WorldWideScience

Sample records for high quality sequence

  1. Quack: A quality assurance tool for high throughput sequence data.

    Science.gov (United States)

    Thrash, Adam; Arick, Mark; Peterson, Daniel G

    2018-05-01

    The quality of data generated by high-throughput DNA sequencing tools must be rapidly assessed in order to determine how useful the data may be in making biological discoveries; higher quality data leads to more confident results and conclusions. Due to the ever-increasing size of data sets and the importance of rapid quality assessment, tools that analyze sequencing data should quickly produce easily interpretable graphics. Quack addresses these issues by generating information-dense visualizations from FASTQ files at a speed far surpassing other publicly available quality assurance tools in a manner independent of sequencing technology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Get your high-quality low-cost genome sequence

    NARCIS (Netherlands)

    Faino, L.; Thomma, B.P.H.J.

    2014-01-01

    The study of whole-genome sequences has become essential for almost all branches of biological research. Next-generation sequencing (NGS) has revolutionized the scalability, speed, and resolution of sequencing and brought genomic science within reach of academic laboratories that study non-model

  3. Exome sequencing generates high quality data in non-target regions

    Directory of Open Access Journals (Sweden)

    Guo Yan

    2012-05-01

    Full Text Available Abstract Background Exome sequencing using next-generation sequencing technologies is a cost efficient approach to selectively sequencing coding regions of human genome for detection of disease variants. A significant amount of DNA fragments from the capture process fall outside target regions, and sequence data for positions outside target regions have been mostly ignored after alignment. Result We performed whole exome sequencing on 22 subjects using Agilent SureSelect capture reagent and 6 subjects using Illumina TrueSeq capture reagent. We also downloaded sequencing data for 6 subjects from the 1000 Genomes Project Pilot 3 study. Using these data, we examined the quality of SNPs detected outside target regions by computing consistency rate with genotypes obtained from SNP chips or the Hapmap database, transition-transversion (Ti/Tv ratio, and percentage of SNPs inside dbSNP. For all three platforms, we obtained high-quality SNPs outside target regions, and some far from target regions. In our Agilent SureSelect data, we obtained 84,049 high-quality SNPs outside target regions compared to 65,231 SNPs inside target regions (a 129% increase. For our Illumina TrueSeq data, we obtained 222,171 high-quality SNPs outside target regions compared to 95,818 SNPs inside target regions (a 232% increase. For the data from the 1000 Genomes Project, we obtained 7,139 high-quality SNPs outside target regions compared to 1,548 SNPs inside target regions (a 461% increase. Conclusions These results demonstrate that a significant amount of high quality genotypes outside target regions can be obtained from exome sequencing data. These data should not be ignored in genetic epidemiology studies.

  4. Comparative Genomics in Switchgrass Using 61,585 High-Quality Expressed Sequence Tags

    Directory of Open Access Journals (Sweden)

    Christian M. Tobias

    2008-11-01

    Full Text Available The development of genomic resources for switchgrass ( L., a perennial NAD-malic enzyme type C grass, is required to enable molecular breeding and biotechnological approaches for improving its value as a forage and bioenergy crop. Expressed sequence tag (EST sequencing is one method that can quickly sample gene inventories and produce data suitable for marker development or analysis of tissue-specific patterns of expression. Toward this goal, three cDNA libraries from callus, crown, and seedling tissues of ‘Kanlow’ switchgrass were end-sequenced to generate a total of 61,585 high-quality ESTs from 36,565 separate clones. Seventy-three percent of the assembled consensus sequences could be aligned with the sorghum [ (L. Moench] genome at a -value of <1 × 10, indicating a high degree of similarity. Sixty-five percent of the ESTs matched with gene ontology molecular terms, and 3.3% of the sequences were matched with genes that play potential roles in cell-wall biogenesis. The representation in the three libraries of gene families known to be associated with C photosynthesis, cellulose and β-glucan synthesis, phenylpropanoid biosynthesis, and peroxidase activity indicated likely roles for individual family members. Pairwise comparisons of synonymous codon substitutions were used to assess genome sequence diversity and indicated an overall similarity between the two genome copies present in the tetraploid. Identification of EST–simple sequence repeat markers and amplification on two individual parents of a mapping population yielded an average of 2.18 amplicons per individual, and 35% of the markers produced fragment length polymorphisms.

  5. The need for high-quality whole-genome sequence databases in microbial forensics.

    Science.gov (United States)

    Sjödin, Andreas; Broman, Tina; Melefors, Öjar; Andersson, Gunnar; Rasmusson, Birgitta; Knutsson, Rickard; Forsman, Mats

    2013-09-01

    Microbial forensics is an important part of a strengthened capability to respond to biocrime and bioterrorism incidents to aid in the complex task of distinguishing between natural outbreaks and deliberate acts. The goal of a microbial forensic investigation is to identify and criminally prosecute those responsible for a biological attack, and it involves a detailed analysis of the weapon--that is, the pathogen. The recent development of next-generation sequencing (NGS) technologies has greatly increased the resolution that can be achieved in microbial forensic analyses. It is now possible to identify, quickly and in an unbiased manner, previously undetectable genome differences between closely related isolates. This development is particularly relevant for the most deadly bacterial diseases that are caused by bacterial lineages with extremely low levels of genetic diversity. Whole-genome analysis of pathogens is envisaged to be increasingly essential for this purpose. In a microbial forensic context, whole-genome sequence analysis is the ultimate method for strain comparisons as it is informative during identification, characterization, and attribution--all 3 major stages of the investigation--and at all levels of microbial strain identity resolution (ie, it resolves the full spectrum from family to isolate). Given these capabilities, one bottleneck in microbial forensics investigations is the availability of high-quality reference databases of bacterial whole-genome sequences. To be of high quality, databases need to be curated and accurate in terms of sequences, metadata, and genetic diversity coverage. The development of whole-genome sequence databases will be instrumental in successfully tracing pathogens in the future.

  6. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics

    Directory of Open Access Journals (Sweden)

    Richard Mark Leggett

    2013-12-01

    Full Text Available The processes of quality assessment and control are an active area of research at The Genome Analysis Centre (TGAC. Unlike other sequencing centres that often concentrate on a certain species or technology, TGAC applies expertise in genomics and bioinformatics to a wide range of projects, often requiring bespoke wet lab and in silico workflows. TGAC is fortunate to have access to a diverse range of sequencing and analysis platforms, and we are at the forefront of investigations into library quality and sequence data assessment. We have developed and implemented a number of algorithms, tools, pipelines and packages to ascertain, store, and expose quality metrics across a number of next-generation sequencing platforms, allowing rapid and in-depth cross-platform QC bioinformatics. In this review, we describe these tools as a vehicle for data-driven informatics, offering the potential to provide richer context for downstream analysis and to inform experimental design.

  7. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  8. High quality draft genome sequence of Staphylococcus cohnii subsp. cohnii strain hu-01.

    Science.gov (United States)

    Hu, XinJun; Li, Ang; Lv, LongXian; Yuan, Chunhui; Guo, Lihua; Jiang, Xiawei; Jiang, Haiyin; Qian, GuiRong; Zheng, BeiWen; Guo, Jing; Li, LanJuan

    2014-06-15

    Staphylococcus cohnii subsp. cohnii belongs to the family Staphylococcaceae in the order Bacillales, class Bacilli and phylum Firmicutes. The increasing relevance of S. cohnii to human health prompted us to determine the genomic sequence of Staphylococcus cohnii subsp. cohnii strain hu-01, a multidrug-resistant isolate from a hospital in China. Here we describe the features of S. cohnii subsp. cohnii strain hu-01, together with the genome sequence and its annotation. This is the first genome sequence of the species Staphylococcus cohnii.

  9. Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples.

    Science.gov (United States)

    Peck, Michelle A; Sturk-Andreaggi, Kimberly; Thomas, Jacqueline T; Oliver, Robert S; Barritt-Ross, Suzanne; Marshall, Charla

    2018-05-01

    Generating mitochondrial genome (mitogenome) data from reference samples in a rapid and efficient manner is critical to harnessing the greater power of discrimination of the entire mitochondrial DNA (mtDNA) marker. The method of long-range target enrichment, Nextera XT library preparation, and Illumina sequencing on the MiSeq is a well-established technique for generating mitogenome data from high-quality samples. To this end, a validation was conducted for this mitogenome method processing up to 24 samples simultaneously along with analysis in the CLC Genomics Workbench and utilizing the AQME (AFDIL-QIAGEN mtDNA Expert) tool to generate forensic profiles. This validation followed the Federal Bureau of Investigation's Quality Assurance Standards (QAS) for forensic DNA testing laboratories and the Scientific Working Group on DNA Analysis Methods (SWGDAM) validation guidelines. The evaluation of control DNA, non-probative samples, blank controls, mixtures, and nonhuman samples demonstrated the validity of this method. Specifically, the sensitivity was established at ≥25 pg of nuclear DNA input for accurate mitogenome profile generation. Unreproducible low-level variants were observed in samples with low amplicon yields. Further, variant quality was shown to be a useful metric for identifying sequencing error and crosstalk. Success of this method was demonstrated with a variety of reference sample substrates and extract types. These studies further demonstrate the advantages of using NGS techniques by highlighting the quantitative nature of heteroplasmy detection. The results presented herein from more than 175 samples processed in ten sequencing runs, show this mitogenome sequencing method and analysis strategy to be valid for the generation of reference data. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. High quality draft genome sequence of Staphylococcus cohnii subsp. cohnii strain hu-01

    OpenAIRE

    Hu, XinJun; Li, Ang; Lv, LongXian; Yuan, Chunhui; Guo, Lihua; Jiang, Xiawei; Jiang, Haiyin; Qian, GuiRong; Zheng, BeiWen; Guo, Jing; Li, LanJuan

    2014-01-01

    Staphylococcus cohnii subsp. cohnii belongs to the family Staphylococcaceae in the order Bacillales , class Bacilli and phylum Firmicutes . The increasing relevance of S. cohnii to human health prompted us to determine the genomic sequence of Staphylococcus cohnii subsp. cohnii strain hu-01, a multidrug-resistant isolate from a hospital in China. Here we describe the features of S. cohnii subsp. cohnii strain hu-01, together with the genome sequence and its annotation. This is the first genom...

  11. High quality maize centromere 10 sequence reveals evidence of frequent recombination events

    Directory of Open Access Journals (Sweden)

    Thomas Kai Wolfgruber

    2016-03-01

    Full Text Available The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR have presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 x 10-6 and 5 x 10-5 for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb of the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length centromeric retrotransposons from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. This repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to facilitate the repair of frequent DSBs in centromeres.

  12. High-Quality Exome Sequencing of Whole-Genome Amplified Neonatal Dried Blood Spot DNA

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Lescai, Francesco; Grove, Jakob

    2016-01-01

    Stored neonatal dried blood spot (DBS) samples from neonatal screening programmes are a valuable diagnostic and research resource. Combined with information from national health registries they can be used in population-based studies of genetic diseases. DNA extracted from neonatal DBSs can...... be amplified to obtain micrograms of an otherwise limited resource, referred to as whole-genome amplified DNA (wgaDNA). Here we investigate the robustness of exome sequencing of wgaDNA of neonatal DBS samples. We conducted three pilot studies of seven, eight and seven subjects, respectively. For each subject...... we analysed a neonatal DBS sample and corresponding adult whole-blood (WB) reference sample. Different DNA sample types were prepared for each of the subjects. Pilot 1: wgaDNA of 2x3.2mm neonatal DBSs (DBS_2x3.2) and raw DNA extract of the WB reference sample (WB_ref). Pilot 2: DBS_2x3.2, WB...

  13. High-quality genome sequence and description of Bacillus ndiopicus strain FF3T sp. nov.

    Directory of Open Access Journals (Sweden)

    C.I. Lo

    2015-11-01

    Full Text Available Strain FF3T was isolated from the skin-flora of a 39-year-old healthy Senegalese man. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry did not allow any identification. This strain exhibited a 16S rRNA sequence similarity of 96.8% with Bacillus massiliensis, the phylogenetically closest species with standing nomenclature. Using a polyphasic study made of phenotypic and genomic analyses, strain FF3T was Gram-positive, aeroanaerobic and rod shaped and exhibited a genome of 4 068 720 bp with a G+C content of 37.03% that coded 3982 protein-coding and 67 RNA genes (including four rRNA operons. On the basis of these data, we propose the creation of Bacillus ndiopicus sp. nov.

  14. High quality methylome-wide investigations through next-generation sequencing of DNA from a single archived dry blood spot.

    Science.gov (United States)

    Aberg, Karolina A; Xie, Lin Y; Nerella, Srilaxmi; Copeland, William E; Costello, E Jane; van den Oord, Edwin J C G

    2013-05-01

    The potential importance of DNA methylation in the etiology of complex diseases has led to interest in the development of methylome-wide association studies (MWAS) aimed at interrogating all methylation sites in the human genome. When using blood as biomaterial for a MWAS the DNA is typically extracted directly from fresh or frozen whole blood that was collected via venous puncture. However, DNA extracted from dry blood spots may also be an alternative starting material. In the present study, we apply a methyl-CpG binding domain (MBD) protein enrichment-based technique in combination with next generation sequencing (MBD-seq) to assess the methylation status of the ~27 million CpGs in the human autosomal reference genome. We investigate eight methylomes using DNA from blood spots. This data are compared with 1,500 methylomes previously assayed with the same MBD-seq approach using DNA from whole blood. When investigating the sequence quality and the enrichment profile across biological features, we find that DNA extracted from blood spots gives comparable results with DNA extracted from whole blood. Only if the amount of starting material is ≤ 0.5µg DNA we observe a slight decrease in the assay performance. In conclusion, we show that high quality methylome-wide investigations using MBD-seq can be conducted in DNA extracted from archived dry blood spots without sacrificing quality and without bias in enrichment profile as long as the amount of starting material is sufficient. In general, the amount of DNA extracted from a single blood spot is sufficient for methylome-wide investigations with the MBD-seq approach.

  15. High quality draft genome sequence of Janthinobacterium psychrotolerans sp. nov., isolated from a frozen freshwater pond.

    Science.gov (United States)

    Gong, Xianzhe; Skrivergaard, Stig; Korsgaard, Benjamin Smed; Schreiber, Lars; Marshall, Ian P G; Finster, Kai; Schramm, Andreas

    2017-01-01

    Strain S3-2 T , isolated from sediment of a frozen freshwater pond, shares 99% 16S rRNA gene sequence identity with strains of the genus Janthinobacterium . Strain S3-2 T is a facultative anaerobe that lacks the ability to produce violacein but shows antibiotic resistance, psychrotolerance, incomplete denitrification, and fermentation. The draft genome of strain S3-2 T has a size of ~5.8 Mbp and contains 5,297 genes, including 115 RNA genes. Based on the phenotypic properties of the strain, the low in silico DNA-DNA hybridization (DDH) values with related genomes (<35%), and the low whole genome-based average nucleotide identity (ANI) (<86%) with other strains within the genus Janthinobacterium, we propose that strain S3-2 T is the type strain (= DSM 102223 = LMG 29653) of a new species within this genus. We propose the name Janthinobacterium psychrotolerans sp. nov. to emphasize the capability of the strain to grow at low temperatures.

  16. Real-Time Acquisition of High Quality Face Sequences from an Active Pan-Tilt-Zoom Camera

    DEFF Research Database (Denmark)

    Haque, Mohammad A.; Nasrollahi, Kamal; Moeslund, Thomas B.

    2013-01-01

    -based real-time high-quality face image acquisition system, which utilizes pan-tilt-zoom parameters of a camera to focus on a human face in a scene and employs a face quality assessment method to log the best quality faces from the captured frames. The system consists of four modules: face detection, camera...... control, face tracking, and face quality assessment before logging. Experimental results show that the proposed system can effectively log the high quality faces from the active camera in real-time (an average of 61.74ms was spent per frame) with an accuracy of 85.27% compared to human annotated data.......Traditional still camera-based facial image acquisition systems in surveillance applications produce low quality face images. This is mainly due to the distance between the camera and subjects of interest. Furthermore, people in such videos usually move around, change their head poses, and facial...

  17. Comparison of good- and bad-quality cork: application of high-throughput sequencing of phellogenic tissue.

    Science.gov (United States)

    Teixeira, Rita Teresa; Fortes, Ana Margarida; Pinheiro, Carla; Pereira, Helena

    2014-09-01

    Cork is one of the most valuable non-wood forest products and plays an important role in Mediterranean economies. The production of high-quality cork is dependent on both genome and environment, posing constraints on the industry because an ever-growing amount of bad-quality cork (BQC) development has been observed. In order to identify genes responsible for production of cork of superior quality we performed a comparative analysis using the 454 pyrosequencing approach on phellogenic tissue of good- and bad-quality samples. The transcriptional profiling showed a high number of genes differentially expressed (8.48%) from which 78.8% displayed annotation. Genes more highly represented in BQC are involved in DNA synthesis, RNA processing, proteolysis, and transcription factors related to the abiotic stress response. Putative stomatal/lenticular-associated genes which may be responsible for the disadvantageous higher number of lenticular channels in BQC are also more highly represented. BQC also showed an elevated content of free phenolics. On the other hand, good-quality cork (GQC) can be distinguished by highly expressed genes encoding heat-shock proteins. Together the results provide valuable new information about the molecular events leading to cork formation and provide putative biomarkers associated with cork quality that can be useful in breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Camera pose refinement by matching uncertain 3D building models with thermal infrared image sequences for high quality texture extraction

    Science.gov (United States)

    Iwaszczuk, Dorota; Stilla, Uwe

    2017-10-01

    Thermal infrared (TIR) images are often used to picture damaged and weak spots in the insulation of the building hull, which is widely used in thermal inspections of buildings. Such inspection in large-scale areas can be carried out by combining TIR imagery and 3D building models. This combination can be achieved via texture mapping. Automation of texture mapping avoids time consuming imaging and manually analyzing each face independently. It also provides a spatial reference for façade structures extracted in the thermal textures. In order to capture all faces, including the roofs, façades, and façades in the inner courtyard, an oblique looking camera mounted on a flying platform is used. Direct geo-referencing is usually not sufficient for precise texture extraction. In addition, 3D building models have also uncertain geometry. In this paper, therefore, methodology for co-registration of uncertain 3D building models with airborne oblique view images is presented. For this purpose, a line-based model-to-image matching is developed, in which the uncertainties of the 3D building model, as well as of the image features are considered. Matched linear features are used for the refinement of the exterior orientation parameters of the camera in order to ensure optimal co-registration. Moreover, this study investigates whether line tracking through the image sequence supports the matching. The accuracy of the extraction and the quality of the textures are assessed. For this purpose, appropriate quality measures are developed. The tests showed good results on co-registration, particularly in cases where tracking between the neighboring frames had been applied.

  19. High quality draft genome sequence of the moderately halophilic bacterium Pontibacillus yanchengensis Y32(T) and comparison among Pontibacillus genomes.

    Science.gov (United States)

    Huang, Jing; Qiao, Zi Xu; Tang, Jing Wei; Wang, Gejiao

    2015-01-01

    Pontibacillus yanchengensis Y32(T) is an aerobic, motile, Gram-positive, endospore-forming, and moderately halophilic bacterium isolated from a salt field. In this study, we describe the features of P. yanchengensis strain Y32(T) together with a comparison with other four Pontibacillus genomes. The 4,281,464 bp high-quality-draft genome of strain Y32(T) is arranged into 153 contigs containing 3,965 protein-coding genes and 77 RNA encoding genes. The genome of strain Y32(T) possesses many genes related to its halophilic character, flagellar assembly and chemotaxis to support its survival in a salt-rich environment.

  20. High-quality draft genome sequence of Ensifer meliloti Mlalz-1, a microsymbiont of Medicago laciniata (L.) miller collected in Lanzarote, Canary Islands, Spain.

    Science.gov (United States)

    Osman, Wan Adnawani Meor; van Berkum, Peter; León-Barrios, Milagros; Velázquez, Encarna; Elia, Patrick; Tian, Rui; Ardley, Julie; Gollagher, Margaret; Seshadri, Rekha; Reddy, T B K; Ivanova, Natalia; Woyke, Tanja; Pati, Amrita; Markowitz, Victor; Baeshen, Mohamed N; Baeshen, Naseebh Nabeeh; Kyrpides, Nikos; Reeve, Wayne

    2017-01-01

    10.1601/nm.1335 Mlalz-1 (INSDC = ATZD00000000) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing nodule of Medicago laciniata (L.) Miller from a soil sample collected near the town of Guatiza on the island of Lanzarote, the Canary Islands, Spain. This strain nodulates and forms an effective symbiosis with the highly specific host M. laciniata . This rhizobial genome was sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) sequencing project. Here the features of 10.1601/nm.1335 Mlalz-1 are described, together with high-quality permanent draft genome sequence information and annotation. The 6,664,116 bp high-quality draft genome is arranged in 99 scaffolds of 100 contigs, containing 6314 protein-coding genes and 74 RNA-only encoding genes. Strain Mlalz-1 is closely related to 10.1601/nm.1335 10.1601/strainfinder?urlappend=%3Fid%3DIAM+12611 T , 10.1601/nm.1334 A 321 T and 10.1601/nm.17831 10.1601/strainfinder?urlappend=%3Fid%3DORS+1407 T , based on 16S rRNA gene sequences. gANI values of ≥98.1% support the classification of strain Mlalz-1 as 10.1601/nm.1335. Nodulation of M. laciniata requires a specific nodC allele, and the nodC gene of strain Mlalz-1 shares ≥98% sequence identity with nodC of M. laciniata -nodulating 10.1601/nm.1328 strains, but ≤93% with nodC of 10.1601/nm.1328 strains that nodulate other Medicago species. Strain Mlalz-1 is unique among sequenced 10.1601/nm.1335 strains in possessing genes encoding components of a T2SS and in having two versions of the adaptive acid tolerance response lpiA-acvB operon. In 10.1601/nm.1334 strain 10.1601/strainfinder?urlappend=%3Fid%3DWSM+419, lpiA is essential for enhancing survival in lethal acid conditions. The second copy of the lpiA-acvB operon of strain Mlalz-1 has highest sequence identity (> 96%) with that of 10.1601/nm.1334 strains, which suggests genetic

  1. Comprehensive processing of high-throughput small RNA sequencing data including quality checking, normalization, and differential expression analysis using the UEA sRNA Workbench.

    Science.gov (United States)

    Beckers, Matthew; Mohorianu, Irina; Stocks, Matthew; Applegate, Christopher; Dalmay, Tamas; Moulton, Vincent

    2017-06-01

    Recently, high-throughput sequencing (HTS) has revealed compelling details about the small RNA (sRNA) population in eukaryotes. These 20 to 25 nt noncoding RNAs can influence gene expression by acting as guides for the sequence-specific regulatory mechanism known as RNA silencing. The increase in sequencing depth and number of samples per project enables a better understanding of the role sRNAs play by facilitating the study of expression patterns. However, the intricacy of the biological hypotheses coupled with a lack of appropriate tools often leads to inadequate mining of the available data and thus, an incomplete description of the biological mechanisms involved. To enable a comprehensive study of differential expression in sRNA data sets, we present a new interactive pipeline that guides researchers through the various stages of data preprocessing and analysis. This includes various tools, some of which we specifically developed for sRNA analysis, for quality checking and normalization of sRNA samples as well as tools for the detection of differentially expressed sRNAs and identification of the resulting expression patterns. The pipeline is available within the UEA sRNA Workbench, a user-friendly software package for the processing of sRNA data sets. We demonstrate the use of the pipeline on a H. sapiens data set; additional examples on a B. terrestris data set and on an A. thaliana data set are described in the Supplemental Information A comparison with existing approaches is also included, which exemplifies some of the issues that need to be addressed for sRNA analysis and how the new pipeline may be used to do this. © 2017 Beckers et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  2. Thousands of primer-free, high-quality, full-length SSU rRNA sequences from all domains of life

    DEFF Research Database (Denmark)

    Karst, Soeren M; Dueholm, Morten S; McIlroy, Simon J

    2016-01-01

    Ribosomal RNA (rRNA) genes are the consensus marker for determination of microbial diversity on the planet, invaluable in studies of evolution and, for the past decade, high-throughput sequencing of variable regions of ribosomal RNA genes has become the backbone of most microbial ecology studies...... (SSU) rRNA genes and synthetic long read sequencing by molecular tagging, to generate primer-free, full-length SSU rRNA gene sequences from all domains of life, with a median raw error rate of 0.17%. We generated thousands of full-length SSU rRNA sequences from five well-studied ecosystems (soil, human...... gut, fresh water, anaerobic digestion, and activated sludge) and obtained sequences covering all domains of life and the majority of all described phyla. Interestingly, 30% of all bacterial operational taxonomic units were novel, compared to the SILVA database (less than 97% similarity...

  3. Analysis of quality raw data of second generation sequencers with Quality Assessment Software.

    Science.gov (United States)

    Ramos, Rommel Tj; Carneiro, Adriana R; Baumbach, Jan; Azevedo, Vasco; Schneider, Maria Pc; Silva, Artur

    2011-04-18

    Second generation technologies have advantages over Sanger; however, they have resulted in new challenges for the genome construction process, especially because of the small size of the reads, despite the high degree of coverage. Independent of the program chosen for the construction process, DNA sequences are superimposed, based on identity, to extend the reads, generating contigs; mismatches indicate a lack of homology and are not included. This process improves our confidence in the sequences that are generated. We developed Quality Assessment Software, with which one can review graphs showing the distribution of quality values from the sequencing reads. This software allow us to adopt more stringent quality standards for sequence data, based on quality-graph analysis and estimated coverage after applying the quality filter, providing acceptable sequence coverage for genome construction from short reads. Quality filtering is a fundamental step in the process of constructing genomes, as it reduces the frequency of incorrect alignments that are caused by measuring errors, which can occur during the construction process due to the size of the reads, provoking misassemblies. Application of quality filters to sequence data, using the software Quality Assessment, along with graphing analyses, provided greater precision in the definition of cutoff parameters, which increased the accuracy of genome construction.

  4. Complete Genome Sequence of Bacillus subtilis Strain DKU_NT_03, Isolated from a Traditional Korean Food Using Soybean (Chung-gook-jang) for High-Quality Nattokinase Activity.

    Science.gov (United States)

    Jeong, Hee-Won; Bang, Man-Seok; Lee, Yea-Jin; Lee, Su Ji; Lee, Sang-Cheol; Shin, Jang-In; Oh, Chung-Hun

    2018-06-21

    We present here the complete genome sequence of Bacillus subtilis strain DKU_NT_03 isolated from the traditional Korean food chung-gook-jang, which is made from soybeans. This strain was chosen to identify genetic factors with high-quality nattokinase activity. Copyright © 2018 Jeong et al.

  5. The complete genome sequence of Escherichia coli EC958: a high quality reference sequence for the globally disseminated multidrug resistant E. coli O25b:H4-ST131 clone.

    Directory of Open Access Journals (Sweden)

    Brian M Forde

    Full Text Available Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage.

  6. FRESCO: Referential compression of highly similar sequences.

    Science.gov (United States)

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  7. Management of High-Throughput DNA Sequencing Projects: Alpheus.

    Science.gov (United States)

    Miller, Neil A; Kingsmore, Stephen F; Farmer, Andrew; Langley, Raymond J; Mudge, Joann; Crow, John A; Gonzalez, Alvaro J; Schilkey, Faye D; Kim, Ryan J; van Velkinburgh, Jennifer; May, Gregory D; Black, C Forrest; Myers, M Kathy; Utsey, John P; Frost, Nicholas S; Sugarbaker, David J; Bueno, Raphael; Gullans, Stephen R; Baxter, Susan M; Day, Steve W; Retzel, Ernest F

    2008-12-26

    High-throughput DNA sequencing has enabled systems biology to begin to address areas in health, agricultural and basic biological research. Concomitant with the opportunities is an absolute necessity to manage significant volumes of high-dimensional and inter-related data and analysis. Alpheus is an analysis pipeline, database and visualization software for use with massively parallel DNA sequencing technologies that feature multi-gigabase throughput characterized by relatively short reads, such as Illumina-Solexa (sequencing-by-synthesis), Roche-454 (pyrosequencing) and Applied Biosystem's SOLiD (sequencing-by-ligation). Alpheus enables alignment to reference sequence(s), detection of variants and enumeration of sequence abundance, including expression levels in transcriptome sequence. Alpheus is able to detect several types of variants, including non-synonymous and synonymous single nucleotide polymorphisms (SNPs), insertions/deletions (indels), premature stop codons, and splice isoforms. Variant detection is aided by the ability to filter variant calls based on consistency, expected allele frequency, sequence quality, coverage, and variant type in order to minimize false positives while maximizing the identification of true positives. Alpheus also enables comparisons of genes with variants between cases and controls or bulk segregant pools. Sequence-based differential expression comparisons can be developed, with data export to SAS JMP Genomics for statistical analysis.

  8. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  9. Tidying up international nucleotide sequence databases: ecological, geographical and sequence quality annotation of its sequences of mycorrhizal fungi.

    Science.gov (United States)

    Tedersoo, Leho; Abarenkov, Kessy; Nilsson, R Henrik; Schüssler, Arthur; Grelet, Gwen-Aëlle; Kohout, Petr; Oja, Jane; Bonito, Gregory M; Veldre, Vilmar; Jairus, Teele; Ryberg, Martin; Larsson, Karl-Henrik; Kõljalg, Urmas

    2011-01-01

    Sequence analysis of the ribosomal RNA operon, particularly the internal transcribed spacer (ITS) region, provides a powerful tool for identification of mycorrhizal fungi. The sequence data deposited in the International Nucleotide Sequence Databases (INSD) are, however, unfiltered for quality and are often poorly annotated with metadata. To detect chimeric and low-quality sequences and assign the ectomycorrhizal fungi to phylogenetic lineages, fungal ITS sequences were downloaded from INSD, aligned within family-level groups, and examined through phylogenetic analyses and BLAST searches. By combining the fungal sequence database UNITE and the annotation and search tool PlutoF, we also added metadata from the literature to these accessions. Altogether 35,632 sequences belonged to mycorrhizal fungi or originated from ericoid and orchid mycorrhizal roots. Of these sequences, 677 were considered chimeric and 2,174 of low read quality. Information detailing country of collection, geographical coordinates, interacting taxon and isolation source were supplemented to cover 78.0%, 33.0%, 41.7% and 96.4% of the sequences, respectively. These annotated sequences are publicly available via UNITE (http://unite.ut.ee/) for downstream biogeographic, ecological and taxonomic analyses. In European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/), the annotated sequences have a special link-out to UNITE. We intend to expand the data annotation to additional genes and all taxonomic groups and functional guilds of fungi.

  10. Sequence quality analysis tool for HIV type 1 protease and reverse transcriptase.

    Science.gov (United States)

    Delong, Allison K; Wu, Mingham; Bennett, Diane; Parkin, Neil; Wu, Zhijin; Hogan, Joseph W; Kantor, Rami

    2012-08-01

    Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802 PR and 44,432 RT sequences) from the published literature ( http://hivdb.Stanford.edu ). Nucleic acid sequences are read into SQUAT, identified, aligned, and translated. Nucleic acid sequences are flagged if with >five 1-2-base insertions; >one 3-base insertion; >one deletion; >six PR or >18 RT ambiguous bases; >three consecutive PR or >four RT nucleic acid mutations; >zero stop codons; >three PR or >six RT ambiguous amino acids; >three consecutive PR or >four RT amino acid mutations; >zero unique amino acids; or 15% genetic distance from another submitted sequence. Thresholds are user modifiable. SQUAT output includes a summary report with detailed comments for troubleshooting of flagged sequences, histograms of pairwise genetic distances, neighbor joining phylogenetic trees, and aligned nucleic and amino acid sequences. SQUAT is a stand-alone, free, web-independent tool to ensure use of high-quality HIV PR/RT sequences in interpretation and reporting of drug resistance, while increasing awareness and expertise and facilitating troubleshooting of potentially problematic sequences.

  11. High-Quality Draft Single-Cell Genome Sequence Belonging to the Archaeal Candidate Division SA1, Isolated from Nereus Deep in the Red Sea

    KAUST Repository

    Ngugi, David

    2018-05-09

    Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.

  12. High-Quality Draft Single-Cell Genome Sequence Belonging to the Archaeal Candidate Division SA1, Isolated from Nereus Deep in the Red Sea

    KAUST Repository

    Ngugi, David; Stingl, Ulrich

    2018-01-01

    Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.

  13. PCR-Free Enrichment of Mitochondrial DNA from Human Blood and Cell Lines for High Quality Next-Generation DNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Meetha P Gould

    Full Text Available Recent advances in sequencing technology allow for accurate detection of mitochondrial sequence variants, even those in low abundance at heteroplasmic sites. Considerable sequencing cost savings can be achieved by enriching samples for mitochondrial (relative to nuclear DNA. Reduction in nuclear DNA (nDNA content can also help to avoid false positive variants resulting from nuclear mitochondrial sequences (numts. We isolate intact mitochondrial organelles from both human cell lines and blood components using two separate methods: a magnetic bead binding protocol and differential centrifugation. DNA is extracted and further enriched for mitochondrial DNA (mtDNA by an enzyme digest. Only 1 ng of the purified DNA is necessary for library preparation and next generation sequence (NGS analysis. Enrichment methods are assessed and compared using mtDNA (versus nDNA content as a metric, measured by using real-time quantitative PCR and NGS read analysis. Among the various strategies examined, the optimal is differential centrifugation isolation followed by exonuclease digest. This strategy yields >35% mtDNA reads in blood and cell lines, which corresponds to hundreds-fold enrichment over baseline. The strategy also avoids false variant calls that, as we show, can be induced by the long-range PCR approaches that are the current standard in enrichment procedures. This optimization procedure allows mtDNA enrichment for efficient and accurate massively parallel sequencing, enabling NGS from samples with small amounts of starting material. This will decrease costs by increasing the number of samples that may be multiplexed, ultimately facilitating efforts to better understand mitochondria-related diseases.

  14. Standardization and quality management in next-generation sequencing.

    Science.gov (United States)

    Endrullat, Christoph; Glökler, Jörn; Franke, Philipp; Frohme, Marcus

    2016-09-01

    DNA sequencing continues to evolve quickly even after > 30 years. Many new platforms suddenly appeared and former established systems have vanished in almost the same manner. Since establishment of next-generation sequencing devices, this progress gains momentum due to the continually growing demand for higher throughput, lower costs and better quality of data. In consequence of this rapid development, standardized procedures and data formats as well as comprehensive quality management considerations are still scarce. Here, we listed and summarized current standardization efforts and quality management initiatives from companies, organizations and societies in form of published studies and ongoing projects. These comprise on the one hand quality documentation issues like technical notes, accreditation checklists and guidelines for validation of sequencing workflows. On the other hand, general standard proposals and quality metrics are developed and applied to the sequencing workflow steps with the main focus on upstream processes. Finally, certain standard developments for downstream pipeline data handling, processing and storage are discussed in brief. These standardization approaches represent a first basis for continuing work in order to prospectively implement next-generation sequencing in important areas such as clinical diagnostics, where reliable results and fast processing is crucial. Additionally, these efforts will exert a decisive influence on traceability and reproducibility of sequence data.

  15. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias

    DEFF Research Database (Denmark)

    Karst, Søren Michael; Dueholm, Morten Simonsen; McIlroy, Simon Jon

    2018-01-01

    Small subunit ribosomal RNA (SSU rRNA) genes, 16S in bacteria and 18S in eukaryotes, have been the standard phylogenetic markers used to characterize microbial diversity and evolution for decades. However, the reference databases of full-length SSU rRNA gene sequences are skewed to well-studied e...

  16. cDNA sequence quality data - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Budding yeast cDNA sequencing project cDNA sequence quality data Data detail Data name cDNA sequence quality... data DOI 10.18908/lsdba.nbdc00838-003 Description of data contents Phred's quality score. P...tion Download License Update History of This Database Site Policy | Contact Us cDNA sequence quality

  17. Evaluating Quality of Aged Archival Formalin-Fixed Paraffin-Embedded Samples for RNA-Sequencing

    Science.gov (United States)

    Archival formalin-fixed paraffin-embedded (FFPE) samples offer a vast, untapped source of genomic data for biomarker discovery. However, the quality of FFPE samples is often highly variable, and conventional methods to assess RNA quality for RNA-sequencing (RNA-seq) are not infor...

  18. Sequence Coding and Search System Backfit Quality Assurance Program Plan

    International Nuclear Information System (INIS)

    Lovell, C.J.; Stepina, P.L.

    1985-03-01

    The Sequence Coding and Search System is a computer-based encoding system for events described in Licensee Event Reports. This data system contains LERs from 1981 to present. Backfit of the data system to include LERs prior to 1981 is required. This report documents the Quality Assurance Program Plan that EG and G Idaho, Inc. will follow while encoding 1980 LERs

  19. Transcriptome sequencing of the Microarray Quality Control (MAQC RNA reference samples using next generation sequencing

    Directory of Open Access Journals (Sweden)

    Thierry-Mieg Danielle

    2009-06-01

    Full Text Available Abstract Background Transcriptome sequencing using next-generation sequencing platforms will soon be competing with DNA microarray technologies for global gene expression analysis. As a preliminary evaluation of these promising technologies, we performed deep sequencing of cDNA synthesized from the Microarray Quality Control (MAQC reference RNA samples using Roche's 454 Genome Sequencer FLX. Results We generated more that 3.6 million sequence reads of average length 250 bp for the MAQC A and B samples and introduced a data analysis pipeline for translating cDNA read counts into gene expression levels. Using BLAST, 90% of the reads mapped to the human genome and 64% of the reads mapped to the RefSeq database of well annotated genes with e-values ≤ 10-20. We measured gene expression levels in the A and B samples by counting the numbers of reads that mapped to individual RefSeq genes in multiple sequencing runs to evaluate the MAQC quality metrics for reproducibility, sensitivity, specificity, and accuracy and compared the results with DNA microarrays and Quantitative RT-PCR (QRTPCR from the MAQC studies. In addition, 88% of the reads were successfully aligned directly to the human genome using the AceView alignment programs with an average 90% sequence similarity to identify 137,899 unique exon junctions, including 22,193 new exon junctions not yet contained in the RefSeq database. Conclusion Using the MAQC metrics for evaluating the performance of gene expression platforms, the ExpressSeq results for gene expression levels showed excellent reproducibility, sensitivity, and specificity that improved systematically with increasing shotgun sequencing depth, and quantitative accuracy that was comparable to DNA microarrays and QRTPCR. In addition, a careful mapping of the reads to the genome using the AceView alignment programs shed new light on the complexity of the human transcriptome including the discovery of thousands of new splice variants.

  20. Experimental design-based functional mining and characterization of high-throughput sequencing data in the sequence read archive.

    Directory of Open Access Journals (Sweden)

    Takeru Nakazato

    Full Text Available High-throughput sequencing technology, also called next-generation sequencing (NGS, has the potential to revolutionize the whole process of genome sequencing, transcriptomics, and epigenetics. Sequencing data is captured in a public primary data archive, the Sequence Read Archive (SRA. As of January 2013, data from more than 14,000 projects have been submitted to SRA, which is double that of the previous year. Researchers can download raw sequence data from SRA website to perform further analyses and to compare with their own data. However, it is extremely difficult to search entries and download raw sequences of interests with SRA because the data structure is complicated, and experimental conditions along with raw sequences are partly described in natural language. Additionally, some sequences are of inconsistent quality because anyone can submit sequencing data to SRA with no quality check. Therefore, as a criterion of data quality, we focused on SRA entries that were cited in journal articles. We extracted SRA IDs and PubMed IDs (PMIDs from SRA and full-text versions of journal articles and retrieved 2748 SRA ID-PMID pairs. We constructed a publication list referring to SRA entries. Since, one of the main themes of -omics analyses is clarification of disease mechanisms, we also characterized SRA entries by disease keywords, according to the Medical Subject Headings (MeSH extracted from articles assigned to each SRA entry. We obtained 989 SRA ID-MeSH disease term pairs, and constructed a disease list referring to SRA data. We previously developed feature profiles of diseases in a system called "Gendoo". We generated hyperlinks between diseases extracted from SRA and the feature profiles of it. The developed project, publication and disease lists resulting from this study are available at our web service, called "DBCLS SRA" (http://sra.dbcls.jp/. This service will improve accessibility to high-quality data from SRA.

  1. SUGAR: graphical user interface-based data refiner for high-throughput DNA sequencing.

    Science.gov (United States)

    Sato, Yukuto; Kojima, Kaname; Nariai, Naoki; Yamaguchi-Kabata, Yumi; Kawai, Yosuke; Takahashi, Mamoru; Mimori, Takahiro; Nagasaki, Masao

    2014-08-08

    Next-generation sequencers (NGSs) have become one of the main tools for current biology. To obtain useful insights from the NGS data, it is essential to control low-quality portions of the data affected by technical errors such as air bubbles in sequencing fluidics. We develop a software SUGAR (subtile-based GUI-assisted refiner) which can handle ultra-high-throughput data with user-friendly graphical user interface (GUI) and interactive analysis capability. The SUGAR generates high-resolution quality heatmaps of the flowcell, enabling users to find possible signals of technical errors during the sequencing. The sequencing data generated from the error-affected regions of a flowcell can be selectively removed by automated analysis or GUI-assisted operations implemented in the SUGAR. The automated data-cleaning function based on sequence read quality (Phred) scores was applied to a public whole human genome sequencing data and we proved the overall mapping quality was improved. The detailed data evaluation and cleaning enabled by SUGAR would reduce technical problems in sequence read mapping, improving subsequent variant analysis that require high-quality sequence data and mapping results. Therefore, the software will be especially useful to control the quality of variant calls to the low population cells, e.g., cancers, in a sample with technical errors of sequencing procedures.

  2. Evaluation of a pooled strategy for high-throughput sequencing of cosmid clones from metagenomic libraries.

    Science.gov (United States)

    Lam, Kathy N; Hall, Michael W; Engel, Katja; Vey, Gregory; Cheng, Jiujun; Neufeld, Josh D; Charles, Trevor C

    2014-01-01

    High-throughput sequencing methods have been instrumental in the growing field of metagenomics, with technological improvements enabling greater throughput at decreased costs. Nonetheless, the economy of high-throughput sequencing cannot be fully leveraged in the subdiscipline of functional metagenomics. In this area of research, environmental DNA is typically cloned to generate large-insert libraries from which individual clones are isolated, based on specific activities of interest. Sequence data are required for complete characterization of such clones, but the sequencing of a large set of clones requires individual barcode-based sample preparation; this can become costly, as the cost of clone barcoding scales linearly with the number of clones processed, and thus sequencing a large number of metagenomic clones often remains cost-prohibitive. We investigated a hybrid Sanger/Illumina pooled sequencing strategy that omits barcoding altogether, and we evaluated this strategy by comparing the pooled sequencing results to reference sequence data obtained from traditional barcode-based sequencing of the same set of clones. Using identity and coverage metrics in our evaluation, we show that pooled sequencing can generate high-quality sequence data, without producing problematic chimeras. Though caveats of a pooled strategy exist and further optimization of the method is required to improve recovery of complete clone sequences and to avoid circumstances that generate unrecoverable clone sequences, our results demonstrate that pooled sequencing represents an effective and low-cost alternative for sequencing large sets of metagenomic clones.

  3. Application of Quaternion in improving the quality of global sequence alignment scores for an ambiguous sequence target in Streptococcus pneumoniae DNA

    Science.gov (United States)

    Lestari, D.; Bustamam, A.; Novianti, T.; Ardaneswari, G.

    2017-07-01

    DNA sequence can be defined as a succession of letters, representing the order of nucleotides within DNA, using a permutation of four DNA base codes including adenine (A), guanine (G), cytosine (C), and thymine (T). The precise code of the sequences is determined using DNA sequencing methods and technologies, which have been developed since the 1970s and currently become highly developed, advanced and highly throughput sequencing technologies. So far, DNA sequencing has greatly accelerated biological and medical research and discovery. However, in some cases DNA sequencing could produce any ambiguous and not clear enough sequencing results that make them quite difficult to be determined whether these codes are A, T, G, or C. To solve these problems, in this study we can introduce other representation of DNA codes namely Quaternion Q = (PA, PT, PG, PC), where PA, PT, PG, PC are the probability of A, T, G, C bases that could appear in Q and PA + PT + PG + PC = 1. Furthermore, using Quaternion representations we are able to construct the improved scoring matrix for global sequence alignment processes, by applying a dot product method. Moreover, this scoring matrix produces better and higher quality of the match and mismatch score between two DNA base codes. In implementation, we applied the Needleman-Wunsch global sequence alignment algorithm using Octave, to analyze our target sequence which contains some ambiguous sequence data. The subject sequences are the DNA sequences of Streptococcus pneumoniae families obtained from the Genebank, meanwhile the target DNA sequence are received from our collaborator database. As the results we found the Quaternion representations improve the quality of the sequence alignment score and we can conclude that DNA sequence target has maximum similarity with Streptococcus pneumoniae.

  4. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Ravi K Patel

    Full Text Available Next generation sequencing (NGS technologies provide a high-throughput means to generate large amount of sequence data. However, quality control (QC of sequence data generated from these technologies is extremely important for meaningful downstream analysis. Further, highly efficient and fast processing tools are required to handle the large volume of datasets. Here, we have developed an application, NGS QC Toolkit, for quality check and filtering of high-quality data. This toolkit is a standalone and open source application freely available at http://www.nipgr.res.in/ngsqctoolkit.html. All the tools in the application have been implemented in Perl programming language. The toolkit is comprised of user-friendly tools for QC of sequencing data generated using Roche 454 and Illumina platforms, and additional tools to aid QC (sequence format converter and trimming tools and analysis (statistics tools. A variety of options have been provided to facilitate the QC at user-defined parameters. The toolkit is expected to be very useful for the QC of NGS data to facilitate better downstream analysis.

  5. Quality Control Test for Sequence-Phenotype Assignments

    Science.gov (United States)

    Ortiz, Maria Teresa Lara; Rosario, Pablo Benjamín Leon; Luna-Nevarez, Pablo; Gamez, Alba Savin; Martínez-del Campo, Ana; Del Rio, Gabriel

    2015-01-01

    Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10–20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas. PMID:25700273

  6. Sequence Quality Analysis Tool for HIV Type 1 Protease and Reverse Transcriptase

    OpenAIRE

    DeLong, Allison K.; Wu, Mingham; Bennett, Diane; Parkin, Neil; Wu, Zhijin; Hogan, Joseph W.; Kantor, Rami

    2012-01-01

    Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802...

  7. Extracting a Good Quality Frontal Face Image from a Low-Resolution Video Sequence

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2011-01-01

    Feeding low-resolution and low-quality images, from inexpensive surveillance cameras, to systems like, e.g., face recognition, produces erroneous and unstable results. Therefore, there is a need for a mechanism to bridge the gap between on one hand low-resolution and low-quality images......, we use a learning-based super-resolution algorithm applied to the result of the reconstruction-based part to improve the quality by another factor of two. This results in an improvement factor of four for the entire system. The proposed system has been tested on 122 low-resolution sequences from two...... different databases. The experimental results show that the proposed system can indeed produce a high-resolution and good quality frontal face image from low-resolution video sequences....

  8. Applications of High Throughput Nucleotide Sequencing

    DEFF Research Database (Denmark)

    Waage, Johannes Eichler

    equally large demands in data handling, analysis and interpretation, perhaps defining the modern challenge of the computational biologist of the post-genomic era. The first part of this thesis consists of a general introduction to the history, common terms and challenges of next generation sequencing......-sequencing, a study of the effects on alternative RNA splicing of KO of the nonsense mediated RNA decay system in Mus, using digital gene expression and a custom-built exon-exon junction mapping pipeline is presented (article I). Evolved from this work, a Bioconductor package, spliceR, for classifying alternative...

  9. PuLSE: Quality control and quantification of peptide sequences explored by phage display libraries.

    Science.gov (United States)

    Shave, Steven; Mann, Stefan; Koszela, Joanna; Kerr, Alastair; Auer, Manfred

    2018-01-01

    The design of highly diverse phage display libraries is based on assumption that DNA bases are incorporated at similar rates within the randomized sequence. As library complexity increases and expected copy numbers of unique sequences decrease, the exploration of library space becomes sparser and the presence of truly random sequences becomes critical. We present the program PuLSE (Phage Library Sequence Evaluation) as a tool for assessing randomness and therefore diversity of phage display libraries. PuLSE runs on a collection of sequence reads in the fastq file format and generates tables profiling the library in terms of unique DNA sequence counts and positions, translated peptide sequences, and normalized 'expected' occurrences from base to residue codon frequencies. The output allows at-a-glance quantitative quality control of a phage library in terms of sequence coverage both at the DNA base and translated protein residue level, which has been missing from toolsets and literature. The open source program PuLSE is available in two formats, a C++ source code package for compilation and integration into existing bioinformatics pipelines and precompiled binaries for ease of use.

  10. Quality Control of the Traditional Patent Medicine Yimu Wan Based on SMRT Sequencing and DNA Barcoding

    Science.gov (United States)

    Jia, Jing; Xu, Zhichao; Xin, Tianyi; Shi, Linchun; Song, Jingyuan

    2017-01-01

    Substandard traditional patent medicines may lead to global safety-related issues. Protecting consumers from the health risks associated with the integrity and authenticity of herbal preparations is of great concern. Of particular concern is quality control for traditional patent medicines. Here, we establish an effective approach for verifying the biological composition of traditional patent medicines based on single-molecule real-time (SMRT) sequencing and DNA barcoding. Yimu Wan (YMW), a classical herbal prescription recorded in the Chinese Pharmacopoeia, was chosen to test the method. Two reference YMW samples were used to establish a standard method for analysis, which was then applied to three different batches of commercial YMW samples. A total of 3703 and 4810 circular-consensus sequencing (CCS) reads from two reference and three commercial YMW samples were mapped to the ITS2 and psbA-trnH regions, respectively. Moreover, comparison of intraspecific genetic distances based on SMRT sequencing data with reference data from Sanger sequencing revealed an ITS2 and psbA-trnH intergenic spacer that exhibited high intraspecific divergence, with the sites of variation showing significant differences within species. Using the CCS strategy for SMRT sequencing analysis was adequate to guarantee the accuracy of identification. This study demonstrates the application of SMRT sequencing to detect the biological ingredients of herbal preparations. SMRT sequencing provides an affordable way to monitor the legality and safety of traditional patent medicines. PMID:28620408

  11. A Systematic Approach to Quality Oriented Product Sequencing for Multistage Manufacturing Systems

    OpenAIRE

    Zhang, Faping; Butt, Shahid Ikramullah

    2016-01-01

    Product sequencing is one way to reduce cost and improve product quality for multistage manufacturing systems (MMS). However, systematically evaluating the influence of product sequence on quality performance for MMS is still a challenge. By considering the rate of incoming conforming product, manufacturing system quality transition between batch to batch, and quality propagation along stages, this paper investigates the appropriate batch policies and product sequencing for MMS so that satisf...

  12. Exome Sequence Analysis of 14 Families With High Myopia

    DEFF Research Database (Denmark)

    Kloss, Bethany A.; Tompson, Stuart W.; Whisenhunt, Kristina N.

    2017-01-01

    Purpose: To identify causal gene mutations in 14 families with autosomal dominant (AD) high myopia using exome sequencing. Methods: Select individuals from 14 large Caucasian families with high myopia were exome sequenced. Gene variants were filtered to identify potential pathogenic changes. Sang...

  13. The Vigna Genome Server, 'VigGS': A Genomic Knowledge Base of the Genus Vigna Based on High-Quality, Annotated Genome Sequence of the Azuki Bean, Vigna angularis (Willd.) Ohwi & Ohashi.

    Science.gov (United States)

    Sakai, Hiroaki; Naito, Ken; Takahashi, Yu; Sato, Toshiyuki; Yamamoto, Toshiya; Muto, Isamu; Itoh, Takeshi; Tomooka, Norihiko

    2016-01-01

    The genus Vigna includes legume crops such as cowpea, mungbean and azuki bean, as well as >100 wild species. A number of the wild species are highly tolerant to severe environmental conditions including high-salinity, acid or alkaline soil; drought; flooding; and pests and diseases. These features of the genus Vigna make it a good target for investigation of genetic diversity in adaptation to stressful environments; however, a lack of genomic information has hindered such research in this genus. Here, we present a genome database of the genus Vigna, Vigna Genome Server ('VigGS', http://viggs.dna.affrc.go.jp), based on the recently sequenced azuki bean genome, which incorporates annotated exon-intron structures, along with evidence for transcripts and proteins, visualized in GBrowse. VigGS also facilitates user construction of multiple alignments between azuki bean genes and those of six related dicot species. In addition, the database displays sequence polymorphisms between azuki bean and its wild relatives and enables users to design primer sequences targeting any variant site. VigGS offers a simple keyword search in addition to sequence similarity searches using BLAST and BLAT. To incorporate up to date genomic information, VigGS automatically receives newly deposited mRNA sequences of pre-set species from the public database once a week. Users can refer to not only gene structures mapped on the azuki bean genome on GBrowse but also relevant literature of the genes. VigGS will contribute to genomic research into plant biotic and abiotic stresses and to the future development of new stress-tolerant crops. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. High-throughput sequence alignment using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Trapnell Cole

    2007-12-01

    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  15. Automated cleaning and pre-processing of immunoglobulin gene sequences from high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Miri eMichaeli

    2012-12-01

    Full Text Available High throughput sequencing (HTS yields tens of thousands to millions of sequences that require a large amount of pre-processing work to clean various artifacts. Such cleaning cannot be performed manually. Existing programs are not suitable for immunoglobulin (Ig genes, which are variable and often highly mutated. This paper describes Ig-HTS-Cleaner (Ig High Throughput Sequencing Cleaner, a program containing a simple cleaning procedure that successfully deals with pre-processing of Ig sequences derived from HTS, and Ig-Indel-Identifier (Ig Insertion – Deletion Identifier, a program for identifying legitimate and artifact insertions and/or deletions (indels. Our programs were designed for analyzing Ig gene sequences obtained by 454 sequencing, but they are applicable to all types of sequences and sequencing platforms. Ig-HTS-Cleaner and Ig-Indel-Identifier have been implemented in Java and saved as executable JAR files, supported on Linux and MS Windows. No special requirements are needed in order to run the programs, except for correctly constructing the input files as explained in the text. The programs' performance has been tested and validated on real and simulated data sets.

  16. BOOGIE: Predicting Blood Groups from High Throughput Sequencing Data.

    Science.gov (United States)

    Giollo, Manuel; Minervini, Giovanni; Scalzotto, Marta; Leonardi, Emanuela; Ferrari, Carlo; Tosatto, Silvio C E

    2015-01-01

    Over the last decade, we have witnessed an incredible growth in the amount of available genotype data due to high throughput sequencing (HTS) techniques. This information may be used to predict phenotypes of medical relevance, and pave the way towards personalized medicine. Blood phenotypes (e.g. ABO and Rh) are a purely genetic trait that has been extensively studied for decades, with currently over thirty known blood groups. Given the public availability of blood group data, it is of interest to predict these phenotypes from HTS data which may translate into more accurate blood typing in clinical practice. Here we propose BOOGIE, a fast predictor for the inference of blood groups from single nucleotide variant (SNV) databases. We focus on the prediction of thirty blood groups ranging from the well known ABO and Rh, to the less studied Junior or Diego. BOOGIE correctly predicted the blood group with 94% accuracy for the Personal Genome Project whole genome profiles where good quality SNV annotation was available. Additionally, our tool produces a high quality haplotype phase, which is of interest in the context of ethnicity-specific polymorphisms or traits. The versatility and simplicity of the analysis make it easily interpretable and allow easy extension of the protocol towards other phenotypes. BOOGIE can be downloaded from URL http://protein.bio.unipd.it/download/.

  17. Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Shunichi Kosugi

    Full Text Available Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in 'targeted' alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/.

  18. Fast High-Quality Noise

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Wyvill, Geoff

    2007-01-01

    At the moment the noise functions available in a graphics programmer's toolbox are either slow to compute or they involve grid-line artifacts making them of lower quality. In this paper we present a real-time noise computation with no grid-line artifacts or other regularity problems. In other words......, we put a new tool in the box that computes fast high-quality noise. In addition to being free of artifacts, the noise we present does not rely on tabulated data (everything is computed on the fly) and it is easy to adjust quality vs. quantity for the noise. The noise is based on point rendering (like...... spot noise), but it extends to more than two dimensions. The fact that it is based on point rendering makes art direction of the noise much easier....

  19. Construction sequence scale model: an aid to productivity and quality assurance

    International Nuclear Information System (INIS)

    Clothier, W.A. Sr.

    1978-01-01

    The natural tendencies of an engineering scale model to promote a high level of quality by error prevention during design and construction stages of a project are studied. A brief section on the basic history of engineering modeling is used to describe TVA's usage of the model. The basic design model is explored in an overview touching the highlights of that form of modeling. A detailed look at the construction sequence model, a relatively new form of model, is presented to demonstrate quality and productivity awareness

  20. Subjective quality of video sequences rendered on LCD with local backlight dimming at different lighting conditions

    Science.gov (United States)

    Mantel, Claire; Korhonen, Jari; Pedersen, Jesper M.; Bech, Søren; Andersen, Jakob Dahl; Forchhammer, Søren

    2015-01-01

    This paper focuses on the influence of ambient light on the perceived quality of videos displayed on Liquid Crystal Display (LCD) with local backlight dimming. A subjective test assessing the quality of videos with two backlight dimming methods and three lighting conditions, i.e. no light, low light level (5 lux) and higher light level (60 lux) was organized to collect subjective data. Results show that participants prefer the method exploiting local dimming possibilities to the conventional full backlight but that this preference varies depending on the ambient light level. The clear preference for one method at the low light conditions decreases at the high ambient light, confirming that the ambient light significantly attenuates the perception of the leakage defect (light leaking through dark pixels). Results are also highly dependent on the content of the sequence, which can modulate the effect of the ambient light from having an important influence on the quality grades to no influence at all.

  1. On the optimal trimming of high-throughput mRNA sequence data

    Directory of Open Access Journals (Sweden)

    Matthew D MacManes

    2014-01-01

    Full Text Available The widespread and rapid adoption of high-throughput sequencing technologies has afforded researchers the opportunity to gain a deep understanding of genome level processes that underlie evolutionary change, and perhaps more importantly, the links between genotype and phenotype. In particular, researchers interested in functional biology and adaptation have used these technologies to sequence mRNA transcriptomes of specific tissues, which in turn are often compared to other tissues, or other individuals with different phenotypes. While these techniques are extremely powerful, careful attention to data quality is required. In particular, because high-throughput sequencing is more error-prone than traditional Sanger sequencing, quality trimming of sequence reads should be an important step in all data processing pipelines. While several software packages for quality trimming exist, no general guidelines for the specifics of trimming have been developed. Here, using empirically derived sequence data, I provide general recommendations regarding the optimal strength of trimming, specifically in mRNA-Seq studies. Although very aggressive quality trimming is common, this study suggests that a more gentle trimming, specifically of those nucleotides whose Phred score < 2 or < 5, is optimal for most studies across a wide variety of metrics.

  2. Directed PCR-free engineering of highly repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Preissler Steffen

    2011-09-01

    Full Text Available Abstract Background Highly repetitive nucleotide sequences are commonly found in nature e.g. in telomeres, microsatellite DNA, polyadenine (poly(A tails of eukaryotic messenger RNA as well as in several inherited human disorders linked to trinucleotide repeat expansions in the genome. Therefore, studying repetitive sequences is of biological, biotechnological and medical relevance. However, cloning of such repetitive DNA sequences is challenging because specific PCR-based amplification is hampered by the lack of unique primer binding sites resulting in unspecific products. Results For the PCR-free generation of repetitive DNA sequences we used antiparallel oligonucleotides flanked by restriction sites of Type IIS endonucleases. The arrangement of recognition sites allowed for stepwise and seamless elongation of repetitive sequences. This facilitated the assembly of repetitive DNA segments and open reading frames encoding polypeptides with periodic amino acid sequences of any desired length. By this strategy we cloned a series of polyglutamine encoding sequences as well as highly repetitive polyadenine tracts. Such repetitive sequences can be used for diverse biotechnological applications. As an example, the polyglutamine sequences were expressed as His6-SUMO fusion proteins in Escherichia coli cells to study their aggregation behavior in vitro. The His6-SUMO moiety enabled affinity purification of the polyglutamine proteins, increased their solubility, and allowed controlled induction of the aggregation process. We successfully purified the fusions proteins and provide an example for their applicability in filter retardation assays. Conclusion Our seamless cloning strategy is PCR-free and allows the directed and efficient generation of highly repetitive DNA sequences of defined lengths by simple standard cloning procedures.

  3. MUSCLE: multiple sequence alignment with high accuracy and high throughput.

    Science.gov (United States)

    Edgar, Robert C

    2004-01-01

    We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

  4. High-Throughput Block Optical DNA Sequence Identification.

    Science.gov (United States)

    Sagar, Dodderi Manjunatha; Korshoj, Lee Erik; Hanson, Katrina Bethany; Chowdhury, Partha Pratim; Otoupal, Peter Britton; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm -1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-Throughput Next-Generation Sequencing of Polioviruses

    Science.gov (United States)

    Montmayeur, Anna M.; Schmidt, Alexander; Zhao, Kun; Magaña, Laura; Iber, Jane; Castro, Christina J.; Chen, Qi; Henderson, Elizabeth; Ramos, Edward; Shaw, Jing; Tatusov, Roman L.; Dybdahl-Sissoko, Naomi; Endegue-Zanga, Marie Claire; Adeniji, Johnson A.; Oberste, M. Steven; Burns, Cara C.

    2016-01-01

    ABSTRACT The poliovirus (PV) is currently targeted for worldwide eradication and containment. Sanger-based sequencing of the viral protein 1 (VP1) capsid region is currently the standard method for PV surveillance. However, the whole-genome sequence is sometimes needed for higher resolution global surveillance. In this study, we optimized whole-genome sequencing protocols for poliovirus isolates and FTA cards using next-generation sequencing (NGS), aiming for high sequence coverage, efficiency, and throughput. We found that DNase treatment of poliovirus RNA followed by random reverse transcription (RT), amplification, and the use of the Nextera XT DNA library preparation kit produced significantly better results than other preparations. The average viral reads per total reads, a measurement of efficiency, was as high as 84.2% ± 15.6%. PV genomes covering >99 to 100% of the reference length were obtained and validated with Sanger sequencing. A total of 52 PV genomes were generated, multiplexing as many as 64 samples in a single Illumina MiSeq run. This high-throughput, sequence-independent NGS approach facilitated the detection of a diverse range of PVs, especially for those in vaccine-derived polioviruses (VDPV), circulating VDPV, or immunodeficiency-related VDPV. In contrast to results from previous studies on other viruses, our results showed that filtration and nuclease treatment did not discernibly increase the sequencing efficiency of PV isolates. However, DNase treatment after nucleic acid extraction to remove host DNA significantly improved the sequencing results. This NGS method has been successfully implemented to generate PV genomes for molecular epidemiology of the most recent PV isolates. Additionally, the ability to obtain full PV genomes from FTA cards will aid in facilitating global poliovirus surveillance. PMID:27927929

  6. Automated degenerate PCR primer design for high-throughput sequencing improves efficiency of viral sequencing

    Directory of Open Access Journals (Sweden)

    Li Kelvin

    2012-11-01

    Full Text Available Abstract Background In a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally. Results We have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute’s (JCVI high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates. Conclusions Augmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus

  7. Quality-Aware Estimation of Facial Landmarks in Video Sequences

    DEFF Research Database (Denmark)

    Haque, Mohammad Ahsanul; Nasrollahi, Kamal; Moeslund, Thomas B.

    2015-01-01

    Face alignment in video is a primitive step for facial image analysis. The accuracy of the alignment greatly depends on the quality of the face image in the video frames and low quality faces are proven to cause erroneous alignment. Thus, this paper proposes a system for quality aware face...... for facial landmark detection. If the face quality is low the proposed system corrects the facial landmarks that are detected by SDM. Depending upon the face velocity in consecutive video frames and face quality measure, two algorithms are proposed for correction of landmarks in low quality faces by using...

  8. Application of high-throughput DNA sequencing in phytopathology.

    Science.gov (United States)

    Studholme, David J; Glover, Rachel H; Boonham, Neil

    2011-01-01

    The new sequencing technologies are already making a big impact in academic research on medically important microbes and may soon revolutionize diagnostics, epidemiology, and infection control. Plant pathology also stands to gain from exploiting these opportunities. This manuscript reviews some applications of these high-throughput sequencing methods that are relevant to phytopathology, with emphasis on the associated computational and bioinformatics challenges and their solutions. Second-generation sequencing technologies have recently been exploited in genomics of both prokaryotic and eukaryotic plant pathogens. They are also proving to be useful in diagnostics, especially with respect to viruses. Copyright © 2011 by Annual Reviews. All rights reserved.

  9. Highly multiplexed targeted DNA sequencing from single nuclei.

    Science.gov (United States)

    Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E

    2016-02-01

    Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.

  10. Subjective quality of video sequences rendered on LCD with local backlight dimming at different lighting conditions

    DEFF Research Database (Denmark)

    Mantel, Claire; Korhonen, Jari; Pedersen, Jesper Mørkhøj

    2015-01-01

    This paper focuses on the influence of ambient light on the perceived quality of videos displayed on Liquid Crystal Display (LCD) with local backlight dimming. A subjective test assessing the quality of videos with two backlight dimming methods and three lighting conditions, i.e. no light, low...... light level (5 lux) and higher light level (60 lux) was organized to collect subjective data. Results show that participants prefer the method exploiting local dimming possibilities to the conventional full backlight but that this preference varies depending on the ambient light level. The clear...... preference for one method at the low light conditions decreases at the high ambient light, confirming that the ambient light significantly attenuates the perception of the leakage defect (light leaking through dark pixels). Results are also highly dependent on the content of the sequence, which can modulate...

  11. Centroid based clustering of high throughput sequencing reads based on n-mer counts.

    Science.gov (United States)

    Solovyov, Alexander; Lipkin, W Ian

    2013-09-08

    Many problems in computational biology require alignment-free sequence comparisons. One of the common tasks involving sequence comparison is sequence clustering. Here we apply methods of alignment-free comparison (in particular, comparison using sequence composition) to the challenge of sequence clustering. We study several centroid based algorithms for clustering sequences based on word counts. Study of their performance shows that using k-means algorithm with or without the data whitening is efficient from the computational point of view. A higher clustering accuracy can be achieved using the soft expectation maximization method, whereby each sequence is attributed to each cluster with a specific probability. We implement an open source tool for alignment-free clustering. It is publicly available from github: https://github.com/luscinius/afcluster. We show the utility of alignment-free sequence clustering for high throughput sequencing analysis despite its limitations. In particular, it allows one to perform assembly with reduced resources and a minimal loss of quality. The major factor affecting performance of alignment-free read clustering is the length of the read.

  12. Roche genome sequencer FLX based high-throughput sequencing of ancient DNA

    DEFF Research Database (Denmark)

    Alquezar-Planas, David E; Fordyce, Sarah Louise

    2012-01-01

    Since the development of so-called "next generation" high-throughput sequencing in 2005, this technology has been applied to a variety of fields. Such applications include disease studies, evolutionary investigations, and ancient DNA. Each application requires a specialized protocol to ensure...... that the data produced is optimal. Although much of the procedure can be followed directly from the manufacturer's protocols, the key differences lie in the library preparation steps. This chapter presents an optimized protocol for the sequencing of fossil remains and museum specimens, commonly referred...

  13. Sequencing of 50 human exomes reveals adaptation to high altitude

    DEFF Research Database (Denmark)

    Yi, Xin; Liang, Yu; Huerta-Sanchez, Emilia

    2010-01-01

    Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which repres...... in genetic adaptation to high altitude.......Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which...... represent strong candidates for altitude adaptation, were identified. The strongest signal of natural selection came from endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1), a transcription factor involved in response to hypoxia. One single-nucleotide polymorphism (SNP) at EPAS1 shows a 78% frequency...

  14. High throughput 16S rRNA gene amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r......RNA gene amplicon sequencing can be used to reveal factors of importance for the operation of full-scale nutrient removal plants related to settling problems and floc properties. Using optimized DNA extraction protocols, indexed primers and our in-house Illumina platform, we prepared multiple samples...... be correlated to the presence of the species that are regarded as “strong” and “weak” floc formers. In conclusion, 16S rRNA gene amplicon sequencing provides a high throughput approach for a rapid and cheap community profiling of activated sludge that in combination with multivariate statistics can be used...

  15. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    Directory of Open Access Journals (Sweden)

    Jason D Thompson

    Full Text Available Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  16. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    Science.gov (United States)

    Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre

    2012-01-01

    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  17. Scrutinizing virus genome termini by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Shasha Li

    Full Text Available Analysis of genomic terminal sequences has been a major step in studies on viral DNA replication and packaging mechanisms. However, traditional methods to study genome termini are challenging due to the time-consuming protocols and their inefficiency where critical details are lost easily. Recent advances in next generation sequencing (NGS have enabled it to be a powerful tool to study genome termini. In this study, using NGS we sequenced one iridovirus genome and twenty phage genomes and confirmed for the first time that the high frequency sequences (HFSs found in the NGS reads are indeed the terminal sequences of viral genomes. Further, we established a criterion to distinguish the type of termini and the viral packaging mode. We also obtained additional terminal details such as terminal repeats, multi-termini, asymmetric termini. With this approach, we were able to simultaneously detect details of the genome termini as well as obtain the complete sequence of bacteriophage genomes. Theoretically, this application can be further extended to analyze larger and more complicated genomes of plant and animal viruses. This study proposed a novel and efficient method for research on viral replication, packaging, terminase activity, transcription regulation, and metabolism of the host cell.

  18. Exome sequencing identifies ZNF644 mutations in high myopia.

    Directory of Open Access Journals (Sweden)

    Yi Shi

    2011-06-01

    Full Text Available Myopia is the most common ocular disorder worldwide, and high myopia in particular is one of the leading causes of blindness. Genetic factors play a critical role in the development of myopia, especially high myopia. Recently, the exome sequencing approach has been successfully used for the disease gene identification of Mendelian disorders. Here we show a successful application of exome sequencing to identify a gene for an autosomal dominant disorder, and we have identified a gene potentially responsible for high myopia in a monogenic form. We captured exomes of two affected individuals from a Han Chinese family with high myopia and performed sequencing analysis by a second-generation sequencer with a mean coverage of 30× and sufficient depth to call variants at ∼97% of each targeted exome. The shared genetic variants of these two affected individuals in the family being studied were filtered against the 1000 Genomes Project and the dbSNP131 database. A mutation A672G in zinc finger protein 644 isoform 1 (ZNF644 was identified as being related to the phenotype of this family. After we performed sequencing analysis of the exons in the ZNF644 gene in 300 sporadic cases of high myopia, we identified an additional five mutations (I587V, R680G, C699Y, 3'UTR+12 C>G, and 3'UTR+592 G>A in 11 different patients. All these mutations were absent in 600 normal controls. The ZNF644 gene was expressed in human retinal and retinal pigment epithelium (RPE. Given that ZNF644 is predicted to be a transcription factor that may regulate genes involved in eye development, mutation may cause the axial elongation of eyeball found in high myopia patients. Our results suggest that ZNF644 might be a causal gene for high myopia in a monogenic form.

  19. Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese Rice Wine.

    Science.gov (United States)

    Hong, Xutao; Chen, Jing; Liu, Lin; Wu, Huan; Tan, Haiqin; Xie, Guangfa; Xu, Qian; Zou, Huijun; Yu, Wenjing; Wang, Lan; Qin, Nan

    2016-05-31

    Chinese Rice Wine (CRW) is a common alcoholic beverage in China. To investigate the influence of microbial composition on the quality of CRW, high throughput sequencing was performed for 110 wine samples on bacterial 16S rRNA gene and fungal Internal Transcribed Spacer II (ITS2). Bioinformatic analyses demonstrated that the quality of yeast starter and final wine correlated with microbial taxonomic composition, which was exemplified by our finding that wine spoilage resulted from a high proportion of genus Lactobacillus. Subsequently, based on Lactobacillus abundance of an early stage, a model was constructed to predict final wine quality. In addition, three batches of 20 representative wine samples selected from a pool of 110 samples were further analyzed in metagenomics. The results revealed that wine spoilage was due to rapid growth of Lactobacillus brevis at the early stage of fermentation. Gene functional analysis indicated the importance of some pathways such as synthesis of biotin, malolactic fermentation and production of short-chain fatty acid. These results led to a conclusion that metabolisms of microbes influence the wine quality. Thus, nurturing of beneficial microbes and inhibition of undesired ones are both important for the mechanized brewery.

  20. Probabilistic Methods for Processing High-Throughput Sequencing Signals

    DEFF Research Database (Denmark)

    Sørensen, Lasse Maretty

    High-throughput sequencing has the potential to answer many of the big questions in biology and medicine. It can be used to determine the ancestry of species, to chart complex ecosystems and to understand and diagnose disease. However, going from raw sequencing data to biological or medical insig....... By estimating the genotypes on a set of candidate variants obtained from both a standard mapping-based approach as well as de novo assemblies, we are able to find considerably more structural variation than previous studies...... for reconstructing transcript sequences from RNA sequencing data. The method is based on a novel sparse prior distribution over transcript abundances and is markedly more accurate than existing approaches. The second chapter describes a new method for calling genotypes from a fixed set of candidate variants....... The method queries the reads using a graph representation of the variants and hereby mitigates the reference-bias that characterise standard genotyping methods. In the last chapter, we apply this method to call the genotypes of 50 deeply sequencing parent-offspring trios from the GenomeDenmark project...

  1. Functional role of a highly repetitive DNA sequence in anchorage of the mouse genome.

    Science.gov (United States)

    Neuer-Nitsche, B; Lu, X N; Werner, D

    1988-09-12

    The major portion of the eukaryotic genome consists of various categories of repetitive DNA sequences which have been studied with respect to their base compositions, organizations, copy numbers, transcription and species specificities; their biological roles, however, are still unclear. A novel quality of a highly repetitive mouse DNA sequence is described which points to a functional role: All copies (approximately 50,000 per haploid genome) of this DNA sequence reside on genomic Alu I DNA fragments each associated with nuclear polypeptides that are not released from DNA by proteinase K, SDS and phenol extraction. By this quality the repetitive DNA sequence is classified as a member of the sub-set of DNA sequences involved in tight DNA-polypeptide complexes which have been previously shown to be components of the subnuclear structure termed 'nuclear matrix'. From these results it has to be concluded that the repetitive DNA sequence characterized in this report represents or comprises a signal for a large number of site specific attachment points of the mouse genome in the nuclear matrix.

  2. ReQON: a Bioconductor package for recalibrating quality scores from next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Cabanski Christopher R

    2012-09-01

    Full Text Available Abstract Background Next-generation sequencing technologies have become important tools for genome-wide studies. However, the quality scores that are assigned to each base have been shown to be inaccurate. If the quality scores are used in downstream analyses, these inaccuracies can have a significant impact on the results. Results Here we present ReQON, a tool that recalibrates the base quality scores from an input BAM file of aligned sequencing data using logistic regression. ReQON also generates diagnostic plots showing the effectiveness of the recalibration. We show that ReQON produces quality scores that are both more accurate, in the sense that they more closely correspond to the probability of a sequencing error, and do a better job of discriminating between sequencing errors and non-errors than the original quality scores. We also compare ReQON to other available recalibration tools and show that ReQON is less biased and performs favorably in terms of quality score accuracy. Conclusion ReQON is an open source software package, written in R and available through Bioconductor, for recalibrating base quality scores for next-generation sequencing data. ReQON produces a new BAM file with more accurate quality scores, which can improve the results of downstream analysis, and produces several diagnostic plots showing the effectiveness of the recalibration.

  3. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing

    DEFF Research Database (Denmark)

    Binladen, Jonas; Gilbert, M Thomas P; Bollback, Jonathan P

    2007-01-01

    BACKGROUND: The invention of the Genome Sequence 20 DNA Sequencing System (454 parallel sequencing platform) has enabled the rapid and high-volume production of sequence data. Until now, however, individual emulsion PCR (emPCR) reactions and subsequent sequencing runs have been unable to combine...... primers that is dependent on the 5' nucleotide of the tag. In particular, primers 5' labelled with a cytosine are heavily overrepresented among the final sequences, while those 5' labelled with a thymine are strongly underrepresented. A weaker bias also exists with regards to the distribution...

  4. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing.

    Directory of Open Access Journals (Sweden)

    Jonas Binladen

    2007-02-01

    Full Text Available The invention of the Genome Sequence 20 DNA Sequencing System (454 parallel sequencing platform has enabled the rapid and high-volume production of sequence data. Until now, however, individual emulsion PCR (emPCR reactions and subsequent sequencing runs have been unable to combine template DNA from multiple individuals, as homologous sequences cannot be subsequently assigned to their original sources.We use conventional PCR with 5'-nucleotide tagged primers to generate homologous DNA amplification products from multiple specimens, followed by sequencing through the high-throughput Genome Sequence 20 DNA Sequencing System (GS20, Roche/454 Life Sciences. Each DNA sequence is subsequently traced back to its individual source through 5'tag-analysis.We demonstrate that this new approach enables the assignment of virtually all the generated DNA sequences to the correct source once sequencing anomalies are accounted for (miss-assignment rate<0.4%. Therefore, the method enables accurate sequencing and assignment of homologous DNA sequences from multiple sources in single high-throughput GS20 run. We observe a bias in the distribution of the differently tagged primers that is dependent on the 5' nucleotide of the tag. In particular, primers 5' labelled with a cytosine are heavily overrepresented among the final sequences, while those 5' labelled with a thymine are strongly underrepresented. A weaker bias also exists with regards to the distribution of the sequences as sorted by the second nucleotide of the dinucleotide tags. As the results are based on a single GS20 run, the general applicability of the approach requires confirmation. However, our experiments demonstrate that 5'primer tagging is a useful method in which the sequencing power of the GS20 can be applied to PCR-based assays of multiple homologous PCR products. The new approach will be of value to a broad range of research areas, such as those of comparative genomics, complete mitochondrial

  5. Availability of high quality weather data measurements

    DEFF Research Database (Denmark)

    Andersen, Elsa; Johansen, Jakob Berg; Furbo, Simon

    In the period 2016-2017 the project “Availability of high quality weather data measurements” is carried out at Department of Civil Engineering at the Technical University of Denmark. The aim of the project is to establish measured high quality weather data which will be easily available...... for the building energy branch and the solar energy branch in their efforts to achieve energy savings and for researchers and students carrying out projects where measured high quality weather data are needed....

  6. Accurate RNA consensus sequencing for high-fidelity detection of transcriptional mutagenesis-induced epimutations.

    Science.gov (United States)

    Reid-Bayliss, Kate S; Loeb, Lawrence A

    2017-08-29

    Transcriptional mutagenesis (TM) due to misincorporation during RNA transcription can result in mutant RNAs, or epimutations, that generate proteins with altered properties. TM has long been hypothesized to play a role in aging, cancer, and viral and bacterial evolution. However, inadequate methodologies have limited progress in elucidating a causal association. We present a high-throughput, highly accurate RNA sequencing method to measure epimutations with single-molecule sensitivity. Accurate RNA consensus sequencing (ARC-seq) uniquely combines RNA barcoding and generation of multiple cDNA copies per RNA molecule to eliminate errors introduced during cDNA synthesis, PCR, and sequencing. The stringency of ARC-seq can be scaled to accommodate the quality of input RNAs. We apply ARC-seq to directly assess transcriptome-wide epimutations resulting from RNA polymerase mutants and oxidative stress.

  7. Rapid evaluation and quality control of next generation sequencing data with FaQCs.

    Science.gov (United States)

    Lo, Chien-Chi; Chain, Patrick S G

    2014-11-19

    Next generation sequencing (NGS) technologies that parallelize the sequencing process and produce thousands to millions, or even hundreds of millions of sequences in a single sequencing run, have revolutionized genomic and genetic research. Because of the vagaries of any platform's sequencing chemistry, the experimental processing, machine failure, and so on, the quality of sequencing reads is never perfect, and often declines as the read is extended. These errors invariably affect downstream analysis/application and should therefore be identified early on to mitigate any unforeseen effects. Here we present a novel FastQ Quality Control Software (FaQCs) that can rapidly process large volumes of data, and which improves upon previous solutions to monitor the quality and remove poor quality data from sequencing runs. Both the speed of processing and the memory footprint of storing all required information have been optimized via algorithmic and parallel processing solutions. The trimmed output compared side-by-side with the original data is part of the automated PDF output. We show how this tool can help data analysis by providing a few examples, including an increased percentage of reads recruited to references, improved single nucleotide polymorphism identification as well as de novo sequence assembly metrics. FaQCs combines several features of currently available applications into a single, user-friendly process, and includes additional unique capabilities such as filtering the PhiX control sequences, conversion of FASTQ formats, and multi-threading. The original data and trimmed summaries are reported within a variety of graphics and reports, providing a simple way to do data quality control and assurance.

  8. Evolutionary growth process of highly conserved sequences in vertebrate genomes.

    Science.gov (United States)

    Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi

    2012-08-01

    Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Using high-throughput barcode sequencing to efficiently map connectomes.

    Science.gov (United States)

    Peikon, Ian D; Kebschull, Justus M; Vagin, Vasily V; Ravens, Diana I; Sun, Yu-Chi; Brouzes, Eric; Corrêa, Ivan R; Bressan, Dario; Zador, Anthony M

    2017-07-07

    The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision-a 'connectome'-is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence-an RNA 'barcode'-which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. High Performance Systolic Array Core Architecture Design for DNA Sequencer

    Directory of Open Access Journals (Sweden)

    Saiful Nurdin Dayana

    2018-01-01

    Full Text Available This paper presents a high performance systolic array (SA core architecture design for Deoxyribonucleic Acid (DNA sequencer. The core implements the affine gap penalty score Smith-Waterman (SW algorithm. This time-consuming local alignment algorithm guarantees optimal alignment between DNA sequences, but it requires quadratic computation time when performed on standard desktop computers. The use of linear SA decreases the time complexity from quadratic to linear. In addition, with the exponential growth of DNA databases, the SA architecture is used to overcome the timing issue. In this work, the SW algorithm has been captured using Verilog Hardware Description Language (HDL and simulated using Xilinx ISIM simulator. The proposed design has been implemented in Xilinx Virtex -6 Field Programmable Gate Array (FPGA and improved in the core area by 90% reduction.

  11. The Microsoft Biology Foundation Applications for High-Throughput Sequencing

    Science.gov (United States)

    Mercer, S.

    2010-01-01

    w9-2 The need for reusable libraries of bioinformatics functions has been recognized for many years and a number of language-specific toolkits have been constructed. Such toolkits have served as valuable nucleation points for the community, promoting the sharing of code and establishing standards. The majority of DNA sequencing machines and many other standard pieces of lab equipment are controlled by PCs using Windows, and a Microsoft genomics toolkit would enable initial processing and quality control to happen closer to the instrumentation and provide opportunities for added-value services within core facilities. The Microsoft Biology Foundation (MBF) is an open source software library, freely available for both commercial and academic use, available as an early-stage betafrom mbf.codeplex.com. This presentation will describe the structure and goals of MBF and demonstrate some of its uses.

  12. Use of high flip angle in T1-prepared FAST sequences for myocardial perfusion quantification

    International Nuclear Information System (INIS)

    Vallee, Jean-Paul; Ivancevic, Marko; Lazeyras, Francois; Didier, Dominique; Kasuboski, Larry; Chatelain, Pascal; Righetti, Alberto

    2003-01-01

    This study reports on the first use of high flip angle and radio-frequency (RF) spoiling in T1-prepared fast acquisition in steady state (FAST) sequence for myocardial perfusion in patients. T1 dynamic range was measured in vitro with a FAST, an RF FAST and a snapshot fast low-angle shot (FLASH) sequences with a 90 flip angle. Myocardial perfusion was then measured twice in 6 patients during the same MR session. The RF FAST and FLASH, but not the FAST sequence, demonstrated an extended T1 dynamic range; however, the FLASH images were degraded by artifacts not present on the RF FAST images. The myocardial perfusion indices K1 (first-order transfer constant from the blood to the myocardium for the Gd-DTPA) and Vd (distribution volume of Gd-DTPA in myocardium) did not differ significantly between the two injections. K1 was 0.48±0.12 ml/min g -1 and Vd was 12.5±2.9%. With an extended T1 dynamic range and the sensitivity required for myocardial perfusion quantification, the RF FAST sequence with a 90 flip angle outperformed the snapshot FLASH sequence in terms of image quality and the FAST sequence in terms of contrast dynamic range. (orig.)

  13. Zerodur polishing process for high surface quality and high efficiency

    International Nuclear Information System (INIS)

    Tesar, A.; Fuchs, B.

    1992-08-01

    Zerodur is a glass-ceramic composite importance in applications where temperature instabilities influence optical and mechanical performance, such as in earthbound and spaceborne telescope mirror substrates. Polished Zerodur surfaces of high quality have been required for laser gyro mirrors. Polished surface quality of substrates affects performance of high reflection coatings. Thus, the interest in improving Zerodur polished surface quality has become more general. Beyond eliminating subsurface damage, high quality surfaces are produced by reducing the amount of hydrated material redeposited on the surface during polishing. With the proper control of polishing parameters, such surfaces exhibit roughnesses of < l Angstrom rms. Zerodur polishing was studied to recommend a high surface quality polishing process which could be easily adapted to standard planetary continuous polishing machines and spindles. This summary contains information on a polishing process developed at LLNL which reproducibly provides high quality polished Zerodur surfaces at very high polishing efficiencies

  14. High Throughput Sequencing for Detection of Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Camilla Sekse

    2017-10-01

    Full Text Available High-throughput sequencing (HTS is becoming the state-of-the-art technology for typing of microbial isolates, especially in clinical samples. Yet, its application is still in its infancy for monitoring and outbreak investigations of foods. Here we review the published literature, covering not only bacterial but also viral and Eukaryote food pathogens, to assess the status and potential of HTS implementation to inform stakeholders, improve food safety and reduce outbreak impacts. The developments in sequencing technology and bioinformatics have outpaced the capacity to analyze and interpret the sequence data. The influence of sample processing, nucleic acid extraction and purification, harmonized protocols for generation and interpretation of data, and properly annotated and curated reference databases including non-pathogenic “natural” strains are other major obstacles to the realization of the full potential of HTS in analytical food surveillance, epidemiological and outbreak investigations, and in complementing preventive approaches for the control and management of foodborne pathogens. Despite significant obstacles, the achieved progress in capacity and broadening of the application range over the last decade is impressive and unprecedented, as illustrated with the chosen examples from the literature. Large consortia, often with broad international participation, are making coordinated efforts to cope with many of the mentioned obstacles. Further rapid progress can therefore be prospected for the next decade.

  15. Engineering high quality medical software

    CERN Document Server

    Coronato, Antonio

    2018-01-01

    This book focuses on high-confidence medical software in the growing field of e-health, telecare services and health technology. It covers the development of methodologies and engineering tasks together with standards and regulations for medical software.

  16. [Study on correlation between ITS sequence of Arctium lappa and quality of Fructus Arctii].

    Science.gov (United States)

    Xu, Liang; Dou, Deqiang; Wang, Bing; Yang, Yanyun; Kang, Tingguo

    2011-07-01

    To study the correlation between ITS sequence of Arctium lappa and Fructus Arctii quality of different origin. The samples of Fructu arctii materials were collected from 26 different producing areas. Their ITS sequence were determined after polymerase chain reaction (PCR) and quality were evaluated through the determination of arctiin content by HPLC. Genetic diversity, genotype and correlation were analyzed by ClustalX (1.81), Mage 4.0, SPSS 13.0 statistical software. ITS sequence of A. was obtained from 26 samples, and was registered in the GenBank. Corresponding arctiin content of Fructus arctii and 1000-grain weight were determined. A. lappa genotype correlated with Fructus arctii quality by statistical analysis. The research provided a foundation for revealing the molecular mechanism of Fructus arctii geoherbs.

  17. High quality draft genome sequence and analysis of Pontibacter roseus type strain SRC-1T (DSM 17521T) isolated from muddy waters of a drainage system in Chandigarh, India

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Supratim; Lapidus, Alla; Shapiro, Nicole; Cheng, Jan-Fang; Han, James; Reddy, TBK; Huntemann, Marcel; Ivanova, Natalia; Mikhailova, Natalia; Chen, Amy; Palaniappan, Krishna; Spring, Stefan; Göker, Markus; Markowitz, Victor; Woyke, Tanja; Tindall, Brian J.; Klenk, Hans-Peter; Kyrpides, Nikos C.; Pati, Amrita

    2015-01-01

    Pontibacter roseus Suresh et al 2006 is a member of genus Pontibacter family Cytophagaceae, class Cytophagia. While the type species of the genus Pontibacter actiniarum was isolated in 2005 from a marine environment, subsequent species of the same genus have been found in different types of habitats ranging from seawater, sediment, desert soil, rhizosphere, contaminated sites, solar saltern and muddy water. Here we describe the features of Pontibacter roseus strain SRC-1T along with its complete genome sequence and annotation from a culture of DSM 17521T. The 4,581,480 bp long draft genome consists of 12 scaffolds with 4,003 protein-coding and 50 RNA genes and is a part of Genomic encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG-I) project.

  18. Correlation between protein sequence similarity and x-ray diffraction quality in the protein data bank.

    Science.gov (United States)

    Lu, Hui-Meng; Yin, Da-Chuan; Ye, Ya-Jing; Luo, Hui-Min; Geng, Li-Qiang; Li, Hai-Sheng; Guo, Wei-Hong; Shang, Peng

    2009-01-01

    As the most widely utilized technique to determine the 3-dimensional structure of protein molecules, X-ray crystallography can provide structure of the highest resolution among the developed techniques. The resolution obtained via X-ray crystallography is known to be influenced by many factors, such as the crystal quality, diffraction techniques, and X-ray sources, etc. In this paper, the authors found that the protein sequence could also be one of the factors. We extracted information of the resolution and the sequence of proteins from the Protein Data Bank (PDB), classified the proteins into different clusters according to the sequence similarity, and statistically analyzed the relationship between the sequence similarity and the best resolution obtained. The results showed that there was a pronounced correlation between the sequence similarity and the obtained resolution. These results indicate that protein structure itself is one variable that may affect resolution when X-ray crystallography is used.

  19. Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using illumina platform.

    Science.gov (United States)

    Mitra, Abhishek; Skrzypczak, Magdalena; Ginalski, Krzysztof; Rowicka, Maga

    2015-01-01

    Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in the case of diverse samples, these limitations are causing substantial inaccuracies in multiplexed sample assignment (sample bleeding). Such inaccuracies are unacceptable in clinical applications, and in some other fields (e.g. detection of rare variants). Here, we discuss how both problems with quality of low-diversity samples and sample bleeding are caused by incorrect detection of clusters on the flowcell during initial sequencing cycles. We propose simple software modifications (Long Template Protocol) that overcome this problem. We present experimental results showing that our Long Template Protocol remarkably increases data quality for low diversity samples, as compared with the standard analysis protocol; it also substantially reduces sample bleeding for all samples. For comprehensiveness, we also discuss and compare experimental results from alternative approaches to sequencing low diversity samples. First, we discuss how the low diversity problem, if caused by barcodes, can be avoided altogether at the barcode design stage. Second and third, we present modified guidelines, which are more stringent than the manufacturer's, for mixing low diversity samples with diverse samples and lowering cluster density, which in our experience consistently produces high quality data from low diversity samples. Fourth and fifth, we present rescue strategies that can be applied when sequencing results in low quality data and when there is no more biological material available. In such cases, we propose that the flowcell be re-hybridized and sequenced again using our Long Template Protocol. Alternatively, we discuss how

  20. Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using illumina platform.

    Directory of Open Access Journals (Sweden)

    Abhishek Mitra

    Full Text Available Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in the case of diverse samples, these limitations are causing substantial inaccuracies in multiplexed sample assignment (sample bleeding. Such inaccuracies are unacceptable in clinical applications, and in some other fields (e.g. detection of rare variants. Here, we discuss how both problems with quality of low-diversity samples and sample bleeding are caused by incorrect detection of clusters on the flowcell during initial sequencing cycles. We propose simple software modifications (Long Template Protocol that overcome this problem. We present experimental results showing that our Long Template Protocol remarkably increases data quality for low diversity samples, as compared with the standard analysis protocol; it also substantially reduces sample bleeding for all samples. For comprehensiveness, we also discuss and compare experimental results from alternative approaches to sequencing low diversity samples. First, we discuss how the low diversity problem, if caused by barcodes, can be avoided altogether at the barcode design stage. Second and third, we present modified guidelines, which are more stringent than the manufacturer's, for mixing low diversity samples with diverse samples and lowering cluster density, which in our experience consistently produces high quality data from low diversity samples. Fourth and fifth, we present rescue strategies that can be applied when sequencing results in low quality data and when there is no more biological material available. In such cases, we propose that the flowcell be re-hybridized and sequenced again using our Long Template Protocol. Alternatively

  1. Accurate estimation of short read mapping quality for next-generation genome sequencing

    Science.gov (United States)

    Ruffalo, Matthew; Koyutürk, Mehmet; Ray, Soumya; LaFramboise, Thomas

    2012-01-01

    Motivation: Several software tools specialize in the alignment of short next-generation sequencing reads to a reference sequence. Some of these tools report a mapping quality score for each alignment—in principle, this quality score tells researchers the likelihood that the alignment is correct. However, the reported mapping quality often correlates weakly with actual accuracy and the qualities of many mappings are underestimated, encouraging the researchers to discard correct mappings. Further, these low-quality mappings tend to correlate with variations in the genome (both single nucleotide and structural), and such mappings are important in accurately identifying genomic variants. Approach: We develop a machine learning tool, LoQuM (LOgistic regression tool for calibrating the Quality of short read mappings, to assign reliable mapping quality scores to mappings of Illumina reads returned by any alignment tool. LoQuM uses statistics on the read (base quality scores reported by the sequencer) and the alignment (number of matches, mismatches and deletions, mapping quality score returned by the alignment tool, if available, and number of mappings) as features for classification and uses simulated reads to learn a logistic regression model that relates these features to actual mapping quality. Results: We test the predictions of LoQuM on an independent dataset generated by the ART short read simulation software and observe that LoQuM can ‘resurrect’ many mappings that are assigned zero quality scores by the alignment tools and are therefore likely to be discarded by researchers. We also observe that the recalibration of mapping quality scores greatly enhances the precision of called single nucleotide polymorphisms. Availability: LoQuM is available as open source at http://compbio.case.edu/loqum/. Contact: matthew.ruffalo@case.edu. PMID:22962451

  2. Reliable Detection of Herpes Simplex Virus Sequence Variation by High-Throughput Resequencing.

    Science.gov (United States)

    Morse, Alison M; Calabro, Kaitlyn R; Fear, Justin M; Bloom, David C; McIntyre, Lauren M

    2017-08-16

    High-throughput sequencing (HTS) has resulted in data for a number of herpes simplex virus (HSV) laboratory strains and clinical isolates. The knowledge of these sequences has been critical for investigating viral pathogenicity. However, the assembly of complete herpesviral genomes, including HSV, is complicated due to the existence of large repeat regions and arrays of smaller reiterated sequences that are commonly found in these genomes. In addition, the inherent genetic variation in populations of isolates for viruses and other microorganisms presents an additional challenge to many existing HTS sequence assembly pipelines. Here, we evaluate two approaches for the identification of genetic variants in HSV1 strains using Illumina short read sequencing data. The first, a reference-based approach, identifies variants from reads aligned to a reference sequence and the second, a de novo assembly approach, identifies variants from reads aligned to de novo assembled consensus sequences. Of critical importance for both approaches is the reduction in the number of low complexity regions through the construction of a non-redundant reference genome. We compared variants identified in the two methods. Our results indicate that approximately 85% of variants are identified regardless of the approach. The reference-based approach to variant discovery captures an additional 15% representing variants divergent from the HSV1 reference possibly due to viral passage. Reference-based approaches are significantly less labor-intensive and identify variants across the genome where de novo assembly-based approaches are limited to regions where contigs have been successfully assembled. In addition, regions of poor quality assembly can lead to false variant identification in de novo consensus sequences. For viruses with a well-assembled reference genome, a reference-based approach is recommended.

  3. Shared investment projects and forecasting errors: setting framework conditions for coordination and sequencing data quality activities.

    Science.gov (United States)

    Leitner, Stephan; Brauneis, Alexander; Rausch, Alexandra

    2015-01-01

    In this paper, we investigate the impact of inaccurate forecasting on the coordination of distributed investment decisions. In particular, by setting up a computational multi-agent model of a stylized firm, we investigate the case of investment opportunities that are mutually carried out by organizational departments. The forecasts of concern pertain to the initial amount of money necessary to launch and operate an investment opportunity, to the expected intertemporal distribution of cash flows, and the departments' efficiency in operating the investment opportunity at hand. We propose a budget allocation mechanism for coordinating such distributed decisions The paper provides guidance on how to set framework conditions, in terms of the number of investment opportunities considered in one round of funding and the number of departments operating one investment opportunity, so that the coordination mechanism is highly robust to forecasting errors. Furthermore, we show that-in some setups-a certain extent of misforecasting is desirable from the firm's point of view as it supports the achievement of the corporate objective of value maximization. We then address the question of how to improve forecasting quality in the best possible way, and provide policy advice on how to sequence activities for improving forecasting quality so that the robustness of the coordination mechanism to errors increases in the best possible way. At the same time, we show that wrong decisions regarding the sequencing can lead to a decrease in robustness. Finally, we conduct a comprehensive sensitivity analysis and prove that-in particular for relatively good forecasters-most of our results are robust to changes in setting the parameters of our multi-agent simulation model.

  4. Shared Investment Projects and Forecasting Errors: Setting Framework Conditions for Coordination and Sequencing Data Quality Activities

    Science.gov (United States)

    Leitner, Stephan; Brauneis, Alexander; Rausch, Alexandra

    2015-01-01

    In this paper, we investigate the impact of inaccurate forecasting on the coordination of distributed investment decisions. In particular, by setting up a computational multi-agent model of a stylized firm, we investigate the case of investment opportunities that are mutually carried out by organizational departments. The forecasts of concern pertain to the initial amount of money necessary to launch and operate an investment opportunity, to the expected intertemporal distribution of cash flows, and the departments’ efficiency in operating the investment opportunity at hand. We propose a budget allocation mechanism for coordinating such distributed decisions The paper provides guidance on how to set framework conditions, in terms of the number of investment opportunities considered in one round of funding and the number of departments operating one investment opportunity, so that the coordination mechanism is highly robust to forecasting errors. Furthermore, we show that—in some setups—a certain extent of misforecasting is desirable from the firm’s point of view as it supports the achievement of the corporate objective of value maximization. We then address the question of how to improve forecasting quality in the best possible way, and provide policy advice on how to sequence activities for improving forecasting quality so that the robustness of the coordination mechanism to errors increases in the best possible way. At the same time, we show that wrong decisions regarding the sequencing can lead to a decrease in robustness. Finally, we conduct a comprehensive sensitivity analysis and prove that—in particular for relatively good forecasters—most of our results are robust to changes in setting the parameters of our multi-agent simulation model. PMID:25803736

  5. Shared investment projects and forecasting errors: setting framework conditions for coordination and sequencing data quality activities.

    Directory of Open Access Journals (Sweden)

    Stephan Leitner

    Full Text Available In this paper, we investigate the impact of inaccurate forecasting on the coordination of distributed investment decisions. In particular, by setting up a computational multi-agent model of a stylized firm, we investigate the case of investment opportunities that are mutually carried out by organizational departments. The forecasts of concern pertain to the initial amount of money necessary to launch and operate an investment opportunity, to the expected intertemporal distribution of cash flows, and the departments' efficiency in operating the investment opportunity at hand. We propose a budget allocation mechanism for coordinating such distributed decisions The paper provides guidance on how to set framework conditions, in terms of the number of investment opportunities considered in one round of funding and the number of departments operating one investment opportunity, so that the coordination mechanism is highly robust to forecasting errors. Furthermore, we show that-in some setups-a certain extent of misforecasting is desirable from the firm's point of view as it supports the achievement of the corporate objective of value maximization. We then address the question of how to improve forecasting quality in the best possible way, and provide policy advice on how to sequence activities for improving forecasting quality so that the robustness of the coordination mechanism to errors increases in the best possible way. At the same time, we show that wrong decisions regarding the sequencing can lead to a decrease in robustness. Finally, we conduct a comprehensive sensitivity analysis and prove that-in particular for relatively good forecasters-most of our results are robust to changes in setting the parameters of our multi-agent simulation model.

  6. Model-based quality assessment and base-calling for second-generation sequencing data.

    Science.gov (United States)

    Bravo, Héctor Corrada; Irizarry, Rafael A

    2010-09-01

    Second-generation sequencing (sec-gen) technology can sequence millions of short fragments of DNA in parallel, making it capable of assembling complex genomes for a small fraction of the price and time of previous technologies. In fact, a recently formed international consortium, the 1000 Genomes Project, plans to fully sequence the genomes of approximately 1200 people. The prospect of comparative analysis at the sequence level of a large number of samples across multiple populations may be achieved within the next five years. These data present unprecedented challenges in statistical analysis. For instance, analysis operates on millions of short nucleotide sequences, or reads-strings of A,C,G, or T's, between 30 and 100 characters long-which are the result of complex processing of noisy continuous fluorescence intensity measurements known as base-calling. The complexity of the base-calling discretization process results in reads of widely varying quality within and across sequence samples. This variation in processing quality results in infrequent but systematic errors that we have found to mislead downstream analysis of the discretized sequence read data. For instance, a central goal of the 1000 Genomes Project is to quantify across-sample variation at the single nucleotide level. At this resolution, small error rates in sequencing prove significant, especially for rare variants. Sec-gen sequencing is a relatively new technology for which potential biases and sources of obscuring variation are not yet fully understood. Therefore, modeling and quantifying the uncertainty inherent in the generation of sequence reads is of utmost importance. In this article, we present a simple model to capture uncertainty arising in the base-calling procedure of the Illumina/Solexa GA platform. Model parameters have a straightforward interpretation in terms of the chemistry of base-calling allowing for informative and easily interpretable metrics that capture the variability in

  7. Determining RNA quality for NextGen sequencing: some exceptions to the gold standard rule of 23S to 16S rRNA ratio

    Science.gov (United States)

    Using next-generation-sequencing technology to assess entire transcriptomes requires high quality starting RNA. Currently, RNA quality is routinely judged using automated microfluidic gel electrophoresis platforms and associated algorithms. Here we report that such automated methods generate false-n...

  8. Quality management manual for production of high quality cassava flour

    DEFF Research Database (Denmark)

    Dziedzoave, Nanam Tay; Abass, Adebayo Busura; Amoa-Awua, Wisdom K.

    The high quality cassava flour (HQCF) industry has just started to evolve in Africa and elsewhere. The sustainability of the growing industry, the profitability of small- and medium-scale enterprises (SMEs) that are active in the industry and good-health of consumers can best be guaranteed through...... the adoption of proper quality and food safety procedures. Cassava processing enterprises involved in the productionof HQCF must therefore be commited to the quality and food safety of the HQCF. They must have the right technology, appropriate processing machhinery, standard testing instruments...... and the necessary technical expertise. This quality manual was therefore developed to guide small- to medium-scale cassava in the design and implematation of Hazard Analysis Critical Control Point (HACCP) system and Good manufacturing Practices (GMP) plans for HQCF production. It describes the HQCF production...

  9. ChronQC: a quality control monitoring system for clinical next generation sequencing.

    Science.gov (United States)

    Tawari, Nilesh R; Seow, Justine Jia Wen; Perumal, Dharuman; Ow, Jack L; Ang, Shimin; Devasia, Arun George; Ng, Pauline C

    2018-05-15

    ChronQC is a quality control (QC) tracking system for clinical implementation of next-generation sequencing (NGS). ChronQC generates time series plots for various QC metrics to allow comparison of current runs to historical runs. ChronQC has multiple features for tracking QC data including Westgard rules for clinical validity, laboratory-defined thresholds and historical observations within a specified time period. Users can record their notes and corrective actions directly onto the plots for long-term recordkeeping. ChronQC facilitates regular monitoring of clinical NGS to enable adherence to high quality clinical standards. ChronQC is freely available on GitHub (https://github.com/nilesh-tawari/ChronQC), Docker (https://hub.docker.com/r/nileshtawari/chronqc/) and the Python Package Index. ChronQC is implemented in Python and runs on all common operating systems (Windows, Linux and Mac OS X). tawari.nilesh@gmail.com or pauline.c.ng@gmail.com. Supplementary data are available at Bioinformatics online.

  10. An Evaluation Framework for Lossy Compression of Genome Sequencing Quality Values

    OpenAIRE

    Alberti, Claudio; Daniels, Noah; Hernaez, Mikel; Voges, Jan; Goldfeder, Rachel L.; Hernandez-Lopez, Ana A.; Mattavelli, Marco; Berger, Bonnie

    2016-01-01

    This paper provides the specification and an initial validation of an evaluation framework for the comparison of lossy compressors of genome sequencing quality values. The goal is to define reference data, test sets, tools and metrics that shall be used to evaluate the impact of lossy compression of quality values on human genome variant calling. The functionality of the framework is validated referring to two state-of-the-art genomic compressors. This work has been spurred by the current act...

  11. Purification of High Molecular Weight Genomic DNA from Powdery Mildew for Long-Read Sequencing.

    Science.gov (United States)

    Feehan, Joanna M; Scheibel, Katherine E; Bourras, Salim; Underwood, William; Keller, Beat; Somerville, Shauna C

    2017-03-31

    The powdery mildew fungi are a group of economically important fungal plant pathogens. Relatively little is known about the molecular biology and genetics of these pathogens, in part due to a lack of well-developed genetic and genomic resources. These organisms have large, repetitive genomes, which have made genome sequencing and assembly prohibitively difficult. Here, we describe methods for the collection, extraction, purification and quality control assessment of high molecular weight genomic DNA from one powdery mildew species, Golovinomyces cichoracearum. The protocol described includes mechanical disruption of spores followed by an optimized phenol/chloroform genomic DNA extraction. A typical yield was 7 µg DNA per 150 mg conidia. The genomic DNA that is isolated using this procedure is suitable for long-read sequencing (i.e., > 48.5 kbp). Quality control measures to ensure the size, yield, and purity of the genomic DNA are also described in this method. Sequencing of the genomic DNA of the quality described here will allow for the assembly and comparison of multiple powdery mildew genomes, which in turn will lead to a better understanding and improved control of this agricultural pathogen.

  12. High quality-factor optical resonators

    International Nuclear Information System (INIS)

    Henriet, Rémi; Salzenstein, Patrice; Coillet, Aurélien; Saleh, Khaldoun; Chembo, Yanne K; Ristic, Davor; Ferrari, Maurizio; Mortier, Michel; Rasoloniaina, Alphonse; Dumeige, Yannick; Féron, Patrice; Cibiel, Gilles; Llopis, Olivier

    2014-01-01

    Various resonators are investigated for microwave photonic applications. Micro-sphere, disk and fiber ring resonators were designed, realized and characterized. Obtained quality factors are as high as Q = 10 10 . (paper)

  13. Masking as an effective quality control method for next-generation sequencing data analysis.

    Science.gov (United States)

    Yun, Sajung; Yun, Sijung

    2014-12-13

    Next generation sequencing produces base calls with low quality scores that can affect the accuracy of identifying simple nucleotide variation calls, including single nucleotide polymorphisms and small insertions and deletions. Here we compare the effectiveness of two data preprocessing methods, masking and trimming, and the accuracy of simple nucleotide variation calls on whole-genome sequence data from Caenorhabditis elegans. Masking substitutes low quality base calls with 'N's (undetermined bases), whereas trimming removes low quality bases that results in a shorter read lengths. We demonstrate that masking is more effective than trimming in reducing the false-positive rate in single nucleotide polymorphism (SNP) calling. However, both of the preprocessing methods did not affect the false-negative rate in SNP calling with statistical significance compared to the data analysis without preprocessing. False-positive rate and false-negative rate for small insertions and deletions did not show differences between masking and trimming. We recommend masking over trimming as a more effective preprocessing method for next generation sequencing data analysis since masking reduces the false-positive rate in SNP calling without sacrificing the false-negative rate although trimming is more commonly used currently in the field. The perl script for masking is available at http://code.google.com/p/subn/. The sequencing data used in the study were deposited in the Sequence Read Archive (SRX450968 and SRX451773).

  14. High-quality compressive ghost imaging

    Science.gov (United States)

    Huang, Heyan; Zhou, Cheng; Tian, Tian; Liu, Dongqi; Song, Lijun

    2018-04-01

    We propose a high-quality compressive ghost imaging method based on projected Landweber regularization and guided filter, which effectively reduce the undersampling noise and improve the resolution. In our scheme, the original object is reconstructed by decomposing of regularization and denoising steps instead of solving a minimization problem in compressive reconstruction process. The simulation and experimental results show that our method can obtain high ghost imaging quality in terms of PSNR and visual observation.

  15. Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing.

    Directory of Open Access Journals (Sweden)

    Sarah M Hykin

    Full Text Available For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles, attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens-particularly for use in phylogenetic analyses-has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp. We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens

  16. Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing.

    Science.gov (United States)

    Hykin, Sarah M; Bi, Ke; McGuire, Jimmy A

    2015-01-01

    For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles), attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens-particularly for use in phylogenetic analyses-has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp). We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens available for

  17. No Reference Prediction of Quality Metrics for H.264 Compressed Infrared Image Sequences for UAV Applications

    DEFF Research Database (Denmark)

    Hossain, Kabir; Mantel, Claire; Forchhammer, Søren

    2018-01-01

    The framework for this research work is the acquisition of Infrared (IR) images from Unmanned Aerial Vehicles (UAV). In this paper we consider the No-Reference (NR) prediction of Full Reference Quality Metrics for Infrared (IR) video sequences which are compressed and thus distorted by an H.264...

  18. Complete Genome Sequence of the Quality Control Strain Staphylococcus aureus subsp. aureus ATCC 25923.

    Science.gov (United States)

    Treangen, Todd J; Maybank, Rosslyn A; Enke, Sana; Friss, Mary Beth; Diviak, Lynn F; Karaolis, David K R; Koren, Sergey; Ondov, Brian; Phillippy, Adam M; Bergman, Nicholas H; Rosovitz, M J

    2014-11-06

    Staphylococcus aureus subsp. aureus ATCC 25923 is commonly used as a control strain for susceptibility testing to antibiotics and as a quality control strain for commercial products. We present the completed genome sequence for the strain, consisting of the chromosome and a 27.5-kb plasmid. Copyright © 2014 Treangen et al.

  19. High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka-Kazimierczuk, Anna; Kozminski, Wiktor, E-mail: kozmin@chem.uw.edu.pl [University of Warsaw, Faculty of Chemistry (Poland); Sanderova, Hana; Krasny, Libor [Institute of Microbiology, Academy of Sciences of the Czech Republic, Laboratory of Molecular Genetics of Bacteria, Department of Bacteriology (Czech Republic)

    2012-04-15

    Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using {delta} subunit (20 kDa) of Bacillus subtilis RNA polymerase that has an 81-amino acid disordered part containing various repetitive sequences.

  20. When less is more: 'slicing' sequencing data improves read decoding accuracy and de novo assembly quality.

    Science.gov (United States)

    Lonardi, Stefano; Mirebrahim, Hamid; Wanamaker, Steve; Alpert, Matthew; Ciardo, Gianfranco; Duma, Denisa; Close, Timothy J

    2015-09-15

    As the invention of DNA sequencing in the 70s, computational biologists have had to deal with the problem of de novo genome assembly with limited (or insufficient) depth of sequencing. In this work, we investigate the opposite problem, that is, the challenge of dealing with excessive depth of sequencing. We explore the effect of ultra-deep sequencing data in two domains: (i) the problem of decoding reads to bacterial artificial chromosome (BAC) clones (in the context of the combinatorial pooling design we have recently proposed), and (ii) the problem of de novo assembly of BAC clones. Using real ultra-deep sequencing data, we show that when the depth of sequencing increases over a certain threshold, sequencing errors make these two problems harder and harder (instead of easier, as one would expect with error-free data), and as a consequence the quality of the solution degrades with more and more data. For the first problem, we propose an effective solution based on 'divide and conquer': we 'slice' a large dataset into smaller samples of optimal size, decode each slice independently, and then merge the results. Experimental results on over 15 000 barley BACs and over 4000 cowpea BACs demonstrate a significant improvement in the quality of the decoding and the final assembly. For the second problem, we show for the first time that modern de novo assemblers cannot take advantage of ultra-deep sequencing data. Python scripts to process slices and resolve decoding conflicts are available from http://goo.gl/YXgdHT; software Hashfilter can be downloaded from http://goo.gl/MIyZHs stelo@cs.ucr.edu or timothy.close@ucr.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. miRBase: annotating high confidence microRNAs using deep sequencing data.

    Science.gov (United States)

    Kozomara, Ana; Griffiths-Jones, Sam

    2014-01-01

    We describe an update of the miRBase database (http://www.mirbase.org/), the primary microRNA sequence repository. The latest miRBase release (v20, June 2013) contains 24 521 microRNA loci from 206 species, processed to produce 30 424 mature microRNA products. The rate of deposition of novel microRNAs and the number of researchers involved in their discovery continue to increase, driven largely by small RNA deep sequencing experiments. In the face of these increases, and a range of microRNA annotation methods and criteria, maintaining the quality of the microRNA sequence data set is a significant challenge. Here, we describe recent developments of the miRBase database to address this issue. In particular, we describe the collation and use of deep sequencing data sets to assign levels of confidence to miRBase entries. We now provide a high confidence subset of miRBase entries, based on the pattern of mapped reads. The high confidence microRNA data set is available alongside the complete microRNA collection at http://www.mirbase.org/. We also describe embedding microRNA-specific Wikipedia pages on the miRBase website to encourage the microRNA community to contribute and share textual and functional information.

  2. SSR_pipeline--computer software for the identification of microsatellite sequences from paired-end Illumina high-throughput DNA sequence data

    Science.gov (United States)

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (SSRs; for example, microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains three analysis modules along with a fourth control module that can be used to automate analyses of large volumes of data. The modules are used to (1) identify the subset of paired-end sequences that pass quality standards, (2) align paired-end reads into a single composite DNA sequence, and (3) identify sequences that possess microsatellites conforming to user specified parameters. Each of the three separate analysis modules also can be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc). All modules are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, Windows). The program suite relies on a compiled Python extension module to perform paired-end alignments. Instructions for compiling the extension from source code are provided in the documentation. Users who do not have Python installed on their computers or who do not have the ability to compile software also may choose to download packaged executable files. These files include all Python scripts, a copy of the compiled extension module, and a minimal installation of Python in a single binary executable. See program documentation for more information.

  3. Fabrication of high-quality brazed joints

    International Nuclear Information System (INIS)

    Orlov, A.V.

    1980-01-01

    Problem of ensuring of joint high-quality when brazing different parts in power engineering is considered. To obtain high-quality joints it is necessary to correctly design brazed joint and to choose a gap width, overlap length and fillet radius; to clean up carefully the surfaces to be brazed and fix them properly one relative to another; to apply a solder so as to provide its flowing into the gap and sticking in it; to exactly regulate thermal conditions of brazing. High quality and reliability of brazed joints are ensured by the application of solders based on noble metals, and cheap solders based on nickel, manganese and copper. Joints brazed with nickel base solders may operate at temperatures as high as 888 deg C

  4. TOTAL QUALITY MANAGEMENT IN HIGH EDUCATION

    Directory of Open Access Journals (Sweden)

    Hasan SERİN, Alper AYTEKİN

    2009-01-01

    Full Text Available The approach of Total Quality Management (TQM has been even more common and most recently its use in high education has been discussed. Likewise the enterprises producing various products, universities have also inputs, processes, and outputs. Due to conditions of competition, universities have to improve the qualities of these inputs, processes, and outputs, according to satisfaction, demands, and expectations of internal and external customers. If the TQM has been implemented in the universities with a manner that aims for customer satisfaction (students, lecturers, public and private establishments, and families, supports constant development, ensures participatory approach, and encourages working in groups, it will provide universities with effectiveness, efficiency, dynamics, and economics. In this study, common problems of universities, definitions of quality and TQM in high education, customer concept at universities, and factors affecting the quality of education have been explained. Besides, in order TQM approach to be successfully implemented in the universities, various suggestions have been presented.

  5. Analysis of high-throughput sequencing and annotation strategies for phage genomes.

    Directory of Open Access Journals (Sweden)

    Matthew R Henn

    Full Text Available BACKGROUND: Bacterial viruses (phages play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage. METHODOLOGY/PRINCIPAL FINDINGS: To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles, and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL or of a whole genome shotgun library (WGSL, or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling. CONCLUSIONS/SIGNIFICANCE: These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics.

  6. Quality standards for DNA sequence variation databases to improve clinical management under development in Australia

    Directory of Open Access Journals (Sweden)

    B. Bennetts

    2014-09-01

    Full Text Available Despite the routine nature of comparing sequence variations identified during clinical testing to database records, few databases meet quality requirements for clinical diagnostics. To address this issue, The Royal College of Pathologists of Australasia (RCPA in collaboration with the Human Genetics Society of Australasia (HGSA, and the Human Variome Project (HVP is developing standards for DNA sequence variation databases intended for use in the Australian clinical environment. The outputs of this project will be promoted to other health systems and accreditation bodies by the Human Variome Project to support the development of similar frameworks in other jurisdictions.

  7. Bioassessment of a Drinking Water Reservoir Using Plankton: High Throughput Sequencing vs. Traditional Morphological Method

    Directory of Open Access Journals (Sweden)

    Wanli Gao

    2018-01-01

    Full Text Available Drinking water safety is increasingly perceived as one of the top global environmental issues. Plankton has been commonly used as a bioindicator for water quality in lakes and reservoirs. Recently, DNA sequencing technology has been applied to bioassessment. In this study, we compared the effectiveness of the 16S and 18S rRNA high throughput sequencing method (HTS and the traditional optical microscopy method (TOM in the bioassessment of drinking water quality. Five stations reflecting different habitats and hydrological conditions in Danjiangkou Reservoir, one of the largest drinking water reservoirs in Asia, were sampled May 2016. Non-metric multi-dimensional scaling (NMDS analysis showed that plankton assemblages varied among the stations and the spatial patterns revealed by the two methods were consistent. The correlation between TOM and HTS in a symmetric Procrustes analysis was 0.61, revealing overall good concordance between the two methods. Procrustes analysis also showed that site-specific differences between the two methods varied among the stations. Station Heijizui (H, a site heavily influenced by two tributaries, had the largest difference while station Qushou (Q, a confluence site close to the outlet dam, had the smallest difference between the two methods. Our results show that DNA sequencing has the potential to provide consistent identification of taxa, and reliable bioassessment in a long-term biomonitoring and assessment program for drinking water reservoirs.

  8. Evolution of sequence-defined highly functionalized nucleic acid polymers

    Science.gov (United States)

    Chen, Zhen; Lichtor, Phillip A.; Berliner, Adrian P.; Chen, Jonathan C.; Liu, David R.

    2018-03-01

    The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure-activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.

  9. High-Throughput DNA sequencing of ancient wood.

    Science.gov (United States)

    Wagner, Stefanie; Lagane, Frédéric; Seguin-Orlando, Andaine; Schubert, Mikkel; Leroy, Thibault; Guichoux, Erwan; Chancerel, Emilie; Bech-Hebelstrup, Inger; Bernard, Vincent; Billard, Cyrille; Billaud, Yves; Bolliger, Matthias; Croutsch, Christophe; Čufar, Katarina; Eynaud, Frédérique; Heussner, Karl Uwe; Köninger, Joachim; Langenegger, Fabien; Leroy, Frédéric; Lima, Christine; Martinelli, Nicoletta; Momber, Garry; Billamboz, André; Nelle, Oliver; Palomo, Antoni; Piqué, Raquel; Ramstein, Marianne; Schweichel, Roswitha; Stäuble, Harald; Tegel, Willy; Terradas, Xavier; Verdin, Florence; Plomion, Christophe; Kremer, Antoine; Orlando, Ludovic

    2018-03-01

    Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long-term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human-induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro-evolutionary response of trees to climate change and human forest management. © 2018 John Wiley & Sons Ltd.

  10. Effect of forage quality in faeces from different ruminant species fed high and low quality forage

    DEFF Research Database (Denmark)

    Jalali, A R; Nørgaard, P; Nielsen, M O

    2010-01-01

    Effect of forage quality in faeces from different ruminant species fed high and low quality forage......Effect of forage quality in faeces from different ruminant species fed high and low quality forage...

  11. An Evaluation Framework for Lossy Compression of Genome Sequencing Quality Values.

    Science.gov (United States)

    Alberti, Claudio; Daniels, Noah; Hernaez, Mikel; Voges, Jan; Goldfeder, Rachel L; Hernandez-Lopez, Ana A; Mattavelli, Marco; Berger, Bonnie

    2016-01-01

    This paper provides the specification and an initial validation of an evaluation framework for the comparison of lossy compressors of genome sequencing quality values. The goal is to define reference data, test sets, tools and metrics that shall be used to evaluate the impact of lossy compression of quality values on human genome variant calling. The functionality of the framework is validated referring to two state-of-the-art genomic compressors. This work has been spurred by the current activity within the ISO/IEC SC29/WG11 technical committee (a.k.a. MPEG), which is investigating the possibility of starting a standardization activity for genomic information representation.

  12. Assuring quality in high-consequence engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Marcey L.; Kolb, Rachel R.

    2014-03-01

    In high-consequence engineering organizations, such as Sandia, quality assurance may be heavily dependent on staff competency. Competency-dependent quality assurance models are at risk when the environment changes, as it has with increasing attrition rates, budget and schedule cuts, and competing program priorities. Risks in Sandia's competency-dependent culture can be mitigated through changes to hiring, training, and customer engagement approaches to manage people, partners, and products. Sandia's technical quality engineering organization has been able to mitigate corporate-level risks by driving changes that benefit all departments, and in doing so has assured Sandia's commitment to excellence in high-consequence engineering and national service.

  13. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  14. Communicating the Benefits of a Full Sequence of High School Science Courses

    Science.gov (United States)

    Nicholas, Catherine Marie

    2014-01-01

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit…

  15. Producing high-quality slash pine seeds

    Science.gov (United States)

    James Barnett; Sue Varela

    2003-01-01

    Slash pine is a desirable species. It serves many purposes and is well adapted to poorly drained flatwoods and seasonally flooded areas along the lower Coastal Plain of the Southeastern US. The use of high-quality seeds has been shown to produce uniform seedlings for outplanting, which is key to silvicultural success along the Coastal Plain and elsewhere. We present...

  16. Endorectal high dose rate brachytherapy quality assurance

    International Nuclear Information System (INIS)

    Devic, S.; Vuong, T.; Evans, M.; Podgorsak, E.

    2008-01-01

    We describe our quality assurance method for preoperative high dose rate (HDR) brachytherapy of endorectal tumours. Reproduction of the treatment planning dose distribution on a daily basis is crucial for treatment success. Due to the cylindrical symmetry, two types of adjustments are necessary: applicator rotation and dose distribution shift along the applicator axis. (author)

  17. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.

    Science.gov (United States)

    Gao, Song; Sung, Wing-Kin; Nagarajan, Niranjan

    2011-11-01

    Scaffolding, the problem of ordering and orienting contigs, typically using paired-end reads, is a crucial step in the assembly of high-quality draft genomes. Even as sequencing technologies and mate-pair protocols have improved significantly, scaffolding programs still rely on heuristics, with no guarantees on the quality of the solution. In this work, we explored the feasibility of an exact solution for scaffolding and present a first tractable solution for this problem (Opera). We also describe a graph contraction procedure that allows the solution to scale to large scaffolding problems and demonstrate this by scaffolding several large real and synthetic datasets. In comparisons with existing scaffolders, Opera simultaneously produced longer and more accurate scaffolds demonstrating the utility of an exact approach. Opera also incorporates an exact quadratic programming formulation to precisely compute gap sizes (Availability: http://sourceforge.net/projects/operasf/ ).

  18. Capillary gel electrophoresis for rapid, high resolution DNA sequencing.

    OpenAIRE

    Swerdlow, H; Gesteland, R

    1990-01-01

    Capillary gel electrophoresis has been demonstrated for the separation and detection of DNA sequencing samples. Enzymatic dideoxy nucleotide chain termination was employed, using fluorescently tagged oligonucleotide primers and laser based on-column detection (limit of detection is 6,000 molecules per peak). Capillary gel separations were shown to be three times faster, with better resolution (2.4 x), and higher separation efficiency (5.4 x) than a conventional automated slab gel DNA sequenci...

  19. Supervised detection of exoplanets in high-contrast imaging sequences

    Science.gov (United States)

    Gomez Gonzalez, C. A.; Absil, O.; Van Droogenbroeck, M.

    2018-06-01

    Context. Post-processing algorithms play a key role in pushing the detection limits of high-contrast imaging (HCI) instruments. State-of-the-art image processing approaches for HCI enable the production of science-ready images relying on unsupervised learning techniques, such as low-rank approximations, for generating a model point spread function (PSF) and subtracting the residual starlight and speckle noise. Aims: In order to maximize the detection rate of HCI instruments and survey campaigns, advanced algorithms with higher sensitivities to faint companions are needed, especially for the speckle-dominated innermost region of the images. Methods: We propose a reformulation of the exoplanet detection task (for ADI sequences) that builds on well-established machine learning techniques to take HCI post-processing from an unsupervised to a supervised learning context. In this new framework, we present algorithmic solutions using two different discriminative models: SODIRF (random forests) and SODINN (neural networks). We test these algorithms on real ADI datasets from VLT/NACO and VLT/SPHERE HCI instruments. We then assess their performances by injecting fake companions and using receiver operating characteristic analysis. This is done in comparison with state-of-the-art ADI algorithms, such as ADI principal component analysis (ADI-PCA). Results: This study shows the improved sensitivity versus specificity trade-off of the proposed supervised detection approach. At the diffraction limit, SODINN improves the true positive rate by a factor ranging from 2 to 10 (depending on the dataset and angular separation) with respect to ADI-PCA when working at the same false-positive level. Conclusions: The proposed supervised detection framework outperforms state-of-the-art techniques in the task of discriminating planet signal from speckles. In addition, it offers the possibility of re-processing existing HCI databases to maximize their scientific return and potentially improve

  20. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing

    Directory of Open Access Journals (Sweden)

    Wang Nian

    2012-08-01

    Full Text Available Abstract Background Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP marker development. Results An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. Conclusions The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison.

  1. High Quality Virtual Reality for Architectural Exhibitions

    DEFF Research Database (Denmark)

    Kreutzberg, Anette

    2016-01-01

    This paper will summarise the findings from creating and implementing a visually high quality Virtual Reality (VR) experiment as part of an international architecture exhibition. It was the aim to represent the architectural spatial qualities as well as the atmosphere created from combining natural...... and artificial lighting in a prominent not yet built project. The outcome is twofold: Findings concerning the integration of VR in an exhibition space and findings concerning the experience of the virtual space itself. In the exhibition, an important aspect was the unmanned exhibition space, requiring the VR...... experience to be self-explanatory. Observations of different visitor reactions to the unmanned VR experience compared with visitor reactions at guided tours with personal instructions are evaluated. Data on perception of realism, spatial quality and light in the VR model were collected with qualitative...

  2. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data

    Science.gov (United States)

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  3. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data.

    Science.gov (United States)

    Miller, Mark P; Knaus, Brian J; Mullins, Thomas D; Haig, Susan M

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25 bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  4. Assuring the Quality of Next-Generation Sequencing in Clinical Microbiology and Public Health Laboratories.

    Science.gov (United States)

    Gargis, Amy S; Kalman, Lisa; Lubin, Ira M

    2016-12-01

    Clinical microbiology and public health laboratories are beginning to utilize next-generation sequencing (NGS) for a range of applications. This technology has the potential to transform the field by providing approaches that will complement, or even replace, many conventional laboratory tests. While the benefits of NGS are significant, the complexities of these assays require an evolving set of standards to ensure testing quality. Regulatory and accreditation requirements, professional guidelines, and best practices that help ensure the quality of NGS-based tests are emerging. This review highlights currently available standards and guidelines for the implementation of NGS in the clinical and public health laboratory setting, and it includes considerations for NGS test validation, quality control procedures, proficiency testing, and reference materials. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. An improved high throughput sequencing method for studying oomycete communities

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Nicolaisen, Mogens

    2015-01-01

    the usefulness of the method not only in soil DNA but also in a plant DNA background. In conclusion, we demonstrate a successful approach for pyrosequencing of oomycete communities using ITS1 as the barcode sequence with well-known primers for oomycete DNA amplification....... communities. Thewell-known primer sets ITS4, ITS6 and ITS7were used in the study in a semi-nested PCR approach to target the internal transcribed spacer (ITS) 1 of ribosomal DNA in a next generation sequencing protocol. These primers have been used in similar studies before, butwith limited success.......Wewere able to increase the proportion of retrieved oomycete sequences dramaticallymainly by increasing the annealing temperature during PCR. The optimized protocol was validated using three mock communities and the method was further evaluated using total DNA from 26 soil samples collected from different...

  6. Applications of High-Throughput Nucleotide Sequencing (PhD)

    DEFF Research Database (Denmark)

    Waage, Johannes

    equally large demands in data handling, analysis and interpretation, perhaps defining the modern challenge of the computational biologist of the post-genomic era. The first part of this thesis consists of a general introduction to the history, common terms and challenges of next generation sequencing......-sequencing, a study of the effects on alternative RNA splicing of KO of the nonsense mediated RNA decay system in Mus, using digital gene expression and a custom-built exon-exon junction mapping pipeline is presented (article I). Evolved from this work, a Bioconductor package, spliceR, for classifying alternative...

  7. Algorithms for mapping high-throughput DNA sequences

    DEFF Research Database (Denmark)

    Frellsen, Jes; Menzel, Peter; Krogh, Anders

    2014-01-01

    of data generation, new bioinformatics approaches have been developed to cope with the large amount of sequencing reads obtained in these experiments. In this chapter, we first introduce HTS technologies and their usage in molecular biology and discuss the problem of mapping sequencing reads...... to their genomic origin. We then in detail describe two approaches that offer very fast heuristics to solve the mapping problem in a feasible runtime. In particular, we describe the BLAT algorithm, and we give an introduction to the Burrows-Wheeler Transform and the mapping algorithms based on this transformation....

  8. [Study on quality evaluation of sequence and SSR information in transcriptome of Astragalus membranacus].

    Science.gov (United States)

    Chang, Yue; Yang, Song; Liu, Zhen-Peng; Ren, Wei-Chao; Liu, Jie; Ma, Wei

    2016-04-01

    In this study, 454/Roche GS FLX sequencing technology was used to obtain the data of the Astragalus membranaceus. Four hundred and fifty-four Sequencing System Software was applied to carry out the transcription of the group from scratch. Using MISA tools, 9 893 unigenes were selected for the sequence of the genome of A. membranaceus, and the information of SSR locus was analyzed. According to the result, the average length of reads was 413 bp, about 86% of the reads was involved in the splicing, the length of the N50 was 1 205 bp, the number of unigenes was measured by the whole transcript. 1 729 SSR loci in the A. membranaceus transcriptome were searched, the occurrence frequency of SSR was 9.24%, the frequency of SSR in the whole transcriptome was 13.42%, the average length of SSR was 7.97 kb. One hundred and twenty-seven kinds of core repeat sequences were found, the dominant type was TG/AC type of dinucleotide, it appeared to account for 4.25% of the total SSR locus. The results of the sequence of the transcription of the A. membranaceus transcriptome revealed the overall expression, and a large number of unigenessequence was obtained, and the SSR locus in the genome of the A. membranaceus is high, and the type is diverse, and the polymorphism of the gene is high. Copyright© by the Chinese Pharmaceutical Association.

  9. High quality transportation fuels from renewable feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  10. Boiling curve in high quality flow boiling

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Hein, R.A.; Yadigaroglu, G.

    1980-01-01

    The post dry-out heat transfer regime of the flow boiling curve was investigated experimentally for high pressure water at high qualities. The test section was a short round tube located downstream of a hot patch created by a temperature controlled segment of tubing. Results from the experiment showed that the distance from the dryout point has a significant effect on the downstream temperatures and there was no unique boiling curve. The heat transfer coefficients measured sufficiently downstream of the dryout point could be correlated using the Heineman correlation for superheated steam, indicating that the droplet deposition effects could be neglected in this region

  11. Breeding and maintaining high-quality insects

    DEFF Research Database (Denmark)

    Jensen, Kim; Kristensen, Torsten Nygård; Heckmann, Lars-Henrik

    2017-01-01

    Insects have a large potential for sustainably enhancing global food and feed production, and commercial insect production is a rising industry of high economic value. Insects suitable for production typically have fast growth, short generation time, efficient nutrient utilization, high...... reproductive potential, and thrive at high density. Insects may cost-efficiently convert agricultural and industrial food by-products into valuable protein once the technology is finetuned. However, since insect mass production is a new industry, the technology needed to efficiently farm these animals is still...... in a starting phase. Here, we discuss the challenges and precautions that need to be considered when breeding and maintaining high-quality insect populations for food and feed. This involves techniques typically used in domestic animal breeding programs including maintaining genetically healthy populations...

  12. Whole Genome Sequencing of Enterovirus species C Isolates by High-throughput Sequencing: Development of Generic Primers

    Directory of Open Access Journals (Sweden)

    Maël Bessaud

    2016-08-01

    Full Text Available Enteroviruses are among the most common viruses infecting humans and can cause diverse clinical syndromes ranging from minor febrile illness to severe and potentially fatal diseases. Enterovirus species C (EV-C consists of more than 20 types, among which the 3 serotypes of polioviruses, the etiological agents of poliomyelitis, are included. Biodiversity and evolution of EV-C genomes are shaped by frequent recombination events. Therefore, identification and characterization of circulating EV-C strains require the sequencing of different genomic regions.A simple method was developed to sequence quickly the entire genome of EV-C isolates. Four overlapping fragments were produced separately by RT-PCR performed with generic primers. The four amplicons were then pooled and purified prior to be sequenced by high-throughput technique.The method was assessed on a panel of EV-Cs belonging to a wide-range of types. It can be used to determine full-length genome sequences through de novo assembly of thousands of reads. It was also able to discriminate reads from closely related viruses in mixtures.By decreasing the workload compared to classical Sanger-based techniques, this method will serve as a precious tool for sequencing large panels of EV-Cs isolated in cell cultures during environmental surveillance or from patients, including vaccine-derived polioviruses.

  13. Tracking TCRβ sequence clonotype expansions during antiviral therapy using high-throughput sequencing of the hypervariable region

    Directory of Open Access Journals (Sweden)

    Mark W Robinson

    2016-04-01

    Full Text Available To maintain a persistent infection viruses such as hepatitis C virus (HCV employ a range of mechanisms that subvert protective T cell responses. The suppression of antigen-specific T cell responses by HCV hinders efforts to profile T cell responses during chronic infection and antiviral therapy. Conventional methods of detecting antigen-specific T cells utilise either antigen stimulation (e.g. ELISpot, proliferation assays, cytokine production or antigen-loaded tetramer staining. This limits the ability to profile T cell responses during chronic infection due to suppressed effector function and the requirement for prior knowledge of antigenic viral peptide sequences. Recently high-throughput sequencing (HTS technologies have been developed for the analysis of T cell repertoires. In the present study we have assessed the feasibility of HTS of the TCRβ complementarity determining region (CDR3 to track T cell expansions in an antigen-independent manner. Using sequential blood samples from HCV-infected individuals undergoing anti-viral therapy we were able to measure the population frequencies of >35,000 TCRβ sequence clonotypes in each individual over the course of 12 weeks. TRBV/TRBJ gene segment usage varied markedly between individuals but remained relatively constant within individuals across the course of therapy. Despite this stable TRBV/TRBJ gene segment usage, a number of TCRβ sequence clonotypes showed dramatic changes in read frequency. These changes could not be linked to therapy outcomes in the present study however the TCRβ CDR3 sequences with the largest fold changes did include sequences with identical TRBV/TRBJ gene segment usage and high joining region homology to previously published CDR3 sequences from HCV-specific T cells targeting the HLA-B*0801-restricted 1395HSKKKCDEL1403 and HLA-A*0101–restricted 1435ATDALMTGY1443 epitopes. The pipeline developed in this proof of concept study provides a platform for the design of

  14. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  15. Preparation of highly multiplexed small RNA sequencing libraries.

    Science.gov (United States)

    Persson, Helena; Søkilde, Rolf; Pirona, Anna Chiara; Rovira, Carlos

    2017-08-01

    MicroRNAs (miRNAs) are ~22-nucleotide-long small non-coding RNAs that regulate the expression of protein-coding genes by base pairing to partially complementary target sites, preferentially located in the 3´ untranslated region (UTR) of target mRNAs. The expression and function of miRNAs have been extensively studied in human disease, as well as the possibility of using these molecules as biomarkers for prognostication and treatment guidance. To identify and validate miRNAs as biomarkers, their expression must be screened in large collections of patient samples. Here, we develop a scalable protocol for the rapid and economical preparation of a large number of small RNA sequencing libraries using dual indexing for multiplexing. Combined with the use of off-the-shelf reagents, more samples can be sequenced simultaneously on large-scale sequencing platforms at a considerably lower cost per sample. Sample preparation is simplified by pooling libraries prior to gel purification, which allows for the selection of a narrow size range while minimizing sample variation. A comparison with publicly available data from benchmarking of miRNA analysis platforms showed that this method captures absolute and differential expression as effectively as commercially available alternatives.

  16. Highly diverse microbiota in dental root canals in cases of apical periodontitis (data of illumina sequencing).

    Science.gov (United States)

    Vengerfeldt, Veiko; Špilka, Katerina; Saag, Mare; Preem, Jens-Konrad; Oopkaup, Kristjan; Truu, Jaak; Mändar, Reet

    2014-11-01

    Chronic apical periodontitis (CAP) is a frequent condition that has a considerable effect on a patient's quality of life. We aimed to reveal root canal microbial communities in antibiotic-naive patients by applying Illumina sequencing (Illumina Inc, San Diego, CA). Samples were collected under strict aseptic conditions from 12 teeth (5 with primary CAP, 3 with secondary CAP, and 4 with a periapical abscess [PA]) and characterized by profiling the microbial community on the basis of the V6 hypervariable region of the 16S ribosomal RNA gene by using Illumina HiSeq2000 sequencing combinatorial sequence-tagged polymerase chain reaction products. Root canal specimens displayed highly polymicrobial communities in all 3 patient groups. One sample contained 5-8 (mean = 6.5) phyla of bacteria. The most numerous were Firmicutes and Bacteroidetes, but Actinobacteria, Fusobacteria, Proteobacteria, Spirochaetes, Tenericutes, and Synergistetes were also present in most of the patients. One sample contained 30-70 different operational taxonomic units; the mean (± standard deviation) was lower in the primary CAP group (36 ± 4) than in the PA (45 ± 4) and secondary CAP (43 ± 13) groups (P < .05). The communities were individually different, but anaerobic bacteria predominated as the rule. Enterococcus faecalis was found only in patients with secondary CAP. One PA sample displayed a significantly high proportion (47%) of Proteobacteria, mainly at the expense of Janthinobacterium lividum. This study provided an in-depth characterization of the microbiota of periapical tissues, revealing highly polymicrobial communities and minor differences between the study groups. A full understanding of the etiology of periodontal disease will only be possible through further in-depth systems-level analyses of the host-microbiome interaction. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities

    OpenAIRE

    BoonFei eTan; Charmaine Marie Ng; Jean Pierre Nshimyimana; Jean Pierre Nshimyimana; Lay-Leng eLoh; Lay-Leng eLoh; Karina Yew-Hoong Gin; Janelle Renee Thompson; Janelle Renee Thompson

    2015-01-01

    Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable reg...

  18. Parallel Sequencing of Expressed Sequence Tags from Two Complementary DNA Libraries for High and Low Phosphorus Adaptation in Common Beans

    Directory of Open Access Journals (Sweden)

    Matthew W. Blair

    2011-11-01

    Full Text Available Expressed sequence tags (ESTs have proven useful for gene discovery in many crops. In this work, our objective was to construct complementary DNA (cDNA libraries from root tissues of common beans ( L. grown under low and high P hydroponic conditions and to conduct EST sequencing and comparative analyses of the libraries. Expressed sequence tag analysis of 3648 clones identified 2372 unigenes, of which 1591 were annotated as known genes while a total of 465 unigenes were not associated with any known gene. Unigenes with hits were categorized according to biological processes, molecular function, and cellular compartmentalization. Given the young tissue used to make the root libraries, genes for catalytic activity and binding were highly expressed. Comparisons with previous root EST sequencing and between the two libraries made here resulted in a set of genes to study further for differential gene expression and adaptation to low P, such as a 14 kDa praline-rich protein, a metallopeptidase, tonoplast intrinsic protein, adenosine triphosphate (ATP citrate synthase, and cell proliferation genes expressed in the low P treated plants. Given that common beans are often grown on acid soils of the tropics and subtropics that are usually low in P these genes and the two parallel libraries will be useful for selection for better uptake of this essential macronutrient. The importance of EST generation for common bean root tissues under low P and other abiotic soil stresses is also discussed.

  19. Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pratx, Guillem; Levin, Craig S [Molecular Imaging Program at Stanford, Department of Radiology, Stanford, CA (United States)], E-mail: cslevin@stanford.edu

    2009-09-07

    Realizing the full potential of high-resolution positron emission tomography (PET) systems involves accurately positioning events in which the annihilation photon deposits all its energy across multiple detector elements. Reconstructing the complete sequence of interactions of each photon provides a reliable way to select the earliest interaction because it ensures that all the interactions are consistent with one another. Bayesian estimation forms a natural framework to maximize the consistency of the sequence with the measurements while taking into account the physics of {gamma}-ray transport. An inherently statistical method, it accounts for the uncertainty in the measured energy and position of each interaction. An algorithm based on maximum a posteriori (MAP) was evaluated for computer simulations. For a high-resolution PET system based on cadmium zinc telluride detectors, 93.8% of the recorded coincidences involved at least one photon multiple-interactions event (PMIE). The MAP estimate of the first interaction was accurate for 85.2% of the single photons. This represents a two-fold reduction in the number of mispositioned events compared to minimum pair distance, a simpler yet efficient positioning method. The point-spread function of the system presented lower tails and higher peak value when MAP was used. This translated into improved image quality, which we quantified by studying contrast and spatial resolution gains.

  20. Very high resolution single pass HLA genotyping using amplicon sequencing on the 454 next generation DNA sequencers: Comparison with Sanger sequencing.

    Science.gov (United States)

    Yamamoto, F; Höglund, B; Fernandez-Vina, M; Tyan, D; Rastrou, M; Williams, T; Moonsamy, P; Goodridge, D; Anderson, M; Erlich, H A; Holcomb, C L

    2015-12-01

    Compared to Sanger sequencing, next-generation sequencing offers advantages for high resolution HLA genotyping including increased throughput, lower cost, and reduced genotype ambiguity. Here we describe an enhancement of the Roche 454 GS GType HLA genotyping assay to provide very high resolution (VHR) typing, by the addition of 8 primer pairs to the original 14, to genotype 11 HLA loci. These additional amplicons help resolve common and well-documented alleles and exclude commonly found null alleles in genotype ambiguity strings. Simplification of workflow to reduce the initial preparation effort using early pooling of amplicons or the Fluidigm Access Array™ is also described. Performance of the VHR assay was evaluated on 28 well characterized cell lines using Conexio Assign MPS software which uses genomic, rather than cDNA, reference sequence. Concordance was 98.4%; 1.6% had no genotype assignment. Of concordant calls, 53% were unambiguous. To further assess the assay, 59 clinical samples were genotyped and results compared to unambiguous allele assignments obtained by prior sequence-based typing supplemented with SSO and/or SSP. Concordance was 98.7% with 58.2% as unambiguous calls; 1.3% could not be assigned. Our results show that the amplicon-based VHR assay is robust and can replace current Sanger methodology. Together with software enhancements, it has the potential to provide even higher resolution HLA typing. Copyright © 2015. Published by Elsevier Inc.

  1. Quality control of next-generation sequencing library through an integrative digital microfluidic platform.

    Science.gov (United States)

    Thaitrong, Numrin; Kim, Hanyoup; Renzi, Ronald F; Bartsch, Michael S; Meagher, Robert J; Patel, Kamlesh D

    2012-12-01

    We have developed an automated quality control (QC) platform for next-generation sequencing (NGS) library characterization by integrating a droplet-based digital microfluidic (DMF) system with a capillary-based reagent delivery unit and a quantitative CE module. Using an in-plane capillary-DMF interface, a prepared sample droplet was actuated into position between the ground electrode and the inlet of the separation capillary to complete the circuit for an electrokinetic injection. Using a DNA ladder as an internal standard, the CE module with a compact LIF detector was capable of detecting dsDNA in the range of 5-100 pg/μL, suitable for the amount of DNA required by the Illumina Genome Analyzer sequencing platform. This DMF-CE platform consumes tenfold less sample volume than the current Agilent BioAnalyzer QC technique, preserving precious sample while providing necessary sensitivity and accuracy for optimal sequencing performance. The ability of this microfluidic system to validate NGS library preparation was demonstrated by examining the effects of limited-cycle PCR amplification on the size distribution and the yield of Illumina-compatible libraries, demonstrating that as few as ten cycles of PCR bias the size distribution of the library toward undesirable larger fragments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. CSReport: A New Computational Tool Designed for Automatic Analysis of Class Switch Recombination Junctions Sequenced by High-Throughput Sequencing.

    Science.gov (United States)

    Boyer, François; Boutouil, Hend; Dalloul, Iman; Dalloul, Zeinab; Cook-Moreau, Jeanne; Aldigier, Jean-Claude; Carrion, Claire; Herve, Bastien; Scaon, Erwan; Cogné, Michel; Péron, Sophie

    2017-05-15

    B cells ensure humoral immune responses due to the production of Ag-specific memory B cells and Ab-secreting plasma cells. In secondary lymphoid organs, Ag-driven B cell activation induces terminal maturation and Ig isotype class switch (class switch recombination [CSR]). CSR creates a virtually unique IgH locus in every B cell clone by intrachromosomal recombination between two switch (S) regions upstream of each C region gene. Amount and structural features of CSR junctions reveal valuable information about the CSR mechanism, and analysis of CSR junctions is useful in basic and clinical research studies of B cell functions. To provide an automated tool able to analyze large data sets of CSR junction sequences produced by high-throughput sequencing (HTS), we designed CSReport, a software program dedicated to support analysis of CSR recombination junctions sequenced with a HTS-based protocol (Ion Torrent technology). CSReport was assessed using simulated data sets of CSR junctions and then used for analysis of Sμ-Sα and Sμ-Sγ1 junctions from CH12F3 cells and primary murine B cells, respectively. CSReport identifies junction segment breakpoints on reference sequences and junction structure (blunt-ended junctions or junctions with insertions or microhomology). Besides the ability to analyze unprecedentedly large libraries of junction sequences, CSReport will provide a unified framework for CSR junction studies. Our results show that CSReport is an accurate tool for analysis of sequences from our HTS-based protocol for CSR junctions, thereby facilitating and accelerating their study. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. High-Throughput Sequencing Based Methods of RNA Structure Investigation

    DEFF Research Database (Denmark)

    Kielpinski, Lukasz Jan

    In this thesis we describe the development of four related methods for RNA structure probing that utilize massive parallel sequencing. Using them, we were able to gather structural data for multiple, long molecules simultaneously. First, we have established an easy to follow experimental...... and computational protocol for detecting the reverse transcription termination sites (RTTS-Seq). This protocol was subsequently applied to hydroxyl radical footprinting of three dimensional RNA structures to give a probing signal that correlates well with the RNA backbone solvent accessibility. Moreover, we applied...

  4. Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing.

    Science.gov (United States)

    Jeong, Hyeonsoo; Song, Ki-Duk; Seo, Minseok; Caetano-Anollés, Kelsey; Kim, Jaemin; Kwak, Woori; Oh, Jae-Don; Kim, EuiSoo; Jeong, Dong Kee; Cho, Seoae; Kim, Heebal; Lee, Hak-Kyo

    2015-08-20

    Natural and artificial selection following domestication has led to the existence of more than a hundred pig breeds, as well as incredible variation in phenotypic traits. Berkshire pigs are regarded as having superior meat quality compared to other breeds. As the meat production industry seeks selective breeding approaches to improve profitable traits such as meat quality, information about genetic determinants of these traits is in high demand. However, most of the studies have been performed using trained sensory panel analysis without investigating the underlying genetic factors. Here we investigate the relationship between genomic composition and this phenotypic trait by scanning for signatures of positive selection in whole-genome sequencing data. We generated genomes of 10 Berkshire pigs at a total of 100.6 coverage depth, using the Illumina Hiseq2000 platform. Along with the genomes of 11 Landrace and 13 Yorkshire pigs, we identified genomic variants of 18.9 million SNVs and 3.4 million Indels in the mapped regions. We identified several associated genes related to lipid metabolism, intramuscular fatty acid deposition, and muscle fiber type which attribute to pork quality (TG, FABP1, AKIRIN2, GLP2R, TGFBR3, JPH3, ICAM2, and ERN1) by applying between population statistical tests (XP-EHH and XP-CLR). A statistical enrichment test was also conducted to detect breed specific genetic variation. In addition, de novo short sequence read assembly strategy identified several candidate genes (SLC25A14, IGF1, PI4KA, CACNA1A) as also contributing to lipid metabolism. Results revealed several candidate genes involved in Berkshire meat quality; most of these genes are involved in lipid metabolism and intramuscular fat deposition. These results can provide a basis for future research on the genomic characteristics of Berkshire pigs.

  5. Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).

    Science.gov (United States)

    Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E

    2017-01-01

    Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.

  6. Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey

    Directory of Open Access Journals (Sweden)

    Varala Kranthi

    2007-05-01

    Full Text Available Abstract Background Extensive computational and database tools are available to mine genomic and genetic databases for model organisms, but little genomic data is available for many species of ecological or agricultural significance, especially those with large genomes. Genome surveys using conventional sequencing techniques are powerful, particularly for detecting sequences present in many copies per genome. However these methods are time-consuming and have potential drawbacks. High throughput 454 sequencing provides an alternative method by which much information can be gained quickly and cheaply from high-coverage surveys of genomic DNA. Results We sequenced 78 million base-pairs of randomly sheared soybean DNA which passed our quality criteria. Computational analysis of the survey sequences provided global information on the abundant repetitive sequences in soybean. The sequence was used to determine the copy number across regions of large genomic clones or contigs and discover higher-order structures within satellite repeats. We have created an annotated, online database of sequences present in multiple copies in the soybean genome. The low bias of pyrosequencing against repeat sequences is demonstrated by the overall composition of the survey data, which matches well with past estimates of repetitive DNA content obtained by DNA re-association kinetics (Cot analysis. Conclusion This approach provides a potential aid to conventional or shotgun genome assembly, by allowing rapid assessment of copy number in any clone or clone-end sequence. In addition, we show that partial sequencing can provide access to partial protein-coding sequences.

  7. The main challenges that remain in applying high-throughput sequencing to clinical diagnostics.

    Science.gov (United States)

    Loeffelholz, Michael; Fofanov, Yuriy

    2015-01-01

    Over the last 10 years, the quality, price and availability of high-throughput sequencing instruments have improved to the point that this technology may be close to becoming a routine tool in the diagnostic microbiology laboratory. Two groups of challenges, however, have to be resolved in order to move this powerful research technology into routine use in the clinical microbiology laboratory. The computational/bioinformatics challenges include data storage cost and privacy concerns, requiring analysis to be performed without access to cloud storage or expensive computational infrastructure. The logistical challenges include interpretation of complex results and acceptance and understanding of the advantages and limitations of this technology by the medical community. This article focuses on the approaches to address these challenges, such as file formats, algorithms, data collection, reporting and good laboratory practices.

  8. SNP calling using genotype model selection on high-throughput sequencing data

    KAUST Repository

    You, Na

    2012-01-16

    Motivation: A review of the available single nucleotide polymorphism (SNP) calling procedures for Illumina high-throughput sequencing (HTS) platform data reveals that most rely mainly on base-calling and mapping qualities as sources of error when calling SNPs. Thus, errors not involved in base-calling or alignment, such as those in genomic sample preparation, are not accounted for.Results: A novel method of consensus and SNP calling, Genotype Model Selection (GeMS), is given which accounts for the errors that occur during the preparation of the genomic sample. Simulations and real data analyses indicate that GeMS has the best performance balance of sensitivity and positive predictive value among the tested SNP callers. © The Author 2012. Published by Oxford University Press. All rights reserved.

  9. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Gonzalo H Villarino

    Full Text Available Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  10. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    Science.gov (United States)

    Villarino, Gonzalo H; Bombarely, Aureliano; Giovannoni, James J; Scanlon, Michael J; Mattson, Neil S

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  11. High-throughput sequencing of black pepper root transcriptome

    Science.gov (United States)

    2012-01-01

    Background Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host’s root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant’s root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms. PMID:22984782

  12. High-throughput sequencing of black pepper root transcriptome

    Directory of Open Access Journals (Sweden)

    Gordo Sheila MC

    2012-09-01

    Full Text Available Abstract Background Black pepper (Piper nigrum L. is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host’s root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant’s root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.

  13. A Comprehensive Quality Evaluation System for Complex Herbal Medicine Using PacBio Sequencing, PCR-Denaturing Gradient Gel Electrophoresis, and Several Chemical Approaches

    Science.gov (United States)

    Zheng, Xiasheng; Zhang, Peng; Liao, Baosheng; Li, Jing; Liu, Xingyun; Shi, Yuhua; Cheng, Jinle; Lai, Zhitian; Xu, Jiang; Chen, Shilin

    2017-01-01

    Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis), to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control. Highlight: We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis) with analytical chemistry approaches to achieve the authentication and quality connotation of the samples. PMID:28955365

  14. A Comprehensive Quality Evaluation System for Complex Herbal Medicine Using PacBio Sequencing, PCR-Denaturing Gradient Gel Electrophoresis, and Several Chemical Approaches

    Directory of Open Access Journals (Sweden)

    Xiasheng Zheng

    2017-09-01

    Full Text Available Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis, to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control.Highlight: We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis with analytical chemistry approaches to achieve the authentication and quality connotation of the samples.

  15. A Comprehensive Quality Evaluation System for Complex Herbal Medicine Using PacBio Sequencing, PCR-Denaturing Gradient Gel Electrophoresis, and Several Chemical Approaches.

    Science.gov (United States)

    Zheng, Xiasheng; Zhang, Peng; Liao, Baosheng; Li, Jing; Liu, Xingyun; Shi, Yuhua; Cheng, Jinle; Lai, Zhitian; Xu, Jiang; Chen, Shilin

    2017-01-01

    Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis), to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control. Highlight : We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis) with analytical chemistry approaches to achieve the authentication and quality connotation of the samples.

  16. SEQUenCE: a service user-centred quality of care instrument for mental health services.

    Science.gov (United States)

    Hester, Lorraine; O'Doherty, Lorna Jane; Schnittger, Rebecca; Skelly, Niamh; O'Donnell, Muireann; Butterly, Lisa; Browne, Robert; Frorath, Charlotte; Morgan, Craig; McLoughlin, Declan M; Fearon, Paul

    2015-08-01

    To develop a quality of care instrument that is grounded in the service user perspective and validate it in a mental health service. The instrument (SEQUenCE (SErvice user QUality of CarE)) was developed through analysis of focus group data and clinical practice guidelines, and refined through field-testing and psychometric analyses. All participants were attending an independent mental health service in Ireland. Participants had a diagnosis of bipolar affective disorder (BPAD) or a psychotic disorder. Twenty-nine service users participated in six focus group interviews. Seventy-one service users participated in field-testing: 10 judged the face validity of an initial 61-item instrument; 28 completed a revised 52-item instrument from which 12 items were removed following test-retest and convergent validity analyses; 33 completed the resulting 40-item instrument. Test-retest reliability, internal consistency and convergent validity of the instrument. The final instrument showed acceptable test-retest reliability at 5-7 days (r = 0.65; P Service Satisfaction Scale (r = 0.84, P internal consistency (Cronbach's alpha = 0.87). SEQUenCE is a valid, reliable scale that is grounded in the service user perspective and suitable for routine use. It may serve as a useful tool in individual care planning, service evaluation and research. The instrument was developed and validated with service users with a diagnosis of either BPAD or a psychotic disorder; it does not yet have established external validity for other diagnostic groups. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  17. High-Throughput Sequencing of Microbial Community Diversity and Dynamics during Douchi Fermentation

    Science.gov (United States)

    Tu, Zong-cai; Wang, Xiao-lan

    2016-01-01

    Douchi is a type of Chinese traditional fermented food that is an important source of protein and is used in flavouring ingredients. The end product is affected by the microbial community present during fermentation, but exactly how microbes influence the fermentation process remains poorly understood. We used an Illumina MiSeq approach to investigate bacterial and fungal community diversity during both douchi-koji making and fermentation. A total of 181,443 high quality bacterial 16S rRNA sequences and 221,059 high quality fungal internal transcribed spacer reads were used for taxonomic classification, revealing eight bacterial and three fungal phyla. Firmicutes, Actinobacteria and Proteobacteria were the dominant bacterial phyla, while Ascomycota and Zygomycota were the dominant fungal phyla. At the genus level, Staphylococcus and Weissella were the dominant bacteria, while Aspergillus and Lichtheimia were the dominant fungi. Principal coordinate analysis showed structural separation between the composition of bacteria in koji making and fermentation. However, multivariate analysis of variance based on unweighted UniFrac distances did identify distinct differences (p fermentation. This is the first investigation to integrate douchi fermentation and koji making and fermentation processes through this technological approach. The results provide insight into the microbiome of the douchi fermentation process, and reveal a structural separation that may be stratified by the environment during the production of this traditional fermented food. PMID:27992473

  18. Evaluation of a transposase protocol for rapid generation of shotgun high-throughput sequencing libraries from nanogram quantities of DNA.

    Science.gov (United States)

    Marine, Rachel; Polson, Shawn W; Ravel, Jacques; Hatfull, Graham; Russell, Daniel; Sullivan, Matthew; Syed, Fraz; Dumas, Michael; Wommack, K Eric

    2011-11-01

    Construction of DNA fragment libraries for next-generation sequencing can prove challenging, especially for samples with low DNA yield. Protocols devised to circumvent the problems associated with low starting quantities of DNA can result in amplification biases that skew the distribution of genomes in metagenomic data. Moreover, sample throughput can be slow, as current library construction techniques are time-consuming. This study evaluated Nextera, a new transposon-based method that is designed for quick production of DNA fragment libraries from a small quantity of DNA. The sequence read distribution across nine phage genomes in a mock viral assemblage met predictions for six of the least-abundant phages; however, the rank order of the most abundant phages differed slightly from predictions. De novo genome assemblies from Nextera libraries provided long contigs spanning over half of the phage genome; in four cases where full-length genome sequences were available for comparison, consensus sequences were found to match over 99% of the genome with near-perfect identity. Analysis of areas of low and high sequence coverage within phage genomes indicated that GC content may influence coverage of sequences from Nextera libraries. Comparisons of phage genomes prepared using both Nextera and a standard 454 FLX Titanium library preparation protocol suggested that the coverage biases according to GC content observed within the Nextera libraries were largely attributable to bias in the Nextera protocol rather than to the 454 sequencing technology. Nevertheless, given suitable sequence coverage, the Nextera protocol produced high-quality data for genomic studies. For metagenomics analyses, effects of GC amplification bias would need to be considered; however, the library preparation standardization that Nextera provides should benefit comparative metagenomic analyses.

  19. Simultaneous and complete genome sequencing of influenza A and B with high coverage by Illumina MiSeq Platform.

    Science.gov (United States)

    Rutvisuttinunt, Wiriya; Chinnawirotpisan, Piyawan; Simasathien, Sriluck; Shrestha, Sanjaya K; Yoon, In-Kyu; Klungthong, Chonticha; Fernandez, Stefan

    2013-11-01

    Active global surveillance and characterization of influenza viruses are essential for better preparation against possible pandemic events. Obtaining comprehensive information about the influenza genome can improve our understanding of the evolution of influenza viruses and emergence of new strains, and improve the accuracy when designing preventive vaccines. This study investigated the use of deep sequencing by the next-generation sequencing (NGS) Illumina MiSeq Platform to obtain complete genome sequence information from influenza virus isolates. The influenza virus isolates were cultured from 6 respiratory acute clinical specimens collected in Thailand and Nepal. DNA libraries obtained from each viral isolate were mixed and all were sequenced simultaneously. Total information of 2.6 Gbases was obtained from a 455±14 K/mm2 density with 95.76% (8,571,655/8,950,724 clusters) of the clusters passing quality control (QC) filters. Approximately 93.7% of all sequences from Read1 and 83.5% from Read2 contained high quality sequences that were ≥Q30, a base calling QC score standard. Alignments analysis identified three seasonal influenza A H3N2 strains, one 2009 pandemic influenza A H1N1 strain and two influenza B strains. The nearly entire genomes of all six virus isolates yielded equal or greater than 600-fold sequence coverage depth. MiSeq Platform identified seasonal influenza A H3N2, 2009 pandemic influenza A H1N1and influenza B in the DNA library mixtures efficiently. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Sources of PCR-induced distortions in high-throughput sequencing data sets

    Science.gov (United States)

    Kebschull, Justus M.; Zador, Anthony M.

    2015-01-01

    PCR permits the exponential and sequence-specific amplification of DNA, even from minute starting quantities. PCR is a fundamental step in preparing DNA samples for high-throughput sequencing. However, there are errors associated with PCR-mediated amplification. Here we examine the effects of four important sources of error—bias, stochasticity, template switches and polymerase errors—on sequence representation in low-input next-generation sequencing libraries. We designed a pool of diverse PCR amplicons with a defined structure, and then used Illumina sequencing to search for signatures of each process. We further developed quantitative models for each process, and compared predictions of these models to our experimental data. We find that PCR stochasticity is the major force skewing sequence representation after amplification of a pool of unique DNA amplicons. Polymerase errors become very common in later cycles of PCR but have little impact on the overall sequence distribution as they are confined to small copy numbers. PCR template switches are rare and confined to low copy numbers. Our results provide a theoretical basis for removing distortions from high-throughput sequencing data. In addition, our findings on PCR stochasticity will have particular relevance to quantification of results from single cell sequencing, in which sequences are represented by only one or a few molecules. PMID:26187991

  1. Robust DNA Isolation and High-throughput Sequencing Library Construction for Herbarium Specimens.

    Science.gov (United States)

    Saeidi, Saman; McKain, Michael R; Kellogg, Elizabeth A

    2018-03-08

    Herbaria are an invaluable source of plant material that can be used in a variety of biological studies. The use of herbarium specimens is associated with a number of challenges including sample preservation quality, degraded DNA, and destructive sampling of rare specimens. In order to more effectively use herbarium material in large sequencing projects, a dependable and scalable method of DNA isolation and library preparation is needed. This paper demonstrates a robust, beginning-to-end protocol for DNA isolation and high-throughput library construction from herbarium specimens that does not require modification for individual samples. This protocol is tailored for low quality dried plant material and takes advantage of existing methods by optimizing tissue grinding, modifying library size selection, and introducing an optional reamplification step for low yield libraries. Reamplification of low yield DNA libraries can rescue samples derived from irreplaceable and potentially valuable herbarium specimens, negating the need for additional destructive sampling and without introducing discernible sequencing bias for common phylogenetic applications. The protocol has been tested on hundreds of grass species, but is expected to be adaptable for use in other plant lineages after verification. This protocol can be limited by extremely degraded DNA, where fragments do not exist in the desired size range, and by secondary metabolites present in some plant material that inhibit clean DNA isolation. Overall, this protocol introduces a fast and comprehensive method that allows for DNA isolation and library preparation of 24 samples in less than 13 h, with only 8 h of active hands-on time with minimal modifications.

  2. Method for synthesis of high quality graphene

    Science.gov (United States)

    Lanzara, Alessandra [Piedmont, CA; Schmid, Andreas K [Berkeley, CA; Yu, Xiaozhu [Berkeley, CA; Hwang, Choonkyu [Albany, CA; Kohl, Annemarie [Beneditkbeuern, DE; Jozwiak, Chris M [Oakland, CA

    2012-03-27

    A method is described herein for the providing of high quality graphene layers on silicon carbide wafers in a thermal process. With two wafers facing each other in close proximity, in a first vacuum heating stage, while maintained at a vacuum of around 10.sup.-6 Torr, the wafer temperature is raised to about 1500.degree. C., whereby silicon evaporates from the wafer leaving a carbon rich surface, the evaporated silicon trapped in the gap between the wafers, such that the higher vapor pressure of silicon above each of the wafers suppresses further silicon evaporation. As the temperature of the wafers is raised to about 1530.degree. C. or more, the carbon atoms self assemble themselves into graphene.

  3. High quality data: An evaluation of AIM data quality and data quality procedures

    Science.gov (United States)

    The goal of every monitoring program is to collect high-quality data which can then be used to provide information to decision makers. The Bureau of Land Management (BLM) Assessment, Inventory, and Monitoring (AIM) program is one such data set which provides rangeland status, condition, and trend in...

  4. High-picture quality industrial CT scanner

    International Nuclear Information System (INIS)

    Shoji, Takao; Nishide, Akihiko; Fujii, Masashi.

    1989-01-01

    Industrial X-ray-CT-scanners, which provide cross-sectional images of a tested sample without destroying it, are attracting attention as a new nondestructive inspection device. In 1982, Toshiba commenced the development of industrial CT scanners, and introduced the 'TOSCANER' -3000 and-4000 series. Now, the state of the art 'TOSCANER'-20000 series of CT systems has been developed incorporating the latest computer tomography and image processing technology, such as the T9506 image processor. One of the advantages of this system is its applicability to a wide range of X-ray energy . The 'TOSCANER'-20000 series can be utilized for inspecting castings and other materials with relatively low-transparency to X-rays, as well as ceramics, composite materials and other materials with high X-ray transparency. A further feature of the new system is its high-picture quality, with a high-spatial resolution resulting from a pixel size of 0.2x0.2(mm). (author)

  5. [Quality management is associated with high quality services in health care].

    Science.gov (United States)

    Nielsen, Tenna Hassert; Riis, Allan; Mainz, Jan; Jensen, Anne-Louise Degn

    2013-12-09

    In these years, quality management has been the focus in order to meet high quality services for the patients in Danish health care. This article provides information on quality management and quality improvement and it evaluates its effectiveness in achieving better organizational structures, processes and results in Danish health-care organizations. Our findings generally support that quality management is associated with high quality services in health care.

  6. High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach

    Directory of Open Access Journals (Sweden)

    Allard Marc W

    2012-01-01

    Full Text Available Abstract Background Next-Generation Sequencing (NGS is increasingly being used as a molecular epidemiologic tool for discerning ancestry and traceback of the most complicated, difficult to resolve bacterial pathogens. Making a linkage between possible food sources and clinical isolates requires distinguishing the suspected pathogen from an environmental background and placing the variation observed into the wider context of variation occurring within a serovar and among other closely related foodborne pathogens. Equally important is the need to validate these high resolution molecular tools for use in molecular epidemiologic traceback. Such efforts include the examination of strain cluster stability as well as the cumulative genetic effects of sub-culturing on these clusters. Numerous isolates of S. Montevideo were shot-gun sequenced including diverse lineage representatives as well as numerous replicate clones to determine how much variability is due to bias, sequencing error, and or the culturing of isolates. All new draft genomes were compared to 34 S. Montevideo isolates previously published during an NGS-based molecular epidemiological case study. Results Intraserovar lineages of S. Montevideo differ by thousands of SNPs, that are only slightly less than the number of SNPs observed between S. Montevideo and other distinct serovars. Much less variability was discovered within an individual S. Montevideo clade implicated in a recent foodborne outbreak as well as among individual NGS replicates. These findings were similar to previous reports documenting homopolymeric and deletion error rates with the Roche 454 GS Titanium technology. In no case, however, did variability associated with sequencing methods or sample preparations create inconsistencies with our current phylogenetic results or the subsequent molecular epidemiological evidence gleaned from these data. Conclusions Implementation of a validated pipeline for NGS data acquisition and

  7. Optical studies of high quality synthetic diamond

    International Nuclear Information System (INIS)

    Sharp, S.J.

    1999-01-01

    This thesis is concerned with the study of fundamental and defect induced optical properties of synthetic diamond grown using high pressure, high temperature (HPHT) synthesis or chemical vapour deposition (CVD). The primary technique used for investigation is cathodoluminescence (including imaging and decay-time measurements) in addition to other forms of optical spectroscopy. This thesis is timely in that the crystallinity and purity of synthetic diamond has increased ten fold over the last few years. The diamond exciton emission, which is easily quenched by the presence of defects, is studied in high quality samples in detail. In addition the ability now exists to engineer the isotopic content of synthetic diamond to a high degree of accuracy. The experimental chapters are divided as follows: Chapter 2: High resolution, low temperature spectra reveal a splitting of the free-exciton phonon recombination emission peaks and the bound-exciton zero phonon line. Included are measurements of the variation in intensity and decay-time as a function of temperature. Chapter 3: The shift in energy of the phonon-assisted free-exciton phonon replicas with isotopic content has been measured. The shift is in agreement with the results of interatomic force model for phonon scattering due to isotope disorder. Chapter 4: A study of the shift in energy with isotopic content of the diamond of the GR1 band due to the neutral vacancy has allowed a verification of the theoretical predictions due to the Jahn Teller effect. Chapter 5: The spatial distribution of the free-exciton luminescence is studied in HPHT synthetic and CVD diamond. A variation in intensity with distance from the surface is interpreted as a significant non-radiative loss of excitons to the surface. Chapter 6: The decay-times of all known self-interstitial related centres have been measured in order to calculate the concentration of these centres present in electron irradiated diamond. (author)

  8. High Quality Data for Grid Integration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit; Hodge, Bri-Mathias

    2017-01-22

    As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.

  9. Extracting DNA from 'jaws': High yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Morgan, J. A T; Maher, S. L.

    2017-01-01

    of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples...... observed, likely reflecting different preparation and storage methods for the trophies. Trial sequencing of DNA capture genomic libraries using 20 000 baits revealed that a significant proportion of captured sequences were derived from tiger sharks. This study demonstrates that archived shark jaws...

  10. Applying Ancestry and Sex Computation as a Quality Control Tool in Targeted Next-Generation Sequencing.

    Science.gov (United States)

    Mathias, Patrick C; Turner, Emily H; Scroggins, Sheena M; Salipante, Stephen J; Hoffman, Noah G; Pritchard, Colin C; Shirts, Brian H

    2016-03-01

    To apply techniques for ancestry and sex computation from next-generation sequencing (NGS) data as an approach to confirm sample identity and detect sample processing errors. We combined a principal component analysis method with k-nearest neighbors classification to compute the ancestry of patients undergoing NGS testing. By combining this calculation with X chromosome copy number data, we determined the sex and ancestry of patients for comparison with self-report. We also modeled the sensitivity of this technique in detecting sample processing errors. We applied this technique to 859 patient samples with reliable self-report data. Our k-nearest neighbors ancestry screen had an accuracy of 98.7% for patients reporting a single ancestry. Visual inspection of principal component plots was consistent with self-report in 99.6% of single-ancestry and mixed-ancestry patients. Our model demonstrates that approximately two-thirds of potential sample swaps could be detected in our patient population using this technique. Patient ancestry can be estimated from NGS data incidentally sequenced in targeted panels, enabling an inexpensive quality control method when coupled with patient self-report. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Viral metagenomics: Analysis of begomoviruses by illumina high-throughput sequencing

    KAUST Repository

    Idris, Ali

    2014-03-12

    Traditional DNA sequencing methods are inefficient, lack the ability to discern the least abundant viral sequences, and ineffective for determining the extent of variability in viral populations. Here, populations of single-stranded DNA plant begomoviral genomes and their associated beta- and alpha-satellite molecules (virus-satellite complexes) (genus, Begomovirus; family, Geminiviridae) were enriched from total nucleic acids isolated from symptomatic, field-infected plants, using rolling circle amplification (RCA). Enriched virus-satellite complexes were subjected to Illumina-Next Generation Sequencing (NGS). CASAVA and SeqMan NGen programs were implemented, respectively, for quality control and for de novo and reference-guided contig assembly of viral-satellite sequences. The authenticity of the begomoviral sequences, and the reproducibility of the Illumina-NGS approach for begomoviral deep sequencing projects, were validated by comparing NGS results with those obtained using traditional molecular cloning and Sanger sequencing of viral components and satellite DNAs, also enriched by RCA or amplified by polymerase chain reaction. As the use of NGS approaches, together with advances in software development, make possible deep sequence coverage at a lower cost; the approach described herein will streamline the exploration of begomovirus diversity and population structure from naturally infected plants, irrespective of viral abundance. This is the first report of the implementation of Illumina-NGS to explore the diversity and identify begomoviral-satellite SNPs directly from plants naturally-infected with begomoviruses under field conditions. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  12. Viral Metagenomics: Analysis of Begomoviruses by Illumina High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Ali Idris

    2014-03-01

    Full Text Available Traditional DNA sequencing methods are inefficient, lack the ability to discern the least abundant viral sequences, and ineffective for determining the extent of variability in viral populations. Here, populations of single-stranded DNA plant begomoviral genomes and their associated beta- and alpha-satellite molecules (virus-satellite complexes (genus, Begomovirus; family, Geminiviridae were enriched from total nucleic acids isolated from symptomatic, field-infected plants, using rolling circle amplification (RCA. Enriched virus-satellite complexes were subjected to Illumina-Next Generation Sequencing (NGS. CASAVA and SeqMan NGen programs were implemented, respectively, for quality control and for de novo and reference-guided contig assembly of viral-satellite sequences. The authenticity of the begomoviral sequences, and the reproducibility of the Illumina-NGS approach for begomoviral deep sequencing projects, were validated by comparing NGS results with those obtained using traditional molecular cloning and Sanger sequencing of viral components and satellite DNAs, also enriched by RCA or amplified by polymerase chain reaction. As the use of NGS approaches, together with advances in software development, make possible deep sequence coverage at a lower cost; the approach described herein will streamline the exploration of begomovirus diversity and population structure from naturally infected plants, irrespective of viral abundance. This is the first report of the implementation of Illumina-NGS to explore the diversity and identify begomoviral-satellite SNPs directly from plants naturally-infected with begomoviruses under field conditions.

  13. Animated Cell Biology: A Quick and Easy Method for Making Effective, High-Quality Teaching Animations

    Science.gov (United States)

    O'Day, Danton H.

    2006-01-01

    There is accumulating evidence that animations aid learning of dynamic concepts in cell biology. However, existing animation packages are expensive and difficult to learn, and the subsequent production of even short animations can take weeks to months. Here I outline the principles and sequence of steps for producing high-quality PowerPoint…

  14. Multiple Teaching Approaches, Teaching Sequence and Concept Retention in High School Physics Education

    Science.gov (United States)

    Fogarty, Ian; Geelan, David

    2013-01-01

    Students in 4 Canadian high school physics classes completed instructional sequences in two key physics topics related to motion--Straight Line Motion and Newton's First Law. Different sequences of laboratory investigation, teacher explanation (lecture) and the use of computer-based scientific visualizations (animations and simulations) were…

  15. High-throughput sequencing of forensic genetic samples using punches of FTA cards with buccal swabs

    DEFF Research Database (Denmark)

    Kampmann, Marie-Louise; Buchard, Anders; Børsting, Claus

    2016-01-01

    Here, we demonstrate that punches from buccal swab samples preserved on FTA cards can be used for high-throughput DNA sequencing, also known as massively parallel sequencing (MPS). We typed 44 reference samples with the HID-Ion AmpliSeq Identity Panel using washed 1.2 mm punches from FTA cards...

  16. The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies.

    Directory of Open Access Journals (Sweden)

    Patrick D Schloss

    Full Text Available Pyrosequencing of PCR-amplified fragments that target variable regions within the 16S rRNA gene has quickly become a powerful method for analyzing the membership and structure of microbial communities. This approach has revealed and introduced questions that were not fully appreciated by those carrying out traditional Sanger sequencing-based methods. These include the effects of alignment quality, the best method of calculating pairwise genetic distances for 16S rRNA genes, whether it is appropriate to filter variable regions, and how the choice of variable region relates to the genetic diversity observed in full-length sequences. I used a diverse collection of 13,501 high-quality full-length sequences to assess each of these questions. First, alignment quality had a significant impact on distance values and downstream analyses. Specifically, the greengenes alignment, which does a poor job of aligning variable regions, predicted higher genetic diversity, richness, and phylogenetic diversity than the SILVA and RDP-based alignments. Second, the effect of different gap treatments in determining pairwise genetic distances was strongly affected by the variation in sequence length for a region; however, the effect of different calculation methods was subtle when determining the sample's richness or phylogenetic diversity for a region. Third, applying a sequence mask to remove variable positions had a profound impact on genetic distances by muting the observed richness and phylogenetic diversity. Finally, the genetic distances calculated for each of the variable regions did a poor job of correlating with the full-length gene. Thus, while it is tempting to apply traditional cutoff levels derived for full-length sequences to these shorter sequences, it is not advisable. Analysis of beta-diversity metrics showed that each of these factors can have a significant impact on the comparison of community membership and structure. Taken together, these results

  17. Subfamily logos: visualization of sequence deviations at alignment positions with high information content

    Directory of Open Access Journals (Sweden)

    Beitz Eric

    2006-06-01

    Full Text Available Abstract Background Recognition of relevant sequence deviations can be valuable for elucidating functional differences between protein subfamilies. Interesting residues at highly conserved positions can then be mutated and experimentally analyzed. However, identification of such sites is tedious because automated approaches are scarce. Results Subfamily logos visualize subfamily-specific sequence deviations. The display is similar to classical sequence logos but extends into the negative range. Positive, upright characters correspond to residues which are characteristic for the subfamily, negative, upside-down characters to residues typical for the remaining sequences. The symbol height is adjusted to the information content of the alignment position. Residues which are conserved throughout do not appear. Conclusion Subfamily logos provide an intuitive display of relevant sequence deviations. The method has proven to be valid using a set of 135 aligned aquaporin sequences in which established subfamily-specific positions were readily identified by the algorithm.

  18. Library Design-Facilitated High-Throughput Sequencing of Synthetic Peptide Libraries.

    Science.gov (United States)

    Vinogradov, Alexander A; Gates, Zachary P; Zhang, Chi; Quartararo, Anthony J; Halloran, Kathryn H; Pentelute, Bradley L

    2017-11-13

    A methodology to achieve high-throughput de novo sequencing of synthetic peptide mixtures is reported. The approach leverages shotgun nanoliquid chromatography coupled with tandem mass spectrometry-based de novo sequencing of library mixtures (up to 2000 peptides) as well as automated data analysis protocols to filter away incorrect assignments, noise, and synthetic side-products. For increasing the confidence in the sequencing results, mass spectrometry-friendly library designs were developed that enabled unambiguous decoding of up to 600 peptide sequences per hour while maintaining greater than 85% sequence identification rates in most cases. The reliability of the reported decoding strategy was additionally confirmed by matching fragmentation spectra for select authentic peptides identified from library sequencing samples. The methods reported here are directly applicable to screening techniques that yield mixtures of active compounds, including particle sorting of one-bead one-compound libraries and affinity enrichment of synthetic library mixtures performed in solution.

  19. Effects of aging and freezing/thawing sequence on quality attributes of bovine and

    Directory of Open Access Journals (Sweden)

    Hyun-Wook Kim

    2017-02-01

    Full Text Available Objective The effects of aging and freezing/thawing sequence on color, physicochemical, and enzymatic characteristics of two beef muscles (Mm. gluteus medius, GM and biceps femoris, BF were evaluated. Methods Beef muscles at 3 d postmortem were assigned to four different combinations of aging and freezing/thawing sequence as follows; aging at 2°C for 3 wk (A3, never-frozen control, freezing at −28°C for 2 wk then thawing (F2, frozen/thawed-only, aging at 2°C for 3 wk, freezing at −28°C for 2 wk then thawing (A3F2, and freezing at −28°C for 2 wk, thawing then further aging at 2°C for 3 wk (F2A3. Results No significant interactions between different aging/freezing/thawing treatments and muscle type on all measurements were found. Postmortem aging, regardless of aging/freezing/thawing sequence, had no impact on color stability of frozen/thawed beef muscles (p<0.05. F2A3 resulted in higher purge loss than F2 and A3F2 treatments (p<0.05. A3F2 and F2A3 treatments resulted in lower shear force of beef muscles compared to F2 (p<0.05. Although there was no significant difference in glutathione peroxidase (GSH-Px activity, F2A3 had the highest β-N-acetyl glucominidase (BNAG activity in purge, but the lowest BNAG activity in muscle (p<0.05. GM muscle exhibited higher total color changes and purge loss, and lower GSH-Px activity than BF muscle. Conclusion The results from this present study indicate that different combinations of aging/freezing/thawing sequence would result in considerable impacts on meat quality attributes, particularly thaw/purge loss and tenderness. Developing a novel freezing strategy combined with postmortem aging will be beneficial for the food/meat industry to maximize its positive impacts on tenderness, while minimizing thaw/purge loss of frozen/thawed meat.

  20. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information

    Science.gov (United States)

    2012-01-01

    Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource

  1. Characterization of the indigenous microflora in raw and pasteurized buffalo milk during storage at refrigeration temperature by high-throughput sequencing

    Science.gov (United States)

    The effect of refrigeration on bacterial communities within raw and pasteurized buffalo milk was studied using high-throughput sequencing. High quality samples of raw buffalo milk were obtained from five dairy farms in the Guangxi province of China. A sample of each milk was pasteurized, and both r...

  2. Highly conserved non-coding sequences are associated with vertebrate development.

    Directory of Open Access Journals (Sweden)

    Adam Woolfe

    2005-01-01

    Full Text Available In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH, in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development

  3. ISRNA: an integrative online toolkit for short reads from high-throughput sequencing data.

    Science.gov (United States)

    Luo, Guan-Zheng; Yang, Wei; Ma, Ying-Ke; Wang, Xiu-Jie

    2014-02-01

    Integrative Short Reads NAvigator (ISRNA) is an online toolkit for analyzing high-throughput small RNA sequencing data. Besides the high-speed genome mapping function, ISRNA provides statistics for genomic location, length distribution and nucleotide composition bias analysis of sequence reads. Number of reads mapped to known microRNAs and other classes of short non-coding RNAs, coverage of short reads on genes, expression abundance of sequence reads as well as some other analysis functions are also supported. The versatile search functions enable users to select sequence reads according to their sub-sequences, expression abundance, genomic location, relationship to genes, etc. A specialized genome browser is integrated to visualize the genomic distribution of short reads. ISRNA also supports management and comparison among multiple datasets. ISRNA is implemented in Java/C++/Perl/MySQL and can be freely accessed at http://omicslab.genetics.ac.cn/ISRNA/.

  4. Applications of high-throughput sequencing to chromatin structure and function in mammals

    OpenAIRE

    Dunham, Ian

    2009-01-01

    High-throughput DNA sequencing approaches have enabled direct interrogation of chromatin samples from mammalian cells. We are beginning to develop a genome-wide description of nuclear function during development, but further data collection, refinement, and integration are needed.

  5. Continuous- and Discrete-Time Stimulus Sequences for High Stimulus Rate Paradigm in Evoked Potential Studies

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2013-01-01

    Full Text Available To obtain reliable transient auditory evoked potentials (AEPs from EEGs recorded using high stimulus rate (HSR paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm.

  6. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease

    OpenAIRE

    Chen, Hui; Jiang, Wen

    2014-01-01

    The oral microbiome is one of most diversity habitat in the human body and they are closely related with oral health and disease. As the technique developing,, high throughput sequencing has become a popular approach applied for oral microbial analysis. Oral bacterial profiles have been studied to explore the relationship between microbial diversity and oral diseases such as caries and periodontal disease. This review describes the application of high-throughput sequencing for characterizati...

  7. Ensuring High-Quality Learning for All

    Science.gov (United States)

    Núñez, Elsa M.

    2018-01-01

    The Association of American Colleges and Universities (AAC&U) has embarked on a sustained program to enhance the quality of student learning on campuses, while also supporting AAC&U members' efforts to bring liberal education to all sectors of society. This commitment to quality and equity in service to democracy forms the basis for…

  8. Gene discovery and molecular marker development, based on high-throughput transcript sequencing of Paspalum dilatatum Poir.

    Directory of Open Access Journals (Sweden)

    Andrea Giordano

    Full Text Available BACKGROUND: Paspalum dilatatum Poir. (common name dallisgrass is a native grass species of South America, with special relevance to dairy and red meat production. P. dilatatum exhibits higher forage quality than other C4 forage grasses and is tolerant to frost and water stress. This species is predominantly cultivated in an apomictic monoculture, with an inherent high risk that biotic and abiotic stresses could potentially devastate productivity. Therefore, advanced breeding strategies that characterise and use available genetic diversity, or assess germplasm collections effectively are required to deliver advanced cultivars for production systems. However, there are limited genomic resources available for this forage grass species. RESULTS: Transcriptome sequencing using second-generation sequencing platforms has been employed using pooled RNA from different tissues (stems, roots, leaves and inflorescences at the final reproductive stage of P. dilatatum cultivar Primo. A total of 324,695 sequence reads were obtained, corresponding to c. 102 Mbp. The sequences were assembled, generating 20,169 contigs of a combined length of 9,336,138 nucleotides. The contigs were BLAST analysed against the fully sequenced grass species of Oryza sativa subsp. japonica, Brachypodium distachyon, the closely related Sorghum bicolor and foxtail millet (Setaria italica genomes as well as against the UniRef 90 protein database allowing a comprehensive gene ontology analysis to be performed. The contigs generated from the transcript sequencing were also analysed for the presence of simple sequence repeats (SSRs. A total of 2,339 SSR motifs were identified within 1,989 contigs and corresponding primer pairs were designed. Empirical validation of a cohort of 96 SSRs was performed, with 34% being polymorphic between sexual and apomictic biotypes. CONCLUSIONS: The development of genetic and genomic resources for P. dilatatum will contribute to gene discovery and expression

  9. Highly parallel translation of DNA sequences into small molecules.

    Directory of Open Access Journals (Sweden)

    Rebecca M Weisinger

    Full Text Available A large body of in vitro evolution work establishes the utility of biopolymer libraries comprising 10(10 to 10(15 distinct molecules for the discovery of nanomolar-affinity ligands to proteins. Small-molecule libraries of comparable complexity will likely provide nanomolar-affinity small-molecule ligands. Unlike biopolymers, small molecules can offer the advantages of cell permeability, low immunogenicity, metabolic stability, rapid diffusion and inexpensive mass production. It is thought that such desirable in vivo behavior is correlated with the physical properties of small molecules, specifically a limited number of hydrogen bond donors and acceptors, a defined range of hydrophobicity, and most importantly, molecular weights less than 500 Daltons. Creating a collection of 10(10 to 10(15 small molecules that meet these criteria requires the use of hundreds to thousands of diversity elements per step in a combinatorial synthesis of three to five steps. With this goal in mind, we have reported a set of mesofluidic devices that enable DNA-programmed combinatorial chemistry in a highly parallel 384-well plate format. Here, we demonstrate that these devices can translate DNA genes encoding 384 diversity elements per coding position into corresponding small-molecule gene products. This robust and efficient procedure yields small molecule-DNA conjugates suitable for in vitro evolution experiments.

  10. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  11. Sedimentology and High Resolution Sequence Stratigraphy of the Middle Jurassic Dhruma Formation Carbonates Outcrops in the Central Saudi Arabia

    Science.gov (United States)

    Yousif, Ibrahim; Abdullatif, Osman; Makkawi, Mohammed; Abdulghani, Waleed

    2017-04-01

    This study investigates the microfacies and sequence stratigraphic frame work of the Middle Jurassic Dhruma Formation in outcrops in central Saudi Arabia. The study contributes to the efforts to understand and enhance local and regional stratigraphic relationship and correlation of the Jurassic carbonate sequences and their significance to reservoir description and prediction in the subsurcae. The study describes and characterizes the sedimentology, microfacies and the stratigraphy of Dhruma Formation from outcrop sections having a total thickness of 70 m. Detailed microfacies and high-resolution stratigraphical analysis were carried out to determine microfacies, cyclicity, sequences and staking pattern. The study revealed ten lithofacies namely: oolitic grainstone,bioclastic oolitic grainstone, oolitic grapestone, bioclastic grainstone,foraminiferal packstone, echinoderm packstone, peloidal packstone to grainstone,skeletal wackestone to packstone, mudstone, and marlstone.These lithofacies were grouped into five lithofacies associations that deposited on a carbonate ramp setting. The depositional environment ranging from low energy lagoonal setting to high-energy shoals and banks to low energy outer ramp setting. Five high-resolution composite sequences have been defined and each sequence is composed at the bottom of intercalated mudstone/wackestone that passing up into grainstone lithofacies.The composite sequences range in thickness from 7 to 15 m, while the parasequences range from 0.5 to 1.5 m. The composite sequences extend laterally for a distance of more than 350 m. The overall composite section shows a shallowing upward succession of the 4th to the 5th order high-resolution sequences.The dominant lithofacies are the grainy ones, which constitute 30%, 50% and 80% of the studied sections. Furthermore, the parasequences thickness and their bio-components are increasing towards the top. The muddy lithofacies intensively affected the vertical continuity of the

  12. Highly accurate sequence imputation enables precise QTL mapping in Brown Swiss cattle.

    Science.gov (United States)

    Frischknecht, Mirjam; Pausch, Hubert; Bapst, Beat; Signer-Hasler, Heidi; Flury, Christine; Garrick, Dorian; Stricker, Christian; Fries, Ruedi; Gredler-Grandl, Birgit

    2017-12-29

    Within the last few years a large amount of genomic information has become available in cattle. Densities of genomic information vary from a few thousand variants up to whole genome sequence information. In order to combine genomic information from different sources and infer genotypes for a common set of variants, genotype imputation is required. In this study we evaluated the accuracy of imputation from high density chips to whole genome sequence data in Brown Swiss cattle. Using four popular imputation programs (Beagle, FImpute, Impute2, Minimac) and various compositions of reference panels, the accuracy of the imputed sequence variant genotypes was high and differences between the programs and scenarios were small. We imputed sequence variant genotypes for more than 1600 Brown Swiss bulls and performed genome-wide association studies for milk fat percentage at two stages of lactation. We found one and three quantitative trait loci for early and late lactation fat content, respectively. Known causal variants that were imputed from the sequenced reference panel were among the most significantly associated variants of the genome-wide association study. Our study demonstrates that whole-genome sequence information can be imputed at high accuracy in cattle populations. Using imputed sequence variant genotypes in genome-wide association studies may facilitate causal variant detection.

  13. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.

    Science.gov (United States)

    Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver

    2012-07-15

    In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license.

  14. A priori Considerations When Conducting High-Throughput Amplicon-Based Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Aditi Sengupta

    2016-03-01

    Full Text Available Amplicon-based sequencing strategies that include 16S rRNA and functional genes, alongside “meta-omics” analyses of communities of microorganisms, have allowed researchers to pose questions and find answers to “who” is present in the environment and “what” they are doing. Next-generation sequencing approaches that aid microbial ecology studies of agricultural systems are fast gaining popularity among agronomy, crop, soil, and environmental science researchers. Given the rapid development of these high-throughput sequencing techniques, researchers with no prior experience will desire information about the best practices that can be used before actually starting high-throughput amplicon-based sequence analyses. We have outlined items that need to be carefully considered in experimental design, sampling, basic bioinformatics, sequencing of mock communities and negative controls, acquisition of metadata, and in standardization of reaction conditions as per experimental requirements. Not all considerations mentioned here may pertain to a particular study. The overall goal is to inform researchers about considerations that must be taken into account when conducting high-throughput microbial DNA sequencing and sequences analysis.

  15. Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Johansen

    Full Text Available A highly divergent 16S rRNA gene was found in one of the five ribosomal operons present in a species complex currently circumscribed as Scytonema hyalinum (Nostocales, Cyanobacteria using clone libraries. If 16S rRNA sequence macroheterogeneity among ribosomal operons due to insertions, deletions or truncation is excluded, the sequence heterogeneity observed in S. hyalinum was the highest observed in any prokaryotic species thus far (7.3-9.0%. The secondary structure of the 16S rRNA molecules encoded by the two divergent operons was nearly identical, indicating possible functionality. The 23S rRNA gene was examined for a few strains in this complex, and it was also found to be highly divergent from the gene in Type 2 operons (8.7%, and likewise had nearly identical secondary structure between the Type 1 and Type 2 operons. Furthermore, the 16S-23S ITS showed marked differences consistent between operons among numerous strains. Both operons have promoter sequences that satisfy consensus requirements for functional prokaryotic transcription initiation. Horizontal gene transfer from another unknown heterocytous cyanobacterium is considered the most likely explanation for the origin of this molecule, but does not explain the ultimate origin of this sequence, which is very divergent from all 16S rRNA sequences found thus far in cyanobacteria. The divergent sequence is highly conserved among numerous strains of S. hyalinum, suggesting adaptive advantage and selective constraint of the divergent sequence.

  16. Fast high-resolution MR imaging using the snapshot-FLASH MR sequence

    International Nuclear Information System (INIS)

    Matthaei, D.; Haase, A.; Henrich, D.; Duhmke, E.

    1990-01-01

    Snapshot, fast low-angle short (FLASH) MR imaging using an accelerated FLASH-MR sequence provides MR images with measuring times far below 1 second. The short TE of this sequence prevents susceptibility artifacts in gradient-echo imaging. In this paper variations of the sequence are shown that provide high resolution images with T1-weighted IR, T2-weighted SE, and chemical shift (CHESS) contrast sequences. METHODS AND MATERIALS: A whole-body 2-T system (Bruker-Medizintechnik) were used in combination with a 60-cm gradient system (providing gradient strength of 5 mT/m) to study healthy volunteers. The measuring time for a 256 x 256 image matrix was 800 msec. This sequence has been used in combination with T1-weighted IR, T2-weighted SE, and CHESS variations

  17. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.

    Science.gov (United States)

    Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M

    2016-09-07

    Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities.

    Science.gov (United States)

    Tan, BoonFei; Ng, Charmaine; Nshimyimana, Jean Pierre; Loh, Lay Leng; Gin, Karina Y-H; Thompson, Janelle R

    2015-01-01

    Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools.

  19. High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche Genome Sequencer FLX platform

    DEFF Research Database (Denmark)

    Fordyce, Sarah Louise; Avila Arcos, Maria del Carmen; Rockenbauer, Eszter

    2011-01-01

    repeat units. These methods do not allow for the full resolution of STR base composition that sequencing approaches could provide. Here we present an STR profiling method based on the use of the Roche Genome Sequencer (GS) FLX to simultaneously sequence multiple core STR loci. Using this method...

  20. High-throughput sequencing of forensic genetic samples using punches of FTA cards with buccal swabs.

    Science.gov (United States)

    Kampmann, Marie-Louise; Buchard, Anders; Børsting, Claus; Morling, Niels

    2016-01-01

    Here, we demonstrate that punches from buccal swab samples preserved on FTA cards can be used for high-throughput DNA sequencing, also known as massively parallel sequencing (MPS). We typed 44 reference samples with the HID-Ion AmpliSeq Identity Panel using washed 1.2 mm punches from FTA cards with buccal swabs and compared the results with those obtained with DNA extracted using the EZ1 DNA Investigator Kit. Concordant profiles were obtained for all samples. Our protocol includes simple punch, wash, and PCR steps, reducing cost and hands-on time in the laboratory. Furthermore, it facilitates automation of DNA sequencing.

  1. High signals in the uterine cervix on T2-weighted MRI sequences

    International Nuclear Information System (INIS)

    Graef, De M.; Karam, R.; Daclin, P.Y.; Rouanet, J.P.; Juhan, V.; Maubon, A.J.

    2003-01-01

    The aim of this pictorial review was to illustrate the normal cervix appearance on T2-weighted images, and give a review of common or less common disorders of the uterine cervix that appear as high signal intensity lesions on T2-weighted sequences. Numerous aetiologies dominated by cervical cancer are reviewed and discussed. This gamut is obviously incomplete; however, radiologists who perform MR women's imaging should perform T2-weighted sequences in the sagittal plane regardless of the indication for pelvic MR. Those sequences will diagnose some previously unknown cervical cancers as well as many other unknown cervical or uterine lesions. (orig.)

  2. High Efficiency, Illumination Quality OLEDs for Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown

  3. Targeted DNA Methylation Analysis by High Throughput Sequencing in Porcine Peri-attachment Embryos

    OpenAIRE

    MORRILL, Benson H.; COX, Lindsay; WARD, Anika; HEYWOOD, Sierra; PRATHER, Randall S.; ISOM, S. Clay

    2013-01-01

    Abstract The purpose of this experiment was to implement and evaluate the effectiveness of a next-generation sequencing-based method for DNA methylation analysis in porcine embryonic samples. Fourteen discrete genomic regions were amplified by PCR using bisulfite-converted genomic DNA derived from day 14 in vivo-derived (IVV) and parthenogenetic (PA) porcine embryos as template DNA. Resulting PCR products were subjected to high-throughput sequencing using the Illumina Genome Analyzer IIx plat...

  4. Retirement Sequences of Older Americans: Moderately Destandardized and Highly Stratified Across Gender, Class, and Race.

    Science.gov (United States)

    Calvo, Esteban; Madero-Cabib, Ignacio; Staudinger, Ursula M

    2017-06-06

    A destandardization of labor-force patterns revolving around retirement has been observed in recent literature. It is unclear, however, to which degree and of which kind. This study looked at sequences rather than individual statuses or transitions and argued that differentiating older Americans' retirement sequences by type, order, and timing and considering gender, class, and race differences yields a less destandardized picture. Sequence analysis was employed to analyze panel data from the Health and Retirement Study (HRS) for 7,881 individuals observed 6 consecutive times between ages 60-61 and 70-71. As expected, types of retirement sequences were identified that cannot be subsumed under the conventional model of complete retirement from full-time employment around age 65. However, these retirement sequences were not entirely destandardized, as some irreversibility and age-grading persisted. Further, the degree of destandardization varied along gender, class, and race. Unconventional sequences were archetypal for middle-level educated individuals and Blacks. Also, sequences for women and individuals with lower education showed more unemployment and part-time jobs, and less age-grading. A sequence-analytic approach that models group differences uncovers misjudgments about the degree of destandardization of retirement sequences. When a continuous process is represented as individual transitions, the overall pattern of retirement sequences gets lost and appears destandardized. These patterns get further complicated by differences in social structures by gender, class, and race in ways that seem to reproduce advantages that men, more highly educated individuals, and Whites enjoy in numerous areas over the life course. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. High depth, whole-genome sequencing of cholera isolates from Haiti and the Dominican Republic.

    Science.gov (United States)

    Sealfon, Rachel; Gire, Stephen; Ellis, Crystal; Calderwood, Stephen; Qadri, Firdausi; Hensley, Lisa; Kellis, Manolis; Ryan, Edward T; LaRocque, Regina C; Harris, Jason B; Sabeti, Pardis C

    2012-09-11

    Whole-genome sequencing is an important tool for understanding microbial evolution and identifying the emergence of functionally important variants over the course of epidemics. In October 2010, a severe cholera epidemic began in Haiti, with additional cases identified in the neighboring Dominican Republic. We used whole-genome approaches to sequence four Vibrio cholerae isolates from Haiti and the Dominican Republic and three additional V. cholerae isolates to a high depth of coverage (>2000x); four of the seven isolates were previously sequenced. Using these sequence data, we examined the effect of depth of coverage and sequencing platform on genome assembly and identification of sequence variants. We found that 50x coverage is sufficient to construct a whole-genome assembly and to accurately call most variants from 100 base pair paired-end sequencing reads. Phylogenetic analysis between the newly sequenced and thirty-three previously sequenced V. cholerae isolates indicates that the Haitian and Dominican Republic isolates are closest to strains from South Asia. The Haitian and Dominican Republic isolates form a tight cluster, with only four variants unique to individual isolates. These variants are located in the CTX region, the SXT region, and the core genome. Of the 126 mutations identified that separate the Haiti-Dominican Republic cluster from the V. cholerae reference strain (N16961), 73 are non-synonymous changes, and a number of these changes cluster in specific genes and pathways. Sequence variant analyses of V. cholerae isolates, including multiple isolates from the Haitian outbreak, identify coverage-specific and technology-specific effects on variant detection, and provide insight into genomic change and functional evolution during an epidemic.

  6. High depth, whole-genome sequencing of cholera isolates from Haiti and the Dominican Republic

    Directory of Open Access Journals (Sweden)

    Sealfon Rachel

    2012-09-01

    Full Text Available Abstract Background Whole-genome sequencing is an important tool for understanding microbial evolution and identifying the emergence of functionally important variants over the course of epidemics. In October 2010, a severe cholera epidemic began in Haiti, with additional cases identified in the neighboring Dominican Republic. We used whole-genome approaches to sequence four Vibrio cholerae isolates from Haiti and the Dominican Republic and three additional V. cholerae isolates to a high depth of coverage (>2000x; four of the seven isolates were previously sequenced. Results Using these sequence data, we examined the effect of depth of coverage and sequencing platform on genome assembly and identification of sequence variants. We found that 50x coverage is sufficient to construct a whole-genome assembly and to accurately call most variants from 100 base pair paired-end sequencing reads. Phylogenetic analysis between the newly sequenced and thirty-three previously sequenced V. cholerae isolates indicates that the Haitian and Dominican Republic isolates are closest to strains from South Asia. The Haitian and Dominican Republic isolates form a tight cluster, with only four variants unique to individual isolates. These variants are located in the CTX region, the SXT region, and the core genome. Of the 126 mutations identified that separate the Haiti-Dominican Republic cluster from the V. cholerae reference strain (N16961, 73 are non-synonymous changes, and a number of these changes cluster in specific genes and pathways. Conclusions Sequence variant analyses of V. cholerae isolates, including multiple isolates from the Haitian outbreak, identify coverage-specific and technology-specific effects on variant detection, and provide insight into genomic change and functional evolution during an epidemic.

  7. The specificity of memory for a highly trained finger movement sequence: Change the ending, change all.

    Science.gov (United States)

    Rozanov, Simon; Keren, Ofer; Karni, Avi

    2010-05-17

    How are highly trained movement sequences represented in long-term memory? Here we show that the gains attained in the performance of a well-trained sequence of finger movements can be expressed only when the order of the movements is exactly as practiced. Ten young adults were trained to perform a given 5-element sequence of finger-to-thumb opposition movements with their left hand. Movements were analyzed using video based tracking. Three weeks of training resulted, along with improved accuracy, in robustly shortened movement times as well as shorter finger-to-thumb touch times. However, there was little transfer of these gains in speed to the execution of the same component movements arranged in a new order. Moreover, even when the only change was the omission of the one before final movement of the trained sequence (Omit sequence), the initial movements of the sequence were significantly slowed down, although these movements were identical to the initial movements of the trained sequence. Our results support the notion that a well-trained sequence of finger movements can be represented, in the adult motor system, as a singular, co-articulated, unit of movement, in which even the initial component movements are contingent on the subsequent, anticipated, ones. Because of co-articulation related anticipatory effects, gains in fluency and accuracy acquired in training on a specific movement sequence cannot be expressed in full in the execution of the trained component movements or of a full segment of the trained sequence, if followed by a different ending segment. Copyright 2010. Published by Elsevier B.V.

  8. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses.

    Science.gov (United States)

    Vetrovský, Tomáš; Baldrian, Petr; Morais, Daniel; Berger, Bonnie

    2018-02-14

    Modern molecular methods have increased our ability to describe microbial communities. Along with the advances brought by new sequencing technologies, we now require intensive computational resources to make sense of the large numbers of sequences continuously produced. The software developed by the scientific community to address this demand, although very useful, require experience of the command-line environment, extensive training and have steep learning curves, limiting their use. We created SEED 2, a graphical user interface for handling high-throughput amplicon-sequencing data under Windows operating systems. SEED 2 is the only sequence visualizer that empowers users with tools to handle amplicon-sequencing data of microbial community markers. It is suitable for any marker genes sequences obtained through Illumina, IonTorrent or Sanger sequencing. SEED 2 allows the user to process raw sequencing data, identify specific taxa, produce of OTU-tables, create sequence alignments and construct phylogenetic trees. Standard dual core laptops with 8 GB of RAM can handle ca. 8 million of Illumina PE 300 bp sequences, ca. 4GB of data. SEED 2 was implemented in Object Pascal and uses internal functions and external software for amplicon data processing. SEED 2 is a freeware software, available at http://www.biomed.cas.cz/mbu/lbwrf/seed/ as a self-contained file, including all the dependencies, and does not require installation. Supplementary data contain a comprehensive list of supported functions. daniel.morais@biomed.cas.cz. Supplementary data are available at Bioinformatics online. © The Author(s) 2018. Published by Oxford University Press.

  9. Isolation of high quality RNA from pistachio (Pistacia vera L.) and other woody plants high in secondary metabolites.

    Science.gov (United States)

    Moazzam Jazi, Maryam; Rajaei, Saideh; Seyedi, Seyed Mahdi

    2015-10-01

    The quality and quantity of RNA are critical for successful downstream transcriptome-based studies such as microarrays and RNA sequencing (RNA-Seq). RNA isolation from woody plants, such as Pistacia vera, with very high amounts of polyphenols and polysaccharides is an enormous challenge. Here, we describe a highly efficient protocol that overcomes the limitations posed by poor quality and low yield of isolated RNA from pistachio and various recalcitrant woody plants. The key factors that resulted in a yield of 150 μg of high quality RNA per 200 mg of plant tissue include the elimination of phenol from the extraction buffer, raising the concentration of β-mercaptoethanol, long time incubation at 65 °C, and nucleic acid precipitation with optimized volume of NaCl and isopropyl alcohol. Also, the A260/A280 and A260/A230 of extracted RNA were about 1.9-2.1and 2.2-2.3, respectively, revealing the high purity. Since the isolated RNA passed highly stringent quality control standards for sensitive reactions, including RNA sequencing and real-time PCR, it can be considered as a reliable and cost-effective method for RNA extraction from woody plants.

  10. The application of the high throughput sequencing technology in the transposable elements.

    Science.gov (United States)

    Liu, Zhen; Xu, Jian-hong

    2015-09-01

    High throughput sequencing technology has dramatically improved the efficiency of DNA sequencing, and decreased the costs to a great extent. Meanwhile, this technology usually has advantages of better specificity, higher sensitivity and accuracy. Therefore, it has been applied to the research on genetic variations, transcriptomics and epigenomics. Recently, this technology has been widely employed in the studies of transposable elements and has achieved fruitful results. In this review, we summarize the application of high throughput sequencing technology in the fields of transposable elements, including the estimation of transposon content, preference of target sites and distribution, insertion polymorphism and population frequency, identification of rare copies, transposon horizontal transfers as well as transposon tagging. We also briefly introduce the major common sequencing strategies and algorithms, their advantages and disadvantages, and the corresponding solutions. Finally, we envision the developing trends of high throughput sequencing technology, especially the third generation sequencing technology, and its application in transposon studies in the future, hopefully providing a comprehensive understanding and reference for related scientific researchers.

  11. Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping

    Directory of Open Access Journals (Sweden)

    Walid Mottawea

    2018-05-01

    Full Text Available Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide. Prompt and accurate identification of the sources of Salmonella responsible for disease outbreaks is crucial to minimize infections and eliminate ongoing sources of contamination. Current subtyping tools including single nucleotide polymorphism (SNP typing may be inadequate, in some instances, to provide the required discrimination among epidemiologically unrelated Salmonella strains. Prophage genes represent the majority of the accessory genes in bacteria genomes and have potential to be used as high discrimination markers in Salmonella. In this study, the prophage sequence diversity in different Salmonella serovars and genetically related strains was investigated. Using whole genome sequences of 1,760 isolates of S. enterica representing 151 Salmonella serovars and 66 closely related bacteria, prophage sequences were identified from assembled contigs using PHASTER. We detected 154 different prophages in S. enterica genomes. Prophage sequences were highly variable among S. enterica serovars with a median ± interquartile range (IQR of 5 ± 3 prophage regions per genome. While some prophage sequences were highly conserved among the strains of specific serovars, few regions were lineage specific. Therefore, strains belonging to each serovar could be clustered separately based on their prophage content. Analysis of S. Enteritidis isolates from seven outbreaks generated distinct prophage profiles for each outbreak. Taken altogether, the diversity of the prophage sequences correlates with genome diversity. Prophage repertoires provide an additional marker for differentiating S. enterica subtypes during foodborne outbreaks.

  12. Analysis of high-quality modes in open chaotic microcavities

    International Nuclear Information System (INIS)

    Fang, W.; Yamilov, A.; Cao, H.

    2005-01-01

    We present a numerical study of the high-quality modes in two-dimensional dielectric stadium microcavities. Although the classical ray mechanics is fully chaotic in a stadium billiard, all of the high-quality modes show a 'strong scar' around unstable periodic orbits. When the deformation (ratio of the length of the straight segments over the diameter of the half circles) is small, the high-quality modes correspond to whispering-gallery-type trajectories and their quality factors decrease monotonically with increasing deformation. At large deformation, each high-quality mode is associated with multiple unstable periodic orbits. Its quality factor changes nonmonotonically with the deformation, and there exists an optimal deformation for each mode at which its quality factor reaches a local maximum. This unusual behavior is attributed to the interference of waves propagating along different constituent orbits that could minimize light leakage out of the cavity

  13. High quality steel casting for energy technics

    International Nuclear Information System (INIS)

    Schuster, F.; Koefler, G.

    1982-01-01

    The casting of several chromium-molybdenum steels for steam and hydraulic turbines is discussed. Non-destructive testing of the castings is performed demonstrating the safety for use in nuclear technology. The effect of metallurgical parameters on steel casting quality, the heat treatment, and the effect of construction design on costs for fettling and repair weldings are considered. (Auth.)

  14. Chemistry, the Central Science? The History of the High School Science Sequence

    Science.gov (United States)

    Sheppard, Keith; Robbins, Dennis M.

    2005-01-01

    Chemistry became the ''central science'' not by design but by accident in the US high schools. The three important factors, which had their influence on the high school science, are sequenced and their impact on the development of US science education, are mentioned.

  15. Implication of the cause of differences in 3D structures of proteins with high sequence identity based on analyses of amino acid sequences and 3D structures.

    Science.gov (United States)

    Matsuoka, Masanari; Sugita, Masatake; Kikuchi, Takeshi

    2014-09-18

    Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.

  16. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    Directory of Open Access Journals (Sweden)

    Yandell Mark

    2010-07-01

    Full Text Available Abstract Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24. The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity elsewhere in the genome, but only 23% have identical copies (99% identity. The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is

  17. Indoor Air Quality in High Performance Schools

    Science.gov (United States)

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  18. Reference-quality genome sequence of Aegilops tauschii, the source of wheat D genome, shows that recombination shapes genome structure and evolution

    Science.gov (United States)

    Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...

  19. A robust, simple genotyping-by-sequencing (GBS approach for high diversity species.

    Directory of Open Access Journals (Sweden)

    Robert J Elshire

    Full Text Available Advances in next generation technologies have driven the costs of DNA sequencing down to the point that genotyping-by-sequencing (GBS is now feasible for high diversity, large genome species. Here, we report a procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs. This approach is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches. By using methylation-sensitive REs, repetitive regions of genomes can be avoided and lower copy regions targeted with two to three fold higher efficiency. This tremendously simplifies computationally challenging alignment problems in species with high levels of genetic diversity. The GBS procedure is demonstrated with maize (IBM and barley (Oregon Wolfe Barley recombinant inbred populations where roughly 200,000 and 25,000 sequence tags were mapped, respectively. An advantage in species like barley that lack a complete genome sequence is that a reference map need only be developed around the restriction sites, and this can be done in the process of sample genotyping. In such cases, the consensus of the read clusters across the sequence tagged sites becomes the reference. Alternatively, for kinship analyses in the absence of a reference genome, the sequence tags can simply be treated as dominant markers. Future application of GBS to breeding, conservation, and global species and population surveys may allow plant breeders to conduct genomic selection on a novel germplasm or species without first having to develop any prior molecular tools, or conservation biologists to determine population structure without prior knowledge of the genome or diversity in the species.

  20. Communicating the Benefits of a Full Sequence of High School Science Courses

    Science.gov (United States)

    Nicholas, Catherine Marie

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit in the STEM degree production rate needed to fill the demand of the current job market and remain competitive as a nation. The purpose of the study was to make a difference in the number of students who have access to information about the benefits of completing a full sequence of science courses. This dissertation study employed qualitative research methodology to gain a broad perspective of staff through a questionnaire and document review and then a deeper understanding through semi-structured interview protocol. The data revealed that a universal sequence of science courses in the high school district did not exist. It also showed that not all students had access to all science courses; students were sorted and tracked according to prerequisites that did not necessarily match the skill set needed for the courses. In addition, the study showed a desire for more support and direction from the district office. It was also apparent that there was a disconnect that existed between who staff members believed should enroll in a full sequence of science courses and who actually enrolled. Finally, communication about science was shown to occur mainly through counseling and peers. A common science sequence, detracking of science courses, increased communication about the postsecondary and academic benefits of a science education, increased district direction and realistic mathematics alignment were all discussed as solutions to the problem.

  1. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps.

    Science.gov (United States)

    Georges, Arthur; Li, Qiye; Lian, Jinmin; O'Meally, Denis; Deakin, Janine; Wang, Zongji; Zhang, Pei; Fujita, Matthew; Patel, Hardip R; Holleley, Clare E; Zhou, Yang; Zhang, Xiuwen; Matsubara, Kazumi; Waters, Paul; Graves, Jennifer A Marshall; Sarre, Stephen D; Zhang, Guojie

    2015-01-01

    The lizards of the family Agamidae are one of the most prominent elements of the Australian reptile fauna. Here, we present a genomic resource built on the basis of a wild-caught male ZZ central bearded dragon Pogona vitticeps. The genomic sequence for P. vitticeps, generated on the Illumina HiSeq 2000 platform, comprised 317 Gbp (179X raw read depth) from 13 insert libraries ranging from 250 bp to 40 kbp. After filtering for low-quality and duplicated reads, 146 Gbp of data (83X) was available for assembly. Exceptionally high levels of heterozygosity (0.85 % of single nucleotide polymorphisms plus sequence insertions or deletions) complicated assembly; nevertheless, 96.4 % of reads mapped back to the assembled scaffolds, indicating that the assembly included most of the sequenced genome. Length of the assembly was 1.8 Gbp in 545,310 scaffolds (69,852 longer than 300 bp), the longest being 14.68 Mbp. N50 was 2.29 Mbp. Genes were annotated on the basis of de novo prediction, similarity to the green anole Anolis carolinensis, Gallus gallus and Homo sapiens proteins, and P. vitticeps transcriptome sequence assemblies, to yield 19,406 protein-coding genes in the assembly, 63 % of which had intact open reading frames. Our assembly captured 99 % (246 of 248) of core CEGMA genes, with 93 % (231) being complete. The quality of the P. vitticeps assembly is comparable or superior to that of other published squamate genomes, and the annotated P. vitticeps genome can be accessed through a genome browser available at https://genomics.canberra.edu.au.

  2. Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database

    Directory of Open Access Journals (Sweden)

    Marais Gabriel AB

    2011-07-01

    Full Text Available Abstract Background The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. Results A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO terms, and thousands of single-nucleotide polymorphisms (SNPs were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49% that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. Conclusion The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to

  3. Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database

    Science.gov (United States)

    2011-01-01

    Background The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. Results A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO) terms, and thousands of single-nucleotide polymorphisms (SNPs) were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49%) that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. Conclusion The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to further develop Silene as a

  4. Detection of genomic variation by selection of a 9 mb DNA region and high throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Sergey I Nikolaev

    Full Text Available Detection of the rare polymorphisms and causative mutations of genetic diseases in a targeted genomic area has become a major goal in order to understand genomic and phenotypic variability. We have interrogated repeat-masked regions of 8.9 Mb on human chromosomes 21 (7.8 Mb and 7 (1.1 Mb from an individual from the International HapMap Project (NA12872. We have optimized a method of genomic selection for high throughput sequencing. Microarray-based selection and sequencing resulted in 260-fold enrichment, with 41% of reads mapping to the target region. 83% of SNPs in the targeted region had at least 4-fold sequence coverage and 54% at least 15-fold. When assaying HapMap SNPs in NA12872, our sequence genotypes are 91.3% concordant in regions with coverage > or = 4-fold, and 97.9% concordant in regions with coverage > or = 15-fold. About 81% of the SNPs recovered with both thresholds are listed in dbSNP. We observed that regions with low sequence coverage occur in close proximity to low-complexity DNA. Validation experiments using Sanger sequencing were performed for 46 SNPs with 15-20 fold coverage, with a confirmation rate of 96%, suggesting that DNA selection provides an accurate and cost-effective method for identifying rare genomic variants.

  5. Sequence of a cDNA encoding turtle high mobility group 1 protein.

    Science.gov (United States)

    Zheng, Jifang; Hu, Bi; Wu, Duansheng

    2005-07-01

    In order to understand sequence information about turtle HMG1 gene, a cDNA encoding HMG1 protein of the Chinese soft-shell turtle (Pelodiscus sinensis) was amplified by RT-PCR from kidney total RNA, and was cloned, sequenced and analyzed. The results revealed that the open reading frame (ORF) of turtle HMG1 cDNA is 606 bp long. The ORF codifies 202 amino acid residues, from which two DNA-binding domains and one polyacidic region are derived. The DNA-binding domains share higher amino acid identity with homologues sequences of chicken (96.5%) and mammalian (74%) than homologues sequence of rainbow trout (67%). The polyacidic region shows 84.6% amino acid homology with the equivalent region of chicken HMG1 cDNA. Turtle HMG1 protein contains 3 Cys residues located at completely conserved positions. Conservation in sequence and structure suggests that the functions of turtle HMG1 cDNA may be highly conserved during evolution. To our knowledge, this is the first report of HMG1 cDNA sequence in any reptilian.

  6. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China.

    Science.gov (United States)

    Wei, Yu-Jie; Wu, Yun; Yan, Yin-Zhuo; Zou, Wan; Xue, Jie; Ma, Wen-Rui; Wang, Wei; Tian, Ge; Wang, Li-Ye

    2018-01-01

    In this study Illumina MiSeq was performed to investigate microbial diversity in soil, leaves, grape, grape juice and wine. A total of 1,043,102 fungal Internal Transcribed Spacer (ITS) reads and 2,422,188 high quality bacterial 16S rDNA sequences were used for taxonomic classification, revealed five fungal and eight bacterial phyla. At the genus level, the dominant fungi were Ascomycota, Sordariales, Tetracladium and Geomyces in soil, Aureobasidium and Pleosporaceae in grapes leaves, Aureobasidium in grape and grape juice. The dominant bacteria were Kaistobacter, Arthrobacter, Skermanella and Sphingomonas in soil, Pseudomonas, Acinetobacter and Kaistobacter in grape and grapes leaves, and Oenococcus in grape juice and wine. Principal coordinate analysis showed structural separation between the composition of fungi and bacteria in all samples. This is the first study to understand microbiome population in soil, grape, grapes leaves, grape juice and wine in Xinjiang through High-throughput Sequencing and identify microorganisms like Saccharomyces cerevisiae and Oenococcus spp. that may contribute to the quality and flavor of wine.

  7. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China

    Science.gov (United States)

    Yan, Yin-zhuo; Zou, Wan; Ma, Wen-rui; Wang, Wei; Tian, Ge; Wang, Li-ye

    2018-01-01

    In this study Illumina MiSeq was performed to investigate microbial diversity in soil, leaves, grape, grape juice and wine. A total of 1,043,102 fungal Internal Transcribed Spacer (ITS) reads and 2,422,188 high quality bacterial 16S rDNA sequences were used for taxonomic classification, revealed five fungal and eight bacterial phyla. At the genus level, the dominant fungi were Ascomycota, Sordariales, Tetracladium and Geomyces in soil, Aureobasidium and Pleosporaceae in grapes leaves, Aureobasidium in grape and grape juice. The dominant bacteria were Kaistobacter, Arthrobacter, Skermanella and Sphingomonas in soil, Pseudomonas, Acinetobacter and Kaistobacter in grape and grapes leaves, and Oenococcus in grape juice and wine. Principal coordinate analysis showed structural separation between the composition of fungi and bacteria in all samples. This is the first study to understand microbiome population in soil, grape, grapes leaves, grape juice and wine in Xinjiang through High-throughput Sequencing and identify microorganisms like Saccharomyces cerevisiae and Oenococcus spp. that may contribute to the quality and flavor of wine. PMID:29565999

  8. Assessing the Diversity of Rodent-Borne Viruses: Exploring of High-Throughput Sequencing and Classical Amplification/Sequencing Approaches.

    Science.gov (United States)

    Drewes, Stephan; Straková, Petra; Drexler, Jan F; Jacob, Jens; Ulrich, Rainer G

    2017-01-01

    Rodents are distributed throughout the world and interact with humans in many ways. They provide vital ecosystem services, some species are useful models in biomedical research and some are held as pet animals. However, many rodent species can have adverse effects such as damage to crops and stored produce, and they are of health concern because of the transmission of pathogens to humans and livestock. The first rodent viruses were discovered by isolation approaches and resulted in break-through knowledge in immunology, molecular and cell biology, and cancer research. In addition to rodent-specific viruses, rodent-borne viruses are causing a large number of zoonotic diseases. Most prominent examples are reemerging outbreaks of human hemorrhagic fever disease cases caused by arena- and hantaviruses. In addition, rodents are reservoirs for vector-borne pathogens, such as tick-borne encephalitis virus and Borrelia spp., and may carry human pathogenic agents, but likely are not involved in their transmission to human. In our days, next-generation sequencing or high-throughput sequencing (HTS) is revolutionizing the speed of the discovery of novel viruses, but other molecular approaches, such as generic RT-PCR/PCR and rolling circle amplification techniques, contribute significantly to the rapidly ongoing process. However, the current knowledge still represents only the tip of the iceberg, when comparing the known human viruses to those known for rodents, the mammalian taxon with the largest species number. The diagnostic potential of HTS-based metagenomic approaches is illustrated by their use in the discovery and complete genome determination of novel borna- and adenoviruses as causative disease agents in squirrels. In conclusion, HTS, in combination with conventional RT-PCR/PCR-based approaches, resulted in a drastically increased knowledge of the diversity of rodent viruses. Future improvements of the used workflows, including bioinformatics analysis, will further

  9. Next-generation sequencing (NGS for assessment of microbial water quality: current progress, challenges, and future opportunities

    Directory of Open Access Journals (Sweden)

    BoonFei eTan

    2015-09-01

    Full Text Available Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools.

  10. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis

    Directory of Open Access Journals (Sweden)

    Zhao Patrick X

    2011-07-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common type of sequence variation among plants and are often functionally important. We describe the use of 454 technology and high resolution melting analysis (HRM for high throughput SNP discovery in tetraploid alfalfa (Medicago sativa L., a species with high economic value but limited genomic resources. Results The alfalfa genotypes selected from M. sativa subsp. sativa var. 'Chilean' and M. sativa subsp. falcata var. 'Wisfal', which differ in water stress sensitivity, were used to prepare cDNA from tissue of clonally-propagated plants grown under either well-watered or water-stressed conditions, and then pooled for 454 sequencing. Based on 125.2 Mb of raw sequence, a total of 54,216 unique sequences were obtained including 24,144 tentative consensus (TCs sequences and 30,072 singletons, ranging from 100 bp to 6,662 bp in length, with an average length of 541 bp. We identified 40,661 candidate SNPs distributed throughout the genome. A sample of candidate SNPs were evaluated and validated using high resolution melting (HRM analysis. A total of 3,491 TCs harboring 20,270 candidate SNPs were located on the M. truncatula (MT 3.5.1 chromosomes. Gene Ontology assignments indicate that sequences obtained cover a broad range of GO categories. Conclusions We describe an efficient method to identify thousands of SNPs distributed throughout the alfalfa genome covering a broad range of GO categories. Validated SNPs represent valuable molecular marker resources that can be used to enhance marker density in linkage maps, identify potential factors involved in heterosis and genetic variation, and as tools for association mapping and genomic selection in alfalfa.

  11. High-throughput sequencing of three Lemnoideae (duckweeds chloroplast genomes from total DNA.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Chloroplast genomes provide a wealth of information for evolutionary and population genetic studies. Chloroplasts play a particularly important role in the adaption for aquatic plants because they float on water and their major surface is exposed continuously to sunlight. The subfamily of Lemnoideae represents such a collection of aquatic species that because of photosynthesis represents one of the fastest growing plant species on earth. METHODS: We sequenced the chloroplast genomes from three different genera of Lemnoideae, Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana by high-throughput DNA sequencing of genomic DNA using the SOLiD platform. Unfractionated total DNA contains high copies of plastid DNA so that sequences from the nucleus and mitochondria can easily be filtered computationally. Remaining sequence reads were assembled into contiguous sequences (contigs using SOLiD software tools. Contigs were mapped to a reference genome of Lemna minor and gaps, selected by PCR, were sequenced on the ABI3730xl platform. CONCLUSIONS: This combinatorial approach yielded whole genomic contiguous sequences in a cost-effective manner. Over 1,000-time coverage of chloroplast from total DNA were reached by the SOLiD platform in a single spot on a quadrant slide without purification. Comparative analysis indicated that the chloroplast genome was conserved in gene number and organization with respect to the reference genome of L. minor. However, higher nucleotide substitution, abundant deletions and insertions occurred in non-coding regions of these genomes, indicating a greater genomic dynamics than expected from the comparison of other related species in the Pooideae. Noticeably, there was no transition bias over transversion in Lemnoideae. The data should have immediate applications in evolutionary biology and plant taxonomy with increased resolution and statistical power.

  12. Extraction of High Molecular Weight DNA from Fungal Rust Spores for Long Read Sequencing.

    Science.gov (United States)

    Schwessinger, Benjamin; Rathjen, John P

    2017-01-01

    Wheat rust fungi are complex organisms with a complete life cycle that involves two different host plants and five different spore types. During the asexual infection cycle on wheat, rusts produce massive amounts of dikaryotic urediniospores. These spores are dikaryotic (two nuclei) with each nucleus containing one haploid genome. This dikaryotic state is likely to contribute to their evolutionary success, making them some of the major wheat pathogens globally. Despite this, most published wheat rust genomes are highly fragmented and contain very little haplotype-specific sequence information. Current long-read sequencing technologies hold great promise to provide more contiguous and haplotype-phased genome assemblies. Long reads are able to span repetitive regions and phase structural differences between the haplomes. This increased genome resolution enables the identification of complex loci and the study of genome evolution beyond simple nucleotide polymorphisms. Long-read technologies require pure high molecular weight DNA as an input for sequencing. Here, we describe a DNA extraction protocol for rust spores that yields pure double-stranded DNA molecules with molecular weight of >50 kilo-base pairs (kbp). The isolated DNA is of sufficient purity for PacBio long-read sequencing, but may require additional purification for other sequencing technologies such as Nanopore and 10× Genomics.

  13. A High Resolution Genetic Map Anchoring Scaffolds of the Sequenced Watermelon Genome

    Science.gov (United States)

    Kou, Qinghe; Jiang, Jiao; Guo, Shaogui; Zhang, Haiying; Hou, Wenju; Zou, Xiaohua; Sun, Honghe; Gong, Guoyi; Levi, Amnon; Xu, Yong

    2012-01-01

    As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F8 population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ∼800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits. PMID:22247776

  14. Quality Assurance Strategy for Existing Homes: Final Quality Management Primer for High Performing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Del Bianco, M.; Taggart, J.; Sikora, J.; Wood, A.

    2012-12-01

    This guide is designed to help Building America (BA) Teams understand quality management and its role in transitioning from conventional to high performance home building and remodeling. It explains what quality means, the value of quality management systems, the unique need for QMS when building high performing homes, and the first steps to a implementing a comprehensive QMS. This document provides a framework and context for BA teams when they encounter builders and remodelers.

  15. Quality Assurance Strategy for Existing Homes. Final Quality Management Primer for High Performing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Del Bianco, M. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Taggart, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Sikora, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Wood, A. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2012-12-01

    This guide is designed to help Building America (BA) teams understand quality management and its role in transitioning from conventional to high performance home building and remodeling. It explains what quality means, the value of quality management systems, the unique need for QMS when building high performing homes, and the first steps to a implementing a comprehensive QMS. This document provides a framework and context for BA teams when they encounter builders and remodelers.

  16. Evaluation of Magnetic Resonance Imaging-Compatible Needles and Interactive Sequences for Musculoskeletal Interventions Using an Open High-Field Magnetic Resonance Imaging Scanner

    International Nuclear Information System (INIS)

    Wonneberger, Uta; Schnackenburg, Bernhard; Streitparth, Florian; Walter, Thula; Rump, Jens; Teichgraeber, Ulf K. M.

    2010-01-01

    In this article, we study in vitro evaluation of needle artefacts and image quality for musculoskeletal laser-interventions in an open high-field magnetic resonance imaging (MRI) scanner at 1.0T with vertical field orientation. Five commercially available MRI-compatible puncture needles were assessed based on artefact characteristics in a CuSO4 phantom (0.1%) and in human cadaveric lumbar spines. First, six different interventional sequences were evaluated with varying needle orientation to the main magnetic field B0 (0 o to 90 o ) in a sequence test. Artefact width, needle-tip error, and contrast-to-noise ratio (CNR) were calculated. Second, a gradient-echo sequence used for thermometric monitoring was assessed and in varying echo times, artefact width, tip error, and signal-to-noise ratio (SNR) were measured. Artefact width and needle-tip error correlated with needle material, instrument orientation to B0, and sequence type. Fast spin-echo sequences produced the smallest needle artefacts for all needles, except for the carbon fibre needle (width o to B0. Overall, the proton density-weighted spin-echo sequences had the best CNR (CNR Muscle/Needle >16.8). Concerning the thermometric gradient echo sequence, artefacts remained <5 mm, and the SNR reached its maximum at an echo time of 15 ms. If needle materials and sequences are accordingly combined, guidance and monitoring of musculoskeletal laser interventions may be feasible in a vertical magnetic field at 1.0T.

  17. Discovery of viruses and virus-like pathogens in pistachio using high-throughput sequencing

    Science.gov (United States)

    Pistachio (Pistacia vera L.) trees from the National Clonal Germplasm Repository (NCGR) and orchards in California were surveyed for viruses and virus-like agents by high-throughput sequencing (HTS). Analyses of 60 trees including clonal UCB-1 hybrid rootstock (P. atlantica × P. integerrima) identif...

  18. Draft Genome Sequences of Klebsiella oxytoca Isolates Originating from a Highly Contaminated Liquid Hand Soap Product

    OpenAIRE

    Hammerl, J. A.; Lasch, P.; Nitsche, A.; Dabrowski, P. W.; Hahmann, H.; Wicke, A.; Kleta, S.; Dahouk, S. Al; Dieckmann, R.

    2015-01-01

    In 2013, contaminated liquid soap was detected by routine microbiological monitoring of consumer products through state health authorities. Because of its high load of Klebsiella oxytoca, the liquid soap was notified via the European Union Rapid Alert System for Dangerous Non-Food Products (EU-RAPEX) and recalled. Here, we present two draft genome sequences and a summary of their general features.

  19. The Importance of Agriculture Science Course Sequencing in High Schools: A View from Collegiate Agriculture Students

    Science.gov (United States)

    Wheelus, Robin P.

    2009-01-01

    The objective of this study was to investigate the importance of Agriculture Science course sequencing in high schools, as a preparatory factor for students enrolled in collegiate agriculture classes. With the variety of courses listed in the Texas Essential Knowledge and Skills (TEKS) for Agriculture Science, it has been possible for counselors,…

  20. Increasing Classroom Compliance: Using a High-Probability Command Sequence with Noncompliant Students

    Science.gov (United States)

    Axelrod, Michael I.; Zank, Amber J.

    2012-01-01

    Noncompliance is one of the most problematic behaviors within the school setting. One strategy to increase compliance of noncompliant students is a high-probability command sequence (HPCS; i.e., a set of simple commands in which an individual is likely to comply immediately prior to the delivery of a command that has a lower probability of…

  1. Inequality in Preschool Quality? Community-Level Disparities in Access to High-Quality Learning Environments

    Science.gov (United States)

    Bassok, Daphna; Galdo, Eva

    2016-01-01

    In recent years, unequal access to high-quality preschool has emerged as a growing public policy concern. Because of data limitations, it is notoriously difficult to measure disparities in access to early learning opportunities across communities and particularly challenging to quantify gaps in access to "high-quality" programs. Research…

  2. HPV-QUEST: A highly customized system for automated HPV sequence analysis capable of processing Next Generation sequencing data set.

    Science.gov (United States)

    Yin, Li; Yao, Jiqiang; Gardner, Brent P; Chang, Kaifen; Yu, Fahong; Goodenow, Maureen M

    2012-01-01

    Next Generation sequencing (NGS) applied to human papilloma viruses (HPV) can provide sensitive methods to investigate the molecular epidemiology of multiple type HPV infection. Currently a genotyping system with a comprehensive collection of updated HPV reference sequences and a capacity to handle NGS data sets is lacking. HPV-QUEST was developed as an automated and rapid HPV genotyping system. The web-based HPV-QUEST subtyping algorithm was developed using HTML, PHP, Perl scripting language, and MYSQL as the database backend. HPV-QUEST includes a database of annotated HPV reference sequences with updated nomenclature covering 5 genuses, 14 species and 150 mucosal and cutaneous types to genotype blasted query sequences. HPV-QUEST processes up to 10 megabases of sequences within 1 to 2 minutes. Results are reported in html, text and excel formats and display e-value, blast score, and local and coverage identities; provide genus, species, type, infection site and risk for the best matched reference HPV sequence; and produce results ready for additional analyses.

  3. The efficacy of high-throughput sequencing and target enrichment on charred archaeobotanical remains

    DEFF Research Database (Denmark)

    Nistelberger, H. M.; Smith, O.; Wales, Nathan

    2016-01-01

    . It has been suggested that high-throughput sequencing (HTS) technologies coupled with DNA enrichment techniques may overcome some of these limitations. Here we report the findings of HTS and target enrichment on four important archaeological crops (barley, grape, maize and rice) performed in three...... lightly-charred maize cob. Even with target enrichment, this sample failed to yield adequate data required to address fundamental questions in archaeology and biology. We further reanalysed part of an existing dataset on charred plant material, and found all purported endogenous DNA sequences were likely...

  4. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    Science.gov (United States)

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  5. High Sequence Variations in Mitochondrial DNA Control Region among Worldwide Populations of Flathead Mullet Mugil cephalus

    Directory of Open Access Journals (Sweden)

    Brian Wade Jamandre

    2014-01-01

    Full Text Available The sequence and structure of the complete mtDNA control region (CR of M. cephalus from African, Pacific, and Atlantic populations are presented in this study to assess its usefulness in phylogeographic studies of this species. The mtDNA CR sequence variations among M. cephalus populations largely exceeded intraspecific polymorphisms that are generally observed in other vertebrates. The length of CR sequence varied among M. cephalus populations due to the presence of indels and variable number of tandem repeats at the 3′ hypervariable domain. The high evolutionary rate of the CR in this species probably originated from these mutations. However, no excessive homoplasic mutations were noticed. Finally, the star shaped tree inferred from the CR polymorphism stresses a rapid radiation worldwide, in this species. The CR still appears as a good marker for phylogeographic investigations and additional worldwide samples are warranted to further investigate the genetic structure and evolution in M. cephalus.

  6. On Statistical Modeling of Sequencing Noise in High Depth Data to Assess Tumor Evolution

    Science.gov (United States)

    Rabadan, Raul; Bhanot, Gyan; Marsilio, Sonia; Chiorazzi, Nicholas; Pasqualucci, Laura; Khiabanian, Hossein

    2017-12-01

    One cause of cancer mortality is tumor evolution to therapy-resistant disease. First line therapy often targets the dominant clone, and drug resistance can emerge from preexisting clones that gain fitness through therapy-induced natural selection. Such mutations may be identified using targeted sequencing assays by analysis of noise in high-depth data. Here, we develop a comprehensive, unbiased model for sequencing error background. We find that noise in sufficiently deep DNA sequencing data can be approximated by aggregating negative binomial distributions. Mutations with frequencies above noise may have prognostic value. We evaluate our model with simulated exponentially expanded populations as well as data from cell line and patient sample dilution experiments, demonstrating its utility in prognosticating tumor progression. Our results may have the potential to identify significant mutations that can cause recurrence. These results are relevant in the pretreatment clinical setting to determine appropriate therapy and prepare for potential recurrence pretreatment.

  7. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data.

    Science.gov (United States)

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-07-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users.

  8. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors.

    Science.gov (United States)

    Adalsteinsson, Viktor A; Ha, Gavin; Freeman, Samuel S; Choudhury, Atish D; Stover, Daniel G; Parsons, Heather A; Gydush, Gregory; Reed, Sarah C; Rotem, Denisse; Rhoades, Justin; Loginov, Denis; Livitz, Dimitri; Rosebrock, Daniel; Leshchiner, Ignaty; Kim, Jaegil; Stewart, Chip; Rosenberg, Mara; Francis, Joshua M; Zhang, Cheng-Zhong; Cohen, Ofir; Oh, Coyin; Ding, Huiming; Polak, Paz; Lloyd, Max; Mahmud, Sairah; Helvie, Karla; Merrill, Margaret S; Santiago, Rebecca A; O'Connor, Edward P; Jeong, Seong H; Leeson, Rachel; Barry, Rachel M; Kramkowski, Joseph F; Zhang, Zhenwei; Polacek, Laura; Lohr, Jens G; Schleicher, Molly; Lipscomb, Emily; Saltzman, Andrea; Oliver, Nelly M; Marini, Lori; Waks, Adrienne G; Harshman, Lauren C; Tolaney, Sara M; Van Allen, Eliezer M; Winer, Eric P; Lin, Nancy U; Nakabayashi, Mari; Taplin, Mary-Ellen; Johannessen, Cory M; Garraway, Levi A; Golub, Todd R; Boehm, Jesse S; Wagle, Nikhil; Getz, Gad; Love, J Christopher; Meyerson, Matthew

    2017-11-06

    Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.

  9. Galaxy Workflows for Web-based Bioinformatics Analysis of Aptamer High-throughput Sequencing Data

    Directory of Open Access Journals (Sweden)

    William H Thiel

    2016-01-01

    Full Text Available Development of RNA and DNA aptamers for diagnostic and therapeutic applications is a rapidly growing field. Aptamers are identified through iterative rounds of selection in a process termed SELEX (Systematic Evolution of Ligands by EXponential enrichment. High-throughput sequencing (HTS revolutionized the modern SELEX process by identifying millions of aptamer sequences across multiple rounds of aptamer selection. However, these vast aptamer HTS datasets necessitated bioinformatics techniques. Herein, we describe a semiautomated approach to analyze aptamer HTS datasets using the Galaxy Project, a web-based open source collection of bioinformatics tools that were originally developed to analyze genome, exome, and transcriptome HTS data. Using a series of Workflows created in the Galaxy webserver, we demonstrate efficient processing of aptamer HTS data and compilation of a database of unique aptamer sequences. Additional Workflows were created to characterize the abundance and persistence of aptamer sequences within a selection and to filter sequences based on these parameters. A key advantage of this approach is that the online nature of the Galaxy webserver and its graphical interface allow for the analysis of HTS data without the need to compile code or install multiple programs.

  10. Prediction of bread-making quality using size exclusion high ...

    African Journals Online (AJOL)

    Variation in the distribution of protein molecular weight in wheat (Triticum aestivum), influences breadmaking quality of wheat cultivars, resulting in either poor or good bread. The objective of this study was to predict breadmaking quality of wheat cultivars using size exclusion high performance liquid chromatography.

  11. Adoption and impact of high quality bambara flour (HQBF ...

    African Journals Online (AJOL)

    Adoption and impact of high quality bambara flour (HQBF) technology in the ... consumer acceptability/quality of products, credit, availability of raw materials, and ... as a result of 12.5 per cent increase in demand for bambara-based products.

  12. Genome sequence of Ensifer meliloti strain WSM1022; a highly effective microsymbiont of the model legume Medicago truncatula A17.

    Science.gov (United States)

    Terpolilli, Jason; Hill, Yvette; Tian, Rui; Howieson, John; Bräu, Lambert; Goodwin, Lynne; Han, James; Liolios, Konstantinos; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-12-20

    Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M. truncatula and other annual species such as M. tornata and M. littoralis and is also highly effective with the perennial M. sativa (alfalfa or lucerne). In common with other characterized E. meliloti strains, WSM1022 will nodulate but fixes poorly with M. polymorpha and M. sphaerocarpos and does not nodulate M. murex. Here we describe the features of E. meliloti WSM1022, together with genome sequence information and its annotation. The 6,649,661 bp high-quality-draft genome is arranged into 121 scaffolds of 125 contigs containing 6,323 protein-coding genes and 75 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.

  13. Rapid high resolution genotyping of Francisella tularensis by whole genome sequence comparison of annotated genes ("MLST+".

    Directory of Open Access Journals (Sweden)

    Markus H Antwerpen

    Full Text Available The zoonotic disease tularemia is caused by the bacterium Francisella tularensis. This pathogen is considered as a category A select agent with potential to be misused in bioterrorism. Molecular typing based on DNA-sequence like canSNP-typing or MLVA has become the accepted standard for this organism. Due to the organism's highly clonal nature, the current typing methods have reached their limit of discrimination for classifying closely related subpopulations within the subspecies F. tularensis ssp. holarctica. We introduce a new gene-by-gene approach, MLST+, based on whole genome data of 15 sequenced F. tularensis ssp. holarctica strains and apply this approach to investigate an epidemic of lethal tularemia among non-human primates in two animal facilities in Germany. Due to the high resolution of MLST+ we are able to demonstrate that three independent clones of this highly infectious pathogen were responsible for these spatially and temporally restricted outbreaks.

  14. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.

    Science.gov (United States)

    Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert

    2011-04-01

    To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms. © 2011 IEEE

  15. Exploring sequence characteristics related to high-level production of secreted proteins in Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Bastiaan A van den Berg

    Full Text Available Protein sequence features are explored in relation to the production of over-expressed extracellular proteins by fungi. Knowledge on features influencing protein production and secretion could be employed to improve enzyme production levels in industrial bioprocesses via protein engineering. A large set, over 600 homologous and nearly 2,000 heterologous fungal genes, were overexpressed in Aspergillus niger using a standardized expression cassette and scored for high versus no production. Subsequently, sequence-based machine learning techniques were applied for identifying relevant DNA and protein sequence features. The amino-acid composition of the protein sequence was found to be most predictive and interpretation revealed that, for both homologous and heterologous gene expression, the same features are important: tyrosine and asparagine composition was found to have a positive correlation with high-level production, whereas for unsuccessful production, contributions were found for methionine and lysine composition. The predictor is available online at http://bioinformatics.tudelft.nl/hipsec. Subsequent work aims at validating these findings by protein engineering as a method for increasing expression levels per gene copy.

  16. Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis.

    Science.gov (United States)

    Guo, Yan; Dai, Yulin; Yu, Hui; Zhao, Shilin; Samuels, David C; Shyr, Yu

    2017-03-01

    Analyses of high throughput sequencing data starts with alignment against a reference genome, which is the foundation for all re-sequencing data analyses. Each new release of the human reference genome has been augmented with improved accuracy and completeness. It is presumed that the latest release of human reference genome, GRCh38 will contribute more to high throughput sequencing data analysis by providing more accuracy. But the amount of improvement has not yet been quantified. We conducted a study to compare the genomic analysis results between the GRCh38 reference and its predecessor GRCh37. Through analyses of alignment, single nucleotide polymorphisms, small insertion/deletions, copy number and structural variants, we show that GRCh38 offers overall more accurate analysis of human sequencing data. More importantly, GRCh38 produced fewer false positive structural variants. In conclusion, GRCh38 is an improvement over GRCh37 not only from the genome assembly aspect, but also yields more reliable genomic analysis results. Copyright © 2017. Published by Elsevier Inc.

  17. Innovative and high quality education through Open Education and OER

    OpenAIRE

    Stracke, Christian M.

    2017-01-01

    Online presentation and webinar by Stracke, C. M. (2017, 18 December) on "Innovative and high quality education through Open Education and OER" for the Belt and Road Open Education Learning Week by the Beijing Normal University, China.

  18. Improving high quality, equitable maternal health services in Malawi ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Improving high quality, equitable maternal health services in Malawi (IMCHA) ... In response, the Ministry of Health implemented a Standards-Based Management and Recognition for Reproductive Health initiative to improve ... Total funding.

  19. High Quality Education and Learning for All through Open Education

    NARCIS (Netherlands)

    Stracke, Christian M.

    2016-01-01

    Keynote at the International Lensky Education Forum 2016, Yakutsk, Republic of Sakha, Russian Federation, by Stracke, C. M. (2016, 16 August): "High Quality Education and Learning for All through Open Education"

  20. Rapid detection of SMARCB1 sequence variation using high resolution melting

    Directory of Open Access Journals (Sweden)

    Ashley David M

    2009-12-01

    Full Text Available Abstract Background Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM, for detecting sequence variations in SMARCB1. Methods Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5' and 3' UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. Results The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4% showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA. A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. Conclusions This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to

  1. Rapid detection of SMARCB1 sequence variation using high resolution melting

    International Nuclear Information System (INIS)

    Dagar, Vinod; Chow, Chung-Wo; Ashley, David M; Algar, Elizabeth M

    2009-01-01

    Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM), for detecting sequence variations in SMARCB1. Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5' and 3' UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4%) showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA). A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to facilitate whole gene mutation screening

  2. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing.

    Science.gov (United States)

    Song, Zhewei; Du, Hai; Zhang, Yan; Xu, Yan

    2017-01-01

    Fermentation microbiota is specific microorganisms that generate different types of metabolites in many productions. In traditional solid-state fermentation, the structural composition and functional capacity of the core microbiota determine the quality and quantity of products. As a typical example of food fermentation, Chinese Maotai-flavor liquor production involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this traditional food fermentation remain unclear. Here, high-throughput amplicons (16S rRNA gene amplicon sequencing and internal transcribed space amplicon sequencing) and metatranscriptomics sequencing technologies were combined to reveal the structure and function of the core microbiota in Chinese soy sauce aroma type liquor production. In addition, ultra-performance liquid chromatography and headspace-solid phase microextraction-gas chromatography-mass spectrometry were employed to provide qualitative and quantitative analysis of the major flavor metabolites. A total of 10 fungal and 11 bacterial genera were identified as the core microbiota. In addition, metatranscriptomic analysis revealed pyruvate metabolism in yeasts (genera Pichia, Schizosaccharomyces, Saccharomyces , and Zygosaccharomyces ) and lactic acid bacteria (genus Lactobacillus ) classified into two stages in the production of flavor components. Stage I involved high-level alcohol (ethanol) production, with the genus Schizosaccharomyces serving as the core functional microorganism. Stage II involved high-level acid (lactic acid and acetic acid) production, with the genus Lactobacillus serving as the core functional microorganism. The functional shift from the genus Schizosaccharomyces to the genus Lactobacillus drives flavor component conversion from alcohol (ethanol) to acid (lactic acid and acetic acid) in Chinese Maotai-flavor liquor production. Our findings provide insight into

  3. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing

    Directory of Open Access Journals (Sweden)

    Zhewei Song

    2017-07-01

    Full Text Available Fermentation microbiota is specific microorganisms that generate different types of metabolites in many productions. In traditional solid-state fermentation, the structural composition and functional capacity of the core microbiota determine the quality and quantity of products. As a typical example of food fermentation, Chinese Maotai-flavor liquor production involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this traditional food fermentation remain unclear. Here, high-throughput amplicons (16S rRNA gene amplicon sequencing and internal transcribed space amplicon sequencing and metatranscriptomics sequencing technologies were combined to reveal the structure and function of the core microbiota in Chinese soy sauce aroma type liquor production. In addition, ultra-performance liquid chromatography and headspace-solid phase microextraction-gas chromatography-mass spectrometry were employed to provide qualitative and quantitative analysis of the major flavor metabolites. A total of 10 fungal and 11 bacterial genera were identified as the core microbiota. In addition, metatranscriptomic analysis revealed pyruvate metabolism in yeasts (genera Pichia, Schizosaccharomyces, Saccharomyces, and Zygosaccharomyces and lactic acid bacteria (genus Lactobacillus classified into two stages in the production of flavor components. Stage I involved high-level alcohol (ethanol production, with the genus Schizosaccharomyces serving as the core functional microorganism. Stage II involved high-level acid (lactic acid and acetic acid production, with the genus Lactobacillus serving as the core functional microorganism. The functional shift from the genus Schizosaccharomyces to the genus Lactobacillus drives flavor component conversion from alcohol (ethanol to acid (lactic acid and acetic acid in Chinese Maotai-flavor liquor production. Our findings provide

  4. Alignment of high-throughput sequencing data inside in-memory databases.

    Science.gov (United States)

    Firnkorn, Daniel; Knaup-Gregori, Petra; Lorenzo Bermejo, Justo; Ganzinger, Matthias

    2014-01-01

    In times of high-throughput DNA sequencing techniques, performance-capable analysis of DNA sequences is of high importance. Computer supported DNA analysis is still an intensive time-consuming task. In this paper we explore the potential of a new In-Memory database technology by using SAP's High Performance Analytic Appliance (HANA). We focus on read alignment as one of the first steps in DNA sequence analysis. In particular, we examined the widely used Burrows-Wheeler Aligner (BWA) and implemented stored procedures in both, HANA and the free database system MySQL, to compare execution time and memory management. To ensure that the results are comparable, MySQL has been running in memory as well, utilizing its integrated memory engine for database table creation. We implemented stored procedures, containing exact and inexact searching of DNA reads within the reference genome GRCh37. Due to technical restrictions in SAP HANA concerning recursion, the inexact matching problem could not be implemented on this platform. Hence, performance analysis between HANA and MySQL was made by comparing the execution time of the exact search procedures. Here, HANA was approximately 27 times faster than MySQL which means, that there is a high potential within the new In-Memory concepts, leading to further developments of DNA analysis procedures in the future.

  5. Heap: a highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data

    KAUST Repository

    Kobayashi, Masaaki

    2017-04-20

    Recent availability of large-scale genomic resources enables us to conduct so called genome-wide association studies (GWAS) and genomic prediction (GP) studies, particularly with next-generation sequencing (NGS) data. The effectiveness of GWAS and GP depends on not only their mathematical models, but the quality and quantity of variants employed in the analysis. In NGS single nucleotide polymorphism (SNP) calling, conventional tools ideally require more reads for higher SNP sensitivity and accuracy. In this study, we aimed to develop a tool, Heap, that enables robustly sensitive and accurate calling of SNPs, particularly with a low coverage NGS data, which must be aligned to the reference genome sequences in advance. To reduce false positive SNPs, Heap determines genotypes and calls SNPs at each site except for sites at the both ends of reads or containing a minor allele supported by only one read. Performance comparison with existing tools showed that Heap achieved the highest F-scores with low coverage (7X) restriction-site associated DNA sequencing reads of sorghum and rice individuals. This will facilitate cost-effective GWAS and GP studies in this NGS era. Code and documentation of Heap are freely available from https://github.com/meiji-bioinf/heap (29 March 2017, date last accessed) and our web site (http://bioinf.mind.meiji.ac.jp/lab/en/tools.html (29 March 2017, date last accessed)).

  6. Emblems of Quality in Higher Education. Developing and Sustaining High-Quality Programs.

    Science.gov (United States)

    Haworth, Jennifer Grant; Conrad, Clifton F.

    This book proposes an "engagement" theory of program quality to evaluate and improve higher education programs at all degree levels. Based on interviews with 781 participants in a national study of Masters degree programs, it focuses on the interactive roles of students, faculty, and administrators in developing high-quality programs…

  7. High-throughput Sequencing Based Immune Repertoire Study during Infectious Disease

    Directory of Open Access Journals (Sweden)

    Dongni Hou

    2016-08-01

    Full Text Available The selectivity of the adaptive immune response is based on the enormous diversity of T and B cell antigen-specific receptors. The immune repertoire, the collection of T and B cells with functional diversity in the circulatory system at any given time, is dynamic and reflects the essence of immune selectivity. In this article, we review the recent advances in immune repertoire study of infectious diseases that achieved by traditional techniques and high-throughput sequencing techniques. High-throughput sequencing techniques enable the determination of complementary regions of lymphocyte receptors with unprecedented efficiency and scale. This progress in methodology enhances the understanding of immunologic changes during pathogen challenge, and also provides a basis for further development of novel diagnostic markers, immunotherapies and vaccines.

  8. Genomic prediction of starch content and chipping quality in tetraploid potato using genotyping-by-sequencing

    DEFF Research Database (Denmark)

    Sverrisdóttir, Elsa; Byrne, Stephen; Nielsen, Ea Høegh Riis

    2017-01-01

    continue to fall. In this study, we have generated genomic prediction models for starch content and chipping quality in tetraploid potato to facilitate varietal development. Chipping quality was evaluated as the colour of a potato chip after frying following cold induced sweetening. We used genotyping...... genomic estimated breeding values. Cross-validated prediction correlations of 0.56 and 0.73 were obtained within the training population for starch content and chipping quality, respectively, while correlations were lower when predicting performance in the test panel, at 0.30–0.31 and 0...

  9. Designing a Bioengine for Detection and Analysis of Base String on an Affected Sequence in High-Concentration Regions

    Directory of Open Access Journals (Sweden)

    Debnath Bhattacharyya

    2013-01-01

    Full Text Available We design an Algorithm for bioengine. As a program are enable optimal alignments searching between two sequences, the host sequence (normal plant as well as query sequence (virus. Searching for homologues has become a routine operation of biological sequences in 4 × 4 combination with different subsequence (word size. This program takes the advantage of the high degree of homology between such sequences to construct an alignment of the matching regions. There is a main aim which is to detect the overlapping reading frames. This program also enables to find out the highly infected colones selection highest matching region with minimum gap or mismatch zones and unique virus colones matches. This is a small, portable, interactive, front-end program intended to be used to find out the regions of matching between host sequence and query subsequences. All the operations are carried out in fraction of seconds, depending on the required task and on the sequence length.

  10. Designing a Bioengine for Detection and Analysis of Base String on an Affected Sequence in High-Concentration Regions

    Science.gov (United States)

    Mandal, Bijoy Kumar; Kim, Tai-hoon

    2013-01-01

    We design an Algorithm for bioengine. As a program are enable optimal alignments searching between two sequences, the host sequence (normal plant) as well as query sequence (virus). Searching for homologues has become a routine operation of biological sequences in 4 × 4 combination with different subsequence (word size). This program takes the advantage of the high degree of homology between such sequences to construct an alignment of the matching regions. There is a main aim which is to detect the overlapping reading frames. This program also enables to find out the highly infected colones selection highest matching region with minimum gap or mismatch zones and unique virus colones matches. This is a small, portable, interactive, front-end program intended to be used to find out the regions of matching between host sequence and query subsequences. All the operations are carried out in fraction of seconds, depending on the required task and on the sequence length. PMID:24000321

  11. A high-throughput method to detect RNA profiling by integration of RT-MLPA with next generation sequencing technology.

    Science.gov (United States)

    Wang, Jing; Yang, Xue; Chen, Haofeng; Wang, Xuewei; Wang, Xiangyu; Fang, Yi; Jia, Zhenyu; Gao, Jidong

    2017-07-11

    RNA in formalin-fixed and paraffin-embedded (FFPE) tissues provides large amount of information indicating disease stages, histological tumor types and grades, as well as clinical outcomes. However, Detection of RNA expression levels in formalin-fixed and paraffin-embedded samples is extremely difficult due to poor RNA quality. Here we developed a high-throughput method, Reverse Transcription-Multiple Ligation-dependent Probe Sequencing (RT-MLPSeq), to determine expression levels of multiple transcripts in FFPE samples. By combining Reverse Transcription-Multiple Ligation-dependent Amplification method and next generation sequencing technology, RT-MLPSeq overcomes the limit of probe length in multiplex ligation-dependent probe amplification assay and thus could detect expression levels of transcripts without quantitative limitations. We proved that different RT-MLPSeq probes targeting on the same transcripts have highly consistent results and the starting RNA/cDNA input could be as little as 1 ng. RT-MLPSeq also presented consistent relative RNA levels of selected 13 genes with reverse transcription quantitative PCR. Finally, we demonstrated the application of the new RT-MLPSeq method by measuring the mRNA expression levels of 21 genes which can be used for accurate calculation of the breast cancer recurrence score - an index that has been widely used for managing breast cancer patients.

  12. Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing

    OpenAIRE

    Cui, Li; Zhao, Tingting; Hu, Haibing; Zhang, Wen; Hua, Xiuguo

    2017-01-01

    Objectives. We aimed to explore the impact of gut microbiota in coronary heart disease (CHD) patients through high-throughput sequencing. Methods. A total of 29 CHD in-hospital patients and 35 healthy volunteers as controls were included. Nucleic acids were extracted from fecal samples, followed by ? diversity and principal coordinate analysis (PCoA). Based on unweighted UniFrac distance matrices, unweighted-pair group method with arithmetic mean (UPGMA) trees were created. Results. After dat...

  13. Draft Genome Sequences of Klebsiella oxytoca Isolates Originating from a Highly Contaminated Liquid Hand Soap Product.

    Science.gov (United States)

    Hammerl, J A; Lasch, P; Nitsche, A; Dabrowski, P W; Hahmann, H; Wicke, A; Kleta, S; Al Dahouk, S; Dieckmann, R

    2015-07-23

    In 2013, contaminated liquid soap was detected by routine microbiological monitoring of consumer products through state health authorities. Because of its high load of Klebsiella oxytoca, the liquid soap was notified via the European Union Rapid Alert System for Dangerous Non-Food Products (EU-RAPEX) and recalled. Here, we present two draft genome sequences and a summary of their general features. Copyright © 2015 Hammerl et al.

  14. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak

    Directory of Open Access Journals (Sweden)

    Trout-Yakel Keri M

    2010-02-01

    Full Text Available Abstract Background A large, multi-province outbreak of listeriosis associated with ready-to-eat meat products contaminated with Listeria monocytogenes serotype 1/2a occurred in Canada in 2008. Subtyping of outbreak-associated isolates using pulsed-field gel electrophoresis (PFGE revealed two similar but distinct AscI PFGE patterns. High-throughput pyrosequencing of two L. monocytogenes isolates was used to rapidly provide the genome sequence of the primary outbreak strain and to investigate the extent of genetic diversity associated with a change of a single restriction enzyme fragment during PFGE. Results The chromosomes were collinear, but differences included 28 single nucleotide polymorphisms (SNPs and three indels, including a 33 kbp prophage that accounted for the observed difference in AscI PFGE patterns. The distribution of these traits was assessed within further clinical, environmental and food isolates associated with the outbreak, and this comparison indicated that three distinct, but highly related strains may have been involved in this nationwide outbreak. Notably, these two isolates were found to harbor a 50 kbp putative mobile genomic island encoding translocation and efflux functions that has not been observed in other Listeria genomes. Conclusions High-throughput genome sequencing provided a more detailed real-time assessment of genetic traits characteristic of the outbreak strains than could be achieved with routine subtyping methods. This study confirms that the latest generation of DNA sequencing technologies can be applied during high priority public health events, and laboratories need to prepare for this inevitability and assess how to properly analyze and interpret whole genome sequences in the context of molecular epidemiology.

  15. Combining Amplification Typing of L1 Active Subfamilies (ATLAS) with High-Throughput Sequencing.

    Science.gov (United States)

    Rahbari, Raheleh; Badge, Richard M

    2016-01-01

    With the advent of new generations of high-throughput sequencing technologies, the catalog of human genome variants created by retrotransposon activity is expanding rapidly. However, despite these advances in describing L1 diversity and the fact that L1 must retrotranspose in the germline or prior to germline partitioning to be evolutionarily successful, direct assessment of de novo L1 retrotransposition in the germline or early embryogenesis has not been achieved for endogenous L1 elements. A direct study of de novo L1 retrotransposition into susceptible loci within sperm DNA (Freeman et al., Hum Mutat 32(8):978-988, 2011) suggested that the rate of L1 retrotransposition in the germline is much lower than previously estimated (ATLAS L1 display technique (Badge et al., Am J Hum Genet 72(4):823-838, 2003) to investigate de novo L1 retrotransposition in human genomes. In this chapter, we describe how we combined a high-coverage ATLAS variant with high-throughput sequencing, achieving 11-25× sequence depth per single amplicon, to study L1 retrotransposition in whole genome amplified (WGA) DNAs.

  16. Exome Sequencing Identifies Potential Risk Variants for Mendelian Disorders at High Prevalence in Qatar

    Science.gov (United States)

    Rodriguez-Flores, Juan L.; Fakhro, Khalid; Hackett, Neil R.; Salit, Jacqueline; Fuller, Jennifer; Agosto-Perez, Francisco; Gharbiah, Maey; Malek, Joel A.; Zirie, Mahmoud; Jayyousi, Amin; Badii, Ramin; Al-Marri, Ajayeb Al-Nabet; Chouchane, Lotfi; Stadler, Dora J.; Hunter-Zinck, Haley; Mezey, Jason G.; Crystal, Ronald G.

    2013-01-01

    Exome sequencing of families of related individuals has been highly successful in identifying genetic polymorphisms responsible for Mendelian disorders. Here, we demonstrate the value of the reverse approach, where we use exome sequencing of a sample of unrelated individuals to analyze allele frequencies of known causal mutations for Mendelian diseases. We sequenced the exomes of 100 individuals representing the three major genetic subgroups of the Qatari population (Q1 Bedouin, Q2 Persian-South Asian, Q3 African) and identified 37 variants in 33 genes with effects on 36 clinically significant Mendelian diseases. These include variants not present in 1000 Genomes and variants at high frequency when compared to 1000 Genomes populations. Several of these Mendelian variants were only segregating in one Qatari subpopulation, where the observed subpopulation specificity trends were confirmed in an independent population of 386 Qataris. Pre-marital genetic screening in Qatar tests for only 4 out of the 37, such that this study provides a set of Mendelian disease variants with potential impact on the epidemiological profile of the population that could be incorporated into the testing program if further experimental and clinical characterization confirms high penetrance. PMID:24123366

  17. Characterizing ncRNAs in human pathogenic protists using high-throughput sequencing technology

    Directory of Open Access Journals (Sweden)

    Lesley Joan Collins

    2011-12-01

    Full Text Available ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, snoRNAs and long ncRNAs on a genomic scale making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases.

  18. Characterizing ncRNAs in Human Pathogenic Protists Using High-Throughput Sequencing Technology

    Science.gov (United States)

    Collins, Lesley Joan

    2011-01-01

    ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses, and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, small nucleolar RNAs (snoRNAs), and long ncRNAs on a genomic scale, making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational, and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases. PMID:22303390

  19. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  20. Concrete Waste Recycling Process for High Quality Aggregate

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-01

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  1. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    Directory of Open Access Journals (Sweden)

    Soichi Inagaki

    Full Text Available Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  2. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    Science.gov (United States)

    Inagaki, Soichi; Henry, Isabelle M; Lieberman, Meric C; Comai, Luca

    2015-01-01

    Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  3. High-resolution analysis of the 5'-end transcriptome using a next generation DNA sequencer.

    Directory of Open Access Journals (Sweden)

    Shin-ichi Hashimoto

    Full Text Available Massively parallel, tag-based sequencing systems, such as the SOLiD system, hold the promise of revolutionizing the study of whole genome gene expression due to the number of data points that can be generated in a simple and cost-effective manner. We describe the development of a 5'-end transcriptome workflow for the SOLiD system and demonstrate the advantages in sensitivity and dynamic range offered by this tag-based application over traditional approaches for the study of whole genome gene expression. 5'-end transcriptome analysis was used to study whole genome gene expression within a colon cancer cell line, HT-29, treated with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5Aza. More than 20 million 25-base 5'-end tags were obtained from untreated and 5Aza-treated cells and matched to sequences within the human genome. Seventy three percent of the mapped unique tags were associated with RefSeq cDNA sequences, corresponding to approximately 14,000 different protein-coding genes in this single cell type. The level of expression of these genes ranged from 0.02 to 4,704 transcripts per cell. The sensitivity of a single sequence run of the SOLiD platform was 100-1,000 fold greater than that observed from 5'end SAGE data generated from the analysis of 70,000 tags obtained by Sanger sequencing. The high-resolution 5'end gene expression profiling presented in this study will not only provide novel insight into the transcriptional machinery but should also serve as a basis for a better understanding of cell biology.

  4. High-resolution sequence stratigraphy and continental environmental evolution: An example from east-central Argentina

    Science.gov (United States)

    Beilinson, Elisa; Veiga, Gonzalo D.; Spalletti, Luis A.

    2013-10-01

    The aims of this contribution is to establish a high-resolution sequence stratigraphic scheme for the continental deposits that constitute the Punta San Andrés Alloformation (Plio-Pleistocene) in east-central Argentina, to analyze the basin fill evolution and to identify and assess the role that extrinsic factors such as climate and sea-level oscillations played during evolution of the unit. For the high-resolution sequence stratigraphical study of the Punta San Andrés Alloformation, high- and low-accommodation system tracts were defined mainly on the basis of the architectural elements present in the succession, also taking into account the relative degree of channel and floodplain deposits. Discontinuities and the nature of depositional systems generated during variations in accommodation helped identify two fourth-order high-accommodation system tracts and two fourth-order low-accommodation system tracts. At a third-order scale, the Punta San Andrés Alloformation may be interpreted as the progradation of continental depositional systems, characterized by a braided system in the proximal areas, and a low-sinuosity, single-channel system in the distal areas, defined by a high rate of sediment supply and discharge peaks which periodically flooded the plains and generated high aggradation rates during the late Pliocene and lower Pleistocene.

  5. High-sensitivity HLA typing by Saturated Tiling Capture Sequencing (STC-Seq).

    Science.gov (United States)

    Jiao, Yang; Li, Ran; Wu, Chao; Ding, Yibin; Liu, Yanning; Jia, Danmei; Wang, Lifeng; Xu, Xiang; Zhu, Jing; Zheng, Min; Jia, Junling

    2018-01-15

    Highly polymorphic human leukocyte antigen (HLA) genes are responsible for fine-tuning the adaptive immune system. High-resolution HLA typing is important for the treatment of autoimmune and infectious diseases. Additionally, it is routinely performed for identifying matched donors in transplantation medicine. Although many HLA typing approaches have been developed, the complexity, low-efficiency and high-cost of current HLA-typing assays limit their application in population-based high-throughput HLA typing for donors, which is required for creating large-scale databases for transplantation and precision medicine. Here, we present a cost-efficient Saturated Tiling Capture Sequencing (STC-Seq) approach to capturing 14 HLA class I and II genes. The highly efficient capture (an approximately 23,000-fold enrichment) of these genes allows for simplified allele calling. Tests on five genes (HLA-A/B/C/DRB1/DQB1) from 31 human samples and 351 datasets using STC-Seq showed results that were 98% consistent with the known two sets of digitals (field1 and field2) genotypes. Additionally, STC can capture genomic DNA fragments longer than 3 kb from HLA loci, making the library compatible with the third-generation sequencing. STC-Seq is a highly accurate and cost-efficient method for HLA typing which can be used to facilitate the establishment of population-based HLA databases for the precision and transplantation medicine.

  6. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    Directory of Open Access Journals (Sweden)

    Charlotte Rehm

    Full Text Available In prokaryotes simple sequence repeats (SSRs with unit sizes of 1-5 nucleotides (nt are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4 structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc, Xanthomonas axonopodis pv. citri str. 306 (Xac, and Nostoc sp. strain PCC7120 (Ana. In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  7. High-quality planar high-Tc Josephson junctions

    International Nuclear Information System (INIS)

    Bergeal, N.; Grison, X.; Lesueur, J.; Faini, G.; Aprili, M.; Contour, J.P.

    2005-01-01

    Reproducible high-T c Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge (1 to 5 μm wide) is firstly designed by ion irradiating a c-axis-oriented YBa 2 Cu 3 O 7-δ film through a gold mask such as the nonprotected part becomes insulating. A lower T c part is then defined within the bridge by irradiating with a much lower fluence through a narrow slit (20 nm) opened in a standard electronic photoresist. These planar junctions, whose settings can be finely tuned, exhibit reproducible and nearly ideal Josephson characteristics. This process can be used to produce complex Josephson circuits

  8. Sequence Curriculum: High School to College. Middlesex Community College/Haddam-Killingworth High School. Final Report.

    Science.gov (United States)

    Middlesex Community Coll., Middletown, CT.

    Through a collaborative effort between Middlesex Community College (MxCC) and Haddam-Killingworth High School (HKHS), students taking specific high school courses in television production, broadcast journalism, electronics, and photography are granted college credit by MxCC upon admission to the college's Broadcast Communication Program. The…

  9. A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection.

    Science.gov (United States)

    Goodacre, Norman; Aljanahi, Aisha; Nandakumar, Subhiksha; Mikailov, Mike; Khan, Arifa S

    2018-01-01

    Detection of distantly related viruses by high-throughput sequencing (HTS) is bioinformatically challenging because of the lack of a public database containing all viral sequences, without abundant nonviral sequences, which can extend runtime and obscure viral hits. Our reference viral database (RVDB) includes all viral, virus-related, and virus-like nucleotide sequences (excluding bacterial viruses), regardless of length, and with overall reduced cellular sequences. Semantic selection criteria (SEM-I) were used to select viral sequences from GenBank, resulting in a first-generation viral database (VDB). This database was manually and computationally reviewed, resulting in refined, semantic selection criteria (SEM-R), which were applied to a new download of updated GenBank sequences to create a second-generation VDB. Viral entries in the latter were clustered at 98% by CD-HIT-EST to reduce redundancy while retaining high viral sequence diversity. The viral identity of the clustered representative sequences (creps) was confirmed by BLAST searches in NCBI databases and HMMER searches in PFAM and DFAM databases. The resulting RVDB contained a broad representation of viral families, sequence diversity, and a reduced cellular content; it includes full-length and partial sequences and endogenous nonretroviral elements, endogenous retroviruses, and retrotransposons. Testing of RVDBv10.2, with an in-house HTS transcriptomic data set indicated a significantly faster run for virus detection than interrogating the entirety of the NCBI nonredundant nucleotide database, which contains all viral sequences but also nonviral sequences. RVDB is publically available for facilitating HTS analysis, particularly for novel virus detection. It is meant to be updated on a regular basis to include new viral sequences added to GenBank. IMPORTANCE To facilitate bioinformatics analysis of high-throughput sequencing (HTS) data for the detection of both known and novel viruses, we have

  10. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus.

    Directory of Open Access Journals (Sweden)

    Kui Lin

    2014-01-01

    Full Text Available Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya.

  11. International Interlaboratory Digital PCR Study Demonstrating High Reproducibility for the Measurement of a Rare Sequence Variant.

    Science.gov (United States)

    Whale, Alexandra S; Devonshire, Alison S; Karlin-Neumann, George; Regan, Jack; Javier, Leanne; Cowen, Simon; Fernandez-Gonzalez, Ana; Jones, Gerwyn M; Redshaw, Nicholas; Beck, Julia; Berger, Andreas W; Combaret, Valérie; Dahl Kjersgaard, Nina; Davis, Lisa; Fina, Frederic; Forshew, Tim; Fredslund Andersen, Rikke; Galbiati, Silvia; González Hernández, Álvaro; Haynes, Charles A; Janku, Filip; Lacave, Roger; Lee, Justin; Mistry, Vilas; Pender, Alexandra; Pradines, Anne; Proudhon, Charlotte; Saal, Lao H; Stieglitz, Elliot; Ulrich, Bryan; Foy, Carole A; Parkes, Helen; Tzonev, Svilen; Huggett, Jim F

    2017-02-07

    This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.

  12. Improving High-Throughput Sequencing Approaches for Reconstructing the Evolutionary Dynamics of Upper Paleolithic Human Groups

    DEFF Research Database (Denmark)

    Seguin-Orlando, Andaine

    the development and testing of innovative molecular approaches aiming at improving the amount of informative HTS data one can recover from ancient DNA extracts. We have characterized important ligation and amplification biases in the sequencing library building and enrichment steps, which can impede further...... been mainly driven by the development of High-Throughput DNA Sequencing (HTS) technologies but also by the implementation of novel molecular tools tailored to the manipulation of ultra short and damaged DNA molecules. Our ability to retrieve traces of genetic material has tremendously improved, pushing......, that impact on the overall efficacy of the method. In a second part, we implemented some of these molecular tools to the processing of five Upper Paleolithic human samples from the Kostenki and Sunghir sites in Western Eurasia, in order to reconstruct the deep genomic history of European populations...

  13. HTSstation: a web application and open-access libraries for high-throughput sequencing data analysis.

    Science.gov (United States)

    David, Fabrice P A; Delafontaine, Julien; Carat, Solenne; Ross, Frederick J; Lefebvre, Gregory; Jarosz, Yohan; Sinclair, Lucas; Noordermeer, Daan; Rougemont, Jacques; Leleu, Marion

    2014-01-01

    The HTSstation analysis portal is a suite of simple web forms coupled to modular analysis pipelines for various applications of High-Throughput Sequencing including ChIP-seq, RNA-seq, 4C-seq and re-sequencing. HTSstation offers biologists the possibility to rapidly investigate their HTS data using an intuitive web application with heuristically pre-defined parameters. A number of open-source software components have been implemented and can be used to build, configure and run HTS analysis pipelines reactively. Besides, our programming framework empowers developers with the possibility to design their own workflows and integrate additional third-party software. The HTSstation web application is accessible at http://htsstation.epfl.ch.

  14. High throughput sequencing identifies chilling responsive genes in sweetpotato (Ipomoea batatas Lam.) during storage.

    Science.gov (United States)

    Xie, Zeyi; Zhou, Zhilin; Li, Hongmin; Yu, Jingjing; Jiang, Jiaojiao; Tang, Zhonghou; Ma, Daifu; Zhang, Baohong; Han, Yonghua; Li, Zongyun

    2018-05-21

    Sweetpotato (Ipomoea batatas L.) is a globally important economic food crop. It belongs to Convolvulaceae family and origins in the tropics; however, sweetpotato is sensitive to cold stress during storage. In this study, we performed transcriptome sequencing to investigate the sweetpotato response to chilling stress during storage. A total of 110,110 unigenes were generated via high-throughput sequencing. Differentially expressed genes (DEGs) analysis showed that 18,681 genes were up-regulated and 21,983 genes were down-regulated in low temperature condition. Many DEGs were related to the cell membrane system, antioxidant enzymes, carbohydrate metabolism, and hormone metabolism, which are potentially associated with sweetpotato resistance to low temperature. The existence of DEGs suggests a molecular basis for the biochemical and physiological consequences of sweetpotato in low temperature storage conditions. Our analysis will provide a new target for enhancement of sweetpotato cold stress tolerance in postharvest storage through genetic manipulation. Copyright © 2018. Published by Elsevier Inc.

  15. Key factors for a high-quality VR experience

    Science.gov (United States)

    Champel, Mary-Luc; Doré, Renaud; Mollet, Nicolas

    2017-09-01

    For many years, Virtual Reality has been presented as a promising technology that could deliver a truly new experience to users. The media and entertainment industry is now investigating the possibility to offer a video-based VR 360 experience. Nevertheless, there is a substantial risk that VR 360 could have the same fate as 3DTV if it cannot offer more than just being the next fad. The present paper aims at presenting the various quality factors required for a high-quality VR experience. More specifically, this paper will focus on the main three VR quality pillars: visual, audio and immersion.

  16. Process to Continuously Melt, Refine and Cast High Quality Steel

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    The purpose of this project is to conduct research and development targeted at designing a revolutionary steelmaking process. This process will deliver high quality steel from scrap to the casting mold in one continuous process and will be safer, more productive, and less capital intensive to build and operate than conventional steelmaking. The new process will produce higher quality steel faster than traditional batch processes while consuming less energy and other resources.

  17. Accurate molecular diagnosis of phenylketonuria and tetrahydrobiopterin-deficient hyperphenylalaninemias using high-throughput targeted sequencing

    Science.gov (United States)

    Trujillano, Daniel; Perez, Belén; González, Justo; Tornador, Cristian; Navarrete, Rosa; Escaramis, Georgia; Ossowski, Stephan; Armengol, Lluís; Cornejo, Verónica; Desviat, Lourdes R; Ugarte, Magdalena; Estivill, Xavier

    2014-01-01

    Genetic diagnostics of phenylketonuria (PKU) and tetrahydrobiopterin (BH4) deficient hyperphenylalaninemia (BH4DH) rely on methods that scan for known mutations or on laborious molecular tools that use Sanger sequencing. We have implemented a novel and much more efficient strategy based on high-throughput multiplex-targeted resequencing of four genes (PAH, GCH1, PTS, and QDPR) that, when affected by loss-of-function mutations, cause PKU and BH4DH. We have validated this approach in a cohort of 95 samples with the previously known PAH, GCH1, PTS, and QDPR mutations and one control sample. Pooled barcoded DNA libraries were enriched using a custom NimbleGen SeqCap EZ Choice array and sequenced using a HiSeq2000 sequencer. The combination of several robust bioinformatics tools allowed us to detect all known pathogenic mutations (point mutations, short insertions/deletions, and large genomic rearrangements) in the 95 samples, without detecting spurious calls in these genes in the control sample. We then used the same capture assay in a discovery cohort of 11 uncharacterized HPA patients using a MiSeq sequencer. In addition, we report the precise characterization of the breakpoints of four genomic rearrangements in PAH, including a novel deletion of 899 bp in intron 3. Our study is a proof-of-principle that high-throughput-targeted resequencing is ready to substitute classical molecular methods to perform differential genetic diagnosis of hyperphenylalaninemias, allowing the establishment of specifically tailored treatments a few days after birth. PMID:23942198

  18. Sedimentary dynamics and high-frequency sequence stratigraphy of the southwestern slope of Great Bahama Bank

    Science.gov (United States)

    Wunsch, Marco; Betzler, Christian; Eberli, Gregor P.; Lindhorst, Sebastian; Lüdmann, Thomas; Reijmer, John J. G.

    2018-01-01

    New geophysical data from the leeward slope of Great Bahama Bank show how contour currents shape the slope and induce re-sedimentation processes. Along slope segments with high current control, drift migration and current winnowing at the toe of slope form a deep moat. Here, the slope progradation is inhibited by large channel incisions and the accumulation of large mass transport complexes, triggered by current winnowing. In areas where the slope is bathed by weaker currents, the accumulation of mass transport complexes and channel incision is rather controlled by the position of the sea level. Large slope failures were triggered during the Mid-Pleistocene transition and Mid-Brunhes event, both periods characterized by changes in the cyclicity or the amplitude of sea-level fluctuations. Within the seismic stratigraphic framework of third order sequences, four sequences of higher order were identified in the succession of the upper Pleistocene. These higher order sequences also show clear differences in function of the slope exposure to contour currents. Two stochastic models emphasize the role of the contour currents and slope morphology in the facies distribution in the upper Pleistocene sequences. In areas of high current influence the interplay of erosional and depositional processes form a complex facies pattern with downslope and along strike facies alterations. In zones with lower current influence, major facies alternations occur predominately in downslope direction, and a layer-cake pattern characterizes the along strike direction. Therefore, this study highlights that contour currents are an underestimated driver for the sediment distribution and architecture of carbonate slopes.

  19. High-quality cardiopulmonary resuscitation: current and future directions.

    Science.gov (United States)

    Abella, Benjamin S

    2016-06-01

    Cardiopulmonary resuscitation (CPR) represents the cornerstone of cardiac arrest resuscitation care. Prompt delivery of high-quality CPR can dramatically improve survival outcomes; however, the definitions of optimal CPR have evolved over several decades. The present review will discuss the metrics of CPR delivery, and the evidence supporting the importance of CPR quality to improve clinical outcomes. The introduction of new technologies to quantify metrics of CPR delivery has yielded important insights into CPR quality. Investigations using CPR recording devices have allowed the assessment of specific CPR performance parameters and their relative importance regarding return of spontaneous circulation and survival to hospital discharge. Additional work has suggested new opportunities to measure physiologic markers during CPR and potentially tailor CPR delivery to patient requirements. Through recent laboratory and clinical investigations, a more evidence-based definition of high-quality CPR continues to emerge. Exciting opportunities now exist to study quantitative metrics of CPR and potentially guide resuscitation care in a goal-directed fashion. Concepts of high-quality CPR have also informed new approaches to training and quality improvement efforts for cardiac arrest care.

  20. Integrating sequence stratigraphy and rock-physics to interpret seismic amplitudes and predict reservoir quality

    Science.gov (United States)

    Dutta, Tanima

    This dissertation focuses on the link between seismic amplitudes and reservoir properties. Prediction of reservoir properties, such as sorting, sand/shale ratio, and cement-volume from seismic amplitudes improves by integrating knowledge from multiple disciplines. The key contribution of this dissertation is to improve the prediction of reservoir properties by integrating sequence stratigraphy and rock physics. Sequence stratigraphy has been successfully used for qualitative interpretation of seismic amplitudes to predict reservoir properties. Rock physics modeling allows quantitative interpretation of seismic amplitudes. However, often there is uncertainty about selecting geologically appropriate rock physics model and its input parameters, away from the wells. In the present dissertation, we exploit the predictive power of sequence stratigraphy to extract the spatial trends of sedimentological parameters that control seismic amplitudes. These spatial trends of sedimentological parameters can serve as valuable constraints in rock physics modeling, especially away from the wells. Consequently, rock physics modeling, integrated with the trends from sequence stratigraphy, become useful for interpreting observed seismic amplitudes away from the wells in terms of underlying sedimentological parameters. We illustrate this methodology using a comprehensive dataset from channelized turbidite systems, deposited in minibasin settings in the offshore Equatorial Guinea, West Africa. First, we present a practical recipe for using closed-form expressions of effective medium models to predict seismic velocities in unconsolidated sandstones. We use an effective medium model that combines perfectly rough and smooth grains (the extended Walton model), and use that model to derive coordination number, porosity, and pressure relations for P and S wave velocities from experimental data. Our recipe provides reasonable fits to other experimental and borehole data, and specifically

  1. Next Generation High Quality Videoconferencing Service for the LHC

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In recent times, we have witnessed an explosion of video initiatives in the industry worldwide. Several advancements in video technology are currently improving the way we interact and collaborate. These advancements are forcing tendencies and overall experiences: any device in any network can be used to collaborate, in most cases with an overall high quality. To cope with this technology progresses, CERN IT Department has taken the leading role to establish strategies and directions to improve the user experience in remote dispersed meetings and remote collaboration at large in the worldwide LHC communities. Due to the high rate of dispersion in the LHC user communities, these are critically dependent of videoconferencing technology, with a need of robustness and high quality for the best possible user experience. We will present an analysis of the factors that influenced the technical and strategic choices to improve the reliability, efficiency and overall quality of the LHC remote sessions. In particular, ...

  2. European external quality control study on the competence of laboratories to recognize rare sequence variants resulting in unusual genotyping results.

    Science.gov (United States)

    Márki-Zay, János; Klein, Christoph L; Gancberg, David; Schimmel, Heinz G; Dux, László

    2009-04-01

    Depending on the method used, rare sequence variants adjacent to the single nucleotide polymorphism (SNP) of interest may cause unusual or erroneous genotyping results. Because such rare variants are known for many genes commonly tested in diagnostic laboratories, we organized a proficiency study to assess their influence on the accuracy of reported laboratory results. Four external quality control materials were processed and sent to 283 laboratories through 3 EQA organizers for analysis of the prothrombin 20210G>A mutation. Two of these quality control materials contained sequence variants introduced by site-directed mutagenesis. One hundred eighty-nine laboratories participated in the study. When samples gave a usual result with the method applied, the error rate was 5.1%. Detailed analysis showed that more than 70% of the failures were reported from only 9 laboratories. Allele-specific amplification-based PCR had a much higher error rate than other methods (18.3% vs 2.9%). The variants 20209C>T and [20175T>G; 20179_20180delAC] resulted in unusual genotyping results in 67 and 85 laboratories, respectively. Eighty-three (54.6%) of these unusual results were not recognized, 32 (21.1%) were attributed to technical issues, and only 37 (24.3%) were recognized as another sequence variant. Our findings revealed that some of the participating laboratories were not able to recognize and correctly interpret unusual genotyping results caused by rare SNPs. Our study indicates that the majority of the failures could be avoided by improved training and careful selection and validation of the methods applied.

  3. Selection of mRNA 5'-untranslated region sequence with high translation efficiency through ribosome display

    International Nuclear Information System (INIS)

    Mie, Masayasu; Shimizu, Shun; Takahashi, Fumio; Kobatake, Eiry

    2008-01-01

    The 5'-untranslated region (5'-UTR) of mRNAs functions as a translation enhancer, promoting translation efficiency. Many in vitro translation systems exhibit a reduced efficiency in protein translation due to decreased translation initiation. The use of a 5'-UTR sequence with high translation efficiency greatly enhances protein production in these systems. In this study, we have developed an in vitro selection system that favors 5'-UTRs with high translation efficiency using a ribosome display technique. A 5'-UTR random library, comprised of 5'-UTRs tagged with a His-tag and Renilla luciferase (R-luc) fusion, were in vitro translated in rabbit reticulocytes. By limiting the translation period, only mRNAs with high translation efficiency were translated. During translation, mRNA, ribosome and translated R-luc with His-tag formed ternary complexes. They were collected with translated His-tag using Ni-particles. Extracted mRNA from ternary complex was amplified using RT-PCR and sequenced. Finally, 5'-UTR with high translation efficiency was obtained from random 5'-UTR library

  4. Target-dependent enrichment of virions determines the reduction of high-throughput sequencing in virus discovery.

    Directory of Open Access Journals (Sweden)

    Randi Holm Jensen

    Full Text Available Viral infections cause many different diseases stemming both from well-characterized viral pathogens but also from emerging viruses, and the search for novel viruses continues to be of great importance. High-throughput sequencing is an important technology for this purpose. However, viral nucleic acids often constitute a minute proportion of the total genetic material in a sample from infected tissue. Techniques to enrich viral targets in high-throughput sequencing have been reported, but the sensitivity of such methods is not well established. This study compares different library preparation techniques targeting both DNA and RNA with and without virion enrichment. By optimizing the selection of intact virus particles, both by physical and enzymatic approaches, we assessed the effectiveness of the specific enrichment of viral sequences as compared to non-enriched sample preparations by selectively looking for and counting read sequences obtained from shotgun sequencing. Using shotgun sequencing of total DNA or RNA, viral targets were detected at concentrations corresponding to the predicted level, providing a foundation for estimating the effectiveness of virion enrichment. Virion enrichment typically produced a 1000-fold increase in the proportion of DNA virus sequences. For RNA virions the gain was less pronounced with a maximum 13-fold increase. This enrichment varied between the different sample concentrations, with no clear trend. Despite that less sequencing was required to identify target sequences, it was not evident from our data that a lower detection level was achieved by virion enrichment compared to shotgun sequencing.

  5. [Study on Microbial Diversity of Peri-implantitis Subgingival by High-throughput Sequencing].

    Science.gov (United States)

    Li, Zhi-jie; Wang, Shao-guo; Li, Yue-hong; Tu, Dong-xiang; Liu, Shi-yun; Nie, Hong-bing; Li, Zhi-qiang; Zhang, Ju-mei

    2015-07-01

    To study microbial diversity of peri-implantitis subgingival with high-throughput sequencing, and investigate microbiological etiology of peri-implantitis. Subgingival plaques were sampled from the patients with peri-implantitis (D group) and non-peri-implantitis subjects (N group). The microbiological diversity of the subgingival plaques was detected by sequencing V4 region of 16S rRNA with Illumina Miseq platform. The diversity of the community structure was analyzed using Mothur software. A total of 156 507 gene sequences were detected in nine samples and 4 402 operational taxonomic units (OTUs) were found. Selenomonas, Pseudomonas, and Fusobacterium were dominant bacteria in D group, while Fusobacterium, Veillonella and Streptococcus were dominant bacteria in N group. Differences between peri-implantitis and non-peri-implantitis bacterial communities were observed at all phylogenetic levels by LEfSe, which was also found in PcoA test. The occurrence of peri-implantitis is not only related to periodontitis pathogenic microbe, but also related with the changes of oral microbial community structure. Treponema, Herbaspirillum, Butyricimonas and Phaeobacte may be closely related to the occurrence and development of peri-implantitis.

  6. HTSeq--a Python framework to work with high-throughput sequencing data.

    Science.gov (United States)

    Anders, Simon; Pyl, Paul Theodor; Huber, Wolfgang

    2015-01-15

    A large choice of tools exists for many standard tasks in the analysis of high-throughput sequencing (HTS) data. However, once a project deviates from standard workflows, custom scripts are needed. We present HTSeq, a Python library to facilitate the rapid development of such scripts. HTSeq offers parsers for many common data formats in HTS projects, as well as classes to represent data, such as genomic coordinates, sequences, sequencing reads, alignments, gene model information and variant calls, and provides data structures that allow for querying via genomic coordinates. We also present htseq-count, a tool developed with HTSeq that preprocesses RNA-Seq data for differential expression analysis by counting the overlap of reads with genes. HTSeq is released as an open-source software under the GNU General Public Licence and available from http://www-huber.embl.de/HTSeq or from the Python Package Index at https://pypi.python.org/pypi/HTSeq. © The Author 2014. Published by Oxford University Press.

  7. Analysis of transposable elements in the genome of Asparagus officinalis from high coverage sequence data.

    Science.gov (United States)

    Li, Shu-Fen; Gao, Wu-Jun; Zhao, Xin-Peng; Dong, Tian-Yu; Deng, Chuan-Liang; Lu, Long-Dou

    2014-01-01

    Asparagus officinalis is an economically and nutritionally important vegetable crop that is widely cultivated and is used as a model dioecious species to study plant sex determination and sex chromosome evolution. To improve our understanding of its genome composition, especially with respect to transposable elements (TEs), which make up the majority of the genome, we performed Illumina HiSeq2000 sequencing of both male and female asparagus genomes followed by bioinformatics analysis. We generated 17 Gb of sequence (12×coverage) and assembled them into 163,406 scaffolds with a total cumulated length of 400 Mbp, which represent about 30% of asparagus genome. Overall, TEs masked about 53% of the A. officinalis assembly. Majority of the identified TEs belonged to LTR retrotransposons, which constitute about 28% of genomic DNA, with Ty1/copia elements being more diverse and accumulated to higher copy numbers than Ty3/gypsy. Compared with LTR retrotransposons, non-LTR retrotransposons and DNA transposons were relatively rare. In addition, comparison of the abundance of the TE groups between male and female genomes showed that the overall TE composition was highly similar, with only slight differences in the abundance of several TE groups, which is consistent with the relatively recent origin of asparagus sex chromosomes. This study greatly improves our knowledge of the repetitive sequence construction of asparagus, which facilitates the identification of TEs responsible for the early evolution of plant sex chromosomes and is helpful for further studies on this dioecious plant.

  8. elPrep: High-Performance Preparation of Sequence Alignment/Map Files for Variant Calling.

    Directory of Open Access Journals (Sweden)

    Charlotte Herzeel

    Full Text Available elPrep is a high-performance tool for preparing sequence alignment/map files for variant calling in sequencing pipelines. It can be used as a replacement for SAMtools and Picard for preparation steps such as filtering, sorting, marking duplicates, reordering contigs, and so on, while producing identical results. What sets elPrep apart is its software architecture that allows executing preparation pipelines by making only a single pass through the data, no matter how many preparation steps are used in the pipeline. elPrep is designed as a multithreaded application that runs entirely in memory, avoids repeated file I/O, and merges the computation of several preparation steps to significantly speed up the execution time. For example, for a preparation pipeline of five steps on a whole-exome BAM file (NA12878, we reduce the execution time from about 1:40 hours, when using a combination of SAMtools and Picard, to about 15 minutes when using elPrep, while utilising the same server resources, here 48 threads and 23GB of RAM. For the same pipeline on whole-genome data (NA12878, elPrep reduces the runtime from 24 hours to less than 5 hours. As a typical clinical study may contain sequencing data for hundreds of patients, elPrep can remove several hundreds of hours of computing time, and thus substantially reduce analysis time and cost.

  9. New var reconstruction algorithm exposes high var sequence diversity in a single geographic location in Mali.

    Science.gov (United States)

    Dara, Antoine; Drábek, Elliott F; Travassos, Mark A; Moser, Kara A; Delcher, Arthur L; Su, Qi; Hostelley, Timothy; Coulibaly, Drissa; Daou, Modibo; Dembele, Ahmadou; Diarra, Issa; Kone, Abdoulaye K; Kouriba, Bourema; Laurens, Matthew B; Niangaly, Amadou; Traore, Karim; Tolo, Youssouf; Fraser, Claire M; Thera, Mahamadou A; Djimde, Abdoulaye A; Doumbo, Ogobara K; Plowe, Christopher V; Silva, Joana C

    2017-03-28

    Encoded by the var gene family, highly variable Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) proteins mediate tissue-specific cytoadherence of infected erythrocytes, resulting in immune evasion and severe malaria disease. Sequencing and assembling the 40-60 var gene complement for individual infections has been notoriously difficult, impeding molecular epidemiological studies and the assessment of particular var elements as subunit vaccine candidates. We developed and validated a novel algorithm, Exon-Targeted Hybrid Assembly (ETHA), to perform targeted assembly of var gene sequences, based on a combination of Pacific Biosciences and Illumina data. Using ETHA, we characterized the repertoire of var genes in 12 samples from uncomplicated malaria infections in children from a single Malian village and showed them to be as genetically diverse as vars from isolates from around the globe. The gene var2csa, a member of the var family associated with placental malaria pathogenesis, was present in each genome, as were vars previously associated with severe malaria. ETHA, a tool to discover novel var sequences from clinical samples, will aid the understanding of malaria pathogenesis and inform the design of malaria vaccines based on PfEMP1. ETHA is available at: https://sourceforge.net/projects/etha/ .

  10. MatrixPlot: visualizing sequence constraints

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Stærfeldt, Hans Henrik; Lund, Ole

    1999-01-01

    MatrixPlot: visualizing sequence constraints. Sub-title Abstract Summary : MatrixPlot is a program for making high-quality matrix plots, such as mutual information plots of sequence alignments and distance matrices of sequences with known three-dimensional coordinates. The user can add information...

  11. Investigation of Human Cancers for Retrovirus by Low-Stringency Target Enrichment and High-Throughput Sequencing

    DEFF Research Database (Denmark)

    Vinner, Lasse; Mourier, Tobias; Friis-Nielsen, Jens

    2015-01-01

    -stringency in-solution hybridization method enables detection of discovery of hitherto unknown viral sequences by high-throughput sequencing. The sensitivity was sufficient to detect retroviral...... sequences in clinical samples. We used this method to conduct an investigation for novel retrovirus in samples from three cancer types. In accordance with recent studies our investigation revealed no retroviral infections in human B-cell lymphoma cells, cutaneous T-cell lymphoma or colorectal cancer...

  12. IMPACT OF RESILIENCE, ICT SUPPORT AND QUALITY OF STUDENT'S LIFE ON QUALITY OF HIGH EDUCATION PROCESS

    Directory of Open Access Journals (Sweden)

    Zorica Lazic

    2016-12-01

    Full Text Available Answers to the questions of how and in what way the quality of life of students, resilience and ICT support affects the quality of high education we will get through this work where main objective is to define a network of processes and process management ensuring more quality and more innovative managing and service provision, therefore satisfying the needs of service users - in this case the students of the university. To collect the relevant data in the thematic analysis of this paper, the method of interviewing by questionnaires was applied. The sample survey was conducted among undergraduate students, teachers and staff of the Teacher Training Faculty in Uzice.

  13. Development of a parallel zoomed EVI sequence for high temporal resolution analysis of the BOLD response

    International Nuclear Information System (INIS)

    Rabrait, C.

    2006-01-01

    acquisition of one line out of two and one plane out new acquisition method was experimented with success both with block-designed and event related visual paradigms. An 80 x 80 x 120 mm 3 volume, containing the visual cortex, was acquired with a repetition time of 200 ms. In both cases, a robust activation was detected in the primary visual cortex, with a high statistical significance threshold (7). Actually, high scanning rates mostly benefit for hemodynamic response estimation. To estimate hemodynamic response functions from our event-related data, a non parametric unsupervised method (8) is applied to the activated clusters selected using the SPM2 software. In every tested clusters, the estimated response functions are close to the usually assumed shape, although no prior assumption about the shape of the response is made. Furthermore, a significant early negative response is sometimes seen, which i s generally difficult to observe at 1.5 T. Current studies now aim at obtaining good quality single-voxel hemodynamic response functions, in order to map the spatio-temporal features of the BOLD response. Activation maps based on the early negative response could also be a valuable application of our method, since this response is thought to be more co-localized with the true activated areas than the delayed positive response (9). Another goal of our future work is the optimization of new paradigms to better exploit zoomed parallel Echo Volumar Imaging properties. (author)

  14. TIMPs of parasitic helminths - a large-scale analysis of high-throughput sequence datasets.

    Science.gov (United States)

    Cantacessi, Cinzia; Hofmann, Andreas; Pickering, Darren; Navarro, Severine; Mitreva, Makedonka; Loukas, Alex

    2013-05-30

    Tissue inhibitors of metalloproteases (TIMPs) are a multifunctional family of proteins that orchestrate extracellular matrix turnover, tissue remodelling and other cellular processes. In parasitic helminths, such as hookworms, TIMPs have been proposed to play key roles in the host-parasite interplay, including invasion of and establishment in the vertebrate animal hosts. Currently, knowledge of helminth TIMPs is limited to a small number of studies on canine hookworms, whereas no information is available on the occurrence of TIMPs in other parasitic helminths causing neglected diseases. In the present study, we conducted a large-scale investigation of TIMP proteins of a range of neglected human parasites including the hookworm Necator americanus, the roundworm Ascaris suum, the liver flukes Clonorchis sinensis and Opisthorchis viverrini, as well as the schistosome blood flukes. This entailed mining available transcriptomic and/or genomic sequence datasets for the presence of homologues of known TIMPs, predicting secondary structures of defined protein sequences, systematic phylogenetic analyses and assessment of differential expression of genes encoding putative TIMPs in the developmental stages of A. suum, N. americanus and Schistosoma haematobium which infect the mammalian hosts. A total of 15 protein sequences with high homology to known eukaryotic TIMPs were predicted from the complement of sequence data available for parasitic helminths and subjected to in-depth bioinformatic analyses. Supported by the availability of gene manipulation technologies such as RNA interference and/or transgenesis, this work provides a basis for future functional explorations of helminth TIMPs and, in particular, of their role/s in fundamental biological pathways linked to long-term establishment in the vertebrate hosts, with a view towards the development of novel approaches for the control of neglected helminthiases.

  15. Identification of microRNAs from Eugenia uniflora by high-throughput sequencing and bioinformatics analysis.

    Science.gov (United States)

    Guzman, Frank; Almerão, Mauricio P; Körbes, Ana P; Loss-Morais, Guilherme; Margis, Rogerio

    2012-01-01

    microRNAs or miRNAs are small non-coding regulatory RNAs that play important functions in the regulation of gene expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. Eugenia uniflora is a plant native to tropical America with pharmacological and ecological importance, and there have been no previous studies concerning its gene expression and regulation. To date, no miRNAs have been reported in Myrtaceae species. Small RNA and RNA-seq libraries were constructed to identify miRNAs and pre-miRNAs in Eugenia uniflora. Solexa technology was used to perform high throughput sequencing of the library, and the data obtained were analyzed using bioinformatics tools. From 14,489,131 small RNA clean reads, we obtained 1,852,722 mature miRNA sequences representing 45 conserved families that have been identified in other plant species. Further analysis using contigs assembled from RNA-seq allowed the prediction of secondary structures of 25 known and 17 novel pre-miRNAs. The expression of twenty-seven identified miRNAs was also validated using RT-PCR assays. Potential targets were predicted for the most abundant mature miRNAs in the identified pre-miRNAs based on sequence homology. This study is the first large scale identification of miRNAs and their potential targets from a species of the Myrtaceae family without genomic sequence resources. Our study provides more information about the evolutionary conservation of the regulatory network of miRNAs in plants and highlights species-specific miRNAs.

  16. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth.

    Science.gov (United States)

    Peng, Yu; Leung, Henry C M; Yiu, S M; Chin, Francis Y L

    2012-06-01

    Next-generation sequencing allows us to sequence reads from a microbial environment using single-cell sequencing or metagenomic sequencing technologies. However, both technologies suffer from the problem that sequencing depth of different regions of a genome or genomes from different species are highly uneven. Most existing genome assemblers usually have an assumption that sequencing depths are even. These assemblers fail to construct correct long contigs. We introduce the IDBA-UD algorithm that is based on the de Bruijn graph approach for assembling reads from single-cell sequencing or metagenomic sequencing technologies with uneven sequencing depths. Several non-trivial techniques have been employed to tackle the problems. Instead of using a simple threshold, we use multiple depthrelative thresholds to remove erroneous k-mers in both low-depth and high-depth regions. The technique of local assembly with paired-end information is used to solve the branch problem of low-depth short repeat regions. To speed up the process, an error correction step is conducted to correct reads of high-depth regions that can be aligned to highconfident contigs. Comparison of the performances of IDBA-UD and existing assemblers (Velvet, Velvet-SC, SOAPdenovo and Meta-IDBA) for different datasets, shows that IDBA-UD can reconstruct longer contigs with higher accuracy. The IDBA-UD toolkit is available at our website http://www.cs.hku.hk/~alse/idba_ud

  17. Use of high throughput sequencing to study oomycete communities in soil and roots

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Nicolaisen, Mogens

    2015-01-01

    taxonomic units from symptomatic lesions in carrot resulted in 94% of the reads belonging to oomycetes with a dominance of species of Pythium that are known to be involved in causing cavity spot. Moreover, soil samples showed that 95% of the sequences could be assigned to oomycetes including Pythium......, Aphanomyces, Peronospora, Saprolegnia and Phytophthora. A high proportion of oomycete reads was consistently present in all symptomatic lesions and soil samples showing the versatility of the strategy and thus demonstrating the usefulness of the method in plant and soil DNA background....

  18. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers.

    Directory of Open Access Journals (Sweden)

    Huihui Yu

    Full Text Available Huge efforts have been invested in the last two decades to dissect the genetic bases of complex traits including yields of many crop plants, through quantitative trait locus (QTL analyses. However, almost all the studies were based on linkage maps constructed using low-throughput molecular markers, e.g. restriction fragment length polymorphisms (RFLPs and simple sequence repeats (SSRs, thus are mostly of low density and not able to provide precise and complete information about the numbers and locations of the genes or QTLs controlling the traits. In this study, we constructed an ultra-high density genetic map based on high quality single nucleotide polymorphisms (SNPs from low-coverage sequences of a recombinant inbred line (RIL population of rice, generated using new sequencing technology. The quality of the map was assessed by validating the positions of several cloned genes including GS3 and GW5/qSW5, two major QTLs for grain length and grain width respectively, and OsC1, a qualitative trait locus for pigmentation. In all the cases the loci could be precisely resolved to the bins where the genes are located, indicating high quality and accuracy of the map. The SNP map was used to perform QTL analysis for yield and three yield-component traits, number of tillers per plant, number of grains per panicle and grain weight, using data from field trials conducted over years, in comparison to QTL mapping based on RFLPs/SSRs. The SNP map detected more QTLs especially for grain weight, with precise map locations, demonstrating advantages in detecting power and resolution relative to the RFLP/SSR map. Thus this study provided an example for ultra-high density map construction using sequencing technology. Moreover, the results obtained are helpful for understanding the genetic bases of the yield traits and for fine mapping and cloning of QTLs.

  19. Use of plan quality degradation to evaluate tradeoffs in delivery efficiency and clinical plan metrics arising from IMRT optimizer and sequencer compromises

    Science.gov (United States)

    Wilkie, Joel R.; Matuszak, Martha M.; Feng, Mary; Moran, Jean M.; Fraass, Benedick A.

    2013-01-01

    Purpose: Plan degradation resulting from compromises made to enhance delivery efficiency is an important consideration for intensity modulated radiation therapy (IMRT) treatment plans. IMRT optimization and/or multileaf collimator (MLC) sequencing schemes can be modified to generate more efficient treatment delivery, but the effect those modifications have on plan quality is often difficult to quantify. In this work, the authors present a method for quantitative assessment of overall plan quality degradation due to tradeoffs between delivery efficiency and treatment plan quality, illustrated using comparisons between plans developed allowing different numbers of intensity levels in IMRT optimization and/or MLC sequencing for static segmental MLC IMRT plans. Methods: A plan quality degradation method to evaluate delivery efficiency and plan quality tradeoffs was developed and used to assess planning for 14 prostate and 12 head and neck patients treated with static IMRT. Plan quality was evaluated using a physician's predetermined “quality degradation” factors for relevant clinical plan metrics associated with the plan optimization strategy. Delivery efficiency and plan quality were assessed for a range of optimization and sequencing limitations. The “optimal” (baseline) plan for each case was derived using a clinical cost function with an unlimited number of intensity levels. These plans were sequenced with a clinical MLC leaf sequencer which uses >100 segments, assuring delivered intensities to be within 1% of the optimized intensity pattern. Each patient's optimal plan was also sequenced limiting the number of intensity levels (20, 10, and 5), and then separately optimized with these same numbers of intensity levels. Delivery time was measured for all plans, and direct evaluation of the tradeoffs between delivery time and plan degradation was performed. Results: When considering tradeoffs, the optimal number of intensity levels depends on the treatment

  20. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities.

    Science.gov (United States)

    Mizumoto, Shuji; Murakoshi, Saori; Kalayanamitra, Kittiwan; Deepa, Sarama Sathyaseelan; Fukui, Shigeyuki; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki

    2013-02-01

    Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.

  1. Cis-acting regulatory sequences promote high-frequency gene conversion between repeated sequences in mammalian cells.

    Science.gov (United States)

    Raynard, Steven J; Baker, Mark D

    2004-01-01

    In mammalian cells, little is known about the nature of recombination-prone regions of the genome. Previously, we reported that the immunoglobulin heavy chain (IgH) mu locus behaved as a hotspot for mitotic, intrachromosomal gene conversion (GC) between repeated mu constant (Cmu) regions in mouse hybridoma cells. To investigate whether elements within the mu gene regulatory region were required for hotspot activity, gene targeting was used to delete a 9.1 kb segment encompassing the mu gene promoter (Pmu), enhancer (Emu) and switch region (Smu) from the locus. In these cell lines, GC between the Cmu repeats was significantly reduced, indicating that this 'recombination-enhancing sequence' (RES) is necessary for GC hotspot activity at the IgH locus. Importantly, the RES fragment stimulated GC when appended to the same Cmu repeats integrated at ectopic genomic sites. We also show that deletion of Emu and flanking matrix attachment regions (MARs) from the RES abolishes GC hotspot activity at the IgH locus. However, no stimulation of ectopic GC was observed with the Emu/MARs fragment alone. Finally, we provide evidence that no correlation exists between the level of transcription and GC promoted by the RES. We suggest a model whereby Emu/MARS enhances mitotic GC at the endogenous IgH mu locus by effecting chromatin modifications in adjacent DNA.

  2. Learning Disabilities and Achieving High-Quality Education Standards

    Science.gov (United States)

    Gartland, Debi; Strosnider, Roberta

    2017-01-01

    This is an official document of the National Joint Committee on Learning Disabilities (NJCLD), of which Council for Learning Disabilities is a long-standing, active member. With this position paper, NJCLD advocates for the implementation of high-quality education standards (HQES) for students with learning disabilities (LD) and outlines the…

  3. extraction of high quality dna from polysaccharides-secreting ...

    African Journals Online (AJOL)

    cistvr

    A DNA extraction method using CTAB was used for the isolation of genomic DNA from ten. Xanthomonas campestris pathovars, ten isolates of Xanthomonas albilineans and one isolate of. Pseudomonas rubrisubalbicans. High quality DNA was obtained that was ideal for molecular analy- ses. Extracellular polysaccharides ...

  4. Negative Binomial charts for monitoring high-quality processes

    NARCIS (Netherlands)

    Albers, Willem/Wim

    Good control charts for high quality processes are often based on the number of successes between failures. Geometric charts are simplest in this respect, but slow in recognizing moderately increased failure rates p. Improvement can be achieved by waiting until r > 1 failures have occurred, i.e. by

  5. Synthesis and spectroscopic study of high quality alloy Cdx S ...

    Indian Academy of Sciences (India)

    Wintec

    In the present study, we report the synthesis of high quality CdxZn1–xS nanocrystals alloy at. 150°C with .... (XRD) using a Siemens model D 500, powder X-ray ... decays were analysed using IBH DAS6 software. 3. ... This alloying process is.

  6. Methods and systems for fabricating high quality superconducting tapes

    Science.gov (United States)

    Majkic, Goran; Selvamanickam, Venkat

    2018-02-13

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  7. Managing quality inside a high-technology project organization

    OpenAIRE

    Jokinen, T. (Tauno)

    2004-01-01

    Abstract This action research addresses the deployment of Total Quality Management (TQM) principles in a high-technology new product development organisation. During the period of study, the organisation grew fast. High-technology product development and hypergrowth provided a unique combination of extreme conditions for the study. The existing concepts of TQM are presented as an organised map enabling strategic analysis for an implementation plan. The history of TQM dates back to the ...

  8. Screening of whole genome sequences identified high-impact variants for stallion fertility.

    Science.gov (United States)

    Schrimpf, Rahel; Gottschalk, Maren; Metzger, Julia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar

    2016-04-14

    Stallion fertility is an economically important trait due to the increase of artificial insemination in horses. The availability of whole genome sequence data facilitates identification of rare high-impact variants contributing to stallion fertility. The aim of our study was to genotype rare high-impact variants retrieved from next-generation sequencing (NGS)-data of 11 horses in order to unravel harmful genetic variants in large samples of stallions. Gene ontology (GO) terms and search results from public databases were used to obtain a comprehensive list of human und mice genes predicted to participate in the regulation of male reproduction. The corresponding equine orthologous genes were searched in whole genome sequence data of seven stallions and four mares and filtered for high-impact genetic variants using SnpEFF, SIFT and Polyphen 2 software. All genetic variants with the missing homozygous mutant genotype were genotyped on 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. Mixed linear model analysis was employed for an association analysis with de-regressed estimated breeding values of the paternal component of the pregnancy rate per estrus (EBV-PAT). We screened next generation sequenced data of whole genomes from 11 horses for equine genetic variants in 1194 human and mice genes involved in male fertility and linked through common gene ontology (GO) with male reproductive processes. Variants were filtered for high-impact on protein structure and validated through SIFT and Polyphen 2. Only those genetic variants were followed up when the homozygote mutant genotype was missing in the detection sample comprising 11 horses. After this filtering process, 17 single nucleotide polymorphism (SNPs) were left. These SNPs were genotyped in 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. An association analysis in 216 Hanoverian stallions revealed a significant association of the splice-site disruption variant

  9. [Quality of sleep and academic performance in high school students].

    Science.gov (United States)

    Bugueño, Maithe; Curihual, Carolina; Olivares, Paulina; Wallace, Josefa; López-AlegrÍa, Fanny; Rivera-López, Gonzalo; Oyanedel, Juan Carlos

    2017-09-01

    Sleeping and studying are the day-to-day activities of a teenager attending school. To determine the quality of sleep and its relationship to the academic performance among students attending morning and afternoon shifts in a public high school. Students of the first and second year of high school answered an interview about socio-demographic background, academic performance, student activities and subjective sleep quality; they were evaluated using the Pittsburgh Sleep Quality Index (PSQI). The interview was answered by 322 first year students aged 15 ± 5 years attending the morning shift and 364 second year students, aged 16 ± 0.5 years, attending the afternoon shift. The components: sleep latency, habitual sleep efficiency, sleep disturbance, drug use and daytime dysfunction were similar and classified as good in both school shifts. The components subjective sleep quality and duration of sleep had higher scores among students of the morning shift. The mean grades during the first semester of the students attending morning and afternoon shifts were 5.9 and 5.8, respectively (of a scale from 1 to 7). Among students of both shifts, the PSQI scale was associated inversely and significantly with academic performance. A bad sleep quality influences academic performance in these students.

  10. Highly qualified does not equal high quality: A study of urban stakeholders' perceptions of quality in science teaching

    Science.gov (United States)

    Miranda, Rommel Joseph

    By employing qualitative methods, this study sought to determine the perceptions that urban stakeholders hold about what characteristics should distinguish a high school science teacher whom they would consider to demonstrate high quality in science teaching. A maximum variation sample of six science teachers, three school administrators, six parents and six students from a large urban public school district were interviewed using semi-structured, in-depth interview techniques. From these data, a list of observable characteristics which urban stakeholders hold as evidence of high quality in science teaching was generated. Observational techniques were utilized to determine the extent to which six urban high school science teachers, who meet the NCLB Act criteria for being "highly qualified", actually possessed the characteristics which these stakeholders hold as evidence of high quality in science teaching. Constant comparative analysis was used to analyze the data set. The findings suggest that urban stakeholders perceive that a high school science teacher who demonstrates high quality in science teaching should be knowledgeable about their subject matter, their student population, and should be resourceful; should possess an academic background in science and professional experience in science teaching; should exhibit professionalism, a passion for science and teaching, and a dedication to teaching and student learning; should be skillful in planning and preparing science lessons and in organizing the classroom, in presenting the subject matter to students, in conducting a variety of hands-on activities, and in managing a classroom; and should assess whether students complete class goals and objectives, and provide feedback about grades for students promptly. The findings further reveal that some of the urban high school science teachers who were deemed to be "highly qualified", as defined by the NCLB Act, engaged in practices that threatened quality in science

  11. High quality digital holographic reconstruction on analog film

    Science.gov (United States)

    Nelsen, B.; Hartmann, P.

    2017-05-01

    High quality real-time digital holographic reconstruction, i.e. at 30 Hz frame rates, has been at the forefront of research and has been hailed as the holy grail of display systems. While these efforts have produced a fascinating array of computer algorithms and technology, many applications of reconstructing high quality digital holograms do not require such high frame rates. In fact, applications such as 3D holographic lithography even require a stationary mask. Typical devices used for digital hologram reconstruction are based on spatial-light-modulator technology and this technology is great for reconstructing arbitrary holograms on the fly; however, it lacks the high spatial resolution achievable by its analog counterpart, holographic film. Analog holographic film is therefore the method of choice for reconstructing highquality static holograms. The challenge lies in taking a static, high-quality digitally calculated hologram and effectively writing it to holographic film. We have developed a theoretical system based on a tunable phase plate, an intensity adjustable high-coherence laser and a slip-stick based piezo rotation stage to effectively produce a digitally calculated hologram on analog film. The configuration reproduces the individual components, both the amplitude and phase, of the hologram in the Fourier domain. These Fourier components are then individually written on the holographic film after interfering with a reference beam. The system is analogous to writing angularly multiplexed plane waves with individual component phase control.

  12. High levels of diversity characterize mandrill (Mandrillus sphinx) Mhc-DRB sequences.

    Science.gov (United States)

    Abbott, Kristin M; Wickings, E Jean; Knapp, Leslie A

    2006-08-01

    The major histocompatibility complex (MHC) is highly polymorphic in most primate species studied thus far. The rhesus macaque (Macaca mulatta) has been studied extensively and the Mhc-DRB region demonstrates variability similar to humans. The extent of MHC diversity is relatively unknown for other Old World monkeys (OWM), especially among genera other than Macaca. A molecular survey of the Mhc-DRB region in mandrills (Mandrillus sphinx) revealed extensive variability, suggesting that other OWMs may also possess high levels of Mhc-DRB polymorphism. In the present study, 33 Mhc-DRB loci were identified from only 13 animals. Eleven were wild-born and presumed to be unrelated and two were captive-born twins. Two to seven different sequences were identified for each individual, suggesting that some mandrills may have as many as four Mhc-DRB loci on a single haplotype. From these sequences, representatives of at least six Mhc-DRB loci or lineages were identified. As observed in other primates, some new lineages may have arisen through the process of gene conversion. These findings indicate that mandrills have Mhc-DRB diversity not unlike rhesus macaques and humans.

  13. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    Science.gov (United States)

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  14. Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites

    Science.gov (United States)

    Grijseels, Sietske; Nielsen, Jens Christian; Randelovic, Milica; Nielsen, Jens; Nielsen, Kristian Fog; Workman, Mhairi; Frisvad, Jens Christian

    2016-01-01

    A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted in the identification of 62 putative biosynthetic gene clusters. Extracts of P. arizonense were analysed for secondary metabolites and austalides, pyripyropenes, tryptoquivalines, fumagillin, pseurotin A, curvulinic acid and xanthoepocin were detected. A comparative analysis against known pathways enabled the proposal of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential industrial applications for the new species P. arizonense. The description and availability of the genome sequence of P. arizonense, further provides the basis for biotechnological exploitation of this species. PMID:27739446

  15. Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea

    KAUST Repository

    Pearman, John K.

    2015-11-01

    The present study aims to characterize the benthic eukaryotic biodiversity patterns at a coarse taxonomic level in three areas of the central Red Sea (a lagoon, an offshore area in Thuwal and a shallow coastal area near Jeddah) based on extracellular DNA. High-throughput amplicon sequencing targeting the V9 region of the 18S rRNA gene was undertaken for 32 sediment samples. High levels of alpha-diversity were detected with 16,089 operational taxonomic units (OTUs) being identified. The majority of the OTUs were assigned to Metazoa (29.2%), Alveolata (22.4%) and Stramenopiles (17.8%). Stramenopiles (Diatomea) and Alveolata (Ciliophora) were frequent in a lagoon and in shallower coastal stations, whereas metazoans (Arthropoda: Maxillopoda) were dominant in deeper offshore stations. Only 24.6% of total OTUs were shared among all areas. Beta-diversity was generally lower between the lagoon and Jeddah (nearshore) than between either of those and the offshore area, suggesting a nearshore–offshore biodiversity gradient. The current approach allowed for a broad-range of benthic eukaryotic biodiversity to be analysed with significantly less labour than would be required by other traditional taxonomic approaches. Our findings suggest that next generation sequencing techniques have the potential to provide a fast and standardised screening of benthic biodiversity at large spatial and temporal scales.

  16. Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma.

    Science.gov (United States)

    Lim, Weng Khong; Ong, Choon Kiat; Tan, Jing; Thike, Aye Aye; Ng, Cedric Chuan Young; Rajasegaran, Vikneswari; Myint, Swe Swe; Nagarajan, Sanjanaa; Nasir, Nur Diyana Md; McPherson, John R; Cutcutache, Ioana; Poore, Gregory; Tay, Su Ting; Ooi, Wei Siong; Tan, Veronique Kiak Mien; Hartman, Mikael; Ong, Kong Wee; Tan, Benita K T; Rozen, Steven G; Tan, Puay Hoon; Tan, Patrick; Teh, Bin Tean

    2014-08-01

    Fibroadenomas are the most common breast tumors in women under 30 (refs. 1,2). Exome sequencing of eight fibroadenomas with matching whole-blood samples revealed recurrent somatic mutations solely in MED12, which encodes a Mediator complex subunit. Targeted sequencing of an additional 90 fibroadenomas confirmed highly frequent MED12 exon 2 mutations (58/98, 59%) that are probably somatic, with 71% of mutations occurring in codon 44. Using laser capture microdissection, we show that MED12 fibroadenoma mutations are present in stromal but not epithelial mammary cells. Expression profiling of MED12-mutated and wild-type fibroadenomas revealed that MED12 mutations are associated with dysregulated estrogen signaling and extracellular matrix organization. The fibroadenoma MED12 mutation spectrum is nearly identical to that of previously reported MED12 lesions in uterine leiomyoma but not those of other tumors. Benign tumors of the breast and uterus, both of which are key target tissues of estrogen, may thus share a common genetic basis underpinned by highly frequent and specific MED12 mutations.

  17. Teolenn: an efficient and customizable workflow to design high-quality probes for microarray experiments

    Science.gov (United States)

    Jourdren, Laurent; Duclos, Aurélie; Brion, Christian; Portnoy, Thomas; Mathis, Hugues; Margeot, Antoine; Le Crom, Stéphane

    2010-01-01

    Despite the development of new high-throughput sequencing techniques, microarrays are still attractive tools to study small genome organisms, thanks to sample multiplexing and high-feature densities. However, the oligonucleotide design remains a delicate step for most users. A vast array of software is available to deal with this problem, but each program is developed with its own strategy, which makes the choice of the best solution difficult. Here we describe Teolenn, a universal probe design workflow developed with a flexible and customizable module organization allowing fixed or variable length oligonucleotide generation. In addition, our software is able to supply quality scores for each of the designed probes. In order to assess the relevance of these scores, we performed a real hybridization using a tiling array designed against the Trichoderma reesei fungus genome. We show that our scoring pipeline correlates with signal quality for 97.2% of all the designed probes, allowing for a posteriori comparisons between quality scores and signal intensities. This result is useful in discarding any bad scoring probes during the design step in order to get high-quality microarrays. Teolenn is available at http://transcriptome.ens.fr/teolenn/. PMID:20176570

  18. Digital PCR provides sensitive and absolute calibration for high throughput sequencing

    Directory of Open Access Journals (Sweden)

    Fan H Christina

    2009-03-01

    Full Text Available Abstract Background Next-generation DNA sequencing on the 454, Solexa, and SOLiD platforms requires absolute calibration of the number of molecules to be sequenced. This requirement has two unfavorable consequences. First, large amounts of sample-typically micrograms-are needed for library preparation, thereby limiting the scope of samples which can be sequenced. For many applications, including metagenomics and the sequencing of ancient, forensic, and clinical samples, the quantity of input DNA can be critically limiting. Second, each library requires a titration sequencing run, thereby increasing the cost and lowering the throughput of sequencing. Results We demonstrate the use of digital PCR to accurately quantify 454 and Solexa sequencing libraries, enabling the preparation of sequencing libraries from nanogram quantities of input material while eliminating costly and time-consuming titration runs of the sequencer. We successfully sequenced low-nanogram scale bacterial and mammalian DNA samples on the 454 FLX and Solexa DNA sequencing platforms. This study is the first to definitively demonstrate the successful sequencing of picogram quantities of input DNA on the 454 platform, reducing the sample requirement more than 1000-fold without pre-amplification and the associated bias and reduction in library depth. Conclusion The digital PCR assay allows absolute quantification of sequencing libraries, eliminates uncertainties associated with the construction and application of standard curves to PCR-based quantification, and with a coefficient of variation close to 10%, is sufficiently precise to enable direct sequencing without titration runs.

  19. Markovian Model in High Order Sequence Prediction From Log-Motif Patterns in Agbada Paralic Section, Niger Delta, Nigeria

    International Nuclear Information System (INIS)

    Olabode, S. O.; Adekoya, J. A.

    2002-01-01

    Markovian model in the elucidation of high order sequence was applied to repetitive events of regressive and transgressive phases in the Agbada paralic section Niger Delta. The repetitive events are made up of delta front, delta topset and fluvio-deltaic sediments. The sediments consist of sands, sandstones, siltstones and shales in various proportions. Five wells: MN1, AA1, NP2, NP6 and NP8 were studied.Summary of biostratigraphic report and well log-motif patterns was used to delineate the third order depositional sequences in the wells.Various Markovian properties - observed transition frequency matrix, observed transition probability matrix, fixed probability vector, expected random matrix (randomised transition matrix) and difference matrix were determined for stacked high order sequence (high frequency cyclic events) nested within the third-order sequences using the log-motif patterns for the various sand bodies and shales. Flow diagrams were constructed for each of the depositional sequences to know the likely occurrence of number of cycles.Upward transition matrix between the log-motif patterns and flow diagram to elucidate cyclicity show that the overall regressive sequence of the Niger Delta has been modified by deltaic depositional elements and fluctuations in sea level. The predictions of higher order sequence within third order sequences from Markovian Properties provide good basis for correlation within the depositional sequences. The model has also been used to decipher the dominant depositional processes during the formation of the sequences. Discrete reservoir intervals and seal potentials within the sequences were also predicted from the flow diagrams constructed

  20. Assessing the impact of water treatment on bacterial biofilms in drinking water distribution systems using high-throughput DNA sequencing.

    Science.gov (United States)

    Shaw, Jennifer L A; Monis, Paul; Fabris, Rolando; Ho, Lionel; Braun, Kalan; Drikas, Mary; Cooper, Alan

    2014-12-01

    Biofilm control in drinking water distribution systems (DWDSs) is crucial, as biofilms are known to reduce flow efficiency, impair taste and quality of drinking water and have been implicated in the transmission of harmful pathogens. Microorganisms within biofilm communities are more resistant to disinfection compared to planktonic microorganisms, making them difficult to manage in DWDSs. This study evaluates the impact of four unique drinking water treatments on biofilm community structure using metagenomic DNA sequencing. Four experimental DWDSs were subjected to the following treatments: (1) conventional coagulation, (2) magnetic ion exchange contact (MIEX) plus conventional coagulation, (3) MIEX plus conventional coagulation plus granular activated carbon, and (4) membrane filtration (MF). Bacterial biofilms located inside the pipes of each system were sampled under sterile conditions both (a) immediately after treatment application ('inlet') and (b) at a 1 km distance from the treatment application ('outlet'). Bacterial 16S rRNA gene sequencing revealed that the outlet biofilms were more diverse than those sampled at the inlet for all treatments. The lowest number of unique operational taxonomic units (OTUs) and lowest diversity was observed in the MF inlet. However, the MF system revealed the greatest increase in diversity and OTU count from inlet to outlet. Further, the biofilm communities at the outlet of each system were more similar to one another than to their respective inlet, suggesting that biofilm communities converge towards a common established equilibrium as distance from treatment application increases. Based on the results, MF treatment is most effective at inhibiting biofilm growth, but a highly efficient post-treatment disinfection regime is also critical in order to prevent the high rates of post-treatment regrowth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. SNP discovery and High Resolution Melting Analysis from massive transcriptome sequencing in the California red abalone Haliotis rufescens.

    Science.gov (United States)

    Valenzuela-Muñoz, Valentina; Araya-Garay, José Miguel; Gallardo-Escárate, Cristian

    2013-06-01

    The California red abalone, Haliotis rufescens that belongs to the Haliotidae family, is the largest species of abalone in the world that has sustained the major fishery and aquaculture production in the USA and Mexico. This native mollusk has not been evaluated or assigned a conservation category even though in the last few decades it was heavily exploited until it disappeared in some areas along the California coast. In Chile, the red abalone was introduced in the 1970s from California wild abalone stocks for the purposes of aquaculture. Considering the number of years that the red abalone has been cultivated in Chile crucial genetic information is scarce and critical issues remain unresolved. This study reports and validates novel single nucleotide polymorphisms (SNP) markers for the red abalone H. rufescens using cDNA pyrosequencing. A total of 622 high quality SNPs were identified in 146 sequences with an estimated frequency of 1 SNP each 1000bp. Forty-five SNPs markers with functional information for gene ontology were selected. Of these, 8 were polymorphic among the individuals screened: Heat shock protein 70 (HSP70), vitellogenin (VTG), lysin, alginate lyase enzyme (AL), Glucose-regulated protein 94 (GRP94), fructose-bisphosphate aldolase (FBA), sulfatase 1A precursor (S1AP) and ornithine decarboxylase antizyme (ODC). Two additional sequences were also identified with polymorphisms but no similarities with known proteins were achieved. To validate the putative SNP markers, High Resolution Melting Analysis (HRMA) was conducted in a wild and hatchery-bred population. Additionally, SNP cross-amplifications were tested in two further native abalone species, Haliotis fulgens and Haliotis corrugata. This study provides novel candidate genes that could be used to evaluate loss of genetic diversity due to hatchery selection or inbreeding effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites

    DEFF Research Database (Denmark)

    Grijseels, Sietske; Nielsen, Jens Christian; Randelovic, Milica

    2016-01-01

    A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes...... confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted...... of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential...

  3. Highly Stereoselective Synthesis of Cyclopentanes bearing Four Stereocenters by a Rhodium Carbene–Initiated Domino Sequence

    Science.gov (United States)

    Parr, Brendan T.; Davies, Huw M. L.

    2014-01-01

    Stereoselective synthesis of a cyclopentane nucleus by convergent annulations constitutes a significant challenge for synthetic chemists. Though a number of biologically relevant cyclopentane natural products are known, more often than not, the cyclopentane core is assembled in a stepwise fashion due to lack of efficient annulation strategies. Herein, we report the rhodium-catalyzed reactions of vinyldiazoacetates with (E)-1,3-disubstituted 2-butenols generate cyclopentanes, containing four new stereogenic centers with very high levels of stereoselectivity (99% ee, >97 : 3 dr). The reaction proceeds by a carbene–initiated domino sequence consisting of five distinct steps: rhodium–bound oxonium ylide formation, [2,3]-sigmatropic rearrangement, oxy-Cope rearrangement, enol–keto tautomerization, and finally an intramolecular carbonyl ene reaction. A systematic study is presented detailing how to control chirality transfer in each of the four stereo-defining steps of the cascade, consummating in the development of a highly stereoselective process. PMID:25082301

  4. The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences.

    Directory of Open Access Journals (Sweden)

    Fabian König

    Full Text Available The monoclonal antibody S9.6 is a widely-used tool to purify, analyse and quantify R-loop structures in cells. A previous study using the surface plasmon resonance technology and a single-chain variable fragment (scFv of S9.6 showed high affinity (0.6 nM for DNA-RNA and also a high affinity (2.7 nM for RNA-RNA hybrids. We used the microscale thermophoresis method allowing surface independent interaction studies and electromobility shift assays to evaluate additional RNA-DNA hybrid sequences and to quantify the binding affinities of the S9.6 antibody with respect to distinct sequences and their GC-content. Our results confirm high affinity binding to previously analysed sequences, but reveals that binding affinities are highly sequence specific. Our study presents R-loop sequences that independent of GC-content and in different sequence variations exhibit either no binding, binding affinities in the micromolar range and as well high affinity binding in the nanomolar range. Our study questions the usefulness of the S9.6 antibody in the quantitative analysis of R-loop sequences in vivo.

  5. Long quantum channels for high-quality entanglement transfer

    International Nuclear Information System (INIS)

    Banchi, L; Apollaro, T J G; Cuccoli, A; Verrucchi, P; Vaia, R

    2011-01-01

    High-quality quantum-state and entanglement transfer can be achieved in an unmodulated spin bus operating in the ballistic regime, which occurs when the endpoint qubits A and B are nonperturbatively coupled to the chain by a suitable exchange interaction j 0 . Indeed, the transition amplitude characterizing the transfer quality exhibits a maximum for a finite optimal value j opt 0 (N), where N is the channel length. We show that j opt 0 (N) scales as N -1/6 for large N and that it ensures a high-quality entanglement transfer even in the limit of arbitrarily long channels, almost independently of the channel initialization. For instance, for any chain length the average quantum-state transmission fidelity exceeds 90% and decreases very little in a broad neighbourhood of j opt 0 (N). We emphasize that, taking the reverse point of view, should j 0 be experimentally constrained, high-quality transfer can still be obtained by adjusting the channel length to its optimal value. (paper)

  6. Integration study of high quality teaching resources in universities

    Directory of Open Access Journals (Sweden)

    Honglu Liu

    2012-12-01

    Full Text Available Purpose: The development level and quality of education depend on the merits and efficiency in the use of teaching resources, especially in the case of obvious contradiction between the demand and supply of teaching resources. So to integrate teaching resources, improve the efficiency in the use of high quality teaching resources, and take the road of content development to enhance the competitiveness of education has become very important and urgent.Design/methodology/approach: On the basis of analysis on the teaching resources of universities and the problems they faced, this paper introduced the basic concepts of cloud storage, and built the integration architecture of high quality teaching resources in universities based on the cloud storage.Findings and Originality/value: The HDFS-based cloud storage proposed in this paper is a dynamically adjustable and Internet-based storage solution, and the users can access storage targets using the network through a common and easy-to-use protocol and application programming interfaces. This new technology is useful for end users benefits. With the continuous development and improvement of cloud storage, it will necessarily result in more and more applications in the institutions of higher learning and education network.Originality/value: This paper introduced the cloud storage into the integration of high quality teaching resources in universities first and as a new form of service, it can be a good solution.

  7. Examination of Operation Quality for High-frequent Railway Operation

    DEFF Research Database (Denmark)

    Landex, Alex; Kaas, Anders H.

    2009-01-01

    take the first train in their direction. The article examines four different approaches to examine operation quality for high-frequent operation that are based on the experiences of the passengers. These approaches are the service frequency of the operation, travel time extension, a combination......The examination of operation quality for high-frequent operation requires other approaches than the typical evaluation of punctuality (trains on time) and reliability (operated trains). This is because passengers in high-frequent railway systems do not necessarily notice train delays as they just...... of the service frequency and travel time approaches, and passenger delays. The service frequency and travel time approaches are simple measurements with low complexity and complement each other. Therefore, the article recommends combining the service frequency and travel time approaches to get a more accurate...

  8. High diagnostic yield of syndromic intellectual disability by targeted next-generation sequencing.

    Science.gov (United States)

    Martínez, Francisco; Caro-Llopis, Alfonso; Roselló, Mónica; Oltra, Silvestre; Mayo, Sonia; Monfort, Sandra; Orellana, Carmen

    2017-02-01

    Intellectual disability is a very complex condition where more than 600 genes have been reported. Due to this extraordinary heterogeneity, a large proportion of patients remain without a specific diagnosis and genetic counselling. The need for new methodological strategies in order to detect a greater number of mutations in multiple genes is therefore crucial. In this work, we screened a large panel of 1256 genes (646 pathogenic, 610 candidate) by next-generation sequencing to determine the molecular aetiology of syndromic intellectual disability. A total of 92 patients, negative for previous genetic analyses, were studied together with their parents. Clinically relevant variants were validated by conventional sequencing. A definitive diagnosis was achieved in 29 families by testing the 646 known pathogenic genes. Mutations were found in 25 different genes, where only the genes KMT2D, KMT2A and MED13L were found mutated in more than one patient. A preponderance of de novo mutations was noted even among the X linked conditions. Additionally, seven de novo probably pathogenic mutations were found in the candidate genes AGO1, JARID2, SIN3B, FBXO11, MAP3K7, HDAC2 and SMARCC2. Altogether, this means a diagnostic yield of 39% of the cases (95% CI 30% to 49%). The developed panel proved to be efficient and suitable for the genetic diagnosis of syndromic intellectual disability in a clinical setting. Next-generation sequencing has the potential for high-throughput identification of genetic variations, although the challenges of an adequate clinical interpretation of these variants and the knowledge on further unknown genes causing intellectual disability remain to be solved. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Genetic profiles of cervical tumors by high-throughput sequencing for personalized medical care

    International Nuclear Information System (INIS)

    Muller, Etienne; Brault, Baptiste; Holmes, Allyson; Legros, Angelina; Jeannot, Emmanuelle; Campitelli, Maura; Rousselin, Antoine; Goardon, Nicolas; Frébourg, Thierry; Krieger, Sophie; Crouet, Hubert; Nicolas, Alain; Sastre, Xavier; Vaur, Dominique; Castéra, Laurent

    2015-01-01

    Cancer treatment is facing major evolution since the advent of targeted therapies. Building genetic profiles could predict sensitivity or resistance to these therapies and highlight disease-specific abnormalities, supporting personalized patient care. In the context of biomedical research and clinical diagnosis, our laboratory has developed an oncogenic panel comprised of 226 genes and a dedicated bioinformatic pipeline to explore somatic mutations in cervical carcinomas, using high-throughput sequencing. Twenty-nine tumors were sequenced for exons within 226 genes. The automated pipeline used includes a database and a filtration system dedicated to identifying mutations of interest and excluding false positive and germline mutations. One-hundred and seventy-six total mutational events were found among the 29 tumors. Our cervical tumor mutational landscape shows that most mutations are found in PIK3CA (E545K, E542K) and KRAS (G12D, G13D) and others in FBXW7 (R465C, R505G, R479Q). Mutations have also been found in ALK (V1149L, A1266T) and EGFR (T259M). These results showed that 48% of patients display at least one deleterious mutation in genes that have been already targeted by the Food and Drug Administration approved therapies. Considering deleterious mutations, 59% of patients could be eligible for clinical trials. Sequencing hundreds of genes in a clinical context has become feasible, in terms of time and cost. In the near future, such an analysis could be a part of a battery of examinations along the diagnosis and treatment of cancer, helping to detect sensitivity or resistance to targeted therapies and allow advancements towards personalized oncology

  10. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing.

    Science.gov (United States)

    Zhang, Yanying; Yang, Qingsong; Ling, Juan; Van Nostrand, Joy D; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2017-01-01

    Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata , Avicennia marina , and Ceriops tagal , was undertaken using high - throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem.

  11. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Yanying Zhang

    2017-10-01

    Full Text Available Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata, Avicennia marina, and Ceriops tagal, was undertaken using high-throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem.

  12. Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing.

    Science.gov (United States)

    Conway, Tyrrell; Creecy, James P; Maddox, Scott M; Grissom, Joe E; Conkle, Trevor L; Shadid, Tyler M; Teramoto, Jun; San Miguel, Phillip; Shimada, Tomohiro; Ishihama, Akira; Mori, Hirotada; Wanner, Barry L

    2014-07-08

    We analyzed the transcriptome of Escherichia coli K-12 by strand-specific RNA sequencing at single-nucleotide resolution during steady-state (logarithmic-phase) growth and upon entry into stationary phase in glucose minimal medium. To generate high-resolution transcriptome maps, we developed an organizational schema which showed that in practice only three features are required to define operon architecture: the promoter, terminator, and deep RNA sequence read coverage. We precisely annotated 2,122 promoters and 1,774 terminators, defining 1,510 operons with an average of 1.98 genes per operon. Our analyses revealed an unprecedented view of E. coli operon architecture. A large proportion (36%) of operons are complex with internal promoters or terminators that generate multiple transcription units. For 43% of operons, we observed differential expression of polycistronic genes, despite being in the same operons, indicating that E. coli operon architecture allows fine-tuning of gene expression. We found that 276 of 370 convergent operons terminate inefficiently, generating complementary 3' transcript ends which overlap on average by 286 nucleotides, and 136 of 388 divergent operons have promoters arranged such that their 5' ends overlap on average by 168 nucleotides. We found 89 antisense transcripts of 397-nucleotide average length, 7 unannotated transcripts within intergenic regions, and 18 sense transcripts that completely overlap operons on the opposite strand. Of 519 overlapping transcripts, 75% correspond to sequences that are highly conserved in E. coli (>50 genomes). Our data extend recent studies showing unexpected transcriptome complexity in several bacteria and suggest that antisense RNA regulation is widespread. Importance: We precisely mapped the 5' and 3' ends of RNA transcripts across the E. coli K-12 genome by using a single-nucleotide analytical approach. Our resulting high-resolution transcriptome maps show that ca. one-third of E. coli operons are

  13. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics.

    Science.gov (United States)

    Timmermans, M J T N; Dodsworth, S; Culverwell, C L; Bocak, L; Ahrens, D; Littlewood, D T J; Pons, J; Vogler, A P

    2010-11-01

    Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags ('barcodes'). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three 'bait' sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species 'barcodes' that currently use the cox1 gene only.

  14. Efficient DNA fingerprinting based on the targeted sequencing of active retrotransposon insertion sites using a bench-top high-throughput sequencing platform.

    Science.gov (United States)

    Monden, Yuki; Yamamoto, Ayaka; Shindo, Akiko; Tahara, Makoto

    2014-10-01

    In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the insertion polymorphisms of active retrotransposon families (Rtsp-1 and LIb) in sweet potato. Using 38 cultivars, we identified 2,024 insertion sites in the two families with an Illumina MiSeq sequencing platform. Of these insertion sites, 91.4% appeared to be polymorphic among the cultivars and 376 cultivar-specific insertion sites were identified, which were converted directly into cultivar-specific sequence-characterized amplified region (SCAR) markers. A phylogenetic tree was constructed using these insertion sites, which corresponded well with known pedigree information, thereby indicating their suitability for genetic diversity studies. Thus, the genome-wide comparative analysis of active retrotransposon insertion sites using the bench-top MiSeq sequencing platform is highly effective for DNA fingerprinting without any requirement for whole genome sequence information. This approach may facilitate the development of practical polymerase chain reaction-based cultivar diagnostic system and could also be applied to the determination of genetic relationships. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  15. Draft Genome Sequence of Komagataeibacter rhaeticus Strain AF1, a High Producer of Cellulose, Isolated from Kombucha Tea.

    Science.gov (United States)

    Dos Santos, Renato Augusto Corrêa; Berretta, Andresa A; Barud, Hernane da Silva; Ribeiro, Sidney José Lima; González-García, Laura Natalia; Zucchi, Tiago Domingues; Goldman, Gustavo H; Riaño-Pachón, Diego M

    2014-07-24

    Here, we present the draft genome sequence of Komagatabaeicter rhaeticus strain AF1, which was isolated from Kombucha tea and is capable of producing high levels of cellulose. Copyright © 2014 dos Santos et al.

  16. Effects of High Intensity White Noise on Short-Term Memory for Position in a List and Sequence

    Science.gov (United States)

    Daee, Safar; Wilding, J. M.

    1977-01-01

    Seven experiments are described investigating the effecy of high intensity white noise during the visual presentation of words on a number of short-term memory tasks. Examines results relative to position learning and sequence learning. (Editor/RK)

  17. Quality and efficiency in high dimensional Nearest neighbor search

    KAUST Repository

    Tao, Yufei; Yi, Ke; Sheng, Cheng; Kalnis, Panos

    2009-01-01

    Nearest neighbor (NN) search in high dimensional space is an important problem in many applications. Ideally, a practical solution (i) should be implementable in a relational database, and (ii) its query cost should grow sub-linearly with the dataset size, regardless of the data and query distributions. Despite the bulk of NN literature, no solution fulfills both requirements, except locality sensitive hashing (LSH). The existing LSH implementations are either rigorous or adhoc. Rigorous-LSH ensures good quality of query results, but requires expensive space and query cost. Although adhoc-LSH is more efficient, it abandons quality control, i.e., the neighbor it outputs can be arbitrarily bad. As a result, currently no method is able to ensure both quality and efficiency simultaneously in practice. Motivated by this, we propose a new access method called the locality sensitive B-tree (LSB-tree) that enables fast highdimensional NN search with excellent quality. The combination of several LSB-trees leads to a structure called the LSB-forest that ensures the same result quality as rigorous-LSH, but reduces its space and query cost dramatically. The LSB-forest also outperforms adhoc-LSH, even though the latter has no quality guarantee. Besides its appealing theoretical properties, the LSB-tree itself also serves as an effective index that consumes linear space, and supports efficient updates. Our extensive experiments confirm that the LSB-tree is faster than (i) the state of the art of exact NN search by two orders of magnitude, and (ii) the best (linear-space) method of approximate retrieval by an order of magnitude, and at the same time, returns neighbors with much better quality. © 2009 ACM.

  18. Highly accurate fluorogenic DNA sequencing with information theory-based error correction.

    Science.gov (United States)

    Chen, Zitian; Zhou, Wenxiong; Qiao, Shuo; Kang, Li; Duan, Haifeng; Xie, X Sunney; Huang, Yanyi

    2017-12-01

    Eliminating errors in next-generation DNA sequencing has proved challenging. Here we present error-correction code (ECC) sequencing, a method to greatly improve sequencing accuracy by combining fluorogenic sequencing-by-synthesis (SBS) with an information theory-based error-correction algorithm. ECC embeds redundancy in sequencing reads by creating three orthogonal degenerate sequences, generated by alternate dual-base reactions. This is similar to encoding and decoding strategies that have proved effective in detecting and correcting errors in information communication and storage. We show that, when combined with a fluorogenic SBS chemistry with raw accuracy of 98.1%, ECC sequencing provides single-end, error-free sequences up to 200 bp. ECC approaches should enable accurate identification of extremely rare genomic variations in various applications in biology and medicine.

  19. Viral metagenomics: Analysis of begomoviruses by illumina high-throughput sequencing

    KAUST Repository

    Idris, Ali; Al-Saleh, Mohammed; Piatek, Marek J.; Al-Shahwan, Ibrahim; Ali, Shahjahan; Brown, Judith K.

    2014-01-01

    Traditional DNA sequencing methods are inefficient, lack the ability to discern the least abundant viral sequences, and ineffective for determining the extent of variability in viral populations. Here, populations of single-stranded DNA plant

  20. High quality flux control system for electron gun evaporation

    International Nuclear Information System (INIS)

    Appelbloom, A.M.; Hadley, P.; van der Marel, D.; Mooij, J.E.

    1991-01-01

    This paper reports on a high quality flux control system for electron gun evaporation developed and tested for the MBE growth of high temperature superconductors. The system can be applied to any electron gun without altering the electron gun itself. Essential elements of the system are a high bandwidth mass spectrometer, control electronics and a high voltage modulator to sweep the electron beam over the melt at high frequencies. the sweep amplitude of the electron beam is used to control the evaporation flux at high frequencies. The feedback loop of the system has a bandwidth of over 100 Hz, which makes it possible to grow superlattices and layered structures in a fast and precisely controlled manner

  1. Artifact free T2{sup *}-weighted imaging at high spatial resolution using segmented EPI sequences

    Energy Technology Data Exchange (ETDEWEB)

    Heiler, Patrick Michael; Schad, Lothar Rudi [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Schmitter, Sebastian [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiology

    2010-07-01

    The aim of this work was the development of novel measurement techniques that acquire high resolution T2{sup *}-weighted datasets in measurement times as short as possible without suffering from noticeable blurring and ghosting artifacts. Therefore, two new measurement techniques were developed that acquire a smoother k-space than generic multi shot echo planar imaging sequences. One is based on the principle of echo train shifting, the other on the reversed gradient method. Simulations and phantom measurements demonstrate that echo train shifting works properly and reduces artifacts in multi shot echo planar imaging. For maximum SNR-efficiency this technique was further improved by adding a second contrast. Both contrasts can be acquired within a prolongation in measurement time by a factor of 1.5, leading to an SNR increase by approximately {radical}2. Furthermore it is demonstrated that the reversed gradient method remarkably reduces artifacts caused by a discontinuous k-space weighting. Assuming sequence parameters as feasible for fMRI experiments, artifact free T2{sup *}-weighted images with a matrix size of 256 x 256 leading to an in-plane resolution in the submillimeter range can be obtained in about 2 s per slice. (orig.)

  2. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    Science.gov (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  3. Genotyping by PCR and High-Throughput Sequencing of Commercial Probiotic Products Reveals Composition Biases.

    Directory of Open Access Journals (Sweden)

    Wesley Morovic

    2016-11-01

    Full Text Available Recent advances in microbiome research have brought renewed focus on beneficial bacteria, many of which are available in food and dietary supplements. Although probiotics have historically been defined as microorganisms that convey health benefits when ingested in sufficient viable amounts, this description now includes the stipulation well defined strains, encompassing definitive taxonomy for consumer consideration and regulatory oversight. Here, we evaluated 52 commercial dietary supplements covering a range of labeled species, and determined their content using plate counting, targeted genotyping. Additionally, strain identities were assessed using methods recently published by the United States Pharmacopeial Convention. We also determined the relative abundance of individual bacteria by high-throughput sequencing (HTS of the 16S rRNA sequence using paired-end 2x250bp Illumina MiSeq technology. Using multiple methods, we tested the hypothesis that products do contain the quantitative amount of labeled bacteria, and qualitative list of labeled microbial species. We found that 17 samples (33% were below label claim for CFU prior to their expiration dates. A multiplexed-PCR scheme showed that only 30/52 (58% of the products contained a correctly labeled classification, with issues encompassing incorrect taxonomy, missing species and un-labeled species. The HTS revealed that many blended products consisted predominantly of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis. These results highlight the need for reliable methods to qualitatively determine the correct taxonomy and quantitatively ascertain the relative amounts of mixed microbial populations in commercial probiotic products.

  4. Comprehensive evaluation and optimization of amplicon library preparation methods for high-throughput antibody sequencing.

    Science.gov (United States)

    Menzel, Ulrike; Greiff, Victor; Khan, Tarik A; Haessler, Ulrike; Hellmann, Ina; Friedensohn, Simon; Cook, Skylar C; Pogson, Mark; Reddy, Sai T

    2014-01-01

    High-throughput sequencing (HTS) of antibody repertoire libraries has become a powerful tool in the field of systems immunology. However, numerous sources of bias in HTS workflows may affect the obtained antibody repertoire data. A crucial step in antibody library preparation is the addition of short platform-specific nucleotide adapter sequences. As of yet, the impact of the method of adapter addition on experimental library preparation and the resulting antibody repertoire HTS datasets has not been thoroughly investigated. Therefore, we compared three standard library preparation methods by performing Illumina HTS on antibody variable heavy genes from murine antibody-secreting cells. Clonal overlap and rank statistics demonstrated that the investigated methods produced equivalent HTS datasets. PCR-based methods were experimentally superior to ligation with respect to speed, efficiency, and practicality. Finally, using a two-step PCR based method we established a protocol for antibody repertoire library generation, beginning from inputs as low as 1 ng of total RNA. In summary, this study represents a major advance towards a standardized experimental framework for antibody HTS, thus opening up the potential for systems-based, cross-experiment meta-analyses of antibody repertoires.

  5. Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data.

    Science.gov (United States)

    Althammer, Sonja; González-Vallinas, Juan; Ballaré, Cecilia; Beato, Miguel; Eyras, Eduardo

    2011-12-15

    High-throughput sequencing (HTS) has revolutionized gene regulation studies and is now fundamental for the detection of protein-DNA and protein-RNA binding, as well as for measuring RNA expression. With increasing variety and sequencing depth of HTS datasets, the need for more flexible and memory-efficient tools to analyse them is growing. We describe Pyicos, a powerful toolkit for the analysis of mapped reads from diverse HTS experiments: ChIP-Seq, either punctuated or broad signals, CLIP-Seq and RNA-Seq. We prove the effectiveness of Pyicos to select for significant signals and show that its accuracy is comparable and sometimes superior to that of methods specifically designed for each particular type of experiment. Pyicos facilitates the analysis of a variety of HTS datatypes through its flexibility and memory efficiency, providing a useful framework for data integration into models of regulatory genomics. Open-source software, with tutorials and protocol files, is available at http://regulatorygenomics.upf.edu/pyicos or as a Galaxy server at http://regulatorygenomics.upf.edu/galaxy eduardo.eyras@upf.edu Supplementary data are available at Bioinformatics online.

  6. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaodong; Chen, Yan [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Zhang, Xin [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Suzhou Institute of Architectural Design Co., Ltd, Suzhou 215021, Jiangsu Province (China); Jiang, Xinbai; Wu, Shijing [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Shen, Jinyou, E-mail: shenjinyou@mail.njust.edu.cn [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Sun, Xiuyun; Li, Jiansheng; Lu, Lude [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China)

    2015-09-15

    Abstract: Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5–1 mm, sludge volume index of 25.6 ± 3.6 mL g{sup −1} and settling velocity of 37.2 ± 2.7 m h{sup −1}, were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (V{sub max}) varied between 1164.5 mg L{sup −1} h{sup −1} and 1867.4 mg L{sup −1} h{sup −1}. High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule.

  7. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater

    International Nuclear Information System (INIS)

    Liu, Xiaodong; Chen, Yan; Zhang, Xin; Jiang, Xinbai; Wu, Shijing; Shen, Jinyou; Sun, Xiuyun; Li, Jiansheng; Lu, Lude; Wang, Lianjun

    2015-01-01

    Abstract: Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5–1 mm, sludge volume index of 25.6 ± 3.6 mL g −1 and settling velocity of 37.2 ± 2.7 m h −1 , were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (V max ) varied between 1164.5 mg L −1 h −1 and 1867.4 mg L −1 h −1 . High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule

  8. Artifact free T2*-weighted imaging at high spatial resolution using segmented EPI sequences

    International Nuclear Information System (INIS)

    Heiler, Patrick Michael; Schad, Lothar Rudi; Schmitter, Sebastian

    2010-01-01

    The aim of this work was the development of novel measurement techniques that acquire high resolution T2 * -weighted datasets in measurement times as short as possible without suffering from noticeable blurring and ghosting artifacts. Therefore, two new measurement techniques were developed that acquire a smoother k-space than generic multi shot echo planar imaging sequences. One is based on the principle of echo train shifting, the other on the reversed gradient method. Simulations and phantom measurements demonstrate that echo train shifting works properly and reduces artifacts in multi shot echo planar imaging. For maximum SNR-efficiency this technique was further improved by adding a second contrast. Both contrasts can be acquired within a prolongation in measurement time by a factor of 1.5, leading to an SNR increase by approximately √2. Furthermore it is demonstrated that the reversed gradient method remarkably reduces artifacts caused by a discontinuous k-space weighting. Assuming sequence parameters as feasible for fMRI experiments, artifact free T2 * -weighted images with a matrix size of 256 x 256 leading to an in-plane resolution in the submillimeter range can be obtained in about 2 s per slice. (orig.)

  9. Safety and quality management at the high flux reactor Petten

    International Nuclear Information System (INIS)

    Zurita, A.; Ahlf, J.

    1995-01-01

    The High Flux Reactor (HFR) is one high power multi-purpose materials testing research reactor of the tank-in-pool type, cooled and moderated by light-water. It is operated at 45 MW at a prescribed schedule of 11 cycles per year, each comprising 25 operation days and three shut-down days. Since the licence for the operation of HFR was granted in 1962, a total of 14 amendments to the original licence have been made following different modifications in the installations. In the meantime, international nuclear standards were developed, especially in the framework of the NUSS programme of the IAEA, which were adopted by the Dutch Licensing Authorities. In order to implement the new standards, the situation at the HFR was comprehensively reviewed in the course of an audit performed by the Dutch Licensing Authorities in 1988. This also resulted in formulating the task of setting-up an 'HFR - Integral Quality Assurance Handbook' (HFR-IQAD) involving both organizations JRCIAM and ECN, which had the unique framework and basic guideline to assure the safe and efficient operation and exploitation of the HFR and to promote safety and quality in all aspects of HFR related activities. The assurance of safe and efficient operation and exploitation of the HFR is condensed together under the concepts of safety and quality of services and is achieved through the safety and quality management. (orig.)

  10. QTL MAPPING FOR GRAIN QUALITY TRAITS IN TESTCROSSES OF A MAIZE BIPARENTAL POPULATION USING GENOTYPING-BY-SEQUENCING DATA

    Directory of Open Access Journals (Sweden)

    Mario Franić

    2017-01-01

    Full Text Available We performed QTL mapping in testcrosses of maize population IBMSyn4 for three grain quality traits: oil and protein contents and test weight. 191 phenotyped and genotyped lines were used as a training set while 85 genotyped only lines comprised a validation set used to calculate best linear unbiased predictions (BLUP, making a total of 276 phenotypes for the QTL analysis. 92000 filtered Genotyping-By-Sequencing (GBS SNP markers were used to calculate BLUPs, while a set of 2178 genetically mapped SSRs was used in QTL analysis. By simple QTL scan, we scored several minor effect QTLs: one for oil content (chromosome 1, one for protein content (chromosome 10 and four for test weight (chromosomes 1, 3, 5 and 10. QTLs associated with test weight were found to be additive, and 18.25% of phenotypic variance was explained by their joint effect. Only one QTL for test weight was found to be significant in composite interval mapping and it was mapped on chromosome 5. This QTL accounted for 9.97% of phenotypic variance. QTLs detected in this study represent monitoring of commercially most successful elite maize germplasm for grain quality traits.

  11. Wellbeing Understanding in High Quality Healthcare Informatics and Telepractice.

    Science.gov (United States)

    Fiorini, Rodolfo A; De Giacomo, Piero; L'Abate, Luciano

    2016-01-01

    The proper use of healthcare informatics technology and multidimensional conceptual clarity are fundamental to create and boost outstanding clinical and telepractice results. Avoiding even terminology ambiguities is mandatory for high quality of care service. For instance, well-being or wellbeing is a different way to write the same concept only, or there is a good deal of ambiguity around the meanings of these terms the way they are written. In personal health, healthcare and healthcare informatics, this kind of ambiguity and lack of conceptual clarity has been called out repeatedly over the past 50 years. It is time to get the right, terse scenario. We present a brief review to develop and achieve ultimate wellbeing understanding for practical high quality healthcare informatics and telepractice application. This article presents an innovative point of view on deeper wellbeing understanding towards its increased clinical effective application.

  12. High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop.

    Science.gov (United States)

    Tian, Yang; Zeng, Yan; Zhang, Jing; Yang, ChengGuang; Yan, Liang; Wang, XuanJun; Shi, ChongYing; Xie, Jing; Dai, TianYi; Peng, Lei; Zeng Huan, Yu; Xu, AnNi; Huang, YeWei; Zhang, JiaJin; Ma, Xiao; Dong, Yang; Hao, ShuMei; Sheng, Jun

    2015-07-01

    The drumstick tree (Moringa oleifera Lam.) is a perennial crop that has gained popularity in certain developing countries for its high-nutrition content and adaptability to arid and semi-arid environments. Here we report a high-quality draft genome sequence of M. oleifera. This assembly represents 91.78% of the estimated genome size and contains 19,465 protein-coding genes. Comparative genomic analysis between M. oleifera and related woody plant genomes helps clarify the general evolution of this species, while the identification of several species-specific gene families and positively selected genes in M. oleifera may help identify genes related to M. oleifera's high protein content, fast-growth, heat and stress tolerance. This reference genome greatly extends the basic research on M. oleifera, and may further promote applying genomics to enhanced breeding and improvement of M. oleifera.

  13. The Effect of Uncertain End-of-Life Product Quality and Consumer Incentives on Partial Disassembly Sequencing in Value Recovery Operations

    OpenAIRE

    Rickli, Jeremy Lewis

    2013-01-01

    This dissertation addresses gaps in the interaction between End-of-Life (EoL) product acquisition systems and disassembly sequencing. The research focuses on two remanufacturing research problems; 1) modeling uncertain EoL product quality, quantity, and timing in regards to EoL product acquisition and disassembly sequencing and 2) designing EoL product acquisition schemes considering EoL product uncertainty. The main research objectives within these areas are; analyzing, predicting, and contr...

  14. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition

    Directory of Open Access Journals (Sweden)

    Yifan Zhang

    2018-05-01

    Full Text Available The High Resolution Range Profile (HRRP recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR. However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  15. Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation

    DEFF Research Database (Denmark)

    Czaban, Adrian; Sharma, Sapna; Byrne, Stephen

    2015-01-01

    species from the Lolium-Festuca complex, ranging from 52,166 to 72,133 transcripts per assembly. We have also predicted a set of proteins and validated it with a high-confidence protein database from three closely related species (H. vulgare, B. distachyon and O. sativa). We have obtained gene family...... clusters for the four species using OrthoMCL and analyzed their inferred phylogenetic relationships. Our results indicate that VRN2 is a candidate gene for differentiating vernalization and non-vernalization types in the Lolium-Festuca complex. Grouping of the gene families based on their BLAST identity...... enabled us to divide ortholog groups into those that are very conserved and those that are more evolutionarily relaxed. The ratio of the non-synonumous to synonymous substitutions enabled us to pinpoint protein sequences evolving in response to positive selection. These proteins may explain some...

  16. Detailed evaluation of RCS boundary rupture during high-pressure severe accident sequences

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Hong, Seong-Wan

    2011-01-01

    A depressurization possibility of the reactor coolant system (RCS) before a reactor vessel rupture during a high-pressure severe accident sequence has been evaluated for the consideration of direct containment heating (DCH) and containment bypass. A total loss of feed water (TLOFW) and a station blackout (SBO) of the advanced power reactor 1400 (APR 1400) has been evaluated from an initiating event to a creep rupture of the RCS boundary by using the SCDAP/RELAP5 computer code. In addition, intentional depressurization of the RCS using power-operated safety relief valves (POSRVs) has been evaluated. The SCDAPRELAP5 results have shown that the pressurizer surge line broke before the reactor vessel rupture failure, but a containment bypass did not occur because steam generator U tubes did not break. The intentional depressurization of the RCS using POSRV was effective for the DCH prevention at a reactor vessel rupture. (author)

  17. Barcoding the food chain: from Sanger to high-throughput sequencing.

    Science.gov (United States)

    Littlefair, Joanne E; Clare, Elizabeth L

    2016-11-01

    Society faces the complex challenge of supporting biodiversity and ecosystem functioning, while ensuring food security by providing safe traceable food through an ever-more-complex global food chain. The increase in human mobility brings the added threat of pests, parasites, and invaders that further complicate our agro-industrial efforts. DNA barcoding technologies allow researchers to identify both individual species, and, when combined with universal primers and high-throughput sequencing techniques, the diversity within mixed samples (metabarcoding). These tools are already being employed to detect market substitutions, trace pests through the forensic evaluation of trace "environmental DNA", and to track parasitic infections in livestock. The potential of DNA barcoding to contribute to increased security of the food chain is clear, but challenges remain in regulation and the need for validation of experimental analysis. Here, we present an overview of the current uses and challenges of applied DNA barcoding in agriculture, from agro-ecosystems within farmland to the kitchen table.

  18. Quality assurance system for sitting high risk facilities

    International Nuclear Information System (INIS)

    Rodriguez, Aymee; Peralta, Jose L.; Fernandez, Manuel

    1999-01-01

    The paper shows how we have conceived and designed the quality assurance system for the site selection process of an area for sitting the facility of high risk in correspondence with the approved methodology. The results obtained in the implementation of the system have permitted the satisfactory performance of each one the expected stage, defining the most favorable sectors in order to continue the studies of the repository site for the disposal of low and intermedium. (author)

  19. High-quality uniform dry transfer of graphene to polymers.

    Science.gov (United States)

    Lock, Evgeniya H; Baraket, Mira; Laskoski, Matthew; Mulvaney, Shawn P; Lee, Woo K; Sheehan, Paul E; Hines, Daniel R; Robinson, Jeremy T; Tosado, Jacob; Fuhrer, Michael S; Hernández, Sandra C; Walton, Scott G

    2012-01-11

    In this paper we demonstrate high-quality, uniform dry transfer of graphene grown by chemical vapor deposition on copper foil to polystyrene. The dry transfer exploits an azide linker molecule to establish a covalent bond to graphene and to generate greater graphene-polymer adhesion compared to that of the graphene-metal foil. Thus, this transfer approach provides a novel alternative route for graphene transfer, which allows for the metal foils to be reused. © 2011 American Chemical Society

  20. Coupling of high-quality-factor optical resonators

    International Nuclear Information System (INIS)

    Salzenstein, Patrice; Henriet, Rémi; Coillet, Aurélien; Chembo, Yanne K; Mortier, Michel; Sérier-Brault, Hélène; Rasoloniaina, Alphonse; Dumeige, Yannick; Féron, Patrice

    2013-01-01

    We improve theoretically and experimentally the problem of the coupling between a high Q-factor resonator and its external coupler. We have observed oscillations of ringing induced by the sweeping of the excitation frequency of an active microsphere. Thanks to this approach, the quality factor of an optical resonator was measured and we obtained Q = 5.8 × 10 8 . (paper)

  1. Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing

    Science.gov (United States)

    Egge, Elianne Sirnæs; Johannessen, Torill Vik; Andersen, Tom; Eikrem, Wenche; Bittner, Lucie; Larsen, Aud; Sandaa, Ruth-Anne; Edvardsen, Bente

    2015-01-01

    Microalgae in the division Haptophyta play key roles in the marine ecosystem and in global biogeochemical processes. Despite their ecological importance, knowledge on seasonal dynamics, community composition and abundance at the species level is limited due to their small cell size and few morphological features visible under the light microscope. Here, we present unique data on haptophyte seasonal diversity and dynamics from two annual cycles, with the taxonomic resolution and sampling depth obtained with high-throughput sequencing. From outer Oslofjorden, S Norway, nano- and picoplanktonic samples were collected monthly for 2 years, and the haptophytes targeted by amplification of RNA/cDNA with Haptophyta-specific 18S rDNA V4 primers. We obtained 156 operational taxonomic units (OTUs), from c. 400.000 454 pyrosequencing reads, after rigorous bioinformatic filtering and clustering at 99.5%. Most OTUs represented uncultured and/or not yet 18S rDNA-sequenced species. Haptophyte OTU richness and community composition exhibited high temporal variation and significant yearly periodicity. Richness was highest in September–October (autumn) and lowest in April–May (spring). Some taxa were detected all year, such as Chrysochromulina simplex, Emiliania huxleyi and Phaeocystis cordata, whereas most calcifying coccolithophores only appeared from summer to early winter. We also revealed the seasonal dynamics of OTUs representing putative novel classes (clades HAP-3–5) or orders (clades D, E, F). Season, light and temperature accounted for 29% of the variation in OTU composition. Residual variation may be related to biotic factors, such as competition and viral infection. This study provides new, in-depth knowledge on seasonal diversity and dynamics of haptophytes in North Atlantic coastal waters. PMID:25893259

  2. Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing.

    Science.gov (United States)

    Egge, Elianne Sirnaes; Johannessen, Torill Vik; Andersen, Tom; Eikrem, Wenche; Bittner, Lucie; Larsen, Aud; Sandaa, Ruth-Anne; Edvardsen, Bente

    2015-06-01

    Microalgae in the division Haptophyta play key roles in the marine ecosystem and in global biogeochemical processes. Despite their ecological importance, knowledge on seasonal dynamics, community composition and abundance at the species level is limited due to their small cell size and few morphological features visible under the light microscope. Here, we present unique data on haptophyte seasonal diversity and dynamics from two annual cycles, with the taxonomic resolution and sampling depth obtained with high-throughput sequencing. From outer Oslofjorden, S Norway, nano- and picoplanktonic samples were collected monthly for 2 years, and the haptophytes targeted by amplification of RNA/cDNA with Haptophyta-specific 18S rDNA V4 primers. We obtained 156 operational taxonomic units (OTUs), from c. 400.000 454 pyrosequencing reads, after rigorous bioinformatic filtering and clustering at 99.5%. Most OTUs represented uncultured and/or not yet 18S rDNA-sequenced species. Haptophyte OTU richness and community composition exhibited high temporal variation and significant yearly periodicity. Richness was highest in September-October (autumn) and lowest in April-May (spring). Some taxa were detected all year, such as Chrysochromulina simplex, Emiliania huxleyi and Phaeocystis cordata, whereas most calcifying coccolithophores only appeared from summer to early winter. We also revealed the seasonal dynamics of OTUs representing putative novel classes (clades HAP-3-5) or orders (clades D, E, F). Season, light and temperature accounted for 29% of the variation in OTU composition. Residual variation may be related to biotic factors, such as competition and viral infection. This study provides new, in-depth knowledge on seasonal diversity and dynamics of haptophytes in North Atlantic coastal waters. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  3. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081.

    Directory of Open Access Journals (Sweden)

    Nicholas R Thomson

    2006-12-01

    Full Text Available The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common

  4. ClustalXeed: a GUI-based grid computation version for high performance and terabyte size multiple sequence alignment

    Directory of Open Access Journals (Sweden)

    Kim Taeho

    2010-09-01

    Full Text Available Abstract Background There is an increasing demand to assemble and align large-scale biological sequence data sets. The commonly used multiple sequence alignment programs are still limited in their ability to handle very large amounts of sequences because the system lacks a scalable high-performance computing (HPC environment with a greatly extended data storage capacity. Results We designed ClustalXeed, a software system for multiple sequence alignment with incremental improvements over previous versions of the ClustalX and ClustalW-MPI software. The primary advantage of ClustalXeed over other multiple sequence alignment software is its ability to align a large family of protein or nucleic acid sequences. To solve the conventional memory-dependency problem, ClustalXeed uses both physical random access memory (RAM and a distributed file-allocation system for distance matrix construction and pair-align computation. The computation efficiency of disk-storage system was markedly improved by implementing an efficient load-balancing algorithm, called "idle node-seeking task algorithm" (INSTA. The new editing option and the graphical user interface (GUI provide ready access to a parallel-computing environment for users who seek fast and easy alignment of large DNA and protein sequence sets. Conclusions ClustalXeed can now compute a large volume of biological sequence data sets, which were not tractable in any other parallel or single MSA program. The main developments include: 1 the ability to tackle larger sequence alignment problems than possible with previous systems through markedly improved storage-handling capabilities. 2 Implementing an efficient task load-balancing algorithm, INSTA, which improves overall processing times for multiple sequence alignment with input sequences of non-uniform length. 3 Support for both single PC and distributed cluster systems.

  5. Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts

    Directory of Open Access Journals (Sweden)

    Ouyang Shu

    2005-09-01

    Full Text Available Abstract Background The Solanaceae is a family of closely related species with diverse phenotypes that have been exploited for agronomic purposes. Previous studies involving a small number of genes suggested sequence conservation across the Solanaceae. The availability of large collections of Expressed Sequence Tags (ESTs for the Solanaceae now provides the opportunity to assess sequence conservation and divergence on a genomic scale. Results All available ESTs and Expressed Transcripts (ETs, 449,224 sequences for six Solanaceae species (potato, tomato, pepper, petunia, tobacco and Nicotiana benthamiana, were clustered and assembled into gene indices. Examination of gene ontologies revealed that the transcripts within the gene indices encode a similar suite of biological processes. Although the ESTs and ETs were derived from a variety of tissues, 55–81% of the sequences had significant similarity at the nucleotide level with sequences among the six species. Putative orthologs could be identified for 28–58% of the sequences. This high degree of sequence conservation was supported by expression profiling using heterologous hybridizations to potato cDNA arrays that showed similar expression patterns in mature leaves for all six solanaceous species. 16–19% of the transcripts within the six Solanaceae gene indices did not have matches among Solanaceae, Arabidopsis, rice or 21 other plant gene indices. Conclusion Results from this genome scale analysis confirmed a high level of sequence conservation at the nucleotide level of the coding sequence among Solanaceae. Additionally, the results indicated that part of the Solanaceae transcriptome is likely to be unique for each species.

  6. Methods and systems for fabricating high quality superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Majkic, Goran; Selvamanickam, Venkat

    2018-02-13

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  7. High quality mask storage in an advanced Logic-Fab

    Science.gov (United States)

    Jähnert, Carmen; Fritsche, Silvio

    2012-02-01

    High efficient mask logistics as well as safe and high quality mask storage are essential requirements within an advanced lithography area of a modern logic waferfab. Fast operational availability of the required masks at the exposure tool with excellent mask condition requires a safe mask handling, safeguarding of high mask quality over the whole mask usage time without any quality degradation and an intelligent mask logistics. One big challenge is the prevention of haze on high advanced phase shift masks used in a high volume production line for some thousands of 248nm or 193nm exposures. In 2008 Infineon Dresden qualified a customer specific developed semi-bare mask storage system from DMSDynamic Micro Systems in combination with a high advanced mask handling and an interconnected complex logistic system. This high-capacity mask storage system DMS M1900.22 for more than 3000 masks with fully automated mask and box handling as well as full-blown XCDA purge has been developed and adapted to the Infineon Lithotoollandscape using Nikon and SMIF reticle cases. Advanced features for ESD safety and mask security, mask tracking via RFID and interactions with the exposure tools were developed and implemented. The stocker is remote controlled by the iCADA-RSM system, ordering of the requested mask directly from the affected exposure tool allows fast access. This paper discusses the advantages and challenges for this approach as well as the practical experience gained during the implementation of the new system which improves the fab performance with respect to mask quality, security and throughput. Especially the realization of an extremely low and stable humidity level in addition with a well controlled air flow at each mask surface, preventing masks from haze degradation and particle contamination, turns out to be a notable technical achievement. The longterm stability of haze critical masks has been improved significantly. Relevant environmental parameters like

  8. DRUMS: Disk Repository with Update Management and Select option for high throughput sequencing data.

    Science.gov (United States)

    Nettling, Martin; Thieme, Nils; Both, Andreas; Grosse, Ivo

    2014-02-04

    New technologies for analyzing biological samples, like next generation sequencing, are producing a growing amount of data together with quality scores. Moreover, software tools (e.g., for mapping sequence reads), calculating transcription factor binding probabilities, estimating epigenetic modification enriched regions or determining single nucleotide polymorphism increase this amount of position-specific DNA-related data even further. Hence, requesting data becomes challenging and expensive and is often implemented using specialised hardware. In addition, picking specific data as fast as possible becomes increasingly important in many fields of science. The general problem of handling big data sets was addressed by developing specialized databases like HBase, HyperTable or Cassandra. However, these database solutions require also specialized or distributed hardware leading to expensive investments. To the best of our knowledge, there is no database capable of (i) storing billions of position-specific DNA-related records, (ii) performing fast and resource saving requests, and (iii) running on a single standard computer hardware. Here, we present DRUMS (Disk Repository with Update Management and Select option), satisfying demands (i)-(iii). It tackles the weaknesses of traditional databases while handling position-specific DNA-related data in an efficient manner. DRUMS is capable of storing up to billions of records. Moreover, it focuses on optimizing relating single lookups as range request, which are needed permanently for computations in bioinformatics. To validate the power of DRUMS, we compare it to the widely used MySQL database. The test setting considers two biological data sets. We use standard desktop hardware as test environment. DRUMS outperforms MySQL in writing and reading records by a factor of two up to a factor of 10000. Furthermore, it can work with significantly larger data sets. Our work focuses on mid-sized data sets up to several billion

  9. Usefulness of Genetic Study by Next-generation Sequencing in High-risk Arrhythmogenic Cardiomyopathy.

    Science.gov (United States)

    Ruiz Salas, Amalio; Peña Hernández, José; Medina Palomo, Carmen; Barrera Cordero, Alberto; Cabrera Bueno, Fernando; García Pinilla, José Manuel; Guijarro, Ana; Morcillo-Hidalgo, Luis; Jiménez Navarro, Manuel; Gómez Doblas, Juan José; de Teresa, Eduardo; Alzueta, Javier

    2018-03-29

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy characterized by progressive fibrofatty replacement of predominantly right ventricular myocardium. This cardiomyopathy is a frequent cause of sudden cardiac death in young people and athletes. The aim of our study was to determine the incidence of pathological or likely pathological desmosomal mutations in patients with high-risk definite ARVC. This was an observational, retrospective cohort study, which included 36 patients diagnosed with high-risk ARVC in our hospital between January 1998 and January 2015. Genetic analysis was performed using next-generation sequencing. Most patients were male (28 patients, 78%) with a mean age at diagnosis of 45 ± 18 years. A pathogenic or probably pathogenic desmosomal mutation was detected in 26 of the 35 index cases (74%): 5 nonsense, 14 frameshift, 1 splice, and 6 missense. Novel mutations were found in 15 patients (71%). The presence or absence of desmosomal mutations causing the disease and the type of mutation were not associated with specific electrocardiographic, clinical, arrhythmic, anatomic, or prognostic characteristics. The incidence of pathological or likely pathological desmosomal mutations in ARVC is very high, with most mutations causing truncation. The presence of desmosomal mutations was not associated with prognosis. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  10. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  11. Fine grained compositional analysis of Port Everglades Inlet microbiome using high throughput DNA sequencing.

    Science.gov (United States)

    O'Connell, Lauren; Gao, Song; McCorquodale, Donald; Fleisher, Jay; Lopez, Jose V

    2018-01-01

    Similar to natural rivers, manmade inlets connect inland runoff to the ocean. Port Everglades Inlet (PEI) is a busy cargo and cruise ship port in South Florida, which can act as a source of pollution to surrounding beaches and offshore coral reefs. Understanding the composition and fluctuations of bacterioplankton communities ("microbiomes") in major port inlets is important due to potential impacts on surrounding environments. We hypothesize seasonal microbial fluctuations, which were profiled by high throughput 16S rRNA amplicon sequencing and analysis. Surface water samples were collected every week for one year. A total of four samples per month, two from each sampling location, were used for statistical analysis creating a high sampling frequency and finer sampling scale than previous inlet microbiome studies. We observed significant differences in community alpha diversity between months and seasons. Analysis of composition of microbiomes (ANCOM) tests were run in QIIME 2 at genus level taxonomic classification to determine which genera were differentially abundant between seasons and months. Beta diversity results yielded significant differences in PEI community composition in regard to month, season, water temperature, and salinity. Analysis of potentially pathogenic genera showed presence of Staphylococcus and Streptococcus . However, statistical analysis indicated that these organisms were not present in significantly high abundances throughout the year or between seasons. Significant differences in alpha diversity were observed when comparing microbial communities with respect to time. This observation stems from the high community evenness and low community richness in August. This indicates that only a few organisms dominated the community during this month. August had lower than average rainfall levels for a wet season, which may have contributed to less runoff, and fewer bacterial groups introduced into the port surface waters. Bacterioplankton beta

  12. Fine grained compositional analysis of Port Everglades Inlet microbiome using high throughput DNA sequencing

    Directory of Open Access Journals (Sweden)

    Lauren O’Connell

    2018-05-01

    Full Text Available Background Similar to natural rivers, manmade inlets connect inland runoff to the ocean. Port Everglades Inlet (PEI is a busy cargo and cruise ship port in South Florida, which can act as a source of pollution to surrounding beaches and offshore coral reefs. Understanding the composition and fluctuations of bacterioplankton communities (“microbiomes” in major port inlets is important due to potential impacts on surrounding environments. We hypothesize seasonal microbial fluctuations, which were profiled by high throughput 16S rRNA amplicon sequencing and analysis. Methods & Results Surface water samples were collected every week for one year. A total of four samples per month, two from each sampling location, were used for statistical analysis creating a high sampling frequency and finer sampling scale than previous inlet microbiome studies. We observed significant differences in community alpha diversity between months and seasons. Analysis of composition of microbiomes (ANCOM tests were run in QIIME 2 at genus level taxonomic classification to determine which genera were differentially abundant between seasons and months. Beta diversity results yielded significant differences in PEI community composition in regard to month, season, water temperature, and salinity. Analysis of potentially pathogenic genera showed presence of Staphylococcus and Streptococcus. However, statistical analysis indicated that these organisms were not present in significantly high abundances throughout the year or between seasons. Discussion Significant differences in alpha diversity were observed when comparing microbial communities with respect to time. This observation stems from the high community evenness and low community richness in August. This indicates that only a few organisms dominated the community during this month. August had lower than average rainfall levels for a wet season, which may have contributed to less runoff, and fewer bacterial groups

  13. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua

    2016-10-01

    The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.

  14. RNA-Sequencing of Drosophila melanogaster Head Tissue on High-Sugar and High-Fat Diets

    Directory of Open Access Journals (Sweden)

    Wayne Hemphill

    2018-01-01

    Full Text Available Obesity has been shown to increase risk for cardiovascular disease and type-2 diabetes. In addition, it has been implicated in aggravation of neurological conditions such as Alzheimer’s. In the model organism Drosophila melanogaster, a physiological state mimicking diet-induced obesity can be induced by subjecting fruit flies to a solid medium disproportionately higher in sugar than protein, or that has been supplemented with a rich source of saturated fat. These flies can exhibit increased circulating glucose levels, increased triglyceride content, insulin-like peptide resistance, and behavior indicative of neurological decline. We subjected flies to variants of the high-sugar diet, high-fat diet, or normal (control diet, followed by a total RNA extraction from fly heads of each diet group for the purpose of Poly-A selected RNA-Sequencing. Our objective was to identify the effects of obesogenic diets on transcriptome patterns, how they differed between obesogenic diets, and identify genes that may relate to pathogenesis accompanying an obesity-like state. Gene ontology analysis indicated an overrepresentation of affected genes associated with immunity, metabolism, and hemocyanin in the high-fat diet group, and CHK, cell cycle activity, and DNA binding and transcription in the high-sugar diet group. Our results also indicate differences in the effects of the high-fat diet and high-sugar diet on expression profiles in head tissue of flies, despite the reportedly similar phenotypic impacts of the diets. The impacted genes, and how they may relate to pathogenesis in the Drosophila obesity-like state, warrant further experimental investigation.

  15. Comparative analysis of sequences from PT 2013

    DEFF Research Database (Denmark)

    Mikkelsen, Susie Sommer

    Sheatfish and not EHNV. Generally, mistakes occurred at the ends of the sequences. This can be due to several factors. One is that the sequence has not been trimmed of the sequence primer sites. Another is the lack of quality control of the chromatogram. Finally, sequencing in just one direction can result...... diseases in Europe. As part of the EURL proficiency test for fish diseases it is required to sequence any RANA virus isolates found in any of the samples. It is also highly recommended to sequence the ISA virus to determine whether it be HPRΔ or HPR0. Furthermore, it is recommended that any VHSV and IHNV...... isolates be genotyped. As part of the evaluation of the proficiency results it was decided this year to look into the quality and similarity of the sequence results for selected viruses. Ampoule III in the proficiency test 2013 contained an EHNV isolate. The EURL received 43 sequences from 41 laboratories...

  16. Construction of High-Quality Camel Immune Antibody Libraries.

    Science.gov (United States)

    Romão, Ema; Poignavent, Vianney; Vincke, Cécile; Ritzenthaler, Christophe; Muyldermans, Serge; Monsion, Baptiste

    2018-01-01

    Single-domain antibodies libraries of heavy-chain only immunoglobulins from camelids or shark are enriched for high-affinity antigen-specific binders by a short in vivo immunization. Thus, potent binders are readily retrieved from relatively small-sized libraries of 10 7 -10 8 individual transformants, mostly after phage display and panning on a purified target. However, the remaining drawback of this strategy arises from the need to generate a dedicated library, for nearly every envisaged target. Therefore, all the procedures that shorten and facilitate the construction of an immune library of best possible quality are definitely a step forward. In this chapter, we provide the protocol to generate a high-quality immune VHH library using the Golden Gate Cloning strategy employing an adapted phage display vector where a lethal ccdB gene has to be substituted by the VHH gene. With this procedure, the construction of the library can be shortened to less than a week starting from bleeding the animal. Our libraries exceed 10 8 individual transformants and close to 100% of the clones harbor a phage display vector having an insert with the length of a VHH gene. These libraries are also more economic to make than previous standard approaches using classical restriction enzymes and ligations. The quality of the Nanobodies that are retrieved from immune libraries obtained by Golden Gate Cloning is identical to those from immune libraries made according to the classical procedure.

  17. Characterization of the fecal microbiome in different swine groups by high-throughput sequencing.

    Science.gov (United States)

    Park, Soo-Je; Kim, Jinu; Lee, Jong-Soo; Rhee, Sung-Keun; Kim, Hongik

    2014-08-01

    Swine have a complex microbial community within their gastrointestinal tract that plays a critical role in both health and disease. High-throughput 16S rRNA gene-based pyrosequencing was used to identify the possible core microorganisms in the gut of swine groups that differ in meat quality and weight grades (level 1 as higher meat quality and level 2 as lower meat quality). Samples were taken from the rectum and/or stool from ten animals, DNA was extracted, and the V1-V3 regions of the 16S rRNA gene were amplified. Two bacterial populations (Bacteroidetes and Firmicutes) dominated and were shared between the two groups. Significant differences between the groups were found at the genus level. The genera Lactobacillus and Oscillibacter were found in slightly higher proportions in the level 2 group (12.6 and 12.4% of the classified reads, respectively) than those of level 1 (9.6 and 7.7%, respectively). By contrast, the proportion of reads assigned to the genus Roseburia in the level 1 group (13.0%) was higher than that of level 2 (4.8%). The largest differences were related to the genera Clostridium, Oscillibacter, and Roseburia as core microorganisms. Moreover, two genera, Roseburia and Clostridium, related to level 1 produced linoleic acid or short chain fatty acids that might contribute to swine health and development. In conclusion, the presence of core bacteria in the swine gut is associated with meat quality with reduced body fat in swine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene.

    Science.gov (United States)

    Bonnefond, Amélie; Philippe, Julien; Durand, Emmanuelle; Dechaume, Aurélie; Huyvaert, Marlène; Montagne, Louise; Marre, Michel; Balkau, Beverley; Fajardy, Isabelle; Vambergue, Anne; Vatin, Vincent; Delplanque, Jérôme; Le Guilcher, David; De Graeve, Franck; Lecoeur, Cécile; Sand, Olivier; Vaxillaire, Martine; Froguel, Philippe

    2012-01-01

    Maturity-onset of the young (MODY) is a clinically heterogeneous form of diabetes characterized by an autosomal-dominant mode of inheritance, an onset before the age of 25 years, and a primary defect in the pancreatic beta-cell function. Approximately 30% of MODY families remain genetically unexplained (MODY-X). Here, we aimed to use whole-exome sequencing (WES) in a four-generation MODY-X family to identify a new susceptibility gene for MODY. WES (Agilent-SureSelect capture/Illumina-GAIIx sequencing) was performed in three affected and one non-affected relatives in the MODY-X family. We then performed a high-throughput multiplex genotyping (Illumina-GoldenGate assay) of the putative causal mutations in the whole family and in 406 controls. A linkage analysis was also carried out. By focusing on variants of interest (i.e. gains of stop codon, frameshift, non-synonymous and splice-site variants not reported in dbSNP130) present in the three affected relatives and not present in the control, we found 69 mutations. However, as WES was not uniform between samples, a total of 324 mutations had to be assessed in the whole family and in controls. Only one mutation (p.Glu227Lys in KCNJ11) co-segregated with diabetes in the family (with a LOD-score of 3.68). No KCNJ11 mutation was found in 25 other MODY-X unrelated subjects. Beyond neonatal diabetes mellitus (NDM), KCNJ11 is also a MODY gene ('MODY13'), confirming the wide spectrum of diabetes related phenotypes due to mutations in NDM genes (i.e. KCNJ11, ABCC8 and INS). Therefore, the molecular diagnosis of MODY should include KCNJ11 as affected carriers can be ideally treated with oral sulfonylureas.

  19. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene.

    Directory of Open Access Journals (Sweden)

    Amélie Bonnefond

    Full Text Available BACKGROUND: Maturity-onset of the young (MODY is a clinically heterogeneous form of diabetes characterized by an autosomal-dominant mode of inheritance, an onset before the age of 25 years, and a primary defect in the pancreatic beta-cell function. Approximately 30% of MODY families remain genetically unexplained (MODY-X. Here, we aimed to use whole-exome sequencing (WES in a four-generation MODY-X family to identify a new susceptibility gene for MODY. METHODOLOGY: WES (Agilent-SureSelect capture/Illumina-GAIIx sequencing was performed in three affected and one non-affected relatives in the MODY-X family. We then performed a high-throughput multiplex genotyping (Illumina-GoldenGate assay of the putative causal mutations in the whole family and in 406 controls. A linkage analysis was also carried out. PRINCIPAL FINDINGS: By focusing on variants of interest (i.e. gains of stop codon, frameshift, non-synonymous and splice-site variants not reported in dbSNP130 present in the three affected relatives and not present in the control, we found 69 mutations. However, as WES was not uniform between samples, a total of 324 mutations had to be assessed in the whole family and in controls. Only one mutation (p.Glu227Lys in KCNJ11 co-segregated with diabetes in the family (with a LOD-score of 3.68. No KCNJ11 mutation was found in 25 other MODY-X unrelated subjects. CONCLUSIONS/SIGNIFICANCE: Beyond neonatal diabetes mellitus (NDM, KCNJ11 is also a MODY gene ('MODY13', confirming the wide spectrum of diabetes related phenotypes due to mutations in NDM genes (i.e. KCNJ11, ABCC8 and INS. Therefore, the molecular diagnosis of MODY should include KCNJ11 as affected carriers can be ideally treated with oral sulfonylureas.

  20. High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L..

    Directory of Open Access Journals (Sweden)

    Livia Donaire

    Full Text Available Small RNAs (sRNAs of 20 to 25 nucleotides (nt in length maintain genome integrity and control gene expression in a multitude of developmental and physiological processes. Despite RNA silencing has been primarily studied in model plants, the advent of high-throughput sequencing technologies has enabled profiling of the sRNA component of more than 40 plant species. Here, we used deep sequencing and molecular methods to report the first inventory of sRNAs in olive (Olea europaea L.. sRNA libraries prepared from juvenile and adult shoots revealed that the 24-nt class dominates the sRNA transcriptome and atypically accumulates to levels never seen in other plant species, suggesting an active role of heterochromatin silencing in the maintenance and integrity of its large genome. A total of 18 known miRNA families were identified in the libraries. Also, 5 other sRNAs derived from potential hairpin-like precursors remain as plausible miRNA candidates. RNA blots confirmed miRNA expression and suggested tissue- and/or developmental-specific expression patterns. Target mRNAs of conserved miRNAs were computationally predicted among the olive cDNA collection and experimentally validated through endonucleolytic cleavage assays. Finally, we use expression data to uncover genetic components of the miR156, miR172 and miR390/TAS3-derived trans-acting small interfering RNA (tasiRNA regulatory nodes, suggesting that these interactive networks controlling developmental transitions are fully operational in olive.

  1. Peptide Pattern Recognition for high-throughput protein sequence analysis and clustering

    DEFF Research Database (Denmark)

    Busk, Peter Kamp

    2017-01-01

    Large collections of protein sequences with divergent sequences are tedious to analyze for understanding their phylogenetic or structure-function relation. Peptide Pattern Recognition is an algorithm that was developed to facilitate this task but the previous version does only allow a limited...... number of sequences as input. I implemented Peptide Pattern Recognition as a multithread software designed to handle large numbers of sequences and perform analysis in a reasonable time frame. Benchmarking showed that the new implementation of Peptide Pattern Recognition is twenty times faster than...... the previous implementation on a small protein collection with 673 MAP kinase sequences. In addition, the new implementation could analyze a large protein collection with 48,570 Glycosyl Transferase family 20 sequences without reaching its upper limit on a desktop computer. Peptide Pattern Recognition...

  2. High-throughput sequencing of nematode communities from total soil DNA extractions

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Nicolaisen, Mogens

    2015-01-01

    nematodes without the need for enrichment was developed. Using this strategy on DNA templates from a set of 22 agricultural soils, we obtained 64.4% sequences of nematode origin in total, whereas the remaining sequences were almost entirely from other metazoans. The nematode sequences were derived from...... in previous sequence-based studies are not nematode specific but also amplify other groups of organisms such as fungi and plantae, and thus require a nematode enrichment step that may introduce biases. Results: In this study an amplification strategy which selectively amplifies a fragment of the SSU from...... a broad taxonomic range and most sequences were from nematode taxa that have previously been found to be abundant in soil such as Tylenchida, Rhabditida, Dorylaimida, Triplonchida and Araeolaimida. Conclusions: Our amplification and sequencing strategy for assessing nematode diversity was able to collect...

  3. Integrated analysis of RNA-binding protein complexes using in vitro selection and high-throughput sequencing and sequence specificity landscapes (SEQRS).

    Science.gov (United States)

    Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T

    2017-04-15

    RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences

    Science.gov (United States)

    Schwalbe, Ellen; Maas, Hans-Gerd

    2017-12-01

    This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.

  5. High Diversity of Myocyanophage in Various Aquatic Environments Revealed by High-Throughput Sequencing of Major Capsid Protein Gene With a New Set of Primers

    Directory of Open Access Journals (Sweden)

    Weiguo Hou

    2018-05-01

    Full Text Available Myocyanophages, a group of viruses infecting cyanobacteria, are abundant and play important roles in elemental cycling. Here we investigated the particle-associated viral communities retained on 0.2 μm filters and in sediment samples (representing ancient cyanophage communities from four ocean and three lake locations, using high-throughput sequencing and a newly designed primer pair targeting a gene fragment (∼145-bp in length encoding the cyanophage gp23 major capsid protein (MCP. Diverse viral communities were detected in all samples. The fragments of 142-, 145-, and 148-bp in length were most abundant in the amplicons, and most sequences (>92% belonged to cyanophages. Additionally, different sequencing depths resulted in different diversity estimates of the viral community. Operational taxonomic units obtained from deep sequencing of the MCP gene covered the majority of those obtained from shallow sequencing, suggesting that deep sequencing exhibited a more complete picture of cyanophage community than shallow sequencing. Our results also revealed a wide geographic distribution of marine myocyanophages, i.e., higher dissimilarities of the myocyanophage communities corresponded with the larger distances between the sampling sites. Collectively, this study suggests that the newly designed primer pair can be effectively used to study the community and diversity of myocyanophage from different environments, and the high-throughput sequencing represents a good method to understand viral diversity.

  6. High beam quality and high energy short-pulse laser with MOPA

    Science.gov (United States)

    Jin, Quanwei; Pang, Yu; Jiang, JianFeng; Tan, Liang; Cui, Lingling; Wei, Bin; Sun, Yinhong; Tang, Chun

    2018-03-01

    A high energy, high beam quality short-pulse diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with two amplifier stages is demonstrated. The two-rod birefringence compensation was used as beam quality controlling methods, which presents a short-pulse energy of 40 mJ with a beam quality value of M2 = 1.2 at a repetition rate of 400Hz. The MOPA system delivers a short-pulse energy of 712.5 mJ with a pulse width of 12.4 ns.The method of spherical aberration compensation is improved the beam quality, a M2 factor of 2.3 and an optical-to-optical efficiency of 27.7% is obtained at the maximum laser out power.The laser obtained 1.4J out energy with polarization integration.

  7. High-specificity detection of rare alleles with Paired-End Low Error Sequencing (PELE-Seq).

    Science.gov (United States)

    Preston, Jessica L; Royall, Ariel E; Randel, Melissa A; Sikkink, Kristin L; Phillips, Patrick C; Johnson, Eric A

    2016-06-14

    Polymorphic loci exist throughout the genomes of a population and provide the raw genetic material needed for a species to adapt to changes in the environment. The minor allele frequencies of rare Single Nucleotide Polymorphisms (SNPs) within a population have been difficult to track with Next-Generation Sequencing (NGS), due to the high error rate of standard methods such as Illumina sequencing. We have developed a wet-lab protocol and variant-calling method that identifies both sequencing and PCR errors, called Paired-End Low Error Sequencing (PELE-Seq). To test the specificity and sensitivity of the PELE-Seq method, we sequenced control E. coli DNA libraries containing known rare alleles present at frequencies ranging from 0.2-0.4 % of the total reads. PELE-Seq had higher specificity and sensitivity than standard libraries. We then used PELE-Seq to characterize rare alleles in a Caenorhabditis remanei nematode worm population before and after laboratory adaptation, and found that minor and rare alleles can undergo large changes in frequency during lab-adaptation. We have developed a method of rare allele detection that mitigates both sequencing and PCR errors, called PELE-Seq. PELE-Seq was evaluated using control E. coli populations and was then used to compare a wild C. remanei population to a lab-adapted population. The PELE-Seq method is ideal for investigating the dynamics of rare alleles in a broad range of reduced-representation sequencing methods, including targeted amplicon sequencing, RAD-Seq, ddRAD, and GBS. PELE-Seq is also well-suited for whole genome sequencing of mitochondria and viruses, and for high-throughput rare mutation screens.

  8. Sequence and expression analyses of ethylene response factors highly expressed in latex cells from Hevea brasiliensis.

    Directory of Open Access Journals (Sweden)

    Piyanuch Piyatrakul

    Full Text Available The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors.

  9. glbase: a framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data.

    Science.gov (United States)

    Hutchins, Andrew Paul; Jauch, Ralf; Dyla, Mateusz; Miranda-Saavedra, Diego

    2014-01-01

    Genomic datasets and the tools to analyze them have proliferated at an astonishing rate. However, such tools are often poorly integrated with each other: each program typically produces its own custom output in a variety of non-standard file formats. Here we present glbase, a framework that uses a flexible set of descriptors that can quickly parse non-binary data files. glbase includes many functions to intersect two lists of data, including operations on genomic interval data and support for the efficient random access to huge genomic data files. Many glbase functions can produce graphical outputs, including scatter plots, heatmaps, boxplots and other common analytical displays of high-throughput data such as RNA-seq, ChIP-seq and microarray expression data. glbase is designed to rapidly bring biological data into a Python-based analytical environment to facilitate analysis and data processing. In summary, glbase is a flexible and multifunctional toolkit that allows the combination and analysis of high-throughput data (especially next-generation sequencing and genome-wide data), and which has been instrumental in the analysis of complex data sets. glbase is freely available at http://bitbucket.org/oaxiom/glbase/.

  10. glbase: a framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data

    Directory of Open Access Journals (Sweden)

    Andrew Paul Hutchins

    2014-01-01

    Full Text Available Genomic datasets and the tools to analyze them have proliferated at an astonishing rate. However, such tools are often poorly integrated with each other: each program typically produces its own custom output in a variety of non-standard file formats. Here we present glbase, a framework that uses a flexible set of descriptors that can quickly parse non-binary data files. glbase includes many functions to intersect two lists of data, including operations on genomic interval data and support for the efficient random access to huge genomic data files. Many glbase functions can produce graphical outputs, including scatter plots, heatmaps, boxplots and other common analytical displays of high-throughput data such as RNA-seq, ChIP-seq and microarray expression data. glbase is designed to rapidly bring biological data into a Python-based analytical environment to facilitate analysis and data processing. In summary, glbase is a flexible and multifunctional toolkit that allows the combination and analysis of high-throughput data (especially next-generation sequencing and genome-wide data, and which has been instrumental in the analysis of complex data sets. glbase is freely available at http://bitbucket.org/oaxiom/glbase/.

  11. Multilocus sequence analysis (MLSA) of Bradyrhizobium strains: revealing high diversity of tropical diazotrophic symbiotic bacteria.

    Science.gov (United States)

    Delamuta, Jakeline Renata Marçon; Ribeiro, Renan Augusto; Menna, Pâmela; Bangel, Eliane Villamil; Hungria, Mariangela

    2012-04-01

    Symbiotic association of several genera of bacteria collectively called as rhizobia and plants belonging to the family Leguminosae (=Fabaceae) results in the process of biological nitrogen fixation, playing a key role in global N cycling, and also bringing relevant contributions to the agriculture. Bradyrhizobium is considered as the ancestral of all nitrogen-fixing rhizobial species, probably originated in the tropics. The genus encompasses a variety of diverse bacteria, but the diversity captured in the analysis of the 16S rRNA is often low. In this study, we analyzed twelve Bradyrhizobium strains selected from previous studies performed by our group for showing high genetic diversity in relation to the described species. In addition to the 16S rRNA, five housekeeping genes (recA, atpD, glnII, gyrB and rpoB) were analyzed in the MLSA (multilocus sequence analysis) approach. Analysis of each gene and of the concatenated housekeeping genes captured a considerably higher level of genetic diversity, with indication of putative new species. The results highlight the high genetic variability associated with Bradyrhizobium microsymbionts of a variety of legumes. In addition, the MLSA approach has proved to represent a rapid and reliable method to be employed in phylogenetic and taxonomic studies, speeding the identification of the still poorly known diversity of nitrogen-fixing rhizobia in the tropics.

  12. LncRNA Expression Profile of Human Thoracic Aortic Dissection by High-Throughput Sequencing.

    Science.gov (United States)

    Sun, Jie; Chen, Guojun; Jing, Yuanwen; He, Xiang; Dong, Jianting; Zheng, Junmeng; Zou, Meisheng; Li, Hairui; Wang, Shifei; Sun, Yili; Liao, Wangjun; Liao, Yulin; Feng, Li; Bin, Jianping

    2018-01-01

    In this study, the long non-coding RNA (lncRNA) expression profile in human thoracic aortic dissection (TAD), a highly lethal cardiovascular disease, was investigated. Human TAD (n=3) and normal aortic tissues (NA) (n=3) were examined by high-throughput sequencing. Bioinformatics analyses were performed to predict the roles of aberrantly expressed lncRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to validate the results. A total of 269 lncRNAs (159 up-regulated and 110 down-regulated) and 2, 255 mRNAs (1 294 up-regulated and 961 down-regulated) were aberrantly expressed in human TAD (fold-change> 1.5, PTAD than in NA. The predicted binding motifs of three up-regulated lncRNAs (ENSG00000248508, ENSG00000226530, and EG00000259719) were correlated with up-regulated RUNX1 (R=0.982, PTAD. These findings suggest that lncRNAs are novel potential therapeutic targets for human TAD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. Adaptation of Shift Sequence Based Method for High Number in Shifts Rostering Problem for Health Care Workers

    Directory of Open Access Journals (Sweden)

    Mindaugas Liogys

    2013-08-01

    Full Text Available Purpose—is to investigate a shift sequence-based approach efficiency then problem consisting of a high number of shifts.Research objectives:• Solve health care workers rostering problem using a shift sequence based method.• Measure its efficiency then number of shifts increases.Design/methodology/approach—Usually rostering problems are highly constrained. Constraints are classified to soft and hard constraints. Soft and hard constraints of the problem are additionally classified to: sequence constraints, schedule constraints and roster constraints. Sequence constraints are considered when constructing shift sequences. Schedule constraints are considered when constructing a schedule. Roster constraints are applied, then constructing overall solution, i.e. combining all schedules.Shift sequence based approach consists of two stages:• Shift sequences construction,• The construction of schedules.In the shift sequences construction stage, the shift sequences are constructed for each set of health care workers of different skill, considering sequence constraints. Shifts sequences are ranked by their penalties for easier retrieval in later stage.In schedules construction stage, schedules for each health care worker are constructed iteratively, using the shift sequences produced in stage 1.Shift sequence based method is an adaptive iterative method where health care workers who received the highest schedule penalties in the last iteration are scheduled first at the current iteration.During the roster construction, and after a schedule has been generated for the current health care worker, an improvement method based on an efficient greedy local search is carried out on the partial roster. It simply swaps any pair of shifts between two health care workers in the (partial roster, as long as the swaps satisfy hard constraints and decrease the roster penalty.Findings—Using shift sequence method for solving health care workers rostering problem

  14. Adaptation of Shift Sequence Based Method for High Number in Shifts Rostering Problem for Health Care Workers

    Directory of Open Access Journals (Sweden)

    Mindaugas Liogys

    2011-08-01

    Full Text Available Purpose—is to investigate a shift sequence-based approach efficiency then problem consisting of a high number of shifts. Research objectives:• Solve health care workers rostering problem using a shift sequence based method.• Measure its efficiency then number of shifts increases. Design/methodology/approach—Usually rostering problems are highly constrained.Constraints are classified to soft and hard constraints. Soft and hard constraints of the problem are additionally classified to: sequence constraints, schedule constraints and roster constraints. Sequence constraints are considered when constructing shift sequences. Schedule constraints are considered when constructing a schedule. Roster constraints are applied, then constructing overall solution, i.e. combining all schedules.Shift sequence based approach consists of two stages:• Shift sequences construction,• The construction of schedules.In the shift sequences construction stage, the shift sequences are constructed for each set of health care workers of different skill, considering sequence constraints. Shifts sequences are ranked by their penalties for easier retrieval in later stage.In schedules construction stage, schedules for each health care worker are constructed iteratively, using the shift sequences produced in stage 1. Shift sequence based method is an adaptive iterative method where health care workers who received the highest schedule penalties in the last iteration are scheduled first at the current iteration. During the roster construction, and after a schedule has been generated for the current health care worker, an improvement method based on an efficient greedy local search is carried out on the partial roster. It simply swaps any pair of shifts between two health care workers in the (partial roster, as long as the swaps satisfy hard constraints and decrease the roster penalty.Findings—Using shift sequence method for solving health care workers rostering

  15. Determination of 5 '-leader sequences from radically disparate strains of porcine reproductive and respiratory syndrome virus reveals the presence of highly conserved sequence motifs

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Bøtner, Anette; Nielsen, Jens

    1999-01-01

    We determined the untranslated 5'-leader sequence for three different isolates of porcine reproductive and respiratory syndrome virus (PRRSV): pathogenic European- and American-types, as well as an American-type vaccine strain. 5'-leader from European- and American-type PRRSV differed in length...... (220 and 190 nt, respectively), and exhibited only approximately 50% nucleotide homology. Nevertheless, highly conserved areas were identified in the leader of all 3 PRRSV isolates, which constitute candidate motifs for binding of protein(s) involved in viral replication. These comparative data provide...

  16. Development of nuclear quality high pressure valve bellows in Canada

    International Nuclear Information System (INIS)

    Janzen, P.; Astill, C.J.

    1978-06-01

    Concurrent with the decision to use bellows stem sealed nuclear valves where feasible in commercial-scale CANDU plants, AECL undertook to develop an indigenous high pressure valve bellows technology. This program included developing the capability to fabricate improved high pressure valve bellows in conjunction with a Canadian manufacturer. This paper describes the evolution of a two-stage bellows fabrication process involving: (1) manufacture of discrete lengths of precision thin wall telescoping tubes - from preparation of strip blanks through edge grinding and edge forming to longitudinal welding; (2) forming of bellows from tube assemblies using a novel combination of mechanical inward forming followed by hydraulic outward forming. Bellows of Inconel 600 and Inconel 625 have been manufactured and evaluated. Test results indicate comparable to improved performance over alternative high quality bellows. (author)

  17. Fat Quality Influences the Obesogenic Effect of High Fat Diets

    Directory of Open Access Journals (Sweden)

    Raffaella Crescenzo

    2015-11-01

    Full Text Available High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids.

  18. Criteria to Extract High-Quality Protein Data Bank Subsets for Structure Users.

    Science.gov (United States)

    Carugo, Oliviero; Djinović-Carugo, Kristina

    2016-01-01

    It is often necessary to build subsets of the Protein Data Bank to extract structural trends and average values. For this purpose it is mandatory that the subsets are non-redundant and of high quality. The first problem can be solved relatively easily at the sequence level or at the structural level. The second, on the contrary, needs special attention. It is not sufficient, in fact, to consider the crystallographic resolution and other feature must be taken into account: the absence of strings of residues from the electron density maps and from the files deposited in the Protein Data Bank; the B-factor values; the appropriate validation of the structural models; the quality of the electron density maps, which is not uniform; and the temperature of the diffraction experiments. More stringent criteria produce smaller subsets, which can be enlarged with more tolerant selection criteria. The incessant growth of the Protein Data Bank and especially of the number of high-resolution structures is allowing the use of more stringent selection criteria, with a consequent improvement of the quality of the subsets of the Protein Data Bank.

  19. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  20. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.

    Science.gov (United States)

    Greub, Gilbert; Kebbi-Beghdadi, Carole; Bertelli, Claire; Collyn, François; Riederer, Beat M; Yersin, Camille; Croxatto, Antony; Raoult, Didier

    2009-12-23

    With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

  1. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Science.gov (United States)

    Irigoyen, Nerea; Firth, Andrew E; Jones, Joshua D; Chung, Betty Y-W; Siddell, Stuart G; Brierley, Ian

    2016-02-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  2. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    Directory of Open Access Journals (Sweden)

    Nerea Irigoyen

    2016-02-01

    Full Text Available Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV, are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59, a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the

  3. Sleep quality and its relationship with quality of life among high-risk pregnant women (gestational diabetes and hypertension).

    Science.gov (United States)

    Saadati, Fatemeh; Sehhatiei Shafaei, Fahimeh; Mirghafourvand, Mozhgan

    2018-01-01

    Sleep is one of the most basic human requirements. This research aims at determining the status of sleep quality and its relationship with quality of life among high-risk pregnant women in Tabriz, Iran, in 2015. This research was a sectional study done on 364 qualified women in 28-36 weeks of pregnancy suffering from mild preeclampsia and gestational diabetes. The sampling was done as convenience. Personal-social-midwifery questionnaire, Pittsburg sleep quality, and quality of life in pregnancy (QOL-ORAV) were used for gathering data. Multivariate linear regression model was used for determining the relationship between sleep quality and its subsets with quality of life and controlling confounders. In the current study, the prevalence of sleep disturbance was 96.4%. Mean (SD) of the total score of sleep quality was 10.1 (4.1) and the total score of quality of life was 61.7 (17.3). According to Pearson's correlation test, there was statistically significant relationship between quality of life and sleep quality and all its subsets except sleep duration and use of sleep medication (p quality of life. The findings of current research show that sleep quality is low among high-risk pregnant women and quality of life is medium. So, it is necessary that required training is given by health cares for improving sleep quality and quality of life to mothers.

  4. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    NARCIS (Netherlands)

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it

  5. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes

    NARCIS (Netherlands)

    Dutilh, Bas E; Cassman, Noriko; McNair, Katelyn; Sanchez, Savannah E; Silva, Genivaldo G Z; Boling, Lance; Barr, Jeremy J; Speth, Daan R; Seguritan, Victor; Aziz, Ramy K; Felts, Ben; Dinsdale, Elizabeth A; Mokili, John L; Edwards, Robert A

    2014-01-01

    Metagenomics, or sequencing of the genetic material from a complete microbial community, is a promising tool to discover novel microbes and viruses. Viral metagenomes typically contain many unknown sequences. Here we describe the discovery of a previously unidentified bacteriophage present in the

  6. Present status of high quality beam facility at Waseda University

    International Nuclear Information System (INIS)

    Washio, M.; Kawai, H.; Hama, Y.; Kudo, N.; Kobayashi, M.; Kuribayasi, T.; Kawaguchi, M.; Kuroda, R.; Maeda, K.; Nagasawa, F.; Ueyama, D.; Hizume, K.; Wang, X.J.; Hayano, H.; Urakawa, J.; Kashiwagi, S.

    2004-01-01

    A research project named High-Tech Research Center Project has been conducted at Waseda University. In this project, an RF gun system has been used for production of low emittance and short bunched electron beam. The experiments for the electron beam quality measurement have been carried out by slit scan techniques, etc. Short pulsed x-ray with the energy range of so-called water window has been generation by the inverse compton scattering. Further, the pulse radiolysis system has been constructed, and the stroboscopic pulse radiolysis has been applied for the detection of hydrated electron in picosecond time region. (author)

  7. Anti-Stokes Luminescence in High Quality Quantum Wells

    Science.gov (United States)

    Vinattieri, A.; Bogani, F.; Miotto, A.; Ceccherini, S.

    1997-11-01

    We present a detailed investigation of the anti-Stokes (AS) luminescence which originates from exciton recombination when below gap excitation is used, in a set of high quality quantum well structures. We observe strong excitonic resonances in the AS signal as measured from photoluminescence and photoluminescence excitation spectra. We demonstrate that neither the electromagnetic coupling between the wells nor the morphological disorder can explain this up-conversion effect. Time-resolved luminescence data after ps excitation and fs correlation spectroscopy results provide clear evidence of the occurrence of a two-step absorption which is assisted by the exciton population resonantly excited by the first photon.

  8. The quality of high-energy X-ray beams

    International Nuclear Information System (INIS)

    LaRiviere, P.D.

    1989-01-01

    Supplement 17 of the British Journal of Radiology is a survey of central-axis depth doses for radiotherapy machines, patterned largely on BJR Supplement 11 (1972). Inspection of high-energy X-ray depth doses for a 10 x 10 cm field at an SSD of 100 cm disclosed large differences between the two sets of data, especially for qualities above 8 MV, e.g. a depth dose of 80% at 10 cm is rated at about 19 MV according to BJR Supplement 11, and 23 MV according to BJR Supplement 17. It was found that Supplement 17 depth-dose data above 8 MV were erratic, but Supplement 11 data could be represented by an analytical expression, providing a unique means of assigning MV quality. It was also found that dose-weighted average energy of the filtered beam plotted smoothly against depth dose. For dosimetric purposes, it is suggested that this parameter be used as a true measure of beam quality, removing discrepancies introduced by the use of nominal MV for this purpose. (author)

  9. CCD Astrophotography High-Quality Imaging from the Suburbs

    CERN Document Server

    Stuart, Adam

    2006-01-01

    This is a reference book for amateur astronomers who have become interested in CCD imaging. Those glorious astronomical images found in astronomy magazines might seem out of reach to newcomers to CCD imaging, but this is not the case. Great pictures are attainable with modest equipment. Adam Stuart’s many beautiful images, reproduced in this book, attest to the quality of – initially – a beginner’s efforts. Chilled-chip astronomical CCD-cameras and software are also wonderful tools for cutting through seemingly impenetrable light-pollution. CCD Astrophotography from the Suburbs describes one man’s successful approach to the problem of getting high-quality astronomical images under some of the most light-polluted conditions. Here is a complete and thoroughly tested program that will help every CCD-beginner to work towards digital imaging of the highest quality. It is equally useful to astronomers who have perfect observing conditions, as to those who have to observe from light-polluted city skies.

  10. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum

    DEFF Research Database (Denmark)

    Christiansen, Anders; Kringelum, Jens Vindahl; Hansen, Christian Skjødt

    2015-01-01

    of the bioinformatic approach was demonstrated by identifying epitopes of a prominent peanut allergen, Ara h 1, in sera from patients with severe peanut allergy. The identified epitopes were confirmed by high-density peptide micro-arrays. The present study demonstrates that high-throughput sequencing can empower phage...

  11. Taxonomy of anaerobic digestion microbiome reveals biases associated with the applied high throughput sequencing strategies

    DEFF Research Database (Denmark)

    Campanaro, Stefano; Treu, Laura; Kougias, Panagiotis

    2018-01-01

    In the past few years, many studies investigated the anaerobic digestion microbiome by means of 16S rRNA amplicon sequencing. Results obtained from these studies were compared to each other without taking into consideration the followed procedure for amplicons preparation and data analysis...... specifically, the microbial compositions of three laboratory scale biogas reactors were analyzed before and after addition of sodium oleate by sequencing the microbiome with three different approaches: 16S rRNA amplicon sequencing, shotgun DNA and shotgun RNA. This comparative analysis revealed that......, in amplicon sequencing, abundance of some taxa (Euryarchaeota and Spirochaetes) was biased by the inefficiency of universal primers to hybridize all the templates. Reliability of the results obtained was also influenced by the number of hypervariable regions under investigation. Finally, amplicon sequencing...

  12. A high-throughput system for high-quality tomographic reconstruction of large datasets at Diamond Light Source.

    Science.gov (United States)

    Atwood, Robert C; Bodey, Andrew J; Price, Stephen W T; Basham, Mark; Drakopoulos, Michael

    2015-06-13

    Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefore, need to be managed efficiently. Raw images may have high pixel counts, and each pixel can be multidimensional and associated with additional data such as those derived from spectroscopy. In time-resolved studies, hundreds of tomographic datasets can be collected in sequence, yielding terabytes of data. Users of tomographic beamlines are drawn from various scientific disciplines, and many are keen to use tomographic reconstruction software that does not require a deep understanding of reconstruction principles. We have developed Savu, a reconstruction pipeline that enables users to rapidly reconstruct data to consistently create high-quality results. Savu is designed to work in an 'orthogonal' fashion, meaning that data can be converted between projection and sinogram space throughout the processing workflow as required. The Savu pipeline is modular and allows processing strategies to be optimized for users' purposes. In addition to the reconstruction algorithms themselves, it can include modules for identification of experimental problems, artefact correction, general image processing and data quality assessment. Savu is open source, open licensed and 'facility-independent': it can run on standard cluster infrastructure at any institution.

  13. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    Science.gov (United States)

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. In-situ high resolution particle sampling by large time sequence inertial spectrometry

    International Nuclear Information System (INIS)

    Prodi, V.; Belosi, F.

    1990-09-01

    In situ sampling is always preferred, when possible, because of the artifacts that can arise when the aerosol has to flow through long sampling lines. On the other hand, the amount of possible losses can be calculated with some confidence only when the size distribution can be measured with a sufficient precision and the losses are not too large. This makes it desirable to sample directly in the vicinity of the aerosol source or containment. High temperature sampling devices with a detailed aerodynamic separation are extremely useful to this purpose. Several measurements are possible with the inertial spectrometer (INSPEC), but not with cascade impactors or cyclones. INSPEC - INertial SPECtrometer - has been conceived to measure the size distribution of aerosols by separating the particles while airborne according to their size and collecting them on a filter. It consists of a channel of rectangular cross-section with a 90 degree bend. Clean air is drawn through the channel, with a thin aerosol sheath injected close to the inner wall. Due to the bend, the particles are separated according to their size, leaving the original streamline by a distance which is a function of particle inertia and resistance, i.e. of aerodynamic diameter. The filter collects all the particles of the same aerodynamic size at the same distance from the inlet, in a continuous distribution. INSPEC particle separation at high temperature (up to 800 C) has been tested with Zirconia particles as calibration aerosols. The feasibility study has been concerned with resolution and time sequence sampling capabilities under high temperature (700 C)

  15. Deciphering the Resistome of the Widespread Pseudomonas aeruginosa Sequence Type 175 International High-Risk Clone through Whole-Genome Sequencing.

    Science.gov (United States)

    Cabot, Gabriel; López-Causapé, Carla; Ocampo-Sosa, Alain A; Sommer, Lea M; Domínguez, María Ángeles; Zamorano, Laura; Juan, Carlos; Tubau, Fe; Rodríguez, Cristina; Moyà, Bartolomé; Peña, Carmen; Martínez-Martínez, Luis; Plesiat, Patrick; Oliver, Antonio

    2016-12-01

    Whole-genome sequencing (WGS) was used for the characterization of the frequently extensively drug resistant (XDR) Pseudomonas aeruginosa sequence type 175 (ST175) high-risk clone. A total of 18 ST175 isolates recovered from 8 different Spanish hospitals were analyzed; 4 isolates from 4 different French hospitals were included for comparison. The typical resistance profile of ST175 included penicillins, cephalosporins, monobactams, carbapenems, aminoglycosides, and fluoroquinolones. In the phylogenetic analysis, the four French isolates clustered together with two isolates from one of the Spanish regions. Sequence variation was analyzed for 146 chromosomal genes related to antimicrobial resistance, and horizontally acquired genes were explored using online databases. The resistome of ST175 was determined mainly by mutational events; resistance traits common to all or nearly all of the strains included specific ampR mutations leading to ampC overexpression, specific mutations in oprD conferring carbapenem resistance, or a mexZ mutation leading to MexXY overexpression. All isolates additionally harbored an aadB gene conferring gentamicin and tobramycin resistance. Several other resistance traits were specific to certain geographic areas, such as a streptomycin resistance gene, aadA13, detected in all four isolates from France and in the two isolates from the Cantabria region and a glpT mutation conferring fosfomycin resistance, detected in all but these six isolates. Finally, several unique resistance mutations were detected in single isolates; particularly interesting were those in genes encoding penicillin-binding proteins (PBP1A, PBP3, and PBP4). Thus, these results provide information valuable for understanding the genetic basis of resistance and the dynamics of the dissemination and evolution of high-risk clones. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Genome sequence of the thermotolerant foodborne pathogen Salmonella enterica serovar Senftenberg ATCC 43845 and phylogenetic analysis of Loci encoding increased protein quality control mechanisms

    Science.gov (United States)

    Salmonella enterica subsp. enterica bacteria are important foodborne pathogens with major economic impact. Some isolates exhibit increased heat tolerance, a concern for food safety. Analysis of a finished-quality genome sequence of an isolate commonly used in heat resistance studies, S. enterica sub...

  17. Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (Prunus salicina Lindl.)

    Science.gov (United States)

    Marker-assisted selection (MAS) in stone fruit (Prunus species) breeding is currently difficult to achieve due to the polygenic nature of themost relevant agronomic traits linked to fruit quality. Genotyping by sequencing (GBS), however, provides a large quantity of useful data suitable for finemapp...

  18. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  19. Identification of QTLs for 14 Agronomically Important Traits in Setaria italica Based on SNPs Generated from High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2017-05-01

    Full Text Available Foxtail millet (Setaria italica is an important crop possessing C4 photosynthesis capability. The S. italica genome was de novo sequenced in 2012, but the sequence lacked high-density genetic maps with agronomic and yield trait linkages. In the present study, we resequenced a foxtail millet population of 439 recombinant inbred lines (RILs and developed high-resolution bin map and high-density SNP markers, which could provide an effective approach for gene identification. A total of 59 QTL for 14 agronomic traits in plants grown under long- and short-day photoperiods were identified. The phenotypic variation explained ranged from 4.9 to 43.94%. In addition, we suggested that there may be segregation distortion on chromosome 6 that is significantly distorted toward Zhang gu. The newly identified QTL will provide a platform for sequence-based research on the S. italica genome, and for molecular marker-assisted breeding.

  20. Identification of QTLs for 14 Agronomically Important Traits in Setaria italica Based on SNPs Generated from High-Throughput Sequencing.

    Science.gov (United States)

    Zhang, Kai; Fan, Guangyu; Zhang, Xinxin; Zhao, Fang; Wei, Wei; Du, Guohua; Feng, Xiaolei; Wang, Xiaoming; Wang, Feng; Song, Guoliang; Zou, Hongfeng; Zhang, Xiaolei; Li, Shuangdong; Ni, Xuemei; Zhang, Gengyun; Zhao, Zhihai

    2017-05-05

    Foxtail millet ( Setaria italica ) is an important crop possessing C4 photosynthesis capability. The S. italica genome was de novo sequenced in 2012, but the sequence lacked high-density genetic maps with agronomic and yield trait linkages. In the present study, we resequenced a foxtail millet population of 439 recombinant inbred lines (RILs) and developed high-resolution bin map and high-density SNP markers, which could provide an effective approach for gene identification. A total of 59 QTL for 14 agronomic traits in plants grown under long- and short-day photoperiods were identified. The phenotypic variation explained ranged from 4.9 to 43.94%. In addition, we suggested that there may be segregation distortion on chromosome 6 that is significantly distorted toward Zhang gu. The newly identified QTL will provide a platform for sequence-based research on the S. italica genome, and for molecular marker-assisted breeding. Copyright © 2017 Zhang et al.

  1. Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Li Cui

    2017-01-01

    Full Text Available Objectives. We aimed to explore the impact of gut microbiota in coronary heart disease (CHD patients through high-throughput sequencing. Methods. A total of 29 CHD in-hospital patients and 35 healthy volunteers as controls were included. Nucleic acids were extracted from fecal samples, followed by α diversity and principal coordinate analysis (PCoA. Based on unweighted UniFrac distance matrices, unweighted-pair group method with arithmetic mean (UPGMA trees were created. Results. After data optimization, an average of 121312±19293 reads in CHD patients and 234372±108725 reads in controls was obtained. Reads corresponding to 38 phyla, 90 classes, and 584 genera were detected in CHD patients, whereas 40 phyla, 99 classes, and 775 genera were detected in controls. The proportion of phylum Bacteroidetes (56.12% was lower and that of phylum Firmicutes was higher (37.06% in CHD patients than those in the controls (60.92% and 32.06%, P<0.05. PCoA and UPGMA tree analysis showed that there were significant differences of gut microbial compositions between the two groups. Conclusion. The diversity and compositions of gut flora were different between CHD patients and healthy controls. The incidence of CHD might be associated with the alteration of gut microbiota.

  2. Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Xin Fang

    2016-09-01

    Full Text Available More and more evidences indicate that diseases of the central nervous system (CNS have been seriously affected by faecal microbes. However, little work is done to explore interaction between amyotrophic lateral sclerosis (ALS and faecal microbes. In the present study, high-throughput sequencing method was used to compare the intestinal microbial diversity of healthy people and ALS patients. The principal coordinate analysis (PCoA, Venn and unweighted pair-group method using arithmetic averages (UPGMA showed an obvious microbial changes between healthy people (group H and ALS patients (group A, and the average ratios of Bacteroides, Faecalibacterium, Anaerostipes, Prevotella, Escherichia and Lachnospira at genus level between ALS patients and healthy people were 0.78, 2.18, 3.41, 0.35, 0.79 and 13.07. Furthermore, the decreased Firmicutes/Bacteroidetes ratio at phylum level using LEfSE (LDA >4.0, together with the significant increased genus Dorea (harmful microorganisms and significant reduced genus Oscillibacter, Anaerostipes, Lachnospiraceae (beneficial microorganisms in ALS patients, indicated that the imbalance in intestinal microflora constitution had a strong association with the pathogenesis of ALS.

  3. Evaluation of the Microbial Diversity in Amyotrophic Lateral Sclerosis Using High-Throughput Sequencing.

    Science.gov (United States)

    Fang, Xin; Wang, Xin; Yang, Shaoguo; Meng, Fanjing; Wang, Xiaolei; Wei, Hua; Chen, Tingtao

    2016-01-01

    More and more evidences indicate that diseases of the central nervous system have been seriously affected by fecal microbes. However, little work is done to explore interaction between amyotrophic lateral sclerosis (ALS) and fecal microbes. In the present study, high-throughput sequencing method was used to compare the intestinal microbial diversity of healthy people and ALS patients. The principal coordinate analysis, Venn and unweighted pair-group method using arithmetic averages (UPGMA) showed an obvious microbial changes between healthy people (group H) and ALS patients (group A), and the average ratios of Bacteroides , Faecalibacterium , Anaerostipes , Prevotella , Escherichia , and Lachnospira at genus level between ALS patients and healthy people were 0.78, 2.18, 3.41, 0.35, 0.79, and 13.07. Furthermore, the decreased Firmicutes/Bacteroidetes ratio at phylum level using LEfSE (LDA > 4.0), together with the significant increased genus Dorea (harmful microorganisms) and significant reduced genus Oscillibacter , Anaerostipes , Lachnospiraceae (beneficial microorganisms) in ALS patients, indicated that the imbalance in intestinal microflora constitution had a strong association with the pathogenesis of ALS.

  4. High-throughput sequencing of plasma microRNA in chronic fatigue syndrome/myalgic encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Ekua W Brenu

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are known to regulate many biological processes and their dysregulation has been associated with a variety of diseases including Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME. The recent discovery of stable and reproducible miRNA in plasma has raised the possibility that circulating miRNAs may serve as novel diagnostic markers. The objective of this study was to determine the role of plasma miRNA in CFS/ME. RESULTS: Using Illumina high-throughput sequencing we identified 19 miRNAs that were differentially expressed in the plasma of CFS/ME patients in comparison to non-fatigued controls. Following RT-qPCR analysis, we were able to confirm the significant up-regulation of three miRNAs (hsa-miR-127-3p, hsa-miR-142-5p and hsa-miR-143-3p in the CFS/ME patients. CONCLUSION: Our study is the first to identify circulating miRNAs from CFS/ME patients and also to confirm three differentially expressed circulating miRNAs in CFS/ME patients, providing a basis for further study to find useful CFS/ME biomarkers.

  5. High-Throughput Sequencing of Plasma MicroRNA in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

    Science.gov (United States)

    Brenu, Ekua W.; Ashton, Kevin J.; Batovska, Jana; Staines, Donald R.; Marshall-Gradisnik, Sonya M.

    2014-01-01

    Background MicroRNAs (miRNAs) are known to regulate many biological processes and their dysregulation has been associated with a variety of diseases including Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). The recent discovery of stable and reproducible miRNA in plasma has raised the possibility that circulating miRNAs may serve as novel diagnostic markers. The objective of this study was to determine the role of plasma miRNA in CFS/ME. Results Using Illumina high-throughput sequencing we identified 19 miRNAs that were differentially expressed in the plasma of CFS/ME patients in comparison to non-fatigued controls. Following RT-qPCR analysis, we were able to confirm the significant up-regulation of three miRNAs (hsa-miR-127-3p, hsa-miR-142-5p and hsa-miR-143-3p) in the CFS/ME patients. Conclusion Our study is the first to identify circulating miRNAs from CFS/ME patients and also to confirm three differentially expressed circulating miRNAs in CFS/ME patients, providing a basis for further study to find useful CFS/ME biomarkers. PMID:25238588

  6. Identification of microRNAs and their targets in Finger millet by high throughput sequencing.

    Science.gov (United States)

    Usha, S; Jyothi, M N; Sharadamma, N; Dixit, Rekha; Devaraj, V R; Nagesh Babu, R

    2015-12-15

    MicroRNAs are short non-coding RNAs which play an important role in regulating gene expression by mRNA cleavage or by translational repression. The majority of identified miRNAs were evolutionarily conserved; however, others expressed in a species-specific manner. Finger millet is an important cereal crop; nonetheless, no practical information is available on microRNAs to date. In this study, we have identified 95 conserved microRNAs belonging to 39 families and 3 novel microRNAs by high throughput sequencing. For the identified conserved and novel miRNAs a total of 507 targets were predicted. 11 miRNAs were validated and tissue specificity was determined by stem loop RT-qPCR, Northern blot. GO analyses revealed targets of miRNA were involved in wide range of regulatory functions. This study implies large number of known and novel miRNAs found in Finger millet which may play important role in growth and development. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. High Performance Biological Pairwise Sequence Alignment: FPGA versus GPU versus Cell BE versus GPP

    Directory of Open Access Journals (Sweden)

    Khaled Benkrid

    2012-01-01

    Full Text Available This paper explores the pros and cons of reconfigurable computing in the form of FPGAs for high performance efficient computing. In particular, the paper presents the results of a comparative study between three different acceleration technologies, namely, Field Programmable Gate Arrays (FPGAs, Graphics Processor Units (GPUs, and IBM’s Cell Broadband Engine (Cell BE, in the design and implementation of the widely-used Smith-Waterman pairwise sequence alignment algorithm, with general purpose processors as a base reference implementation. Comparison criteria include speed, energy consumption, and purchase and development costs. The study shows that FPGAs largely outperform all other implementation platforms on performance per watt criterion and perform better than all other platforms on performance per dollar criterion, although by a much smaller margin. Cell BE and GPU come second and third, respectively, on both performance per watt and performance per dollar criteria. In general, in order to outperform other technologies on performance per dollar criterion (using currently available hardware and development tools, FPGAs need to achieve at least two orders of magnitude speed-up compared to general-purpose processors and one order of magnitude speed-up compared to domain-specific technologies such as GPUs.

  8. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs.

    Directory of Open Access Journals (Sweden)

    Germán Martínez

    Full Text Available Micro RNAS (miRNAs are a class of endogenous small non coding RNAs involved in the post-transcriptional regulation of gene expression. In plants, a great number of conserved and specific miRNAs, mainly arising from model species, have been identified to date. However less is known about the diversity of these regulatory RNAs in vegetal species with agricultural and/or horticultural importance. Here we report a combined approach of bioinformatics prediction, high-throughput sequencing data and molecular methods to analyze miRNAs populations in cucumber (Cucumis sativus plants. A set of 19 conserved and 6 known but non-conserved miRNA families were found in our cucumber small RNA dataset. We also identified 7 (3 with their miRNA* strand not previously described miRNAs, candidates to be cucumber-specific. To validate their description these new C. sativus miRNAs were detected by northern blot hybridization. Additionally, potential targets for most conserved and new miRNAs were identified in cucumber genome.In summary, in this study we have identified, by first time, conserved, known non-conserved and new miRNAs arising from an agronomically important species such as C. sativus. The detection of this complex population of regulatory small RNAs suggests that similarly to that observe in other plant species, cucumber miRNAs may possibly play an important role in diverse biological and metabolic processes.

  9. Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing.

    Science.gov (United States)

    Cui, Li; Zhao, Tingting; Hu, Haibing; Zhang, Wen; Hua, Xiuguo

    2017-01-01

    Objectives. We aimed to explore the impact of gut microbiota in coronary heart disease (CHD) patients through high-throughput sequencing. Methods. A total of 29 CHD in-hospital patients and 35 healthy volunteers as controls were included. Nucleic acids were extracted from fecal samples, followed by α diversity and principal coordinate analysis (PCoA). Based on unweighted UniFrac distance matrices, unweighted-pair group method with arithmetic mean (UPGMA) trees were created. Results. After data optimization, an average of 121312 ± 19293 reads in CHD patients and 234372 ± 108725 reads in controls was obtained. Reads corresponding to 38 phyla, 90 classes, and 584 genera were detected in CHD patients, whereas 40 phyla, 99 classes, and 775 genera were detected in controls. The proportion of phylum Bacteroidetes (56.12%) was lower and that of phylum Firmicutes was higher (37.06%) in CHD patients than those in the controls (60.92% and 32.06%, P UPGMA tree analysis showed that there were significant differences of gut microbial compositions between the two groups. Conclusion. The diversity and compositions of gut flora were different between CHD patients and healthy controls. The incidence of CHD might be associated with the alteration of gut microbiota.

  10. Insight into the transcriptome of Arthrobotrys conoides using high throughput sequencing.

    Science.gov (United States)

    Ramesh, Pandit; Reena, Patel; Amitbikram, Mohapatra; Chaitanya, Joshi; Anju, Kunjadia

    2015-12-01

    Arthrobotrys conoides is a nematode-trapping fungus belonging to Orbiliales, Ascomycota group, and traps prey nematodes by means of adhesive network. Fungus has a potential to be used as a biocontrol agent against plant parasitic nematodes. In the present study, we characterized the transcriptome of A. conoides using high-throughput sequencing technology and characterized its virulence unigenes. Total 7,255 cDNA contigs with an average length of 425 bp were generated and 6184 (61.81%) transcripts were functionally annotated and characterized. Majority of unigenes were found analogous to the genes of plant pathogenic fungi. A total of 1749 transcripts were found to be orthologous with eukaryotic proteins of KOG database. Several carbohydrate active enzymes and peptidases were identified. We also analyzed classically and nonclassically secreted proteins and confirmed by BLASTP against fungal secretome database. A total of 916 contigs were analogous to 556 unique proteins of Pathogen Host Interaction (PHI) database. Further, we identified 91 unigenes homologous to the database of fungal virulence factor (DFVF). A total of 104 putative protein kinases coding transcripts were identified by BLASTP against KinBase database, which are major players in signaling pathways. This study provides a comprehensive look at the transcriptome of A. conoides and the identified unigenes might have a role in catching and killing prey nematodes by A. conoides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Prenatal MRI Findings of Fetuses with Congenital High Airway Obstruction Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Carolina V. A.; Linam, Leann E.; Kline-Fath, Beth M. [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States)] (and others)

    2009-04-15

    To define the MRI findings of congenital high airway obstruction sequence (CHAOS) in a series of fetuses. Prenatal fetal MR images were reviewed in seven fetuses with CHAOS at 21 to 27 weeks of gestation. The MRI findings were reviewed. The MRI parameters evaluated included the appearance of the lungs and diaphragm, presence or absence of hydrops, amount of amniotic fluid, airway appearance, predicted level of airway obstruction, and any additional findings or suspected genetic syndromes. All the fetuses viewed (7 of 7) demonstrated the following MRI findings: dilated airway below the level of obstruction, increased lung signal, markedly increased lung volumes with flattened or inverted hemidiaphragms, massive ascites, centrally positioned and compressed heart, as well as placentomegaly. Other frequent findings were anasarca (6 of 7) and polyhydramnios (3 of 7). MRI identified the level of obstruction as laryngeal in five cases and tracheal in two cases. In four of the patients, surgery or autopsy confirmed the MRI predicted level of obstruction. Associated abnormalities were found in 4 of 7 (genetic syndromes in 2). Postnatal radiography (n = 3) showed markedly hyperinflated lungs with inverted or flattened hemidiaphragms, strandy perihilar opacities, pneumothoraces and tracheotomy. Two fetuses were terminated and one fetus demised in utero. Four fetuses were delivered via ex utero intrapartum treatment procedure. MRI shows a consistent pattern of abnormalities in fetuses with CHAOS, accurately identifies the level of airway obstruction, and helps differentiate from other lung abnormalities such as bilateral congenital pulmonary airway malformation by demonstrating an abnormally dilated airway distal to the obstruction.

  12. Characterization of CG6178 gene product with high sequence similarity to firefly luciferase in Drosophila melanogaster.

    Science.gov (United States)

    Oba, Yuichi; Ojika, Makoto; Inouye, Satoshi

    2004-03-31

    This is the first identification of a long-chain fatty acyl-CoA synthetase in Drosophila by enzymatic characterization. The gene product of CG6178 (CG6178) in Drosophila melanogaster genome, which has a high sequence similarity to firefly luciferase, has been expressed and characterized. CG6178 showed long-chain fatty acyl-CoA synthetic activity in the presence of ATP, CoA and Mg(2+), suggesting a fatty acyl adenylate is an intermediate. Recently, it was revealed that firefly luciferase has two catalytic functions, monooxygenase (luciferase) and AMP-mediated CoA ligase (fatty acyl-CoA synthetase). However, unlike firefly luciferase, CG6178 did not show luminescence activity in the presence of firefly luciferin, ATP, CoA and Mg(2+). The enzymatic properties of CG6178 including substrate specificity, pH dependency and optimal temperature were close to those of firefly luciferase and rat fatty acyl-CoA synthetase. Further, phylogenic analyses strongly suggest that the firefly luciferase gene may have evolved from a fatty acyl-CoA synthetase gene as a common ancestral gene.

  13. Transcriptome Sequencing in a Tibetan Barley Landrace with High Resistance to Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Xing-Quan Zeng

    2014-01-01

    Full Text Available Hulless barley is an important cereal crop worldwide, especially in Tibet of China. However, this crop is usually susceptible to powdery mildew caused by Blumeria graminis f. sp. hordei. In this study, we aimed to understand the functions and pathways of genes involved in the disease resistance by transcriptome sequencing of a Tibetan barley landrace with high resistance to powdery mildew. A total of 831 significant differentially expressed genes were found in the infected seedlings, covering 19 functions. Either “cell,” “cell part,” and “extracellular region” in the cellular component category or “binding” and “catalytic” in the category of molecular function as well as “metabolic process” and “cellular process” in the biological process category together demonstrated that these functions may be involved in the resistance to powdery mildew of the hulless barley. In addition, 330 KEGG pathways were found using BLASTx with an E-value cut-off of <10−5. Among them, three pathways, namely, “photosynthesis,” “plant-pathogen interaction,” and “photosynthesis-antenna proteins” had significant matches in the database. Significant expressions of the three pathways were detected at 24 h, 48 h, and 96 h after infection, respectively. These results indicated a complex process of barley response to powdery mildew infection.

  14. An integrated tool to study MHC region: accurate SNV detection and HLA genes typing in human MHC region using targeted high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Hongzhi Cao

    Full Text Available The major histocompatibility complex (MHC is one of the most variable and gene-dense regions of the human genome. Most studies of the MHC, and associated regions, focus on minor variants and HLA typing, many of which have been demonstrated to be associated with human disease susceptibility and metabolic pathways. However, the detection of variants in the MHC region, and diagnostic HLA typing, still lacks a coherent, standardized, cost effective and high coverage protocol of clinical quality and reliability. In this paper, we presented such a method for the accurate detection of minor variants and HLA types in the human MHC region, using high-throughput, high-coverage sequencing of target regions. A probe set was designed to template upon the 8 annotated human MHC haplotypes, and to encompass the 5 megabases (Mb of the extended MHC region. We deployed our probes upon three, genetically diverse human samples for probe set evaluation, and sequencing data show that ∼97% of the MHC region, and over 99% of the genes in MHC region, are covered with sufficient depth and good evenness. 98% of genotypes called by this capture sequencing prove consistent with established HapMap genotypes. We have concurrently developed a one-step pipeline for calling any HLA type referenced in the IMGT/HLA database from this target capture sequencing data, which shows over 96% typing accuracy when deployed at 4 digital resolution. This cost-effective and highly accurate approach for variant detection and HLA typing in the MHC region may lend further insight into immune-mediated diseases studies, and may find clinical utility in transplantation medicine research. This one-step pipeline is released for general evaluation and use by the scientific community.

  15. Percutaneous vertebroplasty with a high-quality rotational angiographic unit

    Energy Technology Data Exchange (ETDEWEB)

    Pedicelli, Alessandro [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: apedicelli@rm.unicatt.it; Rollo, Massimo [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: mrollo@rm.unicatt.it; Piano, Mariangela [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: mariangela.piano@gmail.com; Re, Thomas J. [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: tomjre@gmail.com; Cipriani, Maria C. [Department of Gerontology, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: alexped@yahoo.com; Colosimo, Cesare [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: colosimo@rm.unicatt.it; Bonomo, Lorenzo [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: lbonomo@rm.unicatt.it

    2009-02-15

    We evaluated the reliability of a rotational angiographic unit (RA) with flat-panel detector as a single technique to guide percutaneous vertebroplasty (PVP) and for post-procedure assessment by 2D and 3D reformatted images. Fifty-five consecutive patients (104 vertebral bodies) were treated under RA fluoroscopy. Rotational acquisitions with 2D and 3D reconstruction were obtained in all patients for immediate post-procedure assessment. In complex cases, this technique was also used to evaluate the needle position during the procedure. All patients underwent CT scan after the procedure. RA and CT findings were compared. In all cases, a safe trans-pedicular access and an accurate control of the bone-cement injection were successfully performed with high-quality fluoroscopy, even at the thoracic levels and in case of vertebra plana. 2D and 3D rotational reconstructions permitted CT-like images that clearly showed needle position and were similar to CT findings in depicting intrasomatic implant-distribution. RA detected 40 cement leakages compared to 42 demonstrated by CT and showed overall 95% sensitivity and 100% specificity compared to CT for final post-procedure assessment. Our preliminary results suggest that high-quality RA is reliable and safe as a single technique for PVP guidance, control and post-procedure assessment. It permits fast and cost-effective procedures avoiding multi-modality imaging.

  16. Computer-aided control of high-quality cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-04-01

    Full Text Available The study discusses the possibility of control of the high-quality grey cast iron and ductile iron using the author’s genuine computer programs. The programs have been developed with the help of algorithms based on statistical relationships that are said to exist between the characteristic parameters of DTA curves and properties, like Rp0,2, Rm, A5 and HB. It has been proved that the spheroidisation and inoculation treatment of cast iron changes in an important way the characteristic parameters of DTA curves, thus enabling a control of these operations as regards their correctness and effectiveness, along with the related changes in microstructure and mechanical properties of cast iron. Moreover, some examples of statistical relationships existing between the typical properties of ductile iron and its control process were given for cases of the melts consistent and inconsistent with the adopted technology.A test stand for control of the high-quality cast iron and respective melts has been schematically depicted.

  17. Automated high speed volume computed tomography for inline quality control

    International Nuclear Information System (INIS)

    Hanke, R.; Kugel, A.; Troup, P.

    2004-01-01

    Increasing complexity of innovative products as well as growing requirements on quality and reliability call for more detailed knowledge about internal structures of manufactured components rather by 100 % inspection than just by sampling test. A first-step solution, like radioscopic inline inspection machines, equipped with automated data evaluation software, have become state of the art in the production floor during the last years. However, these machines provide just ordinary two-dimensional information and deliver no volume data e.g. to evaluate exact position or shape of detected defects. One way to solve this problem is the application of X-ray computed tomography (CT). Compared to the performance of the first generation medical scanners (scanning times of many hours), today, modern Volume CT machines for industrial applications need about 5 minutes for a full object scan depending on the object size. Of course, this is still too long to introduce this powerful method into the inline production quality control. In order to gain acceptance, the scanning time including subsequent data evaluation must be decreased significantly and adapted to the manufacturing cycle times. This presentation demonstrates the new technical set up, reconstruction results and the methods for high-speed volume data evaluation of a new fully automated high-speed CT scanner with cycle times below one minute for an object size of less than 15 cm. This will directly create new opportunities in design and construction of more complex objects. (author)

  18. Production of high quality water for oil sands application

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette-Hodsman, C.; Macleod, B. [Pall Corp., Mississauga, ON (Canada); Venkatadri, R. [Pall Corp., East Hills, NY (United States)

    2008-10-15

    This paper described a pressurized microfiltration membrane system installed at an oil sands extraction site in Alberta. The system was designed to complement a reverse osmosis (RO) system installed at the site to produce the high quality feed water required by the system's boilers. Groundwater in the region exhibited moderate total suspended solids and high alkalinity and hardness levels, and the RO system required feed water with a silt density index of 3 or less. The conventional pretreatment system used at the site was slowing down production due to the severe fouling of the RO membranes. The new microfiltration system contained an automated PVDF holl