variation of concentration could be also due to the fact that the mine is

  17. Preliminary results regarding the first map of residential radon in some regions in Romania

    International Nuclear Information System (INIS)

    Cosma, C.; Cucos Dinu, A.; Dicu, T.

    2013-01-01

    Radon represents the most important contribution of population exposure to natural ionising radiation. This article presents the first indoor radon map in some regions of Romania based on 883 surveyed buildings in the Stei-Baita radon-prone region and 864 in other regions of Romania. Indoor radon measurements were performed in the last 10 y by using CR-39 nuclear track detectors exposed for 3-12 months on ground floor levels of dwellings. Excluding the Stei-Baita radon-prone region, an average indoor radon concentration of 126 Bq m -3 was calculated for Romanian houses. In the Stei-Baita radon-prone area, the average indoor concentration was 292 Bq m -3 . About 21 % of the investigated dwellings in the Stei-Baita radon-prone region exceed the threshold of 400 Bq m -3 , while 5 % of the dwellings in other areas of Romania exceed the same threshold. As expected, indoor radon concentration is not uniformly distributed throughout Romania. The map shows a high variability among surveyed regions, mainly due to the differences in geology. The radon emanation rate is substantially influenced by the soil characteristics, such as the soil permeability and soil gas radon concentration. Since higher permeability enables the increased migration of soil gas and radon from the soil into the building, elevated levels of indoor radon can be expected in more permeable soil environments. (authors)

  18. Radon in streams and ground waters of Pennsylvania as a guide to uranium deposits

    International Nuclear Information System (INIS)

    Korner, L.A.; Rose, A.W.

    1977-06-01

    Radon-222, a daughter in the radioactive decay of uranium, has potential as a geochemical guide to uranium ores because of its chemical inertness and its relatively easy determination. The radon contents of 59 stream and 149 ground waters have been determined with a newly designed portable radon detector in order to test the method in uranium exploration. Radon contents of stream waters do not appear useful for reconnaissance uranium exploration of areas like Pennsylvania because of relatively rapid degassing of radon from turbulent waters, and because most radon is derived from nearby influx of ground waters into the streams. Radon in streams near uranium occurrences in Carbon and Lycoming counties is lower than many background streams. Radon in ground water is recommended as a reconnaissance method of uranium exploration because most samples from near mineralized areas are anomalous in radon. In contrast, uranium in ground waters is not anomalous near mineralized areas in Carbon County. Equations are derived to show the relation of radon in ground waters to uranium contents of enclosing rocks, emanation of radon from the solids to water, and porosity or fracture width. Limonites are found to be highly enriched in radium, the parent of radon. A model for detection of a nearby uranium ore body by radon measurement on a pumping well has been developed

  19. Method for radon measurement in the subsoil in geothermal prospectus; Metodos de medicion de radon en el subsuelo en prospeccion geotermica

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar G, M

    1991-02-15

    The present formless describe the technique for radon measurement in the underground, being able to be used as an additional study in the geothermal prospecting. This methodology has been developed in the National Institute of Nuclear Research of Mexico using a film of cellulose nitrate to detect those emanated alpha particles, by the Rn (222). By means of the trace account in this films its settle down the present radon levels in the underground. The present method thinks about as an alternating one to overcome in it leaves the limitations found in the development of the methodology using a radon emanometer ETR-1, of the trade mark SCINTREX. The radon detected by plastics is also an integral method of measuring in a geothermal field that avoids the problems of variations of radon to pluvial precipitations and barometric variations. These variations affect the results strongly when it is used the punctual sampler as it is the ETR-1. (Author)

  20. Activity measurements of radon from construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Fior, L.; Nicolosi Correa, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Paschuk, S.A., E-mail: spaschuk@gmail.com [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Denyak, V.V. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Schelin, H.R. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil); Pele Pequeno Principe Research Institute, Av. Silva Jardim, 1632, Curitiba, PR 80250-200 (Brazil); Soreanu Pecequilo, B.R. [Institute of Nuclear and Energetic Researches, IPEN, Av. Prof. Lineu Prestes, 2242-/05508-000 Sao Paulo (Brazil); Kappke, J. [Federal University of Technology - Parana, UTFPR, Av. Sete de Setembro, 3165, Curitiba, PR 80230-901 (Brazil)

    2012-07-15

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60 Multiplication-Sign 60 Multiplication-Sign 60 cm{sup 3} were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K. The values for the index of the activity concentration (I), radium equivalent activity (Ra{sub eq}), and external hazard index (H{sub ext}) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). - Highlights: Black-Right-Pointing-Pointer Radon activity in air related to building materials was measured. Black-Right-Pointing-Pointer The index of activity concentration of building materials was evaluated. Black-Right-Pointing-Pointer The radium equivalent activity of

  1. Evaluation of the open vial method in the radon measurement; Evaluacion del metodo del vial abierto en la medicion de radon

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Rio, H.; Davila R, J. I.; Mireles G, F., E-mail: hlopezdelrio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The open vial method is a simple technique, under-utilized but that take advantage of the great radon solubility in organic solvents, therefore applies in the measurement of the radon concentration exhaled in soil. The method consists on the exposition to the gas radon of an open vial with scintillating solution. An integral mathematical model for indoors that describes the emanation processes and gas radon exhalation was developed, as well as the radon dissolution in the scintillation liquid, besides obtaining the characteristic parameters of the experimental system proposed for the radon concentration calculation exhaled by soils. Two experimental arrangements were designed with exposition cameras of 12 and 6 L and quantity of different soil. The open vial was prepared with a mixture of 8 ml of deionized water and 12 ml of scintillation liquid OptiPhase Hi Safe 3 in polyethylene vials; the measurements of the dissolved radon were carried out in scintillation liquid equipment. As a result, on average 2.0% of the exhaled radon is dissolved in the open vial and the dissolved fraction is independent of the experimental arrangement. Also was observed that the exposition time does not affect the radon dissolution significantly, in correspondence with the reported in the literature. (Author)

  2. Risk Assessment from Radon Gas in the Greenhouses

    International Nuclear Information System (INIS)

    Fahmi, N.M.; El-Khatib, A.M.; Abd El-Zaher, M

    2009-01-01

    Radon is a naturally occurring radioactive gas found in varying amounts in all soils. Therefore, it is very important to study radon emanation from different soils in different circumstances; especially, in green houses which widely used to propagate and cultivate of plants. In greenhouses radon comes from either soil or the substances which make suitable flooring in the greenhouse. Radon and its progeny are accumulated in the air and on the plants themselves, which causes hazard for workers and customers in a later stage. Radon gas is measured in two kinds of greenhouses, one of them is constructed from plastic sheet and the other from glass (Agriculture Research Center - Horticulture Research Institute) using CR-39 NTDs as a passive technique. It based on the production of track in the detector due to alpha-particles emitted from radon and its progeny. The observed track densities are then converted to annual radon dose to be 12.36 mSv and 8.3 mSv for the plastic and glass greenhouses under investigation, respectively. It is also found that the workers have been subject to regulatory control

  3. Indoor and underground radon activity in the northern part of Bangladesh: a preliminary study

    International Nuclear Information System (INIS)

    Haque, A.K.F.; Islam, G.S.; Islam, M.A.

    1991-01-01

    CR-39 solid state nuclear track detectors were used to determine the indoor and underground radon activity at three locations in the northern part of Bangladesh. The indoor radon activity at Naogaon was found to be higher than that at Rajshahi and Ruppur. Radon concentration in the mud-built houses at Naogaon was estimated to be ∼ 500 Bq m -3 (14pCi 1 -1 ) which is more than three times the recommended limit. The underground radon emanation at Naogaon was found to be one order of magnitude higher than that at the other two places. (author)

  4. Sign of Radon for locate geothermic sources

    International Nuclear Information System (INIS)

    Gonzalez Teran, D.

    1991-01-01

    Evaluation of a geothermic field is based upon geological, geophysical and geochemical studies that enable the evaluation of the deposit potential, that is to say, the amount of energy per unit mass, the volume of the trapped fluid, vapor fraction and fluid chemistry. This thesis has as its objective the evaluation of radon gas emanation in high potential geothermic zones in order to utilize the results as a low cost and easy to manage complimentary tool in geothermic source prospection. In chapter I the importance and evaluation of a geothermic deposit is discussed. In chapter II the general characteristics of radon are discussed: its radioactivity and behavior upon diffusion over the earth's surface> Chapter III establishes the approach used in the geothermic field of Los Azufres, Michoacan, to carry out samplings of radon and the laboratory techniques that were used to evaluate the concentration of radon in the subsoil. Finally in chapter IV measurements of radon in the field are compared to geological faults in the area under study. The sampling zones were: low geothermic potential zone of the northern and the southern zone having a greater geothermic potential than that in the north. The study was carried out at different sampling times using plastics detectors of from 30 to 46 days from February to July. From the results obtained we concluded that the emission of radon was greater in the zones of greatest geothermic potential than in the low geothermic potential zones it was also affected by the fault structure and the time of year in which sampling was done. (Author)

  5. Radon movement simulation in overburden by the 'Scattered Packet Method'

    International Nuclear Information System (INIS)

    Marah, H.; Sabir, A.; Hlou, L.; Tayebi, M.

    1998-01-01

    The analysis of Radon ( 222 Rn) movement in overburden needs the resolution of the General Equation of Transport in porous medium, involving diffusion and convection. Generally this equation was derived and solved analytically. The 'Scattered Packed Method' is a recent mathematical method of resolution, initially developed for the electrons movements in the semiconductors studies. In this paper, we have adapted this method to simulate radon emanation in porous medium. The keys parameters are the radon concentration at the source, the diffusion coefficient, and the geometry. To show the efficiency of this method, several cases of increasing complexity are considered. This model allows to follow the migration, in the time and space, of radon produced as a function of the characteristics of the studied site. Forty soil radon measurements were taken from a North Moroccan fault. Forward modeling of the radon anomalies produces satisfactory fits of the observed data and allows the overburden thickness determination. (author)

  6. New method of reducing radon levels in homes

    International Nuclear Information System (INIS)

    Khaydarov, R.A.; Gapurova, O.U.; Khaydarov, R.R.

    2006-01-01

    Full text: Radon is a naturally occurring gas seeping into homes and underground structures (buildings, tunnels, hangars, garages, etc.) from the surrounding soil through walls, floor, etc. and emanating from construction materials such as concrete, granite, etc. The level of radon is especially great in regions with the heightened content of uranium in soil and water and with geological breaks of the earth's crust. Concentrations of uranium higher than 10 g per ton of soil have been found in 14 percent of territory of Uzbekistan. As a result, for instance, concentration of radon 10-100 times exceeds the regulation level in 14 percent of premises in Tashkent, 41 percent of premises in Almalik town and 44 percent in Yangiabad town. The purpose of this work was creating a method to reduce concentration of radon gas in buildings and underground structures. We suppose that the most effective technique is a treatment of walls, floors, etc. of basement and underground structures by special chemicals which seal micropores inside the construction materials. Sealing the pores stops radon diffusion and in addition, it blocks another radon pathway - water migration and emanation from concrete, gypsum or other construction materials. In the paper polymeric silico organic compounds are investigated and selected as the chemicals to prevent radon seeping indoors. Gas (air, Ar, Rn 222, H 2 O) permeability of concrete and gypsum after treatment by chemicals has been examined. Influence of types of cement and sand, preliminary treatment by different chemicals, different types of polymeric silico organic compounds, time between treatments, moisture of concrete, time between preparation of chemicals and treatment of concrete (aging of chemicals), time between treatment of concrete and testing (aging of treated concrete) have been examined. Surfaces of the samples were treated by spray. Experiments have shown that chosen method of treatment of the construction materials allows reducing

  7. Determining Radium-226 concentration from Radon-222 emanation in building materials: a theoretical model

    International Nuclear Information System (INIS)

    Barreto, Rafael C.; Perna, Allan F.N.; Narloch, Danielle C.; Del Claro, Flavia; Correa, Janine N.; Paschuk, Sergei A.

    2017-01-01

    It was developed an improved theoretical model capable to estimate the radium concentration in building materials solely measuring the radon-222 concentration in a con ned atmosphere. This non-destructive technique is not limited by the size of the samples, and it intrinsically includes back diffusion. The resulting equation provides the exact solution for the concentration of radon-222 as a function of time and distance in one dimension. The effective concentration of radium-226 is a fit parameter of this equation. In order to reduce its complexity, this equation was simplified considering two cases: low diffusion in the building material compared to the air, and a building material initially saturated with radon-222. These simplified versions of the exact one dimension solution were used to t experimental data. Radon-222 concentration was continuously measured for twelve days with an AlphaGUARD TM detector, located at the Laboratory of Applied Nuclear Physics at Universidade Tecnologica Federal do Parana (UTFPR). This model was applied to two different materials: cement mortar and concrete, which results were respectively (15:7 ±8:3) Bq=kg and (10:5±2:4) Bq=kg for the radium-226 effective concentration. This estimation was confronted with the direct measurements of radium in the same materials (same sources) using gamma-ray spectrometry, fulfilled at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), which results were respectively (13:81±0:23) Bq=kg and (12:61±0:22) Bq=kg. (author)

  8. Determining Radium-226 concentration from Radon-222 emanation in building materials: a theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Rafael C.; Perna, Allan F.N.; Narloch, Danielle C.; Del Claro, Flavia; Correa, Janine N.; Paschuk, Sergei A., E-mail: baarreth@gmail.com, E-mail: allan_perna@hotmail.com, E-mail: daninarloch@hotmail.com, E-mail: aviadelclaro@gmail.com, E-mail: janine_nicolosi@hotmail.com, E-mail: spaschuk@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Departamento Academico de Fisica e Departamento Academico de Construcao Civil

    2017-07-01

    It was developed an improved theoretical model capable to estimate the radium concentration in building materials solely measuring the radon-222 concentration in a con ned atmosphere. This non-destructive technique is not limited by the size of the samples, and it intrinsically includes back diffusion. The resulting equation provides the exact solution for the concentration of radon-222 as a function of time and distance in one dimension. The effective concentration of radium-226 is a fit parameter of this equation. In order to reduce its complexity, this equation was simplified considering two cases: low diffusion in the building material compared to the air, and a building material initially saturated with radon-222. These simplified versions of the exact one dimension solution were used to t experimental data. Radon-222 concentration was continuously measured for twelve days with an AlphaGUARD{sup TM} detector, located at the Laboratory of Applied Nuclear Physics at Universidade Tecnologica Federal do Parana (UTFPR). This model was applied to two different materials: cement mortar and concrete, which results were respectively (15:7 ±8:3) Bq=kg and (10:5±2:4) Bq=kg for the radium-226 effective concentration. This estimation was confronted with the direct measurements of radium in the same materials (same sources) using gamma-ray spectrometry, fulfilled at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), which results were respectively (13:81±0:23) Bq=kg and (12:61±0:22) Bq=kg. (author)

  9. Radon remediation of a two-storey UK dwelling by active sub-slab depressurization: observations on hourly Radon concentration variations

    International Nuclear Information System (INIS)

    Denman, A.R.

    2008-01-01

    Radon concentration levels in a two-storey detached single-family dwelling in Northamptonshire, UK, were monitored at hourly intervals throughout a 5-week period during which sub-slab depressurization remediation measures, including an active sump system, were installed. Remediation of the property was accomplished successfully, with the mean radon levels upstairs and downstairs greatly reduced and the prominent diurnal variability in radon levels present prior to remediation almost completely removed. Following remediation, upstairs and downstairs radon concentrations were 32% and 16% of their pre-remediation values respectively. The mean downstairs radon concentration was lower than that upstairs, with pre-and post-remediation values of the upstairs/downstairs concentration ratio, R U/D , of 0.93 and 1.76 respectively. Cross-correlation between upstairs and downstairs radon concentration time-series indicates a time-lag of the order of 1 hour or less, suggesting that diffusion of soil-derived radon from downstairs to upstairs either occurs within that time frame or forms a relatively insignificant contribution to the upstairs radon level. Cross-correlation between radon concentration time-series and the corresponding time-series for local atmospheric parameters demonstrated correlation between radon concentrations and internal/external pressure-difference prior to remediation. This correlation disappears following remediation, confirming the effectiveness of the remediation procedure in mitigating radon ingress from the ground via the stack-effect. Overall, these observations provide further evidence that radon emanation from building materials makes a not insignificant contribution to radon concentration levels within the building. Furthermore, since this component remains essentially unaffected by sub-slab depressurization, its proportional contribution to the total radon levels in the home increases following remediation, leading to the conclusion that where

  10. Radon content in Danish till deposits: relationship with redox conditions and age

    International Nuclear Information System (INIS)

    Gravesen, P.; Roll Jakobsen, P.

    2010-01-01

    This paper presents some results concerning the radon content and emanation rates in different Danish till deposits of Saalian and Weichselian age from a study carried out by the Geological Survey of Denmark and Greenland (GEUS). (LN)

  11. Understanding the origin of radon indoors: Building a predictive capability

    International Nuclear Information System (INIS)

    Sextro, R.G.

    1985-12-01

    Indoor radon concentrations one to two orders of magnitude higher than the US average of ∼60 Bq m -3 (∼1.5 pCi L -1 ) are not uncommon, and concentrations greater than 4000 Bq m -3 have been observed in houses in areas with no known artificially-enhanced radon sources. In general, source categories for indoor radon are well known: soil, domestic water, building materials, outdoor air, and natural gas. Soil is thought to be a major source of indoor radon, either through molecular diffusion (usually a minor component) or convective flow of soil gas. While soil gas flow into residences has been demonstrated, no detailed understanding of the important factors affecting the source strength of radon from soil has yet emerged. Preliminary work in this area has identified a number of likely issues, including the concentration of radium in the soil, the emanating fraction, soil type, soil moisture content, and other factors that would influence soil permeability and soil gas transport. Because a significant number of dwellings are expected to have indoor radon concentrations above guideline levels, a predictive capability is needed that would help identify geographical areas having the potential for high indoor concentrations. This paper reviews the preliminary work that has been done to identify important soil and building characteristics that influence the migration of radon and outlines the areas of further research necessary for development of a predictive method. 32 refs., 4 figs

  12. Generation and mobility of radon in soil

    International Nuclear Information System (INIS)

    1992-01-01

    Objectives of this research include: (1) To determine the processes that cause large seasonal and short-term changes in the radon (Rn) content of soil gases, and to develop methods of predicting and modeling these variations; (2) to evaluate the relation of Rn emanation coefficients to form of radium (Ra) and other U-series decay products, particularly the role of Ra in organic matter and Fe-oxides; (3) to evaluate the conditions in which convection of gas in soil and bedrock may affect soil gas radon availability in houses; and, (4) to collaborate with other DOE researchers on evaluation of Rn flux into houses, using our well characterized soil sites

  13. Design, construction and testing of a radon experimental chamber

    International Nuclear Information System (INIS)

    Chavez B, A.; Balcazar G, M.

    1991-10-01

    To carry out studies on the radon behavior under controlled and stable conditions it was designed and constructed a system that consists of two parts: a container of mineral rich in Uranium and an experimentation chamber with radon united one to the other one by a step valve. The container of uranium mineral approximately contains 800 gr of uranium with a law of 0.28%; the radon gas emanated by the mineral is contained tightly by the container. When the valve opens up the radon gas it spreads to the radon experimental chamber; this contains 3 accesses that allow to install different types of detectors. The versatility of the system is exemplified with two experiments: 1. With the radon experimental chamber and an associated spectroscopic system, the radon and two of its decay products are identified. 2. The design of the system allows to couple the mineral container to other experimental geometries to demonstrate this fact it was coupled and proved a new automatic exchanger system of passive detectors of radon. The results of the new automatic exchanger system when it leave to flow the radon freely among the container and the automatic exchanger through a plastic membrane of 15 m. are shown. (Author)

  14. Radon and radioactivity at a town overlying Uranium ores in northern Greece.

    Science.gov (United States)

    Kourtidis, K; Georgoulias, A K; Vlahopoulou, M; Tsirliganis, N; Kastelis, N; Ouzounis, K; Kazakis, N

    2015-12-01

    Extensive measurements of (222)Rn in the town of Xanthi in N Greece show that the part of the town overlying granite deposits and the outcrop of a uranium ore has exceptionally high indoor radon levels, with monthly means up to 1500 Bq m(-3). A large number of houses (40%) in this part of the town exhibit radon levels above 200 Bq m(-3) while 11% of the houses had radon levels above 400 Bq m(-3). Substantial interannual variability as well as the highest in Europe winter/summer ratios (up to 12) were observed in this part of the town, which consist of traditional stone masonry buildings of the late 19th-early 20th century. Measurements of (238)U and (232)Th content of building materials from these houses as well as radionuclide measurements in different floors show that the high levels of indoor radon measured in these buildings are not due to high radon emanation rates from the building materials themselves but rather due to high radon flux from the soil because of the underlying geology, high radon penetration rates into the buildings from underground due to the lack of solid concrete foundations in these buildings, or a combination thereof. From the meteorological variables studied, highest correlation with indoor (222)Rn was found with temperature (r(2) = 0.65). An indoor radon prognostic regression model using temperature, pressure and precipitation as input was developed, that reproduced indoor radon with r(2) = 0.69. Hence, meteorology is the main driving factor of indoor radon, with temperature being the most important determinant. Preliminary flux measurements indicate that the soil-atmosphere (222)Rn flux should be in the range 150-250 Bq m(-2) h(-1), which is in the upper 10% of flux values for Europe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Investigation of some factors affecting on release of radon-222 from phosphogypsum waste associated with phosphate ore processing.

    Science.gov (United States)

    Hilal, M A; El Afifi, E M; Nayl, A A

    2015-07-01

    The aim of this study is oriented to investigate the influence of some physicochemical factors such as radium distribution, grain size, moisture content and chemical constituents on releases of radon-222 from the accumulated phosphogypsum (PG) waste. The emanation fraction, activity concentration in the pore and the surface exhalation rate of radon-222 in the bulk PG waste are 34.5 ± 0.3%, 238.6 ± 7.8 kBq m(-3) and 213 ± 6.9 mBq m(-2) s(-1), respectively. These values were varied and enhanced slightly in the fine grain sizes (F1 factor of 1.05 folds compared to the bulk residue. It was also found that release of radon from residue PG waste was controlled positively by radium (Ra-226), calcium (CaSO4) and strontium (SrO). About 67% of radon release attributed to the grain size below 0.5 mm, while 33% due to the large grain size above 0.5 mm. The emanation fraction of Rn-222 is increased with moisture content and the maximum emanation is ∼43% of moisture of 3-8%. It reduced slowly with the continuous increase in moisture till 20%. Due to PG waste in situ can be enhancing the background to the surround workers and/or public. Therefore, the environmental negative impacts due to release of Rn-222 can be minimized by legislation to restrict its civil uses, or increasing its moisture to ∼10%, or by the particle size separation of the fine fraction containing the high levels of Ra-226 followed by a suitable chemical treatment or disposal; whereas the low release amount can be diluted and used in cement industry, roads or dam construction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Measurements of radon in soil gas

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Schelin, Hugo R.; Barbosa, Laercio; Sadula, Tatyana; Matsuzaki, Cristiana A.

    2009-01-01

    Full text: After the decades of systematic and numerous studies performed at different countries of the World, it has been concluded that radon as well as its progeny is the main cause of lung cancer. It is well known that more than 50% of the effective annual radiation dose received by a human being is related to the radon and its progenies. Among the principle mechanisms that bring the radon inside the dwelling is the soil exhalation as well as exhalation and release from the water. Radon concentration in the soil and its transport (emanation, diffusion, advection and adsorption) to the surface depends on different physical, geological and ambient parameters such as the geology of the area, geochemical composition of the soil, its porosity and permeability, grain size, soil humidity, bottom sediments and inputs from streams, temperature, atmospheric pressure, etc. Since the main part of indoor radon originates in the soil, the measurements of radon concentration in soil gas have to be considered as an important tool and indicator of probable high levels of radon inside the dwellings. Present work describes the radon in soil gas measurements performed during the last two years in cooperation between the Laboratory of Applied Nuclear Physics of the Federal University of Technology (UTFPR), the Nuclear Technology Development Center (CDTN) and the Institute of Radiation Protection and Dosimetry (IRD) from the Brazilian Nuclear Energy Commission (CNEN). Following previously concluded measurements of radon concentration in dwellings and the measurements of 222 Rn activity in drinking water collected at artesian bores of Curitiba urban area, present step of activities has been dedicated to measurements of radon concentration in soil gas. Experimental setup was based on the Professional Radon Monitor (ALPHA GUARD) connected to specially developed for such measurements Soil Gas Probe through the air pump and filter system. The equipment was adjusted with air flow of 0

  17. Radon Sources and Associated Risk in terms of Exposure and Dose

    Directory of Open Access Journals (Sweden)

    Efstratios Gregory Vogiannis

    2015-01-01

    Full Text Available Radon concern the international scientific community from early 20th century. Initially as radium emanation, almost the second half of the century as severe harmful to human health. Initial brilliant period of use as medicine, followed by a period of intense concern for its health effects. Primary target groups surveyed were miners early in Europe later in U.S. There is now compelling evidence that radon and its progeny can cause lung cancer. Human activities may create or modify pathways increasing indoor radon concentration compared to outdoor background. These pathways can be controlled by preventive and corrective actions. Indoor Radon and its short-lived progeny attached on aerosol particles or free compose an air mixture that carry a significant energy amount (PAEC. Exposure on PAEC and dose delivered reviewed in detail. Special attention was paid to the case of water workers because lack of adequate data. Radon risk assessment and current legislation regulates dose from radon and its progeny, also were reviewed.

  18. Determination of risk zones, due to radon : prospecting and analysis of spring water in Wallonia

    International Nuclear Information System (INIS)

    1990-01-01

    The emanation of radon from geologic formations can be detected by analyzing the ground water at the emergence of springs. Two measuring methods are described and compared : the Lucas method and the liquid scintillation method. Although more sampling has to be done, a first conclusion can be drawn from the results. The link between the radium concentration in some geologic formations and the determination of risk zones for radon contamination can be proved through radon measurements in water. 9 figs., 6 tabs., 2 charts (H.E.)

  19. Effects of bedrock type on the indoor radon concentrations at the office buildings in Gyeongju, Korea

    Directory of Open Access Journals (Sweden)

    Park Hee Chan

    2011-01-01

    Full Text Available This study measured the indoor radon concentrations at 23 administrative office buildings in Gyeongju, Korea, which consists of 23 administrative districts. Using the Korean geological information system, the type of bedrock under the administrative office buildings was identified and classified in 3 major types: granite, sedimentary rock, and sedimentary rock-based fault. The changes in the indoor concentrations at the 23 administrative office buildings were analyzed according to the type of bedrock. As a result, the radon concentration in the areas with the granite bedrock was generally higher than that in the region of two other types of bedrock. In addition, the radon concentration was evaluated according to surface area and construction timing of the building. The indoor radon concentration generally increased with decreasing surface area of the building, particularly in granite distributed areas. For a building aged more than 15 years, the radon concentration in the building in the granite area was much higher. For the building aged 1 or 2 years, the radon concentration was high regardless of the type of the bedrock due to radon emanation from the building material, such as concrete.

  20. Novel technique of reducing radon levels in living premises

    International Nuclear Information System (INIS)

    Khaydarov, R.A.; Gapurova, O.U.; Khaydarov, R.R.

    2006-01-01

    Full text: Radon is a naturally occurring gas seeping into homes and underground structures (buildings, tunnels, hangars, garages, etc.) from the surrounding soil through walls, floor, etc. and emanating from construction materials such as concrete, granite, etc. The level of radon is especially great in regions with the higher content of uranium in soil and water and with geological breaks of the Earth's crust. Concentrations of uranium higher than 10 g per ton of soil have been found in 14% of territory of Uzbekistan. As a result, for instance, concentration of radon 10-100 times exceeds the regulation level in 14% of premises in Tashkent, 41% of premises in Almalik town and 44% in Yangiabad town. The purpose of this work was creating a method to reduce concentration of radon gas in buildings and underground structures. We suppose that the most effective technique is a treatment of walls, floors, etc. of basement and underground structures by special chemicals which seal micropores inside the construction materials. Sealing the pores stops radon diffusion and, in addition, it blocks another radon pathway - water migration and emanation from concrete, gypsum or other construction materials. In the paper polymeric silicoorganic compounds are investigated and selected as the chemicals to prevent radon seeping indoors. Gas (air, Ar, Rn-222, H 2 O) permeability of concrete and gypsum after treatment by chemicals has been examined. Influence of types of cement and sand, preliminary treatment by different chemicals, different types of polymeric silicoorganic compounds, time between treatments, moisture of concrete, time between preparation of chemicals and treatment of concrete (ageing of chemicals), time between treatment of concrete and testing (ageing of treated concrete) have been examined. Surfaces of the samples were treated by spray. Experiments have shown that chosen method of treatment of the construction materials allows reducing the coefficient of gas

  1. Development of high sensitivity radon detectors

    CERN Document Server

    Takeuchi, Y; Kajita, T; Tasaka, S; Hori, H; Nemoto, M; Okazawa, H

    1999-01-01

    High sensitivity detectors for radon in air and in water have been developed. We use electrostatic collection and a PIN photodiode for these detectors. Calibration systems have been also constructed to obtain collection factors. As a result of the calibration study, the absolute humidity dependence of the radon detector for air is clearly observed in the region less than about 1.6 g/m sup 3. The calibration factors of the radon detector for air are 2.2+-0.2 (counts/day)/(mBq/m sup 3) at 0.08 g/m sup 3 and 0.86+-0.06 (counts/day)/(mBq/m sup 3) at 11 g/m sup 3. The calibration factor of the radon detector for water is 3.6+-0.5 (counts/day)/(mBq/m sup 3). The background level of the radon detector for air is 2.4+-1.3 counts/day. As a result, one standard deviation excess of the signal above the background of the radon detector for air should be possible for 1.4 mBq/m sup 3 in a one-day measurement at 0.08 g/m sup 3.

  2. Method for radon measurement in the subsoil in geothermal prospectus

    International Nuclear Information System (INIS)

    Balcazar G, M.

    1991-02-01

    The present formless describe the technique for radon measurement in the underground, being able to be used as an additional study in the geothermal prospecting. This methodology has been developed in the National Institute of Nuclear Research of Mexico using a film of cellulose nitrate to detect those emanated alpha particles, by the Rn (222). By means of the trace account in this films its settle down the present radon levels in the underground. The present method thinks about as an alternating one to overcome in it leaves the limitations found in the development of the methodology using a radon emanometer ETR-1, of the trade mark SCINTREX. The radon detected by plastics is also an integral method of measuring in a geothermal field that avoids the problems of variations of radon to pluvial precipitations and barometric variations. These variations affect the results strongly when it is used the punctual sampler as it is the ETR-1. (Author)

  3. Environmental radon monitoring in Khartoum dwellings

    International Nuclear Information System (INIS)

    Mohamed, I. S.

    1992-03-01

    Radon is a naturally occurring radioactive gas that is released into the surrounding environment. Existence of this gas indoors ( house and dwelling ) mainly depends on its source in the building materials, the soil beneath the buildings and the ventilation of the rooms. In this study the technique of ground activated charcoal and gamma spectrometry system are used for Radon measurement. This technique has been calibrated and optimized. The main reason for radon determination in house comes from the fact that Radon and its daughters are directly responsible of lung cancer and some kidney diseases. The measurements, in this study, have been performed for Khartoum indoors. 644 rooms have been measured. These rooms were sorted out into groups according to their building material as well as the ventilation of each room. The measurements covered the whole year ( the three main seasons ) to see the variation of Radon level, since its emanation is affected by the temperature. Also monthly outdoor measurements have been performed in different locations in Khartoum. On the basis of the results obtained, the radiation dose received by the public due to the inhalation of this gas has been calculated. The average annual effective dose was found to be 1.2 m Sv. (author). 33 refs., 17 tabs., 24 figs

  4. Radon risk in Alpine regions in Austria: Risk assessment as a settlement planning strategy

    International Nuclear Information System (INIS)

    Gruber, V.; Baumgartner, A.; Seidel, C.; Maringer, F. J.

    2008-01-01

    Soil gas radon measurements complement indispensable and well-established radon indoor measurements in Austria. Radon in soil gas is a result of geochemical conditions as well as of geology, mineralogy, geophysics and meteorology. Therefore, geological factors can help to predict potential indoor radon concentrations via soil gas. Soil gas radon measurements in well-defined geological units give an estimate of local and regional radon hazards and build the basis for radon risk maps, which could be used for land-use planning and urban development. The creation of maps makes an important contribution to health care. For this purpose, several research projects were carried out in Austria. On the one hand, a study was already conducted in Lower Austria to determine the influence of meteorological and soil physical parameters on radon concentrations in soil gas and to evaluate soil gas radon concentrations with a radon emanation and migration model. On the other hand, radon measurements on different geomorphologic formations in the Austrian Alps, which are potential settlement areas, are of special interest. (authors)

  5. Evaluation of the open vial method in the radon measurement

    International Nuclear Information System (INIS)

    Lopez del Rio, H.; Davila R, J. I.; Mireles G, F.

    2014-10-01

    The open vial method is a simple technique, under-utilized but that take advantage of the great radon solubility in organic solvents, therefore applies in the measurement of the radon concentration exhaled in soil. The method consists on the exposition to the gas radon of an open vial with scintillating solution. An integral mathematical model for indoors that describes the emanation processes and gas radon exhalation was developed, as well as the radon dissolution in the scintillation liquid, besides obtaining the characteristic parameters of the experimental system proposed for the radon concentration calculation exhaled by soils. Two experimental arrangements were designed with exposition cameras of 12 and 6 L and quantity of different soil. The open vial was prepared with a mixture of 8 ml of deionized water and 12 ml of scintillation liquid OptiPhase Hi Safe 3 in polyethylene vials; the measurements of the dissolved radon were carried out in scintillation liquid equipment. As a result, on average 2.0% of the exhaled radon is dissolved in the open vial and the dissolved fraction is independent of the experimental arrangement. Also was observed that the exposition time does not affect the radon dissolution significantly, in correspondence with the reported in the literature. (Author)

  6. Indoor radon measurements in the Women College, Dammam, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qahtani, Mona [Women College, P. O. Box 838, Dammam 31113 (Saudi Arabia); Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    Passive radon dosimeters, based on alpha particle etched track detectors, were used in the indoor radon survey of the College of Science for Girls in Dammam, Saudi Arabia. A total of 95 dosimeters were distributed in the academic departments and the administrative building in the College. The exposure time in all the buildings was one complete lunar year in the period October 2001-October 2002 to get the average annual indoor radon concentration. All the buildings were constructed with ready-made concrete, except the administrative building which constructed with ordinary concrete bricks. A significant difference in the average indoor radon concentrations in the two types of buildings was found. The average indoor radon concentration in the ready-made concrete buildings was 6+/-2Bqm{sup -3} whereas that for the ordinary concrete brick building was 24+/-2Bqm{sup -3}. This could be due to the fact that ready-made concrete has a significantly less voids for the radon to emanate compared with ordinary concrete bricks. The indoor radon concentration in the ground floor is slightly higher than that in the first and second floors.

  7. Development and application of a model to calculate the distribution of radon in houses

    International Nuclear Information System (INIS)

    Haider, B.; Papamokos, E.; Ferron, G.; Peter, J.; Unverfaerth, L.

    1990-01-01

    In order to produce a radon profile of the examined houses, an electronic measuring process was used to determine the concentration of radon decomposition products. The measurements were made inside flats with the doors closed, in vertical air exchange between the cellars and the storeys of houses and in the cellar itself. The measured decomposition product and measured gas concentrations show that, apart from the cellar floor, part of the building material makes a considerable contribution to emanation of radon and thoron. It was found that a model for calculating the loading of the inhabitants of a house with radon is not yet available due to the complicated flat geometry and the activities of the inhabitants. (DG) [de

  8. Radon concentration in spring and groundwater of Shillong agglomeration

    International Nuclear Information System (INIS)

    Walia, D.; Wahlang, P.; Lyngdoh, A.C.; Saxena, A.; Sharma, Y.; Maibam, D.

    2010-01-01

    Water samples in the month of February 2010 to April 2010 are collected from 06 springs (sample code S1-S6) and 18 wells (sample code W1-W18) of the Shillong agglomeration in radon-tight 1L bottles, considering the geological structures, nearness to the steep slopes and accessibility of the water sources. The measurement of radon in water samples is carried out using ionization chamber Alphaguard along with an accessory (fabricated in the laboratory). Initially, background radon of the empty set-up is measured for 30 minutes before every water-sample measurement. The water samples are placed in a closed gas cycle in degassing vessel and then radon is expelled using the pump and magnetic stirrer. The security vessel is connected with the degassing vessel to minimize the inflow of water vapour to the Alphaguard. The measuring cycle is repeated 3 times in order to obtain a better precision. The arithmetic mean of the radon concentrations are used for calculating the annual effective dose for ingestion of water from each bore well and spring. The pH, electrical conductivity and temperature are measured so as to correlate the meteorological parameters with the radon emanation

  9. Radon: a problem of terminology

    International Nuclear Information System (INIS)

    Pellegrini, D.; Demongeot, S.

    1995-01-01

    Here are detailed the difficulties to speak about the same thing if we don't use the same language. The example is the radon and what we want to tell about it; it is necessary to explain what words we are using and what mean we want to give them. Then, emanation and exhalation are given with their definitions. Also the terms as factor, flux and rate are redefined. It is a way to make scientific population sensitive to terminology

  10. Radium-226 content and emanating power of some timepieces manufactured in the years 1926--1951

    International Nuclear Information System (INIS)

    Keane, A.T.; Huff, D.R.

    Thirty-two radium-dial timepieces manufactured in the years 1926 to 1951 by a company in Connecticut were individually sealed in small steel cans for determination of radium-C ( 214 Bi) activity by γ-ray spectroscopy. Each can was counted within a few hours after sealing and again 5 or 6 days later; from the two observations, radium-C activities at time of sealing (nonemanating radium content) and at equilibrium (total radium content) were calculated. The mean radium-226 content of 22 pocket watches was 348 nCi (range, 159 to 606), and the mean emanating power (1-nonemanating Ra/total Ra) was 0.175 (range, 0.09 to 0.33). The mean radium-226 content of 9 wrist watches was 150 nCi (range, 54 to 449), and the mean emanating power was 0.242 (range, 0.12 to 0.34). The radium-226 content of the one small clock was 633 nCi, and its emanating power was 0.15. The concentration of radon-222 in the air of a sealed room of dimensions 3 x 3 x 3 m would be increased by about 3 pCi/l if a watch containing 400 nCi of radium-226 with an emanating power of 0.2 were left in the room for a few weeks. (U.S.)

  11. Radon in waters from health resorts of the Sudety Mountains (SW Poland)

    International Nuclear Information System (INIS)

    Ciezkowski, W.; Przylibski, T.A.

    1997-01-01

    This paper discusses the geological background related to the presence of selected radon waters in the Sudety Mountains. Special attention is paid to radon waters whose chemical composition is formed within metamorphic rocks (mainly gneisses). The physical, chemical, and isotopic characteristics of the waters of Ladek Zdroj, Czerniawa Zdroj and Swieradow Zdroj are presented. The rocks at these locations are briefly characterized by their U, Th, and Ra contents. It was found that the basic role in enrichment of these waters with radon is played by the 100 m deep near-surface zone. This is related to the increased emanation coefficient in this zone as a consequence of weathering processes. It is also shown that the residence time of water in the rocks is not important for radon genesis. (author)

  12. Determination of radon exhalation rates from tiles using active and passive techniques

    International Nuclear Information System (INIS)

    Al-Jarallah, M.I.; Abu-Jarad, F.; Fazal-ur-Rehman

    2001-01-01

    Measurements of radon exhalation rates for selected samples of tiles used in Saudi Arabia were carried out using active and passive measuring techniques. These samples were granite, marble and ceramic. In the active method, a PC-based radon gas analyzer with emanation container was used, while, in the passive method, PM-355 nuclear track detectors with the 'can technique' were applied for 180 days. A comparison of the exhalation rates measured by the two techniques showed a good linear correlation coefficient of 0.7. The granite samples showed an average radon exhalation rate of 0.7 Bq m -2 h -1 , which was higher than that of marble and ceramic by more than twofold. The radon exhalation rates measured by the 'can technique' showed a non-uniform exhalation from the surface of the same tile

  13. A search for correlation between seismicity and radon anomaly in hot springs

    International Nuclear Information System (INIS)

    Amin, B.S.; Rama

    1982-01-01

    Measurements of radon contents of the exholved gas emanating from several hot water springs along the Western Coast of India are reported here. Concentration of radon in gas phase of individual sprinqs varied in general, directly with the surface temperature of the water emerging from the respective springs, and showed little variation with time. Radon measurements were carried out continuously for about two years at two hot springs located at Ganeshpuri and Sathivali in the coastal area of Northern Maharashtra. The distant tremors did not cause any variation in the radon content. There was no marked local seismic activity during the period of observations, and the levels of radon stayed essentially constant. The measurements were also carried out at a hot spring in Assam, for about 8 months. These also did not show any significant variation; this period too lacked any marked local seismicity. (author)

  14. Utilization of rice husk ash to enhance radon resistant potential of concrete

    International Nuclear Information System (INIS)

    Jain, Ravinder; Kant, Krishan; Yadav, Mani Kant; Chauhan, R.P.

    2013-01-01

    The radiological and health implication posed by radon and their decay products are well known. The soil containing varying amount of radionuclides is the primary source of indoor radon. The indoor radon level depends upon its entrance through the pores of the ground and floor. Thus it is necessary to restrict the radon from soil to enter indoors by application of materials with low radon diffusion coefficient. The method used for radon shielding purpose in present study utilizes the rice husk ash for substitution with cement to achieve low diffusion coefficient. The study describes the method to optimize the condition of preparation of rice husk ash using X-ray diffraction and fluorescence spectroscopy techniques. The rice husk substitution with cement was optimized by compressive and porosity test of concrete cubes. The diffusion coefficient through concrete modified by rice husk ash was carried out by scintillation radon monitor and specially design radon diffusion chamber. The radon exhalation rates from concrete carried out using active technique decreasing radon emanation from concrete with increase of rice husk ash. The result of present study suggest substitution of 20-30% rice husk ash with cement to achieve lower radon diffusion and exhalation rates with higher compressive strength as compared to control concrete. (author)

  15. Radon as a tracer for soil-gas entry into a house located next to a contaminated dry-cleaning property; Radon som sporgas for jordluftindtraengning til hus ved forurenet renserigrund

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    2001-07-01

    This study applies the naturally occurring radioactive gas radon-222 as a tracer for soil-gas entry into a house located next to a dry-cleaners shop. This is possible because the concentration of radon in the soil below the house is about 1000 times higher than the concentration in outdoor air. The study is based on continuous indoor measurement of radon, differential pressures, barometric pressure and temperatures and grab samples of radon below the slab and in the soil in the vicinity of the house. During the investigation, vacuum extraction were used to remove chlorinated solvents (perchloroethylene, PCE) from the unsaturated zone. The study shows that the vacuum extraction influences the radon concentration in and below the house. When the vacuum pump is on, the indoor radon concentration is only 10 Bq/m{sup 3} corresponding to the contribution from radon in outdoor air and exhalation from building materials. When the vacuum pump is set off, the average indoor radon concentration increases to 30 Bq/m{sup 3}. It is believed that the increase is caused by radon entry from the soil. Regression analysis demonstrates that changes in the indoor radon concentration can be explained by changes in indoor-outdoor pressure differences and changes in the atmospheric pressure. This suggests that advection is the primary mode of entry. Under some highly simplifying assumptions the soil-gas entry is found to be around 1 m{sup 3}/h. This, however, is most likely an overestimate. Based on the measured radon concentration in the exhaust air from the vacuum system and a typical radon emanation rate for Danish soil, it is estimated that the soil vapor extraction system ventilates about 10000 m{sup 3} of soil. The investigation is supported by numerical model calculations with the finite-volume model Rnmod3d. (au)

  16. α-Spectrometry of radon-bearing mine air

    International Nuclear Information System (INIS)

    Haider, B.; Huber, J.

    1978-01-01

    To know the activity distribution in mine air may be very helpful. For this purpose an automatic monitoring station for α-spectrometry had been built and tested in an adit of the Muellenbach pilot mine. The distribution of the short-life radon daughter products has been registered. Some test data are explained. They can also facilitate the location of emanation sources. (orig.) 891 HP/orig. 892 MB [de

  17. Formulation of the fundamental basis for the evaluation of the comparability of different measuring method for the determination of ground air radon concentration. Vol. 2. Report on ground air radon measurements - influence factors, measuring methods, evaluation; Erarbeitung fachlicher Grundlagen zur Beurteilung der Vergleichbarkeit unterschiedlicher Messmethoden zur Bestimmung der Radonbodenluftkonzentration. Bd. 2. Sachstandsbericht ''Radonmessungen in der Bodenluft - Einflussfaktoren, Messverfahren, Bewertung''

    Energy Technology Data Exchange (ETDEWEB)

    Kemski, J.; Klingel, R.; Siehl, A.; Neznal, M.; Matolin, M.

    2012-03-15

    The report on ground air radon measurements covers the following issues: Introduction; Radon in the geogenic underground: emanation, migration, exhalation; Influencing factors: geochemical parameters, structural situation, geomorphology, exogenic effects; Ground air measurements: site exploration, tectonics, earth quake prognosis, radon in ground air and buildings; Radon measurement: sampling and measuring methods, error consideration, comparative measurements, practical examples; measuring regulations and recommendations; Variability of the radon concentration: temporal variation, sampling depth, spatial variations; Evaluation and conclusions.

  18. Measurement of exhalation and diffusion parameters of radon in solids by plastic track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Haffez, A.-F.; Hunyadi, I.; Toth-Szilagyi, M.

    1986-01-01

    There are large discrepancies in data available in the literature for the exhalation and diffusion behaviour of radon in various materials. Therefore there is a need for more studies in this field. For this purpose we have developed and used track methods to measure mass and areal exhalation rates of radon from different fly ashes and sand. In addition, methods were also developed to determine the diffusion length of radon and the porosity of materials. For getting the radon emanation coefficient we have applied the autoradiographic method and the ''can-technique'' for determining the real and effective radium contents. The disturbing effect expected from the geometry of measuring cans and samples is discussed. Relations are derived for the correction of such effect.

  19. Measurement of radon flux and tailings parameters for quantifying the source term due to radon exhalation from U tailings pile at Jaduguda

    International Nuclear Information System (INIS)

    Sahoo, B.K.; Mayya, Y.S.; Sapra, B.K.; Gaware, J.J.; Khuswaha, H.S.

    2010-01-01

    Full text: The exposures from radon ( 222 Rn) and its decay products have been received considerable attention in the world community because of their adverse health effect. There are various natural and man-made sources of radon present in our environment. Among the man-made sources, the U tailings (waste product from U mining and milling facility) may be considered an important one because it contains significant amount of 226 Ra activity after the U extraction from the ore bodies. These tailings (slurry form) are being impounded into a repository site nearby the facility called 'Tailings Pile' (TP). Significant amount of radon emission takes place from this area by the process of emanation and exhalation. Hence, a study was taken up to quantify the source term arising due to radon emission from uranium tailings pile at Jaduguda in Jharkhand state. In-situ experiments were conducted at 40 locations of the uranium tailings pile in three seasons namely summer, rainy and winter to measure the radon fluxes. The measurements were carried out by deploying a cylindrical chamber, attached to a continuous radon monitor, on the surface of the tailings pile. The dimension of the chamber was selected by using a recently developed two dimensional theory of soil chamber, so that radon concentration growth will be in exponential fashion and the data generated within 2-3 hours of deployment period will be sufficient for accurately deriving the actual radon flux. After the data collection, the fluxes were derived by fitting an exponential growth function to the plot of radon concentration with time. The fluxes were also predicted by diffusion theory using the measured tailings parameters such as 226 Ra content, radon emanation factor, porosity, temperature and moisture. An excellent matching between the predicted and measured fluxes was observed. The validity of diffusion theory in the matrix of U tailings pile provides an alternate method for back-calculating the tailings

  20. Determination of radon exhalation rates from tiles using active and passive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Fazal-ur-Rehman

    2001-06-01

    Measurements of radon exhalation rates for selected samples of tiles used in Saudi Arabia were carried out using active and passive measuring techniques. These samples were granite, marble and ceramic. In the active method, a PC-based radon gas analyzer with emanation container was used, while, in the passive method, PM-355 nuclear track detectors with the 'can technique' were applied for 180 days. A comparison of the exhalation rates measured by the two techniques showed a good linear correlation coefficient of 0.7. The granite samples showed an average radon exhalation rate of 0.7 Bq m{sup -2} h{sup -1}, which was higher than that of marble and ceramic by more than twofold. The radon exhalation rates measured by the 'can technique' showed a non-uniform exhalation from the surface of the same tile.

  1. The role of house surveys in geological radon potential mapping

    International Nuclear Information System (INIS)

    Ball, K.

    1997-01-01

    Because radon levels vary widely between apparently identical buildings on the same geological unit, no map can predict the radon level in an individual building. Maps can, however, give the probability that a building in a particular locality is above a threshold of radon concentration such as a reference or action level. The probability may be calculated for a particular building type or for a mixture of building types. In the latter case the probability is in effect an estimate of the proportion of buildings above the threshold level. Alternatively maps can provide estimates of the mean radon levels in buildings by area. Maps showing the geographical variation in probability that new or existing building will exceed a radon reference level are used to prevent excessive exposures to radon. The information may be used in various ways, such as to target information campaigns encouraging measurement of radon levels in homes or to modify regulations for new buildings. The data which are used to provide the estimates of the proportion of buildings above a threshold may be radon measurements results from a sample of buildings, or may be indirect indicators such as ground radium concentrations, emanation coefficients and permeability measurements. Consistency in radon measurement protocols and detailed positional information are prerequisites for mapping radon prone areas based upon house data. Grouping building radon measurements by geological formation and superficial cover can produce radon potential maps which are more spatially accurate than grid square maps and more accurate in estimating numbers of homes affected than mapping based only on measuring geological and pedagogical properties

  2. Assessment of lung cancer risk from radon in five provinces of Iran

    International Nuclear Information System (INIS)

    Baradaran, S.; Taheri, M.; Setayeshi, S.

    2010-01-01

    Radon is a natural radioactive gas which is produced by decay of the Uranium and emanates from the ground. According to EPA and WHO studies, Radon is the second largest cause of lung cancer after smoking. According to the registered information report of cancer cases from 1985 till now, lung cancer is the second most common death cause in all cancers (after stomach cancer) in Iran. Based on the report of the National Institute of Cancer and the Iranian Ministry of Health, the total death due to lung cancer were estimated to be 5.7%, 4.82%, 4.48% 3.76%, 9% in mentioned provinces. An investigation was made on the relation between lung cancer risk and radon levels. The risk for smoking, the first leading cause of lung cancer, is more greater than for radon, the second leading cause. The results show that there is no direct relation between increased risk of lung cancer from indoor radon exposure, but it cannot be ignored that indoor radon should be considered as a cause of lung cancer in the general population

  3. Meteorological factors influencing on the radon concentrations in indoor and outdoor airs

    International Nuclear Information System (INIS)

    Kojima, Hiroshi

    1989-01-01

    Factors influencing radon concentrations in indoor and outdoor airs are discussed. A balance between source and loss is required in determining the radon concentration. Source refers to as the outdoor and indoor exhalation rate from the ground and the building materials. Loss is caused by turbulent diffusion outdoors and ventilation indoors. A significant factor influencing the exhalation rate of indoor and outdoor radon may be the change in atmospheric pressure. A drop of pressure feeds the high concentration air under the ground or building materials into the open air, and contributes to the increased exhalation rate. The exhalation rate of radon closely depends on the moisture content of the ground or building materials. Up to a certain level of moisture, the radon exhalation increases with increasing moisture content because the emanation power increases by a recoil effect of a fluid present in the internal pores of the materials. Beyond a certain level of moisture, the exhalation decreases rapidly because the pores are filled with water. Radon exhalated from the ground is spread out by turbulent diffusion. The turbulent diffusion may be related to wind velocity and the lapse rate of temperature. There is a remakable difference between indoor and outdoor radon concentrations. The ventilation rate of the house exerted a great effect upon the indoor radon concentration. The ventilation rate is influenced by meteorological factors together with human activities. Of such factors, wind velocity and temperature gradient between indoor and outdoor airs may be the most significant. The correlation coefficients between RaA or radon and some meteorological factors were calculated on the data from the long term measurements on radon and its decay products in and out of a house under normal living conditions. The changes in atmospheric pressure and wind velocity are found to be a significant factor in the variation of concentration of these nuclides. (N.K.)

  4. Study of 222Rn emanation levels present in naturally occurring radioactive materials - NORM

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria F.E. Sa; Crispim, Verginia Reis; Lima, Clara Teresa S.

    2009-01-01

    The presence of Naturally Occurring Radioactive Material (NORM), contaminating oil and gas installations, is usual in the petroleum industry, and can be severe enough to expose the workers to elevated levels of radiation. The segregation of contaminated residues although necessary, is still a problem without a satisfactory solution. Currently, the most practical and economic option for discarding this material is to stock it in areas of the installation with controlled access. Certain equipment used in the petroleum industry has scale and sludge that could be associated to important levels of radioactivity. Typically, the scales are mixtures of carbonate and sulphate minerals, such as barite (BaSO 4 ), that easily incorporate 226 Ra and 228 Ra in their structures. The objective of this work was to measure the emanations of the radon present in NORM samples, via diffusion chambers containing a nuclear track detector (CR-39). The images of α particle tracks emanated by 222 Rn registered on CR-39 were observed with a Nikon E400 optic microscope and captured by a Nikon Coolpix digital camera and then stored in a database, to later count the tracks using the computational program, Image Pro plus. Since the number of those tracks resulted proportional to the emanation rate of 222 Rn this methodology allowed the comparison of contamination levels in analyzed samples. (author)

  5. Comparison of retrospective and contemporary indoor radon measurements in a high-radon area of Serbia

    International Nuclear Information System (INIS)

    Zunic, Z.S.; Yarmoshenko, I.V.; Kelleher, K.; Paridaens, J.; Mc Laughlin, J.P.; Celikovic, I.; Ujic, P.; Onischenko, A.D.; Jovanovic, S.; Demajo, A.; Birovljev, A.; Bochicchio, F.

    2007-01-01

    In Niska Banja, Serbia, which is a high-radon area, a comparison was made between two retrospective radon measuring methods and contemporary radon measurements. The two retrospective methods derive the radon concentrations that occurred in dwellings over longer periods in the past, based on the amount of trapped 210 Po on the surface of glass objects (surface traps, ST) or in the bulk of porous materials (volume traps, VT). Both surface implanted 210 Po in glass objects and contemporary radon in air were measured in 46 rooms, distributed in 32 houses of this radon spa-town, using a dual alpha track detector configuration (CR-39 and LR115) and CR-39 track etched detectors, respectively. In addition to the use of surface trap measurements, in 18 rooms (distributed in 15 houses) VT samples of suitable material were also collected, allowing to compare ST and VT retrospective radon concentration estimates. For each room, contemporary annual radon concentrations (CONT) were measured or estimated using seasonal correction factors. The distribution of the radon concentration in all data sets was found to be close to lognormal (Chi-square test > 0.05). Geometric means (GM) are similar, ranging from 1040 to 1380 Bq m -3 , whereas geometric standard deviations (GSD) for both the retrospective methods are greater than for the CONT method, showing reasonable agreement between VT, ST and CONT measurements. A regression analysis, with respect to the lognormal distribution of each data set, shows that for VT-ST the correlation coefficient r is 0.85, for VT-CONT r is 0.82 and for ST-CONT r is 0.73. Comparison of retrospective and contemporary radon concentrations with regard to supposed long-term indoor radon changes further supports the principal agreement between the retrospective and conventional methods

  6. Determination of the emanation coefficient of radon for the South Karelia soil

    Energy Technology Data Exchange (ETDEWEB)

    Filimonov, V V

    1975-01-01

    Measurements have been obtained for so-called 'reference' plots which are used for the calibration of airborne gamma-spectrometric instruments - in all about 200 spot observations, not counting the results of continuous survey taken while in motion. The gamma-spectrometric measurements were carried out taking into account as far as possible a number of disturbing factors, such as the fluctuations in soil moisture, atmospheric precipitation, variations in the atmospheric radon concentration due to the temperature inversions.

  7. Integral measurement system for radon

    International Nuclear Information System (INIS)

    Garcia H, J.M.; Pena E, R.

    1996-01-01

    The Integral measurement system for Radon is an equipment to detect, counting and storage data of alpha particles produced by Radon 222 which is emanated through the terrestrial peel surface. This equipment was designed in the Special Designs Department of the National Institute of Nuclear Research. It supplies information about the behavior at long time (41 days) on each type of alpha radiation that is present into the environment as well as into the terrestrial peel. The program is formed by an User program, where it is possible to determine the operation parameters of a portable probe that contains, a semiconductor detector, a microprocessor as a control central unit, a real time clock and calendar to determine the occurred events chronology, a non-volatile memory device for storage the acquired data and an interface to establish the serial communications with other personal computers. (Author)

  8. Radon in the air in the Millenium of the Polish State Underground Tourist Route in Klodzko (Lower Silesia, PL)

    International Nuclear Information System (INIS)

    Przylibski, T.A.

    1998-01-01

    The paper presents results of measurements of average monthly radon concentrations in drifts of the Millenium of the Polish State Underground Tourist Route in Klodzko. The studies revealed no significant seasonal fluctuations of radon concentration. Constant influx of radon from the geological basement, and most of all from loess-like loams and rhyolite inliers, is compensated by a natural ventilation system. Only in the summer periods of elevated radon concentrations in the air of the drifts and chambers of the Route can occur. In individual sections it is possible to measure occasional higher radon concentrations caused by local air flow fluctuations in the drifts. The highest concentrations were measured in places with the poorest ventilation - blind drifts ventilated only by backward currents. The average radon concentrations measured do not exceed concentrations allowed in apartment buildings. Therefore, in the Route there is no risk of exposure to excessive amounts of radon for personnel and tourists. The results obtained in the Route's drifts may be compared with minimum results expected in basements of houses in the Old Town in Klodzko. The paper stresses also a role of natural ventilation in protection of underground constructions and apartment buildings against high radon concentrations in areas of its elevated emanations from the geological basement. (author)

  9. An investigation into the knowledge and attitudes towards radon testing among residents in a high radon area

    International Nuclear Information System (INIS)

    Clifford, Susan; Menezes, Gerard; Hevey, David

    2012-01-01

    The aim of this study was to investigate the knowledge and attitudes of residents in the Castleisland area to radon. Castleisland in Co. Kerry was described as a high radon area following the discovery of a house in the area with radon levels 245 times that of the national reference level. Residents in this area were then asked to measure their homes for radon in the Castleisland radon survey. The uptake of this measurement was 17%. In order to investigate this response rate further, a questionnaire was designed and distributed to residents in the Castleisland area. This questionnaire measured the testing history of the participants, the reasons for testing/not testing, the factors important to them when considering having their home tested, radon knowledge and finally intentions to measure their home for radon. It was found that the main reason people do not test their home for radon is that they believe their home does not have a problem. Optimistic bias was thought to play a role here. The subjective norm component of the theory of planned behaviour was found to have a significant independent contribution in the variation in intentions to measure one’s home for radon and this in turn could be targeted to increase uptake of radon measurement in the future. (note)

  10. Radon-technical design methods based on radon classification of the soil

    International Nuclear Information System (INIS)

    Kettunen, A.V.

    1993-01-01

    Radon-technical classification of the foundation soil divides the foundation soil into four classes: negligible, normal, high and very high. Separate radon-technical designing methods and radon-technical solutions have been developed for each class. On regions of negligible class, no specific radon-technical designing methods are needed. On regions of normal radon class, there is no need for actual radon-technical designing based on calculations, whereas existing radon-technical solutions can be used. On regions of high and very high radon class, a separate radon-technical designing should be performed in each case, where radon-technical solutions are designed so that expected value for indoor radon content is lower than the maximum allowable radon content. (orig.). (3 refs., 2 figs., 2 tabs.)

  11. Radon in air calibration procedure: A primary method

    International Nuclear Information System (INIS)

    Lucas, H.F.; Markun, F.

    1988-01-01

    A procedure has been developed for preparing 3- to 9-iota volumes of air under natural conditions with a known concentration of /sup 222/Rn to be used for calibrating radon systems. Air is passed into a plastic bag through a standard /sup 226/Ra solution (prepared by the U.S. National Bureau of Standards) contained in an emanation flask. This plastic bag retains /sup 222/Rn with little loss into or through the bag walls. The mean ratios of the /sup 222/Rn in the air at 2 and 7 days after filling to that immediately after filling were -.992 +- 0.006 and 0.969 +- 0.008, which suggests a rate of radon loss into the bag of 0.4 +- 0.1%/day

  12. Mapping the geogenic radon potential of the eastern Canary Islands.

    Science.gov (United States)

    Rubiano, Jesús G.; Alonso, Hector; Arnedo, Miguel. A.; Tejera, Alicia; Martel, Pablo; Gil, Juan M.; Rodriguez, Rafael; González, Jonay

    2014-05-01

    The main contribution of indoor radon comes from soils and thus, the knowledge of the concentration of this gas in soils is important for estimating the risk of finding high radon indoor concentrations. To characterize the behavior of radon in soils, it is common to use the a quantity named Radon Potential which results of a combination of properties of the soil itself and from the underlying rock, such as concentration and distribution of radium, porosity, permeability, the moisture content and meteorological parameters, among others. In this work, the results three year of campaigns of measurement radon gas as well as the permeability in soils of the Eastern Canary Islands (Gran Canaria, Fuerteventura and Lanzarote) are presented. By combining these two parameters and through the use of geostatistic interpolation techniques, the radon potential of soils is estimated and it is used to carry on a classification of the territory into hazard zones according to their potential for radon emanation. To measure the radon soil gas a probe equipped with a "lost" sharp tip is inserted to the desired sampling depth. One of the characteristics of the Canary Islands is the absence of developed soils and so the bedrock is found typically at very shallow depth. This fact has led us to adopt a sampling depth of 50 cm at most. The probe is connected to the continuous radon monitor Durridge RAD7 equipped with a solid-state alpha spectrometer to determine concentration radon using the activity its short-lived progeny. Dried soil air is delivered to the RAD7 radon monitor by pumping. A half hour counting time for all sampling points has been taken. In parallel to the radon measurement campaign, the permeability of soils has also been determined at each point using the permeameter RADON-JOK. The principle of operation of this equipment consists of air withdrawal by means of negative pressure. The gas permeability is then calculated using the known flow of air flowing through the probe

  13. Evaluation of tectonic impact on radon level of lithological units

    International Nuclear Information System (INIS)

    Wolkowicz, S.; Strzelecki, R.

    2000-01-01

    The radon potential maps of the Sudetes Mountains and Upper Silesian Coal Basin have been prepared on a base of arithmetic mean value of radon concentration in soil air in distinguished lithological/stratigraphic units. Both zones of shallow position of ground table and the fault zones influence value of this parameter: the first one affects in specific conditions lowering of background values, the second ones - origin of values several and teen times higher than rock background values. Estimation of power of tectonic influence on general radon potential of the lithological units has been made on a base of examination of histograms of distribution of radon concentration in soil air. In the Sudetes area, 0 % to about 30 % of the measurements is related to fault zones. Higher tectonic engagement (about 30 %) characterizes the Karkonosze Granites, Izera Gneisses and Strzegom Granites. In the cases of Karkonosze Granites and the Strzegom Granites, rock background values concentrations in soil air are a little than 50 kBq/m 3 , what is the value defined for lower threshold of high radon risk areas. In conclusion, presence of numerous fault zones and fissures increases radon risk category with one class. Background modal values of radon emanations, defined for the studied units, in the 5 cases fulfill criteria for medium radon risk areas, and in other cases do not exceed of the threshold 10 kBq/m 3 . It displays, that in the case of low radon potential rocks only a few-percent rich population of measurements related to tectonic zones, is sufficient to substantially deform of the image of the studied unit radon potential. For instance, medium radon potential characterizes the Klodzko - Zloty Stok Granites (the arithmetic mean value of this class is 36.15 kBq/m 3 , n=104) and small tectonic engagement (about 3.8 %). In the result the modal value belongs to the class 20-30 kBq/m 3 . The Poreba Beds in the Upper Silesian Coal Basin are characterised by almost the same radon

  14. High radon exposure in a Brazilian underground coal mine

    International Nuclear Information System (INIS)

    Veiga, L H S; Melo, V; Koifman, S; Amaral, E C S

    2004-01-01

    The main source of radiation exposure in most underground mining operations is radon and radon decay products. The situation of radon exposure in underground mining in Brazil is still unknown, since there has been no national regulation regarding this exposure. A preliminary radiological survey in non-uranium mines in Brazil indicated that an underground coal mine in the south of Brazil had high radon concentration and needed to be better evaluated. This paper intends to present an assessment of radon and radon decay product exposure in the underground environment of this coal mining industry and to estimate the annual exposure to the workers. As a product of this assessment, it was found that average radon concentrations at all sampling campaign and excavation sites were above the action level range for workplaces of 500-1500 Bq m -3 recommended by the International Commission on Radiological Protection-ICRP 65. The average effective dose estimated for the workers was almost 30 times higher than the world average dose for coal miners

  15. Radon-thoron exposures in high background radiation areas: a review

    International Nuclear Information System (INIS)

    Nambi, K.S.

    1994-01-01

    The radon-thoron measurements reported in literature for the high background radiation areas (HBRAs) of the world are summarised here. The most important areas covered are the Radon Spas and the thorium bearing monazite deposits. Special mention is made of the ongoing programmes of radon-thoron survey in the monazite beach areas of India; preliminary measurements indicate significant levels of thoron exposures. The diurnal and seasonal variations are quite wide underscoring the importance of carrying out integrated measurements for meaningful assessments of population exposures. Radon-thoron inhalation dose rates upto 30 mSv/y have been measured in lran as well as India. It has been generally observed that the cumulative population doses due to radon-thoron inhalation are as high as those due to the external exposures in these HBRAs. (author). 7 refs., 2 tabs., 3 figs

  16. Radon exhalation in some building construction materials and effect of plastering and paints on the radon exhalation rate using fired bricks

    International Nuclear Information System (INIS)

    Sharma, Anil; Mahur, A.K.; Rajendra Prasad; Sonkawade, R.G.; Sharma, A.C.

    2013-01-01

    The technological endeavors of human beings have modified the levels of radiation exposure slightly. The emanation of radon is primarily associated with radium and its ultimate precursor uranium. The radiation dose received by human beings from indoor radon and its progeny is the largest of all doses received either by natural or man-made sources. In order to investigate the effect of paints available in the market on the radon exhalation rate from building materials, several bricks were collected. These bricks were plastered with a mixture of cement and sand. Before measurements bricks were dried for 24 hours. These plastered bricks were then coated with white wash and again dried for 1- 2 hours. After drying the bricks were coated with different brands and colors of paints. Radon exhalation rates measurements were carried out for these painted bricks using 'Sealed can Technique' cylindrical plastic 'Can' of 7.5 cm height and 7.0 cm diameter was sealed to the individual samples by plastic can. In each 'Can' a LR-115 type II plastic detector (2 cm 2cm) was fixed at the top inside of the 'Can', such that the sensitive surface of the detector faces the material and is freely exposed to the emergent radon. Radon decays in the volume of the can record the alpha particles resulting from the 218 Po and 214 Po deposited on the inner wall of the 'Can'. Radon and its daughters will reach an equilibrium in concentration after one week or more. Hence the equilibrium activity of the emergent radon can be obtained from the geometry of the can and the time of exposure. The results will be discussed. (author)

  17. Study of the emanation levels of 222Rn present in Naturally Occurring Radioactive Materials - NORM

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria de Fatima da Encarnacao Sa

    2009-01-01

    The presence of Naturally Occurring Radioactive Material (NORM), contaminating oil and gas facilities, is a common fact in the petroleum industry, and can be severe enough to expose the workers to elevated levels of radiation. Thus, contaminated residues need to be segregated but, this is still a problem without a satisfactory solution. Currently, the most practical and economic option for discarding this material is to stock it in areas of the facility whose access is controlled. Certain equipment used in the petroleum industry has scale and sludge that could be associated to important levels of radioactivity. Typically, the scale is a mixture of carbonate and sulphate minerals, such as barite (BaSO 4 ), that easily incorporates 226 Ra and 228 Ra in its structures. The objective of this work was to measure the emanations of the radon present in these NORM samples, via diffusion chambers containing a nuclear track detector (CR-39). The images of particle alpha tracks emanated by 222 Rn registered on CR-39 were observed with a Nikon E400 optic microscope and captured by a Nikon Coolpix digital camera and then stored in a database, to later count the tracks using the computational program, Image Pro plus. Being that the emanation rate of 222 Rn was proportional to the number of these tracks the methodology permitted the comparison of contamination levels of the analyzed samples. (author)

  18. Radon as an environmental risk: concentration measurements in family buildings at Cordoba city

    International Nuclear Information System (INIS)

    Bonzi, A.; Murua, C.; Martin, H.R.

    1992-01-01

    Measurements of radon concentration at homes are usual activities in the last years at the countries with uranium in their soils. On the other hand, the man's radiological protection about radiation is related to the environmental actions for a healthy life, but not much known for a public. The great quantities of ore with uranium can be an important source of irradiation when they are used as building materials. The soils are important too for the emanations of radon in the interior of buildings and for these reasons, the radon concentration measurements in Cordoba familiar houses were implemented in the summer of 1991. The Alpha Track Technique and the results obtained indicate the need of other measurements and a winter measurement for investigation variations of radon concentration. The typical values measured were low, about 4.13 Bq/m 3 if they are compared with other Argentine values measured. This paper discusses the procedure, techniques and criteria used in the work held in Cordoba city, Argentina. (Author)

  19. Mitigation of houses with extremely high indoor radon concentrations

    International Nuclear Information System (INIS)

    Jiranek, M.; Neznal, M.

    2006-01-01

    Full text of publication follows: The paper reports on the experience of the Czech Technical University in dealing with mitigation of houses in which unusually high indoor radon concentrations were found. The whole process of remediation is illustrated by example of an old single-family house that was built in the area formed by highly permeable soils with high radon content in the soil air. T he house has a small cellar located under 1/5 of the ground floor area. Two types of floors, i.e. timber floors and cracked concrete slabs were found in the house. As a result of extremely high radon concentration in the sub-floor region (up to 600 kBq/m 3 ) and leaky structures in contact with soil, radon concentrations around 100 kBq/m 3 in the cellar and up to 60 kBq/m 3 in the living rooms on the ground floor were measured prior to mitigation. Mitigation measures that were carried out in the house consist of reconstruction of timber floors and installation of active soil depressurization. Timber floors were replaced with concrete slab fitted with damp proof membrane, thermal insulation and floor covering. The soil depressurization system was made up of two sections. The first section is composed of the network of perforated pipes inserted in the drainage layer placed under the new floors and four perforated tubes drilled under the existing floors. The soil air from this section is extracted by means of a roof fan installed at the top of the vertical exhaust pipe running inside the living space and terminating above the roof. The second section was designed to withdraw by means of a small fan radon-laden air from the filling in the floor above the cellar and from perforated tubes drilled into the sub-floor region under the rooms adjacent to the cellar. It serves also for the active ventilation of the cellar. Pressure, temperature and radon concentration sensors were installed into the drainage layer during the reconstruction of floors to record variations in these

  20. Use of Emanation Thermal Analysis in the characterization of nuclear waste forms and their alteration products

    International Nuclear Information System (INIS)

    Balek, V; Malek, Z.; Banba, T.; Mitamura, H.; Vance, E.R.

    1999-01-01

    Emanation Thermal Analysis (ETA) was used for the characterization of thermal behavior of two nuclear waste glasses, basalt volcanic glass and perovskite ceramics before and after hydrolytic treatment. The release of radon, formed by the spontaneous α-decay of 228 Th and 224 Ra and incorporated into samples to a maximum depth of 100 nm from the surface due to the recoil, was measured during heating of the samples from 20 to 1200degC and subsequent cooling. Temperatures of the annealing of surface roughness, micro-cracks and other defects, produced by manufacture and/or by subsequent treatment of glass and ceramic samples, were determined using the ETA. Microstructure changes of glass corrosion accompanying their dehydration and thermal decomposition were characterized by the radon release rate changes. The effect of hydrolytic alteration on the thermal behavior of the nuclear waste glass was revealed by ETA in an early corrosion stage. In the alteration product of the perovskite ceramics the diffusion mobility of radon was assessed in the temperature range 1000-1200degC. The thermal stability of radiation-induced defects in perovskite ceramic powder bombarded by He + ions to doses of 10 14 and 10 16 ions/cm 2 was determined by means of ETA. (author)

  1. Radon soil gas measurements in a geological versatile region as basis to improve the prediction of areas with a high radon potential

    International Nuclear Information System (INIS)

    Kabrt, Franz; Rechberger, Fabian; Schuff, Michael; Seidel, Claudia; Baumgartner, Andreas; Friedmann, Harry; Maringer, Franz Josef

    2014-01-01

    With the aim to predict the radon potential by geological data, radon soil gas measurements were made in a selected region in Styria, Austria. This region is characterised by mean indoor radon potentials of 130-280 Bq m -3 and a high geological diversity. The distribution of the individual measuring sites was selected on the basis of geological aspects and the distribution of area settlements. In this work, the radon soil gas activity concentration and the soil permeability were measured at 100 sites, each with three single measurements. Furthermore, the local dose rate was determined and soil samples were taken at each site to determine the activity concentration of natural radionuclides. During two investigation periods, long-term soil gas radon measurements were made to study the time dependency of the radon activity concentration. All the results will be compared and investigated for correlation among each other to improve the prediction of areas with high radon potential. (authors)

  2. Temporal relationships between the variations of diffuse gaseous emanations and the explosive activity of some active volcanoes of Costa-Rica, examples at the Arenal, Irazu and at the Rincon de la Vieja; Relations temporelles entre les variations des emanations gazeuses diffuses et l`activite explosive de quelques volcans actifs du Costa-Rica, exemples a l`Arenal, l`Irazu et au Rincon de la Vieja

    Energy Technology Data Exchange (ETDEWEB)

    Baubron, J C [BRGM, 45 - Orleans (France); Allard, P [CEA Centre d` Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction des Sciences de la Matiere; Fernandez, E [Obviscori, Heridia (Costa Rica); Hammouya, G [Observatoire de la Soufriere, IPG-P, le Houelmont, 97 - Gourgeyre (France); Soto, G J [ICE, San Jose (Costa Rica)

    1997-12-31

    The surveillance of the temporal evolution of radon and helium concentrations in the carbon dioxide of crater fumaroles and gaseous emanations is performed since 1992 on the Irazu, Arenal, Poas and Rincon de la Vieja volcanoes in Costa-Rica. The {sup 3}He/{sup 4}He ratio is used as an indicator of the deep origin of the volcanic gas while radon is an indicator of the CO{sub 2} flux. Radon measurements performed on the Irazu show a continuous decay of radon concentration in the intra-crater fumaroles with an important increase of the gaseous flux since 1992. On the contrary, the external fumaroles on the NW flank were characterized by an important increase in radon concentration in 1994 with a stable flux. The radon surveillance performed in soils around the volcano has shown an intense increase of the diffuse gaseous flows probably linked to the micro-seismic activity of the volcano. Similar observations are reported for the Rincon de la Vieja volcano and correlated with its eruptive history and its phreatic and phreato-magmatic activity. Short paper. (J.S.).

  3. Temporal relationships between the variations of diffuse gaseous emanations and the explosive activity of some active volcanoes of Costa-Rica, examples at the Arenal, Irazu and at the Rincon de la Vieja; Relations temporelles entre les variations des emanations gazeuses diffuses et l`activite explosive de quelques volcans actifs du Costa-Rica, exemples a l`Arenal, l`Irazu et au Rincon de la Vieja

    Energy Technology Data Exchange (ETDEWEB)

    Baubron, J.C. [BRGM, 45 - Orleans (France); Allard, P. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Direction des Sciences de la Matiere; Fernandez, E. [Obviscori, Heridia (Costa Rica); Hammouya, G. [Observatoire de la Soufriere, IPG-P, le Houelmont, 97 - Gourgeyre (France); Soto, G.J. [ICE, San Jose (Costa Rica)

    1996-12-31

    The surveillance of the temporal evolution of radon and helium concentrations in the carbon dioxide of crater fumaroles and gaseous emanations is performed since 1992 on the Irazu, Arenal, Poas and Rincon de la Vieja volcanoes in Costa-Rica. The {sup 3}He/{sup 4}He ratio is used as an indicator of the deep origin of the volcanic gas while radon is an indicator of the CO{sub 2} flux. Radon measurements performed on the Irazu show a continuous decay of radon concentration in the intra-crater fumaroles with an important increase of the gaseous flux since 1992. On the contrary, the external fumaroles on the NW flank were characterized by an important increase in radon concentration in 1994 with a stable flux. The radon surveillance performed in soils around the volcano has shown an intense increase of the diffuse gaseous flows probably linked to the micro-seismic activity of the volcano. Similar observations are reported for the Rincon de la Vieja volcano and correlated with its eruptive history and its phreatic and phreato-magmatic activity. Short paper. (J.S.).

  4. Measurements of indoor radon and radon progeny in Mexico City

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Rodriguez, G.P.

    1996-01-01

    Indoor radon has been a public concern associated with increased lung cancer risks. Radon decay products interact with indoor aerosols to form progeny with different size distributions, which may influence the lung dosimetry when the progeny are inhaled. Air pollution in Mexico City is a serious problems with high particulate concentrations, but there are few reports of indoor radon measurement. The purposes of this study were to measure the aerosol concentration, radon concentration, and radon activity size distribution in the living area of three houses in Mexico City. The radon concentration was monitored by a RGM-3 radon gas monitor (Eberline, Inc., Santa Fe, NM). A graded diffusion battery was used to determine the progeny concentration and activity size distribution. The concentration and size distribution of the indoor aerosols were monitored by a quartz, crystal microbalance cascade impactor. Our measurements showed high concentrations of indoor aerosols (20-180 gg m -3 ). However, the radon concentrations-were low ( -1 ), but showed a clear diurnal pattern with peak concentrations from 2-10 AM. The activity size distributions of radon progeny were trimodal, with peaks of 0.6 nm, 4-5 nm, and 100 rim. Most activities were associated with large particle sizes. Our results indicated that indoor radon concentration was not high, due in part to a relatively high air exchange with outdoor air. The high aerosol concentration may also play an important part in the activity size distribution of radon progeny

  5. Factors influencing upstairs and downstairs radon levels in two-storey dwellings

    International Nuclear Information System (INIS)

    Denman, A.R.; Groves-Kirkby, C.J.; Groves-Kirkby, N.P.; Crockett, R.G.M.; Phillips, P.S.; Woolridge, A.C.; Woolridge, A.C.

    2006-01-01

    Environmental radon exposure of residents of two-storey domestic premises is generally estimated on the basis of the measured radon concentrations in, and the relative occupancies of, the principal living-room and bed-room, assuming 45% and 55% occupancy of these two locations respectively. In practice, however, significant case-to-case variability exists, both in the relative periods that individuals spend in the upstairs and downstairs rooms of two-storey homes, and in the relative radon levels in these two areas. Moreover, while it is assumed that radon levels in upper storeys of multi-storey homes will be intrinsically lower than at ground level, this is not always the case, since radon exhalation from the materials from which the house is constructed may contribute significantly to indoor levels. While studies on radon level variability in the individual units in apartment blocks have been reported, the situation in two-storey low-rise dwellings appears not to have been considered. To investigate this, detailed extended measurements of radon concentrations were made in a set of thirty-four homes situated in areas of Northamptonshire known to exhibit high radon levels and declared a radon Affected Area by the United Kingdom (UK) National Radiological Protection Board (NRPB) in 1992. All homes were of typical UK construction of brick/block/stone walls under a pitched tile/slate roof. Approximately 50% of the sample were detached houses, the remainder being semidetached (duplex) or terraced (row-house). Around 25% of the sample possessed cellars, while 12% were single-storey dwellings. In two-storey homes, all monitored bedrooms were on the upper floor. Distribution of the ratios of bedroom/living-room radon levels in individual properties was left-skewed (mean 0.67, median 0.73, range 0.05 to 1.05). The mean is consistent with the outcome of early NRPB studies in England, while the variability depends principally on the characteristics of the property, and not

  6. Factors influencing upstairs and downstairs radon levels in two-storey dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Denman, A.R.; Groves-Kirkby, C.J.; Groves-Kirkby, N.P. [Northampton General Hospital, Medical Physics Dept. (United Kingdom); Crockett, R.G.M.; Phillips, P.S.; Woolridge, A.C. [Northampton Univ., School of Applied Sciences (United Kingdom); Woolridge, A.C. [Northampton Univ., School of Health (United Kingdom)

    2006-07-01

    Environmental radon exposure of residents of two-storey domestic premises is generally estimated on the basis of the measured radon concentrations in, and the relative occupancies of, the principal living-room and bed-room, assuming 45% and 55% occupancy of these two locations respectively. In practice, however, significant case-to-case variability exists, both in the relative periods that individuals spend in the upstairs and downstairs rooms of storey homes, and in the relative radon levels in these two areas. Moreover, while it is assumed that radon levels in upper storeys of multi-storey homes will be intrinsically lower than at ground level, this is not always the case, since radon exhalation from the materials from which the house is constructed may contribute significantly to indoor levels. While studies on radon level variability in the individual units in apartment blocks have been reported, the situation in two-storey low-rise dwellings appears not to have been considered. To investigate this, detailed extended measurements of radon concentrations were made in a set of thirty-four homes situated in areas of Northamptonshire known to exhibit high radon levels and declared a radon Affected Area by the United Kingdom (UK) National Radiological Protection Board (NRPB) in 1992. All homes were of typical UK construction of brick/block/stone walls under a pitched tile/slate roof. Approximately 50% of the sample were detached houses, the remainder being semidetached (duplex) or terraced (row-house). Around 25% of the sample possessed cellars, while 12% were single-storey dwellings. In two-storey homes, all monitored bedrooms were on the upper floor. Distribution of the ratios of bedroom/living-room radon levels in individual properties was left-skewed (mean 0.67, median 0.73, range 0.05 to 1.05). The mean is consistent with the outcome of early NRPB studies in England, while the variability depends principally on the characteristics of the property, and not on

  7. Development of a predictive methodology for identifying high radon exhalation potential areas

    International Nuclear Information System (INIS)

    Ielsch, G.

    2001-01-01

    Radon 222 is a radioactive natural gas originating from the decay of radium 226 which itself originates from the decay of uranium 23 8 naturally present in rocks and soil. Inhalation of radon gas and its decay products is a potential health risk for man. Radon can accumulate in confined environments such as buildings, and is responsible for one third of the total radiological exposure of the general public to radiation. The problem of how to manage this risk then arises. The main difficulty encountered is due to the large variability of exposure to radon across the country. A prediction needs to be made of areas with the highest density of buildings with high radon levels. Exposure to radon varies depending on the degree of confinement of the habitat, the lifestyle of the occupants and particularly emission of radon from the surface of the soil on which the building is built. The purpose of this thesis is to elaborate a methodology for determining areas presenting a high potential for radon exhalation at the surface of the soil. The methodology adopted is based on quantification of radon exhalation at the surface, starting from a precise characterization of the main local geological and pedological parameters that control the radon source and its transport to the ground/atmosphere interface. The methodology proposed is innovative in that it combines a cartographic analysis, parameters integrated into a Geographic Information system, and a simplified model for vertical transport of radon by diffusion through pores in the soil. This methodology has been validated on two typical areas, in different geological contexts, and gives forecasts that generally agree with field observations. This makes it possible to identify areas with a high exhalation potential within a range of a few square kilometers. (author)

  8. Investigation of the areas of high radon concentration in Gyeongju

    International Nuclear Information System (INIS)

    Lee, Jung Min; Park, Chan Hee; Kim, Shin Jae; Moon, Joo Hyun

    2013-01-01

    The aim of this study was to survey the radon concentrations at 21 elementary schools in Gyeongju, Republic of Korea, to identify those schools with high radon concentrations. Considering their geological characteristics and the preliminary survey results, three schools were finally placed under close scrutiny. For these three schools, continuous measurements over 48 h were taken at the principal's and administration office. The radon concentrations at one school, Naenam, exceeded the action level (148 Bq/m 3 ) established by the U.S. EPA, while those at the other two schools were below that level. - Highlights: • Preliminary measurements of the indoor radon concentrations were performed at the auditoriums in 23 elementary schools in Gyeongju. • Considering the geological characteristics and preliminary survey results, three elementary schools were screened for closer scrutiny. • For the three schools, continuous measurements were made at their principal's and administration offices over 48-h period. • The scrutiny revealed one elementary school of high radon concentration much higher than the U.S. EPA action level

  9. Radon in homes of the Portland, Oregon Area: Radon data from local radon testing companies collected by CRM (Continuous Radon Measurement) machines

    Science.gov (United States)

    Whitney, H.; Lindsey, K.; Linde, T.; Burns, S. F.

    2013-12-01

    Students from the Department of Geology at Portland State University paired up with the Oregon Health Authority to better understand radon gas values in homes of the Portland metropolitan area. This study focuses on radon values collected by continuous radon measurement (CRM) machines, taken by local radon testing companies. The local companies participating in this study include Alpha Environmental Services, Inc., Cascade Radon, Environmental Works, The House Detectives, LLC, and Soil Solutions Environmental Services, Inc. In total, 2491 radon readings spanning across 77 zip codes were collected from local companies in the Portland metropolitan area. The maximum value, average value, percentage of homes greater than 4 pCi/L and total rank sum was calculated and used to determine the overall radon potential for each zip code (Burns et al., 1998). A list and four maps were produced showing the results from each category. Out of the total records, 24 zip codes resulted in high radon potential and the average reading for the entire Portland Metropolitan area was 3.7 pCi/L. High potential zip codes are thought to be a result of sand and gravel (Missoula Flood deposits) and faults present in the subsurface. The CRM data was compared with both long-term and short-term data provided by the Oregon Health Authority to validate radon potentials in each zip code. If a home is located in a zip code with high or moderate radon potential across two types of data sets, it is recommended that those homes be tested for radon gas.

  10. Methodology for determination of radon-222 production rate of residential building and experimental verification

    International Nuclear Information System (INIS)

    Tung, Thomas C.W.; Niu, J.L.; Burnett, J.; Lau, Judy O.W.

    2005-01-01

    Indoor radon concentration is mainly associated with the radon production rate of building material, ventilation rate, and the outdoor radon concentrations. Radon production rate of a room is defined as the sum of the products of the radon emanation rates and the exposed areas of the materials. Since the selection of the building materials and the exposed areas are different from room to room, it makes the radon production rate of homes fall in a wide range. Here, the radon production rate of a room is suggested to be quantified by a sealing method, in which the systematic radon growth curve is obtained. The radon production rate of the room can be determined from the initial slope of the growth curve. Three rooms at different homes in Hong Kong were selected in the study for verifying the methodology. The uncertainty characterized by data scatter arisen from the coupling effect of the leakage rate and outdoor radon was also included in the discussion. During the measurements, no occupant was allowed into the home. No mechanical ventilation was involved in the measurement. The indoor and outdoor radon concentrations of the sampled homes were monitored simultaneously and lasted for more than three days. The radon production rates and the uncertainties of three rooms at Homes 1, 2, and 3 were found to be 232.8, 46.0, 414.6, and 20.3, 9.4, 59.2Bqh -1 , respectively. The approach is valid when the air leakage rate of the room is controlled below 0.1h -1

  11. Continuous measurement of Radon emanations from soil and groundwaters in southern France (Alpes Maritimes). Preliminary results

    International Nuclear Information System (INIS)

    Oddou, A.; Nault, L.; Campredon, R.; Bernat, M.

    1983-01-01

    Two types of automated instruments which monitor the emission of radon from rocks and groundwaters are actually being set up in a few localities of the French-Italian Alpe-Maritimes (SE France). The first results are presented [fr

  12. Emanation thermal analysis. Principle of the method, preparation of samples and apparatus

    International Nuclear Information System (INIS)

    Balek, V.; Pentinghaus, H.J.

    1993-12-01

    Principles of the title method are outlined and the sample preparation procedures and instrumental designs are described. The publication is divided into chapters as follows: (I) Introduction; (II) Sample labelling: (II.1) Introducing parent nuclides as a source of inert gas in solid; Distribution of inert gas in the sample; (II.2) Introducing inert gases without parent nuclides (using the recoil effect of nuclear reactions and using ion bombardment); (II.3) Choice of the suitable labelling technique; (III) Equipment for emanation thermal analysis: (III.1) Inert gas detection and measurement of inert gas release rate; (III.2) System of carrier gas flow and stabilization; (IV) Determination of the optimal conditions for radon release rate measurement; (V) Example of ETA measurement. (P.A.). 1 tab., 10 figs. 5 refs

  13. Radium on soil mineral surfaces: Its mobility under environmental conditions and its role in radon emanation. Final report

    International Nuclear Information System (INIS)

    Turekian, K.K.

    1997-01-01

    The ultimate source of 222 Rn to the atmosphere is, of course, 226 Ra. Tracking the mobility of radium therefore is part of the story of radon flux assessment. The study of radium mobility and radon flux measurements has involved virtually all the reservoirs at the Earth's surface. These include soils, groundwaters, coastal waters and the atmosphere. The attempt to understand the mobility of radium involved the study of almost all the radium isotopes ( 226 Ra, 228 Ra, 224 Ra) and the parent and daughters of these isotopes

  14. A comparison of contemporary and retrospective radon gas measurements in high radon dwellings in Ireland

    International Nuclear Information System (INIS)

    Kelleher, K.; McLaughlin, J.P.; Fenton, D.; Colgan, P.A.

    2006-01-01

    Little correlations has been found between contemporary radon gas measurements made in the past and retrospective radon gas measurements in Irish dwellings. This would suggest that these two techniques would result in two significantly different cumulative radon exposure estimates. Contemporary radon gas measurements made a few years apart in the same room of a dwelling were found to be significantly different. None of these differences could be explained by known changes to the rooms themselves., such ventilation or structural alterations to the room. This highlights the limitations of the contemporary radon gas measurements as a surrogate measurement for use in residential radon epidemiology. The contemporary radon gas measurements made by the Radiological Protection Institute of Ireland (R.P.I.I.) and University College of Dublin (U.C.D.) do not cover the same exposure period as the retrospective estimates and so the accuracy of the retrospective measurements cannot be demonstrated. A weak correlation can be seen between the retrospective radon gas estimates and a combination of the two contemporary radon gas estimates. It is not unreasonable to expect improvement in the correlation if further contemporary radon gas measurements were made in these rooms. (N.C.)

  15. Selected aspects of radon presence in medicinal waters in Swieradow Spa; Wybrane aspekty obecnosci radonu w wodach leczniczych Swieradowa Zdroju

    Energy Technology Data Exchange (ETDEWEB)

    Przybilski, T.A. [Politechnika Wroclawska, Wroclaw (Poland)

    1996-12-31

    In the paper results of measurement of radium content in the rocks of the neighbourhood of Swieradow Spa were used to calculate emanating coefficient of rocks. The coefficient was next used to estimate the volume of rocks supplying the intakes with radon; in this estimation radioactive equilibrium between radium and radon in the rocks was assumed. The results obtained lead to the conclusion that such equilibrium is absent and allow estimating its coefficient as 10{sup -6}. It was also proposed to use track detectors to the continuous monitoring of radon concentrations in the ground waters, which was shown on the example of comparison of relative radon concentrations in individual wells of medicinal water intakes. (author). 14 refs, 1 tab.

  16. Correlation between radon exhalation and radium content in granite samples used as construction material in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: mibrahim@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Musazay, M.S. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Aksoy, A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    Measurements of radon exhalation for a total of 205 selected samples of construction materials used in Saudi Arabia were carried out using an active radon gas analyzer with an emanation container. It was found that granite samples were the main source of radon exhalation. The radon exhalation rates per unit area from these granite samples varied from below the minimum detection limit up to 13.1Bqm{sup -2}h{sup -1} with an average of 1.5 +/-1.9(1{sigma})Bqm{sup -2}h{sup -1}. The radium contents of 27 granite samples were measured using an HPGe-based {gamma} spectroscopy setup. The {sup 226}Ra content of the granites varied from below the minimum detection limit up to 297Bqkg{sup -1}, with an average of 83+/-73(1{sigma})Bqkg{sup -1}. The linear correlation coefficient between exhaled radon and radium content was found to be 0.90.

  17. A new method for studying the transport of radon and thoron in various building materials using CR-39 and LR-115 solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Ktata, A.; Bakhchi, A.

    2000-01-01

    Radon ( 222 Rn) and thoron ( 220 Rn) α-activities per unit volume were measured inside and outside different building materials by using two types of solid state nuclear track detectors (SSNTD) (CR-39 and LR-115 type II). In addition, the radon and thoron emanation coefficients of the studied materials were evaluated. Based on these data, the transport of radon and thoron across parallelepipedic blocks of the building materials could be investigated and radon and thoron global α-activities per unit volume outside different building material blocks were determined. Moreover, the diffusion length and the effective diffusion coefficient of radon in the building materials were evaluated and the total alpha activity due to radon in the atmospheres of different rooms consisting of different building materials was studied

  18. Radon survey in the high natural radiation region of Niska Banja, Serbia

    International Nuclear Information System (INIS)

    Zunic, Z.S.; Yarmoshenko, I.V.; Birovljev, A.; Bochicchio, F.; Quarto, M.; Obryk, B.; Paszkowski, M.; Celikovic, I.; Demajo, A.; Ujic, P.; Budzanowski, M.; Olko, P.; McLaughlin, J.P.; Waligorski, M.P.R.

    2007-01-01

    A radon survey has been carried out around the town of Niska Banja (Serbia) in a region partly located over travertine formations, showing an enhanced level of natural radioactivity. Outdoor and indoor radon concentrations were measured seasonally over the whole year, using CR-39 diffusion type radon detectors. Outdoor measurements were performed at 56 points distributed over both travertine and alluvium sediment formations. Indoor radon concentrations were measured in 102 living rooms and bedrooms of 65 family houses. In about 50% of all measurement sites, radon concentration was measured over each season separately, making it possible to estimate seasonal variations, which were then used to correct values measured over different periods, and to estimate annual values. The average annual indoor radon concentration was estimated at over 1500 Bq/m 3 and at about 650 Bq/m 3 in parts of Niska Banja located over travertine and alluvium sediment formations, respectively, with maximum values exceeding 6000 Bq/m 3 . The average value of outdoor annual radon concentration was 57 Bq/m 3 , with a maximum value of 168 Bq/m 3 . The high values of indoor and outdoor radon concentrations found at Niska Banja make this region a high natural background radiation area. Statistical analysis of our data confirms that the level of indoor radon concentration depends primarily on the underlying soil and building characteristics

  19. Response of Radon in a seismic calibration explosion, Israel

    International Nuclear Information System (INIS)

    Zafrir, H.; Steinitz, G.; Malik, U.; Haquin, G.; Gazit-Yaari, N.

    2009-01-01

    Radon measurements were performed at shallow levels during an in-land 20-ton seismic calibration explosion experiment, simulating a 2.6-M L earthquake, to investigate the influence of the explosive blast and the transitory seismic wave fields on the Radon transport in the country rock, adjacent to the focus of the explosion. The experiment was conducted in a basalt quarry in the northern margin of the Beit Shean valley (Israel). Five gamma-ray sensors were placed, at a depth of about 2 m, along a line located 17-150 m from the edge of the explosion zone. Measurements commenced 4 days before and continued for 9 days after the explosion with 15 min integrations. A 10-s sampling was used in the interval of several hours before and after the explosion itself. Diurnal variations of Radon, reflecting the typical variation pattern of Radon in the shallow environment, were registered before and after the explosion. No significant change in the overall Radon concentration was observed as a consequence of the main explosion as well as three smaller experimental shots (0.5-2 tons) in the 2 h prior to the calibration blast. The seismological data indicate that the transient excess pressure at the farthest Radon sensor was above 5 bar m -1 during 0.2-0.4 s, and evidently much higher at the nearest sensors, but none of the sensors responded by recording any exceptional change in the Radon concentration. Moreover the hypothesis that additional Radon may emanate from solid grains as a result of the excess local pressure exerted by the blast is also not observed. In contrast to a real earthquake event an explosion experiment has neither eventual preceding nor following geodynamic activity. Therefore the absence of significant Radon anomalies during or after the blast does not contradict assumptions, observations or conclusions as the occurrence of Radon anomalies prior or after an earthquake event due to associated long-term geodynamic processes.

  20. High-resolution radon monitoring and hydrodynamics at Mount Vesuvius

    Science.gov (United States)

    Cigolini, Corrado; Salierno, Francesco; Gervino, Gianpiero; Bergese, Paolo; Marino, Ciro; Russo, Massimo; Prati, Paolo; Ariola, Vincenzo; Bonetti, Roberto; Begnini, Stefania

    A yearlong high-resolution radon survey has been carried on at Mount Vesuvius, starting in May 1998. Radon activities were acquired by exposing charcoal canisters and track-etch detectors. Sampling stations were deployed along two major summit faults and around the caldera bottom. Volcanically-related earthquakes, with MD ≥ 2.5, may be discriminated from regional seismic events since their cumulative radon anomalies are recorded from stations located along all the above structural features. On the contrary, radon anomalies correlated to regional earthquakes, with MD ≥ 4, are essentially recorded by the sampling sites located along the two summit faults (whose roots extend deeper into the Tertiary basement rocks that underlay the volcano). Radon migration to the surface is ruled by convection within a porous medium of relatively low porosity (ϕ ≈ 10-5), suggesting that fluid motion is strongly localised along fractures. It is suggested that fluid pressure build up, followed by fluid release and migration during incipient fracturing of the porous medium, precede the onset of volcanically-induced earthquakes.

  1. Analysis of radon concentration in drinking water in Baoji (China) and the associated health effects

    International Nuclear Information System (INIS)

    Xinwei, L.

    2006-01-01

    This paper presents the results of radon concentration measurements in drinking water from the municipal water supply system and private wells located in Baoji (China)). The measurements were carried out on 69 samples. The mean values of tap water and well water were found to be 12 kBq m -3 with a maximum of 18 kBq m -3 and 41 kBq m -3 with a maximum of 127 kBq m -3 , respectively. The well water samples obtained from different depth-well (water-bearing levels), i.e. shallow well (well depth under 10 m) water, middle well (well depth 10-30 m) water and deep well water, have respective mean values of 24, 34 and 56 kBq m -3 . The contributions of the observed radon concentration in drinking water to indoor radon account for 2.8-13.2% of the mean value of Shaanxi indoor radon concentration and the effective dose to the dweller owing to inhalation of radon emanating from household water is 0.03-0.14 mSv y -1 . (authors)

  2. Radon-in-soil concentration levels in Mexico

    International Nuclear Information System (INIS)

    Segovia, N.; Tamez, E.; Mena, M.

    1992-01-01

    Radon-in-soil surveys in Mexico have been carried out since 1974 both for uranium prospecting and to correlate mean values of the gas emanation with local telluric behaviour. The mapping covers the northern uranium mining region, the Mexican Neovolcanic Belt, the coastal areas adjacent to the zone of subduction of the Cocos Plate under the North American Plate, some of the active volcanoes of Southern Mexico and several sedimentary valleys in Central Mexico. Recording of 222 Rn alpha decay is systematically performed with LR115 track detectors. Using mean values averaged over different observation periods at fixed monitoring stations, a radon-in-soil map covering one third of the territory of Mexico is presented. The lowest mean values occur in areas associated with active volcanoes. The highest levels are found in uranium ore zones. Intermediate values are obtained in regions with enhanced hydrothermal activity and stations associated with intrusive rocks. (author)

  3. Radon in soil concentration levels in Mexico

    International Nuclear Information System (INIS)

    Segovia, N.; Tamez, E.; Mena, M.

    1991-09-01

    Radon in soil surveys in Mexico have been carried out since 1974 both for uranium prospectus and to correlate mean values of the gas emanation with local telluric behaviour. The mapping includes the northern uranium mining region, the Mexican Neo volcanic Belt, the coastal areas adjacent to the zone of subduction of the Cocos Plate under the North American Plate, some of the active volcanoes of Southern Mexico and several sedimentary valleys in Central Mexico. Recording of 222 Rn alpha decay is systematically performed with LR115 track detectors. Using mean values averaged over different observation periods at fixed monitoring stations, a radon in soil map covering one third of the Mexican territory is presented. The lowest mean values have been found in areas associated with active volcanoes. The highest levels are found in uranium ore zones. Intermediate values are obtained in regions with enhanced hydrothermal activity and stations associated with intrusive rocks. (Author)

  4. Temporal relationships between the variations of diffuse gaseous emanations and the explosive activity of some active volcanoes of Costa-Rica, examples at the Arenal, Irazu and at the Rincon de la Vieja

    International Nuclear Information System (INIS)

    Baubron, J.C.; Allard, P.; Hammouya, G.; Soto, G.J.

    1996-01-01

    The surveillance of the temporal evolution of radon and helium concentrations in the carbon dioxide of crater fumaroles and gaseous emanations is performed since 1992 on the Irazu, Arenal, Poas and Rincon de la Vieja volcanoes in Costa-Rica. The 3 He/ 4 He ratio is used as an indicator of the deep origin of the volcanic gas while radon is an indicator of the CO 2 flux. Radon measurements performed on the Irazu show a continuous decay of radon concentration in the intra-crater fumaroles with an important increase of the gaseous flux since 1992. On the contrary, the external fumaroles on the NW flank were characterized by an important increase in radon concentration in 1994 with a stable flux. The radon surveillance performed in soils around the volcano has shown an intense increase of the diffuse gaseous flows probably linked to the micro-seismic activity of the volcano. Similar observations are reported for the Rincon de la Vieja volcano and correlated with its eruptive history and its phreatic and phreato-magmatic activity. Short paper. (J.S.)

  5. Radon as a tracer for soil-gas entry into a house located next to a contaminated dry-cleaning property

    International Nuclear Information System (INIS)

    Andersen, C.E.

    2001-07-01

    This study applies the naturally occurring radioactive gas radon-222 as a tracer for soil-gas entry into a house located next to a dry-cleaners shop. This is possible because the concentration of radon in the soil below the house is about 1000 times higher than the concentration in outdoor air. The study is based on continuous indoor measurement of radon, differential pressures, barometric pressure and temperatures and grab samples of radon below the slab and in the soil in the vicinity of the house. During the investigation, vacuum extraction were used to remove chlorinated solvents (perchloroethylene, PCE) from the unsaturated zone. The study shows that the vacuum extraction influences the radon concentration in and below the house. When the vacuum pump is on, the indoor radon concentration is only 10 Bq/m 3 corresponding to the contribution from radon in outdoor air and exhalation from building materials. When the vacuum pump is set off, the average indoor radon concentration increases to 30 Bq/m 3 . It is believed that the increase is caused by radon entry from the soil. Regression analysis demonstrates that changes in the indoor radon concentration can be explained by changes in indoor-outdoor pressure differences and changes in the atmospheric pressure. This suggests that advection is the primary mode of entry. Under some highly simplifying assumptions the soil-gas entry is found to be around 1 m 3 /h. This, however, is most likely an overestimate. Based on the measured radon concentration in the exhaust air from the vacuum system and a typical radon emanation rate for Danish soil, it is estimated that the soil vapor extraction system ventilates about 10000 m 3 of soil. The investigation is supported by numerical model calculations with the finite-volume model Rnmod3d. (au)

  6. Emanation of /sup 232/U daughter products from submicrometer particles of uranium oxide and thorium dioxide by nuclear recoil and inert gas diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.A.; Cuddihy, R.G. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (USA). Inhalation Toxicology Research Inst.)

    1983-01-01

    Emanation of /sup 232/U daughter products by nuclear recoil and inert gas diffusion from spherical, submicrometer particles of uranium oxide and thorium dioxide was studied. Monodisperse samples of particles containing 1% /sup 232/U and having physical diameters between 0.1 and 1 ..mu..m were used for the emanation measurements. Thorium-228 ions recoiling from the particles after alpha-decay of /sup 232/U were collected electrostatically on a recoil cathode. Radon-220 diffusing from the particles was swept by an airstream into a 4 l. chamber where the /sup 220/Rn daughters were collected on a second cathode. Mathematical models of radionuclide emanation from spherical particles were used to calculate the recoil range of /sup 228/Th and the diffusion coefficient of /sup 220/Rn in the particle matrix. A /sup 228/Th recoil range of 0.02 ..mu..m and a /sup 220/Rn diffusion coefficient of 3 x 10/sup -14/ cm/sup 2//sec were obtained in both uranium oxide and thorium dioxide particles.

  7. Time series analysis of soil Radon-222 recorded at Kutch region, Gujarat, India

    International Nuclear Information System (INIS)

    Madhusudan Rao, K.; Rastogi, B.K.; Barman, Chiranjib; Chaudhuri, Hirok

    2013-01-01

    Kutch region in Gujarat lies in a seismic vulnerable zone (seismic zone-v). After the devastating Bhuj earthquake (7.7M) of January 26, 2001 in the Kutch region several researcher focused their attention to monitor geophysical and geochemical precursors for earthquakes in the region. In order to find out the possible geochemical precursory signals for earthquake events, we monitored radioactive gas radon-222 in sub surface soil gas at Kutch region. We have analysed the recorded soil radon-222 time series by means of nonlinear techniques such as FFT power spectral analysis, empirical mode decomposition, multi-fractal analysis along with other linear statistical methods. Some fascinating and fruitful results originated out the nonlinear analysis of the said time series have been discussed in the present paper. The entire analytical method aided us to recognize the nature and pattern of soil radon-222 emanation process. Moreover the recording and statistical and non-linear analysis of soil radon data at Kutch region will assist us to understand the preparation phase of an imminent seismic event in the region. (author)

  8. Variations in radon-222 in soil and ground water at the Nevada Test Site

    International Nuclear Information System (INIS)

    Wollenberg, H.; Straume, T.; Smith, A.; King, C.Y.

    1977-01-01

    To help evaluate the applicability of variations of radon-222 in ground water and soil gas as a possible earthquake predictor, measurements were conducted in conjunction with underground explosions at the Nevada Test Site (NTS). Radon fluctuations in ground water have been observed during a sequence of aftershocks following the Oroville, California earthquake of 1 August 1975. The NTS measurements were designed to show if these fluctuations were in response to ground shaking; if not, they could be attributed to changes in earth strain prior to the aftershocks. Well waters were periodically sampled and soil-gas 222 Rn monitored prior to and following seven underground explosions of varying strength and distance from sampling and detector locations. Soil-gas 222 Rn contents were measured by the alpha-track method; well water 222 Rn by gamma-ray spectrometry. There was no clearly identifiable correlation between well-water radon fluctuations and individual underground tests. One prominent variation in soil-gas radon corresponded to ground shaking from a pair of underground tests in alluvium; otherwise, there was no apparent correlation between radon emanation and other explosions. Markedly lower soil-gas radon contents following the tests were probably caused by consolidation of alluvium in response to ground shaking

  9. Effects of vegetation of radon transport processes in soil: The origins and pathways of {sup 222}Rn entering into basement structures. Final report, March 15, 1987--May 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Borak, T.B.

    1992-08-01

    The entry rate of {sup 22}Rn into a basement structure was measured continuously. These measurements demonstrated that radon entry did not vanish even when the structure was slightly pressurized. This persistent entry has been determined to be dominated by diffusion through the floor and walls and a combination of diffusion and convection through the floor-wall joint. The highest indoor radon concentrations occurred during calm periods when the pressure differentials between the inside and outside of the structure were small. The objectives of this work were to identify the origins of the radon and investigate the entry pathways. The radon could originate either in the concrete or in the soil surrounding the structure. Entry pathways into the basement were through the concrete floor and walls as well as through the floor-wall joint. The contributions of the origins and entry pathways were determined by continuously measuring the radon entry rate into the basement, using a trace gas system, and the flux density through portions of the floor and walls. Radon entry through the floor-wall joint could be controlled using a baseboard barrier system. Results indicated that, during calm conditions with wind speeds less than 1 m s{sup {minus}1}, 25 % of the radon enters through the floor-wall joint and 75 % enters through the concrete. About 30 % of the radon originated in the concrete floor and walls. A method for in-situ determination of the diffusion length and emanation fraction of radon in concrete was developed. For the concrete used in the structure, the average diffusion length and emanation fraction were 27{plus_minus}4 cm and 0.19{plus_minus}0.02 respectively.

  10. Two significant experiences related to radon in a high risk area in Spain

    International Nuclear Information System (INIS)

    Sainz, C.; Gutierrez-Villanueva, J.-L.; Fuente, I.; Quindos, L.; Soto, J.; Quindos-Poncela, L.S.; Arteche, J.-L.

    2010-01-01

    Radon is a natural radioactive gas and it is currently accepted as being responsible for lung cancer in some cases. One of the most important sources of indoor radon is from the soil. The RADON content of soil is also a very important factor to be taken into account. The natural radiation map of Spain (MARNA) classifies the country into three regions with different levels of natural gamma radiation. There are some areas in Spain with high levels of natural radiation one of those is the province of Salamanca. Western part of this province presents a population of 20 000 inhabitants and 7% of the houses have an indoor radon concentration above 400 Bq·m -3 . In this high risk area, the village of Villar de la Yegua is of special interest: 11% of the houses in this village have an indoor radon level below 400 Bq·m -3 , 89% have above 400 Bq·m -3 and 71% of the houses have a radon concentration above 1000 Bq·m -3 . An old uranium mine site close to this village has been selected for the construction of an experimental pilot house. It is a two story house located in the place with a very high 226 Ra concentration in soil. Radon in soil at 1 m depth has an average level of 250 kBq·m -3 . We present in this work the characteristics of the experimental unit located in this high risk area and we describe the zone where one of the Spanish villages with the highest radon concentration is located. This is a very interesting place for further research on indoor radon concentration and it is a unique opportunity of testing radon monitors, radon passive detectors and remedial actions for the mitigation of radon in real conditions. It is common to carry out intercomparison exercises under laboratory conditions. Nonetheless, it is not so common to develop these exercises in real conditions as we have in the experimental unit we present here. We offer in this work the possibility for other research groups of testing their equipment in this unit and we also show the evolution of

  11. Radon concentration and exhalation measurements with semiconductor detector and electrostatic precipitator working in a closed circulation system

    International Nuclear Information System (INIS)

    Wojcik, M.; Morawska, L.

    1982-01-01

    An apparatus is described and a method presented for the determination of concentration of radon emanated from solid and liquid samples. In this method an object or a sample of air is closed in an hermetically sealed chamber. The air contaminated by radon and its daughters is circulated in a closed system a few times through an electrostatic precipitator mounted in one housing with a semiconductor Si Li detector. The concentration of radon is determined by the alpha activity measurement of its daughters. The sensitivity of the apparatus is very high. While calculating a radon concentration from an activity measurement of RaA (fast method) the sensitivity is about 0.07 pCi/l and when measuring the activity of RaC' (slow method) it is 0.008 pCi/l. Due to the application of an electrostatic precipitator and a silicon detector it is possible to perform alpha spectrometric measurements and thus separate activities of RaA, RaC', and ThC and to calculate 222 Rn or 220 Rn concentrations. The efficiency of RaA, RaB, RaC, ThB and ThC collection is constant, due to the method involving the circulation of the air through the electrostatic precipitator several times. (author)

  12. Comparison of the large-scale radon risk map for southern Belgium with results of high resolution surveys

    International Nuclear Information System (INIS)

    Zhu, H.-C.; Charlet, J.M.; Poffijn, A.

    2000-01-01

    A large-scale radon survey consisting of long-term measurements in about 5200 singe-family houses in the southern part of Belgium was carried from 1995 to 1999. A radon risk map for the region was produced using geostatistical and GIS approaches. Some communes or villages situated within high risk areas were chosen for detailed surveys. A high resolution radon survey with about 330 measurements was performed in half part of the commune of Burg-Reuland. Comparison of radon maps on quite different scales shows that the general Rn risk map has similar pattern as the radon map for the detailed study area. Another detailed radon survey in the village of Hatrival, situated in a high radon area, found very high proportion of houses with elevated radon concentrations. The results of this detailed survey are comparable to the expectation for high risk areas on the large-scale radon risk map. The good correspondence between the findings of the general risk map and the analysis of the limited detailed surveys, suggests that the large-scale radon risk map is likely reliable. (author)

  13. Assessment of radon exposure in Austria based on geology and settlement

    International Nuclear Information System (INIS)

    Gruber, Valeria; Seidel, Claudia

    2008-01-01

    In Austria a fundamental radon indoor data net (about 40 000 measurements) exists. These radon indoor data are standardized and provide averaged political communities' values. This data net should be enhanced by soil gas measurements with regard to geological conditions, to avoid averaging and influences by political boundaries. Different geological units (characterized by geology, geochemical conditions, mineralogy, geophysics) will be surveyed regarding radon concentration by soil gas measurements and estimated to their potential radon hazard. To assess the radon exposure of the population geological units are selected which are either existing settlement areas or potential ones. So this survey can also provide a basis for land use planning. In this paper results of first studies for this purpose are shown. 160 soil gas measurements were carried out in different soil and sediment deposits originating from different ice age glacier movements in the Alps. These deposits are popular settlement areas, and indoor radon levels of some 1000 Bq/l were detected. 50 % of the results of soil gas radon measurements were above 60 kBq/m 3 , 18 % above 120 kBq/m 3 , which is likely to exceed the indoor radon standard of 400 Bq/l according to the Austrian standard ONORM S 5280-2. Higher radon activity concentrations were found in older ice ages, because of further progressed weathering. The radon soil gas measurements were carried out in different seasons to verify seasonal variations, and other parameters like Ra-226, Ra-228 activity concentration in soils, radon emanation factor, soil permeability and soil moisture were determined and related to the radon activity concentration. According to the example of this study, further soil gas measurements will be carried out in selected geological units. Additional research on the impact of actual dwelling and inhabitation situation on public exposure due to radon in Austria is being done currently. The soil gas radon measurement data

  14. Radon measurements in soils of Lagoa Real Uranium Province, BA: preliminary results

    International Nuclear Information System (INIS)

    Alves, James V.; Rocha, Zildete; Fuzikawa, Kazuo; Neves, J.M. Correia; Matos, Evando C. de

    2007-01-01

    The Cachoeira U mine in the Lagoa Real Uranium Province is the sole uranium producing mine in Brazil today. The necessity to increase ore reserves in the area is a reality, making any exploration efforts worthwhile to reach this objective. An exploration method based on radon detection in soil gas using the AlphaGUARD PQ2000PRO equipment was tested on two radiometric anomalies (no. 31 and no. 35) in the neighborhood of the mine. The results obtained indicated the technique as a helpful method for exploration of buried radioactive deposits. The method can not only discriminate thoron from radon but as a consequence indicate the original emanation source as well, making the method still more valuable in the search for uranium deposits. (author)

  15. Determination of radioactivity in and radon emanation coefficient of selected building materials and estimation of radiation exposure from their use

    International Nuclear Information System (INIS)

    Paredes, C.H.

    1984-01-01

    Building materials commonly used in the construction industry and those that were manufactured with waste products of the phosphate industry, and phosphate ores were examined for radioactivity content. Each material was analyzed for Ra-226, Ra-228, and K-40 by gamma-ray spectrometry. The measured radionuclide concentrations for the building materials examined ranged from 0.2-3.9 pCi g -1 for Ra-226, 0.3-1.8 pCi g -1 for Ra-228, and 2.3-37 pCi g -1 for K-40. Waste products of elemental phosphorus manufacture had activity concentrations that ranged from 4.2-54 pCi g -1 for Ra-226, 0.3-1.0 pCi g -1 for Ra-228, and 1.4-6.6 pCi g -1 for K-40. The activity concentrations for phosphate ores from Tennessee and Montana were 5.3 and 36 pCi g -1 for Ra-226, 0.5 and 0.6 pCi g -1 for Ra-228, and 4.8 and 9.0 pCi g -1 for K-40, respectively. The emanation coefficients for the building materials examined ranged from 6.86 x 10 -4 - 5.99 x 10 -2 . Those for the waste products of the phosphate industry ranged from 2.21 x 10 -4 - 3.06 x 10 -2 . The phosphate ores had emanation coefficients in the order of 10 -2 . The emanation coefficients for mineral wool and wall-board slightly increased when measured at a relative humidity of 100% instead of 0%. No dependence of emanation coefficient on humidity was observed for Tenn. phosphate slag

  16. Indoor radon distribution in metropolitan region of Belo Horizonte, Brazil

    International Nuclear Information System (INIS)

    Santos, Talita O.; Oliveira, Arno H. de

    2009-01-01

    Human beings are exposed to ionizing radiation from many natural sources. Radon and its progeny have been recognized as the most important contributors to the natural radioactivity dose, accounting for about half of all human exposure to ionizing radiation. Radon ( 222 Rn) is a α-radioactive noble gas derived from the natural series of uranium (2 38 U), which occurs in a wide concentration range in all geological materials, especially, in rocks, soils and waters. By diffusion and convection, radon migrates from the rocks and soils to atmosphere and through fissures, pipes and holes it may enter the dwellings and other buildings. Another important radon source in dwellings is its emanation from the construction material. The radon progeny concentration in dwellings has been receiving considerable global attention due to its potential effect in causing lung cancer if it deposited in upper respiratory tract when inhaled. This paper presents radon concentration distribution in dwellings in Metropolitan Region of Belo Horizonte - RMBH. The effective dose estimate is also presented for the RMBH inhabitants. The geological settings of the area are Archean rocks of Granitic Gnaissic Complex and of metasediments sequences of the great Precambrian unit of the Iron Quadrangle of Minas Gerais, Brazil. Radon concentration measurements were carried out with continuous detector AlphaGUARD PQ200PRO (Genitron), in passive mode and with passive detectors E-PERM R Eletret Ion Chamber-EIC. The radon progeny concentration was carried out with a solid state alpha spectroscope, the DOSEman PRO (Sarad). It was found an indoor radon concentration varying in a large range from 18.5 to 2671.4 Bq/m -3 , with an average value of 148.0 Bqm -3 and geometric mean equal to 128.2 Bqm -3 . The variable results are due mainly to region geological factors and building material composition of dwellings. The equilibrium factor between radon and its progeny were determined in dwellings, as 0.3 in

  17. Tracing and dealing with dwellings with high radon and radon daughter concentrations

    International Nuclear Information System (INIS)

    Ehdwall, Hans

    1980-01-01

    In the late 1970s it was found that a number of buildings in Sweden, primarily those made from alum shale-based concretes, had elevated radon and radon daughter levels. A special commission investigated the problem and established provisional limiting values for radon daughter exposures, gamma radiation from the ground, and the concentrations of radioactive materials in building materials. With regard to gamma radiation from the ground the commission proposed that no building be built in an area where outside gamma radiation exceeds 100 μR/h. For building materials a gamma index (mγ) and a radium index (mRa) are suggested: mγ = Csub(K)/10000 + Csub(Ra)/1000 + Csub(Th)/700; mRa = Csub(Ra)/200 (Csub(K), Csub(Ra) and Csub(Th) are the concentrations of potassium, radium and thorium respectively). The proposed limiting values are such that the gamma index and the radium index be less than 1. It is also suggested that action should be taken to reduce radon levels in buildings with radon daughter concentrations of 0.27 WL within two years and 0.10 WL within 5 years

  18. Radon reduction and radon-resistant construction demonstrations in New York state. Final report

    International Nuclear Information System (INIS)

    1991-02-01

    A survey of radon levels in New York State homes indicates that approximately 4.4 percent of the homes have long-term living area radon concentrations above the U.S. EPA guideline of four pCi/l. The project addressed the effectiveness of techniques to reduce the radon level in existing homes and to prevent the occurrence of high radon concentrations in new homes. The goal of the project was to demonstrate the effectiveness of radon reduction techniques in homes containing indoor radon concentrations of more than the current EPA guidelines of four pCi/l. At the same time, radon-resistant construction techniques were demonstrated in homes under construction to provide guidelines for houses being built in areas with a danger of high radon levels. The project demonstrated new radon mitigation techniques in homes containing indoor radon concentrations exceeding four pCi/l; assessed the value of previously installed radon reduction procedures, and demonstrated new radon-resistant construction methods

  19. Radon concentration of waters in Greece and Cyprus

    Science.gov (United States)

    Nikolopoulos, D.; Vogiannis, E.; Louizi, A.

    2009-04-01

    Radon (222Rn) is a radioactive gas generated by the decay of the naturally occurring 238U series. It is considered very important from radiological point of view, since it is the most significant natural source of human radiation exposure (approximately 50% from all natural sources). Radon is present in soil, rocks, building materials and waters. Through diffusion and convection, radon migrates and emanates to the atmosphere. Outdoors, radon concentrates at low levels (in the order of 10 Bq/m3). However indoors, radon accumulates significantly. It is trivial to observe indoor environments with high radon levels (in the order of 400 Bq/m3 or higher). Radon accumulation indoors, depends on the composition of the underlying soil and rock formation, on building materials, meteorological parameters, ventilation, heating and water use. Although soil and building materials are the most significant radon sources, there have been reported elevated radon concentrations in building structures due to entering water. It is the radon concentrations in the entering water, the volume and the way of water usage, separated or in combination, that result in large amounts of radon in indoor air. Moreover, radon is a factor of stomach radiation burden due to water consumption. This burden is estimated by measurements of radon concentrations in waters. Due to the health impact of radon exposure, the reporting team continuously measures radon. This work focused on the radon concentrations exposure due to water consumption and use in Greece and Cyprus. Various locations in Greece and Cyprus were accessed taking into consideration existing natural radioactivity data (mainly radon in water), however under the restriction of the capability of movement. Radon in water was measured by Alpha Guard (Genitron Ltd) via a special unit (Aqua Kit). This unit consists of a vessel used for forced degassing of radon diluted in water samples, a security vessel used for water drop deposition. Vessels and

  20. Correlations of soil-gas and indoor radon with geology in glacially derived soils of the northern Great Plains

    International Nuclear Information System (INIS)

    Schumann, R.R.; Owen, D.E.; Peake, R.T.; Schmidt, K.M.

    1990-01-01

    This paper reports that a higher percentage of homes in parts of the northern Great Plains underlain by soils derived from continental glacial deposits have elevated indoor radon levels (greater than 4 pCi/L) than any other area in the country. Soil-gas radon concentrations, surface radioactivity, indoor radon levels, and soil characteristics were studied in areas underlain by glacially-derived soils in North Dakota and Minnesota to examine the factors responsible for these elevated levels. Clay-rich till soils in North Dakota have generally higher soil-gas radon levels, and correspondingly higher indoor radon levels, than the sandy till soils common to west-central Minnesota. Although the proportions of homes with indoor radon levels greater than 4 pCi/L are similar in both areas, relatively few homes underlain by sandy tills have screening indoor radon levels greater than 20 pCi/L, whereas a relatively large proportion of homes underlain by clayey tills have screening indoor radon levels exceeding 20 pCi/L. The higher radon levels in North Dakota are likely due to enhanced emanation from the smaller grains and to relatively higher soil radium concentrations in the clay-rich soils, whereas the generally higher permeability of the sandy till soils in Minnesota allows soil gas to be drawn into structures from a larger source volume, increasing indoor radon levels in these areas

  1. Radon exhalation study from cement, cement slabs and concrete slabs with variation in fly ash

    International Nuclear Information System (INIS)

    Sharma, Nisha; Singh, Jaspal

    2012-01-01

    Fly ash is a waste product from coal-fired power plants. Fly ash has become a subject of world-wide interest in recent years because of its diverse uses, e.g. in the manufacture of concrete for building purposes, for the filling of underground cavities, or as a component of building material. The fly ash may contain enhanced levels of the natural radionuclides in the uranium and thorium series and by using the fly ash in building materials, the radiation levels in houses may thus be technologically enhanced. Because of its relatively high radionuclide contents (including 226 Ra), fly ash may, however, present a potential hazard to the population through its radon emanation, which would be highly undesirable. Since fly ash is frequently used as a building material, the idea of the experiment was to mix fly ash in different proportions in the cement in the powder form, cemented slabs and concrete slabs to study the combined behaviors. Alpha sensitive LR-115 type II plastic track detector, commonly known as Solid State Nuclear Track Detectors (SSNTDs), were used to measure the radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The chemical etching in NaOH at 60°C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon concentrations were determined. In case of cement in the powder form and in cemented slab, starting from the pure cement, fly ash was added up to 70% by weight. In this case the radon exhalation rate has increased by addition of fly ash in the cement and in case of concrete slabs by the addition of fly ash in the cement the radon exhalation increases up to 60% and then decreases. Therefore, on the basis of our investigations we concluded that in general radon exhalation rate increases with the addition of fly ash. (author)

  2. Radiation exposure due to radon and radon daughters

    International Nuclear Information System (INIS)

    Ullmann, W.

    1976-01-01

    Underground miners working over long periods of time in mines with a high content of radon and radon daughters belong to that group of occupationally exposed persons who are subject to the greatest somatic risk, with values especially high if the permissible dose limits are exceeded. Follwing an overview of the permissible limits currently in use for radon and radon daughters as well as the results of examinations performed in nationally-owned underground mining of the G.D.R., considerations are presented on the measuring quantities requisite for statistical, control and safety measurements in this field. Finally, conclusions are drawn concerning the measuring procedures and instruments to be employed for practical work. (author)

  3. Radiological risk assessment of environmental radon

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Measurements of radon gas ({sup 222}Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the {sup 226}Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m{sup −3} to 571.1 ± 251.4 Bq m{sup −3}, 101.0 ± 41.0 Bq m{sup −3} to 245.3 ± 100.2 Bq m{sup −3}, 53.1 ± 7.5 Bq m{sup −3} to 181.8 ± 9.7 Bq m{sup −3}, 256.1 ± 59.3 Bq m{sup −3} to 652.2 ± 222.2 Bq m{sup −3} and 164.5 ± 75.9 Bq m{sup −3} to 653.3 ± 240.0 Bq m{sup −3}, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m{sup −3}, 192.1 ± 75.4 Bq m{sup −3}, 176.1 ± 85.9 Bq m{sup −3} and 28.4 ± 5.7 Bq m{sup −3}, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the

  4. Radon in soil variations for Vrancea seismic area

    International Nuclear Information System (INIS)

    Zoran, M.

    2002-01-01

    Earthquakes occur as a result of a build up of pressure between colliding sections of the Earth's crust. These sections, known as continental plates, meet at 'fault lines'. According to classical earthquake theory, small earthquakes should continue to grow into large earthquakes until they spread all along the fault line. Vrancea region is fitted to such a model. The mechanical processes of earthquake preparation are always accompanied by deformations, afterwards complex short- or long term precursory phenomena can appear. Macro-fracturing processes are preceded by micro-fracturing phenomena with a resulting radon and other gas precursors (He, CH 4 , NO) anomalies in soil-gas and groundwater. Studies of geochemical and hydrological anomalies preceding significant earthquakes have been reported from China, Japan, Uzbekistan, Mexico, Italy, India and Germany. However, studies of these pre-seismic phenomena have been controversial for several reasons. Temporal variations of radon in soil or water, can give evidence that the emanation of this gas can be correlated with tectonic disturbances. I used nuclear track detectors LR-115 and CN-85 for radon concentration monitoring in soil at 50 cm depth exposed for a period of 30 days in Vrancioaia test area. Time series radon data in soil-gas during of two years long observation period have established that more than 50% of radon concentration increases were correlated with microseismic events of 2-4 magnitude on Richter scale. A clear positive correlation for radon concentration prior one month of seismic event was associated with a registered event of magnitude 5. In order to differentiate the changes due to tectonic disturbances and that of meteorological parameters, were measured barometric pressure, precipitation and temperature. Negative correlation between radon concentration in soil and meteorological parameters was found. To predict a future earthquake, all precursory phenomena must be investigated. The

  5. Estimation of effective dose from Rn emanating from 'the minus ion' effect wallpaper

    International Nuclear Information System (INIS)

    Yoshizawa, Y.; Minowa, H.; Morita-Murase, Y.; Furuta, E.

    2006-01-01

    We have examined the wall papers which declared 'the minus ion' effect to estimate external and internal exposure dose from them. Results of gamma-ray spectrometry revealed that they contain 0.03 to 0.35 Bq·g -1 of Th-series nuclides, 208 Tl, 212 Pb, 212 Bi and 228 Ac, and U-series one, 214 Pb. Distributions of radioactive nuclides in the samples were measured using an imaging plate and a FLA-2000 (Fuji Photo Film). The radiation doses from the printed side of the wall papers were 5 to 15 times higher than that of the back side. The 222 Rn concentrations emanating from the wall papers in a sealed container of 50 liter were measured using the PICO-RAD radon detectors. One wall paper showed two to five times higher than the background value. (author)

  6. Indoor radon

    International Nuclear Information System (INIS)

    1997-12-01

    The radon, a natural radioactive gas, is present almost everywhere on the earth's surface. It can be accumulated at high concentration in confined spaces (buildings, mines, etc). In the last decades many studies conducted in several countries showed that inhaling important amounts of radon rises the risk of lung cancer. Although, the radon is a naturally appearing radioactive source, it may be the subject of a human 'enhancement' of concentration. The increasing radon concentration in professional housing constitutes an example of enhanced natural radioactivity which can induce health risks on workers and public. Besides, the radon is present in the dwelling houses (the domestic radon). On 13 May 1996, the European Union Council issued the new EURATOM Instruction that establishes the basic standards of health protection of population and workers against the ionizing radiation hazards (Instruction 96/29/EURATOM, JOCE L-159 of 29 June 1996). This instruction does not apply to domestic radon but it is taken into consideration by another EURATOM document: the recommendation of the Commission 90/143/EURATOM of 21 February 1990 (JOCE L-80 of 27 March 1990). The present paper aims at establishing in accordance to European Union provisions the guidelines for radon risk management in working places, as well as in dwelling houses, where the implied risk is taken into account. This document does not deal with cases of high radon concentration on sites where fabrication, handling or storage of radium sources take place. These situations must be treated by special studies

  7. Investigations of outbursts and tremors in Polish collieries with application of radon measurements

    International Nuclear Information System (INIS)

    Wysocka, M.

    2010-01-01

    In the 80's and 90's of the last century some attempts were undertaken to apply specific radiometric methods to support the prediction of outbursts in collieries, located in Lower Silesian Coal Basin (LSCB) in south-western Poland. This idea was developed as an analogy to the application of radon changes in groundwater prior to earthquakes, and on this basis the hypothesis of variations of radon emanation from coal seams, preceding approaching outburst, was formulated. It has been stated, that a certain correlation between temporal and spatial variations of radon level and the level of outburst's hazard existed. Then, new investigations have been started in copper and coal mines with the hope to use radon as a tool for the prediction of another dynamic phenomena - tremors. In the case of these investigations, only weak evidences were found. In the last years the occurrence of outburst was noticed in the collieries of Upper Silesian Coal Basin (USCB). Therefore, we started observations of changes of radon concentration in gas, sampled from headings, driven in endangered coal seams. The goal of the research is an attempt to formulate '' radon index of outburst hazard '' to support other, routinely used, methods of the prediction of dangerous events. In this paper some results of investigations, done in collieries in LSCB and in copper mines are quoted to give the background for preliminary results of new research, ongoing in one of the coal mines in the Upper Silesia region. (authors)

  8. High Radon Areas and lung cancer prevalence: Evidence from Ireland.

    Science.gov (United States)

    Dempsey, Seraphim; Lyons, Seán; Nolan, Anne

    2018-02-01

    This paper examined the relationship between radon risk and lung cancer prevalence using a novel dataset combining spatially-coded survey data with a radon risk map. A logit model was employed to test for significant associations between a high risk of indoor radon and lung cancer prevalence using data on 5590 people aged 50+ from The Irish Longitudinal Study on Ageing (TILDA) and radon risk data from Ireland's Environmental Protection Agency (EPA). The use of data at the individual level allowed a wide range of potentially confounding factors (such as smoking) to be included. Results indicate that those who lived in an area in which 10%-20% of households were above the national reference level (200 Bq/m 3 ) were 2.9-3.1 times more likely to report a lung cancer diagnosis relative to those who lived in areas in which less than 1% of households were above the national reference level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Radiological risk of building materials using homemade airtight radon chamber

    International Nuclear Information System (INIS)

    Norafatin Khalid; Amran Abdul Majid; Redzuwan Yahaya; Muhammad Samudi Yasir

    2013-01-01

    Full-text: Soil based building materials known to contain various amounts of natural radionuclide mainly 238 U and 232 Th series and 40 K. In general most individuals spend 80 % of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived 222 Radon and its progenies which arise from the decay of 226 Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m -3 , 192 Bq m -3 , 176 Bq m -3 and 28 Bq m -3 , respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m -3 for example higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y -1 , 4.85 mSv y -1 , 4.44 mSv y -1 and 0.72 mSv y -1 , respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels for example 3 - 10 mSv y -1 . As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively. (author)

  10. Radiological risk of building materials using homemade airtight radon chamber

    International Nuclear Information System (INIS)

    Khalid, Norafatin; Majid, Amran Ab.; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2014-01-01

    Soil based building materials known to contain various amounts of natural radionuclide mainly 238 U and 232 Th series and 40 K. In general most individuals spend 80% of their time indoors and the natural radioactivity in building materials is a main source of indoor radiation exposure. The internal exposure due to building materials in dwellings and workplaces is mainly caused by the activity concentrations of short lived 222 Radon and its progenies which arise from the decay of 226 Ra. In this study, the indoor radon concentration emanating from cement brick, red-clay brick, gravel aggregate and Portland cement samples were measured in a homemade airtight radon chamber using continuous radon monitor 1029 model of Sun Nuclear. Radon monitor were left in the chamber for 96 hours with an hour counting time interval. From the result, the indoor radon concentrations for cement brick, red-clay brick, gravel aggregate and Portland cement samples determined were 396 Bq m −3 , 192 Bq m −3 , 176 Bq m −3 and 28 Bq m −3 , respectively. The result indicates that the radon concentration in the studied building materials have more than 100 Bq m −3 i.e. higher than the WHO action level except for Portland cement sample. The calculated annual effective dose for cement brick, red-clay brick, gravel aggregate and Portland cement samples were determined to be 10 mSv y −1 , 4.85 mSv y −1 , 4.44 mSv y −1 and 0.72 mSv y −1 , respectively. This study showed that all the calculated effective doses generated from indoor radon to dwellers or workers were in the range of limit recommended ICRP action levels i.e. 3 - 10 mSv y −1 . As consequences, the radiological risk for the dwellers in terms of fatal lifetime cancer risk per million for cement brick, red-clay brick, gravel aggregate and Portland cement were calculated to be 550, 267, 244 and 40 persons respectively

  11. Reasons for increasing radon concentrations in radon remediated houses

    International Nuclear Information System (INIS)

    Clavensjoe, B.

    1997-01-01

    The study comprises 31 single-dwelling houses where remedial actions were carried out in the 1980s. In all of them the radon concentrations have increased more than 30% according to recent control measurements. Radon sources are building material as well as the soil. The remedial actions dealt with ventilation systems, leakage through the basement floor, air cushions, sub-slab suction or radon wells according to the original problems. Causes for the increase varied: In many houses with soil radon problems, the installation of a normal mechanical ventilation system is not a good remedial action. In some houses on a ground with high permeability and high radon content in the soil air, the radon concentration may increase by the lowering of the indoor air pressure. In other houses the increase was a measurement effect, where sites/rooms were confused. Living related causes were identified in a number of cases, where fan speeds were reduced for energy conservation/noise reduction purposes or different use of windows airing had occurred. Extension of the dwelling space without changing the ventilation system caused the increase in one house. 23 refs

  12. The use of SSNTDs in the retrospective assessment of radon exposure in high radon rural communities in Yugoslavia

    CERN Document Server

    Zunic, Z S; Walsh, C; Benderac, R

    1999-01-01

    A description is given of the field application of a technique using CR-39 and LR 115 detectors to determine alpha recoil implanted sup 2 sup 1 sup 0 Po surface activity on domestic glass artefacts in dwellings. These investigations took place in two small stable rural communities in uraniferous areas of Yugoslavia where between 32% and 74% of contemporary indoor radon levels were found to be above the commonly used Action Level of 200 Bq m sup - sup 3 and individual levels as high as 8700 Bq m sup - sup 3 were measured. The sup 2 sup 1 sup 0 Po data is used to retrospectively estimate radon exposures in these communities. Comparisons between the retrospectively estimated radon exposures and those being received at present are made.

  13. Calibration of a degassing-emanation line for 222Rn determination in seawater samples

    International Nuclear Information System (INIS)

    Farias, Luciana Aparecida

    2002-01-01

    The purpose of this study is to calibrate a degassing-emanation line and to determine 222 Rn and 226 Ra activity concentrations in seawater samples. This methodology, also called Lucas method, consists in the extraction of radon (originally dissolved in seawater), collection of the gas in a liquid nitrogen cold trap and transfer from the trap to an alpha scintillation cell. Total extraction efficiencies of the 4 degassing-emanation systems were determined by measuring 226 Ra reference solutions. The efficiencies obtained for these 4 systems varied from 21 % to 62%. This work also presents preliminary results of a study carried out in a series of small embayements of Ubatuba, Sao Paulo State-Brazil: Flamengo Bay, Fortaleza Bay, Mar Virado Bay and Ubatuba Bay. Concentration of Rn in excess varied from 0,011 to 0,317 Bq/L for Flamengo Bay, from 0,009 to 0,130 Bq/L for Fortaleza Bay, from 0,018 to 0,050 Bq/L for Mar Virado Bay and from 0,004 to 0,120 Bq/L for Ubatuba Bay. The results obtained for the concentration of 222 Rn in excess in a transect at Flamengo Bay varied from 0,002 to 0,036 Bq/L. Higher concentrations of 222 Rn in excess were obtained in Flamengo Bay, Fortaleza Bay and Ubatuba bay. It was also observed that the concentration of 222 Rn in excess increases with depth, as expected. (author)

  14. Managing Radon in Schools

    Science.gov (United States)

    EPA recommends testing all schools for radon. As part of an effective IAQ management program, schools can take simple steps to test for radon and reduce risks to occupants if high radon levels are found.

  15. The Reference Laboratory for Radon Gas Activity Concentration Measurements at PSI; Das Referenzlabor fuer Radongas-Konzentrationsmessungen am PSI

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, Christoph

    1998-09-01

    Active or passive radon gas measuring instruments are exposed during intercomparison exercises in the radon chamber of the Reference Laboratory for Radon Gas Concentration Measurements at Paul Scherrer Institut: The traceability of radon gas measurements to nationally and internationally acknowledged standards is inspected in the reference atmosphere of the chamber with calibrated {sup 222}Rn activity concentration. The use of secondary standards guarantees the traceability of the radon chamber reference atmosphere. Besides the principal secondary standard, a radon gas standard (secondary standard I), a {sup 226}Ra standard solution (secondary standard II) and a {sup 222}Rn emanation standard (secondary standard III) are used. The {sup 222}Rn activity delivered by one of these standards is quantitatively transferred into a reference volume and hence converted to an activity concentration serving for the calibration of a measuring instrument transfer standard consisting of scintillation cell and counter. By this way, the transfer standard calibration is related and traceable to the internationally acknowledged primary standard laboratories National Institute of Standards and Technology, Gaithersburg, Maryland (U.S.A.) or National Physical Laboratory, Teddington, Middlesex (UK). The calibrated transfer standard is then used to calibrate the radon gas activity concentration in the radon chamber. For a single grab sampling determination of the {sup 222}Rn activity concentration in the radon chamber with the transfer standard, the estimation of Type A and Type B uncertainties yields a relative expanded uncertainty (95% confidence level) of minimum 3% for high concentration levels (10 kBqm{sup -3}) and maximum 30% for low concentration levels (0.2 kBqm{sup -3}). Extended evaluations of the reproducibility of calibration factor measurements obtained by calibration of the transfer standard with the secondary standards I, II and III show a very good reproducibility quality

  16. Development of a predictive methodology for identifying high radon exhalation potential areas; Mise au point d'une methodologie predictive des zones a fort potentiel d'exhalation du radon

    Energy Technology Data Exchange (ETDEWEB)

    Ielsch, G

    2001-07-01

    Radon 222 is a radioactive natural gas originating from the decay of radium 226 which itself originates from the decay of uranium 23 8 naturally present in rocks and soil. Inhalation of radon gas and its decay products is a potential health risk for man. Radon can accumulate in confined environments such as buildings, and is responsible for one third of the total radiological exposure of the general public to radiation. The problem of how to manage this risk then arises. The main difficulty encountered is due to the large variability of exposure to radon across the country. A prediction needs to be made of areas with the highest density of buildings with high radon levels. Exposure to radon varies depending on the degree of confinement of the habitat, the lifestyle of the occupants and particularly emission of radon from the surface of the soil on which the building is built. The purpose of this thesis is to elaborate a methodology for determining areas presenting a high potential for radon exhalation at the surface of the soil. The methodology adopted is based on quantification of radon exhalation at the surface, starting from a precise characterization of the main local geological and pedological parameters that control the radon source and its transport to the ground/atmosphere interface. The methodology proposed is innovative in that it combines a cartographic analysis, parameters integrated into a Geographic Information system, and a simplified model for vertical transport of radon by diffusion through pores in the soil. This methodology has been validated on two typical areas, in different geological contexts, and gives forecasts that generally agree with field observations. This makes it possible to identify areas with a high exhalation potential within a range of a few square kilometers. (author)

  17. Exhalation of radon and thoron from phosphogypsum uses as building material

    International Nuclear Information System (INIS)

    Vanmarcke, H.

    1996-01-01

    The radioactive properties of two types of phosphogypsum, were determined. Gypsum plates with different thickness were produced. The 226 Ra and 232 Th concentrations were measured by means of high resolution gamma spectrometry. The results are for type 1 226 Ra: 75 Bq/kg and 232 Th 230 Bq/kg and for type 2 226 Ra: 155 Bq/kg and 232 Th: 160 Bq/kg. The radon ( 222 Rn) exhalation rate was evaluated by closing the plates in airtight barrels and measuring the radon concentration. The exhalation rate of type 1 is 1.2 10-5 Bq/(kg s) and type 2 4.7 10-5 Bq/(kg s). In combination with the 226 Ra concentration an emanating fraction of respectively 7.6% and 14% is obtained. The 222 Rn (thoron) exhalation of the plates was determined by measuring the concentration of the decay products in a chamber of 1 m 3 with normal aerosol concentrations. The exhalation rate was found to be independent of the thickness of the plates, as expected from the short half-life of 220 Rn. Covering the entire surface of the plates with two layers of a common Latex paint decreased the thoron exhalation by a factor of 10 to 20. The laboratory results for the radon and thoron exhalation were converted using realistic assumptions for a room. The contribution of phosphogypsum to the average radon concentration in a room is found to be about 1 Bq/m 3 for type 1 and 4 Bq/m 3 for type 2 resulting in an annual effective dose of the order of 0.1 mSv/year. The contribution to the effective dose from the thoron exhalation is much greater, namely, 1.8 mSv/year for type I and 0.9 mSv/year for type 2. Painting the gypsum lowers the thoron dose by a factor of 10 to 20 making the thoron dose comparable to that of radon. (author)

  18. An active radon sampling device for high humidity places

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F. [Department of Nuclear Engineering and Fluid Mechanics, University of the Basque Country (UPV/EHU), Alameda Urquijo s/n 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Department of Nuclear Engineering and Fluid Mechanics, University of the Basque Country (UPV/EHU), Alameda Urquijo s/n 48013 Bilbao (Spain); Alegria, N.; Herranz, M. [Department of Nuclear Engineering and Fluid Mechanics, University of the Basque Country (UPV/EHU), Alameda Urquijo s/n 48013 Bilbao (Spain)

    2010-01-15

    An active radon measurement device has been developed to be used in workplaces with a relative humidity of 100% for spot measurements of radon concentration. A mathematical model based on the convective-diffusive transport equation is used in the design of this system, which has been used to measure the radon concentration in the Pozalagua cave (Biscay, at Northern of Spain). From the obtained radon values the public and workers doses have been obtained.

  19. Comparison of techniques active and passive in measurement of radon concentration ("2"2"2Ra) in the air

    International Nuclear Information System (INIS)

    Oliveira, Evaldo Paulo de

    2017-01-01

    The purpose of this work was to perform a study comparing radon concentration measurements between two techniques used to measure radon gas in the air: one using LEXAN polycarbonate plastic detectors and the other the continuous monitor in AlphaGUARD passive mode. The concentrations of radon gas within radon emanation chambers were measured using calibrated / traceable sources generating "2"2"2Rn through "2"2"6Ra. In calibration the 'calibration factor' or 'sensitivity' was determined for the LEXAN plastic detector. The calibration work of the dosimeters was carried out at the Radon Laboratory of the Environmental Analysis Division - DIRAD IRD/CNEN and at the Natural Radioactivity Laboratory (LRN) of the Center for the Development of Nuclear Technology (CDTN/CNEN). The 'calibration factor' or 'sensitivity' was found to be 32.34 (traits.cm"-"2)/(kBq.d.m"-"3). This factor was used to determine the radon concentration measured by the LEXAN plastic detectors. Also in the calibration, the efficiencies for LEXAN (94.1% ± 9.7%) and AlphaGUARD (92.5% ± 7.2%) were determined. The statistical analysis used showed good parity in the results of the measurements. It was concluded that the results were satisfactory and will serve as a good reference for studies related to the radon air meters used in this work. (author)

  20. Functional test of a Radon sensor based on a high-resistivity-silicon BJT detector

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, G.F., E-mail: dallabe@disi.unitn.it [DISI, Università di Trento, and INFN Trento, Trento (Italy); RSens srl, Modena (Italy); Tyzhnevyi, V. [DISI, Università di Trento, and INFN Trento, Trento (Italy); Bosi, A.; Bonaiuti, M. [RSens srl, Modena (Italy); Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Forti, F.; Giorgi, M.A.; Morsani, F.; Paoloni, E.; Rizzo, G.; Walsh, J. [Dipartimento di Fisica, Università di Pisa, and INFN Pisa, Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN Pisa, Pisa (Italy); Ciolini, R.; Curzio, G.; D' Errico, F.; Del Gratta, A. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Università di Pisa, Pisa (Italy); Bidinelli, L. [En and tech, Università di Modena e Reggio Emilia, Reggio Emilia (Italy); RSens srl, Modena (Italy); and others

    2013-08-01

    A battery-powered, wireless Radon sensor has been designed and realized using a BJT, fabricated on a high-resistivity-silicon substrate, as a radiation detector. Radon daughters are electrostatically collected on the detector surface. Thanks to the BJT internal amplification, real-time α particle detection is possible using simple readout electronics, which records the particle arrival time and charge. Functional tests at known Radon concentrations, demonstrated a sensitivity up to 4.9 cph/(100 Bq/m{sup 3}) and a count rate of 0.05 cph at nominally-zero Radon concentration.

  1. A Radon Chamber without Radium Source for Detector Calibration and Radon Measurements

    International Nuclear Information System (INIS)

    Al-Azmi, D.; Karunakara, N.

    2008-01-01

    A radon chamber of volume 216 liters was designed and constructed for calibration of radon detectors and radon test measurements. The main feature of this chamber is that the active 226 Ra source, to generate the 222 Rn inside the chamber volume, is not required. Instead, 222 Rn from soil gas is utilized for this purpose. The supply of radon comes from the soil gas. Soil gas is drawn from the soil to fill the chamber with high radon concentration levels (∼ 80 kBq/m3). Desired radon concentration levels can be obtained by drawing the soil gas for different time durations and/or flow rate (author)

  2. Radon and temperature as tracer of geothermal flow system: application to Arxan geothermal system, Northeastern China

    Science.gov (United States)

    Gu, X.; Shao, J.; Cui, Y.

    2017-12-01

    In this work, hydrogeological and hydrochemical investigations were applied to explain geothermal system factors controlling groundwater mineralization in Arxan geothermal system, Northeastern China. Geothermal water samples were collected from different locations (thermal baths and wells). Radon concentrations of water samples representing different water types and depths were controlled using RAD7. In addition to radon concentration, physical parameters such as temperature (T), pH, electrical conductivity (EC) and TDS were measured in situ, while major ions were analyzed in laboratory. Temperature spatial variability in the study area was described using kriging interpolation method. Hydrochemical analysis and thermal parameters suggest two distinct hydrogeological systems. The first type was dominated by a moderate temperature (25 41°C) with a chemical facies Na-HCO3, which characterizes Jurassic deep water. The second water type was characterized by Ca.Na-HCO3 type with a temperature <25 °C and represents the shallow aquifer. Superficial aquifer displays higher radon concentration (37 to 130 Bq/L), while deep groundwater from Jurassic aquifer shows relatively a low radon concentration (6 to 57.4 Bq/L). Seasonal and geographical variations of radon give insight into the processes controlling radon activities in the Arxan groundwater. Radon concentrations along with spatial distribution of water temperature reveal the existence of vertical communication between shallow aquifer and deep Jurassic aquifer through vertical faults and fractures system, the emanation of radon from thermal water and groundwater is controlled by the geological structure of the area. Furthermore, the knowledge and conclusion demonstrates that combined use of radon and temperature as tracers can give insight into the characteristics of geological structure and geothermal flow system.

  3. On the influence of environmental factors on radon levels in caves of Ribeira valley state parks, SP and evaluation of radioactive equilibrium and equilibrium factor between radon and its progeny

    International Nuclear Information System (INIS)

    Alberigi, Simone

    2011-01-01

    In the present study it was carried out the monitoring of radon in caves distributed among three state parks of Sao Paulo. The radon concentration were determinate in Morro Preto and Santana caves, located at PETAR - Parque Estadual Turistico do Alto Ribeira (High Ribeira River Tourist State Park), Diabo cave, situated in PEJ - Parque Estadual de Jacupiranga (Jacupiranga State Park) and Colorida cave located in PEI - Parque Estadual Intervales (Intervales State Park PEI). The monitoring covered measurements between April 2009 and June 2010. Radon concentrations were carried out by using the technique of passive detection with CR-39 solid state nuclear track detectors and NRPB diffusion chambers. The detectors were exposed in periods ranging from 30 to 150 days. Radon concentrations varied from 132 Bq/m 3 to 9456 Bq/m 3 . The values of radon concentrations were analyzed together with information about rainfall and internal and external temperature values of the Santana cave environment and regional literature values for a possible relationship between radon variations and weather information. Both the determinations of 22 '6Ra in water samples collected in some caves and rivers and radon emanation from a stalactite collected at Santana cave allowed to verify that the radon in the caves comes from the walls rocks. The verification of the radioactive equilibrium between 222 Rn, 218 Po and '2 14 Po in the exposed detectors was prejudiced by the high tracks densities, committing the methodology effectiveness. The annual effective dose was calculated for three values obtained from the literature for the equilibrium factor. Considering the most realistic scenario, with equilibrium factor of 0.5 and 52 working weeks, the annual effective dose was 5.1 mSv/y. Concerning the worst scenario, which simulates an extreme case, adopting an equilibrium factor equal to 1 and 52 weeks of work per year, the annual effective dose is 10.2 mSv/y. Also with information received from a

  4. Seasonal and daily variation of radon at 10 m depth in borehole, Garhwal Lesser Himalaya, India

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, V.M., E-mail: vchoubey@wihg.res.i [Wadia Institute of Himalayan Geology, 33, General Mahadeo Singh Road, Dehradun-248001 (India); Arora, B.R. [Wadia Institute of Himalayan Geology, 33, General Mahadeo Singh Road, Dehradun-248001 (India); Barbosa, S.M. [University of Lisbon, IDL, Campo Grande, Edificio C8, 1749-016 Lisboa (Portugal); Kumar, Naresh; Kamra, Leena [Wadia Institute of Himalayan Geology, 33, General Mahadeo Singh Road, Dehradun-248001 (India)

    2011-07-15

    Mostly accepted and widely reported radon (Rn{sup 222}) measurements, a tool for earthquake precursor research, is a part of multi-parametric geophysical observation in the Garhwal Lesser Himalaya for earthquake related studies. Radon is being recorded continuously at an interval of 15 min at 10 m depth in a 68 m deep borehole. Three years high resolution 15 min data at 10 m depth shows a complex trend and has a strong seasonal effect along with some diurnal, semi-diurnal and multi-day recurring trends. A well-defined seasonal pattern is prominent with a high emanation in summer and low values in winter accounting for about a 30% decrease in count values in winter when the atmospheric temperature is very low at this station located 1.90 km above mean sea level. Diurnal, semi-diurnal and multi-day trends in this time-series are mainly observed during April-May and October-November. This is the period of spring and autumn when there is a high contrast in day-night atmospheric temperature. Hence the high fluctuation in Rn concentration is mainly caused by the temperature contrast between the air-column inside the borehole and the atmosphere above the earth's surface.

  5. Radon concentration and exhalation rates in building material samples from crushing zone in Shivalik Foot Hills

    International Nuclear Information System (INIS)

    Pundir, Anil; Kamboj, Sunil; Bansal, Vakul; Chauhan, R.P.; Rana, Rajinder Singh

    2012-01-01

    Radon ( 222 Rn) is an inert radioactive gas in the decay chain of uranium ( 238 U). It continuously emanates from soil to the atmosphere. Radon and its progeny are the major natural radioactive sources for the ambient radioactivity on Earth. A number of studies on radon were performed in recent decades focusing on its transport and movement in the atmosphere under different meteorological conditions. Building materials are the main source of radon inside buildings. Some construction materials are naturally more radioactive and removal of such material from the earth's crust and their subsequent use in construction of buildings further enhances the radioactivity level. The knowledge of radioactivity level in the building materials makes us aware about the management, guidelines and standards in construction of buildings. The main objective of the present investigations is to measure radon Concentration and exhalation rates in the samples collected from the Crushing zone of Shivalik foot hills. Different types of materials are being used in Northern part of India for construction of dwellings. For the measurement of radon concentration and its exhalation rates in building materials, LR-115 detectors were exposed in closed plastic canisters for three months. At the end of the exposure time, the detectors were subjected to a chemical etching process in 2.5N NaOH solution. The tracks produced by the alpha particles were observed and counted under an optical Olympus microscope at 600X. The measured track density was converted into radon concentration using a calibration factor. The surface and mass exhalation rates of radon have also been calculated using present data. The results indicate that the radon concentration varies appreciably from sample to sample and they were found to satisfy the safety criteria. There are samples in which radon concentration is higher and may enhance the indoor radiation levels when used as building construction materials. (author)

  6. Radon in dwellings the national radon survey Cork and Kerry

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fennell, S.G.; Mackin, G.M.; Madden, J.S.

    1998-07-01

    This report presents the results of the third phase of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The counties included in this phase are Cork and Kerry. The average radon concentrations for the houses measured in these counties were 76 Bq/m 3 and 70 Bq/m 3 . The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m 3 . Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings. (author)

  7. Swiss radon programme 'RAPROS'

    International Nuclear Information System (INIS)

    Zeller, W.

    1992-03-01

    The results of the five-year radon research program RAPROS presented in this report, allow for scientifically valid statements on the origin of elevated levels of indoor radon in Switzerland. These results form a basis for recommendations and for actions to be taken. Indoor radon concentrations have been measured in more than 4000 living-rooms and 2000 basements; a sampling density of about 0.2% of the Swiss housing stock. According to these measurements radon leads to an estimated average annual effective dose of 2 milli-Sievert, although in some regions the annual dose may be much higher. Extrapolation of the existing data shows that in about 10'000 Swiss houses radon may exceed 1000 Bq/m 3 . For these houses remedial actions are recommended. There seems to be no radon problem in the large cities in the Swiss Plateau. High indoor radon concentrations in Switzerland are due to the soil beneath the buildings. Data from the study indicated that the most important soil characteristic influencing indoor radon concentrations was its gas permeability. Because natural ventilation in a heated house creates a slight underpressure in the lower levels with respect to surrounding soils, radon is driven from the soil into the building. Weatherization of the houses to reduce energy consumption had in most cases no effect on the indoor radon concentrations. Radon from tap water or from building materials does not contribute significantly to indoor radon levels in Switzerland. The high levels in the Jura Mountains are thought to be associated with karstic limestone bedrock. Several houses within Switzerland have now been modified to reduce radon levels. The most successful mitigation technique combined forced-air ventilation with tightening of the basement to decrease or prevent air infiltration from the soil. (author) figs., tabs., refs

  8. Comparison of active and passive methods for radon exhalation from a high-exposure building material

    International Nuclear Information System (INIS)

    Abbasi, A.; Mirekhtiary, F.

    2013-01-01

    The radon exhalation rates and radon concentrations in granite stones used in Iran were measured by means of a high-resolution high purity Germanium gamma-spectroscopy system (passive method) and an AlphaGUARD model PQ 2000 (active method). For standard rooms (4.0 x 35.0 m area x 32.8 height) where ground and walls have been covered by granite stones, the radon concentration and the radon exhalation rate by two methods were calculated. The activity concentrations of 226 Ra in the selected granite samples ranged from 3.8 to 94.2 Bq kg -1 . The radon exhalation rate from the calculation of the 226 Ra activity concentration was obtained. The radon exhalation rates were 1.31-7.86 Bq m -2 h -1 . The direction measurements using an AlphaGUARD were from 218 to 1306 Bq m -3 with a mean of 625 Bq m -3 . Also, the exhalation rates measured by the passive and active methods were compared and the results of this study were the same, with the active method being 22% higher than the passive method. (authors)

  9. Project Radon

    International Nuclear Information System (INIS)

    Ekholm, S.

    1988-01-01

    The project started in March 1987. The objective is to perform radon monitoring in 2000 dwellings occupied by people employed by State Power Board and to continue to contribute to the development of radon filters. The project participates in developing methods for radon measurement and decontamination and in adapting the methods to large scale application. About 400 so called radon trace measurements (coarse measurement) and about 10 action measurements (decontamination measurement) have been made so far. Experience shows that methods are fully applicable and that the decontamination measures recommended give perfectly satisfactory results. It is also established that most of the houses with high radon levels have poor ventilation Many of them suffer from moisture and mould problems. The work planned for 1988 and 1989 will in addition to measurements be directed towards improvement of the measuring methods. An activity catalogue will be prepared in cooperation with ventilation enterprises. (O.S.)

  10. Long-distance migration of radon within the earth

    International Nuclear Information System (INIS)

    Fleischer, R.L.; Mogro-Campero, A.

    1976-01-01

    There is need for identification and understanding of methods for locating subsurface uranium. A major hope for definitive recognition of ore at depths of more than a few meters is the measurement of the near surface emanation of 222 Rn, the sole distinctive gaseous product of the decay of uranium. Scattered observations suggest that radon can migrate through the earth for distances of greater than or equal to 100 m. A model is proposed in which convective flow of subsurface air or water through a porous medium is induced by the geothermal gradient. Several of the predictions of the model are consistent with observations at a uranium ore deposit in New Mexico

  11. Radon generation and transport. A journey though matter

    Energy Technology Data Exchange (ETDEWEB)

    Cozmuta, I. [Beckman Institute 139-74 Caltech, Pasadena, CA 91125 (United States)

    2001-12-07

    with the Material and Process Simulation Center at CALTECH, USA, a methodology to estimate the barrier properties of two polymeric membranes - polypropylene (PP) and polyethyleneterephtalate (PET) - with respect to radon is proposed (chapter 13). A standard manufacturing receipt for Dutch concrete is indicated in chapter 8. Radiometric characteristics (radon-release rates, radium contents and emanation coefficients) of concrete components, mortar paste and concrete are compared. Also porosity determinations for cement paste, mortar-sand and concrete samples are shown. All this information is required in one of the steps in the coupling scheme of the two models presented in chapter 6. Based on the model presented in chapter 3, a quantitative estimate of the microstructure (porosity, pore-size distribution) and saturation levels in the porous structure of cement paste and concrete, for various curing and humidity conditions, is presented in chapter 9. This thesis focuses on diffusive transport only and consequently, were investigated in detail the characteristic values of radon-diffusion coefficient in concrete (chapter 10). Two new methods to determine the radon-diffusion coefficient for cubic/rectangular and hollow cylindrical samples, respectively are discussed here and proposed. With the second validated method, the moisture dependence of the radon-diffusion coefficient in concrete was also studied. The parameter that strongly influences radon-release is the moisture content of concrete. To better understand this dependence, a concrete cube was studied in detail (chapter 11) with water contents ranging from totally dry to fully saturated. This profile was also modelled by using combined information from measurements and concrete modelling. In chapter 14 the results of this thesis are assessed in relation to their implications for further research and to radon reduction in concrete.

  12. Radon generation and transport. A journey though matter

    International Nuclear Information System (INIS)

    Cozmuta, I.

    2001-01-01

    with the Material and Process Simulation Center at CALTECH, USA, a methodology to estimate the barrier properties of two polymeric membranes - polypropylene (PP) and polyethyleneterephtalate (PET) - with respect to radon is proposed (chapter 13). A standard manufacturing receipt for Dutch concrete is indicated in chapter 8. Radiometric characteristics (radon-release rates, radium contents and emanation coefficients) of concrete components, mortar paste and concrete are compared. Also porosity determinations for cement paste, mortar-sand and concrete samples are shown. All this information is required in one of the steps in the coupling scheme of the two models presented in chapter 6. Based on the model presented in chapter 3, a quantitative estimate of the microstructure (porosity, pore-size distribution) and saturation levels in the porous structure of cement paste and concrete, for various curing and humidity conditions, is presented in chapter 9. This thesis focuses on diffusive transport only and consequently, were investigated in detail the characteristic values of radon-diffusion coefficient in concrete (chapter 10). Two new methods to determine the radon-diffusion coefficient for cubic/rectangular and hollow cylindrical samples, respectively are discussed here and proposed. With the second validated method, the moisture dependence of the radon-diffusion coefficient in concrete was also studied. The parameter that strongly influences radon-release is the moisture content of concrete. To better understand this dependence, a concrete cube was studied in detail (chapter 11) with water contents ranging from totally dry to fully saturated. This profile was also modelled by using combined information from measurements and concrete modelling. In chapter 14 the results of this thesis are assessed in relation to their implications for further research and to radon reduction in concrete

  13. Indoor radon measurement in some adobe houses in the Kassena Nankana area of the Upper East Region

    International Nuclear Information System (INIS)

    Quashie, F. K.

    2010-06-01

    Inhalation of radon and its daughter products is the major contributor to the total exposure of the population to natural radiation. The present study has measured radon gas concentration in some Adobe houses and the soil radon gas around these houses in the Kassena Nankana Area of the Upper East Region by using passive radon indoor dosimeter containing solid-state nuclear track detector (SSNTD) commercially known as LR - 115 (type II, pelliculable). Fifty (50) indoor radon dosimeters were placed in the various Adobe houses in the study area. Additionally, thirty (30) dosimeters were placed in the soil around some of the houses at a depth of 75 cm. Soil radon dosimeters were retrieved after two (2) weeks while the indoor radon dosimeters were retrieved after 78 to 82 days. The detectors were then chemically etched. The digital laser optic system and the spark counter coupled with microfiche reader were used in counting both the indoor and soil detectors respectively. Indoor radon concentration in the study area range from 35.28 Bq/m 3 to 244.22 Bq/m 3 . An active dosimeter known as the radon scout plus which gives instantaneous readings between 1 to 3 hours was also used in nineteen of the adobe houses in the study area and a total average radon concentration of 56.90 Bq/m3 was obtained. The soil radon concentration was also found to range from 2.12 kBq/m 3 to 15.03 kBq/m 3 . A good correlation was found to exist between the soil radon concentration and that of the indoor radon concentration with a correlation coefficient of about 0.61. The mean radon emanation coefficient of some fifteen (15) soil samples monitored was 0.46. The average annual effective dose was estimated to be about 1.66 mSv/y and that of the average annual effective dose using the equilibrium equivalent factor (F) was 1.00 mSv/y

  14. Radon in dwellings the national radon survey Galway and Mayo

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fennell, S.G.; Mackin, G.M.; Madden, J.S.; O'Colmain, M.

    1999-07-01

    This report presents the results of the final phase of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The counties included in this phase are Galway and Mayo. The average radon concentrations for the houses measured in these counties were 112 Bq/m 3 and 100 Bq/m 3 , respectively. The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m 3 . Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings. (author)

  15. Radon reduction

    International Nuclear Information System (INIS)

    Hamilton, M.A.

    1990-01-01

    During a radon gas screening program, elevated levels of radon gas were detected in homes on Mackinac Island, Mich. Six homes on foundations with crawl spaces were selected for a research project aimed at reducing radon gas concentrations, which ranged from 12.9 to 82.3 pCi/l. Using isolation and ventilation techniques, and variations thereof, radon concentrations were reduced to less than 1 pCi/l. This paper reports that these reductions were achieved using 3.5 mil cross laminated or 10 mil high density polyethylene plastic as a barrier without sealing to the foundation or support piers, solid and/or perforated plastic pipe and mechanical fans. Wind turbines were found to be ineffective at reducing concentrations to acceptable levels. Homeowners themselves installed all materials

  16. Development of a predictive methodology for identifying high radon exhalation potential areas; Mise au point d'une methodologie predictive des zones a fort potentiel d'exhalation du radon

    Energy Technology Data Exchange (ETDEWEB)

    Ielsch, G

    2001-07-01

    Radon 222 is a radioactive natural gas originating from the decay of radium 226 which itself originates from the decay of uranium 23 8 naturally present in rocks and soil. Inhalation of radon gas and its decay products is a potential health risk for man. Radon can accumulate in confined environments such as buildings, and is responsible for one third of the total radiological exposure of the general public to radiation. The problem of how to manage this risk then arises. The main difficulty encountered is due to the large variability of exposure to radon across the country. A prediction needs to be made of areas with the highest density of buildings with high radon levels. Exposure to radon varies depending on the degree of confinement of the habitat, the lifestyle of the occupants and particularly emission of radon from the surface of the soil on which the building is built. The purpose of this thesis is to elaborate a methodology for determining areas presenting a high potential for radon exhalation at the surface of the soil. The methodology adopted is based on quantification of radon exhalation at the surface, starting from a precise characterization of the main local geological and pedological parameters that control the radon source and its transport to the ground/atmosphere interface. The methodology proposed is innovative in that it combines a cartographic analysis, parameters integrated into a Geographic Information system, and a simplified model for vertical transport of radon by diffusion through pores in the soil. This methodology has been validated on two typical areas, in different geological contexts, and gives forecasts that generally agree with field observations. This makes it possible to identify areas with a high exhalation potential within a range of a few square kilometers. (author)

  17. Recent investigations and conclusions on radiation exposure from radon and its daughters in rooms

    International Nuclear Information System (INIS)

    Willau, E.

    1984-04-01

    Radon and its daughters emanate from structural materials and are concentrated in closed rooms. Measurements were first made in Vienna in concrete and brick buildings. The difference between these two materials is explained by the effect of different window tightness this being lower in the older brick buildings. It is conjectured that plaster is more important than the bulk wall material. In order to test the influence of the geological ground these measurement in Vienna (rubble ground) were complemented by those in Wagrain (shale ground) and the difference again explained by different window tightness. With regard to height above the ground the radon and daughter concentration was found to 2-3 times higher in cellars and at ground flour than at higher levels. The variation of concentration during and after airing was also investigated. (G.Q.)

  18. Public perceptions of radon risk

    International Nuclear Information System (INIS)

    Mainous, A.G. III; Hagen, M.D.

    1993-01-01

    Since 1984, a significant amount of media attention has focused on health threats from radon gas exposure. Using a probability telephone survey of adults (n = 685), we studied public perceptions of risk from radon exposure versus other environmental health risks. The results indicated that 92% of those individuals who had heard of radon believe radon to be a health risk, although only 4% believe they are currently exposed to high levels of radon gas. Perception of risk from radon was positively related to other perceptions of environmental risks. Younger and less educated individuals were more likely to perceive radon as a health risk. Women were three-and-one-half times as likely as men to perceive risk from radon. However, there was no significant relationship between perceived risk from radon and cigarette smoking. Media attention has apparently led to public awareness of radon hazards, but further attention is needed to improve smokers' awareness of their special risks from radon

  19. Radon: Detection and treatment

    International Nuclear Information System (INIS)

    Loken, S.; Loken, T.

    1989-01-01

    Within the last few years, natural radon exposure in non-industrial settings, primarily homes, has become a health concern. Research has demonstrated that many homes throughout the United States have radon concentrations much higher than the legal federal limits set for miners. Thousands of unsuspecting people are being exposed to high levels of radiation. It is estimated that up to 15 percent of lung cancers are caused from radon. This is a significant health risk. With basic knowledge of the current information on radon, a primary health care provider can address patients' radon concerns and make appropriate referrals

  20. AlphaGUARD, the new reference for continuous radon monitoring in air, soil, gas, water and material

    International Nuclear Information System (INIS)

    Roessler, F.; Buerkin, W.; Villert, J.

    2016-01-01

    The company Saphymo GmbH has more than 25 years of experience in the field of radon measurement. More than 20 years ago Saphymo developed the professional and robust radon monitor AlphaGUARD, quickly recognized as a standard for reliable and continuous measurements of the radon concentration. Today AlphaGUARD is internationally established as the reference in radon measurement. Following up on this success story the new generation of AlphaGUARD can now be presented. Based on the excellent measurement characteristics of its predecessor the new AlphaGUARD combines the well-proven principle of the pulse ionisation chamber with new and additional features. The robust housing is oriented on the well-proven design of the predecessor and includes now an integrated flow controlled and powerful pump. The instrument can be operated in flow as well as in diffusion mode (without pump). Via the new large display and the intuitive menu navigation all measurement data can be retrieved. The presentation of time series in charts is possible as well as the parametrisation of the instrument. A wide range of accessories, developed in cooperation with various radon experts of universities and laboratories, enables the user a varied and flexible application of the AlphaGUARD: Measurement of the radon concentration in air (radon, thoron, radon progenies), in water (sampling and time resolved measurements) and in soil (soil gas measurements, exhalation measurements), emanation measurements from material, multi spot measurement, online measurement with remote data transmission via Ethernet/DSL, Bluetooth, Wi-Fi, GPRS/3G or satellite. Due to its high sensitivity and its fast and linear response over a large measuring range the AlphaGUARD is excellently suited for calibration laboratories. Furthermore the AlphaGUARD enables ideal prerequisites for field applications: robust housing for operations under harsh conditions, long battery life for the measurement at any location, low

  1. Radon classification of building ground

    International Nuclear Information System (INIS)

    Slunga, E.

    1988-01-01

    The Laboratories of Building Technology and Soil Mechanics and Foundation Engineering at the Helsinki University of Technology in cooperation with The Ministry of the Environment have proposed a radon classification for building ground. The proposed classification is based on the radon concentration in soil pores and on the permeability of the foundation soil. The classification includes four radon classes: negligible, normal, high and very high. Depending on the radon class the radon-technical solution for structures is chosen. It is proposed that the classification be done in general terms in connection with the site investigations for the planning of land use and in more detail in connection with the site investigations for an individual house. (author)

  2. Radon variations in active volcanoes and in regions with high seismicity: internal and external factors

    International Nuclear Information System (INIS)

    Segovia, N.; Cruz-Reyna, S. De la; Mena, M.

    1986-01-01

    The results of 4 years of observations of radon concentrations in soils of active volcanoes of Costa Rica and a highly seismic region in Mexico are discussed. A distinction is made between the influences of external (mostly meteorological) and internal (magmatic or tectonic) factors on the variation in radon levels. The geological meaning of the radon data can be thus enhanced if the external factors are excluded. (author)

  3. Radon in dwellings the national radon survey Clare, Limerick and Tipperary

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fennell, S.G.; Mackin, G.M.; Madden, J.S.; O'Colmain, M.

    1998-12-01

    This report presents the results of the fourth phase of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The counties included in this phase are Clare, Limerick and Tipperary. The average radon concentrations for the houses measured in these counties were 88 Bq/m 3 , 77 Bq/m 3 and 79 Bq/m 3 . The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m 3 . Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings. (author)

  4. U.S. laboratory and field trials of metofluthrin (SumiOne) emanators for reducing mosquito biting outdoors.

    Science.gov (United States)

    Lucas, J R; Shono, Y; Iwasaki, T; Ishiwatari, T; Spero, N; Benzon, G

    2007-03-01

    Metofluthrin (SumiOne is a novel, vapor-active pyrethroid that is highly effective against mosquitoes. Laboratory and field trials were conducted in the United States to evaluate the mosquito repellent activity of metofluthrin-treated paper substrates ("emanators"). Initial studies were conducted to evaluate the field performance of 900-cm(2) paper fan emanators impregnated with 160 mg metofluthrin, where Aedes canadensis was the predominant species. Emanators reduced landing rates on human volunteers by between 85% and 100% compared to untreated controls. Subsequent tests with 4,000-cm(2) paper strip emanators impregnated with 200 mg metofluthrin were conducted in a wind tunnel as a precursor to conducting field trials using human bait and laboratory-reared Aedes aegypti. Paper strips, which were pre-aged in a fume hood to determine duration of protection, gave 89-91% reductions in landing rates compared with controls. Similar reductions in biting activity were also noted. Following these tests, field trials to assess effect on landing rates were conducted with emanators positioned 1.22 m on either side of volunteers protected from biting by Tyvek suits, with pre- and posttreatment counts being made. In Florida (predominantly Ochlerotatus spp.) 91-95% reductions were noted 10-30 min after emanators were deployed, while in Washington State (mostly Aedes vexans) 95-97% reductions were observed. These results demonstrate that metofluthrin-treated emanators are highly effective at repelling mosquitoes.

  5. Generation and mobility of radon in soils. Final report

    International Nuclear Information System (INIS)

    Rose, A.W.

    1997-01-01

    This report emphasizes research since 1993, but includes some description of previous work which has been discussed in prior reports and publications. The research has the objectives of answering the following questions: (1) How are Rn emanation coefficients related to the form of Ra and other U-series decay products? (2) How do Ra and Rn in soil depend on the form and behavior of their ancestors 234 U and 230 Th? (3) Under what conditions can thermally driven convection in soil have significant effects on radon transport in soil? (4) Under what conditions do soil moisture and soil air convection affect Rn in homes, and how are these variables relevant in mitigation?

  6. Radon in dwellings the national radon survey Cavan, Dublin, Louth, Monaghan and Wicklow

    International Nuclear Information System (INIS)

    Duffy, J.T.; Mackin, G.M.; Fennell, S.G.; Madden, J.S.; McGarry, A.T.; Colgan, P.A.

    1996-10-01

    This report presents the first results of the National Radon Survey carried out by the Radiological Protection Institute of Ireland. The average radon concentrations for the houses measured in counties Cavan, Dublin, Louth, Monaghan and Wicklow ranged from 69 to 138 Bq/m 3 with individual values as high as 1000 Bq/m 3 . The measurement data were grouped on the basis of the 10 km grid squares of the Irish National Grid System and used to predict the percentage of dwellings in each grid square which exceeds the Reference Level of 200 Bq/m 3 . Grid squares where this percentage is predicted to be 10% or higher are designated High Radon Areas. The health effects of exposure to high radon levels are discussed and recommendations are made regarding both new and existing dwellings

  7. Control of indoor radon and radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.

    1985-05-01

    There are three general categories of techniques for the control of radon and radon progeny concentrations in indoor air - restriction of radon entry, reduction of indoor radon concentrations by ventilation or air cleaning, and removal of airborne radon progeny. The predominant radon entry process in most residences appears to be pressure driven flow of soil gas through cracks or other openings in the basement, slab, or subfloor. Sealing these openings or ventilation of the subslab or subfloor space are methods of reducing radon entry rates. Indoor radon concentrations may be reduced by increased ventilation. The use of charcoal filters for removal of radon gas in the indoor air by adsorption has also been proposed. Concentrations of radon progeny, which are responsible for most of the health risks associated with radon exposures, can be controlled by use of electrostatic or mechanical filtration. Air circulation can also reduce radon progeny concentrations in certain cases. This paper reviews the application and limitations of each of these control measures and discusses recent experimental results

  8. Study on radon concentration monitoring using activated charcoal canisters in high humidity environments

    International Nuclear Information System (INIS)

    Wang Yuexing; Wang Haijun; Yang Yifang; Qin Sichang; Wang Zhentao; Zhang Zhenjiang

    2009-01-01

    The effects of humidity on the sensitivity using activated charcoal canisters for measuring radon concentrations in high humidity environments were studied. Every canister filled with 80 g of activated charcoal, and they were exposed to 48 h or 72 h in the relative humidity of 68%, 80%, 88% and 96% (28 degree C), respectively. The amount of radon absorbed in the canisters was determined by counting the gamma rays from 214 Pb and 214 Bi (radon progeny). The results showed that counts decreased with the increase of relative humidity. There was a negative linear relationship between count and humidity. In the relative humidity range of 68%-96%, the sensitivity of radon absorption decreased about 2.4% for every 1% (degree)rise in humidity. The results also showed that the exposure time of the activated charcoal canisters should be less than 3 days. (authors)

  9. A micromegas detector for {sup 222}Rn emanations measurements

    Energy Technology Data Exchange (ETDEWEB)

    García, J. A.; Garza, J. G.; Irastorza, I. G.; Mirallas, H. [Laboratorio de Física Nuclear y Altas Energías, Universidad de Zaragoza, Zaragoza (Spain)

    2013-08-08

    The {sup 222}Rn emanation has significant contribution in the overall background for rare event searches experiments. In order to measure this emanations a high sensitivity detector has been designed. The detection method is based on the electrostatic collection of the {sup 222}Rn daughters on a Micromegas detector. Using a chamber with a volume of 21.2 l for the collection of {sup 218}Po and {sup 214}Po progeny of {sup 222}Rn and a 12 × 12cm{sup 2} pixelized Micromegas for the α detection. The advantages of the Micromegas detectors are the low intrinsic radioactivity and the track reconstruction of the α’s, having excellent capabilities for event discrimination.

  10. A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples

    International Nuclear Information System (INIS)

    Sahoo, B.K.; Sapra, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2011-01-01

    In recognition of the fact that building materials are an important source of indoor radon, second only to soil, surface radon exhalation fluxes have been extensively measured from the samples of these materials. Based on this flux data, several researchers have attempted to predict the inhalation dose attributable to radon emitted from walls and ceilings made up of these materials. However, an important aspect not considered in this methodology is the enhancement of the radon flux from the wall or the ceiling constructed using the same building material. This enhancement occurs mainly because of the change in the radon diffusion process from the former to the latter configuration. To predict the true radon flux from the wall based on the flux data of building material samples, we now propose a semi-empirical model involving radon diffusion length and the physical dimensions of the samples as well as wall thickness as other input parameters. This model has been established by statistically fitting the ratio of the solution to radon diffusion equations for the cases of three-dimensional cuboidal shaped building materials (such as brick, concrete block) and one dimensional wall system to a simple mathematical function. The model predictions have been validated against the measurements made at a new construction site. This model provides an alternative tool (substitute to conventional 1-D model) to estimate radon flux from a wall without relying on 226 Ra content, radon emanation factor and bulk density of the samples. Moreover, it may be very useful in the context of developing building codes for radon regulation in new buildings. - Research highlights: → A model is proposed to predict radon flux from wall using flux of building material. → It is established based on the diffusion mechanism in building material and wall. → Study showed a large difference in radon flux from building material and wall. → Model has been validated against the measurements made at

  11. Modeling the dependency of radon concentration levels inside ancient Egyptian tombs on the ambient temperature variations

    International Nuclear Information System (INIS)

    Metwally, S.M.; Abo-Elmagdb, M.; Salamaa, E.

    2007-01-01

    Radon concentration inside partially closed places like dwellings, caves and tombs, depends on many parameters. Some parameters are known quantitatively as radon exhalation rate for walls, decay constant, surface to volume ratio and outdoor concentration while other parameters as ventilation rate is in common known qualitatively due to useless of traditional methods (tracer gases) in many places as ancient Egyptian tombs. This work introduces a derived mathematical model to evaluate the sensitivity of radon concentration levels inside single sided opening places as ancient Egyptian tombs on the ambient temperature differences. The obtained formula for the natural ventilation rate depends on the indoor and outdoor temperature difference and the geometrical dimensions of the doorway. The effects of in and out flow mixing, air viscosity, streamline contraction, swirling flow and turbulence, were taken into consideration in terms of an empirical correction factor. According UNSCEAR reports, the exhalation rate Φ=C ra λ rn fρ s (1-ε)L; C ra the effective radium content, λ rn decay constant, f emanation fraction, ρ s soil grain density, ε porosity and L diffusion length, these are approximately static parameters but the variability of ambient temperature introduces a source of energy of fluctuating strength to radon atoms in rocks which controls the flow rate and the ambient content of radon. Therefore, the change of outdoor and indoor temperature difference causes fluctuation of value and direction of volume flow rate in such places consequently causes the daily variation and on average the seasonal variation of radon concentration. Therefore according to the present model, the daily accurate expectation of radon concentrations inside ancient Egyptian tombs, require precise measurements of indoor and outdoor temperatures

  12. High concentrations of radon. Specifically affected buildings; Hohe Radonkonzentrationen. Besonders betroffene Gebaeudetypen

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Winfried [Bundesamt fuer Strahlenschutz, Berlin (Germany)

    2015-07-01

    The paper presents a concept for the prognosis of exceeding probabilities of thresholds of radon in dwellings in different building types. A transfer model for the interface subsoil - building was used as a basis. The partial datasets obtained by stratification of five relevant building characteristics can be de-scribed by a 3-parametric-lognormal distribution good in most times. The available data permit statistical predictions to 60 combinations of building characteristics for the region ''east'' and 85 combinations of building characteristics for the region ''West''. The uncertainties for the probability of exceeding a threshold were estimated from the data with bootstrapping. The importance of different building characteristics for the presence of enhanced radon concentrations can be predicted from the results of this estimation. Therefore, targeting of affected buildings is possible on this basis. Regional prognoses of exceeding probabilities for building types with high presence can also be created by the use of transfer factors. A Strategy to reduce the health risk from radon in the long run might be derived, where alongside the delineation of radon prone areas, special attention should be paid to a set out building characteristics, also outside the radon prone areas.

  13. Radon in Syrian houses

    International Nuclear Information System (INIS)

    Othman, I.; Hushari, M.; Raja, G.; Alsawaf, A.

    1996-01-01

    A nationwide investigation of radon levels in Syrian houses was carried out during the period 1991-1993. Passive radon diffusion dosemeters using polycarbonate detectors were distributed in houses all over Syria. Detectors were subjected to electrochemical etching to reveal latent tracks of alpha particles. The mean radon concentration in Syrian houses was found to be 45 Bq m -3 with some values several times higher. This investigation indicated that there were a few houses in Syria that require remedial action. Most houses that have high levels of radon were found in the southern area, especially in the Damascus governorate. The study also indicated that radon concentrations were higher in old houses built from mud with no tiling. (author)

  14. A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal

    International Nuclear Information System (INIS)

    Perrier, F.; Byrdina, S.; Richon, P.; Bollinger, L.; Bureau, S.; Richon, P.; France-Lanord, Ch.; Rajaure, S.; Koirala, Bharat Prasad; Shrestha, Prithvi Lal; Gautam, Umesh Prasad; Tiwari, Dilli Ram; Sapkota, Soma Nath; Revil, A.; Revil, A.; Contraires, S.

    2009-01-01

    Gas discharges have been identified at the Syabru-Bensi hot springs, located at the front of the High Himalaya in Central Nepal, in the Main Central Thrust zone. The hot spring waters are characterized by a temperature reaching 61 C, high salinity, high alkalinity and δ 13 C varying from +0. 7 parts per thousand to +4. 8 parts per thousand. The gas is mainly dry carbon dioxide, with a δ 13 C of -0. 8 parts per thousand. The diffuse carbon dioxide flux, mapped by the accumulation chamber method, reached a value of 19000 g m -2 day -1 , which is comparable with values measured on active volcanoes. Similar values have been observed over a two-year time interval and the integral around the main gas discharge amounts to 0. 25 ± 0. 07 mol s -1 , or 350 ± 100 ton a -1 . The mean radon-222 concentration in spring water did not exceed 2. 5 Bq L -1 , exponentially decreasing with water temperature. In contrast, in gas bubbles collected in the water or in the dry gas discharges, the radon concentration varied from 16 000 to 41000 Bq m -3 . In the soil, radon concentration varied from 25000 to more than 50000 Bq m -3 . Radon flux, measured at more than fifty points, reached extreme values, larger than 2 Bq m -2 s -1 , correlated to the larger values of the carbon dioxide flux. Our direct observation confirms previous studies which indicated large degassing in the Himalaya. The proposed understanding is that carbon dioxide is released at mid-crustal depth by metamorphic reactions within the Indian basement, transported along pre-existing faults by meteoric hot water circulation, and degassed before reaching surface. This work, first, confirms that further studies should be undertaken to better constrain the carbon budget of the Himalaya, and, more generally, the contribution of mountain building to the global carbon balance. Furthermore, the evidenced gas discharges provide a unique natural laboratory for methodological studies, and appear particularly important to study as

  15. Residents in a high radon potential geographic area: Their risk perception and attitude toward testing and mitigation

    International Nuclear Information System (INIS)

    Ferng, S.F.; Lawson, J.K.

    1996-01-01

    Boone County, Indiana was identified by the EPA as one of the high radon potential geographic areas. Health education campaigns are needed to prevent resident's unnecessary radon exposure. In order to design suitable programs, a questionnaire mail survey was conducted to measure socio-demographic characteristics of County resident's knowledge about radon, attitude toward radon testing and mitigation, support of education campaigns, and the best media to deliver radon education campaigns. A stratified random sampling method was applied for a total of 400 samples. The number of samples from each township/city was a proportion of their taxable parcels. The survey return rate was 39.8%. The data were analyzed by Epi Info and SPSS. The statistical significant level was set at α = 0.05. The results showed that resident's knowledge about radon was at a relatively superficial level. There was no association identified between the knowledge of radon and gender, age, family income, or education, except that females more frequently believed in false effects caused by radon. A significant correlation between radon knowledge and home radon tests was observed. Also found in this study was that respondents with better knowledge about diseases caused by radon had more confidence in radon mitigation actions. Newspaper was chosen by respondents as the most favorite media to deliver radon health education campaigns. Health education campaigns for the residents of Boone County might be conducted by local governments and/or other organizations

  16. Radon availability in New Mexico

    International Nuclear Information System (INIS)

    McLemore, V.T.

    1995-01-01

    The New Mexico Bureau of Mines and Mineral Resources (NMBMMR) in cooperation with the Radiation Licensing and Registration Section of the New Mexico Environment Department (NMED) and the US Environmental Protection Agency (EPA) have been evaluating geologic and soil conditions that may contribute to elevated levels of indoor radon throughout New Mexico. Various data have been integrated and interpreted in order to determine areas of high radon availability. The purpose of this paper is to summarize some of these data for New Mexico and to discuss geologic controls on the distribution of radon. Areas in New Mexico have been identified from these data as having a high radon availability. It is not the intent of this report to alarm the public, but to provide data on the distribution of radon throughout New Mexico

  17. A passive radon dosemeter suitable for workplaces

    International Nuclear Information System (INIS)

    Orlando, C.; Orlando, P.; Patrizii, L.; Tommasino, L.; Tonnarini, S.; Trevisi, R.; Viola, P.

    2002-01-01

    The results obtained in different international intercomparisons on passive radon monitors have been analysed with the aim of identifying a suitable radon monitoring device for workplaces. From this analysis, the passive radon device, first developed for personal dosimetry in mines by the National Radiation Protection Board, UK (NRPB), has shown the most suitable set of characteristics. This radon monitor consists of a diffusion chamber, made of conductive plastic with less than 2 cm height, containing a CR-39 film (Columbia Resin 1939), as track detector. Radon detectors in workplaces may be exposed only during the working hours, thus requiring the storage of the detectors in low-radon zones when not exposed. This paper describes how this problem can be solved. Since track detectors are also efficient neutron dosemeters, care should be taken when radon monitors are used in workplaces, where they may be exposed to neutrons, such as on high altitude mountains, in the surroundings of high energy X ray facilities (where neutrons are produced by (gamma, n) reactions) or around high energy particle accelerators. To this end, the response of these passive radon monitors to high energy neutron fields has been investigated. (author)

  18. Secular variations of radon in metropolitan Vancouver, British Columbia, Canada

    International Nuclear Information System (INIS)

    Ghomshei, M.M.; Slawson, W.F.

    1990-01-01

    In this paper sampling of radon within the soil from three sites in metropolitan Vancouver is reported. Alpha trace bi-weekly measurements during a period of 4 years show secular variations with a period of 8-15 months. There are low-radon and high-radon episodes enduring several months to a year. Average radon level during the high-radon episodes reaches 5-10 times that of the low-radon periods. During high-radon episodes the high-frequency variations show very high amplitudes. After filtering of the high-frequency fluctuations, the data from different sites demonstrate remarkably similar trends. It is suggested that along with hydrogeological events, stress relaxation in rocks, earthquake, and magma emplacement may contribute to the sources of secular variations of radon. Because of long-term variations, radon level in urban areas should be monitored on a continuous basis. Single measurements, even those integrating radiation over a period of few months, may sample a low-radon episode, and provide a false assurance, or occur during a high-radon episode and give a false alarm

  19. Evaluation of genetic alteration induced by radon gas using the micronucleus test (Tradescantia sp. clone KU-20)

    International Nuclear Information System (INIS)

    Bruschi, Armando L.; Azevedo, Heliana de; Macacini, Jose F.; Roque, Claudio V.

    2011-01-01

    The first observations over the existence of radon gas (Rn), initially known as 'thorium emanation', were carried out between the end of 19 th and beginning of 20 th centuries. A result of uranium-238 (U 238 ) radioactive decay, radon is a tasteless, odorless and colorless gas under room temperature, with a 3.825-day half life and particle α emission in its decay, and as final product of its disintegration, the stable lead-206 isotope (Pb 206 ). Being it is the gas with the highest density known, closed and poor ventilated environments are favorable to its accumulation, with its inhalation being the highest health risk. The use of vegetal bioindicators has shown to be excellent on the monitoring of air quality and on mutagenic potential of various pollutants contained in the atmosphere. Within this context, the objective of this study was to evaluate the micronucleus test application potential utilizing the Tradescantia sp. clone KU-20, in order to evaluate genetic alterations induced by radon gas. Stems of Tradescantia sp. clone KU-20, previously immerse in Hoagland solution, were introduced in a radon detection equipment's calibration chamber (Alphaguard), containing radium salt. Afterwards, the accommodated stems were exposed to radon gas (the average radon concentration was 7.639 KBq/m3) for 24 hours. The results demonstrated an increase on micronucleus formation (39.23 + 2.143 MCN/100 tetrads) in stems exposed in relation to the negative control (18.00 + 1.396 MCN/100 tetrads). The difference between the values indicated a significant increase on micronucleus frequency in the inflorescences subjected to radon gas. The presented results demonstrated the micronucleus test application potential using Tradescantia clone KU-20 to evaluate genetic effects induced by radon gas. (author)

  20. The householders' guide to radon

    International Nuclear Information System (INIS)

    1988-06-01

    This guide is a follow-up to the leaflet Radon in Houses which was issued previously by the Department of the Environment. It is intended for people who live in areas with high levels of radon. It is written particularly for householders whose homes have already been tested and found to have an appreciable level of radon. It explains what radon is, how it gets into houses and what the effects on health may be. It also outlines some of the ways of reducing the level of radon and gives guidance both on how to get the work done and likely costs. (author)

  1. Characterizing the source of radon indoors

    International Nuclear Information System (INIS)

    Nero, A.V.; Nazaroff, W.W.

    1983-09-01

    Average indoor radon concentrations range over more than two orders of magnitude, largely because of variability in the rate at which radon enters from building materials, soil, and water supplies. Determining the indoor source magnitude requires knowledge of the generation of radon in source materials, its movement within materials by diffusion and convection, and the means of its entry into buildings. This paper reviews the state of understanding of indoor radon sources and transport. Our understanding of generation rates in and movement through building materials is relatively complete and indicates that, except for materials with unusually high radionuclide contents, these sources can account for observed indoor radon concentrations only at the low end of the range observed. Our understanding of how radon enters buildings from surrounding soil is poorer, however recent experimental and theoretical studies suggest that soil may be the predominant source in many cases where the indoor radon concentration is high. 73 references, 3 figures, 1 table

  2. RADON IN GROUNDWATERS IN THE BAIKAL REGION AND TRANSBAIKALIA: VARIATIONS IN SPACE AND TIME

    Directory of Open Access Journals (Sweden)

    K. Zh. Seminsky

    2016-01-01

    -fault water sources (Group II. Despite the distinct variations in radioactivity, the Q values recorded through most of the monitoring time do not exceed the threshold Q values for the respective groups. It appears that the observed periodic anomalously high and low contents of radon are due to seasonally variable meteorological parameters (see Fig. 6.The correlation analysis of Q values and atmospheric pressure (P, air humidity (U and temperature (T shows a clear dependence of the content of radon in groundwater on T and P values (Table 3. Following the major seasonal trend of air temperature, the level of radioactivity is increased in the water samples taken in winter and decreased in summer (see Fig. 6. Q values are indirectly influenced by parameter T via changes of water temperature, variations in flow rates of water sources, freezing of the top layer of soil and other processes, which parameters require further research.According to the monitoring data (see Table 3, and Fig. 6, A, the content of radon in near-surface water sources (Group I can vary by a few and the first dozens of units, while changes by tens of becquerel per liter are recorded in the deeper near-fault water sources (Group II. As a consequence, in short periods of extreme Q values, the content of radon in a water source may increase or decrease to a value corresponding to a neighbouring radon-radioactivity group.This paper provides an overview of the radon activity of groundwater in the Baikal region and Transbaikalia with a focus on regularities in the spatial and temporal patterns of 222Rn in the water sources with Q<185 Bq/l. The nonradon waters are more abundant in the Baikal region, including areas of active use of natural resources. Although the content of 222Rn in low, such waters should be a target of further research aimed to explore medicinal water sources, assess drinking water quality, and discover the emanation precursors of strong earthquakes in the study region.

  3. Natural radon as a limnological tracer for the study of vertical and horizontal eddy diffusion

    International Nuclear Information System (INIS)

    Imboden, D.M.

    1979-01-01

    Radon-222 (half-life 3.8 d) has been used successfully as a geochemical tracer for vertical near bottom mixing in the ocean. The parent nuclide radium-226 (half-life 1600 a) occurs in far greater quantities in sediments than in the water column, thus providing a boundary source for emanation of radon. Vertical mixing in lakes may be of central importance for the evolution of chemical and biological processes. Most lakes pass through a stagnation period during which the euphotic zone continuously loses nutrients by sedimentation of plankton through the thermocline. The return flux of nutrients from the sediments through the hypolimnion and thermocline to the euphotic layer can only be understood and quantified if vertical mixing processes are known. The traditional means by which vertical eddy diffusion is calculated is the temperature method. However, temperature changes near the bottom of deep lakes are often too small to be measured. Among various (natural or man-made) geochemical tracers radon-222 seems to be especially suitable for the study of vertical mixing since its 'memory' of about one week very often allows measured activities to be interpreted in terms of a relatively simple steady-state model

  4. Indoor radon measurements and radon prognosis for the province of Kymi, southeastern Finland

    International Nuclear Information System (INIS)

    Pennanen, M.; Maekelaeinen, I.; Voutilainen, A.

    1996-12-01

    The purpose of the regional radon prognosis is to classify areas with different levels of radon risk. The radon prognosis gives the percentages of future homes expected to have indoor radon concentrations exceeding the levels of 200 and 400 Bq/m 3 . It is assumed that no protection against the entry of radon is used in construction. In this study about 5900 indoor radon measurements made in single family houses, semi-detached houses and row houses were used. Data on the location, geology and construction of buildings were determined from maps and questionnaires. An empirical statistical model, the adjusted indoor radon measurements and geological data were used to assess the radon risk from soil and bedrock in different areas. The building sites of the province of Kymi were divided into thirteen sub-areas. The radon prognosis are calculated for the most radon-prone foundation types including 1) houses with a slab-on-grade and 2) houses with a basement or hillside houses with open stairwells between basement and first floor. The radon levels are generally greater in the western part of the area. The radon risk is highest in gravel-dominated esker areas in southwestern, western (in Pyhtaa, Kotka, Anjalankoski, litti, Valkeala) and central (Taipalsaari) parts of the area. The radon risk is also high in some bedrock and till areas, also in southwestern and western parts of the area. In these areas the level of 200 Bq/m 3 will be exceeded in 80 % of new houses. About half of the future houses in these areas will have indoor radon concentrations exceeding 400 Bq/m 3 . The radon risk is lowest in the eastern part of the province of Kymi in every soil type. In this area the level of 200 Bq/m 3 will be exceeded in 30 % of new houses. Below 10 % will exceed 400 Bq/m 3 . (orig.) (14 refs.)

  5. High indoor radon variations and the thermal behavior of eskers

    International Nuclear Information System (INIS)

    Arvela, H.; Voutilainen, A.; Honkamaa, T.; Rosenberg, A.

    1994-01-01

    Measurements of indoor radon concentrations in houses built on the Pispala esker in the city of Tampere were taken. The objective was to find connections between indoor radon concentrations, esker topography, and meteorological factors. The results show that not only the permeable soil but also subterranean air-flows in the esker strongly affect the indoor radon concentrations. The difference in temperature between the soil air inside the esker and the outdoor air compels the subterranean air to stream between the upper and lower esker areas. In winter, the radon concentrations are amplified in the upper esker areas where air flows out from the esker. In summer, concentrations are amplified in certain slope zones. In addition, wind direction affects the soil air and indoor radon concentrations when hitting the slopes at right angles. Winter-summer concentration ratios are typically in the range of 3-20 in areas with amplified winter concentration, and 0.1-0.5 in areas with amplified summer concentrations. A combination of winter and summer measurements provides the best basis for making mitigation decisions. On eskers special attention must be paid to building technology because of radon. 9 refs., 7 figs., 1 tab

  6. Radon: Residential attitudes toward the risk

    International Nuclear Information System (INIS)

    Fort, R.; Hinman, G.; Rosenman, R.; Wandschneider, P.

    1990-01-01

    Veradale, Washington (east of Spokane) is a region of high residential radon concentrations. Three hundred eighty residents of Veradale recently responded to a mail survey designed to elicit (1) their knowledge of and attitudes toward the risks of radon in their homes, (2) the actions they have taken or intend to take to identify and reduce those risks, and (3) policy preferences toward radon. Results reveal that these residents know that they live in an area with high radon levels, that radon causes lung cancer, and that radon will affect their health. However only 11% of respondents have had their homes tested for radon. This especially is puzzling because a large number of respondents claimed that (1) radon was important in home buying decisions, (2) they would test their own homes, (3) they would take action if such tests revealed problems, and (4) their willingness to pay for tests and improvements was well within the current costs of these actions. It remains a mystery why testing is at such a low level. Three other results are of note. First, subsidies for radon tests and home improvements may be having the unintended consequences of unneeded improvements and (potentially) moves without improvements. Second, individuals want radon testing required and results made known during home purchase decisions. Third, at present, weatherization programs that concentrate radon are acceptable to individuals. Of course, the future may hold different results. Administrators of weatherization programs, who are trusted by respondents according to this survey, would do well to institute weatherization programs with reduced radon concentrations in mind

  7. Radon awareness in Ireland: a assessment of the effectiveness of radon road shows

    International Nuclear Information System (INIS)

    Synnott, H.

    2006-01-01

    Full text: In late 2004 the Radiological Protection Institute of Ireland (R.P.I.I.) initiated a series of radon road shows in areas designated as High Radon Areas 1 in the R.P.I.I. s national radon survey of homes. The main objective of these road shows was to provide information to a local audience on the risks of exposure to radon. These road shows target both employers and householders. Each road show has the same general format. A presentation and/or meeting with a major employer representative group within the area. The purpose is to make employers aware of the risks associated with exposure to radon in the workplace and to highlight their obligations under current Irish health and safety legislation regarding radon in the workplace. An information stand on radon manned by R.P.I.I. staff members in a local shopping centre or other similar area. This provides those concerned about radon with accessible information on radon exposure risks, how to measure radon and the steps a home owner could take to reduce radon concentrations where necessary. Where possible R.P.I.I. staff members visit one or more schools in the general area. A short presentation on radon was given to students and students were given an opportunity to asks questions Maximizing media exposure to publicize our visits is vital to the success of these visits. Each visit is preceded by a Press Release whose main aim is to brief local and national media on the radon issue so as to achieve maximum publicity mainly through radio and television coverage. In general the media are very interested in the whole radon area and R.P.I.I. staff members have given 57 radio and 10 television interviews to date since the commencement of this initiative. The four road shows carried out to date have been successful in encouraging householders to carry out radon measurements. Since the start of the road shows to the present, the R.P.I.I. has seen a 44% increase in the number of householders requesting radon

  8. Measurement of exhalation rate of radon and radon concentration in air using open vial method

    International Nuclear Information System (INIS)

    Horiuchi, Kimiko; Ishii, Tadashi.

    1991-01-01

    It was recognized that more than half of total exposure dose on human subject is caused by radon and its decay products which originate from naturally occurring radioactive substances (1988 UNSCEAR). Since then the exhalation of radon from the ground surface has received increasing attention. The authors have developed a new method for the determination of radon in natural water using toluene extraction of radon and applying a liquid scintillation counter of an integral counting technique which is able to get the absolute counting of radon. During these studies, the authors found out that when a counting vial containing of Liquid scintillator (LS)-toluene solution, without a lid, is exposed to the atmosphere for a while, dissolution of radon clearly occurs due to high solubility of radon into toluene layer. To extend this finding for the determination of radon in the atmosphere, the authors devised a new method to actively collect the atmosphere containing radon in a glass bottle by discharging a definite amount of water in it, which is named as open-vial dynamic method. The radon concentration can be easily calculated after the necessary corrections such as the partition coefficient and others. Applying proposed method to measure the radon exhalation rate from the ground surface and radon concentration in air of the dwelling environment, radioactive mineral spring zone and various geological formation such as granitic or sedimentary rocks. (author)

  9. Modeling the dependency of radon concentration levels inside ancient Egyptian tombs on the ambient temperature variations

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, S M; Abo-Elmagdb, M [Faculty of Science, Department of Physics, Ain Shams University, P. O. Box 11566, Cairo (Egypt); Salamaa, E [National Institute for Standard, Radiation Measurements Department, Cairo (Egypt)

    2007-06-15

    Radon concentration inside partially closed places like dwellings, caves and tombs, depends on many parameters. Some parameters are known quantitatively as radon exhalation rate for walls, decay constant, surface to volume ratio and outdoor concentration while other parameters as ventilation rate is in common known qualitatively due to useless of traditional methods (tracer gases) in many places as ancient Egyptian tombs. This work introduces a derived mathematical model to evaluate the sensitivity of radon concentration levels inside single sided opening places as ancient Egyptian tombs on the ambient temperature differences. The obtained formula for the natural ventilation rate depends on the indoor and outdoor temperature difference and the geometrical dimensions of the doorway. The effects of in and out flow mixing, air viscosity, streamline contraction, swirling flow and turbulence, were taken into consideration in terms of an empirical correction factor. According UNSCEAR reports, the exhalation rate {phi}=C{sub ra}{lambda}{sub rn} f{rho}{sub s}(1-{epsilon})L; C{sub ra} the effective radium content, {lambda}{sub rn} decay constant, f emanation fraction, {rho}{sub s} soil grain density, {epsilon} porosity and L diffusion length, these are approximately static parameters but the variability of ambient temperature introduces a source of energy of fluctuating strength to radon atoms in rocks which controls the flow rate and the ambient content of radon. Therefore, the change of outdoor and indoor temperature difference causes fluctuation of value and direction of volume flow rate in such places consequently causes the daily variation and on average the seasonal variation of radon concentration. Therefore according to the present model, the daily accurate expectation of radon concentrations inside ancient Egyptian tombs, require precise measurements of indoor and outdoor temperatures.

  10. Distribution of radon concentration in residences and others buildings of Belo Horizonte city, MG, Brazil

    International Nuclear Information System (INIS)

    Santos, Talita de Oliveira

    2010-01-01

    Human beings are exposed to ionizing radiation from many natural sources. Radon and its progeny have been recognized as the most important contributors to the natural radioactivity dose, accounting for about half of all human exposure to ionizing radiation. Radon is a α-radioactive noble gas derived from the natural series of uranium and thorium, which occurs in a wide concentration range in all geological materials, especially, in rocks, soils and waters. By diffusion and convection, radon migrates from the rocks and soils to atmosphere and through fissures, pipes and holes it may enter the dwellings and other buildings. Another important radon source in dwellings is its emanation from the construction material. The radon progeny concentration in dwellings has been receiving considerable global attention due to its potential effect in causing lung cancer if it deposited in upper respiratory tract when inhaled. This work presents radon concentration distribution in dwellings in Metropolitan Region of Belo Horizonte - RMBH. The geological settings of the area are Archean rocks of Granitic Gneissic Complex and of metasediments sequences of the great Precambrian unit of the Iron Quadrangle of Minas Gerais, Brazil. Radon concentration measurements were carried out with continuous detector AlphaGUARD PQ200PRO (Genitron), in passive mode and with passive detectors E-PERM Electrets Ion Chamber-EIC. The radon progeny concentration was carried out with a solid state alpha spectroscope, the DOSEman PRO (Sarad). It was found an indoor radon concentration varying in a large range from 4 to 2664,0 Bq.m"-"3, with an average value of 108.0 Bq.m"-"3, median of 70 Bq.m"-"3, geometric mean equal to 76 Bq.m"-"3 and standard deviation of 170 Bq.m"-"3. About 15% of the results are over the United States Environmental Protection Agency (U.S. EPA) actions level, which is 148 Bq.m"-"3.The equilibrium factor between radon and its progeny were determined in dwellings, as 0.3 in average

  11. Modeling of indoor radon

    International Nuclear Information System (INIS)

    Paschoa, A.S.

    1990-01-01

    This paper reports on models for radon, which are developed not only to describe the behavior of radon and daughters since the moment that radon is created in natural sources by the alpha decay of 226 Ra up to the point that doses to humans are estimated based on the inhalation of radon and its progeny. The objective of a model should be determinant in defining the model structure and boundaries. Modeling indoors radon is particularly useful when the 226 Ra concentration in building materials and soils can be known before a house will be built with such 226 Ra bearing materials and over 226 Ra rich soils. The reported concentrations of 226 Ra in building materials range from 0.3 Bq · kg -1 in wood to about 2.6 x 10 3 Bq · kg -1 in aerated concrete based on alum shale. 30 In addition, when a house is built on a soil containing a high 226 Ra concentration, radon exhalation from the soil contributes to increase radon concentration indoors. The reported radon exhalation from soils range from 3.4 Bq · m -2 · s -1 in latosolic soil from Osaka, Japan to about 53 mBq · m -2 · s -1 in chernozemic soil from Illinois

  12. Radon

    Science.gov (United States)

    ... radon-resistant features. These features include gravel and plastic sheeting below the foundation, along with proper sealing ... lower the radon level. Detailed information about radon reduction in your home or building can be found ...

  13. Indoor air radon dose assessment for elementary, middle and high schools at Ulju county in Korea

    International Nuclear Information System (INIS)

    Lee, Choong Wie; Kim, Hee Reyoung

    2016-01-01

    Ulsan is the largest industrial city and possesses the largest area among 7 metropolitan cities in Korea. Ulju county is one of the administrative districts of Ulsan, and covers over 70 % of Ulsan and is surrounded by mountain to the east and sea to the west, which has urban and rural area. Thus, there are many geological and industrial condition in its environment. Ministry of Environment (ME) of Korea is carrying out radon survey every 2 years, but this survey focuses on radon radioactivity of the houses and radon survey for schools isn't detailed. At schools, people with various age work and are educated for a specific time, therefore, it is needed to analyze the radon radioactivity concentration of indoor air to estimate the effect by the radon exposure. Indoor air radon radioactivity concentration and dose of 57 schools including elementary, middle and high schools in Ulju county were analyzed by using alpha track. It was understood that average radon concentrations of schools in Ulju county were being maintained below recommendation level although survey results of some schools showed 295 Bq/m 3 higher than regulation of Ministry of Environment for radon concentration, 148 Bq/m 3 . Indoor annual effective dose of 0.157 mSv by radon was found to be less than 7 % of the natural radiation exposure of 2.4 mSv when ICRP dose coefficient for adult male was applied. It was thought that further radon effect analysis for various ages including children was needed for more accurate dose assessment

  14. Indoor air radon dose assessment for elementary, middle and high schools at Ulju county in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong Wie; Kim, Hee Reyoung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Ulsan is the largest industrial city and possesses the largest area among 7 metropolitan cities in Korea. Ulju county is one of the administrative districts of Ulsan, and covers over 70 % of Ulsan and is surrounded by mountain to the east and sea to the west, which has urban and rural area. Thus, there are many geological and industrial condition in its environment. Ministry of Environment (ME) of Korea is carrying out radon survey every 2 years, but this survey focuses on radon radioactivity of the houses and radon survey for schools isn't detailed. At schools, people with various age work and are educated for a specific time, therefore, it is needed to analyze the radon radioactivity concentration of indoor air to estimate the effect by the radon exposure. Indoor air radon radioactivity concentration and dose of 57 schools including elementary, middle and high schools in Ulju county were analyzed by using alpha track. It was understood that average radon concentrations of schools in Ulju county were being maintained below recommendation level although survey results of some schools showed 295 Bq/m{sup 3} higher than regulation of Ministry of Environment for radon concentration, 148 Bq/m{sup 3}. Indoor annual effective dose of 0.157 mSv by radon was found to be less than 7 % of the natural radiation exposure of 2.4 mSv when ICRP dose coefficient for adult male was applied. It was thought that further radon effect analysis for various ages including children was needed for more accurate dose assessment.

  15. The radon

    International Nuclear Information System (INIS)

    1998-01-01

    This booklet is intended to answer briefly the most important questions about the nature and sources of radon, its pathways from environment to organism, as well as the ways to minimize its concentration in the habitat's atmosphere. The radon is a naturally appearing radioactive gas, produced through the decay of uranium and radium present in the terrestrial crust. It can be found everywhere on the planet's surface and it is emitted particularly from the granite and volcanic underground rocks as well as from certain construction materials. It is one of the agents producing pulmonary cancer, although not so dangerous as the tobacco is. The following items are elaborated in this booklet: - the place of radon in the average exposure to ionizing radiations of the French population; - the risk; - the radon in the environment (the meteorological conditions, the nature of the rocks); - radon in dwellings (radon measurements in the French dwellings, the entrance pathways of radon, the dependence of radon concentration on the profession and way of life of the inhabitants); - radon measurements; - how to reduce the radon concentration in dwellings

  16. Radon risk communication research: Practical lessons

    International Nuclear Information System (INIS)

    Fisher, A.; Johnson, F.R.

    1990-01-01

    Those responsible for state and local radon programs often express frustration about the small share of homes that have been tested for radon, and the small share of those with high readings that have been mitigated. There are now a number of completed studies that have examined how well alternative ways of communicating about radon risk have accomplished the goals of motivating appropriate testing and mitigation. This paper summarizes the research results that are most crucial for planning and implementing effective radon risk communication programs. We identify six reasons why people do not respond to radon as a serious threat and provide some remedies suggested by radon studies

  17. Radon dynamics in underwater thermal radon therapy

    International Nuclear Information System (INIS)

    Lettner, H.; Hofmann, W.; Winkler, R.; Rolle, R.; Foisner, W.

    1998-01-01

    At a facility for underwater thermal radon therapy in Bad Hofgastein, experiments were carried out with the aim of establishing radon in the air exhaled by the treated patients and of radon decay products on the skin of the patients. The time course of radon concentration in the exhaled air shows a maximum a few minutes after entering the bath, then the Rn concentration remains constant over the remaining time spent in the bath. Taking into account several simplifying assumptions, the average dose to the epidermis from radon daughters is about 50 μGy. (A.K.)

  18. Radon in Schools

    Science.gov (United States)

    ... Search Search Radon Contact Us Share Radon in Schools Related Information Managing Radon in Schools Radon Measurement ... Radon Could Be a Serious Threat to Your School Chances are you've already heard of radon - ...

  19. Lead content of deciduous tooth enamel from high-radon area

    International Nuclear Information System (INIS)

    Anttila, A.

    1987-01-01

    Lead concentrations in the enamel of deciduous incisors of 49 6- to 7-year children living in Askola, a rural area in which the radon level is one og the highest in Finland, were determined by the proton-induced X-ray emission method. The absolute concentrations were obtained by calibration with the animal bone standard of the International Atomic Energy Agency. The mean lead concentration of 8.8±6.6 ppm of the whole enamel agreed well with the earlier corresponding lead data from other regions of Finland, indicating that no significant increase in the lead level of the teeth would have occurred because of radon decay. However, the lead concentration level measured on the tooth surface was somewhat higher in Askola, 232±141 ppm, than in the low-radon area Oulu (167±139 ppm; ρ<0.10). The lead concentration of the whole enamel of the upper incisors, 12.2 ± 8.0 ppm, was twice as high as that of the lower incisors, 6.8 ± 4.6 ppm (ρ<0.005), emphasizing the importance of classifying lead concentration data by tooth type

  20. Radon in houses due to radon in potable water

    International Nuclear Information System (INIS)

    Hess, C.T.; Korsah, J.K.; Einloth, C.J.

    1987-01-01

    Radon concentration in the air of 10 houses has been measured as a function of water use and meterological parameters such as barometric pressure, wind velocity and direction, indoor and outdoor temperature, and rainfall. Results of calibrations and data collected in winter, spring, fall, and summer are given for selected houses. Average values of radon concentration in air are from 0.80 to 77 rhoCi/1. Water use average ranges from 70 to 240 gal/day. Average potential alpha energy concentrations in these houses range from 0.02 to 1.6 working levels. The radon level due to water use ranges from 0 to 36% of the house radon from soil and water combined. The radon level change due to use of a filter on the water supply shows a 60% reduction in radon in the house. Conclusions are that water radon can be a major fraction of the radon in houses. The ratio of airborne radon concentration due to water use to the radon concentration in water is 4.5 x 10/sup -5/ - 13 x 10/sup -5/

  1. Radon risk in the house; Il rischio radon nelle abitazioni

    Energy Technology Data Exchange (ETDEWEB)

    Bressa, G. [Padua Univ., Padua (Italy). Dipt. di Farmacologia e Anestesiologia, Lab. di Tossicologia

    2001-04-01

    Radon was discovered in 1900, but its potential dangerousness for man was fully understood only in 1950. Being a radioactive natural gas - and therefore particularly dangerous - radon results from the long decay chain of radionuclides, such as thorium and radium. Some igneous rocks (granite, tufa and lava) as well as coal are considered to be the main sources of this radionuclide. A number of epidemiologic studies have shown the carcinogenicity of this element, particularly among miners and workers subjected to high level exposure in confined spaces such as basements, garages, cellars, etc. There are, however, some techniques to remove radon in order to reduce exposure to minimum values. [Italian] Il radon fu scoperto nel 1900, ma solo nel 1950 si comprese la sua potenziale pericolosita' per l'uomo. Il radon e' particolarmente pericoloso essendo un gas naturale radioattivo. Esso proviene dalla lunga catena di decadimento di radionuclidi come il torio e di radio. Sorgenti di tale radionuclide sono da considerarsi principalmente alcune rocce ignee (graniti, tufi e lave) e il carbone. Diversi studi epidemiologici hanno evidenziato la cancerogenicita' di tale elemento, specie tra i minatori e soggetti esposti ad alti livelli in ambienti confinati quali scantinati, garage sotterranei, ecc.. Esistono comunque tecniche di intervento per la rimozione del gas radon in modo tale da ridurre l'esposizione a valori minimi.

  2. ERRICCA radon model intercomparison exercise

    DEFF Research Database (Denmark)

    Andersen, C.E.; Albarracín, D.; Csige, I.

    1999-01-01

    -state diffusive radon profiles in dry and wet soils, (2) steady-state entry of soil gas and radon into a house, (3) time-dependent radon exhalation from abuilding-material sample. These cases cover features such as: soil heterogeneity, anisotropy, 3D-effects, time dependency, combined advective and diffusive......, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommendedthat additional exercises are carried out....

  3. Methodology developed to make the Quebec indoor radon potential map

    International Nuclear Information System (INIS)

    Drolet, Jean-Philippe; Martel, Richard; Poulin, Patrick; Dessau, Jean-Claude

    2014-01-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m 3 in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for each

  4. Natural radioactivity of building materials coming from a volcanic region

    International Nuclear Information System (INIS)

    Roca, V.; Pugliese, M.; Sabbarese, C.; D'Onofrio, A.; Lubritto, C.; Terrasi, F.; Ermice, A.; Inglima, I.; Migliore, G.

    2004-01-01

    Radioactivity was found to be very high in tuff and other materials originating from volcanic lava. Emanation of radon from such materials is appreciably higher than from materials of other origin. This work allowed us to obtain a first complete database of natural radioactivity concentrations in building materials from this region. Measurements were carried out by means of a gamma spectrometry system. Gamma emitting daughter products of 222 Rn were measured to determine 226 Ra. The samples, after a routine treatment, were accommodated in sealed metallic containers for a time sufficient for the equilibrium to establish. The determination of the radon emanation power was carried out by using an electrostatic monitor. Alpha spectroscopy of radon daughters was used to evaluate the content of radon coming from the sample

  5. Carcinogenic risk associated with radon-enriched well water

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.

    1997-01-01

    A comparison has been made between radon in drinking water and the incidence of cancer using a set of home occupants in Virginia and Maryland. In a subset of people who drink radon-free but chlorinated drinking water from a reservoir, about 3% develop some type of cancer. In a subset of people who drink low-radon water from private water wells, about 3% develop cancer. In a subset who drink high-radon well water, about 6% develop cancer. A comparison with Environmental Protection Agency (EPA) estimates of cancer related to airborne radon indicates that for the general population, the incidence of radon-related cancer from drinking water is similar to the incidence of cancer from inhaled radon. For the 10% of the population that consumes well water and, in particular, for the 5% of the population that consumes high-radon well water, the drinking water carries a considerably higher cancer risk than inhaling airborne radon

  6. Contribution of radon and radon daughters to respiratory cancer

    International Nuclear Information System (INIS)

    Harley, N.; Samet, J.M.; Cross, F.T.; Hess, T.; Muller, J.; Thomas, D.

    1986-01-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime

  7. Assessment of indoor radon gas concentration change of college

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul [Dept. of of Radiological Technology, Shingu College, Seongnam (Korea, Republic of); Lee, Ju Young [Dept. of Radiological Technology, Songho College, Hoengseong (Korea, Republic of)

    2017-03-15

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction.

  8. Assessment of indoor radon gas concentration change of college

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Jeong, Eui Hwan; Kim, Hak Jae; Lyu, Kang Yeul; Lee, Ju Young

    2017-01-01

    The purpose of this study was to assess the impact by comparing the concentration of indoor radon and look for ways to lower the concentration of indoor radon gas measurements of three variables, the year of completion, volume of the building and ventilation. Measurement target is six classrooms on the sixth floor of building that was constructed in 1973 and was extended in 2011. Selected classroom's volume is different. Four classrooms were selected to compare the radon concentration in accordance with the year of completion, Classrooms that is same year of completion were selected to compare the radon concentration in accordance with the volume, six classroom was performed closure and ventilation to compare radon concentration according to ventilation. Radon concentrations in accordance with the year of building completion showed a high concentration of radon in a building recently built. Also, Radon concentration in volume is high the smaller the volume. Radon concentration change according to ventilation showed a reduction of about 80% when the ventilation than during closing. Especially, The radon concentrations were high detected while the recently year of building completion and the smaller volume. Ventilation of the three variables is considered that can be expected to exposure reduction effect by radon affecting the greatest radon concentration reduction

  9. Aerosol properties of indoor radon decay products

    International Nuclear Information System (INIS)

    Martell, E.A.

    1984-01-01

    Lung cancer risks attributable to indoor radon are highly dependent on the properties of radon progeny aerosols which, in turn, are dependent on the nature and concentration of small particles in indoor air. In clean filtered air, radon progeny are attached to small hygroscopic particles of high mobility which are rapidly deposited on surfaces. By contrast, radon progeny attached to cigarette smoke are on large particles of low mobility which persist in air. Radon progeny ingaled by smokers are largely associated with smoke particles from 0.5 to 4.0 μm diameter. Such particles are selectively deposited at bronchial bifurcations and are highly resistant to dissolution. The attached radon progeny undergo a substantial degree of radioactive decay at deposition sites before clearance which gives rise to large alpha radiation doses in small volumes of bronchial epithelium. These processes provide new insights on mechanisms of bronchial cancer induction and on relative risks of lung cancer in smokers, passive smokers, and other non-smokers. (Author)

  10. Studying radon exhalation rates variability from phosphogypsum piles in the SW of Spain

    Energy Technology Data Exchange (ETDEWEB)

    López-Coto, I., E-mail: israel.lopez@dfa.uhu.es [Dpto. Física Aplicada, Facultad CC. Experimentales, University of Huelva, Campus de El Carmen s/n, 21007 Huelva (Spain); Mas, J.L. [Dpto. Física Aplicada I. Escuela Politécnica Superior, University of Sevilla, C/Virgen de Africa 7, 41012 Sevilla (Spain); Vargas, A. [Universitat Politècnica de Catalunya, Instituto de Técnicas Energéticas, Campus Sud Edificio ETSEIB, Planta 0, Pabellón C, Av. Diagonal 647, 08028 Barcelona (Spain); Bolívar, J.P. [Dpto. Física Aplicada, Facultad CC. Experimentales, University of Huelva, Campus de El Carmen s/n, 21007 Huelva (Spain)

    2014-09-15

    Highlights: • Variability of radon exhalation rates from PG piles has been studied using numerical simulation supported by experimental data. • Most relevant parameters controlling the exhalation rate are radon potential and moisture saturation. • Piling up the waste increasing the height instead of the surface allows the reduction of the exhalation rate. • A proposed cover here is expected to allow exhalation rates reductions up to 95%. - Abstract: Nearly 1.0 × 10{sup 8} tonnes of phosphogypsum were accumulated during last 50 years on a 1200 ha disposal site near Huelva town (SW of Spain). Previous measurements of exhalation rates offered very variable values, in such a way that a worst case scenario could not be established. Here, new experimental data coupled to numerical simulations show that increasing the moisture contents or the temperature reduces the exhalation rate whilst increasing the radon potential or porosity has the contrary effect. Once the relative effects are compared, it can be drawn that the most relevant parameters controlling the exhalation rate are radon potential (product of emanation factor by {sup 226}Ra concentration) and moisture saturation of PG. From wastes management point of view, it can be concluded that piling up the waste increasing the height instead of the surface allows the reduction of the exhalation rate. Furthermore, a proposed cover here is expected to allow exhalation rates reductions up to 95%. We established that the worst case scenario corresponds to a situation of extremely dry winter. Under these conditions, the radon exhalation rate (0.508 Bq m{sup −2} s{sup −1}) would be below though close to the upper limit established by U.S.E.P.A. for inactive phopsphogypsum piles (0.722 Bq m{sup −2} s{sup −1})

  11. Air pollution. Actions to promote radon testing

    International Nuclear Information System (INIS)

    Guerrero, Peter F.; Adams, Charles M.; McGee, William F.; Goldsmith, Larry A.; Feldesman, Alice G.; Grissinger, Charles R.; Updegraff, William D.; Langdon, Robin S.; Bartholomew, Philip L.

    1992-12-01

    To promote radon testing, EPA initiated public information and awareness programs and provided grants to states to develop programs aimed at encouraging homeowners to test for radon. Nationwide telephone surveys, according to EPA, indicate that these efforts have raised the public awareness of radon to as high as 78 percent but that about only 9 percent of those surveyed have tested their homes for radon. Concerned about improving risk reduction through its radon program, EPA convened a review panel. The panel not only recommended in May 1992 that the current voluntary approach be continued but also called for program changes to encourage more testing. These changes include targeting public information and other resources to areas where radon levels are predicted to be high and promoting testing and mitigation at the time of real estate transactions. To support state radon efforts, the Congress authorized a grant program for yearly grants of $10 million for 3 years. Funds for this program were recently extended for a fourth year through fiscal year 1993. Information to measure states' success in promoting testing by homeowners was generally not available because (1) much of the grant funding has been used to identify the extent of the radon problem; (2) federally funded public information projects were often directed to large audiences, making it difficult to measure testing rates; and (3) EPA's evaluation process for the grant program did not contain a component to measure increases in testing. We did, however, identify some state projects that have increased radon testing by targeting program efforts to homes in areas with potentially high levels of radon. The results of the state projects would seem to support the EPA review panel's recommendations on promoting radon testing through targeting program resources. In two states we surveyed, the voluntary use of disclosure statements as part of a real estate sales contract was a frequent occurrence, and in one state

  12. Radon Concentration in Caves of Croatia - Assesing Effective Radon Doses for Occupational Workers and Visitors

    International Nuclear Information System (INIS)

    Radolic, V.; Miklavcic, I.; Poje, M.; Stanic, D.; Vukovic, B.; Paar, D.

    2011-01-01

    Radon monitoring at potentially highly radioactive location such as caves is important to assess the radiological hazards to occupational workers and occasional visitors. In its Publication 65 the ICRP has produced recommendations dealing with exposure to elevated background radiation, in particular, the risk associated with the inhalation of radon and radon progeny. Recommended annual effective dose from radon 222Rn and its short-lived progeny for workers should not exceed 20 mSv and for occasional users (visitors) the same recommendation is 1 mSv. Measurements were performed with series of track etched detectors (LR115 - type II) in several caves in Croatia. The obtained values for the radon concentration ranged from ambient values up to several thousand Bq m -3 . Radon concentration was measured in about 20 caves of Velebit and Zumberak mountains and the highest radon concentration was in Lubuska jama (3.8 kBq m -3 ) and cave Dolaca (21.8 kBq m -3 ), respectively. Djurovica cave is especially interesting because of its huge tourist potential due to its location bellow Dubrovnik airport. Its mean annual radon concentration of 17.6 kBq m -3 classifies Djurovica cave among caves with high radon concentration. A visitor during half an hour visit at summer time would receive an effective dose of 30.6 μSv. Calculated mean dose rate of 44 μSv/h means that workers (mainly tourist guides) should limit their time inside cave to 454 hours per year. Manita pec is the only cave open for tourists on the territory of Paklenica National Park. The preliminary radon measurements performed during summer 2010, gave an average radon concentration of 1.1 kBq m -3 . An exposure to average dose rate of 3.7 μSv/h means that the tourist guides would receive an effective dose of 0.42 mSv during summer period according to their working schedule. A visitor during half an hour visits would receive an effective dose of 1.86 μSv. (author)

  13. Radon measurements in indoor workplaces

    International Nuclear Information System (INIS)

    Tokonami, S.; Matsumoto, M.; Furukawa, M.; Fujimoto, K.; Fujitaka, K.; Pan, J.; Kurosawa, R.

    1996-01-01

    Radon measurements in several office buildings located in Tokyo were carried out with two types of device to study the time-dependent radon concentration in indoor workplaces. Both types of device use the electrostatic field for the collection of 218 Po onto the electrode of the detector. One provides an average radon concentration throughout the day. The other, in which a weekly timer is installed in the circuit of the electrode of the device, provides an average radon concentration during working hours (9:00-17:00, Monday-Friday). Although radon concentrations in Japanese dwellings have been found to be generally low, relatively high concentrations were observed in the office buildings. No consistent seasonal variation was recognised in this study. Little difference of average radon concentrations between working hours and the whole day was found throughout the year in two offices. On the other hand, a significant difference was observed in other offices. The operation of an air conditioner might change the radon concentration during working hours. From the results of radon measurements the average effective dose in the workplace was estimated to be 0.23 mSv for 2000 working hours in a year. (Author)

  14. Radon and health

    International Nuclear Information System (INIS)

    Chobanova, Nina

    2016-01-01

    Radon is radioactive noble gas that can be found in soil, water, outdoor and indoor air. Since environmental radon on average accounts for about half of all human exposure to radiation from natural sources, increasing attention has been paid to exposure to radon and its associated health risks. Many countries have introduced regulations to protect their population from radon in dwellings and workplaces. In this article are discussed main characteristics of radon, including sources of exposure, variation in radon exposure, how managing risks from radon exposure, how to measure the concentration of radon. There are results of measurements conducted under the 'National radon programme' in Bulgaria also. Key words: radon, sources of exposure, risk, cancer, measure to decrease the concentration [bg

  15. Riddle of radon

    International Nuclear Information System (INIS)

    O'Riordan, M.

    1996-01-01

    Why is the most significant source of human exposure to ionising radiation - and one that is so easy to reduce - not accorded the attention it deserves from those engaged in radiological protection nor the action it requires from those affected by it at work or at home? There are, after all, clear indications that high levels of radon exist and firm strands of evidence that radon causes cancer. Some national and international authorities have even developed regulations and recommendations to limit exposures. But radon still lies in the penumbra of protection because proponents of intervention lack conviction and opponents are full of passionate intensity. Little wonder that citizens are confused! (Author)

  16. Radon measurements in hispaniola dwellings

    International Nuclear Information System (INIS)

    Gutierrez, J.; Colgan, P.A.; Cancio, D.

    1996-01-01

    The results of a national radon survey and a number of regional surveys of radon in spanish dwelling are reviewed. The best estimate of the geometric mean of indoor radon concentrations is 41.1. Bq/m -3 and single-family dwellings have been shown to be more at risk than apartments. Results need to be interpreted with some caution due to differences in survey methodologies and measurement procedures. The risks from radon exposure are put in perspective by comparison with other voluntary risks. Finally, although a number of 'high risk' areas have already been identified, it is concluded that implementation of a national programme to reduce radon exposure may await a better definition of the problem extent. (authors). 20 refs., 1 tab

  17. Measuring your radon risk

    International Nuclear Information System (INIS)

    Mackmurdo, R.

    1994-01-01

    In its annual report for 1992/93, the NRPB has warned that tens of thousands of UK employees may be exposed to high levels of radon at work. In addition to those who work underground, employees at risk of radon-induced lung cancer are typically those who spend long periods indoors. This article reviews the implications for all employers especially those in low or unknown levels of radon who resist taking measurements in the belief that by not measuring, they are not liable. (UK)

  18. Workshop on dosimetry for radon and radon daughters

    International Nuclear Information System (INIS)

    Turner, J.E.; Holoway, C.F.; Loebl, A.S.

    1978-05-01

    Emphasis is placed on the dosimetry for radon and daughters, rather than on monitoring and instrumentation. The objectives of the meeting were to exchange scientific information, to identify problem areas in radon-daughter dosimetry, and to make any observations or recommendations by the participants through issuance of this report. The discussion topics included the history of dosimetry for radon and daughters, human data, aerosols, deposition and movement in the respiratory tract, dose calculations, dose-to-working-level-month (WLM) conversion factors, animal experiments, and the development of regulations and remedial criteria for reducing population exposures to radon daughters. This report contains a summary of Workshop discussions plus individual statements contributed by several of the participants. The outstanding problem areas from the standpoint of dosimetry appear to involve the appropriate lung organ mass to be used (average lung-tissue dose vs. high-level local dose); recognition of the discrete, rather than continuous, structure of the mucus; lack of knowledge about lung clearance; the variability of dose with the degree of disequilibrium and the unattached fraction of radon daughters for a given WLM; and questions about the character of uranium mine atmospheres actually breathed in the older mines from which much of the epidemiological information originates. The development of criteria for taking remedial action to reduce exposures involves additional concerns of basing long-term risk assessment on short-term sampling and applying WLM data for miners to general populations

  19. Predicting radon/radon daughter concentrations in underground mines

    International Nuclear Information System (INIS)

    Leach, V.A.

    1984-01-01

    A detailed description of a computer programme is outlined for the calculation of radon/radon daughter concentrations in air. This computer model is used to predict the radon/radon daughter concentrations in Working Level (WL) at the workplace and at the various junctions at either end of the branches in a typical ventilation network proposed for the Jabiluka mine in the Northern Territory

  20. Methodology developed to make the Quebec indoor radon potential map

    Energy Technology Data Exchange (ETDEWEB)

    Drolet, Jean-Philippe, E-mail: jean-philippe.drolet@ete.inrs.ca [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Martel, Richard [Institut national de la recherche scientifique, Eau Terre Environnement Research Centre (ETE-INRS), 490 de la Couronne, G1K 9A9 Quebec (Canada); Poulin, Patrick [Institut national de santé publique du Québec (INSPQ), 945 avenue Wolfe, G1V 5B3 Quebec (Canada); Dessau, Jean-Claude [Agence de la santé et des services sociaux des Laurentides, 1000 rue Labelle, J7Z 5 N6 Saint-Jérome (Canada)

    2014-03-01

    This paper presents a relevant approach to predict the indoor radon potential based on the combination of the radiogeochemical data and the indoor radon measurements in the Quebec province territory (Canada). The Quebec ministry of health asked for such a map to identify the radon-prone areas to manage the risk for the population related to indoor radon exposure. Three radiogeochemical criteria including (1) equivalent uranium (eU) concentration from airborne surface gamma-ray surveys, (2) uranium concentration measurements in sediments, (3) bedrock and surficial geology were combined with 3082 basement radon concentration measurements to identify the radon-prone areas. It was shown that it is possible to determine thresholds for the three criteria that implied statistically significant different levels of radon potential using Kruskal–Wallis one way analyses of variance by ranks. The three discretized radiogeochemical datasets were combined into a total predicted radon potential that sampled 98% of the studied area. The combination process was also based on Kruskal–Wallis one way ANOVA. Four statistically significant different predicted radon potential levels were created: low, medium, high and very high. Respectively 10 and 13% of the dwellings exceed the Canadian radon guideline of 200 Bq/m{sup 3} in low and medium predicted radon potentials. These proportions rise up to 22 and 45% respectively for high and very high predicted radon potentials. This predictive map of indoor radon potential based on the radiogeochemical data was validated using a map of confirmed radon exposure in homes based on the basement radon measurements. It was shown that the map of predicted radon potential based on the radiogeochemical data was reliable to identify radon-prone areas even in zones where no indoor radon measurement exists. - Highlights: • 5 radiogeochemical datasets were used to map the geogenic indoor radon potential. • An indoor radon potential was determined for

  1. Contribution of waterborne radon to home air quality

    International Nuclear Information System (INIS)

    Deb, A.K.

    1994-01-01

    Radon-222 is a member of the uranium decay chain and is formed from the decay of radium-226. Radon and its decay products emit alpha particles during the decay process. If radon is inhaled, alpha particles emitted from inhaled radon and its daughters increase the risk of lung cancer. Radon is soluble in water; thus when radon comes in contact with groundwater it dissolves. The radon concentration in groundwater may range from 100 pCi/L to 1,000,000 pCi/L. When water with a high radon level is used in the home, radon is released from the water to the air and thus can increase indoor air radon concentration. Considering the estimated health risk from radon in public water supply systems, EPA has proposed a maximum contaminant level (MCL) of 300 pCi/L for radon in public drinking water supplies. To address the health risks of radon in water and the proposed regulations, the American Water Works Association Research Foundation (AWWARF) initiated a study to determine the contribution of waterborne radon to radon levels in indoor household air

  2. Mitigation of {sup 222}Rn induced background in the XENON1T dark matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, Stefan A.

    2017-07-05

    {sup 222}Rn is a major source of background in many rare-event experiments such as the XENON1T dark matter search. The noble gas radon is created by radioactive decay inside all detector materials and emanates into the sensitive liquid xenon target disabling any detector shielding. Subsequent beta-decays of radon progenies are the dominant source of background in the XENON1T experiment. In order to mitigate radon induced background the detector's construction materials have been selected according to dedicated {sup 222}Rn emanation measurements. In the first part of this thesis, we summarize the results of the XENON1T radon screening campaign and present the measurement of the integral radon emanation rate of the fully assembled detector. The development of a radon removal system which continuously purifies the liquid xenon target from the emanated radon is the topic of the second part of this thesis. In order to demonstrate the suitability of cryogenic distillation as a technique to separate radon from xenon, we developed an experimental setup to measure the depletion of radon in xenon boil-off gas after a single distillation step. In the last part of the thesis, we demonstrate the operation of a radon removal system for the XENON100 experiment. For this first test employing a running dark matter detector, we integrated a multiple stage, cryogenic distillation column in the XENON100 gas purification loop. From the evolution of the radon concentration in XENON100, we investigate the distillation column's radon removal capability and discuss the design and application of a radon removal system for XENON1T and the upcoming XENONnT experiment.

  3. Radiation and Radon Survey of Akchatau (Khazakstan) and Experience with Radon Remedial Measures

    International Nuclear Information System (INIS)

    Soroka, Y.; Molchanov, A.

    1998-01-01

    A radiation survey of the territory of Akchatau settlement has been carried out. The main factors affecting the high content of radon in dwelling houses were revealed. The experiment on isolation of under floor spaces was carried out to prevent the entry of radon-containing soil gas into living rooms. The repair works efficiency for decreasing of the radon content in hazardous houses was analysed. The survey showed a need for regulation of the value of 222 Rn exhalation on the territories planned for construction works. (author)

  4. Determination of the radon concentration in soil and ground water and its association with the seismicity; Determinacion de la concentracion del radon en suelo y agua subterranea y su asociacion con la sismicidad

    Energy Technology Data Exchange (ETDEWEB)

    Pena, P.; Segovia, N. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico)

    2003-07-01

    one could observe that the flaw area the one that had values bigger than the radon concentration was. Some variations of the concentration of the radon could be correlated with the meteorological parameters and those characteristic geologic. The anomalies of the values of the concentration of the radon were presented in general during the rainy season. In the coast of the Pacific one observes an intense seismic activity (M>4) in the period of sampling. The concentration of the radon in floor measured in long periods of time didn't respond with picks one to one to the local earthquakes, but it showed a global increase in an area of high seismic activity. The variations of the radon concentration and of the radiation gamma they showed a strong correlation among if. The differences in the composition of the rocks were reflected in you differ so much in the radon emanation like in the levels of radiation gamma in the area studied. The fluctuations of the concentration of the radon in floor showed occasionally dependence with the meteorological parameters, the same as in the area of the Gulf, the maximum values were obtained mainly in the rainy season. (Author)

  5. Radon in Dwellings in the Republic of Kalmykia. Results from the National Radon Survey 2006-2007

    International Nuclear Information System (INIS)

    Aakerblom, Gustav; German, Olga; Soederman, Ann-Louise; Stamat, Ivan; Venkov, Vladimir

    2009-02-01

    concrete footing. The floor is usually made of wooden planks with quite large visible gaps between them, which makes it easy for radon to penetrate into the air of the living space. A 20-30 centimeter high non-ventilated crawl space is quite usual. Ventilation is provided by the gaps around the windows and doors and the natural draught through the holes. The heating stoves are usually placed in the middle of the houses; coal, wood, sheep and cow dung are used as fuel. The gamma radiation from the building materials is approximately 0.1 μSv/h which indicates that they do not contribute to the radon in the indoor air. The water is stored in cisterns outdoors and this means that it can also be excluded as a source of radon in the indoor air. The measurements showed very few extreme radon values, but the mean value is relatively high. In order to prevent high radon levels indoors, the radon risks should always be taken into account when constructing a building and to prevent the penetration of radon gas by laying a sheet of plastic over the ground in the crawl space or by sealing the openings and cracks in the floor. It is important that the local authorities are aware of the radon problems so that they can advise on the health risks and their mitigation

  6. Legal issues in radon affairs

    International Nuclear Information System (INIS)

    Massuelle, M.H.

    1999-01-01

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of experts and the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise

  7. Legal issues in radon affairs

    Energy Technology Data Exchange (ETDEWEB)

    Massuelle, M.H. [Inst. de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1999-12-01

    In France, it was only recently that cases related to high radon concentrations in dwellings received substantial publicity. This irruption of radon as a public health issue came with the general progress of scientific knowledge and the availability of a research capacity in France able to develop expertise. We are interested here in the legal implications of issues that arise from the lag between the activity of expertsand the regulatory activity in the domain of radon. We use the term expertise very broadly, to cover the practical application of research findings, the relation of the researchers with the community, and finally the acts by which experts provide their knowledge to the community. We first examine the course by which science developed the radon issue and the way they organized to move from research to expertise; here we try to characterize the various needs for radon expertise. We then discuss the legal difficulties associated with radon expertise.

  8. Overview of current radon and radon daughter research at LBL

    International Nuclear Information System (INIS)

    1983-01-01

    This report provides a brief summary of radon and radon daughter research at Lawrence Berkeley Laboratory. The radon and radon daughter research program has two broad goals: (1) the study of sources of radon and its subsequent transport into houses, and (2) research on the behavior of radon daughters in indoor environments. Additional research effort is directed to several auxiliary areas, including development of instrumentation and monitoring techniques, studies of indoor air movement, and measurement and control of indoor particulate concentrations

  9. Radon exposures in the UK

    International Nuclear Information System (INIS)

    O'Riordan, M.C.

    1992-01-01

    Public and occupational health protection against radon is provided in the UK. Protection is advised where geological conditions cause high concentrations in domestic and commercial buildings. These circumstances are described and the resulting exposures reviewed. An account is given of the limitation scheme for radon in the home and the regulatory scheme for radon at work, the manner in which they are implemented, and the degree to which they are successful. (author)

  10. Airborne geophysical radon hazard mapping

    International Nuclear Information System (INIS)

    Walker, P.

    1993-01-01

    Shales containing uranium pose a radon health hazard even when covered by several meters of overburden. Such an alum shale in southern Norway has been mapped with a joint helicopter borne electromagnetic (HEM) and radiometric survey. Results are compared with ground spectrometer, radon emanometer and radon gas measurements in dwellings, and a model to predict radon gas concentrations from the airborne data is developed. Since the shale is conductive, combining the HEM data with the radiometric channel allows the shale to be mapped with greater reliability than if the radiometric channel were used alone. Radiometrically more active areas which do not pose a radon gas hazard can thus be separated from the shales which do. The ground follow-up work consisted of spectrometer and radon emanometer measurements over a uranium anomaly coinciding with a conductor. The correlation between the airborne uranium channel, the ground uranium channel and emanometry is extremely good, indicating that airborne geophysics can, in this case, be used to predict areas having a high radon potential. Contingency tables comparing both radon exhalation and concentration in dwellings with the airborne uranium data show a strong relationship exists between exhalation and the airborne data and while a relationship between concentration and the airborne data is present, but weaker

  11. Instrumentation for a radon research house

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Revzan, K.L.; Robb, A.W.

    1981-07-01

    A highly automated monitoring and control system for studying radon and radon-daughter behavior in residences has been designed and built. The system has been installed in a research house, a test space contained in a two-story wood-framed building, which allows us to conduct controlled studies of (1) pollutant transport within and between rooms, (2) the dynamics of radon daughter behavior, and (3) techniques for controlling radon and radon daughters. The system's instrumentation is capable of measuring air-exchange rate, four-point radon concentration, individual radon daughter concentrations, indoor temerature and humidity, and outdoor weather parameters (temperature, humidity, modules, wind speed, and wind direction). It is also equipped with modules that control the injection of radon and tracer gas into the test space, the operation of the forced-air furnace, the mechanical ventilation system, and the mixing fans located in each room. A microcomputer controls the experiments and records the data on magnetic tape and on a printing terminal. The data on tape is transferred to a larger computer system for reduction and analysis. In this paper we describe the essential design and function of the instrumentation system, as a whole, singling out those components that measure ventilation rate, radon concentration, and radon daughter concentrations

  12. Radon analyser

    International Nuclear Information System (INIS)

    1981-01-01

    The process claimed includes the steps of transferring radon gas produced by a sample to a charcoal trap, cooled to a temperature whereby the radon is absorbed by the charcoal, heating the charcoal trap to a sufficient temperature to release the radon, and transferring the radon to a counting device where the gas particles are counted

  13. Indoor radon survey in Eastern Sicily

    International Nuclear Information System (INIS)

    Catalano, R.; Immè, G.; Mangano, G.; Morelli, D.; Tazzer, A. Rosselli

    2012-01-01

    Inhalation of radon (Rn-222) and its progeny is one of the most significant sources of natural radiation exposure of the population. Nowadays, high radon exposures have been shown to cause lung cancer and many governments all over the world have therefore recommended that radon exposures in dwellings and indoor workplaces should be limited. Radon levels in buildings vary widely from area to area depending on local geology. This paper presents the results of a long-term survey of radon concentrations carried out from 2005 till 2010 in schools and dwellings of Eastern Sicily, using the solid-state nuclear track detector (SSNTD) technique. The investigated area shows medium-high indoor radon concentrations, higher than the Italian average of about 70 Bq/m 3 , with peaks of 500 Bq/m 3 or more in buildings near active faults. Fortunately, only a small fraction of the measurements, about 1.5% of total, was found greater than EU and Italian action limits for indoor and workplaces. - Highlights: ► In this paper we report radon monitoring survey carried out in the east Sicily in schools and dwellings. ► The detection methodology was the solid-state nuclear track detector one. ► The work was supported by a national projects financed by the National Institute of Nuclear Physics.

  14. A Laboratory for studying radon mitigation methods in high-rise office buildings in Hong Kong

    International Nuclear Information System (INIS)

    Leung, J.K.C.; Hung, L.C.; Tso, M.Y.W.

    1996-01-01

    A territory-wide survey of indoor radon level in 1993 showed that 17% of offices Hong Kong have radon concentrations above 200 Bq m -3 compared with 4% for dwellings. Consequently, the Radioisotope Unit Radon Analysis Laboratory (RURAL) is being built for studying radon mitigation methods applicable to high-rise office buildings. The laboratory consists of three rooms; the main exposure room is built of concrete and is surrounded by the buffer room; and all controls and operations are done inside the control room. The exposure room can, with the aid of the buffer room, simulate any environmental conditions that can be faced by a real building. The pressure, temperature and humidity can be adjusted to any meteorological conditions that can be found in Hong Kong. Pressure differential and temperature differential can be adjusted to simulate the arrival of fronts, troughs or typhoons. Aerosol concentration and distribution inside the exposure room are controllable as well as the ventilation conditions. Various mitigation methods will be tested under different conditions. Passive methods include application of radon barriers to building structures and active methods include the use of air cleaners; techniques to increase radon daughters plateout or reduce their attachment to aerosols; and various modifications to the ventilation systems. Mitigation techniques involving modifications to the building strictures and building services will also be developed with the help of the RURAL. (author)

  15. Comparison of seasonal variability in European domestic radon measurements

    Science.gov (United States)

    Groves-Kirkby, C. J.; Denman, A. R.; Phillips, P. S.; Crockett, R. G. M.; Sinclair, J. M.

    2010-03-01

    Analysis of published data characterising seasonal variability of domestic radon concentrations in Europe and elsewhere shows significant variability between different countries and between regions where regional data is available. Comparison is facilitated by application of the Gini Coefficient methodology to reported seasonal variation data. Overall, radon-rich sedimentary strata, particularly high-porosity limestones, exhibit high seasonal variation, while radon-rich igneous lithologies demonstrate relatively constant, but somewhat higher, radon concentrations. High-variability regions include the Pennines and South Downs in England, Languedoc and Brittany in France, and especially Switzerland. Low-variability high-radon regions include the granite-rich Cornwall/Devon peninsula in England, and Auvergne and Ardennes in France, all components of the Devonian-Carboniferous Hercynian belt.

  16. Radon monitoring technique with electret collecting

    International Nuclear Information System (INIS)

    Tian Zhiheng; Zuo Fuqi; Xiao Detao; Zhao Xkiuliang

    1991-12-01

    The integrating radon monitoring technique with electret collecting is a method which collects the 218 Po + positive ions by electrostatic field produced by electret. It has greatly improved the sensitivity of radon measurement. The response factor of this method reaches to 4.7 cm -2 Bq -1 m 3 h -1 , 1000 times larger than that of common passive sampling method. The monitoring device and its principle are introduced. The measuring results of radon concentration and radon flux rate and quality assurance system by using this method in the Qinshan Nuclear Power Plant, Human Environmental Monitoring Central Station and some uranium mines are also presented. The analytical results show that the radon concentration in the Qinshan Nuclear Power Plant is affected by wind direction. When wind directs toward sea, the radon concentration is high. If the wind is to the contrary, it is low. The radon concentration ratio of both is about 2

  17. Indoor radon level in schools of Shillong, Meghalaya

    International Nuclear Information System (INIS)

    Saxena, A.; Sharma, Y.; Maibam, D.; Walia, D.; Diengdoh, E.

    2010-01-01

    Radon ( 222 Rn) in the atmosphere is the most important contributor to human exposure from natural sources. Radon is a noble inert gas; and it decays to radionuclides that are chemically active and relatively short lived. Inhalation of the short lived radon progeny imparts a radiation dose to the lung, to which an increased risk of lung cancer is attributed due to the alpha particle irradiation of the secretory and basal cells of the respiratory tract. The indoor radon concentration is dependent on the texture, porosity, permeability, water content of the soil underlying the structure and the radon behaviour in soils on aspects of geology and climate. The direct cause of high radon entry rates into structures exhibiting high indoor radon concentrations are fractures in bedrock formations, cracks in the soil, and similar inhomogeneities in the materials of the foundation of the structures. Other factors influencing indoor radon concentration includes exhalations from the walls and ceilings, building design and material, cracks and openings in the foundation of the buildings. The geological factors in the study area promote radon accumulation especially in buildings and dwellings. The world average annual effective dose in the indoor environments is 1.01 mSv.y -1 . The importance of radon level measurements in school buildings is of interest as children are more sensitive to radon exposure than adults. Hence, radon measurements in 10 schools have been undertaken in the present study

  18. Radon dosimetry: a review of radon and radon daughter exposure conditions in dwellings and other structures

    International Nuclear Information System (INIS)

    Ryan, M.T.; Goldsmith, W.A.; Poston, J.W.; Haywood, F.F.; Witherspoon, J.P.

    1983-07-01

    Within the past few years several situations have been brought to light which indicate an increased radiation exposure of certain segments of the general population caused by human activities. The most widely publicized activities are those associated with the mining and milling of uranium in the western United States, the phosphate industry in Florida, and those potential problems represented by former Manhattan Engineer District sites. One of the primary problems involves exposure to radon and radon daughters which are released from large waste piles or, in some cases, evolve from backfill and construction materials used in homes, schools, and other buildings. This report presents a review of the available data on radon and radon daughter concentrations in dwellings and other structures. The primary objectives were to compile and tabulate pertinent radon exposure data and to prepare a statistical summary of the data which will be useful in the prediction of normal levels of radon and radon daughter concentrations in these structures. In addition, other parameters associated with radon exposure conditions are presented and discussed

  19. Radon in coal power plant areas

    International Nuclear Information System (INIS)

    Mauna, Traian; Mauna, Andriesica

    2006-01-01

    Radon, the radioactive colourless and inodorous noble gas, represents more than 55% of the natural average radioactivity. It is permanently released from the soil and majority of building materials, it builds up in the mine galleries, in dwelling houses and in other closed rooms. Radon gained increasingly in importance, particularly after 1990 when was doubtless identified as the second cause of lung cancer if a given concentration threshold is surpassed. This threshold is established differentially by each country as a function of the particular site and generally ranges between 150 Bq.m -3 and 600 Bq.m -3 . The telluric radon consists of two isotopes, 222 Rn, a daughter of radium descending from uranium, which induces 90% of the effects, and 220 Rn from thorium series which have too short a lifetime to count in the risk assessments of radon inhalation. The interest of the authorities and population for diminishing the radon effects was illustrated by specific studies which in USA were managed by the National Counsel of Research, the BEIR VI committee of which has issued a report concerning the lung cancer produced by radon and its descendants. Coal mining, the transport, processing, burning, slag and ash disposal are activities entailing radon release. The miners' dwellings are placed in areas with the high radon potential. The local building materials have a high content of radioactive elements from the uranium or thorium series so that radon can build up in the closed rooms of these buildings. Hence the social responsible authorities in the coal power industry zones should consider this aspect long time ignored in the Balkans macro zone so far. The radon issue must be differentially approached in different areas hence a zonal mapping of the radon emission should be first done. It is worth to underline that the gaseous radioactive emission from operational nuclear power plants amounts up to a few percents of the radon natural emissions what entails a

  20. Anomalous radon emanation at local and regional distances preceding earthquakes in the New Madrid seismic zone and adjacent areas of the central mid-continent of North America

    International Nuclear Information System (INIS)

    Steele, S.R.

    1984-01-01

    Anomalous soil-radon activity, including several spike-like surges over periods of 5, 2, and 2 1/2 months, and a year-long declining trend, preceded the most significant earthquakes of the central mid-continental region of North America during 1981 and early 1984. The observations of these events provide further evidence of (a) the existence of soil-radon anomalies precursory to the larger earthquakes in this intraplate region, (b) the utility of such anomalies in anticipating events of small to moderate magnitudes for the region, and (c) the occurrence of regional-scale strain events prior to some of the larger mid-continental earthquakes. A very recent radon anomaly, the strongest yet to be detected in the seven years of monitoring in the mid-continental region, occurred in the New Madrid seismic zone from mid-February through mid-June 1984. A 4.0 earthquake occurred one month after a peak in the radon activity. The amplitude and duration of the anomaly suggest that a significant change in the state of stress or strain may have occurred in the mid-continental region during 1984. (Auth.)

  1. Study of the weekly irrigation cycle of a cultivated field in a semi-arid area (Marrakech region, Morocco) by using CR-39 and LR-115 II track detectors and radon as a natural tracer

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Essaouif, Z.

    2007-01-01

    Uranium ( 238 U) and thorium ( 232 Th) concentrations were measured in the soil of a cultivated field situated in a semi-arid area (Marrakech, Morocco) by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs). The same track detectors were used for measuring alpha- and beta-activities due to radon and thoron gases emanating from the soil of the studied irrigated agricultural field. The influence of the humidity (soil water content), soil depth and climate conditions on the weekly irrigation cycle of the studied cultivated field was investigated by exploiting radon measurements

  2. Background concentrations of radon and radon daughters in Canadian homes

    International Nuclear Information System (INIS)

    McGregor, R.G.; Vasudev, P.; Letourneau, E.G.; McCullough, R.S.; Prantl, F.A.; Taniguchi, H.

    1980-01-01

    Measurements of radon and radon daughters were carried out in 14 Canadian cities on a total of 9999 homes selected in a statistically random manner. The geometric means of the different cities varied from 0.14 to 0.88 pCi/l. for radon and 0.0009 to 0.0036 Working Levels for radon daughters. The radon originates from natural radioactivity in the soil surrounding the homes. (author)

  3. Indoor radon concentrations in Vushtrri, Kosovo

    International Nuclear Information System (INIS)

    Xhafa, B.; Jonuzaj, A.; ); Bekteshi, S.; Ahmetaj, S.; Kabashi, S.; )

    2009-01-01

    Indoor air radon concentration was measured by exposing trac ketch detectors in the two elementary schools, one high school, a kindergarten and the hospital in the city of Vushtrri. Measurements were performed with the radon monitor PRM-145, which uses alpha scintillation cells and serves to determine the current concentration of radon. The results we obtained are in the range between the average values of radon for the interior spaces, and values that pose a potential risk for lung cancer. Measuring the concentration of radon was done in total of 34 rooms and came up with values which are between 28Bqm -3 and 398Bqm -3 . In order to reduce the concentration of radon, we have built a ventilation pump, then we performed repeated measurements and finally came with results between 130-145Bqm -3 .

  4. Radon Survey in Hospitals in Slovenia

    International Nuclear Information System (INIS)

    Vaupotic, J.

    2003-01-01

    In Slovenia, several radon studies at workplaces have been carried out in last years, supported by the Ministry of Education, Science and Sport, and the Ministry of Health. After radon surveys in kindergartens, schools and homes, within which about 2600 buildings were checked for radon and which provided the level of radon problem in the country, next investigations were focused on the workplaces with potentially higher radon risk. Hence, in the Postojna Cave permanent radon monitoring was introduced in 1995 and comprehensive radon studies were performed: in 5 bigger spas during 1996-1998, in major waterworks and wine cellars in 2001, and in major Slovene hospitals in 2002. This paper reports the results of radon study in 26 major Slovene hospitals, comprising radon concentrations in 201 rooms and dose estimates for 1025 persons working in these rooms. Radon survey in 201 rooms of 26 major hospitals in Slovenia revealed only 7 rooms in which monthly average radon concentration in the indoor air exceeded 400 Bqm -3 . Generally, concentrations in basement were on average for about 30% higher than in ground floor, although exceptionally high values have also been found in the ground floor. For 966 persons (94.2%) of the total of 1025 persons working in the rooms surveyed, the annual effective dose, estimated according to the Basic Safety Standards was below 1 mSv, while for 59 it exceeded 1 mSv. In 7 rooms with more than 400 Bqm -3 in which 16 persons receive between 2.1 and 7.3 mSv per year radon monitoring is continued. (author)

  5. Comparative survey of outdoor, residential and workplace radon concentrations

    International Nuclear Information System (INIS)

    Barros, Nirmalla; Field, R. William; Field, Dan W.; Steck, Daniel J.

    2015-01-01

    This study investigated radon concentrations in above-ground (i.e. first floor) workplace in Missouri and compared them with above-ground radon concentrations in nearby homes and outdoor locations. This study also examined the potential utility of using home and outdoor radon concentrations to predict the radon concentration at a nearby workplace (e.g. county agencies and schools). Even though workplace radon concentrations were not statistically different from home radon concentrations, the radon concentration at a particular home, or outdoor location, was a poor predictor of the radon concentration at a nearby workplace. Overall, 9.6 and 9.9 % of homes and workplace, respectively, exhibited radon concentrations of ≥148 Bq m -3 . Because of the percentage of workplace with elevated radon concentrations, the results suggest that additional surveys of workplace radon concentrations are needed, especially in areas of high radon potential, to assess the contribution of workplace radon exposure to an individual's overall radon exposure. (authors)

  6. The Radon Book. Preventive measures in new buildings

    International Nuclear Information System (INIS)

    Clavensjoe, Bertil; Aakerblom, Gustav

    2004-01-01

    This book describes in text and picture how one can prevent that the radon concentrations in new buildings become to high. The book's centre of gravity lies on how to build in order to prevent that radon gas from the ground enters the building. The book contains extensive information about ground radon and how to examine the ground before constructing a new building. Release of radon from ground water and construction material is treated, as well as technology for measurement of radon and gamma radiation. The book presents current threshold values/recommended values for radon and the authorities' regulations and recommendations. The book is directed to persons who professionally need knowledge about radon and how to prevent that radon is accumulated in new buildings

  7. Radon in public buildings; Radon in oeffentlichen Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.; Flesch, K. [IAF - Radiooekologie GmbH, Dresden (Germany); Hermann, E. [B.P.S. Engineering GmbH, Zwickau (Germany); Loebner, W. [Wismut GmbH, Chemnitz (Germany); Leissring, B. [Bergtechnisches Ingenieurbuero GEOPRAX, Chemnitz (Germany)

    2009-07-01

    From the Free State of Saxony, a study was commissioned to survey how reliable measurements to characterize the radon situation in public buildings at a reasonable financial and human effort can be carried out to reduce radiation exposure in public buildings. The study approach was for 6 objects. To characterize the radon situation the time evolution measurement of radon concentrations of more than 1 to 2 weeks turned out to be sufficient. A novel data analysis enables the identification of a ''typical daily alteration of the radon concentration'' depending on the ventilation conditions and the daily use of the offices or class rooms. The identification of typical diurnal radon variations for the working time and weekends or holidays is of fundamental importance for assessing the exposure situation in public buildings. It was shown that the radon concentration during working time are in general much lower than in the times when the buildings (offices) are unused. It turned out that the long-term radon measurements with nuclear track detectors within distinct time regimes (day / night, working hours / leisure time) by utilizing switch modules are very efficient to estimate the actual exposure. (orig.)

  8. Appraisal of Environmental Influence on Radon Variability in 10 m deep Borehole at Ghuttu, Northwest Himalaya, India

    Science.gov (United States)

    Arora, B.. R.; Choubey, V. M.; Barbosa, S. M.

    2009-04-01

    Wadia Institute of Himalayan Geology (WIHG) has recently established the first Indian Multi-Parametric Geophysical Observatory (MPGO) at Ghuttu (30.53 N, 78.74 E) in Garhwal Himalayas (Uttarakhand), India to study the earthquake precursors in integrated manner. Given the rationale and significance of this inter-disciplinary approach, the paper with the help of recorded radon time series shall illustrate the complex time variability that needs to be quantified in terms of influencing environmental factors before residual field can be used to search anticipated earthquake precursory signals. Monitoring of 222radon (Rn) is carried out using a gamma ray radon monitoring probe based on 1.5" x 1.5" NaI scintillation. Measurement of radon concentration at 15 min interval has been done at 10m depth in air column above the variable water level in a 68m deep borehole together with simultaneous recordings of ground water level and environmental variables such as atmospheric pressure, temperature, rain fall etc. Apart from strong seasonal cycle in Rn concentration, with high values in summer (July to September) and low values in the winter months (January to March), the most obvious feature in the time series is the distinct nature of daily variation pattern. Four types of daily variations observed are a) positive peaks, b) negative peaks and c) sinusoidal peaks and d) long intervals when daily variations are conspicuously absent, particularly in winter and rainy season. Examination and correlation with environmental factors has revealed that when surface atmospheric temperature is well below the water temperature in borehole (later is constant around 19oC in all seasons) temperature gradients are not conducive to set up the convection currents for the emanation of radon to surface, thus explaining the absence of daily variation in radon concentration in winter. During the rainy season, following continuous rainfalls, once the soil/rocks are saturated with water radon

  9. Effect of 222Rn emanation from crystals on their 206Pb/238U age dating

    International Nuclear Information System (INIS)

    Barretto, Paulo M.C.

    2009-01-01

    The escape of radon from certain minerals with high uranium is of particular interest to those concerned with the determination of ages of rocks, minerals and tectonic events. To the extent that radon escapes, these minerals are not closed systems from the thermodynamic point of view and, more particularly, from the geochronological point of view. This investigation aimed to determine the radon escape from zircon crystals and how this fit into the severe isotopic constraints of the concordia dating model. To evaluate the consequences of radon loss on 238 U/ 206 Pb age dating methods, 20 zircon concentrates were analyzed. The observed range of relative percentage of radon loss was of 0.2-12 % and correlations with weathering of the crystals with natural alpha dose and with U-Pb age discordances were found. These correlations indicate relationships between the amount of lattice damage by radiation, the radon leakage out of the crystal and Pb mobility. Some of the stochastic complexities in specific age determinations are also discussed. (author)

  10. Seasonal Variability in European Radon Measurements

    Science.gov (United States)

    Groves-Kirkby, C. J.; Denman, A. R.; Phillips, P. S.; Crockett, R. G. M.; Sinclair, J. M.

    2009-04-01

    correlations between published datasets and local geographic/geological conditions. Available data included regional SCF figures from the United Kingdom and from France, together with nationally-consolidated results from a number of other European countries. Analysis of this data shows significant variability between different countries and from region to region within those countries where regional data is available. Overall, radon-rich sedimentary geologies, particularly high porosity limestones etc., exhibit high seasonal variation, while radon-rich igneous geologies demonstrate relatively constant, albeit somewhat higher, radon concentration levels. Examples of the former can be found in the Pennines and South Downs in England, Languedoc and Brittany in France. Greatest variability is found in Switzerland, still subject to the ongoing Alpine orogeny, where the inhabited part of the country is largely overlain with recently-deposited light, porous sediments. Low-variability high-radon regions include the granite-rich Cornwall/Devon peninsular in England, and Auvergne and the Ardennes in France, all components of the Devonian-Carboniferous Hercynian belt, which extends from the Iberian peninsular through South-West Ireland and South-West England to France and Germany.

  11. Comparison of seasonal variability in European domestic radon measurements

    Directory of Open Access Journals (Sweden)

    C. J. Groves-Kirkby

    2010-03-01

    Full Text Available Analysis of published data characterising seasonal variability of domestic radon concentrations in Europe and elsewhere shows significant variability between different countries and between regions where regional data is available. Comparison is facilitated by application of the Gini Coefficient methodology to reported seasonal variation data. Overall, radon-rich sedimentary strata, particularly high-porosity limestones, exhibit high seasonal variation, while radon-rich igneous lithologies demonstrate relatively constant, but somewhat higher, radon concentrations. High-variability regions include the Pennines and South Downs in England, Languedoc and Brittany in France, and especially Switzerland. Low-variability high-radon regions include the granite-rich Cornwall/Devon peninsula in England, and Auvergne and Ardennes in France, all components of the Devonian-Carboniferous Hercynian belt.

  12. Radon in Austria

    International Nuclear Information System (INIS)

    Friedmann, H.

    2000-01-01

    Several projects in Austria deal with the problem of enhanced radon exposure to the public. The Austrian Radon Project is the largest project within this task, with the aim of investigating the radon concentrations in Austrian homes. Another project concerns mitigation methods. According to the EU directive EURATOM 96/29 it is also necessary to check working places for possibly enhanced radon concentrations. These projects are and will be funded by the government. The federal government of Upper Austria sponsored a project to test the indoor air quality in kindergartens including radon measurements. Within an EU research project, the radon concentrations in Austrian springs and groundwater were systematically listed and analyzed. Additional investigations will focus on methods to improve the radon potential maps from the Austrian Radon Project by including geological and other information. (author)

  13. ERRICCA radon model intercomparison exercise

    International Nuclear Information System (INIS)

    Andersen, C.E.; Albarracin, D.; Csige, I.; Graaf, E.R. van der; Jiranek, M.; Rehs, B.; Svoboda, Z.; Toro, L.

    1999-04-01

    Numerical models based on finite-difference or finite-element methods are used by various research groups in studies of radon-222 transport through soil and building materials. Applications range from design of radon remediation systems to more fundamental studies of radon transport. To ascertain that results obtained with these models are of good quality, it is necessary that such models are tested. This document reports on a benchmark test organized by the EU project ERRICCA: European Research into Radon in Construction Concerted Action. The test comprises the following cases: 1) Steady-state diffusive radon profiles in dry and wet soils, 2) steady-state entry of soil gas and radon into a house, 3) time-dependent radon exhalation from a building-material sample. These cases cover features such as: soil heterogeneity, anisotropy, 3D-effects, time dependency, combined advective and diffusive transport of radon, flux calculations, and partitioning of radon between air and water in soil pores. Seven groups participated in the intercomparison. All groups submitted results without knowing the results of others. For these results, relatively large group-to-group discrepancies were observed. Because of this, all groups scrutinized their computations (once more) and engaged in follow-up discussions with others. During this debugging process, problems were indeed identified (and eliminated). The accordingly revised results were in better agreement than those reported initially. Some discrepancies, however, still remain. All in all, it seems that the exercise has served its purpose and stimulated improvements relating to the quality of numerical modelling of radon transport. To maintain a high quality of modelling, it is recommended that additional exercises are carried out. (au)

  14. Intercomparison of radon gas detectors 1999 and 2000 at PSI

    International Nuclear Information System (INIS)

    Schuler, Christoph; Butterweck, Gernot

    2000-10-01

    This report describes the results of two radon intercomparison exercises performed by the Reference Laboratory for Radon Gas Activity Concentration Measurements at Paul Scherrer Institut from Sep 9th to Oct 6th, 1999, and from March 21st to 28th, 2000. Radon gas detectors and instruments were exposed in the PSI Radon Chamber in reference atmospheres to 1060 kBqhm -3 radon gas exposure at an average radon gas concentration of 6400 Bqm -3 and to 2050 kBqhm -3 radon gas exposure at an average radon gas concentration of 12500 Bqm -3 , respectively. These intercomparison exercises determined the performance of electret ionisation chambers, track etch detectors and measuring instruments at high humidity (1999 Intercomparison Exercise) and at a high radon gas exposure (2000 Intercomparison Exercise). In the 1999 Intercomparison Exercise, electret ionisation chambers revealed an influence on high humidity. This effect may be due to impurities on a microscopic scale on the electrets of these detectors. With few exceptions, in both the 1999 and the 2000 Radon Intercomparison Exercise the deviations of the measurement results to the reference radon gas concentration values were less than 15% (traceability criterion) and the standard deviation of the results of five detectors less than 15% (reproducibility criterion). (author) [de

  15. Measurements of radon concentrations in dwelling houses

    International Nuclear Information System (INIS)

    Birkholz, W.; Klink, T.

    1993-01-01

    Radon and its daughter products gain in importance in health protection and radiation safety. Especially in the southern region of Saxony radon concentrations in dwellings may be high by former silver and uranium mines. We found radon contents of about 20.000 Bq/m 3 in dwellings. To redevelop such houses it is necessary to know intrude path of radon. In present work we studied different measuring systems, active and passive detectors, short and long term integrating devices. By means of investigation of radon sources several redeveloping methods are rates as well from radiological as from civil engineering point of view. (author)

  16. Final survey reports on radon concentration in Japan

    International Nuclear Information System (INIS)

    1997-03-01

    In order to grasp the present state of indoor radon concentration all over Japan, this survey was conducted in five years from Heisei 4 FY to 8 FY. Measurements were conducted using a radon and thoron separation apparatus so as to enable to develop radon and thoron separately. This was only one survey all over Japan obtained the only radon concentration by removing thoron perfectly. However, it was planned to obtain the mean indoor radon concentration all over Japan by limiting 20 houses for measurement aim because of limitation on numbers of the apparatus. In this survey, no extremely high region of the radon concentration was found. However, it was comparatively higher in Chugoku, Kinki and Kyushu-Okinawa areas, but was comparatively low in Kanto area. These results showed the same tendency as those of γ-ray level from the ground, and the radon concentration also showed temperature difference of a tendency of higher west and lower east. In this survey, seasonal variation of the radon concentration was found. In the third quarter (from October to December) maximum radon concentration (mean value: 15 Bq/cu m) and in the second quarter, the minimum concentration (mean value: 9 Bq/cu m) were observed, respectively. On comparing the indoor radon concentration of each housing structure used in enquete survey, concrete block house showed higher radon concentration. On its arithmetic mean, the radon concentration was high in order of concrete, steel frame, and wood constructions, and lowest in prefabricated house. The radon concentration of the concrete construction showed about 1.8 times higher than that of the wood construction. (G.K.)

  17. Orphan radon daughters at Denver Radium site

    International Nuclear Information System (INIS)

    Holub, R.F.; Droullard, R.F.; Davis, T.H.

    1992-01-01

    During 18 mo of sampling airborne radioactively at a National Priority List (open-quotes Superfundclose quotes) site in metroPOlitan Denver, Bureau of mines personnel discovered radon daughters that are not supported by the parent radon gas. We refer to them as open-quotes orphanclose quotes daughters because the parent, radon, is not present in sufficient concentration to support the measured daughter products. Measurements of the open-quotes orphanclose quotes daughters were made continuously, using the Bureau-developed radon and working-level (radon-daughter) monitors. The data showed high equilibrium ratios, ranging from 0.7 to 3.5, for long periods of time. Repeated, high-volume, 15-min grab samples were made, using the modified Tsivoglou method, to measure radon daughters, to which thoron daughters contributed 26 ± 12%. On average 28 ± 6% of the particulate activity was contributed by thoron daughters. Most samples were mixtures in which the 218 Po concentration was lower than that of 214 Pb and 214 Bi, in agreement with the high-equilibrium factors obtained from the continuous sampling data. In view of the short half-life of radon progeny, we conclude that the source of the orphan daughters is not far from the Superfund sites. The mechanism of this phenomenon is not understood at this time, but we will discuss its possible significance in evaluating population doses

  18. An overview of Ireland's National Radon Policy

    International Nuclear Information System (INIS)

    Long, S.; Fenton, D.

    2011-01-01

    In Ireland radon is a significant public health issue and is linked to 150-200 lung cancer deaths each year. Irish National Radon Policy aims to reduce individual risk by identifying and remediating buildings with high radon concentrations and also to reduce collective dose through radon prevention as required by revised building regulations. Achievements to date are significant and include the completion of the National Radon Survey, the testing of every school in Ireland, the on-going testing of social housing, collaboration between the public health and radiation protection authorities and the inclusion of radon in inspections of workplaces. However, this work now needs to be drawn together centrally to comprehensively address the radon problem. The RPII and the relevant central governing department, the Dept. of Environment, Heritage and Local Government are currently working to constitute a group of key experts from relevant public authorities to drive the development of a National Radon Control Strategy. (authors)

  19. THE REPUBLIC OF BELARUS RADON DANGER MAP

    Directory of Open Access Journals (Sweden)

    L. A. Chunikhin

    2016-01-01

    Full Text Available Radon is the major contributor to the background exposure of the population. In the world practice, the radon risk or radon potential mapping are used for the radon dose assessment.The aim of this work was a radon danger mapping of the Republic of Belarus to assess the radiation situation and determine the radon hazard critical areas.Materials and methods: The mapping is based on measured values of radon volume activity in the living rooms of different buildings on the territory of the six regions of the Republic of Belarus. We have performed more than 4000 measurements. Integral track radon radiometers based on the polymer Kodak LR-115 film were used to evaluate radon volume activity. Exposure time ranged from 90 to 120 days. The cartogram was built with using the MAPINFO software package.Results: The low levels of radon concentrations were determined in the Brest and Gomel regions, as well as in the southern districts of Minsk and south-western districts of the Mogilev region. The high levels radon concentrations were determined in some districts of the Vitebsk and Grodno regions, as well as in the north-eastern districts of the Mogilev region. About 2–5 times nonuniformity of radon distribution in settlements of the Republic was observed. The radon hazard critical areas with radon concentrations in the range of 200–400 Bq/m3 were found in some districts of the Vitebsk, Grodno and Mogilev regions.Conclusions: The radon risk map of the Republic of Belarus gives the possibility to estimate the existing radiation risk. Taking into account the low efficiency of countermeasures long after the Chernobyl accident, it is necessary to increase the level of radiation protection through the radon mitigation activities or to change the radon normative documents.

  20. Procedure manual for the estimation of average indoor radon-daughter concentrations using the radon grab-sampling method

    International Nuclear Information System (INIS)

    George, J.L.

    1986-04-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center to provide standardization, calibration, comparability, verification of data, quality assurance, and cost-effectiveness for the measurement requirements of DOE remedial action programs. One of the remedial-action measurement needs is the estimation of average indoor radon-daughter concentration. One method for accomplishing such estimations in support of DOE remedial action programs is the radon grab-sampling method. This manual describes procedures for radon grab sampling, with the application specifically directed to the estimation of average indoor radon-daughter concentration (RDC) in highly ventilated structures. This particular application of the measurement method is for cases where RDC estimates derived from long-term integrated measurements under occupied conditions are below the standard and where the structure being evaluated is considered to be highly ventilated. The radon grab-sampling method requires that sampling be conducted under standard maximized conditions. Briefly, the procedure for radon grab sampling involves the following steps: selection of sampling and counting equipment; sample acquisition and processing, including data reduction; calibration of equipment, including provisions to correct for pressure effects when sampling at various elevations; and incorporation of quality-control and assurance measures. This manual describes each of the above steps in detail and presents an example of a step-by-step radon grab-sampling procedure using a scintillation cell

  1. Radon: implications for the health professional

    International Nuclear Information System (INIS)

    Romano, C.A.

    1990-01-01

    Radon is a colorless, odorless gas formed by radioactive decay of radium and uranium, which are naturally present in the earth's crust. When concentrated indoors, this invisible gas becomes a potential health hazard. The Environmental Protection Agency estimates that up to 20,000 lung cancer deaths annually can be attributed to prolonged radon exposure. Radon is an important health issue that should be understood by all health care professionals. This paper discusses some of the important issues regarding radon, such as the incidences of lung cancer believed to be attributable to radon, the high-risk areas in the United States, federal safety guidelines, and public apathy. These issues and their impact on the health care required by professionals, especially nurse practitioners, are discussed

  2. Radon generation and transport in and around a gold mine tailings dam in South Africa

    International Nuclear Information System (INIS)

    Speelman, W.J.; Lindsay, R.; Newman, R.T.; Meijer, R.J. de

    2006-01-01

    Naturally Occurring Radioactive Material (N.O.R.M.) occurs in most soil and rock, and by mining and mineral processing, some of the radionuclides are significantly enhanced. An in-situ gamma-ray detector called M.E.D.U.S.A., has been used to produce a map of relative activity concentrations in a gold mine tailings dam on the Witwatersrand in South Africa. A CsI(Na) scintillation detector is used in this system. M.E.D.U.S.A. spectra obtained from the survey were analyzed using the Full-Spectrum Analysis (F.S.A.) procedure to compute the 40 K, 238 U and 232 Th activity concentrations. The activity concentrations are used with global positioning data (G.P.S.) to produce the concentration maps. A hyper-pure germanium gamma-ray detector (Hp Ge) was used to measure gamma-rays from the naturally occurring nuclides for soil samples taken at different points on the site to calibrate the M.E.D.U.S.A. system. Radon soil gas measurements were performed at certain points on the mine tailings with a continuous radon monitor; R.A.D.7, and emanation coefficients were measured with electret technology. These parameters have been combined with the activity concentrations to obtain an average radon exhalation rate of about 0.1 Bq.m -2 .s -1 (with an uncertainty of about 20%) from the tailings dam. The purpose of the study is to also review and develop a mathematical model for radon activity concentration predictions in gold mine dumps. (authors)

  3. Radon generation and transport in and around a gold mine tailings dam in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Speelman, W.J.; Lindsay, R. [Western Cape Univ., Dept. of Physics (South Africa); Newman, R.T. [IThemba LABS, Somerset West (South Africa); Meijer, R.J. de [Nuclear Geophysics Division (NGD), KVI, Rijksuniversiteit Groningen (Netherlands)

    2006-07-01

    Naturally Occurring Radioactive Material (N.O.R.M.) occurs in most soil and rock, and by mining and mineral processing, some of the radionuclides are significantly enhanced. An in-situ gamma-ray detector called M.E.D.U.S.A., has been used to produce a map of relative activity concentrations in a gold mine tailings dam on the Witwatersrand in South Africa. A CsI(Na) scintillation detector is used in this system. M.E.D.U.S.A. spectra obtained from the survey were analyzed using the Full-Spectrum Analysis (F.S.A.) procedure to compute the {sup 40}K, {sup 238}U and {sup 232}Th activity concentrations. The activity concentrations are used with global positioning data (G.P.S.) to produce the concentration maps. A hyper-pure germanium gamma-ray detector (Hp Ge) was used to measure gamma-rays from the naturally occurring nuclides for soil samples taken at different points on the site to calibrate the M.E.D.U.S.A. system. Radon soil gas measurements were performed at certain points on the mine tailings with a continuous radon monitor; R.A.D.7, and emanation coefficients were measured with electret technology. These parameters have been combined with the activity concentrations to obtain an average radon exhalation rate of about 0.1 Bq.m{sup -2}.s{sup -1} (with an uncertainty of about 20%) from the tailings dam. The purpose of the study is to also review and develop a mathematical model for radon activity concentration predictions in gold mine dumps. (authors)

  4. Radon-prone areas in the Lombard plain

    International Nuclear Information System (INIS)

    Sesana, Lucia; Polla, Giancarla; Facchini, Ugo; De Capitani, Luisa

    2005-01-01

    This paper reports the results of indoor radon measurements carried out in the Lombard plain. The aim of this study, which is based on the geological context, was to identify radon high-risk areas. The underlying geology has been established by means of the available stratigraphies giving a schematic representation of the sites in which either occurrence of gravel or silt and clay predominate with depths ranging from 0 to 50 m. Radon measurements were performed in a sample of 411 one-family houses in seven villages located in the southern area of Bergamo and Brescia. The findings indicate that when the substrate is dominated by clay, radon concentration for dwellings on the ground floor are low, whereas a strong predominance of underlying gravel mixed up in sand gives in winter months high radon flux from underground

  5. Radon-prone areas in the Lombard plain

    Energy Technology Data Exchange (ETDEWEB)

    Sesana, Lucia [Istituto di Fisica Generale Applicata, Universita degli Studi di Milano, Via G. Celoria, 16 - 20133 Milan (Italy)]. E-mail: lucia.sesana@unimi.it; Polla, Giancarla [Istituto di Fisica Generale Applicata, Universita degli Studi di Milano, Via G. Celoria, 16 - 20133 Milan (Italy); Facchini, Ugo [Istituto di Fisica Generale Applicata, Universita degli Studi di Milano, Via G. Celoria, 16 - 20133 Milan (Italy); De Capitani, Luisa [Dipartimento di Scienze della Terra, Universita degli Studi di Milano, Via Botticelli, 23 - 20133 Milan (Italy)

    2005-07-01

    This paper reports the results of indoor radon measurements carried out in the Lombard plain. The aim of this study, which is based on the geological context, was to identify radon high-risk areas. The underlying geology has been established by means of the available stratigraphies giving a schematic representation of the sites in which either occurrence of gravel or silt and clay predominate with depths ranging from 0 to 50 m. Radon measurements were performed in a sample of 411 one-family houses in seven villages located in the southern area of Bergamo and Brescia. The findings indicate that when the substrate is dominated by clay, radon concentration for dwellings on the ground floor are low, whereas a strong predominance of underlying gravel mixed up in sand gives in winter months high radon flux from underground.

  6. Experience from using plastic film in radon measurement

    International Nuclear Information System (INIS)

    Joensson, G.

    1999-01-01

    Plastic film is a useful detector of radon gas. The method of detection of the gas is used for several decades to measure radon concentrations both indoors and in soil. Experiences from radon measurements in Sweden indoors, in soil and in water using the plastic film Kodak LR 115-II are discussed in this report. Some examples are given from various projects. One example is taken from a large scale mapping of indoor radon levels in houses, where the building material is the main source of radon. In another example the measurements from a large scale soil radon mapping are discussed. The use of the plastic film for measurements of radon levels in water is also discussed. All the investigations are made in order to give the authorities concerned information of the radon situation and to study the connection between high indoor radon levels and various types of cancers

  7. High radon concentrations in the indoor air in public waterworks. - A report from visits to the waterworks in Ludvika, Fredriksberg, Kolbaeck and Aendesta

    International Nuclear Information System (INIS)

    Aakerblom, G.; Hagberg, N.; Mjoenes, L.; Heiberg, A.

    2000-09-01

    High radon concentrations in the indoor air in buildings used for water treatment are not uncommon. When raw water is processed in the waterworks, and the process is made in an open system, radon may escape from the water to the premises. The radon concentration of the raw water does not need to be high to give a radon escape of 2,0-50 Bq/l, which may lead to indoor air radon concentrations in the premises of 10,000 Bq/m3 to more than 50,000 Bq/m3. The waterworks are workplaces for the staff. However, it is not uncommon that other groups of employees have their jobs in the same buildings. Persons that spend long times in waterworks with high radon concentrations in the air may receive radiation doses as high as 20 mSv/a or more, which is the annual average upper limit in a consecutive five-year period for radiation workers. Waters that contain enough radon to release so much radon that it may cause high radon concentrations in the premises are groundwaters from aquifers in the bedrock and in the soil and surface waters, that has been infiltrated through deposits of sand and gravel. Surface waters that have not been infiltrated have very low radon concentrations < 1 Bq/l). This report accounts for experiences from Ludvika, Fredriksberg, Kolbaeck and Aendesta waterworks and results of radon and gamma radiation measurements in these waterworks. The report represents a part of the SSI project Inventory of industries in which radiation from natural radioactive elements is of concern. The aim of this project is to collect information on exposure to natural radiation at workplaces, and is a part in the implementation of the EU Council Directive (96119 Euratom) on Basic Safety Standards (BSS) for the protection of the health of workers and the general public against dangers arising from ionizing radiation

  8. Determination of the radon concentration in soil and ground water and its association with the seismicity

    International Nuclear Information System (INIS)

    Pena, P.; Segovia, N.; Azorin, J.

    2003-01-01

    could observe that the flaw area the one that had values bigger than the radon concentration was. Some variations of the concentration of the radon could be correlated with the meteorological parameters and those characteristic geologic. The anomalies of the values of the concentration of the radon were presented in general during the rainy season. In the coast of the Pacific one observes an intense seismic activity (M>4) in the period of sampling. The concentration of the radon in floor measured in long periods of time didn't respond with picks one to one to the local earthquakes, but it showed a global increase in an area of high seismic activity. The variations of the radon concentration and of the radiation gamma they showed a strong correlation among if. The differences in the composition of the rocks were reflected in you differ so much in the radon emanation like in the levels of radiation gamma in the area studied. The fluctuations of the concentration of the radon in floor showed occasionally dependence with the meteorological parameters, the same as in the area of the Gulf, the maximum values were obtained mainly in the rainy season. (Author)

  9. Occupational and environmental exposures to radon: A perspective for mitigators

    International Nuclear Information System (INIS)

    Sanchez, D.C.; Messing, M.; Saum, D.

    1989-01-01

    This paper compares normal environmental and occupational exposures to radon and radon decay products for the occupational group, including radon mitigators and diagnosticians. Occupational exposures to radon and radon decay products and the associated high incidence of radiation-induced lung cancer form the basis for current concern for limiting exposures to radon. While it is now known that radon is a ubiquitous environmental pollutant and estimates exist as to what this means in terms of cancer risk to the general population, similar estimates are not available for radon mitigators and diagnosticians

  10. Mechanisms of radon injury

    International Nuclear Information System (INIS)

    Cross, F.T.

    1988-01-01

    In this new project, they conduct molecular, cellular and whole-animal research relevant to understanding the inhalation toxicology of radon and radon-daughter exposures. The work specifically addresses the exposure-rate effect in radon-daughter carcinogenesis; the induction-promotion relationships associated with exposure to radon and cigarette-smoke mixtures; the role of oncogenes in radon-induced cancers; the effects of radon on DNA as well as on DNA repair processes; and the involvement of growth factors and their receptors in radon-induced carcinogenesis. Preliminary experiments showed that oncogenes are activated in radon-induced lung tumors. They have therefore begun further exposures pertinent to the oncogene and growth-factor studies. An in vitro radon cellular-exposure system was designed, and cell exposures were initiated. Initiation-promotion-initiation studies with radon and cigarette-smoke mixtures have also begun; and they are compiling a radon health-effects bibliography

  11. Radon flux from rehabilitated and unrehabilitated uranium mill tailings deposits

    International Nuclear Information System (INIS)

    Sonter, M.; Akber, R.; Holdsworth, S.

    2002-01-01

    Radon release from uranium tailings deposits was identified in UNSCEAR 1993 as the main potential source of collective dose to the world population from the use of nuclear power (rather than, say, gamma doses to power plant workers, or doses to reprocessing plant workers or to waste-handling workers, or residents living adjacent to these facilities). This is due primarily to the ongoing nature of the radon releases over geological time and to the assumption of a 10,000 year integration time. UNSCEAR 1993 estimated 150 person-sieverts per GWe-yr of produced power, based on some very general assumptions about area of tailings per unit of uranium produced, uranium usage per unit of power produced, radon emanation per unit surface area of tails, population density within 100 km of the site, and from 100 km out to 2000 km from the site, and atmospheric dispersion. It should be noted at the outset that the idea of adding vanishingly small doses across the entire world population and integrating for 10,000 years into the future, to obtain a collective dose which is then used to infer induced cancer deaths, is warned against by ICRP, and more strongly disavowed in recent papers by Roger Clarke, as being unrepresentative of any real risk and a recipe for misallocation of resources. These UNSCEAR assumptions and the resulting estimations of collective dose were reviewed by SENES Consultants Ltd of Canada, in a report commissioned by the Uranium Institute, both in terms of the methodology and in terms of the factors used. In this report SENES substituted its best estimate assumptions, based on responses received from major commercial uranium mining operations for UNSCEAR's assumptions, which it identified as highly pessimistic, and arrived at a putative collective dose of about 1 person-sievert/ GWe-yr. The most recent UNSCEAR 2000 report acknowledges the uncertainty in the figures, and references the SENES report as providing more specific (but still limited) data. Taking on

  12. Communicating the risk from radon

    International Nuclear Information System (INIS)

    Fisher, A.; McClelland, G.H.; Schulze, W.D.; Doyle, J.K.

    1991-01-01

    A prominent television station developed a special series of newscasts and public service announcements about radon. This was combined with their advertising of the availability of reduced-price radon test kits in a local supermarket chain. The large number of test kits sold was a success from a marketing perspective, but not from a public health perspective - especially because of the very small share of high readings that were mitigated. In contrast, a study of housing sales showed a much higher testing rate and corresponding mitigation when risk communication accompanied the housing transaction, rather than being directed toward the general public. This paper examined the relative effectiveness of these alternative approaches to radon risk communication, emphasizing the implications for developing and implementing radon programs

  13. Evaluation of experiences in long-term radon and radon-daughter measurements

    International Nuclear Information System (INIS)

    Young, J.A.; Jackson, P.O.; Thomas, V.W.

    1982-12-01

    Pacific Northwest Laboratory (PNL) is performing side-by-side measurements of radon and radon daughter concentrations using several instruments and techniques, and is comparing these measurements with side-by-side measurements made by other investigators at other locations. The standard deviation of the differences between the (natural) logarithms of the Terradex Track Etch radon concentrations and the logarithms of the Radon Progency Integrating Sampling Units (RPISU) radon daughter concentrations (S.D.-ln) measured in 50 buildings in Edgemont, South Dakota, was 0.37. Using this S.D.-ln, it can be calculated that if the Track Etch radon daughter concentration is 0.010 WL there should be only a 14% probability that the RPISU average would be greater than 0.015 WL, and only a 3% probability tht the RPISU average would be greater than 0.020 WL. If buildings had been cleared from remedial action when the Track Etch averages were less than 0.10 WL, then about 61% of the buildings would have been cleared from remedial action, and only a few percent of these buildings would have actually had average RPISU concentrations greater than 0.015 WL. The S.D.-ln between the Track Etch radon measurements and the RPISU radon daughter measurements made by ALARA at Grand Junction, the PERM radon measurements and the MOD-225 radon daughter measurements made by Mound Facility at Canonsburg and Middlesex, and the PERM and Track Etch radon measurements made by Mound Facility at Salt Lake City were similar to the S.D.-ln between the Track Etch radon measurements and the RPISU radon daughter measurements at Edgemont

  14. Ten practical lessons for an effective radon risk communication program

    International Nuclear Information System (INIS)

    Fisher, A.; Johnson, F.R.

    1990-01-01

    Those responsible for state and local radon programs often express frustration about the small share of homes that have been tested for radon, and the small share of those with high readings that have been mitigated. Several recent studies have examined how well alternative ways of communicating about radon's risk have accomplished the goals of motivating appropriate testing and mitigation. Unfortunately, the results of these studies have not reached practitioners. This paper is for them. It summarizes the practical implications that are most crucial for planning and implementing an effective radon risk communication program--a program that will motivate people to test for radon and mitigate when radon levels are high, without unduly alarming those whose radon levels are low

  15. Survey of Gamma Dose and Radon Exhalation Rate from Soil Surface of High Background Natural Radiation Areas in Ramsar, Iran

    Directory of Open Access Journals (Sweden)

    Rouhollah Dehghani

    2013-09-01

    Full Text Available Background: Radon is a radioactive gas and the second leading cause of death due to lung cancer after smoking. Ramsar is known for having the highest levels of natural background radiation on earth. Materials and Methods: In this research study, 50 stations of high radioactivity areas of Ramsar were selected in warm season of the year. Then gamma dose and radon exhalation rate were measured.Results: Results showed that gamma dose and radon exhalation rate were in the range of 51-7100 nSv/hr and 9-15370 mBq/m2s, respectively.Conclusion: Compare to the worldwide average 16 mBq/m2s, estimated average annual effective of Radon exhalation rate in the study area is too high.

  16. Construction of radon/radon daughter calibraton chamber

    International Nuclear Information System (INIS)

    Fry, J.; Gan, T.H.; Leach, V.A.; Saddlier, J.; Solomon, S.B.; Tam, K.K.; Travis, E.; Wykes, P.

    1983-01-01

    The radon/radon daughter test chamber is a copper lined room 1.65x1.75x2.75m with an effective volume of 8000 litres. The air residence time is controlled by circulating the air in the chamber through absolute filters which remove 99.9% of particulates. Radon is drawn into the chamber from a 17 μCi 226 RaCl source using the pressure differential across the blowers (<3 psi)

  17. Radon in the Environment: Friend or Foe?

    International Nuclear Information System (INIS)

    Hussein, A.S.

    2009-01-01

    Radon 222 is a naturally occurring radioactive gas that is part of the Uranium decay series. Its Presence in the environment is associated mainly with trace amounts of uranium and its immediate parent, radium 226 , in rocks, soil and groundwater. About one-half of the effective doses from natural sources is estimated to be delivered by inhalation of the short lived radon progeny. Owing to this fact, radon is the most popular subject of studies on environmental radioactivity. The presence of high level of radon in indoor environment constitutes a major health hazard for man. The radon progeny is well established as causative agents of lung cancer and other types of caners. Radon unique properties as a naturally radioactive gas have led to its use as a geophysical tracer for locating buried faults and geological structures, in exploring for uranium, and for predicting earthquakes. Radon has been used as a tracer in the study of atmospheric transport process. There have been several other applications of radon in meteorology, water research and medicine. This paper summarizes the health effects and the potential benefits of radon and its progeny.

  18. Application of single-chip microcomputer to portable radon and radon daughters monitor

    International Nuclear Information System (INIS)

    Meng Yecheng; Huang Zhanyun; She Chengye

    1992-01-01

    Application of single-chip microcomputer to portable radon and radon daughters monitor is introduced in this paper. With the single-chip microcomputer automation comes into effect in the process from sampling to measuring of radon and radon daughters. The concentrations of radon and radon daughters can be easily shown when the conversion coefficients are pre-settled before the measurement. Moreover, the principle and design are briefly discussed according to the characteristics of the monitor

  19. Compact detector for radon and radon daughter products

    International Nuclear Information System (INIS)

    Alter, H.W.; Oswald, R.A.

    1986-01-01

    This invention provides an improved compact track registration detector for radon gas. The detector comprises a housing having an open mouth, a bottom, and side walls; track registration means, supported inside the housing, which forms damage tracks along paths traversed by alpha particles; a microporous filter positioned across the mouth of the housing to prevent entry of radon daughters and particulate matter; and a cap that may be placed on the mouth of the housing to retain the filter. The housing has internal wall surfaces dimensioned to optimize the registration of alpha particles from radon and radon daughters present in the housing

  20. Radon in Africa: South African Lessons Learnt

    International Nuclear Information System (INIS)

    Simanga, A.T.

    2010-01-01

    Radon remained a chemical curiosity for decades, promoted at some stage as a health giving gas. Mining related history: (based on ICRP 65) dating back to 15 Century when high mortality from lung cancer was observed among miners in Schneeberg. After the Curies had extracted Radium from Jachymov ores (1898), radon was identified. When measurements were done in Schneeberger and Jachymov mines high concentrations of radon were found. Initially a link was assumed between lung cancer and high radon concentration based on the measurements. (The assumption was not generally accepted).In 1953 William F. Bale indicated that the causative agents of lung cancer was the radon progeny and not radon gas. A possible lung cancer risk to members of the public was discovered very recently (first published results were based on the indoor measurements done in Sweden in a study initiated by Rolf Sievert) Much attention has been given to radon as a radiological health hazard: Recently human exposure to radon progeny in buildings has emerged as an important issue. Lung cancer is the principal concern associated with Rn exposure. The principal concern is associated with radon progeny. These species are chemically reactive, and may be deposited on respiratory tract tissues when inhaled. Subsequent alpha particle decay may damage cells near the deposition site, contributing to increased risk of lung cancer Radon: In Occupational Exposure Protection against Rn Exposure is a Techno-Legal Legal Aspects: There has to be a national legislative framework for the protection of workers against radon The legal framework should entail, inter alia: - Set up of regulator, development of regulations and standards to enable compliance assurance and other protection issues, training of technical people. 10 Legislative Framework in South Africa National Nuclear Regulatory Act (1999) Enables the regulator (NNR) to exercise oversight for Rn protection Occupational Exposure is mainly in Mining and Mineral

  1. The use of soil gas as radon source in radon chambers

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish

    2009-01-01

    A procedure is described in which soil gas is utilized as an alternative to the 226 Ra source for the supply of the radon gas required to fill a radon chamber where radon-measuring devices are calibrated. The procedure offers opportunities to vary the radon concentration within the chamber around an average value of about 500 Bq/m 3 , which is considered to be sufficient for calibrating indoor radon detectors. The procedure is simple and the radon source does not require radiation protection certification (for import and/or use), unlike the commercially produced standard radioactive ( 226 Ra) sources.

  2. Effects of radon in indoor air studied

    International Nuclear Information System (INIS)

    Auvinen, A.

    1994-01-01

    Radon is an odorless, tasteless and colourless radioactive noble gas that enters indoor air from the ground. Radon causes lung cancer. A committee set up to evaluate the health risks of chemical substances has been drafting a report on radon, which will compile the major research findings on the lung cancer risk posed by radon. Animal tests have shown that even small doses of radon can cause lung cancer. Smokers seem to contract radon-induced lung cancer more readily than non-smokers. Because research findings have been conflicting, however, it is not known exactly how high the risk of lung cancer caused by indoor radon exposure really is. Several major research projects are under way to obtain increasingly accurate risk assessments. An on-going European joint project brings together several studies - some already finished, some still being worked on. In this way it will be possible to get more accurate risk assessments than from individual studies. In order to prevent lung cancer, it is important to continue the work of determining and reducing radon connects and to combat smoking. (orig.)

  3. Radon in Antarctica

    International Nuclear Information System (INIS)

    Ilic, R.; Rusov, V.D.; Pavlovych, V.N.; Vaschenko, V.M.; Hanzic, L.; Bondarchuk, Y.A.

    2005-01-01

    The paper reviews results of radon measurements obtained in Antarctic research stations in the last 40 years by both active and passive radon monitors. A brief description of the radon laboratory set-up in the Ukrainian Academician Vernadsky station on the Antarctic Peninsula (W 64 o 16 ' , S 65 o 15 ' ), where radon is measured by two types of etched track Rn dosimeter and 4 types of continuous radon monitoring devices is presented. Some selected results of research work are described related to: (i) analysis of radon storms, defined as an abrupt increase of 222 Rn during the occurrence of a cyclone, and its applicability for the study of the transport of air masses of continental origin to Antarctica; (ii) a study of the correlation of changes of radon concentration and geomagnetic field induced by tectonic activity and its application to predicting tectonomagnetic anomalies, and (iii) verification of a newly developed theoretical model based on noise analysis of the measured radon signal for earthquake prediction. Suggestions for future utilization of radon for basic research in Antarctica (and not only in Antarctica) conclude the contribution. conclude the contribution

  4. Evaluation of Information Leakage via Electromagnetic Emanation and Effectiveness of Tempest

    Science.gov (United States)

    Tanaka, Hidema

    It is well known that there is relationship between electromagnetic emanation and processing information in IT devices such as personal computers and smart cards. By analyzing such electromagnetic emanation, eavesdropper will be able to get some information, so it becomes a real threat of information security. In this paper, we show how to estimate amount of information that is leaked as electromagnetic emanation. We assume the space between the IT device and the receiver is a communication channel, and we define the amount of information leakage via electromagnetic emanations by its channel capacity. By some experimental results of Tempest, we show example estimations of amount of information leakage. Using the value of channel capacity, we can calculate the amount of information per pixel in the reconstructed image. And we evaluate the effectiveness of Tempest fonts generated by Gaussian method and its threshold of security.

  5. High annual radon concentration in dwellings and natural radioactivity content in nearby soil in some rural areas of Kosovo and Metohija

    Directory of Open Access Journals (Sweden)

    Gulan Ljiljana R.

    2013-01-01

    Full Text Available Some previous studies on radon concentration in dwellings of some areas of Kosovo and Metohija have revealed a high average radon concentration, even though the detectors were exposed for three months only. In order to better design a larger study in this region, the annual measurements in 25 houses were carried out as a pilot study. For each house, CR-39-based passive devices were exposed in two rooms for the two consecutive six-month periods to account for seasonal variations of radon concentration. Furthermore, in order to correlate the indoor radon with radium in nearby soil and to improve the knowledge of the natural radioactivity in the region, soil samples near each house were collected and 226Ra, 232Th, 40K activity concentration were measured. The indoor radon concentration resulted quite high from the average (163 Bq/m3 and generally it did not differ considerably between the two rooms and the two six-month periods. The natural radionuclides in soil resulted to be distributed quite uniformly. Moreover, the correlation between the226Ra content in soil and radon concentration in dwellings resulted to be low (R2=0.26. The annual effective dose from radon and its short-lived progeny (5.5 mSv, in average was calculated by using the last ICRP dose conversion factors. In comparison, the contribution to the annual effective dose of outdoor gamma exposure from natural radionuclides in soil is nearly negligible (66 mSv. In conclusion, the observed high radon levels are only partially correlated with radium in soil; moreover, a good estimate of the annual average of radon concentration can be obtained from a six-month measurement with a proper choice of exposure period, which could be useful when designing large surveys.

  6. Radon-Instrumentation; Radon-Instrumentacion

    Energy Technology Data Exchange (ETDEWEB)

    Moreno y Moreno, A. [Departamento de Apoyo en Ciencias Aplicadas, Benemerita Universidad Autonoma de Puebla, 4 Sur 104, Centro Historico 72000 Puebla (Mexico)

    2003-07-01

    The presentation of the active and passive methods for radon, their identification and measure, instrumentation and characteristics are the objectives of this work. Active detectors: Active Alpha Cam Continuous Air Monitor, Model 758 of Victoreen, Model CMR-510 Continuous Radon Monitor of the Signature Femto-Tech. Passive detectors: SSNTD track detectors in solids Measurement Using Charcoal Canisters, disk of activated coal deposited in a metallic box Electrets Methodology. (Author)

  7. Radon as a geophysical tracer on Mars: study of its transport, first evidence and development of an instrument for its measurement

    International Nuclear Information System (INIS)

    Meslin, Pierre-Yves

    2008-01-01

    Radon-222, an inert and radioactive gas stemming from the uranium decay series, and its progeny are often used as tracers to study transfers in soils and in the atmosphere. They have also been studied on the surface of the Moon in connection with lunar outgassing. On Mars, where radon has never been studied nor measured so far, we show that their measurement could provide new insight and constraints on the chemical nature of the hydrogen measured in the Martian soil, in surface-atmosphere exchange processes, in atmospheric transport and, finally, in the dust cycle. Our approach is based on a coupled soil-atmosphere transport model implemented into the Global Circulation Model LMDZ. It includes the source term, the diffusion and adsorption of radon within the soil, and its atmospheric transport. The model input parameters are derived either experimentally (emanation factor and adsorption coefficient extrapolated to low temperatures) or by realistic models of porous media (diffusion coefficient at low pressure and as a function of the water saturation level). The model yields predictive maps of the radon exhalation rate as well as 3D fields of concentration in the soil and atmosphere, which will allow direct comparison with bismuth-214 measurements made by the GRS onboard the Mars Odyssey orbiter. We present preliminary results on this subject. An analysis of alpha spectra acquired by the APXS of the rover Opportunity is also presented, which shows evidence of a polonium-210 deposit on atmospheric dust, providing the first indirect proof of the presence of radon in the Martian atmosphere. We propose a simplified dust cycle model that enables us to infer an estimate of the global average radon exhalation rate on Mars. Lastly, we simulate the performance of an alpha spectrometer aimed at measuring radon and its progeny on the surface of the planet. (author)

  8. The control of radon levels in houses

    International Nuclear Information System (INIS)

    Al-Jarallah, M. B. I.

    2007-01-01

    The article speaks about radon entry ways to houses, the technologies of controlling the level of radon in indoors and four possible ways to solve the problem of high concentration of radon gas in housing and protection from being gathered to a certain extent that is harmful to health. These methods are: removal of the radon source, modifying the radon source, ventilation and air filtration. The article also addresses the impact of reducing the consumption of heating energy in homes and buildings using thermal insulators in floors, walls, ceilings and doors and making double glazed windows that confine the air. It has been proven that there is a steady relationship between energy conservation measures in housing and the increase of radon concentration by two to three times. In a lot of buildings, where conservation measures have been taken, materials to conserve heat are used, which themselves launch radon and this may lead to increased levels of the gas in the housing.

  9. The radon monitoring system in Daya Bay Reactor Neutrino Experiment

    International Nuclear Information System (INIS)

    Chu, M.C.; Kwan, K.K.; Kwok, M.W.; Kwok, T.; Leung, J.K.C.; Leung, K.Y.; Lin, Y.C.; Luk, K.B.; Pun, C.S.J.

    2016-01-01

    We developed a highly sensitive, reliable and portable automatic system (H 3 ) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H 3 is able to measure radon concentration with a statistical error less than 10% in a 1-h measurement of dehumidified air (R.H. 5% at 25 °C) with radon concentration as low as 50 Bq/m 3 . This is achieved by using a large radon progeny collection chamber, semiconductor α-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013.

  10. Radon variations in a Hungarian village

    International Nuclear Information System (INIS)

    Toth, E.; Deak, F.; Marx, G.; Sajo-Bohus, L.; Vajda, N.

    1997-01-01

    A steady radon exhalation is assumed in most publications. In a village of North-East Hungary, however, high radon concentrations have been measured, differing strongly in neighbouring houses and varying in time, due to the interplay of geochemical phenomena. (orig.)

  11. Paloma-radon: atmospheric radon 222 as a geochemical probe for water in the martian subsoil

    International Nuclear Information System (INIS)

    Sabroux, J.Ch.; Michielsen, N.; Voisin, V.

    2003-01-01

    Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon 222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO 2 ). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option. In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a set of alpha detectors connected to an electronic spectrometer, a

  12. Paloma-radon: atmospheric radon 222 as a geochemical probe for water in the martian subsoil

    Energy Technology Data Exchange (ETDEWEB)

    Sabroux, J.Ch.; Michielsen, N.; Voisin, V

    2003-07-01

    Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon 222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO{sub 2}). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option. In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a set of alpha detectors connected to an electronic spectrometer

  13. Monitoring of the Syrian rift valley using radon technique

    International Nuclear Information System (INIS)

    Al-Hilal, M.; Al-Ali, A.; Jubeli, Y.

    1997-02-01

    Groundwater radon data were recorded once every two months from six monitoring sites of the Syrian rift valley during the year 1996. Radon samples were measured from deep artesian wells and from continuously-flowing springs that are distributed along this most active seismic zone in Syria. The available data were integrated with previously measured groundwater radon data from the same stations in order to estimate the range of normal radon fluctuations in the region. The estimation of such range may enable the separation between usual groundwater radon variations from other outliers which may indicate possible tectonic activities or earthquake hazards in the study area. Periodical radon measurements based on two months intervals and long distance between sampling stations does not enable us to trust with high level of confidence the connection between radon values and any possible earth dynamics. Therefore, shorter measuring time with closer monitoring sites are highly recommended to achieve the optimum advantage of such application. (Author). 8 Figs., 2 Tabs., 10 Refs

  14. Radon contents in groundwater and the uncertainty related to risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Masami [Kyoto Univ. (Japan)

    1997-02-01

    The United States has proposed 11 Bq/l (300 pCi/l) as the maximum contaminant levels (MCLs) of radon. Japan has not set up the standards for drinking water. The problems about evaluation of effects of radon on organism and MCLs of radon in groundwater and drinking water in 12 countries were reported. The local area content the high concentrations of radon, but generally it`s low levels were observed in Nigeria, China and Mexico. The countries which content high concentration of radon were Greek, Slovakia, Bornholm Island and Scotland. There are high and low concentration area in US and Japan. I proposed an uncertainty scheme on risk assessment for the exposure by radon. (S.Y.)

  15. Wind direction correlated measurements of radon and radon progeny in atmosphere: a method for radon source identification

    International Nuclear Information System (INIS)

    Akber, R.A.; Pfitzner, J.; Johnston, A.

    1994-01-01

    This paper describes the basic principles and methodology of a wind direction correlated measurement technique which is used to distinguish the mine-related and background components of radon and radon progeny concentrations in the vicinity of the ERA Ranger Uranium Mine. Simultaneous measurements of atmospheric radon and radon progeny concentrations and wind speed and direction were conducted using automatic sampling stations. The data were recorded as a time series of half hourly averages and grouped into sixteen 22.5 degrees wind sectors. The sampling interval and the wind sector width were chosen considering wind direction variability (σ θ ) over the sampling time interval. The data were then analysed for radon and radon progeny concentrations in each wind sector. Information about the wind frequency wind speed seasonal and diurnal variations in wind direction and radon concentrations was required for proper data analysis and interpretation of results. A comparison with model-based estimates for an identical time period shows agreement within about a factor of two between the two methods. 15 refs., 1 tab., 5 figs

  16. Instruments to measure radon activity concentration or exposure to radon. Interlaboratory comparison 2011

    International Nuclear Information System (INIS)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2011-10-01

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices 1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by BfS. A radon measuring service is recognized by the competent authority if it proves its organizational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the website www.bfs.de/de/ion/radon/fachinfomessung/vergleichspruefungen.html and from the European Information System on Proficiency Testing Schemes (eptis) available in the internet. (orig.)

  17. Cost and effectiveness of radon barrier systems

    International Nuclear Information System (INIS)

    Baker, E.G.; Freeman, H.D.; Hartley, J.N.; Gee, G.W.

    1982-12-01

    Earthen, asphalt, and multilayer radon barrier systems can all provide reduction in the amount of radon gas released from uranium mill tailings. Pacific Northwest Laboratory field tested all three types of covers at Grand Junction, Colorado during the summer of 1981. All nine individual radon barrier systems tested currently meet the EPA standard for radon flux of 20 pCi m - 2 s - 1 . The cost of the asphalt and 3m earthen covers were about the same at the field test. Multilayer covers were significantly more costly. Cost estimates for three high priority western sites indicate 3m of earthen cover is the least costly radon barrier when earthen material is available at or near the disposal site. If earthen material must be imported more than 8 to 10 km asphalt and possibly multilayer radon barriers can be cost effective

  18. Studies of red soils as capping the uranium mill tailing impoundments

    International Nuclear Information System (INIS)

    Wen Zhijian; Chen Zhangru; Liu Zhengyi; Chen Guoliang

    2001-01-01

    Capping is one of the important technical engineering measures to assure the long term stabilization and isolation of uranium mill tailings. This paper reports in situ surveys of radon emanations before and after tailings slurries were capped with local red soils at the uranium mill tailings. The data obtained by soil-gas surveys reveal that radon emanation decreased with an increase in capping thickness. The dry density of the capping materials also plays an important role in preventing radon emanation. The measurement results show that utilizing high densities of red soils as capping materials can significantly decrease the required thickness of the capping. The analytical results from borehole red soil samples show that uranium, thorium, and radium contents are consistent with the regional environmental radioactivity level. The studies of the mineralogical composition indicate that the local red soils are rich in clay minerals, e.g. kaolinite, illite and mica vermiculite mixed-layer minerals, which would play an active role in preventing radionuclide release to the surrounding environment. A conceptual model for remediation of south China's uranium mill tailing has been developed

  19. Uncertainties of estimating average radon and radon decay product concentrations in occupied houses

    International Nuclear Information System (INIS)

    Ronca-Battista, M.; Magno, P.; Windham, S.

    1986-01-01

    Radon and radon decay product measurements made in up to 68 Butte, Montana homes over a period of 18 months were used to estimate the uncertainty in estimating long-term average radon and radon decay product concentrations from a short-term measurement. This analysis was performed in support of the development of radon and radon decay product measurement protocols by the Environmental Protection Agency (EPA). The results of six measurement methods were analyzed: continuous radon and working level monitors, radon progeny integrating sampling units, alpha-track detectors, and grab radon and radon decay product techniques. Uncertainties were found to decrease with increasing sampling time and to be smaller when measurements were conducted during the winter months. In general, radon measurements had a smaller uncertainty than radon decay product measurements. As a result of this analysis, the EPA measurements protocols specify that all measurements be made under closed-house (winter) conditions, and that sampling times of at least a 24 hour period be used when the measurement will be the basis for a decision about remedial action or long-term health risks. 13 references, 3 tables

  20. Radon: Chemical and physical states of radon progeny. Final technical report

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.

    1996-01-01

    The evolving chemical and physical form of radon progeny influence their transport to the bioreceptor and the extent to which that receptor can take up these species into various tissues. When first born following radioactive decay processes, the potentially deleterious radon progeny undergo various physical and chemical transformations as they transcend from a highly charged to a neutral state, and interact with various constituents of the environment. These transformations impact on the extent to which the radon progeny become associated with aerosol particles on the one hand, and their ultimate chemical form that is available for uptake in the biosystem, on the other. The program, which originally commenced in 1987, dealt with the basic chemistry and physics of radon progeny and hence impacted on several themes of importance to the DOE/OHER radon program. One of these is dose response, which is governed by the physical forms of the radon progeny, their transport to the bioreceptor and the chemical forms that govern their uptake. The second theme had to do with cellular responses, one of the major issues motivating the work. It is well known that various sizes of ions and molecules are selectively transported across cell membrane to differing degrees. This ultimately has to do with their chemical and physical forms, charge and size. The overall objective of the work was threefold: (1) quantifying the mechanisms and rates of the chemical and physical transformation; (2) ascertaining the ultimate chemical forms, and (3) determining the potential interactions of these chemical species with biological functional groups to ascertain their ultimate transport and incorporation within cells

  1. Radon programme: presence and future

    International Nuclear Information System (INIS)

    Hulka, J.

    2009-01-01

    In this presentation an overview of radon programme experiences is presented. The paper summarises national radon policy, national programmes, legislation, the role of preventive measures and interventions with respect to existing and future exposure and knowledge of radon risk, problems of remediation strategies, practical protection in dwellings, radon measurements strategies, progress in radon measurement of an individual house (radon diagnosis), radon mapping process and sense of delineation of radon prone areas, natural radioactivity of building materials and radioactivity in public water and their role in the radon programme, public awareness on radon issue and publicity campaign. Some research activities are proposed aiming at effective solutions of radon issues in future

  2. Radon in energy-efficient earth-sheltered structures

    International Nuclear Information System (INIS)

    Nero, A.V.

    1983-05-01

    Exposure o the radioactive-decay products of radon 222 that are present in indoor air constitutes the most-significant radiation dose received by the general population in most countries. Indoor concentrations vary from one building to another, ranging from insignificant to very high levels that cause radiation doses higher than those experienced by uranium miners. This wide range of concentrations is attributable to variability in the rate at which radon enters buildings, and differences in the ventilation rate. Earth-sheltered dwellings, because they are more completely surrounded by earth material than other structures, have an as yet unquantified potential for having radon entry rates that are higher than typical for other houses in the region. Moreover, measures that save energy by reducing ventilation rates (for example by reducing infiltration) can also raise indoor radon concentrations. For these reasons a significant effort is needed to determine the potential for ventilation-reducing measures and earth sheltering to increase radon concentrations, especially in regions where they are already high. Where necessary, proper attention to specific design features that affect radon entry rates or residence time indoors should be adequate to avoid undue risk to the public

  3. Radon

    International Nuclear Information System (INIS)

    1990-01-01

    This leaflet in the At-a-Glance Series, describes what radon is, where it is found, why it presents a risk to health, the official advice, and the remedies that are available to reduce radon levels. (author)

  4. Radon and hydrotherapy: application to French spas

    International Nuclear Information System (INIS)

    Ameon, R.

    2004-01-01

    Owing to the use of thermal water for treatments, the dissolved radon ends up, through degassing, in the atmosphere of the various spa premises. According to the type of treatments, the radon activity concentration in the air is very variable; it depends on two factors, the supply of thermal water, and therefore of radon, and the ventilation of the various premises. In unfavourable, even non-existent, ventilation conditions, it is not uncommon to measure radon concentration reaching several thousands of becquerels per air cubic meter. These high values of radon activity concentration, with or without its short-lived daughters, may lead to a staff exposure of approximately ten or several tens of mSv per year. A French spa was subject to a radon 'expertise' during which the radon source terms, 'ground in contact with the buildings' and 'thermal water' were characterized. The radon mapping in the internal atmosphere of the various spa premises and the workstations' analysis resulted in an assessment of the exposure due to radon inhalation. This study showed that on workstations, notably linked to hydrotherapy, the staff exposure to radon is in the same range as the dose assessments from foreign studies. The implementation of an appropriate ventilation of the treatment rooms and a better management of the thermal water in the spa resulted in a significant reduction of staff exposure

  5. Fluid-based radon mitigation technology development for industrial applications

    International Nuclear Information System (INIS)

    Liu, K.V.; Gabor, J.D.; Holtz, R.E.; Gross, K.C.

    1996-01-01

    The objective of the radon mitigation technology development effort is to develop an efficient and economical radon gas removal technology based on a fluid absorption process. The technology must be capable of cleaning up a wide range of radon gas stream concentrations to a level that meets EPA gas emission standards for residential and industrial applications. Argonne has recently identified a phenomenon that offers the possibility of radon recovery from the atmosphere with high efficiency at room temperature, and radon release at slightly elevated temperatures (50-60 degrees C.) such a device would offer numerous substantial advantages over conventional cryogenic charcoal systems for the removal of radon. Controlled sources of radon in Argonne's radon research facility are being used to quantitatively assess the performance of a selected class of absorbing fluids over a range of radon concentrations. This paper will discuss the design of laboratory- and engineering-scale radon absorption units and present some preliminary experimental test results

  6. Radon levels and transport parameters in Atlantic Forest soils

    International Nuclear Information System (INIS)

    Farias, E.E.G. de; Silva Neto, P.C. da; Souza, E.M. de; De Franca, E.J.; Hazin, C.A.

    2016-01-01

    In natural forest soils, the radon transport processes can be significantly intensified due to the contribution of living organism activities to soil porosity. In this paper, the first results of the radon concentrations were obtained for soil gas from the Atlantic Forest, particularly in the Refugio Ecologico Charles Darwin, Brazil. The estimation of permeability and radon exhalation rate were carried out in this conservation unit. For forested soils, radon concentrations as high as 40 kBq m -3 were found. Based on the radon concentrations and on the permeability parameter, the results indicated considerable radon hazard for human occupation in the neighborhood. (author)

  7. A Radon Micro Study of Salthill, Galway

    International Nuclear Information System (INIS)

    Boyle-Tobin Ann

    2006-01-01

    This project presents a study of radon gas, when it enters from the ground into the built environment. In order to further inform the present body of knowledge on this potentially dangerous gas, a radon micro study is carried out in the area of Salthill, Galway. A total of 51 households are measured for radon. The results indicate a high variation in the levels recorded, with over a third of the houses measuring above the national safe standard of 200 becquerels per cubic meter, with a small percentage of houses exhibiting very high levels. The results are spatially analysed against the local geology, as radon is a by-product of the breakdown of uranium in rocks. Householders' knowledge and awareness of radon is explored to inform the reasons why more people are not testing their homes for radon, and not installing remedial measures when high levels are detected. The findings indicate significant gaps in householders' knowledge of radon. A certain complacency is noted, which may indicate that people still do not recognise a need to know about this invisible threat. As ways to encourage further testing and remediation levels are equally explored, the government is viewed to play a central role in these processes through partial state funding. Further evidence supports continued and more effective and widespread advertising of radon issues, through all types of media, with emphasis at local level. Incidents of lung cancer and lung disease of long term residents are recorded in an attempt to find out if there is a correlation between them. The results indicate no correlation; however, not all households could participate in this part of the survey as it was limited to long-term residents only

  8. Mineral dusts and radon in uranium mines

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1991-01-01

    The Environmental Protection Agency (EPA) continues to assert that radon is a major cause of lung cancer in this country. EPA is fostering a radon program that could entail huge financial and emotional costs while yielding negligible benefits to public health. Justification for the program was the occurrence of lung cancer in men exposed to huge amounts of radon, mineral dusts, and other lung irritants in uranium mines on the Colorado Plateau. Lung cancer has been reported in about 356 cigarette smokers and in about 25 nonsmokers. During the era of high radon levels, monitoring was sporadic. Conditions in only a small fraction of the mines were measured, and that on a few separate occasions. Later, cumulative exposure to radon was calculated on the basis of measurements involving only a tiny fraction of the miners. Some were exposed to more than 15,000 pCi/liter of radon and its products. The level in the average home is about 1.5 pCi/liter. In making extrapolations from mine to home, the assumption is made that residents are in their dwellings most of the time and that miners spend only 170 hours a month in the mine. Two major questionable assumptions are involved in extrapolations from high doses of radon in the mines to low doses in homes. One is that no threshold is involved; that is, that humans have no remediation mechanism for α particle damages. There is evidence to the contrary. The most unrealistic assumption is that heavy exposure to silica has no effect on inducing lung cancer. Many studies have shown that silica dust causes lung cancer in animals. Exposure of human culture cells to silica has resulted in formation of neoplastic tissue. EPA has no solid evidence that exposures to 4 pCi/liter of radon causes lung cancer in either smokers or nonsmokers. Indeed, there is abundant evidence to the contrary in the fact that in states with high levels of radon, inhabitants have less lung cancer than those in states with low levels

  9. Radon measurements with a PIN photodiode

    International Nuclear Information System (INIS)

    Martin-Martin, A.; Gutierrez-Villanueva, J.L.; Munoz, J.M.; Garcia-Talavera, M.; Adamiec, G.; Iniguez, M.P.

    2006-01-01

    Silicon photodiodes are well suited to detect alphas coming from different sources as neutron reactions or radon daughters. In this work a radon in air detecting device, using an 18x18 mm silicon PIN photodiode is studied. The ionized airborne decay products formed during radon diffusion were focused by an accelerating high voltage to the PIN surface. Several conducting rings were disposed inside a cylindrical PVC vessel in such a way that they reproduced the electric field created by a punctual charge located behind PIN position. Alpha spectra coming from the neutral and ionized species deposited on the PIN surface, dominated by 218 Po and 214 Po progeny peaks, were recorded for varying conditions. Those include radon concentration from a Pylon source, high voltage (thousands of volts) and PIN inverse bias voltage. Different parameters such as temperature and humidity were also registered during data acquisition. The increase in the particle collection efficiency with respect to zero electric field was compared with the corresponding to a parallel plates configuration. A discussion is made in terms of the most appropriate voltages for different radon concentrations

  10. Online {sup 222}Rn removal by cryogenic distillation in the XENON100 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aprile, E.; Anthony, M.; De Perio, P.; Gao, F.; Goetzke, L.W.; Greene, Z.; Lin, Q.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y. [Columbia University, Physics Department, New York, NY (United States); Aalbers, J.; Breur, P.A.; Brown, A.; Colijn, A.P.; Decowski, M.P.; Hogenbirk, E.; Tiseni, A. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); Agostini, F. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN-Bologna (Italy); Alfonsi, M.; Geis, C.; Grignon, C.; Oberlack, U.; Scheibelhut, M.; Schindler, S. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Amaro, F.D.; Cardoso, J.M.R.; Lopes, J.A.M.; Orrigo, S.E.A.; Santos, J.M.F. dos; Silva, M. [University of Coimbra, Department of Physics, Coimbra (Portugal); Arneodo, F.; Benabderrahmane, M.L.; Di Giovanni, A.; Maris, I. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Barrow, P.; Baudis, L.; Franco, D.; Galloway, M.; Kessler, G.; Kish, A.; Mayani, D.; Pakarha, P.; Piastra, F.; Wei, Y.; Wulf, J. [University of Zurich, Physik-Institut, Zurich (Switzerland); Bauermeister, B. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik and Exzellenzcluster PRISMA, Mainz (Germany); Stockholm University, AlbaNova, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Berger, T.; Brown, E.; Piro, M.C. [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy, Troy, NY (United States); Bruenner, S.; Cichon, D.; Eurin, G.; Hasterok, C.; Lindner, M.; Undagoitia, T.M.; Pizzella, V.; Rauch, L.; Rupp, N.; Schreiner, J.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Bruno, G.; Gallo Rosso, A.; Molinario, A. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); Budnik, R.; Duchovni, E.; Itay, R.; Landsman, H.; Lellouch, D.; Levinson, L.; Manfredini, A.; Priel, N. [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Buetikofer, L.; Coderre, D.; Kaminsky, B.; Schumann, M.; Sivers, M. v. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Calven, J.; Conrad, J.; Ferella, A.D.; Pelssers, B. [Stockholm University, AlbaNova, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Cervantes, M.; Lang, R.F.; Masson, D.; Pienaar, J.; Reichard, S.; Reuter, C. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Cussonneau, J.P.; Diglio, S.; Le Calloch, M.; Masbou, J.; Micheneau, K.; Persiani, R.; Thers, D. [Universite de Nantes, SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Nantes (France); Di Gangi, P.; Garbini, M.; Massoli, F.V.; Sartorelli, G.; Selvi, M. [University of Bologna, Department of Physics and Astrophysics, Bologna (Italy); INFN, Bologna (Italy); Fei, J.; Ni, K.; Ye, J. [University of California, Department of Physics, San Diego, CA (United States); Fieguth, A.; Murra, M.; Rosendahl, S.; Weinheimer, C. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Fulgione, W. [INFN-Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L' Aquila (Italy); INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Grandi, L.; Saldanha, R.; Shockley, E.; Upole, N. [University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Lindemann, S. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Meng, Y.; Stein, A.; Wang, H. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Miguez, B.; Trinchero, G. [INFN-Torino (Italy); Osservatorio Astrofisico di Torino, Turin (Italy); Naganoma, J.; Shagin, P. [Rice University, Department of Physics and Astronomy, Houston, TX (United States); Lavina, L.S. [LPNHE, Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, Paris (France); Tunnell, C. [Nikhef and the University of Amsterdam, Science Park, Amsterdam (Netherlands); University of Chicago, Department of Physics and Kavli Institute of Cosmological Physics, Chicago, IL (United States); Cristescu, I. [Karlsruhe Institute of Technology, Tritium Laboratory Karlsruhe, Eggenstein-Leopoldshafen (Germany); Collaboration: XENON Collaboration

    2017-06-15

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant {sup 222}Rn background originating from radon emanation. After inserting an auxiliary {sup 222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the {sup 222}Rn activity concentration inside the XENON100 detector. (orig.)

  11. Development of in-situ radon sensor using plastic scintillator

    International Nuclear Information System (INIS)

    Shitashima, Kiminori

    2009-01-01

    Underwater in-situ radon measurement is important scientific priority for oceanography, especially for survey and monitoring of submarine groundwater discharge (SDG). The high sensitivity and lightweight underwater in-situ radon sensor using NaI(Tl) doped plastic scintillator was developed for application to SDG research. Because NaI(Tl) doped plastic scintillator contacts seawater directly, the plastic scintillator can expect high sensitivity in comparison with NaI(Tl) crystal sealed in a container. In order to improve condensation efficiency of scintillation, the plastic scintillator was processed in funnel form and coated by light-resistant paint. This sensor consists of plastic scintillator, photomultiplier tube, preamplifier unit, high-voltage power supply, data logger and lithium-ion battery, and all parts are stored in a pressure housing (200φx300L). The newly developed underwater in-situ radon sensor was tested at hydrothermal area (underwater hot springs) that the hydrothermal fluid containing high concentration of radon is discharged into seawater. The sensor was operated by a diver, and sensitivity tests and mapping survey for estimation of radon diffusion were carried out. The signals of the radon sensor ranged from 20 to 65 mV, and these signals corresponded with radon concentration of 2 to 12 becquerels per liter. The sensor was able to detect radon to 20 m above the hydrothermal point (seafloor). Since the sensor is small and light-weight, measurement, monitoring and mapping can perform automatically by installing the sensor to an AUV (autonomous underwater vehicle). Furthermore, underwater in-situ radon sensor is expected an application to earthquake prediction and volcanic activity monitoring as well as oceanography and hydrology. (author)

  12. BGS Radon Protective Measures GIS

    International Nuclear Information System (INIS)

    Appleton, D.; Adlam, K.

    2000-01-01

    The British Geological Survey Radon Protective Measures Geographical Information System is described. The following issues are highlighted: Identification of development sites where radon protection is required in new dwellings; Mapping radon potential on the basis of house radon and geology; Radon Protective Measures GIS; Radon site reports; and Follow-up radon protective measures sire reports

  13. Radiation hazard due to radon in indoor air

    International Nuclear Information System (INIS)

    Keller, G.

    1987-01-01

    Inhalation of the noble gas radon and its short-lived daughter products present in normal room air causes a considerable increase of the mean natural radiation exposure of the population. As there is an uncontested relationship between lung dose and cancer risk, measures should be taken to guarantee that the radon concentrations in room air do at least not reach maxima. The most simple measure is frequent, brief, good ventilation. Very high radon concentrations are measured in houses where radon pentrates direct from the soil into buildings. For this case, radon-tight insulation of the building from the soil is recommended. A forced ventilation system with heat recovery, installed by experts, has shown to be very successful in radon reduction in 'problematic' houses. (orig.) [de

  14. Radon risk map of the city Brno

    International Nuclear Information System (INIS)

    Jansky, J.

    2000-01-01

    Data of radon risk mapping of the city Brno area from 1992 to 1999 were collected from databases of six private companies measuring radon risk there. The data sets are completed now. The first results are presented in this paper. In the city Brno area only low (385 measured sites) and medium (300) radon risk categories were found. The largest number of measured areas were situated in places with loess and loess loam (total quantity 344 sites, with medium radon risk category 158 sites), recent fluvial sediments (64, 32) and anthropogenous deposits (61, 23). High values of radon volume activity in soil gas were found predominantly in Quaternary sediments and in granodiorite, type Veverska Bityska, low values in leucotonalite and metabasalt. (author)

  15. Cost effectiveness of radon mitigation in Canada

    International Nuclear Information System (INIS)

    Letourneau, E.G.; Krewski, D.; Zielinski, J.M.; McGregor, R.G.

    1992-01-01

    This paper examines the cost effectiveness of comprehensive strategies for reducing exposure to radon gas in indoor air in Canadian homes. The analysis is conducted within the context of a general framework for risk management programme evaluation which includes well-known evaluation techniques such as cost effectiveness and cost-benefit analyses as special cases. Based on this analysis, it is clear that any comprehensive programme to reduce exposure to environmental radon will be extremely expensive, and may not be justifiable in terms of health impact, particularly when considered in relation to other public health programmes. Testing of homes at the point of sale and installing sub-slab suction equipment to reduce exposure to indoor radon where necessary appears to be a relatively cost-effective radon mitigation strategy. In general, radon mitigation was found to be most cost effective in cities with relatively high levels of radon. (author)

  16. Novel Radon Sub-Slab Suctioning System

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    A new principle for radon protection is currently presented which makes use of a system of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground-floor slab. The function of this system is based on the principles of pressure reduction within...... a grid of horizontal air ducts with low pressure which are able to remove air and radon from the ground. Results showed the system to be effective in preventing radon infiltrating from the ground through the ground-floor slab, avoiding high concentrations of radon being accumulated inside houses....... For the system to be effective, the pressure within the ducts must be lower than the pressure inside the house. The new principle was shown to be effective in preventing radon from polluting the indoor air by introducing low pressure in the horizontal grid of air ducts. A lower pressure than the pressure inside...

  17. Determination of Geogenic Radon Potential (GEORP) in Pocos de Caldas - Brazil

    International Nuclear Information System (INIS)

    Santos, Marcelo T.; Silva, Nivaldo C.; Guerrero, Eder T.Z.; Navarro, Fabiano C.; Oliveira, Rodrigo J.

    2015-01-01

    The noble gas 222 Rn is a radioactive isotope of the element radon that can be found in atmospheric air, among others gases, at broad range of concentration. This isotope decays from 238 U series, which is normally found in soil and rocks, especially in fault zones and fractures, where uranium presents greater mobility. The atmospheric high concentration of this gas is frequently related to confined environments including dwellings and other buildings with low air ventilation rate. Inhalation of this gas is acknowledged by international agencies such as WHO, as the second leading cause of lung cancer, being the first among the non-smoker population. That is the reason why, some countries have defined their regions with high radon potential where it is justified the implementation of construction techniques to reduce indoor radon concentration. This paper uses the Geogenic Radon Potential (GEORP) approach aiming to identify radon prone areas in the urban zone of Pocos de Caldas - Brazil. GEORP encompasses simultaneous measurements of the soil gas permeability and radon soil gas concentration. This investigation was accomplished using RADON-JOK permeameter, a device specially developed for in situ soil gas permeability, and ALPHAGUARD, a professional radon monitor. A large variability was observed in both radon soil concentration and soil gas permeability. Some areas have presented low gas permeability due to clayey soil characteristics thus medium GEORP. The majority of the points in this paper have been identified with high radon soil gas concentration showing values that reached 1,000 kBq.m -3 and presenting high radon index. (author)

  18. Determination of Geogenic Radon Potential (GEORP) in Pocos de Caldas - Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcelo T.; Silva, Nivaldo C.; Guerrero, Eder T.Z., E-mail: apoc@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Navarro, Fabiano C.; Oliveira, Rodrigo J., E-mail: campus.pcaldas@unifal-mg.edu.br [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil). Instituto de Ciencia e Tecnologia

    2015-07-01

    The noble gas {sup 222}Rn is a radioactive isotope of the element radon that can be found in atmospheric air, among others gases, at broad range of concentration. This isotope decays from {sup 238}U series, which is normally found in soil and rocks, especially in fault zones and fractures, where uranium presents greater mobility. The atmospheric high concentration of this gas is frequently related to confined environments including dwellings and other buildings with low air ventilation rate. Inhalation of this gas is acknowledged by international agencies such as WHO, as the second leading cause of lung cancer, being the first among the non-smoker population. That is the reason why, some countries have defined their regions with high radon potential where it is justified the implementation of construction techniques to reduce indoor radon concentration. This paper uses the Geogenic Radon Potential (GEORP) approach aiming to identify radon prone areas in the urban zone of Pocos de Caldas - Brazil. GEORP encompasses simultaneous measurements of the soil gas permeability and radon soil gas concentration. This investigation was accomplished using RADON-JOK permeameter, a device specially developed for in situ soil gas permeability, and ALPHAGUARD, a professional radon monitor. A large variability was observed in both radon soil concentration and soil gas permeability. Some areas have presented low gas permeability due to clayey soil characteristics thus medium GEORP. The majority of the points in this paper have been identified with high radon soil gas concentration showing values that reached 1,000 kBq.m{sup -3} and presenting high radon index. (author)

  19. Radon Measurements in Vojvodina

    International Nuclear Information System (INIS)

    Bikit, I.; Bikit, K.; Forkapic, S.; Mrda, D.; Nikolov, J.; Todorovic, N.; Veskovic, M.

    2013-01-01

    Recent analyses of epidemiological studies of lung cancer risk from residential exposures demonstrate a statistically significant increase per unit of exposure below average annual concentrations of about 200 Bq/m 3 . Indoor radon measurements performed in Novi Sad in about 400 houses and flats are presented and discussed in this paper. By measuring gamma-activity of radon daughters, radon activity concentration was determined to be 50 Bq/m 3 . In Vojvodina region indoor radon levels were measured by alpha track detectors CR-39 on about 3000 locations during the winter seasons in the period of three years (2003-2005). The main aim of the present study was to explore the critical group of population for radon exposure and to estimate maximal annual doses. Existing radon maps which identify regions with elevated radon levels will improve data collection and analysis for the future radon campaigns. Collaboration on the JRC program of European indoor radon map and implementation of grid system are also discussed.(author)

  20. Radon and cancer

    International Nuclear Information System (INIS)

    2011-01-01

    This publication proposes an overview on what is known about the carcinogenic effect of radon. It recalls the origin of radon, its presence in the environment, and its radioactivity. It comments data on the relationship between exposure to radon and lung cancer, and with other forms of cancer. It discusses the role of the exposure level, and the cases of professional and domestic exposure with respect to these risks. It indicates the hazardous areas in France which are well identified, outlines that smokers are more likely victims of risks related to radon, that this risk is still underrated and underestimated (notably by the public). It gives an overview of existing regulations regarding exposure to radon, of public health policies and national plans concerning radon, and recalls some WHO recommendations

  1. Indoor radon measurements in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20364, 01000 Mexico, D.F. (Mexico)], E-mail: espinosa@fisica.unam.mx; Golzarri, J.I. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20364, 01000 Mexico, D.F. (Mexico); Bogard, J. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6480 (United States); Gaso, I. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, 11801 Mexico, D.F. (Mexico); Ponciano, G. [Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Mena, M.; Segovia, N. [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico)

    2008-08-15

    Mexico City is one of the most populated cities in the world with almost 22 million inhabitants, located at an altitude of 2200 m. The old city was founded on an ancient lake and the zone is known by its high seismicity; indoor radon determination is an important public health issue. In this paper the data of indoor radon levels in Mexico City, measured independently by two research groups, both using Nuclear Track Detector systems but different methodologies, are correlated. The measurements were done during similar exposure periods of time, at family houses from the political administrative regions of the city. The results indicate a correlation coefficient between the two sets of data of R=0.886. Most of the differences between the two sets of data are inherent to houses having extreme (very high or very low indoor radon) included in the statistics of each group. The total average indoor radon found in Mexico City considering the two methods was 87Bqm{sup -3}.

  2. Comparison of techniques active and passive in measurement of radon concentration ({sup 222}Ra) in the air; Comparacao de tecnicas ativa e passiva na medicao de concentracao de radonio ({sup 222}Rn) no ar

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Evaldo Paulo de

    2017-11-01

    The purpose of this work was to perform a study comparing radon concentration measurements between two techniques used to measure radon gas in the air: one using LEXAN polycarbonate plastic detectors and the other the continuous monitor in AlphaGUARD passive mode. The concentrations of radon gas within radon emanation chambers were measured using calibrated / traceable sources generating {sup 222}Rn through {sup 226}Ra. In calibration the 'calibration factor' or 'sensitivity' was determined for the LEXAN plastic detector. The calibration work of the dosimeters was carried out at the Radon Laboratory of the Environmental Analysis Division - DIRAD IRD/CNEN and at the Natural Radioactivity Laboratory (LRN) of the Center for the Development of Nuclear Technology (CDTN/CNEN). The 'calibration factor' or 'sensitivity' was found to be 32.34 (traits.cm{sup -2})/(kBq.d.m{sup -3}). This factor was used to determine the radon concentration measured by the LEXAN plastic detectors. Also in the calibration, the efficiencies for LEXAN (94.1% ± 9.7%) and AlphaGUARD (92.5% ± 7.2%) were determined. The statistical analysis used showed good parity in the results of the measurements. It was concluded that the results were satisfactory and will serve as a good reference for studies related to the radon air meters used in this work. (author)

  3. The finnish guide to radon-resistant homes

    International Nuclear Information System (INIS)

    Arvela, H.

    2006-01-01

    Full text of publication follows: New regulations of the National Finnish Building Code require consideration of radon risks and as a main rule radon technical design in the building permission documents. Slab-on-grade is the prevalent substructure in Finnish low-rise residential buildings. Building statistics show that the prevalent practices in foundation construction promote the flow of radon-bearing soil air into living spaces. Without prevention the normal practices would result in high indoor radon concentrations in Finland. In wide areas more than 50% of houses exceed the reference level of 200 Bq/m 3 given for new buildings. The new guide published in 2003 requires installation of protective sheet in the slab-on-ground foundation and a preparatory radon piping. A protective sheet of durable reinforced bitumen felt with a width of 50 - 100 cm should be installed in the slab-foundation wall joint. Careful sealing of lead-troughs plays also an important role. In the case the sealing work does not result in low indoor radon concentration, the radon piping should be activated through radon-fan installation. Careful implementation of the sealing work reduces indoor radon concentration to a level of less than 50 Bq/m 3 , also in areas where the normal building practices result in indoor radon concentrations exceeding the reference level of 200 Bq/m 3 in more than 50% of new houses. Recent experiences from the implementation of the guide will be considered. (author)

  4. Paloma-radon: Atmospheric radon-222 as a geochemical probe for water in the Martian subsoil.

    Science.gov (United States)

    Sabroux, J.-C.; Michielsen, N.; Voisin, V.; Ferry, C.; Richon, P.; Pineau, J.-F.; Le Roulley, J.-C.; Chassefière, E.

    2003-04-01

    Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon-222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES-supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m^3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO_2). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option (already on board the Mars Pathfinder Rover and other platforms). In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a

  5. Radon levels at the rehabilitated Nabarlek mine site

    International Nuclear Information System (INIS)

    Tims, S.; Ryan, B.; Martin, P.

    1998-01-01

    Full text: A high sensitivity radon monitor has now been in continuous operation at the Nabarlek mine site for several months. The pit area can be viewed as a single, extended radon source, which can be used to assess the validity of radon dispersal predictions. The data have been recorded simultaneously with a variety of meteorological parameters, with a view to using correlations between the data sets as a guide for the improvement of dispersion model inputs. The sensitivity of radon concentration to selected parameters will be discussed, as will the future of the study which aims to make additional simultaneous radon measurements at selected locations around the mine site

  6. Radon and lung cancer in Bangalore Metropolitan, India

    International Nuclear Information System (INIS)

    Sathish, L.A.; Nethravathi, K.S.; Ramachandran, T.V.

    2012-01-01

    Radon is a radioactive gas released from the normal decay of 238 U in rocks and soil. It is an invisible, odorless, tasteless gas that seeps up through the ground and diffuses into the air. In a few areas, depending on local geology, radon dissolves into ground water and can be released into the air when the water is used. Radon gas usually exists at very low levels outdoors. However, in areas without adequate ventilation, such as underground mines, radon can accumulate to levels that substantially increase the risk of lung cancer. Radon decays quickly, giving off tiny radioactive particles. When inhaled, these radioactive particles can damage the cells that line the lung. Long-term exposure to radon can lead to lung cancer, the only cancer proven to be associated with inhaling radon. Public interest in radon has been occasionally piqued by articles in the general press. Considerable attention has been given to the high radon levels that were uncovered in the Reading Prong region of Pennsylvania, following the discovery in late 1984 of extremely high levels in one home. Several epidemiological study programmes in different countries are in progress to estimate the population exposures due to natural radiation with a view to obtain the radiation risk coefficients at low dose rate levels. In this regard, radiation surveys in high background areas (HBRAs) can provide excellent settings for epidemiological studies relating to the effects of low doses of radiation. In view of these, a comprehensive estimate of the natural inhalation dose requires both 222 Rn and 220 Rn levels in the indoor atmosphere. In this outlook an attempt is made to investigate the 222 Rn and 220 Rn levels in dwellings of Bangalore Metropolitan, India. Three year results shows that the activity concentrations of 226 Ra, 232 Th, radon in ground water, the concentrations 222 Rn and 220 Rn and the dose rate (mSvy -1 ) are at alarming levels for the environment of Bangalore Metropolitan, India. The

  7. Development on high precision monitoring technique of radon and thoron in environment

    International Nuclear Information System (INIS)

    Imaizumi, Masayuki; Hamada, Hiromasa; Goto, Masahiro; Nakazato, Hiroomi; Mori, Mitsuhiro

    1999-01-01

    In a field of the environmental management, many technical research and developments such as monitoring on drainage section and flowing speed change of groundwater, analysis on alternating flow phenomenon between surface water and groundwater, analysis on water leakage at a dam, forecasting of landslide, safety evaluation on ground due to detection of faults, have conducted. And, an application to analysis on gas flowing phenomenon from underground to atmosphere as a part of study on evaluation of effect of gas emitted from earth surface on the earth environment was investigated. This study aimed to elucidate behaviors of radon and thoron at environment and to develop a high precision monitoring technique on radon and thoron required to conduct an advanced application to a tracer in hydrology, applied geology, and environment engineering. (G.K.)

  8. Radon reduction in waterworks

    International Nuclear Information System (INIS)

    Raff, O.; Haberer, K.; Wilken, R.D.; Funk, H.; Stueber, J.; Wanitschek, J.; Akkermann-Kubillus, A.; Stauder, S.

    2000-01-01

    The removal of radon from water using water aeration is one of the most effective methods for reducing radon in waterworks. Therefore, this report describes investigations on packed tower columns and shallow aeration devices and a method for mathematical modelling of gas exchange processes for dimensioning packed tower columns for radon removal. Moreover, possibilities for removing radon using active carbon filtration under waterworks typical conditions and for reducing indoor radon levels in waterworks are discussed. Finally, conclusions on the necessity of radon removal in German waterworks are drawn. (orig.) [de

  9. Draft of „National Radon Programme” 2013-2017

    International Nuclear Information System (INIS)

    Ivanova, K.; Badulin, V.; Georgieva, R.

    2013-01-01

    The World Health Organization defines radon as the second most important causal factor for lung cancer after smoking and the number one factor for people who have never smoked. The draft of the new European Directive takes accounts the latest ICRP Recommendations for reducing radon exposure in buildings. The Directive requires Member States to bring into force the laws, regulations and administrative provisions. The main goal of „National Radon Programme” is establishment and implementation of long-term policy to reduce and prevent risks of public health resulting from exposure to high concentrations of indoor radon in buildings. To achieve this are required: – to establish an appropriate system; – to carry out national survey and mapping of areas with radon background; – to establish radon prevention strategies in newly constructed buildings and radon mitigation strategies in existing buildings; – to improve public awareness; – to lay down a system for protection against radon in workplaces. The implementation of the program will contribute to reducing the public exposure due to indoors due to radon. Along with the reduction of smoking, it will directly and indirectly improve the prevention of lung cancer risks. (author)

  10. Radon house doctor

    International Nuclear Information System (INIS)

    Nitschke, I.A.; Brennan, T.; Wadach, J.B.; O'Neil, R.

    1986-01-01

    The term house doctor may be generalized to include persons skilled in the use of instruments and procedures necessary to identify, diagnose, and correct indoor air quality problems as well as energy, infiltration, and structural problems in houses. A radon house doctor would then be a specialist in radon house problems. Valuable experience in the skills necessary to be developed by radon house doctors has recently been gained in an extensive radon monitoring and mitigation program in upstate New York sponsored by Niagara Mohawk Power Corporation and the New York State Energy Research and Development Authority. These skills, to be described in detail in this paper, include: (i) the use of appropriate instruments, (ii) the evaluation of the symptoms of a radon-sick house, (iii) the diagnostic procedures required to characterize radon sources in houses, (iv) the prescription procedures needed to specify treatment of the problem, (v) the supervision of the implementation of the treatment program, (vi) the check-up procedures required to insure the house cured of radon problems. 31 references, 3 tables

  11. Radon risk in the house

    International Nuclear Information System (INIS)

    Bressa, G.

    2001-01-01

    Radon was discovered in 1900, but its potential dangerousness for man was fully understood only in 1950. Being a radioactive natural gas - and therefore particularly dangerous - radon results from the long decay chain of radionuclides, such as thorium and radium. Some igneous rocks (granite, tufa and lava) as well as coal are considered to be the main sources of this radionuclide. A number of epidemiologic studies have shown the carcinogenicity of this element, particularly among miners and workers subjected to high level exposure in confined spaces such as basements, garages, cellars, etc. There are, however, some techniques to remove radon in order to reduce exposure to minimum values [it

  12. Radon: a case for public persuasion

    International Nuclear Information System (INIS)

    Green, B.M.R.; Lomas, P.R.

    1996-01-01

    The importance of reducing individual to elevated levels of radon is well understood by radiation protection specialists, and successful methods of locating the areas most at risk have been developed. However, less attention has been paid to informing the general public about the health rifles and encouraging those in radon-prone areas to take action. In the United Kingdom, techniques have been developed to persuade householders in high radon areas to take advantage of a government scheme that provides free long-term measurements of radon in the home. Improvements in the methods of contacting householders in the target areas and in the presentation of the facts has resulted in a twofold increase in the rate of take-up of measurements since the first large-scale surveys. (author)

  13. A simple bubbling system for measuring radon (222Rn) gas concentrations in water samples based on the high solubility of radon in olive oil.

    Science.gov (United States)

    Al-Azmi, D; Snopek, B; Sayed, A M; Domanski, T

    2004-01-01

    Based on the different levels of solubility of radon gas in organic solvents and water, a bubbling system has been developed to transfer radon gas, dissolving naturally in water samples, to an organic solvent, i.e. olive oil, which is known to be a good solvent of radon gas. The system features the application of a fixed volume of bubbling air by introducing a fixed volume of water into a flask mounted above the system, to displace an identical volume of air from an air cylinder. Thus a gravitational flow of water is provided without the need for pumping. Then, the flushing air (radon-enriched air) is directed through a vial containing olive oil, to achieve deposition of the radon gas by another bubbling process. Following this, the vial (containing olive oil) is measured by direct use of gamma ray spectrometry, without the need of any chemical or physical processing of the samples. Using a standard solution of 226Ra/222Rn, a lowest measurable concentration (LMC) of radon in water samples of 9.4 Bq L(-1) has been achieved (below the maximum contaminant level of 11 Bq L(-1)).

  14. Environmental radon with RAD7 detector; Radon ambiental con detector RAD7

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, A.; Balcazar, M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Fernandez G, I. M.; Capote F, E., E-mail: arturo.lopez@inin.gob.mx [Centro de Proteccion e Higiene de las Radiaciones, Carretera La Victoria II Km 2.5 e/ Monumental y Final, Guanabacoa, La Habana (Cuba)

    2016-09-15

    Experimental results of the radon detection with the equipment RAD7 are presented. The use of a solid state detector placed in a semi-spherical chamber with an electric field allows a high sensitivity of 0.4 cpm/P Ci/l. Radon detection is achieved by the spectroscopy of its decay products. In accordance with a table of errors for various ranges of counts and radon concentrations, reported by the manufacturer, an equation was obtained that allows establishing operation criteria of the equipment. For radon detection at ambient concentrations as low as 30 Bq m{sup -3}, is shown that short counts of 10 minutes are good enough to make decisions on radiation protection matter. In places where concentrations are close to 200 Bq m{sup -3}, counting intervals of the order of 0.5 hours will have an acceptable counting error of the order of 20%. The determination of radon in soil was, according to the expected, on the order of 10 kBq m{sup -3}, and was found that even with the recommended counting times of 5 minutes, there is a risk of increased humidity inside the detector above 20% Rh, with associated reduction of detection efficiency, if the desiccant is not used properly. The equipment was subjected to a radon exposure in air of 13, 373 Bq m{sup -3} ± 3.7%, contained within a controlled chamber, with a variation in temperature of (19-21) degrees Celsius and in the relative humidity of (5-7) %, the good stability of the chamber allows to propose calibration processes of these equipment s by assessing the concentration by means of a Ge (Hp) detector. (Author)

  15. Radon-hazard potential the Beaver basin, Utah

    International Nuclear Information System (INIS)

    Bishop, C.E.

    1995-01-01

    Indoor-radon levels in the Beaver basin of southwestern Utah are the highest recorded to date in Utah, ranging from 17.5 to 495 picocuries per liter (pCi/L). Because the U.S. Environment Protection Agency considers indoor-radon levels above 4 pCi/L to represent a risk of lung cancer from long-term exposure, the Utah Geological Survey is preparing a radon-hazard-potential map for the area to help prioritize indoor testing and evaluate the need for radon-resistant construction. Radon is a chemically inert radioactive gas derived from the decay of uranium-238, which is commonly found in rocks and soils. Soil permeability, depth to ground water, and uranium/thorium content of source materials control the mobility and concentration of radon in the soil. Once formed, radon diffuses into the pore space of the soil and then to the atmosphere or into buildings by pressure-driven flow of air or additional diffusion. The Beaver basin has been a topographic and structural depression since late Miocene time. Paleocene to Miocene volcanic and igneous rocks border the basin. Uraniferous alluvial-fan, piedmont-slope, flood-plain, and lacustrine sediments derived from the surrounding volcanic rocks fill the basin. A soil-gas radon and ground radioactivity survey in the Beaver basin shows that soils have high levels of radon gas. In this survey, uranium concentrations range from 3 to 13 parts per million (ppm) and thorium concentrations range from 10 to 48 ppm. Radon concentrations in the soil gas ranged from 85 to 3,500 pCi/L. The highest concentrations of uranium, thorium, and radon gas and the highest radon-hazard-potential are in the well-drained permeable soils in the lower flood- plain deposits that underlie the city of Beaver

  16. Large-scale radon hazard evaluation in the Oslofjord region of Norway utilizing indoor radon concentrations, airborne gamma ray spectrometry and geological mapping

    International Nuclear Information System (INIS)

    Smethurst, Mark Andrew; Strand, Terje; Sundal, Aud Venke; Rudjord, Anne Liv

    2008-01-01

    We test whether airborne gamma ray spectrometer measurements can be used to estimate levels of radon hazard in the Oslofjord region of Norway. We compile 43,000 line kilometres of gamma ray spectrometer data from 8 airborne surveys covering 10,000 km 2 and compare them with 6326 indoor radon measurements. We find a clear spatial correlation between areas with elevated concentrations of uranium daughters in the near surface of the ground and regions with high incidence of elevated radon concentrations in dwellings. This correlation permits cautious use of the airborne data in radon hazard evaluation where direct measurements of indoor radon concentrations are few or absent. In radon hazard evaluation there is a natural synergy between the mapping of radon in indoor air, bedrock and drift geology mapping and airborne gamma ray surveying. We produce radon hazard forecast maps for the Oslofjord region based on a spatial union of hazard indicators from all four of these data sources. Indication of elevated radon hazard in any one of the data sets leads to the classification of a region as having an elevated radon hazard potential. This approach is inclusive in nature and we find that the majority of actual radon hazards lie in the assumed elevated risk regions

  17. Radon in Dwellings in the Republic of Kalmykia

    Energy Technology Data Exchange (ETDEWEB)

    Aakerblom, Gustav (Aakerblom och Aakerblom HP, Skaerholmen (Sweden)); German, Olga; Soederman, Ann-Louise (Swedish Radiation Safety Authority, Stockholm (Sweden)); Stamat, Ivan; Venkov, Vladimir (Research Inst. of Radiation Hygiene, St. Petersburg (Russian Federation))

    2009-02-15

    concrete footing. The floor is usually made of wooden planks with quite large visible gaps between them, which makes it easy for radon to penetrate into the air of the living space. A 20-30 centimeter high non-ventilated crawl space is quite usual. Ventilation is provided by the gaps around the windows and doors and the natural draught through the holes. The heating stoves are usually placed in the middle of the houses; coal, wood, sheep and cow dung are used as fuel. The gamma radiation from the building materials is approximately 0.1 muSv/h which indicates that they do not contribute to the radon in the indoor air. The water is stored in cisterns outdoors and this means that it can also be excluded as a source of radon in the indoor air. The measurements showed very few extreme radon values, but the mean value is relatively high. In order to prevent high radon levels indoors, the radon risks should always be taken into account when constructing a building and to prevent the penetration of radon gas by laying a sheet of plastic over the ground in the crawl space or by sealing the openings and cracks in the floor. It is important that the local authorities are aware of the radon problems so that they can advise on the health risks and their mitigation

  18. Geologic controls on indoor radon in the Pacific Northwest

    International Nuclear Information System (INIS)

    Otton, J.K.; Duval, J.S.

    1990-01-01

    This paper reports on comparisons of average indoor radon levels, soil radium content (derived from aerial gamma-ray data), and soil characteristics for selected townships in Washington, Oregon, and Idaho which show that: soil radium content provides a first-order estimate of the relative amounts of indoor radon where soils are either of low to moderate intrinsic permeability or of permeability reduced by high moisture; in drier parts of the study area (east of the Cascade Mountains), unusually high average indoor radon levels are almost all characterized by soils that have high effective permeabilities (greater than 20 inches per hour), based on available country soil descriptions; and in the wetter parts of the study area (west of the Cascade Mountains), townships with unusually high indoor radon levels are characterized by steeply sloped soils

  19. Smoking cessation programmes in radon affected areas: can they make a significant contribution to reducing radon-induced lung cancers?

    International Nuclear Information System (INIS)

    Denman, A.R.; Groves-Kirkby, C.J.; Timson, K.; Shield, G.; Rogers, S.; Phillips, P.S.

    2008-01-01

    Domestic radon levels in parts of the UK are sufficiently high to increase the risk of lung cancer in the occupants. Public health campaigns in Northamptonshire, a designated radon affected area with 6.3% of homes having average radon levels over the UK action level of 200 Bq m -3 , have encouraged householders to test for radon and then to carry out remediation in their homes, but have been only partially successful. Only 40% of Northamptonshire houses have been tested, and only 15% of householders finding raised levels proceed to remediate. Of those who did remediate, only 9% smoked, compared to a countywide average of 28.8%. This is unfortunate, since radon and smoking combine to place the individual at higher risk by a factor of around 4, and suggests that current strategies to reduce domestic radon exposure are not reaching those most at risk. During 2004-5, the NHS Stop Smoking Services in Northamptonshire assisted 2,808 smokers to quit to the 4-week stage, with some 30% of 4-week quitters remaining quitters at 1 year. We consider whether smoking cessation campaigns make significant contributions to radon risk reduction on their own, by assessing individual occupants' risk of developing lung cancer from knowledge of their age, gender, and smoking habits, together with he radon level in their house. The results demonstrate that smoking cessation programmes have significant added value in radon affected areas, and contribute a greater health benefit than reducing radon levels in the smokers' homes, whilst they remain smokers. Additionally, results are presented from a questionnaire-based survey of quitters, addressing their reasons for seeking help in quitting smoking, and whether knowledge of radon risks influenced this decision. The impact of these findings on future public health campaigns to reduce the impact of radon and smoking are discussed. (author)

  20. Instruments to measure radon-222 activity concentration or exposure to radon-222. Intercomparison 2014

    International Nuclear Information System (INIS)

    Foerster, Elisabeth; Beck, Thomas; Buchroeder, Helmut; Doering, Joachim; Schmidt, Volkmar

    2014-10-01

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices 1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by the Bundesamt fuer Strahlenschutz (BfS). A radon measuring service is recognized by the competent authority if it proves its organisational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the European Information System on Proficiency Testing Schemes (EPTIS) and from the BfS websites.

  1. Radon in workplaces

    International Nuclear Information System (INIS)

    Reichelt, A.; Lehmann, K.-H.; Reineking, A.; Porstendoerfer, J.; Schwedt, J.; Streil, T.

    2000-01-01

    The radiological assessment of the results of radon measurements in dwellings is not automatically applicable to workplaces due to different forms of utilization, constructional conditions, time of exposure, heating and ventilation conditions, additional aerosol sources, aerosol parameters, chemical substances, etc. In order to investigate the peculiarities of the radon situation in workplaces located inside buildings compared with that in dwellings, long-time recordings of radon, attached radon progeny and unattached radon progeny concentrations ( 218 Po, 214 Pb, 214 Bi) are carried out at several categories of workplaces (e.g. offices, social establishments, schools, production rooms, workshops, kitchens, agricultural facilities). 36 workplaces have been investigated. There have been carried out at least 2-3 long-time recordings for each workplace during different seasons. At the same time the gamma dose rate, meteorological conditions, aerosol particle concentrations have been registered. Many special dates from the workplaces and the buildings have been recorded. Activity size distribution of the aerosol-attached and unattached fraction of short-lived radon decay products have been determinated in 20 workplaces. Mainly the following measurement systems were used: Radon- and Radon Progeny Monitor EQF 3020, SARAD GmbH, Germany. Alpha-Track Radon Detectors, BfS Berlin, Germany. Screen Diffusion Batteries with Different Screens, University of Goettingen, Germany. Low-Pressure Cascade Impactor, Type BERNER. Condensation Nuclei Counter, General Electric, USA. PAEC-f p -Rn-Monitor, University of Goettingen, Germany. Through the measurements, many peculiarities in the course of the radon-concentration, the equilibrium factor F, the unattached fraction f p and the activity size distribution have been determined. These amounts are influenced mainly by the working conditions and the working intervals. The influence of these peculiarities in workplaces on the dose have

  2. Radon Research Program, FY 1991

    International Nuclear Information System (INIS)

    1992-03-01

    The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny as well as to provide information useful in radon control strategies. Results generated under the Program were highlighted in a National Research Council report on radon dosimetry. The study concluded that the risk of radon exposure is 30% less in homes than in mines. This program summary of book describes the OHER FY-1991 Radon Research Program. It is the fifth in an annual series of program books designed to provide scientific and research information to the public and to other government agencies on the DOE Radon Research Program

  3. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.

    1977-01-01

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222 Rn and 226 Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  4. The importance of radon and its daughter products in environmental hygiene

    International Nuclear Information System (INIS)

    Schuettmann, W.

    1985-01-01

    Radon and its daughter products have recently been paid great attention as components of natural ionizing radiation. Their presence in houses and flats are focus of interest. The radon isotopes and their short-lived daughter products are represented briefly, followed by a condensed survey of the historical development of this topic. There are various reasons why this became topical only 80 years after radon had been proved in the atmospheric air. After the listing of the different sources of radon, a rough risk estimation is given regarding the role of radon in lung cancer incidence in the GDR. For environmental hygiene the houses with particularly high radon content of the air, the causes of which are given, are of special importance. Among these causes the ventilation of rooms is the factor having the greatest influence on the radon concentration. From the evidence of occasional, extremely high radon values efforts are derived to elaborate limits of radon concentrations in flats. Finally, the priority of the radon problem for environmental hygiene is pointed out by indicating the current interest of this problem in literature and at congresses. (author)

  5. Characterization of radon entry rates and indoor concentrations in underground structures

    International Nuclear Information System (INIS)

    Borak, T.B.; Whicker, F.W.; Fraley, L.; Gadd, M.S.; Ibrahim, S.A.; Monette, F.A.; Morris, R.; Ward, D.C.

    1992-01-01

    An experimental facility has been designed to comprehensively determine the influence of soil and meterological conditions on the transport of radon into underground structures. Two identical basements are equipped to continuously monitor pressure differentials, temperatures, soil moisture, precipitation, barometric pressure, wind speed, wind direction, natural ventiliation rates, and radon concentrations. A computerized data acquisition system accumulates and processes data at the rate of 6000 points per day. The experimental design is based on performing experiments in one structure, with the other used as a control. Indoor radon concentrations have temporal variations ranging from 150 to 1400 Bq m -3 . The corresponding entry rate of radon ranges from 300 to 10,000 Bq h -1 . When the radon entry rate is high, the indoor radon concentration decreases, whereas elevated radon concentrations seem to be associated with slow but persistent radon entry rates. This inverse relationship is partially due to compensation from enhanced natural ventilation during periods when the radon entry rate is high. Correlations between measured variables in the soil and indoor-outdoor atmospheres are used to interpret these data. This laboratory has the capability to generate essential data required for developing and testing radon transport models

  6. Environmental radon

    International Nuclear Information System (INIS)

    Majumdar, S.K.; Schmalz, R.F.; Miller, E.W.

    1990-01-01

    This book covers many aspects of environmental radon, including: historical perspectives; occurrence and properties; detection, measurement, and mitigation, radon and health; and political, economic, and legislative impacts

  7. Comparison of radon and radon-daughter grab samples obtained during the winter and summer

    International Nuclear Information System (INIS)

    Karp, K.E.

    1987-08-01

    The Technical Measurements Center (TMC), under the auspices of the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) program, is investigating short-term methods for estimating annual average indoor radon-daughter concentrations (RDC). A field study at 40 sample locations in 26 residential structures in Grand Junction, Colorado, was conducted once in the winter and once in the summer. The short-term methods investigated as part of this study include ten-minute radon and radon-daughter grab sampling and hourly RDC measurements. The results of the field study indicate that ten-minute radon grab samples from basement locations are reproducible over different seasons during controlled sampling conditions. Nonbasement radon and RDC grab samples are highly variable even when the use of the location by the occupant is controlled and the ventilation rate is restricted. The grab sampling was performed under controlled occupied conditions. These results confirm that a short-term radon or RDC measurement in a nonbasement location in a house is not a standardized measurement that can be used to infer an annual average concentration. The hourly RDC measurements were performed under three sets of conditions over a 72-hour period. The three sets of conditions were uncontrolled occupied, controlled occupied, and controlled unoccupied. These results indicate that it is not necessary to relocate the occupants during the time of grab sampling. 8 refs., 8 figs., 10 tabs

  8. Survey of radon concentrations in three Italian towns

    International Nuclear Information System (INIS)

    Malanca, A.; Pessina, V.; Dallara, G.

    1992-01-01

    Radon-222 was measured in 187 dwellings in Parma, Reggio Emilia, and Orvieto. Samples were collected using activated carbon canisters, placed in basements and on the upper floors for at least 48 h in the period starting from January 1989 to July 1990. Gamma spectroscopy was used for the measurement of 222 Rn and its progeny. The data for the three towns show a lognormal distribution. Owing to the high radium concentration in building materials and underlying soil, high radon concentrations were observed in Orvieto's dwellings. Additional measurements carried out in 22 public schools of Parma and Reggio Emilia showed moderate radon concentrations, while significant radon levels were recorded in 37 castles and ancient buildings in Parma and Reggio Emilia provinces

  9. Radon thematic days - Conference proceedings

    International Nuclear Information System (INIS)

    2011-03-01

    This document brings together the available presentations given at the Radon thematic days organized by the French society of radiation protection (SFRP). Twenty five presentations (slides) are compiled in the document and deal with: 1 - General introduction about radon (Sebastien Baechler, IRA); 2 - Survey of epidemiological studies (Dominique Laurier, IRSN); 3 - Dosimetric model (Eric Blanchardon, Estelle Davesne, IRSN); 4 - Radon issue in Franche-Comte: measurement of the domestic exposure and evaluation of the associated health impact (Francois Clinard, InVS); 5 - WHO's (World Health Organization) viewpoint in limiting radon exposure in homes (Ferid Shannoun, OMS); 6 - Radon measurement techniques (Roselyne Ameon, IRSN); 7 - Quality of radon measurements (Francois Bochud, IRA); 8 - International recommendations (Jean-Francois Lecomte, IRSN); 9 - Radon management strategy in Switzerland - 1994-2014 (Christophe Murith, OFSP); 10 - 2011-2015 action plan for radon risk management (Jean-Luc Godet, Eric Dechaux, ASN); 11 - Radon at work place in Switzerland (Lisa Pedrazzi, SUVA); 12 - Strategies of radiation protection optimization in radon exposure situations (Cynthia Reaud, CEPN); 13 - Mapping of the radon potential of geologic formations in France (Geraldine Ielsch, IRSN); 14 - Radon database in Switzerland (Martha Gruson, OFSP); 15 - Radon 222 in taps water (Jeanne Loyen, IRSN); 16 - Buildings protection methods (Bernard Collignan, CSTB, Roselyne Ameon, IRSN); 17 - Preventive and sanitation measures in Switzerland (Claudio Valsangiacomo, SUPSI); 18 - Training and support approach for building specialists (Joelle Goyette-Pernot, Fribourg engineers and architects' school); 19 - Status of radon bulk activity measurements performed between 2005-2010 in public areas (Cyril Pineau, ASN); 20 - Neuchatel Canton experiments (Didier Racine, SENE); 21 - Montbeliard region experience in the radon risk management (Isabelle Netillard, Pays de Montbeliard Agglomeration); 22

  10. Mapping of groundwater radon potential

    International Nuclear Information System (INIS)

    Aekerblom, G.; Lindgren, J.

    1997-01-01

    The domestic use of water with elevated radon concentration may represent a public health hazard, partly due to the release of radon to the indoor air. While only a limited number of countries have implemented regulations with respect to radon in water, many more are considering doing so. The compulsory limits proposed by Swedish authorities are 100 Bq/1 for public water, while water from private wells is not to exceed 1000 Bq/1. Furthermore, it is recommended that water with a radon content above 500 Bq/1 should not be given to children under five years of age. In Sweden, the estimated number of wells with radon levels above 1000 Bq/1 exceeds 10,000, with a considerable amount in excess of 10,000 Bq/1. The highest radon concentration in a well supplying drinking water encountered so far is 57,000 Bq/1. Radon levels exceeding 500 Bq/1 are almost exclusively found in wells drilled into bedrock and in springs with intramontaneous water. Elevated ground water radon levels require that the water has passed through bedrock with elevated concentration of uranium, or through fractures with coatings of minerals containing enhanced concentrations of radium-226. Intramontaneous water from areas with uranium-bearing rock types (e.g. uranium-rich granites, pegmatites and vulcanites) often manifests elevated radon levels. Routines for the establishment of risk maps focusing on water are currently under development. The backbone of the process is the access to high spatial resolution radiometric information together with bedrock and soil information on a detailed scale (1:50,000). This information is available from the Geological Survey of Sweden, which is routinely carrying out airborne measurements at an altitude of 30 m and a line spacing of 200 m. While some 60% of Sweden is covered up to now, 75 % is expected to be covered within the next ten years. Other available databases utilized in the risk mapping process include radon measurements in wells, geochemical data from

  11. Indoor radon level measurements in Iran using AEOI passive dosimeters

    International Nuclear Information System (INIS)

    Sohrabi, M.; Solaymanian, A.R.

    1988-01-01

    A passive radon diffusion dosimeter was developed at the RPD of AEOI for nationwide indoor radon level measurements. Several parameters of the dosimeter were studied. Radon levels were determined in about 250 houses in Ramsar (a high natural radiation area), Tehran, Babolsar and Gonabad. In this paper, the results of some dosimeter parameters as well as radon levels in indoor air are reported

  12. Geologic influence on indoor radon concentrations and gamma radiation levels in Norwegian dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Sundal, Aud Venche

    2003-09-01

    Indoor radon levels in 1618 Norwegian dwellings located in different geological settings were compared with geological information in order to determine potential correlations between geological factors and indoor radon concentrations in Norway and to establish whether geological information is useful in radon risk analysis. In two geographically limited areas, Kinsarvik and Fen, detailed geological and geochemical investigations were carried out in order to explain their elevated natural radiation environment. Significant correlations between geology and indoor radon concentrations in Norway are found when the properties of both the bedrock and the overburden are taken into account. Areas of high radon risk in Norway include 1) exposed bedrock with elevated levels of radium (mainly alum shale and granites) and b) highly permeable unconsolidated sediments derived from all rock types (mainly glaciofluvial and fluvial deposits) and moderately permeable sediments containing radium rich rock fragments (mainly basal till). More than 20 % of Norwegian dwellings located in the high-risk areas can be expected to contain radon levels exceeding 200 Bq/m3. The elevated radon risk related to penneable building grounds is illustrated in Kinsarvik where the highly permeable sediments and the large vadose zone underlying the Huse residential area enable the transport of radon from large volumes into the dwellings resulting in enhanced indoor radon concentrations. Subterranean air flows caused by temperature/pressure differences between soil air and atmospheric air and elevations differences within the Huse area are shown to strongly affect the annual variations in indoor radon concentrations. The marked contrasts in radon risk potential between different types of building grounds are clearly illustrated in the Fen area where outcrops of the radium rich Fen carbonatites represent areas of high radon risk while only low levels of both indoor radon concentrations and indoor gamma

  13. Radon in Estonian dwellings - Results from a National Radon Survey

    Energy Technology Data Exchange (ETDEWEB)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo [Estonian Radiation Protection Centre (Kiirguskeskus), Tallinn (Spain); Aakerblom, Gustav [Swedish Radiation Protection Authority, Stockholm (Sweden)

    2003-10-01

    A countrywide survey of radon concentrations in Estonian dwellings was carried out during the period 1998-2001. The survey formed a part of the cooperation program on radiation protection between the Estonian Radiation Protection (Kiirguskeskus) Centre and the Swedish Radiation Protection Authority (SSI). The survey included measurements in a number of dwellings representative for Estonia in detached houses and multifamily buildings (only dwellings on the bottom floor were included in the survey). Altogether, radon concentrations were measured in 515 dwellings, a number large enough to be statistically significant. All measurements were made with alphatrack film detectors of the same type that SSI uses in Sweden. The measurements were made during a 2-3 month period during the winter half-year. Two detectors were used in each dwelling. In Estonia there are 0.17 million dwellings in detached houses and 0.45 million in multi apartment buildings. Of the 1.26 million inhabitants in Estonia. 0.36 million live in detached houses and 0.90 million in multi apartment buildings. Most of the latter were built during the Soviet occupation. Of the dwellings in multifamily buildings 30 % are assumed to be situated on the first floor. The mean radon concentration in dwellings in detached hoses, according to the survey results, is 103 Bq/m{sup 3}, in dwellings on the bottom floor in multi apartment buildings it is 78 Bq/m{sup 3}. In 1% of the dwellings the radon concentration exceeded 400 Bq/m{sup 3}. The highest radon concentration found in the study was 1040 Bq/m{sup 3}. Based on the assumption that the average radon concentration in the dwellings in multi-apartment buildings that are not situated on the bottom floor is 30 Bq/m{sup 3}, and that these dwellings constitute 70% of all dwellings in multi apartment buildings, the mean radon concentration in dwellings in multi apartment buildings is calculated to be 44 Bq/m{sup 3}. The mean value for all Estonia dwellings is calculated

  14. Radon in Estonian dwellings - Results from a National Radon Survey

    International Nuclear Information System (INIS)

    Pahapill, Lia; Rulkov, Anne; Rajamaee, Raivo; Aakerblom, Gustav

    2003-10-01

    A countrywide survey of radon concentrations in Estonian dwellings was carried out during the period 1998-2001. The survey formed a part of the cooperation program on radiation protection between the Estonian Radiation Protection (Kiirguskeskus) Centre and the Swedish Radiation Protection Authority (SSI). The survey included measurements in a number of dwellings representative for Estonia in detached houses and multifamily buildings (only dwellings on the bottom floor were included in the survey). Altogether, radon concentrations were measured in 515 dwellings, a number large enough to be statistically significant. All measurements were made with alphatrack film detectors of the same type that SSI uses in Sweden. The measurements were made during a 2-3 month period during the winter half-year. Two detectors were used in each dwelling. In Estonia there are 0.17 million dwellings in detached houses and 0.45 million in multi apartment buildings. Of the 1.26 million inhabitants in Estonia. 0.36 million live in detached houses and 0.90 million in multi apartment buildings. Most of the latter were built during the Soviet occupation. Of the dwellings in multifamily buildings 30 % are assumed to be situated on the first floor. The mean radon concentration in dwellings in detached hoses, according to the survey results, is 103 Bq/m 3 , in dwellings on the bottom floor in multi apartment buildings it is 78 Bq/m 3 . In 1% of the dwellings the radon concentration exceeded 400 Bq/m 3 . The highest radon concentration found in the study was 1040 Bq/m 3 . Based on the assumption that the average radon concentration in the dwellings in multi-apartment buildings that are not situated on the bottom floor is 30 Bq/m 3 , and that these dwellings constitute 70% of all dwellings in multi apartment buildings, the mean radon concentration in dwellings in multi apartment buildings is calculated to be 44 Bq/m 3 . The mean value for all Estonia dwellings is calculated to be 60 Bq/m 3 . Using

  15. Radon-film-badges by solid radiators to complement track detector-based radon monitors

    International Nuclear Information System (INIS)

    Tommasino, L.; Tommasino, M.C.; Viola, P.

    2009-01-01

    Existing passive radon monitors, based on track detectors, present many shortcomings, such as a limited response sensitivity for one-week-indoor measurements and a limited response linearity for the assessment of large radon exposures indoors, in thermal spa, in caves, and in soil. Moreover, for in-soil measurements these monitors are too bulky and are often conducive to wrong results. For what concerns the radon-in-water measurements, they are just not suitable. A new generation of passive radon monitors is introduced in this paper, which are very similar to the compact badges used in neutron- and gamma-dosimetry and will be referred to as radon-film-badges. These film-badges are formed by thin-film radiators with suitable radon-sorption characteristics, facing track detectors. The key strategy adopted for these radiators is to exploit an equilibrium type of radon sorption in solids. Even though this new generation of passive monitors is at its infancy, it appears already clear that said monitors make it finally possible to overcome most of the shortcomings of existing passive radon monitors. These devices are uniquely simple and can be easily acquired by any existing radon service to complement their presently used passive radon monitors with little or no effort.

  16. Radon in buildings

    International Nuclear Information System (INIS)

    Connell, J.J.

    1991-01-01

    This guide is intended to inform designers, householders and other building owners about the radon problem and to help in deciding if there is need to take any action to reduce radon levels in their homes or other buildings.It explains what radon is, how it enters buildings and what effect it may have on health. Reference is made to some of the usual ways of reducing the level of radon and guidance is given on some sources of assistance

  17. A survey on radon reduction efficiency of zeolite and bentonite in a chamber with artificially elevated radon concentration

    International Nuclear Information System (INIS)

    Mortazavi, S.M.J.

    2007-01-01

    Complete text of publication follows. Objective: Zeolite which is made of a special crystalline structure is a naturally occurring mineral group and can be used in radioactive waste management for site remediation /decontamination. There are a wide variety of naturally occurring and synthetic zeolites, each with a unique structure. The cations in zeolite are highly mobile and can be exchanged for other cationic species. On the other hand, bentonite forms from weathering of volcanic ash. This material may be used as an engineering barrier to enclose nuclear waste. In this study, radon reducing properties of zeolite and bentonite have been investigated. Methods: Using radioactive lantern mantle, a radon prone area with radon levels reaching the EPA's action level (200 Bq/m 3 ) was designed. Two sets of identical chambers (cylindrical chambers, diameter 10 cm, height 16 cm) were used in this study. No zeolite/bentonite was used in the 1 st set of the chambers. A thin layer of either zeolite or bentonite powder was applied to the base of the first set of chambers. An unburned radioactive lantern mantle (activity 800 Bq) was placed in all chambers (both sets) to artificially increase the radon level inside the chamber and simulate the condition of a radon prone area. Radon level monitoring was performed by using a PRASSI portable radon gas survey meter. Results: After placing the cap on its place, the radon levels inside the 1 st set of the chambers were 871.9, 770.3, 769.2 and 635.7 Bq/m 3 after 15, 30, 45 and 60 minutes respectively. Zeolite significantly decreased the radon concentration inside the chambers and radon levels were 367.9, 435.4, 399.0 and 435.4 Bq/m 3 after 15, 30, 45 and 60 minutes. The observed reduction in the radon level was statistically significant. As the radon concentrations in identical chambers with Bentonite were 550.7, 526.5, 536.2 and 479.8 Bq/m 3 after 15, 30, 45 and 60 minutes respectively, it is evident that zeolite is more efficient in

  18. Human perception of radon risk and radon mitigation: Some remarks

    International Nuclear Information System (INIS)

    Neznal, M.; Neznal, M.

    2008-01-01

    The Radon program in the Czech Republic has a relatively long and rich history. Procedures, which enable to evaluate the risk of radon penetration from the ground, to protect new buildings, to find existing buildings with elevated indoor radon levels and to realise remedial measures in such buildings, have been developed, published and tested. In some cases, the whole system may fail due to psychological or sociological reasons. Three types of problems (conflicts) will be presented: human behaviour affecting measurement results, conflict between individual and 'all-society' points of view, interpretation of radon risk itself. (authors)

  19. Project radon final report

    International Nuclear Information System (INIS)

    Ekholm, S.; Rossby, U.

    1990-01-01

    The main radiation problem in Sweden is due to radon in dwellings. At the Swedish State Power Board, R, D and D about radon has been going on since 1980. The work has concentrated on the important questions: How to find building with enhanced radon levels?; How to accurately decide on measures that will give adequate cleaning-up results, using appropriate measurement procedures; What cleaning-up effect is possible to achieve with an electro-filter?; and What cleaning-up effects are possible to achieve with different types of ventilation systems? The R, D and D-work, has been pursued in cooperation with universities of technology in Denmark and Finland, equipment manufacturers, consultants and authorities concerned. It was decided in December 1986 to give an offer to some SSPB-employees to investigate the radon situation of their dwellings, in order to test methods of measurement and cleaning-up under realistic conditions and to develop the methods to commercial maturity. The investigation was named 'Project Radon' and was carried out in three years with costs amounting to 1 M dollars. During the project less comprehensive radon measurements, named 'trace-measurements' were undertaken in about 1300 dwellings and more elaborate measurements, leading to suggestions of actions to be taken, in about 400 dwellings. Out of the suggestions, about 50 are carried out including control measurement after actions taken. The control measurement have shown that the ability to suggest appropriate actions is very successful - in just one case was a minor additional action necessary. The high reliability is achieved by always doing elaborate measurements before suggested mitigation method is decided on. (authors)

  20. Radon/radon-daughter measurement methods and instrumentation

    International Nuclear Information System (INIS)

    Rock, R.L.

    1977-01-01

    Radon-daughter measurement equipment and techniques have been continuously improved over the last 25 years. Improvements have been in the areas of accuracy, time and convenience. We now have miniaturized scalers and detectors available for measuring the alpha particle count rates from aerosol samples collected on filter papers. We also have small lightweight efficient pumps for conveniently collecting samples and we have various counting methods which allow us to choose between making very precise measurements or nominal measurements. Radon-daughter measurement methods used in uranium mines and mills are discussed including a personal radon-daughter-exposure integrating device which can be worn by miners