WorldWideScience

Sample records for high quality compost

  1. The efficiency of home composting programmes and compost quality.

    Science.gov (United States)

    Vázquez, M A; Soto, M

    2017-06-01

    The efficiency of home composting programmes and the quality of the produced compost was evaluated in eight rural areas carrying out home composting programmes (up to 880 composting bins) for all household biowaste including meat and fish leftovers. Efficiency was analysed in terms of reduction of organic waste collected by the municipal services. An efficiency of 77% on average was obtained, corresponding to a composting rate of 126kg/person·year of biowaste (or 380kg/composter·year). Compost quality was determined for a total of 90 composting bins. The operation of composting bins by users was successful, as indicated by a low C/N ratio (10-15), low inappropriate materials (or physical contaminant materials, mean of 0.27±0.44% dry matter), low heavy metal content (94% of samples met required standards for agricultural use) and high nutrient content (2.1% N, 0.6% P, 2.5% K, 0.7% Mg and 3.7% Ca on average, dry matter). The high moisture (above 70% in 48% of the samples) did not compromise the compost quality. Results of this study show that home composting of household organic waste including meat and fish leftovers is a feasible practice. Home composting helps individuals and families to reduce the amount of household waste at the same time gaining a fertiliser material (compost) of excellent quality for gardens or vegetable plots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Home composting versus industrial composting: influence of composting system on compost quality with focus on compost stability.

    Science.gov (United States)

    Barrena, Raquel; Font, Xavier; Gabarrell, Xavier; Sánchez, Antoni

    2014-07-01

    Stability is one of the most important properties of compost obtained from the organic fraction of municipal solid wastes. This property is essential for the application of compost to land to avoid further field degradation and emissions of odors, among others. In this study, a massive characterization of compost samples from both home producers and industrial facilities is presented. Results are analyzed in terms of chemical and respiration characterizations, the latter representing the stability of the compost. Results are also analyzed in terms of statistical validation. The main conclusion from this work is that home composting, when properly conducted, can achieve excellent levels of stability, whereas industrial compost produced in the studied facilities can also present a high stability, although an important dispersion is found in these composts. The study also highlights the importance of respiration techniques to have a reliable characterization of compost quality, while the chemical characterization does not provide enough information to have a complete picture of a compost sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    Science.gov (United States)

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost.

    Science.gov (United States)

    Gabhane, Jagdish; William, S P M Prince; Bidyadhar, Rajnikant; Bhilawe, Priya; Anand, Duraisamy; Vaidya, Atul N; Wate, Satish R

    2012-06-01

    The effect of various additives such as fly ash, phosphogypsum, jaggery, lime, and polyethylene glycol on green waste composting was investigated through assessing their influence on microbial growth, enzymatic activities, organic matter degradation, bulk density, quality of finished compost including gradation test, heavy metal analysis, etc. A perusal of results showed that addition of jaggery and polyethylene glycol were helpful to facilitate composting process as they significantly influenced the growth of microbes and cellulase activity. The quality of finished compost prepared from jaggery and polyethylene glycol added treatments were superior to other composts, wherein reduction in C/N ratio was more than 8% in jaggery treatment. All other parameters of compost quality including gradation test also favored jaggery and polyethylene glycol as the best additives for green waste composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Composting: Mass Balances and Product Quality

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Christensen, Thomas Højlund; Körner, I.

    2011-01-01

    While the basic processes involved in composting of waste are described in Chapter 9.1 and the main composting technologies are presented in Chapter 9.2, this chapter focuses on mass balances, environmental emissions, unit process inventories and the quality of the compost produced. Understanding...... these issues and being able to account for them is a prerequisite in compost engineering and for establishing and running a successful composting facility. Of specific importance is the final use of the compost product. Use in agriculture is described in Chapter 9.10 and the use of compost in soil amendment...

  6. Biowaste home composting: experimental process monitoring and quality control.

    Science.gov (United States)

    Tatàno, Fabio; Pagliaro, Giacomo; Di Giovanni, Paolo; Floriani, Enrico; Mangani, Filippo

    2015-04-01

    Because home composting is a prevention option in managing biowaste at local levels, the objective of the present study was to contribute to the knowledge of the process evolution and compost quality that can be expected and obtained, respectively, in this decentralized option. In this study, organized as the research portion of a provincial project on home composting in the territory of Pesaro-Urbino (Central Italy), four experimental composters were first initiated and temporally monitored. Second, two small sub-sets of selected provincial composters (directly operated by households involved in the project) underwent quality control on their compost products at two different temporal steps. The monitored experimental composters showed overall decreasing profiles versus composting time for moisture, organic carbon, and C/N, as well as overall increasing profiles for electrical conductivity and total nitrogen, which represented qualitative indications of progress in the process. Comparative evaluations of the monitored experimental composters also suggested some interactions in home composting, i.e., high C/N ratios limiting organic matter decomposition rates and final humification levels; high moisture contents restricting the internal temperature regime; nearly horizontal phosphorus and potassium evolutions contributing to limit the rates of increase in electrical conductivity; and prolonged biowaste additions contributing to limit the rate of decrease in moisture. The measures of parametric data variability in the two sub-sets of controlled provincial composters showed decreased variability in moisture, organic carbon, and C/N from the seventh to fifteenth month of home composting, as well as increased variability in electrical conductivity, total nitrogen, and humification rate, which could be considered compatible with the respective nature of decreasing and increasing parameters during composting. The modeled parametric kinetics in the monitored experimental

  7. Evaluation of Composting and the Quality of Compost from the ...

    African Journals Online (AJOL)

    The aerobic composting potential and quality of Source Separated Municipal Solid Waste (SSMSW) was studied using four different treatments for over 80 days. Four different types of treatments using different inoculums were used for the composting of source separated municipal solid waste. The phytotoxicity tests of the ...

  8. End-product quality of composts produced under tropical and temperate climates using different raw materials: A meta-analysis.

    Science.gov (United States)

    Faverial, Julie; Boval, Maryline; Sierra, Jorge; Sauvant, Daniel

    2016-12-01

    A meta-analysis on end-product quality of 442 composts was performed to assess the effects of climate and raw materials on compost quality. The analysis was performed using an ANOVA including a mixed model with nested factors (climate, raw material and publication effect). Tropical composts presented lower carbon, nitrogen, potassium and soluble-carbon contents, and higher electrical conductivity. The results suggest that compost quality in the tropics was affected by weather conditions during composting (e.g. high temperature and rainfall), which induced high losses of carbon and nutrients. For most properties, industrial, sewage sludge and manure-based composts displayed the highest quality under both climates, while the contrary was found for household and municipal solid waste-based composts. The publication effect represented >50% of total variance, which was mainly due to the heterogeneity of the composting procedures. The meta-analysis was found to be a helpful tool to analyse the imbalanced worldwide database on compost quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. High rate composting of herbal pharmaceutical industry solid waste.

    Science.gov (United States)

    Ali, M; Duba, K S; Kalamdhad, A S; Bhatia, A; Khursheed, A; Kazmi, A A; Ahmed, N

    2012-01-01

    High rate composting studies of hard to degrade herbal wastes were conducted in a 3.5 m(3) capacity rotary drum composter. Studies were spread out in four trials: In trial 1 and 2, one and two turns per day rotation was observed, respectively, by mixing of herbal industry waste with cattle (buffalo) manure at a ratio of 3:1 on wet weight basis. In trial 3 inocula was added in raw waste to enhance the degradation and in trial 4 composting of a mixture of vegetable market waste and herbal waste was conducted at one turn per day. Results demonstrated that the operation of the rotary drum at one turn a day (trial 1) could provide the most conducive composting conditions and co-composting (trial 4) gave better quality compost in terms of temperature, moisture, nitrogen, and Solvita maturity index. In addition a FT-IR study also revealed that trial 1 and trial 4 gave quality compost in terms of stability and maturity due to the presence of more intense peaks in the aromatic region and less intense peaks were found in the aliphatic region compared with trial 2 and trial 3.

  10. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality.

    Science.gov (United States)

    Unmar, G; Mohee, R

    2008-10-01

    An assessment of the effect of the composting potential of Mater-Bi biodegradable plastic with green wastes, noted by GBIO, and degradable plastic (PDQ-H additive) with green wastes, noted by GDEG, was carried out in a lagged two-compartment compost reactor. The composting time was determined until constant mass of the composting substrates was reached. The green wastes composting process was used as control (G). After one week of composting, the biodegradable plastics disappeared completely, while 2% of the original degradable plastic still remained after about 8 weeks of composting. A net reduction in volatile solids contents of 61.8%, 56.5% and 53.2% were obtained for G, GBIO and GDEG, respectively. Compost quality was assessed in terms of nitrogen, potassium and phosphorus contents, which were found to be highest for GBIO compost. From the phytotoxicity test, it has been observed that a diluted extract of GBIO compost has produced the longest length of radicle. From the respiration test, no significant difference in the amount of carbon dioxide released by the composting of GDEG and G was observed. This study showed that the quality of the compost is not affected by the presence of the biodegradable and degradable plastics in the raw materials.

  11. Improving quality of composted biowaste to enhance disease suppressiveness of compost-amended, peat-based potting mixes

    NARCIS (Netherlands)

    Veeken, A.H.M.; Blok, W.J.; Curci, F.; Coenen, G.C.M.; Termorshuizen, A.J.; Hamelers, H.V.M.

    2005-01-01

    Biowaste can be converted into compost by composting or by a combination of anaerobic digestion and composting. Currently, waste management systems are primarily focused on the increase of the turnover rate of waste streams whereas optimisation of product quality receives less attention. This

  12. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality

    Science.gov (United States)

    2013-01-01

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P compost without EM. Although the Fe in compost with EM is much higher (P compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction. PMID:23390930

  13. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality.

    Science.gov (United States)

    Jusoh, Mohd Lokman Che; Manaf, Latifah Abd; Latiff, Puziah Abdul

    2013-02-07

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P compost without EM. Although the Fe in compost with EM is much higher (P compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction.

  14. Multivariate Analysis of the Determinants of the End-Product Quality of Manure-Based Composts and Vermicomposts Using Bayesian Network Modelling.

    Directory of Open Access Journals (Sweden)

    Julie Faverial

    Full Text Available Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement.

  15. Multivariate Analysis of the Determinants of the End-Product Quality of Manure-Based Composts and Vermicomposts Using Bayesian Network Modelling.

    Science.gov (United States)

    Faverial, Julie; Cornet, Denis; Paul, Jacky; Sierra, Jorge

    2016-01-01

    Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement.

  16. Soil bioassays as tools for sludge compost quality assessment

    International Nuclear Information System (INIS)

    Domene, Xavier; Sola, Laura; Ramirez, Wilson; Alcaniz, Josep M.; Andres, Pilar

    2011-01-01

    Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.

  17. Effect of spent mushroom substrate as a bulking agent on gaseous emissions and compost quality during pig manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Danyang; Li, Jijin; Li, Yangyang; Li, Guoxue; Zang, Bing; Li, Yun

    2018-05-01

    The aim of this study was to investigate the gaseous emissions (CH 4 , N 2 O, and NH 3 ) and compost quality during the pig manure composting by adding spent mushroom substrate (SMS) as a bulking agent. The control treatment was also studied using corn stalk (CS) as a bulking agent. The experiment was conducted in a pilot scale composting reactor under aerobic condition with the initial C/N ratio of 20. Results showed that bulking agents significantly affected gaseous emissions and compost quality. Using SMS as a bulking agent improved composting efficiency by shortening the time for maturity. SMS increased germination index and humic acid of the final compost (by 13.44 and 41.94%, respectively) compared with CS. Furthermore, composting with SMS as a bulking agent could reduce nitrogen loss, NH 3 , and N 2 O emissions (by 13.57, 35.56, and 46.48%, respectively) compared with the control. SMS slightly increased CH 4 emission about 1.1 times of the CS. However, a 33.95% decrease in the global warming potential of CH 4 and N 2 O was obtained by adding SMS treatment. These results indicate that SMS is a favorable bulking agent for reducing gaseous emissions and increasing compost quality.

  18. Survey the environmental effects of the household batteries on decreasing of compost quality

    International Nuclear Information System (INIS)

    Davari, A.; Sharifan, Hamid Reza

    2008-01-01

    The household batteries consisted the heavy metals are one of the important pollutant for Environment. whereas Iran has no environmental policy for them and without environmental planning they input to urban waste solid so this study has surveyed effect of the household batteries in urban waste solid to decreasing of compost quality that produced in Karaj composting. For this research has sampled of compost production then analyzed for assess the heavy metal. In the laboratory the samples were grind then hair sieve to convert them to similar pieces. For the measuring metal concentration first they should be extract and finally measure by adsorption atomic spectroscope. The result show high concentration of heavy metal such as Ni, Cd, Zn, Hg, etc. that there were in produced compost. So major cause of law quality of this compost refer to concentration of heavy metals. Findings were in contrary to standard concentration for agriculture soil. It's obvious the heavy metals concentration depend to quantity of consumption the kinds of batteries

  19. Effect Various Combination of Organic Waste on Compost Quality

    Directory of Open Access Journals (Sweden)

    Hapsoh

    2015-01-01

    Full Text Available Municipal solid waste and agricultural waste have different ratio C/N and nutrients contents. They can be used as compost row materials. The purpose of the research was to get an optimum combination of both wastes to improve compost quality, to meet the Indonesian National Standard 19-7030-2004. Composting process use pots. The treatments were twelve combination of municipal solid waste (garbage market, household waste, restaurant waste and agricultural waste (rice straw, empty fruit bunches of oil palm, cassava peel, banana skin with a ratio of 1:1 and enriche by chicken manure, cow manure, wood ash and cellulolytic microorganisme. The treatment were replicated three times. The results showd that the nutrients content of compost were 0.77 to 1.19% nitrogen, 0.23 to 0.30% phosphorus, 0.46 to 0.69% potassium and 15.48 to 34.69% organic matter. The combination of agricultural waste and municipal solid waste affected the quality of compost. Compost that meets SNI 19-7030-2004 is a combination of rice straw+market waste that contains 1.12% nitrogen, 0.28% phosphorus, 0.63% potassium, ratio C/N 19.50, pH 7.42, and organic matters 37.65%.

  20. Utilization of high temperature compost in space agriculture: the model compost kills Escherichia coli

    Science.gov (United States)

    Oshima, Tairo; Moriya, Toshiyuki; Yoshii, Takahiro

    The author and his colleagues have proposed the use of high temperature composting in space inhabitation. Composting has many advantages over burning in organic waste treatments. Composting is self-heating processes and needs no extra fuel. Composting requires no sophis-ticated equipment such as an incinerator. Composting emits no hazardous gases such as NOx, SOx and dioxines which are often produced by burning. The final product can be used as fer-tilizer in space farm land; resources recycling society can be constructed in space stations and space cities. In addition to these advantages, composting and compost soil may contribute to the environmental cleanup. During composting processes, harmful compounds to agricultural plants and animals can be destroyed. Seeds of weeds can be killed by high heat. Likewise pathogenic microbes in the waste can be eliminated during fermentation inside the composts. Recently we measured the survivability of E. coli in compost. E. coli was used as the represen-tative of the Gram-negative bacteria. Since many pathogenic strains belong to Gram-negative bacteria and Gram-negative bacteria are more resistant to antibiotics than gram-positive bac-teria. When E. coli cells were mixed in the compost pile of which inside temperature reaches up to 75oC, they died within a short period as expected. However, E. coli DNA was detected even after a day in high temperature compost. RNA has a shorter life-span than DNA, but was detected after incubation in compost for several hours. In addition to sterilizing effects due to high temperature, we found our compost soil has E. coli killing activity. When mixed with the compost soil at room temperature, E. coli died gradually. Extract of the compost soil also killed E. coli at room temperature, but it took a few days to eliminate E. coli completely. During the killing process, total number of living bacteria did not change, indicating that the killing activity is limited to some specific

  1. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake.

    Science.gov (United States)

    Vandecasteele, Bart; Sinicco, Tania; D'Hose, Tommy; Vanden Nest, Thijs; Mondini, Claudio

    2016-03-01

    We investigated the use of biochar (10% on a dry weight basis) to improve the composting process and/or the compost quality by adding it to either the feedstock mixture or the mature compost. The addition of biochar to the feedstocks was essayed in a full scale trial using a mixture of green waste and the organic fraction of municipal solid waste. Addition of biochar to mature compost was performed in a medium scale experiment. The use of biochar, even in small amounts, changed the composting process and the properties of the end products. However these effects depended on the time of application. We observed a faster decomposition in the bio-oxidative phase and lower greenhouse gas emissions when biochar was added at the beginning of the composting process, and a reduction in readily available P when biochar was applied during compost storage. Biochar as a means to increase the C content of the compost was only effective during compost storage. The P fertilizer replacement value of the compost with and without biochar was tested in a plant trial with annual ryegrass. While there was a clear effect on readily available P concentrations in the compost, adding biochar to the feedstock or the compost did not affect the P fertilizer replacement value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Quality of compost from composting plant in Puerto Real (Cadiz, Spain); Calidad del compost procedente de la planta de compostaje de Puerto Real (Cadiz)

    Energy Technology Data Exchange (ETDEWEB)

    Godillo Romero, M. D.; Quiroga Alonso, J. M.; Garrido Perez, C.; Rodriguez Barros, R.; Sales Marquez, D. [Universidad de Cadiz (Spain)

    2000-07-01

    The compost taken from the Compost Plant, treating urban solid residues from the Consorcio Bahia de Cadiz in the municipal district of Puerto Real, Cadiz, has been analysed for its particular qualities over the years 1990-1996. With this in mind we have determined the most important of parameters with a view to defining the quality of this organic fertilizer extracted from urban solid residues (USR): pH, conductivity, rejection through net meshing, humidity, organic matter, carbon, nitrogen, C/N relationship, cadmium, copper, nickel, lead, tin, zinc and mercury. The compost gathered complies with the established legal requisites concerning fertilizers and their related substances. The quality in the first years of this study is better due possibly to the construction of the bio-recycling plant leaving the latter as a holding plant. (Author)

  3. Amending a loamy sand with three compost types: impact on soil quality

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.M.; Vermang, J.

    2011-01-01

    indicators of soil physical quality. Soil samples were taken from a field with annual compost applications of 30 m3/ha for 10 yr and various physico-chemical analyses were undertaken. Results show a significant increase in soil organic carbon (21%) with the VFYW and GW compost types. With SM, soil organic...... carbon increased by 16%. Increased soil macroporosity and water content at saturation with a corresponding decrease in bulk density were observed for all compost types. However, quantification of these improvements using existing soil physical quality indicators such as the ‘S-index’, soil air capacity...... are a viable disposal option for these composts, but new indices of quality are needed for the proper characterization of sandy soils....

  4. Concept for quality management to secure benefits of compost use for soil and plants

    OpenAIRE

    Fuchs, J.G.; Berner, A.; Mayer, J.; Schleiss, K.

    2014-01-01

    Use of quality compost can have an important positive impact on soil fertility and plant growth and health. For example, it increases soil humus and improves soil structure and suppressivity towards plant diseases. To obtain these positive results, it is important that the compost quality is appropriate for each use. If used inadequately, the impact of compost can also be negative. The compost producer should be responsible for the quality of his products, and has to communicate the propertie...

  5. Meat waste as feedstock for home composting: Effects on the process and quality of compost.

    Science.gov (United States)

    Storino, Francesco; Arizmendiarrieta, Joseba S; Irigoyen, Ignacio; Muro, Julio; Aparicio-Tejo, Pedro M

    2016-10-01

    Home composting is a powerful tool, which is spreading in different parts of the world, to reduce the generation of municipal waste. However, there is debate concerning the appropriateness, in terms of domestic hygiene and safety, of keeping a composter bin in the household deputed to kitchen waste of animal origin, such as meat or fish scraps and pet droppings. The purpose of our work was to study how the addition of meat scraps to household waste influences the composting process and the quality of the final compost obtained. We compared four raw material mixtures, characterized by a different combination of vegetable and meat waste and different ratios of woody bulking agent. Changes in temperature, mass and volume, phenotypic microbial diversity (by Biolog™) and organic matter humification were determined during the process. At the end of the experiment, the four composts were weighed and characterized by physicochemical analysis. In addition, the presence of viable weed seeds was investigated and a germination bioassay was carried out to determine the level of phytotoxicity. Finally, the levels of pathogens (Escherichia coli and Salmonella spp.) were also determined in the final compost. Here we show that the presence of meat waste as raw feedstock for composting in bins can improve the activity of the process, the physicochemical characteristics and maturity of the compost obtained, without significantly affecting its salinity, pH and phytotoxicity. Pathogen levels were low, showing that they can be controlled by an intensive management and proper handling of the composter bins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Quality assessment of compost prepared with municipal solid waste

    Directory of Open Access Journals (Sweden)

    Jodar J. R.

    2017-11-01

    Full Text Available One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  7. Quality assessment of compost prepared with municipal solid waste

    Science.gov (United States)

    Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.

    2017-11-01

    One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  8. Heavy metal content in compost and earthworms from home composters

    Directory of Open Access Journals (Sweden)

    Bożym Marta

    2017-12-01

    Full Text Available The paper presents the results of compost tests from home composters and earthworms living there, that treating waste into compost. The samples were taken from home composters and allotment gardens from Opole Region. The composting material was green waste. The total content of heavy metals (Cd, Pb, Cu, Zn, Ni Cr in compost and compost earthworms’ samples were determined. It was found that the compost samples were not contaminated with heavy metals. According to the Polish classification of composts from municipal wastes, the composts met the requirements for first class of quality. The composts did not exceed the limits of heavy metals specified in the Polish law for solid organic fertilizers. The degree of metal accumulation by compost earthworms depended on the type of metal. The high value of the bioaccumulation factor (BAF was obtained for Cd, Pb and Zn. No accumulation of other metals (Ni, Cr, Cu in earthworm bodies was found. It has been found that earthworm species, naturally occurring in Poland, can also be used as potential bioindicators of metals in the environment, such as the species Eisenia fetida. The aim of the study was to evaluate the heavy metal content in composts from home composters and ability to accumulate metals by compost earthworms.

  9. Quality evaluation of compost produced from agro-industrialbyproducts of sugar cane

    Directory of Open Access Journals (Sweden)

    Alexander Bohórquez

    2014-01-01

    Full Text Available Fresh by products of the sugar industry (sugarcane sludge, bagasse and vinasse incorporated into the soil generate a negative impact on plants. Therefore, compost is an alternative solution to the use of sugarcane byproducts, which must meet the requirements of the Colombian technical standard 5167 for use as biofertilizer. This study aimed to evaluate the quality of compost made from different combinations of products of the milling process of sugar cane (Saccharum officinarum L.. Composting piles were established in the Ingenio Riopaila-Castilla, Valle del Cauca, Colombia, using a complete randomized block design with five treatments and four replications. 100% sugarcane sludge (T1, 75% sugarcane sludge and 25% bagasse (T2, 50% bagasse and 50% sugarcane sludge (T3, 25% sugarcane sludge and 75% bagasse (T4 and 100% bagasse (T5, all supplemented with 2 m3 of vinasse. The response variables: pH, electrical conductivity, moisture, ash, organic matter, moisture retention, the carbon-nitrogen ratio, the total oxidizable organic carbon, total nitrogen, phosphorus, calcium, magnesium, potassium, iron, copper, manganese and zinc, were evaluated at the time when the initial compost piles were prepared, and the 42, 51, 59, 73 and 90 days after beginning the process. The results showed that the carbon-nitrogen mixtures initial ratio is critical for obtaining a good quality of compost. The T3 provided the best quality with the highest content of nutrients. The composting time ensuring adequate maturation levels for nutrients in the compost was 90 days.

  10. POTENTIAL APPLICATIONS OF BIOCHAR FOR COMPOSTING

    Directory of Open Access Journals (Sweden)

    Krystyna Malińska

    2014-10-01

    for composting of materials with high moisture and/or nitrogen contents. The addition of biochar to composting mixtures can reduce ammonia emissions, and thus limit nitrogen losses during composting, increase water holding capacity and retention of nutrients. Biochar can also function as a carrier substrate for microbial inoculants and a scrubing material used in biofilters at composting facilities. Due to the fact that the literature does not provide many examples of biochar applications for composting, and there is little known about the effects of biochar added to composting mixtures on composting dynamics and properties of final composts, futher investigations should focus on mechanisms of biochar-composting mixtures interactions and analysis of properties of biochar-based composts. The overall goal of the article is to analyze the potentials of biochars for composting, to report the effects of various biochars on composting dynamics and quality of produced biochar-based composts, and to indicate the areas of further studies on biochar properties that would allow optimization of composting and improve the quality of final products.

  11. Effect of compost on antioxidant components and fruit quality of sweet pepper (capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Mohammad AMINIFARD

    2013-06-01

    Full Text Available In order to determine the effect of compost (CO on antioxidant compounds and fruit quality of sweet pepper (Capsicum annum L., an experiment was conducted in open field. Treatments consisted of four levels of compost (0, 5, 10 and 15 ton ha-1.The experiment was designed in randomized block design with three replications. Compost treatments positively affected fruit antioxidant compounds of pepper (antioxidant activity, total phenolic and carbohydrate content.But, no significant difference was found in total flavonoid content between compost and control treatments. The highest antioxidant activity and carbohydrate content were obtained in plants treated with10 ton ha-1 of compost. Fruit quality factors (pH, total soluble solids, titratable acidity, ascorbic acid and fruit firmness were influenced by compost treatments. Total soluble solids, and fruit firmness significantly increased in response to compost treatments and the highest values were obtained from the most level of compost treatment (15 t ha-1. Thus, these results showed that compost has strong impact on fruit quality and antioxidant compounds of pepper plants under field conditions.

  12. Impacts of delayed addition of N-rich and acidic substrates on nitrogen loss and compost quality during pig manure composting.

    Science.gov (United States)

    Jiang, Jishao; Kang, Kang; Chen, Dan; Liu, Ningning

    2018-02-01

    Delayed addition of Nitrogen (N)-rich and acidic substrates was investigated to evaluate its effects on N loss and compost quality during the composting process. Three different delayed adding methods of N-rich (pig manure) and acidic substrates (phosphate fertilizer and rotten apples) were tested during the pig manure and wheat straw is composting. The results showed that delayed addition of pig manure and acidic materials led two temperature peaks, and the durations of two separate thermophilic phase were closely related to the amount of pig manure. Delayed addition reduced total N loss by up to 14% when using superphosphate as acidic substrates, and by up to 12% when using rotten apples as acidic substrates, which is mainly due to the decreased NH 3 emissions. At the end of composting, delayed the addition of pig manure caused a significant increase in the HS (humus substance) content, and the highest HS content was observed when 70% of the pig manure was applied at day 0 and the remaining 30% was applied on day 27. In the final compost, the GI in all treatments almost reached the maturity requirement by exceeding 80%. The results suggest that delayed addition of animal manure and acidic substrates could prevent the N loss during composting and improve the compost quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties.

    Science.gov (United States)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO2 kg V S(-1)h(-1). Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS (13)C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Co-composting of high-moisture vegetable waste and flower waste in a batch operation].

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-09-01

    Co-composting of different mixture made of vegetable waste and flower waste were studied. The first stage of composting was aerobic static bed based temperature feedback in a batch operation and control via aeration rate regulation. The second stage was window composting. The total composting period was 45 days. About the station of half of celery and half of carnation, the pile was insulated and temperatures of at least 55 degrees C were maintained for about 11 days. The highest temperature was up to 65 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 64.2% to 46.3% and organic matter was degraded from 74.7% to 55.6% during composting. The value of pH was had stable at 7. Analysis of maturity and nutrition of compost show that end-products of composting were bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste and flower waste can get high quality compost by optimizing composting process during 45 days. Composting can decrease non-point resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  15. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    Energy Technology Data Exchange (ETDEWEB)

    Tambone, Fulvia, E-mail: fulvia.tambone@unimi.it; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-15

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  16. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    International Nuclear Information System (INIS)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO 2 kg V S −1 h −1 . Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS 13 C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  17. A systematic review on the composting of green waste: Feedstock quality and optimization strategies.

    Science.gov (United States)

    Reyes-Torres, M; Oviedo-Ocaña, E R; Dominguez, I; Komilis, D; Sánchez, A

    2018-04-27

    Green waste (GW) is an important fraction of municipal solid waste (MSW). The composting of lignocellulosic GW is challenging due to its low decomposition rate. Recently, an increasing number of studies that include strategies to optimize GW composting appeared in the literature. This literature review focuses on the physicochemical quality of GW and on the effect of strategies used to improve the process and product quality. A systematic search was carried out, using keywords, and 447 papers published between 2002 and 2018 were identified. After a screening process, 41 papers addressing feedstock quality and 32 papers on optimization strategies were selected to be reviewed and analyzed in detail. The GW composition is highly variable due to the diversity of the source materials, the type of vegetation, and climatic conditions. This variability limits a strict categorization of the GW physicochemical characteristics. However, this research established that the predominant features of GW are a C/N ratio higher than 25, a deficit in important nutrients, namely nitrogen (0.5-1.5% db), phosphorous (0.1-0.2% db) and potassium (0.4-0.8% db) and a high content of recalcitrant organic compounds (e.g. lignin). The promising strategies to improve composting of GW were: i) GW particle size reduction (e.g. shredding and separation of GW fractions); ii) addition of energy amendments (e.g. non-refined sugar, phosphate rock, food waste, volatile ashes), bulking materials (e.g. biocarbon, wood chips), or microbial inoculum (e.g. fungal consortia); and iii) variations in operating parameters (aeration, temperature, and two-phase composting). These alternatives have successfully led to the reduction of process length and have managed to transform recalcitrant substances to a high-quality end-product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. [Co-composting of high moisture vegetable waste, flower waste and chicken litter in pilot scale].

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng; Qiu, Xiangyang

    2003-03-01

    Co-composting of different mixture made of vegetable waste, flower waste and chicken litter were studied. The first stage of composting was aerobic static bed based temperature feedback and control via aeration rate regulation. The second stage was window composting. At first stage, the pile was insulated and temperatures of at least 55 degrees C were maintained for a minimum of 3 days. The highest temperature was up to 73.3 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 75% to 56% and organic matter was degraded from 65% to 50% during composting. The value of pH was stable at 8. Analysis of maturity and nutrition of compost showed that end-products of composting ware bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste, flower waste and chicken litter can get high quality compost by optimizing composting process during 45 days. Composting can decrease nonpoint resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  19. Opportunities and barriers to on-farm composting and compost application: A case study from northwestern Europe.

    Science.gov (United States)

    Viaene, J; Van Lancker, J; Vandecasteele, B; Willekens, K; Bijttebier, J; Ruysschaert, G; De Neve, S; Reubens, B

    2016-02-01

    Maintaining and increasing soil quality and fertility in a sustainable way is an important challenge for modern agriculture. The burgeoning bioeconomy is likely to put further pressure on soil resources unless they are managed carefully. Compost has the potential to be an effective soil improver because of its multiple beneficial effects on soil quality. Additionally, it fits within the bioeconomy vision because it can valorize biomass from prior biomass processing or valorize biomass unsuitable for other processes. However, compost is rarely used in intensive agriculture, especially in regions with high manure surpluses. The aim of this research is to identify the barriers to on-farm composting and the application of compost in agriculture, using a mixed method approach for the case of Flanders. The significance of the 28 identified barriers is analyzed and they are categorized as market and financial, policy and institutional, scientific and technological and informational and behavioral barriers. More specifically, the shortage of woody biomass, strict regulation, considerable financial and time investment, and lack of experience and knowledge are hindering on-farm composting. The complex regulation, manure surplus, variable availability and transport of compost, and variable compost quality and composition are barriers to apply compost. In conclusion, five recommendations are suggested that could alleviate certain hindering factors and thus increase attractiveness of compost use in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Compost improves urban soil and water quality

    Science.gov (United States)

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  1. Effect of commercial mineral-based additives on composting and compost quality.

    Science.gov (United States)

    Himanen, M; Hänninen, K

    2009-08-01

    The effectiveness of two commercial additives meant to improve the composting process was studied in a laboratory-scale experiment. Improver A (sulphates and oxides of iron, magnesium, manganese, and zinc mixed with clay) and B (mixture of calcium hydroxide, peroxide, and oxide) were added to source-separated biowaste:peat mixture (1:1, v/v) in proportions recommended by the producers. The composting process (T, emissions of CO(2), NH(3), and CH(4)) and the quality of the compost (pH, conductivity, C/N ratio, water-soluble NH(4)-N and NO(3)-N, water- and NaOH-soluble low-weight carboxylic acids, nutrients, heavy metals and phytotoxicity to Lepidium sarivum) were monitored during one year. Compared with the control, the addition of improver B increased pH by two units, led to an earlier elimination of water-soluble ammonia, an increase in nitrates, a 10-fold increase in concentrations of acetic acid, and shortened phytotoxicity period by half; as negative aspect it led to volatilization of ammonia. The addition of improver A led to a longer thermophilic stage by one week and lower concentrations of low-weight carboxylic acids (both water- and NaOH-extractable) with formic and acetic of similar amounts, however, most of the aspects claimed by the improver's producer were not confirmed in this trial.

  2. Freshwater quality of a stream in agricultural area where organic compost from animal and vegetable wastes is used

    Directory of Open Access Journals (Sweden)

    Luciana Maria Saran

    Full Text Available ABSTRACT Organic compost from biomass residues constitutes a viable alternative for partial or total replacement of mineral fertilizers for growing vegetables. This study evaluated the effects of compost on the water quality of a stream used mainly for irrigation of agricultural crops cultivated in nearby soil that has been treated with organic compost produced by carcasses, animal and vegetable waste for the last ten years. We sampled water biannually for two years, 2013 and 2014, from five locations along the stream. Physical variables and some chemical variables were analyzed. We also analyzed the total number of coliforms (Escherichia coli. Bacterial populations were compared by carbon substrate consumption. Total phosphorus contents in the samples from 2014 exceeded 0.1 mg L-1. The concentrations of other chemical species analyzed and the results for the physical variables were in accordance with the expected values compared with national and international water quality standards. The environment showed differential carbon source consumption and a high diversity of microorganisms, but our results did not show any evidence that the applied compost is changing the microbial population or its metabolic activity. This study shows that the use of the organic compost in agricultural areas seen does not negatively influence the quality of surface water in the study area. These results are important because the process of composting animal and vegetable waste and the use of compost obtained can be an alternative sustainable for adequate destination of these wastes.

  3. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study.

    Science.gov (United States)

    Hu, Weitong; Zheng, Guanyu; Fang, Di; Cui, Chunhong; Liang, Jianru; Zhou, Lixiang

    2015-10-01

    Sludge bioleaching technology with Acidithiobacillus species has been commercially adopted for improving advanced dewatering of sludge in China since 2010. However, up to now, little information on bioleached dewatered sludge (BS) composting is available. Here, we report the changes of physicochemical and biological properties in BS composting and evaluate compost product quality compared to conventional dewatered sludge (CS) composting in an engineering scale composting facility. The results showed that the amount of bulking agents required in BS composting was only about 10% of CS composting to obtain optimum moisture content, reducing about 700 kg bulking agents per ton fresh sludge. pH of BS composting mixture was slightly lower consistently by about 0.2-0.3 pH units than that in CS mixture in the first 30 days. Organic matter biodegradation in BS system mainly occurred in the first 9 days of composting. In spite of higher content of NH4(+)-N was found in BS mixture in related to CS mixture; unexpectedly the cumulative ammonia volatilization in the former was only 51% of the latter, indicating that BS composting drastically reduced nitrogen loss. Compared to CS composting system, the relative lower pH, the higher intensity of microbial assimilation, and the presence of water soluble Fe in BS system might jointly reduce ammonia volatilization. Consequently, BS compost product exhibited higher fertilizer values (N+P2O5+K2O=8.38%) as well as lower heavy metal levels due to the solubilization of sludge-borne heavy metals during bioleaching process. Therefore, composting of BS possesses more advantages over the CS composting process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Current Approaches and Future Trends in Compost Quality Criteria for Agronomic, Environmental, and Human Health Benefits

    DEFF Research Database (Denmark)

    Bernal, Maria Pilar; Sommer, Sven G.; Chadwick, Dave

    2017-01-01

    destination, which includes agriculture, horticulture, and urban landscaping. The development of a market for compost greatly depends on the definition and adoption of quality standards. Several countries and public and private organizations have established quality standards for compost, where certain......Organic wastes are composted to stabilize organic matter, reduce the moisture content, increase the concentrations of plant nutrients, eliminate pathogens and weed seeds, develop disease suppressiveness, and reduce greenhouse gas emissions. The requirements for compost quality depend on its final...... properties are prioritized and different limits are established according to the end use. However, there is a need to harmonize such criteria at the international level. Also, if the process of composting is not managed properly, then it can result in excessive emissions of ammonia (NH3), nitrous oxide (N2O...

  5. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    D'Imporzano, Giuliana; Crivelli, Fernando; Adani, Fabrizio

    2008-01-01

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O 2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O 2 concentration in the biomass free air space (FAS) was kept optimal (O 2 > 140 ml l -1 , v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O 2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O 2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R 2 = 0.991; R 2 CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  6. Effect of organic waste compost on the crop productivity and soil quality

    Science.gov (United States)

    Astover, Alar; Toomsoo, Avo; Teesalu, Triin; Rossner, Helis; Kriipsalu, Mait

    2017-04-01

    Sustainable use of fertilizers is important for maintaining balanced nutrient cycling in agro-ecosystem, soil quality and crop productivity. Considering the high costs and energy demand of mineral fertilizers, it is increasingly important to use more alternative nutrient sources such composts. Nutrient release from organic fertilizers is slower compared to mineral fertilizers and thus their effects need to be evaluated over longer time periods. There is lack of knowledge on the residual effects of organic fertilizers, especially in Nordic climatic conditions. Residual effect of organic fertilizers is in most cases studied with animal manures, but even rare are studies with non-manure based composts. The aim of current study was to evaluate first year direct effect and residual effect of waste compost on the crop productivity and selected soil parameters. Crop rotation field experiment to reveal direct effect of compost to the spring barley yield and residual effect to potato and spring wheat yield was conducted in Tartu, Estonia on pseodopodzolic soil with low humus concentration (food and green waste, and category III animal by-products; and composted in aerated covered static piles for 6 weeks and after that matured in open windows for minimum six months. Compost was applied to soil with ploughing in autumn before spring barley growing season (in years 2012-2014). Compost was applied in three norms according to total N (200, 275 and 350 kg/ha). In addition there was unfertilized control plot and all experimental variants were in three replication with plot size 50 m2. First year effect of compost increased barley yield by 40-50%, first year residual effect resulted in increase of potato yield by 19-30% and second year residual effect to wheat yield was in range from 8 to 17%. First year residual effect to the potato yield was significant (F=8.9; pstatistically non-significant (F=3.2; p=0.07). Residual effect of compost is decreasing year-by-year as expected. In

  7. Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality.

    Science.gov (United States)

    Soares, Micaela A R; Quina, Margarida M J; Quinta-Ferreira, Rosa M

    2013-11-01

    Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporation of 30% (w/w) ES in a composting mixture did not affect mixture biodegradability, nor its capacity to reach sanitizing temperatures. After 25 days of composting, ES addition caused a nitrogen loss of about 10 g N kg(-1) of initial volatile solids, thus reducing nitrogen nutritional potential of the finished compost. This study showed that a composting mixture with a significant proportion of ES (30% w/w) may be converted into calcium-rich marketable compost to neutralize soil acidity and/or calcium deficiencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparing composts formed by different technological processing

    Science.gov (United States)

    Lyckova, B.; Mudrunka, J.; Kucerova, R.; Glogarova, V.

    2017-10-01

    The presented article compares quality of composts which were formed by different technological processes. The subject to comparison was a compost which was created in a closed fermenter where ideal conditions for decomposition and organic substances conversion were ensured, with compost which was produced in an open box of community composting. The created composts were analysed to determine whether it is more important for the final compost to comply with the composting conditions or better sorting of raw materials needed for compost production. The results of the carried out experiments showed that quality of the resulting compost cannot be determined unequivocally.

  9. Characterization of composting mixtures and compost of rabbit by-products to obtain a quality product and plant proposal for industrial production.

    Science.gov (United States)

    Bianchi, Biagio; Papajova, Ingrid; Tamborrino, Rosanna; Ventrella, Domenico; Vitti, Carolina

    2015-01-01

    In this study we have observed the effects of using rabbit manure and slaughtering by-products in a composting process. Three piles of this material, 4700 kg each, with different amount and C/N ratio, have been investigated and experimental tests were carried out in an industrial horizontal axe reactor using a prototype of turning machine. The composting time lasted 85 days; 2 experimental cycles were conducted: one in Winter and one in Summer. In the Winter test, mesophilic reaction started only in the control mixture (animal manure + slaughtering by-products without straw). It is noteworthy that, the 3 investigated mixtures produced soil amendment by compost with good agronomical potential but with parameters close to the extreme limits of the law. In the Summer test, there was thermophilic fermentation in all mixtures and a better quality compost was obtained, meeting all the agronomic and legislative constraints. For each pile, we examined the progression of fermentation process and thus the plant limitations that did not allow a correct composting process. The results obtained in this study are useful for the development of appropriate mixtures, machines, and plants assuring continuance and reliability in the composting of the biomass coming from rabbit industry.

  10. Heat inactivation of Salmonella spp. in fresh poultry compost by simulating early phase of composting process.

    Science.gov (United States)

    Singh, R; Kim, J; Jiang, X

    2012-05-01

    The purpose of this study was to determine the effect of moisture on thermal inactivation of Salmonella spp. in poultry litter under optimal composting conditions. Thermal inactivation of Salmonella was studied in fresh poultry compost by simulating early phase of composting process. A mixture of three Salmonella serotypes grown in Tryptic soy broth with rifampin (TSB-R) was inoculated in fresh compost with 40 or 50% moisture at a final concentration of c. 7 log CFU g(-1). The inoculated compost was kept in an environmental chamber which was programmed to rise from room temperature to target composting temperatures in 2 days. In poultry compost with optimal moisture content (50%), Salmonella spp. survived for 96, 72 and 24 h at 50, 55 and 60°C, respectively, as compared with 264, 144 and 72 h at 50, 55 and 60°C, respectively, in compost with suboptimal moisture (40%). Pathogen decline was faster during the come-up time owing to higher ammonia volatilization. Our results demonstrated that Salmonella spp. survived longer in fresh poultry compost with suboptimal moisture of 40% than in compost with optimal moisture of 50% during thermophilic composting. High nitrogen content of the poultry compost is an additional factor contributing to Salmonella inactivation through ammonia volatilization during thermal exposure. This research validated the effectiveness of the current composting guidelines on Salmonella inactivation in fresh poultry compost. Both initial moisture level and ammonia volatilization are important factors affecting microbiological safety and quality of compost product. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  11. Enhancement of Cotton Stalks Composting with Certain Microbial Inoculations

    Directory of Open Access Journals (Sweden)

    Osama Abdel-Twab Seoudi

    2013-01-01

    Full Text Available Effect of inoculation with Phanerochaete chrysosporium and Azotobacter chrococcum microbes on cotton stalks composting was studied in an attempt to achieve rapid maturity and desirable characteristics of produced compost. Composting process was maintained for 16 weeks under aerobic conditions with proper moisture content and turning piles. The C/N ratio of the mixtures was adjusted to about 30:1 before composting using chicken manure. Temperature evolution and its profile were monitored throughout the composting period. Mineralization rates of organic matter and changes in nitrogen content during composting stages were evaluated. Total plate count of mesophilic and thermophilic bacteria, cellulose decomposers and Azotobacter were determined during composting periods. The treatment of cotton stalks inoculated with both P. chrysosporium and Azotobacter gave the most desirable characteristics of the final product with respect to the narrow C/N ratio, high nitrogen content and high numbers of Azotobacter. The phytotoxicity test of compost extracts was evaluated. The use of P. chrysosporium in composting accelerated markedly decomposition process, so that 16 weeks composting enough to produce a stable and mature compost suitable for use as fertilizer while the fertilizer obtained by composting cotton stalks mixed with chicken manure and inoculated with microorganisms is highest quality Compost.

  12. Analysis of volatile organic compounds in compost samples: A potential tool to determine appropriate composting time.

    Science.gov (United States)

    Zhu, Fengxiang; Pan, Zaifa; Hong, Chunlai; Wang, Weiping; Chen, Xiaoyang; Xue, Zhiyong; Yao, Yanlai

    2016-12-01

    Changes in volatile organic compound contents in compost samples during pig manure composting were studied using a headspace, solid-phase micro-extraction method (HS-SPME) followed by gas chromatography with mass spectrometric detection (GC/MS). Parameters affecting the SPME procedure were optimized as follows: the coating was carbon molecular sieve/polydimethylsiloxane (CAR/PDMS) fiber, the temperature was 60°C and the time was 30min. Under these conditions, 87 compounds were identified from 17 composting samples. Most of the volatile components could only be detected before day 22. However, benzenes, alkanes and alkenes increased and eventually stabilized after day 22. Phenol and acid substances, which are important factors for compost quality, were almost undetectable on day 39 in natural compost (NC) samples and on day 13 in maggot-treated compost (MC) samples. Our results indicate that the approach can be effectively used to determine the composting times by analysis of volatile substances in compost samples. An appropriate composting time not only ensures the quality of compost and reduces the loss of composting material but also reduces the generation of hazardous substances. The appropriate composting times for MC and NC were approximately 22days and 40days, respectively, during the summer in Zhejiang. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2014-07-01

    Composting is a potential alternative to green waste incineration or deposition in landfills. The effects of the biosurfactant rhamnolipid (RL) (at 0.0%, 0.15%, and 0.30%) and initial compost particle size (IPS) (10, 15, and 25 mm) on a new, two-stage method for composting green waste was investigated. A combination of RL addition and IPS adjustment improved the quality of the finished compost in terms of its physical characteristics, pH, C/N ratio, nutrient content, cellulose and hemicellulose contents, water-soluble carbon (WSC) content, xylanase and CMCase activities, numbers of culturable microorganisms (bacteria, actinomycetes, and fungi), and toxicity to germinating seeds. The production of a stable and mature compost required only 24 days with the optimized two-stage composting method described here rather than the 90-270 days required with traditional composting. The best quality compost was obtained with 0.15% RL and an IPS of 15 mm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Composting of bio solids by composting tunnels; Compostaje de biosolidos mediante tunes de compostado

    Energy Technology Data Exchange (ETDEWEB)

    Varo, P.; Rodriguez, M.; Prats, D.; Soto, R.; Pastor, B.; Monges, M.

    2003-07-01

    The objective of this work is to study the bio-solid composting process carried out in the composting plant of Aspe (Alicante) by means of open composting tunnels, and to determine the quality of the resulting compost. The parameters under control are temperature. humidity, density, pH, conductivity, organic matter, C/N ratio, ammonium nitride and organic nitrogen. The concentrations of cadmium, chromium, nickel, lead and copper were monitored during the composting process. Observing the parameters analyzed we can conclude that the composting process of the sewage sludge from Aspe procedures a product suitable for agricultural use. The values obtained allow the product resulting from the process to be designated as compost. (Author)

  15. Use of high-stability composts in recreational areas: assays on cold season turf grasses

    International Nuclear Information System (INIS)

    Gomez de Barreda-Ferraz, D.; Albiach, M. R.; Pomares, F.; Ingelmo, F.; Canet, R.

    2009-01-01

    Recreational and sport areas, steadily increasing on number and occupied surface, show great interest as consumers of large amounts of organic products. High-quality composts could be used to improve soil properties, increasing its water-hold capacity and reducing the amounts of synthetic fertilizers needed to support the vegetal cover. (Author)

  16. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product.

    Science.gov (United States)

    Santos, Cátia; Fonseca, João; Aires, Alfredo; Coutinho, João; Trindade, Henrique

    2017-01-01

    The use of spent coffee grounds (SCG) in composting for organic farming is a viable way of valorising these agro-industrial residues. In the present study, four treatments with different amounts of spent coffee grounds (SCG) were established, namely, C 0 (Control), C 10 , C 20 and C 40 , containing 0, 10, 20 and 40% of SCG (DM), respectively; and their effects on the composting process and the end-product quality characteristics were evaluated. The mixtures were completed with Acacia dealbata L. shoots and wheat straw. At different time intervals during composting, carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions were measured and selected physicochemical characteristics of the composts were evaluated. During the composting process, all treatments showed a substantial decrease in total phenolics and total tannins, and an important increase in gallic acid. Emissions of greenhouse gases were very low and no significant difference between the treatments was registered. The results indicated that SCG may be successfully composted in all proportions. However C 40 , was the treatment which combined better conditions of composting, lower GHG emissions and better quality of end product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [Co-composting high moisture vegetable waste and flower waste in a sequential fed operation].

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-11-01

    Co-composting of high moisture vegetable wastes (celery and cabbage) and flower wastes (carnation) were studied in a sequential fed bed. The preliminary materials of composting were celery and carnation wastes. The sequential fed materials of composting were cabbage wastes and were fed every 4 days. Moisture content of mixture materials was between 60% and 70%. Composting was done in an aerobic static bed of composting based temperature feedback and control via aeration rate regulation. Aeration was ended when temperature of the pile was about 40 degrees C. Changes of composting of temperature, aeration rate, water content, organic matter, ash, pH, volume, NH4(+)-N, and NO3(-)-N were studied. Results show that co-composting of high moisture vegetable wastes and flower wastes, in a sequential fed aerobic static bed based temperature feedback and control via aeration rate regulation, can stabilize organic matter and removal water rapidly. The sequential fed operation are effective to overcome the difficult which traditional composting cannot applied successfully where high moisture vegetable wastes in more excess of flower wastes, such as Dianchi coastal.

  18. Pile composting of two-phase centrifuged olive husk residues: technical solutions and quality of cured compost.

    Science.gov (United States)

    Alfano, G; Belli, C; Lustrato, G; Ranalli, G

    2008-07-01

    The present work proposed an economically sustainable solution for composting olive humid husks (OHH) and leaves (OL) at a small/medium sized olive oil mill. We planned and set up a composting plant, the prototype taking the form of a simplified low-cost turning machine, and evaluated the use of an inoculum of one year-old composted humid husks (CHH) and sheep manure (SM) to facilitate the starting phase of the process. Trials were carried out using four piles under different experimental conditions (turnover, static, and type of inoculum). The best results were achieved with turnover and an inoculum that induced fast start-up and a correct evolution of the composting process. The final product was a hygienically clean, cured compost.

  19. Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality

    OpenAIRE

    Soares, Micaela A. R.; Quina, Margarida M. J.; Quinta-Ferreira, Rosa M.

    2013-01-01

    Industrial eggshell waste (ES) is classified as an animal by-product not intended to human consumption. For reducing pathogen spreading risk due to soil incorporation of ES, sanitation by composting is a pre-treatment option. This work aims to evaluate eggshell waste recycling in self-heating composting reactors and investigate ES effect on process evolution and end product quality. Potato peel, grass clippings and rice husks were the starting organic materials considered. The incorporati...

  20. Experimental evaluation of compost leachates.

    Science.gov (United States)

    2015-09-01

    Compost is often used in raingardens, roadsides, and bioretention systems, not only because of : its beneficial properties on soil quality, but also because compost improves water infiltration and : retains stormwater contaminants. However, when comp...

  1. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2014-11-01

    This research determined whether the two-stage co-composting can be used to convert green waste (GW) into a useful compost. The GW was co-composted with spent mushroom compost (SMC) (at 0%, 35%, and 55%) and biochar (BC) (at 0%, 20%, and 30%). The combined addition of SMC and BC greatly increased the nutrient contents of the compost product and also improved the compost quality in terms of composting temperature, particle-size distribution, free air space, cation exchange capacity, nitrogen transformation, organic matter degradation, humification, element contents, abundance of aerobic heterotrophs, dehydrogenase activity, and toxicity to germinating seeds. The addition of 35% SMC and 20% BC to GW (dry weight % of initial GW) and the two-stage co-composting technology resulted in the production of the highest quality compost product in only 24 days rather than the 90-270 days required with traditional composting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Assessment of compost maturity by using an electronic nose.

    Science.gov (United States)

    López, Rafael; Giráldez, Inmaculada; Palma, Alberto; Jesús Díaz, M

    2016-02-01

    The composting process produces and emits hundreds of different gases. Volatile organic compounds (VOCs) can provide information about progress of composting process. This paper is focused on the qualitative and quantitative relationships between compost age, as sign of compost maturity, electronic-nose (e-nose) patterns and composition of compost and composting gas at an industrial scale plant. Gas and compost samples were taken at different depths from composting windrows of different ages. Temperature, classical chemical parameters, O2, CO, combustible gases, VOCs and e-nose profiles were determined and related using principal component analysis (PCA). Factor analysis carried out to a data set including compost physical-chemical properties, pile pore gas composition and composting time led to few factors, each one grouping together standard composting parameters in an easy to understand way. PCA obtained from e-nose profiles allowed the classifying of piles, their aerobic-anaerobic condition, and a rough estimation of the composting time. That would allow for immediate and in-situ assessment of compost quality and maturity by using an on-line e-nose. The e-nose patterns required only 3-4 sensor signals to account for a great percentage (97-98%) of data variance. The achieved patterns both from compost (chemical analysis) and gas (e-nose analysis) samples are robust despite the high variability in feedstock characteristics (3 different materials), composting conditions and long composting time. GC-MS chromatograms supported the patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil

    International Nuclear Information System (INIS)

    Agegnehu, Getachew; Bass, Adrian M.; Nelson, Paul N.; Bird, Michael I.

    2016-01-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha"−"1 biochar (B) + F; 3) 25 t ha"−"1 compost (Com) + F; 4) 2.5 t ha"−"1 B + 25 t ha"−"1 Com mixed on site + F; and 5) 25 t ha"−"1 co-composted biochar–compost (COMBI) + F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ"1"5N and δ"1"3C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO_3"− N), ammonium-nitrogen (NH_4"+-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO_2 and N_2O were higher from the organic-amended soils than from the fertilizer-only control. However, N_2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar–compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. - Graphical abstract: Grain yield, cation exchange capacity (CEC), soil organic carbon (SOC), soil water content (SWC) and N_2O

  4. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Agegnehu, Getachew [College of Science, Technology and Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, PO Box 6811, Cairns, Queensland 4870 (Australia); Bass, Adrian M. [Hawkesbury Institute for the Environment, University of Western Sydney, Science Road, Richmond, New South Wales 2753 (Australia); Nelson, Paul N.; Bird, Michael I. [College of Science, Technology and Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, PO Box 6811, Cairns, Queensland 4870 (Australia)

    2016-02-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha{sup −1} biochar (B) + F; 3) 25 t ha{sup −1} compost (Com) + F; 4) 2.5 t ha{sup −1} B + 25 t ha{sup −1} Com mixed on site + F; and 5) 25 t ha{sup −1} co-composted biochar–compost (COMBI) + F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ{sup 15}N and δ{sup 13}C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO{sub 3}{sup −} N), ammonium-nitrogen (NH{sub 4}{sup +}-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO{sub 2} and N{sub 2}O were higher from the organic-amended soils than from the fertilizer-only control. However, N{sub 2}O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar–compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. - Graphical abstract: Grain yield, cation exchange capacity (CEC), soil

  5. High-nitrogen compost as a medium for organic container-grown crops.

    Science.gov (United States)

    Raviv, Michael; Oka, Yuji; Katan, Jaacov; Hadar, Yitzhak; Yogev, Anat; Medina, Shlomit; Krasnovsky, Arkady; Ziadna, Hammam

    2005-03-01

    Compost was tested as a medium for organic container-grown crops. Nitrogen (N) loss during composting of separated cow manure (SCM) was minimized using high C/N (wheat straw, WS; grape marc, GM) or a slightly acidic (orange peels, OP) additives. N conservation values in the resultant composts were 82%, 95% and 98% for GM-SCM, OP-SCM and WS-SCM, respectively. Physical characteristics of the composts were compatible with use as growing media. The nutritional contribution of the composts was assessed using cherry tomato (Lycopersicon esculantum Mill.) and by means of incubation experiments. Media were either unfertilized or fertilized with guano (sea-bird manure). Plant responses suggest that N availability is the main variable affecting growth. Unfertilized OP-SCM and WS-SCM supplied the N needed for at least 4 months of plant growth. Root-galling index (GI) of tomato roots and number of eggs of the nematode Meloidogyne javanica were reduced by the composts, with the highest reduction obtained by OP-SCM and WS-SCM, at 50% concentrations. These composts, but not peat, reduced the incidence of crown and root-rot disease in tomato as well as the population size of the causal pathogen, Fusarium oxysporum f. sp. radicis-lycopersici.

  6. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation.

    Science.gov (United States)

    Yu, Hang; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Yunshu; Zheng, Zhen; Hao, Xiaodi

    2015-10-01

    Bioelectrochemically-assisted anaerobic composting process (AnCBE) with dewatered sludge as the anode fuel was constructed to accelerate composting of dewatered sludge, which could increase the quality of the compost and harvest electric energy in comparison with the traditional anaerobic composting (AnC). Results revealed that the AnCBE yielded a voltage of 0.60 ± 0.02 V, and total COD (TCOD) removal reached 19.8 ± 0.2% at the end of 35 d. The maximum power density was 5.6 W/m(3). At the end of composting, organic matter content (OM) reduction rate increased to 19.5 ± 0.2% in AnCBE and to 12.9 ± 0.1% in AnC. The fuzzy comprehensive assessment (FCA) result indicated that the membership degree of class I of AnCBE compost (0.64) was higher than that of AnC compost (0.44). It was demonstrated that electrogenesis in the AnCBE could improve the sludge stabilization degree, accelerate anaerobic composting process and enhance composting maturity with bioelectricity generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evaluation of Composting and the Quality of Compost from the ...

    African Journals Online (AJOL)

    Michael Horsfall

    3Addis Ababa University, Faculty of Sciences, Environmental Science Program, P.O.Box:1176, Addis ... practices of solid waste management of the city. ..... Basic Principles for composting of ... (http://www.extension.umn.edu/distribution/natu.

  8. Evaluating of selected parameters of composting process by composting of grape pomace

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2011-01-01

    Full Text Available In Europe, there is annually available 8 million tons of grape pomace. From the viewpoint of waste management, pomace represents biotic waste produced in the FDM (Food–Drink–Milk sector. Composting process represents an effective use of grape pomace. Introduced experiment deals with monitoring of the composting process of grape pomace provided by 2 different variants of different composition of composting piles. Obtained results indicate that dynamics of process is affected by the share of raw materials. According to the temperature curve characteristics, the temperature above 45 °C for at least 5 days was necessary for compost sanitation. Such temperature was achieved in piles with higher proportion of pomace (Var.II. Analysis of results shows that the compost made ​​of grape pomace is a quality organic fertilizer, which may have in addition to agronomic point of view also great hygienic and ecological importance.

  9. Composting of empty fruit bunches in the tower composter - effect of air intake holes

    Science.gov (United States)

    Irvan; Husaini, T.; Trisakti, B.; Batubara, F.; Daimon, H.

    2018-02-01

    The process of composting empty fruit bunches (EFB) by mixing with activated liquid organic fertilizer (ALOF) is an alternative utilization of solid waste generated from palm oil mill. This study aims to find composting techniques of EFB and to obtain degradation data of composting EFB by varying the air intake holes to produce good quality compost. Composting process was carried out by tearing the EFB into four shreds, then put into the tower composter while adding ALOF until it reached the optimum moisture content of 55 -65%. During the composting process, we maintained moisture content at optimum conditions by adding ALOF. Variations of air intake holes area to the outer surface area of the composter are 0/44.314; 72.39/44.314 and 144.78/44.314 (cm2/cm2). Composting is carried out for forty days, however, based on the result, compost began to mature on the 10th day. The results revealed that there was an influence of air intake holes to the composting process. The best degradation of EFB was obtained on the variation of air intake holes 72.39/44.314 (cm2/cm2), pH 8.1, moisture content 79.14%, water holding capacity 60%, electrical conductivity 4.725 dS/m and C/N ratio 20.97.

  10. Influence of composting techniques on microbial succession ...

    African Journals Online (AJOL)

    pH also stabilized as the composting process progressed in the pit. Good quality compost was obtained in 5 weeks when PACT was used. Conventional pit method lasted over several weeks. Key Words: Municipal wastes; passive aeration; pit composting; temperature; microbial succession. African Journal of Biotechnology ...

  11. Compostage et qualité du compost de déchets urbains solides de la ville de Bobo-Dioulasso, Burkina Faso

    Directory of Open Access Journals (Sweden)

    Compaoré, E.

    2010-01-01

    Full Text Available Composting and Compost Quality of Urban Solid Wastes in Bobo-Dioulasso Town, Burkina Faso. A study of urban solid wastes composting was conducted to evaluate wastes compost quality. Wastes of municipal dumps of Bobo-Dioulasso have been collected, separated and composted with cow manure, grass and Kodjari phosphate rock. During composting the pH increased up to 8.6, the moisture up to 68% and the temperature up to 65 °C before decreasing and then stabilizing at 7.1; 30% and 31 °C respectively. Particle size distribution of composts showed that the fraction ≤ 2 mm is dominant, about 65%. The organic matter, C, N, P and K contents of the composts are acceptable but the C/N ratio was relatively low in comparison with international standard. The heavy metals (Cu, Pb, Ni and Zn contents in composted urban wastes were relatively high with higher content of Zn and Pb. The compost obtained was of good quality and the addition of Kodjari phosphate rock enhanced this quality.

  12. COP-compost: a software to study the degradation of organic pollutants in composts.

    Science.gov (United States)

    Zhang, Y; Lashermes, G; Houot, S; Zhu, Y-G; Barriuso, E; Garnier, P

    2014-02-01

    Composting has been demonstrated to be effective in degrading organic pollutants (OP) whose behaviour depends on the composting conditions, the microbial populations activated and interactions with organic matters. The fate of OP during composting involves complex mechanisms and models can be helpful tools for educational and scientific purposes, as well as for industrialists who want to optimise the composting process for OP elimination. A COP-Compost model, which couples an organic carbon (OC) module and an organic pollutant (OP) module and which simulates the changes of organic matter, organic pollutants and the microbial activities during the composting process, has been proposed and calibrated for a first set of OP in a previous study. The objectives of the present work were (1) to introduce the COP-Compost model from its convenient interface to a potential panel of users, (2) to show the variety of OP that could be simulated, including the possibility of choosing between degradation through co-metabolism or specific metabolism and (3) to show the effect of the initial characteristics of organic matter quality and its microbial biomass on the simulated results of the OP dynamic. In the model, we assumed that the pollutants can be adsorbed on organic matter according to the biochemical quality of the OC and that the microorganisms can degrade the pollutants at the same time as they degrade OC (by co-metabolism). A composting experiment describing two different (14)C-labelled organic pollutants, simazine and pyrene, were chosen from the literature because the four OP fractions simulated in the model were measured during the study (the mineralised, soluble, sorbed and non-extractable fractions). Except for the mineralised fraction of simazine, a good agreement was achieved between the simulated and experimental results describing the evolution of the different organic fractions. For simazine, a specific biomass had to be added. To assess the relative importance

  13. Hygienization aspects of composting

    OpenAIRE

    Termorshuizen, A.J.; Alsanius, Beatrix

    2016-01-01

    Compost use in agriculture always brings about the risk of introducing plant and human pathogens. • The backbone of the hygienization process consists of temperature, moisture content and chemical compounds formed during composting and activity of antagonists. • Compost produced by proper composting, i.e. a process that produces high temperatures during asufficiently long thermophilic phase can be applied safely. • Farmers should invest in good relationships with compost produce...

  14. Physico-chemical and biological characteristics of compost from decentralised composting programmes.

    Science.gov (United States)

    Vázquez, M A; Sen, R; Soto, M

    2015-12-01

    Composts that originated from small-scale composting programmes including home, community and canteen waste composters were studied. Heavy metals concentration indicated compliance with current regulations for conventional and organic agriculture. Compost from canteen waste showed high organic matter content (74% VS), while community (44 ± 20% VS) and home composts (31 ± 16% VS) had moderate levels. N content increased from home compost (1.3 ± 0.9% dm) to community (2.0 ± 0.9%) and canteen compost (2.5-3.0%) while P content ranged from 0.4% to 0.6% dm. C/N, absorbance E4/E6 and N-NH4(+)/N-NO3(-) ratios as well as respiration index indicated well-stabilized final products. Culturable bacterial and fungal cfu linkage to composting dynamics were identified and higher diversity of invertebrates was found in the smaller scale static systems. With similar process evolution indicators to industrial systems, overall results support the sustainability of these small-scale, self-managed composting systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Composting of food wastes: Status and challenges.

    Science.gov (United States)

    Cerda, Alejandra; Artola, Adriana; Font, Xavier; Barrena, Raquel; Gea, Teresa; Sánchez, Antoni

    2018-01-01

    This review analyses the main challenges of the process of food waste composting and examines the crucial aspects related to the quality of the produced compost. Although recent advances have been made in crucial aspects of the process, such composting microbiology, improvements are needed in process monitoring. Therefore, specific problems related to food waste composting, such as the presence of impurities, are thoroughly analysed in this study. In addition, environmental impacts related to food waste composting, such as emissions of greenhouse gases and odours, are discussed. Finally, the use of food waste compost in soil bioremediation is discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of biochar amendment on compost organic matter composition following aerobic composting of manure.

    Science.gov (United States)

    Hagemann, Nikolas; Subdiaga, Edisson; Orsetti, Silvia; de la Rosa, José María; Knicker, Heike; Schmidt, Hans-Peter; Kappler, Andreas; Behrens, Sebastian

    2018-02-01

    Biochar, a material defined as charred organic matter applied in agriculture, is suggested as a beneficial additive and bulking agent in composting. Biochar addition to the composting feedstock was shown to reduce greenhouse gas emissions and nutrient leaching during the composting process, and to result in a fertilizer and plant growth medium that is superior to non-amended composts. However, the impact of biochar on the quality and carbon speciation of the organic matter in bulk compost has so far not been the focus of systematic analyses, although these parameters are key to determine the long-term stability and carbon sequestration potential of biochar-amended composts in soil. In this study, we used different spectroscopic techniques to compare the organic carbon speciation of manure compost amended with three different biochars. A non-biochar-amended compost served as control. Based on Fourier-transformed infrared (FTIR) and 13 C nuclear magnetic resonance (NMR) spectroscopy we did not observe any differences in carbon speciation of the bulk compost independent of biochar type, despite a change in the FTIR absorbance ratio 2925cm -1 /1034cm -1 , that is suggested as an indicator for compost maturity. Specific UV absorbance (SUVA) and emission-excitation matrixes (EEM) revealed minor differences in the extractable carbon fractions, which only accounted for ~2-3% of total organic carbon. Increased total organic carbon content of biochar-amended composts was only due to the addition of biochar-C and not enhanced preservation of compost feedstock-C. Our results suggest that biochars do not alter the carbon speciation in compost organic matter under conditions optimized for aerobic decomposition of compost feedstock. Considering the effects of biochar on compost nutrient retention, mitigation of greenhouse gas emissions and carbon sequestration, biochar addition during aerobic composting of manure might be an attractive strategy to produce a sustainable, slow

  17. Effects of compost age on the release of nutrients

    Directory of Open Access Journals (Sweden)

    Bilal B. Al-Bataina

    2016-09-01

    Full Text Available Composted organic materials are applied to help restore disturbed soils, speed revegetation, and control erosion; these changes are generally beneficial for stormwater quality. Ensuring that nutrient release from compost is adequate for plant needs without degrading stormwater quality is important since composts release nitrogen at variable rates (1–3% of total N/yr and the leaching process can extend for many years. The aim of this work was to understand the effect of compost age on the extent and rates of nitrogen release by conducting detailed rainfall simulation studies of one compost type at three different ages. Models describing temporal changes in nitrogen release to runoff during a single storm and across multiple storms were developed and applied to the runoff data. Nitrogen content (% and bulk density of compost increased with the increase in compost age and total nitrogen release decreased with increasing compost age. The three rain simulations (storms performed on each of the three compost ages show that nitrogen release declined each day of the repeated daily storms. A first-order kinetic model was used to estimate the amount of nitrogen remaining on compost after several storms.

  18. Ammonia emission mitigation in food waste composting: A review.

    Science.gov (United States)

    Wang, Shuguang; Zeng, Yang

    2018-01-01

    Composting is a reliable technology to treat food waste (FW) and produce high quality compost. The ammonia (NH 3 ) emission accounts for the largest nitrogen loss and leads to various environmental impacts. This review introduced the recent progresses on NH 3 mitigation in FW composting. The basic characteristics of FW from various sources were given. Seven NH 3 emission strategies proven effective in the literature were presented. The links between these strategies and the mechanisms of NH 3 production were addressed. Application of hydrothermally treated C rich substrates, biochar or struvite salts had a broad prospect in FW composting if these strategies were proven cost-effective enough. Regulation of nitrogen assimilation and nitrification using biological additive had the potential to achieve NH 3 mitigation but the existing evidence was not enough. In the end, the future prospects highlighted four research topics that needed further investigation to improve NH 3 mitigation and nitrogen conservation in FW composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation of Solvita compost stability and maturity tests for assessment of quality of end-products from mixed latrine style compost toilets

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Geoffrey B., E-mail: geoff.hill@geog.ubc.ca [University of British Columbia, Department of Geography, 1984 West Mall, Vancouver, Canada V6T 1Z2 (Canada); Baldwin, Susan A. [Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, B.C., Canada V6T 1Z3 (Canada); Vinnerås, Bjorn [Swedish University of Agricultural Sciences, Box 7032, SE-750 07 Uppsala (Sweden)

    2013-07-15

    Highlights: • Solvita® stability and maturity tests used on composting toilet end-product. • Solvita® ammonia better suited in evaluation of feedstock suitability for vermicomposting. • No clear value of Solvita® stability test due to prevalent inhibition of decomposition by ammonia. - Abstract: It is challenging and expensive to monitor and test decentralized composting toilet systems, yet critical to prevent the mismanagement of potentially harmful and pathogenic end-product. Recent studies indicate that mixed latrine composting toilets can be inhibited by high ammonia content, a product of urea hydrolysis. Urine-diverting vermicomposting toilets are better able to accomplish the goals of remote site human waste management by facilitating the consumption of fecal matter by earthworms, which are highly sensitive to ammonia. The reliability of Solvita® compost stability and maturity tests were evaluated as a means of determining feedstock suitability for vermicomposting (ammonia) and end-product stability/completeness (carbon dioxide). A significant linear regression between Solvita® ammonia and free ammonia gas was found. Solvita® ranking of maturity did not correspond to ranking assigned by ammonium:nitrate standards. Solvita® ammonia values 4 and 5 contained ammonia levels below earthworm toxicity limits in 80% and 100% of samples respectively indicative of their use in evaluating feedstock suitability for vermicomposting. Solvita® stability tests did not correlate with carbon dioxide evolution tests nor ranking of stability by the same test, presumably due to in situ inhibition of decomposition and microbial respiration by ammonia which were reported by the Solvita® CO{sub 2} test as having high stability values.

  20. Decline in extractable antibiotics in manure-based composts during composting.

    Science.gov (United States)

    Kim, K-R; Owens, G; Ok, Y S; Park, W-K; Lee, D B; Kwon, S-I

    2012-01-01

    A wide variety of antibiotics have been detected in natural water samples and this is of potential concern because of the adverse environmental effects of such antibiotic residues. One of the main sources of antibiotics effluence to the surrounding environment is livestock manures which often contain elevated concentrations of veterinary antibiotics (VAs) which survive digestion in the animal stomach following application in animal husbandry practices. In Korea, livestock manures are normally used for compost production indicating that there is potential for antibiotic release to the environment through compost application to agricultural lands. Therefore, reduction of the amount of VAs in composts is crucial. The purpose of this study was to understand the influence of the composting process and the components of the compost on the levels of three common classes of antibiotics (tetracyclines, sulfonamides, and macrolides). Composted materials at different stages of composting were collected from compost manufacturing plants and the variation in antibiotic concentrations was determined. Three different antibiotics, chlortetracycline (CTC), sulfamethazine (SMZ), and tylosin (TYL) at three different concentrations (2, 10, and 20mgkg(-1)) were also applied to a mixture of pig manure and sawdust and the mixtures incubated using a laboratory scale composting apparatus to monitor the changes in antibiotic concentrations during composting together with the physicochemical properties of the composts. During composting, in both field and lab-scale investigations, the concentrations of all three different antibiotics declined below the relevant Korean guideline values (0.8mgkg(-1) for tetracyclines, 0.2mgkg(-1) for sulfonamides and 1.0mgkg(-1) for macrolides). The decline of tetracycline and sulfonamide concentrations was highly dependent on the presence of sawdust while there was no influence of sawdust on TYL decline. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Biopesticide effect of green compost against fusarium wilt on melon plants.

    Science.gov (United States)

    Ros, M; Hernandez, M T; Garcia, C; Bernal, A; Pascual, J A

    2005-01-01

    The biopesticide effect of four green composts against fusarium wilt in melon plants and the effect of soil quality in soils amended with composts were assayed. The composts consisted of pruning wastes, with or without addition of coffee wastes (3/1 and 4/1, dry wt/dry wt) or urea (1000/1, dry wt/dry wt). In vitro experiments suggested the biopesticide effect of the composts against Fusarium oxysporum, while only the compost of pine bark and urea (1000/1dry wt/dry wt) had an abiotic effect. Melon plant growth with composts and F. oxysporum was one to four times greater than in the non-amended soil, although there was no significant decrease in the level of the F. oxysporum in the soil. The addition of composts to the soil also improved its biological quality, as assessed by microbiological and biochemical parameters: ATP and hydrolases involved in the P (phosphatase), C (beta-glucosidase) and N (urease) cycles. Green composts had greater beneficial characteristics, improved plant growth and controlled fusarium wilt in melon plants. These composts improve the soil quality of semi-arid agricultural soils. Biotic and abiotic factors from composts have been tested as responsible of their biopesticide activity against fusarium wilt.

  2. Effect of gamma irradiation on the nutritional quality of Agaricus bisporus strains cultivated in different composts

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Meire Cristina Nogueira, E-mail: mcnandrade@hotmail.com [Universidade do Sagrado Coracao (USC), Bauru, SP (Brazil). Centro de Ciencias Exatas e Sociais Aplicadas; Jesus, Joao P.F.; Vieira, Fabricio R.; Viana, Sthefany R.F.; Minhoni, Marli T.A. [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Producao Vegetal/Defesa Fitossanitaria, Modulo de Cogumelos; Spoto, Marta H.F. [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Departamento de Agroindustria, Alimentos e Nutricao

    2014-05-15

    The effect of irradiation doses (0, 125, 250 and 500 Gy) on the nutritional quality of A. bisporus mushrooms (strains ABI-07/06, ABI-05/03 and PB-1) cultivated in composts based on oat straw (Avena sativa) and brachiaria (Brachiaria sp.) was evaluated. The experimental design was 4 x 3 x 2 factorial scheme (irradiation doses x strains x composts), with 24 treatments, consisting of two repetitions each, totaling 48 experimental units (samples of mushrooms). The samples were irradiated in Cobalt-60 irradiator, model Gammacell 220 kGy, with dose rate of 0.740 kGy h{sup -1}, according to the treatments proposed. Subsequently, the control (unirradiated) and the other treatments were maintained at 4±1°C and 90% RH in a climatic chamber for carrying out the chemical analysis of the mushrooms on the 1st and 14th day of storage. It was found that all A. bisporus strains evaluated were food with excellent nutritional value, because they presented high protein and fiber contents and low ethereal extract content; the chemical characterization of the mushrooms was influenced by the compost type in which they were cultivated; gamma irradiation influenced the chemical composition of mushrooms. (author)

  3. Effect of gamma irradiation on the nutritional quality of Agaricus bisporus strains cultivated in different composts

    International Nuclear Information System (INIS)

    Andrade, Meire Cristina Nogueira; Jesus, Joao P.F.; Vieira, Fabricio R.; Viana, Sthefany R.F.; Minhoni, Marli T.A.; Spoto, Marta H.F.

    2014-01-01

    The effect of irradiation doses (0, 125, 250 and 500 Gy) on the nutritional quality of A. bisporus mushrooms (strains ABI-07/06, ABI-05/03 and PB-1) cultivated in composts based on oat straw (Avena sativa) and brachiaria (Brachiaria sp.) was evaluated. The experimental design was 4 x 3 x 2 factorial scheme (irradiation doses x strains x composts), with 24 treatments, consisting of two repetitions each, totaling 48 experimental units (samples of mushrooms). The samples were irradiated in Cobalt-60 irradiator, model Gammacell 220 kGy, with dose rate of 0.740 kGy h -1 , according to the treatments proposed. Subsequently, the control (unirradiated) and the other treatments were maintained at 4±1°C and 90% RH in a climatic chamber for carrying out the chemical analysis of the mushrooms on the 1st and 14th day of storage. It was found that all A. bisporus strains evaluated were food with excellent nutritional value, because they presented high protein and fiber contents and low ethereal extract content; the chemical characterization of the mushrooms was influenced by the compost type in which they were cultivated; gamma irradiation influenced the chemical composition of mushrooms. (author)

  4. Composting of urban solid waste in Lomé, Togo: Fate of some heavy ...

    African Journals Online (AJOL)

    Metals may constitute problems in waste management because of their multiple sources and potentially high toxicity of some constituents. Processes of composting do not always guarantee acceptable quality of the compost in terms of hazardous metals. The aim of this article is to assess the balance of some heavy metals ...

  5. Passively Aerated Composting of Straw-Rich Pig Manure : Effect of Compost Bed Porosity

    NARCIS (Netherlands)

    Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2002-01-01

    Straw-rich manure from organic pig farming systems can be composted in passively aerated systems as the high application of straw results in a compost bed with good structure and porosity. The passively aerated composting process was simulated in one-dimensional reactors of 2 m3 for straw-rich

  6. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources

    International Nuclear Information System (INIS)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-01-01

    The purpose of this work is to study the aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the protein synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH4NO3. taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing spillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO3 as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources. (Author) 15 refs

  7. Composting of waste algae: a review.

    Science.gov (United States)

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Strike It Rich with Classroom Compost.

    Science.gov (United States)

    Jones, Linda L. Cronin

    1992-01-01

    Discusses composting of organic materials as an alternative to landfills. Lists uses of composts and describes details of a simple composting activity for high school students. Includes an information sheet for students and a student data sheet. Suggests other composting activities. (PR)

  9. Polemics on Ethical Aspects in the Compost Business.

    Science.gov (United States)

    Maroušek, Josef; Hašková, Simona; Zeman, Robert; Žák, Jaroslav; Vaníčková, Radka; Maroušková, Anna; Váchal, Jan; Myšková, Kateřina

    2016-04-01

    This paper focuses on compost use in overpasses and underpasses for wild animals over roads and other similar linear structures. In this context, good quality of compost may result in faster and more resistant vegetation cover during the year. Inter alia, this can be interpreted also as reduction of damage and saving lives. There are millions of tones of plant residue produced every day worldwide. These represent prospective business for manufacturers of compost additives called "accelerators". The opinions of the sale representatives' with regards to other alternatives of biowaste utilization and their own products were reviewed. The robust analyzes of several "accelerated" composts revealed that the quality was generally low. Only two accelerated composts were somewhat similar in quality to the blank sample that was produced according to the traditional procedure. Overlaps between the interests of decision makers on future soil fertility were weighed against the preferences on short-term profit. Possible causes that allowed the boom of these underperforming products and the possible consequences are also discussed. Conclusions regarding the ethical concerns on how to run businesses with products whose profitability depends on weaknesses in the legal system and customer unawareness are to follow.

  10. Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Li, Jiao; Guo, Di; Li, Dong-Sheng; Awasthi, Sanjeev Kumar; Sun, Xining; Zhang, Zengqiang

    2017-08-01

    The influence of biochar amended dewatered fresh sewage sludge (DFSS)-wheat straw co-composting on nutrients transformation and end products quality was investigated. This is the first study to examine the biochar applied compost quality with different kgha -1 TKN on Brassica rapa L. growth. Seven mixtures were composted over 8-weeks period in 130-L reactor using the same DFSS with different concentration of biochar (2%, 4%, 6%, 8%, 12% and 18% on dry weight basis) and without additive added treatment served as control. The results indicated that compost with 8-12% biochar became more humified within 35days of composting, and the compost maturity parameters also showed that this could be much more feasible approach to increased water-soluble nutrients including NO 3 , DOC, DON, PO 4 3- , K + and Na + , but bioavailability of Cu, Zn, Ni and Pb content reduced as compared to control. Finally, results showed that 8-12% biochar was recommended for DFSS composting and 150kgha -1 TKN of compost dosages for organic farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A mathematical model for reducing the composting time

    Directory of Open Access Journals (Sweden)

    Estefanía Larreategui

    2014-06-01

    Full Text Available The environment is still affected by the inappropriate use of organic matter waste, but a culture of recycling and reuse has been promoted in Ecuador to reduce carbon footprint. The composting, a technique to digest organic matter, which traditionally takes 16-24 weeks, is still inefficient to use. Therefore, this paper concerns the optimization of the composting process in both quality and production time. The variables studied were: type of waste (fruits and vegetables and type of bioaccelerator (yeast and indigenous microorganisms. By using a full factorial random design 22, a quality compost was obtained in 7 weeks of processing. Quality factors as temperature, density, moisture content, pH and carbon-nitrogen ratio allowed the best conditions for composting in the San Gabriel del Baba community (Santo Domingo de los Colorados, Ecuador. As a result of this study, a mathematical surface model which explains the relationship between the temperature and the digestion time of organic matter was obtained.

  12. Effect of turning frequency on co-composting pig manure and fungus residue.

    Science.gov (United States)

    Jiang-Ming, Zhou

    2017-03-01

    Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but also can recycle agricultural wastes and transform them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue. Physical and chemical characteristics were measured over the course of 63 days of composting. The data indicate that higher temperatures and more rapid moisture removal generally result from a turning treatment of once every 2-4 days than in fewer, or no, turning treatments. The total nitrogen, total phosphorus, and total potassium contents increased in all windrows as the organic matter content decreased, but both the increases and decrease were greater in windrows that were turned more frequently. The reduction of the organic matter mass by 53.7-66.0% for a turning of once every 2-8 days is significantly higher than that for the static windrow (39.1%). Although there is an increase in nitrogen mass loss with an increased turning frequency, lower nitrogen mass losses (12.7-25.7%) in all treatments were noted compared with previous studies. A final compost product with less moisture, less weight, higher nutrient content (N, P, and K), and greater stability was obtained in windrows with turning frequencies of once every 2-4 days, which is recommended when composting pig manure and fungus residue. Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but recycling of agricultural wastes transforms them into highly valuable products, such as fertilizers or soil conditioners, for

  13. Closing the natural cycles - using biowaste compost in organic farming in Vienna

    Science.gov (United States)

    Erhart, Eva; Rogalski, Wojciech; Maurer, Ludwig; Hartl, Wilfried

    2014-05-01

    One of the basic principles of organic farming - that organic management should fit the cycles and ecological balances in nature - is put into practice in Vienna on a large scale. In Vienna, compost produced from separately collected biowaste and greenwaste is used on more than 1000 ha of organic farmland. These municipally owned farms are managed organically, but are stockless, like the vast majority of farms in the region. The apparent need for a substitute for animal manure triggered the development of an innovative biowaste management. Together with the Municipal Department 48 responsible for waste management, which was keen for the reduction of residual waste, the Municipal Department 49 - Forestry Office and Urban Agriculture and Bio Forschung Austria developed Vienna's biowaste management model. Organic household wastes and greenwastes are source-separated by the urban population and collected in a closely monitored system to ensure high compost quality. A composting plant was constructed which today produces a total of 43000 t compost per year in a monitored open windrow process. The quality of the compost produced conforms to the EU regulation 834/2007. A large part of the compost is used as organic fertilizer on the organic farmland in Vienna, and the remainder is used in arable farming and in viticulture in the region around Vienna and for substrate production. Vienna`s biowaste management-model is operating successfully since the 1980s and has gained international recognition in form of the Best Practice-Award of the United Nations Development Programme. In order to assess the effects of biowaste compost fertilization on crop yield and on the environment, a field experiment was set up near Vienna in 1992, which is now one of the longest standing compost experiments in Europe. The results showed, that the yields increased for 7 - 10 % with compost fertilization compared to the unfertilized control and the nitrogen recovery by crops was between 4 and 6

  14. Comparison of microbially enhanced compost extracts produced from composted cattle rumen content material and from commercially available inocula.

    Science.gov (United States)

    Shrestha, Karuna; Adetutu, Eric M; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Ball, Andrew S; Midmore, David J

    2011-09-01

    A comparative study was performed on compost extracts prepared from cattle rumen content composted for three and nine months, nine month old compost inoculated with a Nutri-Life 4/20™ inoculum, and two commercial preparations (LivingSoil™ and Nutri-Life 4/20™), all incubated for 48h. Nutri-Life 4/20™ had the highest concentrations of NO(3)(-)-N and K(+)-K, while rumen compost extract had higher humic and fulvic acids concentration. The bacterial and fungal community level functional diversity of three month old compost extract and of LivingSoil™, assessed with Biolog™, were higher than that of nine month old rumen compost extract, with or without Nutri-Life 4/20™ inoculum, or Nutri-Life 4/20™. No difference in fungal diversity was observed between treatments, as indicated by Denaturing Gradient Gel Electrophoresis (DGGE) analysis, however, bacterial diversity was higher in all compost extracts and LivingSoil™ compared to the Nutri-Life 4/20™. Criteria for judging the quality of a microbially enhanced extract are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Composting Phragmites australis Cav. plant material and compost effects on soil and tomato (Lycopersicon esculentum Mill.) growth.

    Science.gov (United States)

    Toumpeli, Anna; Pavlatou-Ve, Athina K; Kostopoulou, Sofia K; Mamolos, Andreas P; Siomos, Anastasios S; Kalburtji, Kiriaki L

    2013-10-15

    Composting organic residues is a friendly to the environment alternative to producing fertilizer. This research was carried out to study the process of composting Phragmites australis Cav. plant material alone or with animal manure on a pilot-scale, to evaluate firstly the quality of the composts produced and secondly, using a pot experiment, the effects of their application on soil physicochemical characteristics and tomato plants development. For the compost production a randomized complete block design was used with five treatments (five compost types) and four replications. For the pot experiment, a completely randomized design was used with 17 treatments (plain soil, soil with synthetic fertilizer and the application of five compost types, at three rates each) and five replications. Compost N increased with composting time, while C/N ratio decreased significantly and by the end it ranged from 43.3 for CM to 22.6 for CY. Compost pH became almost neutral, ranging from 6.73 for CY to 7.21 for CM3Y3AM4 by the end. Compost combinations CY7AM3 and CM7AM3 had a more positive influence on the soil physicochemical characteristics than the others. Soil N, P, Ca and Mg concentrations and the reduction of clay dispersion were the highest when CM7AM3 compost was added. The macro-aggregate stability was the highest for CY7AM3, which also sustained plant growth. The latter compost combination improved most of the soil physicochemical characteristics and plant growth especially, when the application rate was 4% (w/w), which equals to 156 Mg ha(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Accelerated In-vessel Composting for Household Waste

    Science.gov (United States)

    Bhave, Prashant P.; Joshi, Yadnyeshwar S.

    2017-12-01

    Composting at household level will serve as a viable solution in managing and treating the waste efficiently. The aim of study was to design and study household composting reactors which would treat the waste at source itself. Keeping this aim in mind, two complete mix type aerobic reactors were fabricated. A comparative study between manually operated and mechanically operated reactor was conducted which is the value addition aspect of present study as it gives an effective option of treatment saving the time and manpower. Reactors were loaded with raw vegetable waste and cooked food waste i.e. kitchen waste for a period of 30 days after which mulch was allowed to mature for 10 days. Mulch was analyzed for its C/N ratio, nitrate, phosphorous, potassium and other parameters to determine compost quality, every week during its period of operation. The results showed that compost obtained from both the reactors satisfied almost all compost quality criteria as per CPHEEO manual on municipal solid waste management and thus can be used as soil amendment to increase the fertility of soil.In terms of knowledge contribution, this study puts forth an effective way of decentralized treatment.

  17. Effect of pieces size of Empty Fruit Bunches (EFB) on composting of EFB mixed with activated liquid organic fertilizer

    Science.gov (United States)

    Trisakti, B.; Mhardela, P.; Husaini, T.; Irvan; Daimon, H.

    2018-02-01

    This research was to determine the effect of pieces sizes of oil palm empty fruit bunch (EFB) on the composting of EFB mixed with activated liquid organic fertilizer (ALOF) in a basket composter in order to obtain high quality compost. The composting process was started by cutting the EFB into pieces with varies sizes, inserting the EFB pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding ALOF until moisture content (MC) in the range of 55-65%. During composting, the compost pile was turned every 3 days and the MC was maintained at 55-65% range by adding the ALOF. The sizes of the EFB pieces were varied into <1, 1-3, 4-7, 8-11, and 12-15 cm. The parameters analysed during the composting were temperature, pH, MC, compost weight, water holding capacity (WHC), CN ratio, and the quality of the final compost. Composting was carried out for 40 days and the best result obtained at EFB pieces size was 1-3 cm with compost characteristic were pH 9.0; MC 52.59%; WHC 76%; CN ratio 12.15; N 1.96%; P 0.58%; and K 0. 95%.

  18. Composting

    Science.gov (United States)

    Stanley, Andrew; Turner, Geraldine

    2010-01-01

    Composting can provide both a means of managing organic waste, and a vehicle to teach Science at all levels of schooling. In response to a local organic waste issue a process has been developed to compost waste from an olive oil press and analyse the resultant compost. In this article, the composting process is described in a manner that can be…

  19. Evaluation of Cadmium, Lead and Zinc Content of Compost Produced in Babol Composting Plant

    Directory of Open Access Journals (Sweden)

    Fatemeh Asgharzadeh

    2014-03-01

    Full Text Available Background and purpose: The most important parameter is heavy metal contents in compost production technology. These heavy metals residue from substances like soap, detergents, cosmetics, packaging, leather and butteries are existed in municipal solid waste. The heavy metals can produce toxin for animal, human and plant. The aim of this research was study of produced compost quality based on heavy metals (Pb, Cd and Zn in Babol compost plant in 2012. Materials and Methods: The present research is a descriptive- cross sectional study in which was performed in six months. Total sample numbers (5 samples were randomly provided from final compost of Babol plant and then after extraction and filtration, the concentration of heavy metals like cadmium, lead and zinc was measured by atomic absorption spectrophotometer PG- 999. Results: In analyzed samples the maximum, minimum and average of cadmium in the final compost were 7.25, 0.47 and 1.9 mg/kg. The maximum, minimum and mean of lead were 239.2, 31.9 and 67.1 mg/kg; in zinc were 972.7, 483.5 and 603.7 mg/kg respectively. Conclusion: The concentration of heavy metals in Babol compost samples was under Iranian national and World Health Organization standards and could be used for different species of plants. However, the usability of compost depends on other parameters such as carbon to nitrogen and other components like glass, plastics and textiles.

  20. Biochar for composting improvement and contaminants reduction. A review.

    Science.gov (United States)

    Godlewska, Paulina; Schmidt, Hans Peter; Ok, Yong Sik; Oleszczuk, Patryk

    2017-12-01

    Biochar is characterised by a large specific surface area, porosity, and a large amount of functional groups. All of those features cause that biochar can be a potentially good material in the optimisation of the process of composting and final compost quality. The objective of this study was to compile the current knowledge on the possibility of biochar application in the process of composting and on the effect of biochar on compost properties and on the content of contaminants in compost. The paper presents the effect of biochar on compost maturity indices, composting temperature and moisture, and also on the content and bioavailability of nutrients and of organic and inorganic contaminants. In the paper note is also taken of the effect of biochar added to composted material on plants, microorganisms and soil invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Concentration and speciation of heavy metals in six different sewage sludge-composts

    International Nuclear Information System (INIS)

    Cai Quanying; Mo Cehui; Wu Qitang; Zeng Qiaoyun; Katsoyiannis, Athanasios

    2007-01-01

    This study presents the concentrations and speciation of heavy metals (HMs) in six different composts of sewage sludges deriving from two wastewater treatment plants in China. After 56 days of sludge composting with rice straw at a low C/N ratio (13:1), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were enriched in sludge composts, exhibiting concentrations that varied from 0.75 to 2.0, 416 to 458, 66 to 168 and 1356 to 1750 mg kg -1 dry weight (d.w.), respectively. The concentrations increased by 12-60% for Cd, 8-17% for Cu, 15-43% for Pb and 14-44% for Zn compared to those in sewage sludges. The total concentrations of individual or total elements in the final composts exceeded the maximum permissible limits proposed for compost or fertilizer. In all the final composts, more than 70% of total Cu was associated with organic matter-bound fraction, while Zn was mainly concentrated in exchangeable and Fe-Mn oxide-bound fractions which implied the high mobility and bioavailability. Continuously aerated composting treatment exhibited better compost quality and lower potential toxicity of HMs, whereas inoculant with microorganism and enzyme spiked during composting had no obvious advantage on humification of organic matter and on reducing HM mobility and bioavailability

  2. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    Science.gov (United States)

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  3. Valorization of beer brewing wastes by composting

    OpenAIRE

    Silva, Maria Elisabete; Brás, Isabel

    2017-01-01

    The aim of this work was to study the viability of recycling the residual yeast and diatomaceous earth (RYDE) slurry generated by the beer brewing industry by composting with animal manures, as well as to evaluate the quality of the composts obtained. Two pilot composting trials were carried out with different mixes: cow manure/RYDE slurry (Pile CM) and sheep manure/RYDE slurry (Pile SM). For all piles, wood chips were applied as bulking agent. The process was monitored b...

  4. Intelligent composting assisted by a wireless sensing network.

    Science.gov (United States)

    López, Marga; Martinez-Farre, Xavier; Casas, Oscar; Quilez, Marcos; Polo, Jose; Lopez, Oscar; Hornero, Gemma; Pinilla, Mirta R; Rovira, Carlos; Ramos, Pedro M; Borges, Beatriz; Marques, Hugo; Girão, Pedro Silva

    2014-04-01

    Monitoring of the moisture and temperature of composting process is a key factor to obtain a quality product beyond the quality of raw materials. Current methodologies for monitoring these two parameters are time consuming for workers, sometimes not sufficiently reliable to help decision-making and thus are ignored in some cases. This article describes an advance on monitoring of composting process through a Wireless Sensor Network (WSN) that allows measurement of temperature and moisture in real time in multiple points of the composting material, the Compo-ball system. To implement such measurement capabilities on-line, a WSN composed of multiple sensor nodes was designed and implemented to provide the staff with an efficient monitoring composting management tool. After framing the problem, the objectives and characteristics of the WSN are briefly discussed and a short description of the hardware and software of the network's components are presented. Presentation and discussion of practical issues and results obtained with the WSN during a demonstration stage that took place in several composting sites concludes the paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effects of Vermi-compost and Two Bacterial Bio-fertilizers on some Quality Parameters of Petunia

    Directory of Open Access Journals (Sweden)

    Mina Zarghami MOGHADAM

    2013-05-01

    Full Text Available The present research was conducted to study the effect of vermi-compost and two bio-fertilizer applications on growth, yield and quality of petunia (Petunia hybrida. The experiment laid out in randomized block design with 3 replications and 9 treatment combinations composing of vermi-compost, bio-fertilizers and NPK fertilizer. The treatment receiving Azospirillum sp. + Phosphate solubilizing bacterium + Vermicompost + NPK (25% of recommended dose recorded the highest plant height, number of branches, plant spread, leaf area index, dry matter accumulation and yield attributes such as number of flowers per plant, number of flowers per plot, flower yield/plant, flower yield/plot. The early flower bud initiation, 50 percent flowering and more flowering duration was achieved in the treatment receiving Azospirillum sp. + Phosphate solubilizing bacterium + Vermicompost + NPK (25% of recommended dose. Application of Azospirillum sp. + Phosphate solubilizing bacterium + Vermicompost + NPK (25% of recommended dose registered significantly higher quality parameters such as flower diameter.

  6. Effect of the time of application of phosphorus fertilizer on yield and quality parameters of melon crop amended with winery waste compost.

    Science.gov (United States)

    Requejo Mariscal, María Isabel; Cartagena, María Carmen; Villena Gordo, Raquel; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2016-04-01

    In Spain, drip irrigation systems are widely used for horticultural crop production. In drip irrigation systems, emitter clogging has been identified as one of the most important concerns. Clogging is closely related to the quality of the irrigation water and the structure of the emitter flow path, and occurs as a result of multiple physical, biological and chemical factors. So, the use of acid fertilizers (e.g. phosphoric acid) in these systems is common to avoid the emitter clogging. Moreover, in this country the use of exhausted grape marc compost as source of nutrients and organic matter has been identified as a good management option of soil fertility, especially in grape-growing areas with a large generation of wastes from the wine and distillery industries. The purpose of this work was to study the effect of the time of application of phosphorus fertilizer with fertirrigation in a melon crop amended with winery waste compost on yield and quality parameters. During two years, the melon crop was grown under field conditions and beside the control treatment, three doses of compost were applied: 6.7, 13.3 and 20.0 t ha-1. All the compost treatments received 120 kg ha-1 of phosphorus fertilizer (phosphoric acid) for the season varying the time of application: The first year phosphorus application started after male and female flowering, and the second year the application started before flowering. Yield and quality parameters were evaluated to assess the suitability of these practices. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03. Keywords: Phosphorus fertilizer, exhausted grape marc compost, melon crop, yield and quality parameters.

  7. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes

    International Nuclear Information System (INIS)

    Zhang Fabao; Gu Wenjie; Xu Peizhi; Tang Shuanhu; Xie Kaizhi; Huang Xu; Huang Qiaoyi

    2011-01-01

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a 'green' surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.

  8. Utilisation of Food and Woodworking Production By-products by Composting

    Directory of Open Access Journals (Sweden)

    Uldis Viesturs

    2004-10-01

    Full Text Available The purpose of the study was to develop laboratory-scale technologies for composting milk/cheese whey, spent liquor, brewery yeast, fish processing by-products, etc., adding these by-products and special microorganism associations to the basic material - sawdust, bark, etc., also arranging different experimental composting sites. Two Trichoderma strains (Tr. lignorum, Tr. viride and a nitrification association for regulating the circulation of nitrogen-ammonification and nitrification processes were applied. Monitoring of the composting quality was realised by microbiological and chemical analyses, and biotests for compost quality (toxicity assessment. For purifying the polluted air from the composting facilities, the biofiltration technique was realised in a modified SSF system. Biodegradation of ammonia was investigated in a two-stage system with the inert packing material - dolomite broken bricks, and hemoautotrophic microorganisms: DN-1 (Pseudomonas sp., DN-2 (Nitrosomonas sp., DN-3 (Nitrobacter sp. and DN-13 (Sarcina sp.. For hydrogen sulphide biodegradation, Thiobacillus thioparus-3 was immobilised on glass bricks as the carrier material. Biodegradation efficiency of hydrogen sulphide was 87%. Biodegradation of ammonia in the first step in the two-stage system reached 77%, degradation of the gas remaining in the second step was 75%. Compost's quality was similar to black soil - brown-coloured, with good soil odour and without toxic compounds.

  9. Recent developments in biochar utilization as an additive in organic solid waste composting: A review.

    Science.gov (United States)

    Xiao, Ran; Awasthi, Mukesh Kumar; Li, Ronghua; Park, Jonghwan; Pensky, Scott M; Wang, Quan; Wang, Jim J; Zhang, Zengqiang

    2017-12-01

    In recent years, considerable studies have been devoted to investigating the effect of biochar application on organic solid waste composting. This review provides an up-to-date overview of biochar amendment on composting processes and compost quality. Biochar production, characteristics, and its application coupled with the basic concepts of composting are briefly introduced before detailing the effects of biochar addition on composting. According to recent studies, biochar has exhibited great potential for enhancing composting. It is evident that biochar addition in composting can: (1) improve compost mixture physicochemical properties, (2) enhance microbial activities and promote organic matter decomposition, (3) reduce ammonia (NH 3 ) and greenhouse gas (GHG) emissions, and (4) upgrade compost quality by increasing the total/available nutrient content, enhancing maturity, and decreasing phytotoxicity. Despite that, further research is needed to explore the mechanism of biochar addition on composting and to evaluate the agricultural and environmental performances of co-composted biochar compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Indicator methods to evaluate the hygienic performance of industrial scale operating Biowaste Composting Plants.

    Science.gov (United States)

    Martens, Jürgen

    2005-01-01

    The hygienic performance of biowaste composting plants to ensure the quality of compost is of high importance. Existing compost quality assurance systems reflect this importance through intensive testing of hygienic parameters. In many countries, compost quality assurance systems are under construction and it is necessary to check and to optimize the methods to state the hygienic performance of composting plants. A set of indicator methods to evaluate the hygienic performance of normal operating biowaste composting plants was developed. The indicator methods were developed by investigating temperature measurements from indirect process tests from 23 composting plants belonging to 11 design types of the Hygiene Design Type Testing System of the German Compost Quality Association (BGK e.V.). The presented indicator methods are the grade of hygienization, the basic curve shape, and the hygienic risk area. The temperature courses of single plants are not distributed normally, but they were grouped by cluster analysis in normal distributed subgroups. That was a precondition to develop the mentioned indicator methods. For each plant the grade of hygienization was calculated through transformation into the standard normal distribution. It shows the part in percent of the entire data set which meet the legal temperature requirements. The hygienization grade differs widely within the design types and falls below 50% for about one fourth of the plants. The subgroups are divided visually into basic curve shapes which stand for different process courses. For each plant the composition of the entire data set out of the various basic curve shapes can be used as an indicator for the basic process conditions. Some basic curve shapes indicate abnormal process courses which can be emended through process optimization. A hygienic risk area concept using the 90% range of variation of the normal temperature courses was introduced. Comparing the design type range of variation with the

  11. Effect of Different Levels of Nitrogen Fertilizer and Vermi-Compost on Yield and Quality of Sweet Corn (Zea mays Hybrid Chase

    Directory of Open Access Journals (Sweden)

    S. Habibi

    2014-04-01

    Full Text Available In order to investigate the effect of source and rate of nitrogen fertilizer on yield and quality of sweet corn, a field study was conducted in 2011 cropping season in Agriculture Experiment Station of College of Agriculture, University of Guilan. A randomized complete block design with three replications was used. Treatment consisted of four levels of nitrogen fertilizer (0, 46, 92 and 138 kg N ha-1 and integrated N of chemical and biological (23 kg N ha-1 + 1 ton ha-1 Vermi-compost, 46 kg N ha-1 + 2 ton ha-1 Vermi-compost, and 69 kg N ha-1 +3 ton ha-1 Vermi-compost and organic sources (2, 4 and 6 ton ha-1. Effect of source and rate of nitrogen fertilizer on fresh ear yield, grain yield canned, grain protein amount and dry matter digestibility percent had significant. With increscent nitrogen at treatments nitrogen fertilizer, organic ant integrated farming yield fresh ear, grain yield, grain protein amount and dry matter digestibility percent increased. Maximum yield fresh ear was obtained with 69 kg N ha-1 + 3 ton ha-1 Vermi-compost with an average 14595.9 kg ha-1. Maximum forage yield and dry forage yield obtained with an average 18619.5 and 3593 kg ha-1 at treatment with 69 kg N ha-1 + 3 ton ha-1 Vermi-compost. Results of this research showed that the best grain yield and quality, and forage yield and quality of sweet corn were obtained in integrated farming and organic methods in Rasht region conditions and same climatology conditions.

  12. An Overview of Organic Waste in Composting

    Directory of Open Access Journals (Sweden)

    Kadir Aeslina Abdul

    2016-01-01

    Full Text Available This paper reviewed studies on the composting process of organic waste. Organic wastes are wastes that easily biodegradable. These wastes are produced from many sources such as agricultural waste, market waste, kitchen waste, urban solid food wastes and municipal solid waste. Without proper management, these waste could create several environment problem. Therefore, composting is the best low cost alternative solution to overcome this problem. Composting method can degrade all types of organic wastes like fruits, vegetables, plants, yard wastes and others. The composition from organic waste that could be used as nutrients for crops, soil additive and for environmental management. However, many factors can contribute to the quality of the compost products as different types of organic wastes have different concentrations of nutrients, nitrogen, phosphorous and potassium (N, P, K which are the common macro nutrients present in fertilizers. The presences of heavy metals show how composts can be applied to soils without contributing any ill effect. In term of the factor affecting the composting process, temperature, pH, moisture contents and carbon nitrogen ratio (C:N are the main parameters that contribute to the efficiency of the composting process.

  13. The Assessment of Municipal Solid Waste (MSW Compost Properties Produced in Sanandaj City with a View of Improving the Soil Quality and Health

    Directory of Open Access Journals (Sweden)

    Z. Sharifi

    2017-01-01

    Full Text Available Introduction: the use of municipal solid waste (MSW compost in agriculture as a soil conditioner is increasing day by day because of its positive effects on biological, physical, and chemical soil properties. However, some of the composts because of contamination with heavy metals and other impurities can have deleterious effects on groundwater quality, agricultural environment, food chain, plant growth and activity of soil microorganisms. Therefore, this study was conducted to investigate the physical and chemical properties, fertilizing potential and heavy metal polluting potential of two types of municipal solid waste composts with processing time between 4 to 8 years (type A and between1 to 4 years (type B produced in Sanandaj city with the aim of using it as an organic fertilizer. Materials and Methods: Sanadaj city, the center of Kurdistan province, with a population of about 335,000 is located in the west of Iran. The current solid waste generation from the city is about 320 t/day, which are not separated at source of generation. About 200 t of the total produced wastes are composted using an open windrows system at the Sanandaj MSW Composting Plant, which is located in 10 km of Sanadaj-Kamiaran road and the rest are disposed at the landfill site. The compost manufactured by the composting plant has been collected around it in two different locations. The first belonges to the product of 2004-2008 (type A and the second belonges to the product of 2009-2013 (type B. Till now, due to lack of quality information associated with these products, they have remained unused. Therefore, in this study, we sampled 3 samples composed of six subsamples (each containing 2 kg from the products in March 2013. The samples were analyzed to determine the physical properties (including undesirable impurities, initial moisture content, particle size distribution, particle density, bulk density (ρb, porosity, and maximum water holding capacity, and the

  14. Microbiological analysis of composts produced on South Carolina poultry farms.

    Science.gov (United States)

    Shepherd, M W; Liang, P; Jiang, X; Doyle, M P; Erickson, M C

    2010-06-01

    The purpose of this study was to determine whether the methods used in compost operations of small and medium-sized poultry farms resulted in the production of an amendment free of foodborne pathogens. Nine compost heaps on five South Carolina poultry farms were surveyed at different stages of the composting process. Compost samples were analysed for coliforms and enriched for Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes. The waste materials and composting practices differed among the surveyed farms. On two farms, new materials were added to heaps that had previously completed the active composting phase. Five compost heaps did not reach an internal temperature of 55 degrees C, and c. 62% of all internal samples in the first composting phase contained moisture contents poultry wastes. This research provides information regarding the effectiveness of the composting practices and microbiological quality of poultry compost produced by small- and medium-sized farms. Ensuring the safety of compost that may be applied to soils should be an integral part of preharvest food safety programme.

  15. Evaluation of maifanite and silage as amendments for green waste composting.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2018-04-23

    Composting is a popular method for recycling organic solid wastes including agricultural and forestry residues. However, traditional composting method is time consuming, generates foul smells, and produces an immature product. The effects of maifanite (MF; at 0%, 8.5%, and 13.5%) and/or silage (SG; at 0%, 25%, and 45%) as amendments on an innovative, two-stage method for composting green waste (GW) were investigated. The combined addition of MF and SG greatly improved composting conditions, reduced composting time, and enhanced compost quality in terms of composting temperature, bulk density, water-holding capacity, void ratio, pH, cation exchange capacity, ammonia nitrogen content, dissolved organic carbon content, crude fibre degradation, microbial numbers, enzyme activities, nutrient contents, and phytotoxicity. The two-stage composting of GW with 8.5% MF and 45% SG generated the highest quality and the most mature compost product and did so in only 21 days. With the optimized composting, the degradation rate of cellulose and hemicellulose reached 46.3 and 82.3%, respectively, and the germination index of Chinese cabbage and lucerne was 153 and 172%, respectively, which were all far higher than values obtained with the control. The combined effects of MF and SG on GW composting have not been previously explored, and this study therefore provided new and practical information. The comprehensive analyses of compost properties during and at the end of the process provided insight into underlying mechanisms. The optimized two-stage composting method may be a viable and sustainable alternative for GW management in that it converts the waste into a useful product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition.

    Science.gov (United States)

    Saidi, Neyla; Kouki, Soulwene; M'hiri, Fadhel; Jedidi, Naceur; Mahrouk, Meriam; Hassen, Abdennaceur; Ouzari, Hadda

    2009-01-01

    The aim of this study was to characterize the biological stability and maturity degree of compost during a controlled pile-composting trial of mixed vegetable residues (VR) collected from markets of Tunis City with residues of Posidonia oceanica (PoR), collected from Tunis beaches. The accumulation in beaches (as well as their removal) constitutes a serious environmental problem in all Mediterranean countries particularly in Tunisia. Aerobic-thermophilic composting is the most reasonable way to profit highly-valuable content of organic matter in these wastes for agricultural purposes. The physical, chemical, and biological parameters were monitored during composting over 150 d. The most appropriate parameters were selected to establish the maturity degree. The main result of this research was the deduction of the following maturity criterion: (a) C/N ratio 80%. These five parameters, considered jointly are indicative of a high maturity degree and thus of a high-quality organic amendment which employed in a rational way, may improve soil fertility and soil quality. The mature compost was relatively rich in N (13.0 g/kg), P (4.74 g/kg) and MgO (15.80 g/kg). Thus composting definitively constitutes the most optimal option to exploit these wastes.

  17. Effect of light Sphagnum peat on odour formation in the early stages of biowaste composting.

    Science.gov (United States)

    Kurola, Jukka M; Arnold, Mona; Kontro, Merja H; Talves, Matti; Romantschuk, Martin

    2010-05-01

    In the present study, we investigated the effects of two bulking materials, Sphagnum peat and pine wood chips, on the early stages of biowaste composting in two pilot-scale processes. Emphasis was placed on studying the formation conditions of malodorous compost gases in the initial phases of the processes. The results showed that gas emission leaving an open windrow and a closed drum composting system contained elevated concentrations of fermentative microbial metabolites when acid Sphagnum peat (pH 3.2) was used as a bulking material. Moreover, the gas emission of the peat amended drum composter contained a high concentration of odour (up to 450,000oum(-3) of air). The highest odour values in the outlet gas of peat amended composts coincided with the elevated concentrations of volatile organic compounds such as acetoin and buthanedion. We conclude that the acidifying qualities of composting substrates or bulking material may intensify odour emission from biowaste composts and prolong the early stages of the composting process. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Temperatures In Compost Landfill Covers As Result Of Methane Oxidation And Compost Respiration

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Merono, A. R.; Pedersen, Rasmus Broen

    2011-01-01

    This study investigated the influence of the temperature on methane (CH4) oxidation and respiration in compost sampled at a full scale biocover implemented at Klintholm landfill exhibiting high temperatures. Compost material was collected at Klintholm landfill and incubated with and without CH4...

  19. Housefly maggot-treated composting as sustainable option for pig manure management.

    Science.gov (United States)

    Zhu, Feng-Xiang; Yao, Yan-Lai; Wang, Su-Juan; Du, Rong-Guang; Wang, Wei-Ping; Chen, Xiao-Yang; Hong, Chun-Lai; Qi, Bing; Xue, Zhi-Yong; Yang, Hong-Quan

    2015-01-01

    In traditional composting, large amounts of bulking agents must be added to reduce the moisture of pig manure, which increases the cost of composting and dilutes the N, P and K content in organic fertilizers. In this study, maggot treatment was used in composting instead of bulking agents. In experiment of selecting an optimal inoculum level for composting, the treatment of 0.5% maggot inoculum resulted in the maximum yield of late instar maggots, 11.6% (maggots weight/manure weight). The manure residue became noticeably granular by day 6 and its moisture content was below 60%, which was suitable for further composting without bulking agents. Moreover, in composting experiment with a natural compost without maggot inoculum and maggot-treated compost at 0.5% inoculum level, there were no significant differences in nutrient content between the two organic fertilizers from the two treatments (paired Student's t15=1.0032, P=0.3317). Therefore, maggot culturing did not affect the characteristics of the organic fertilizer. The content of TNPK (total nitrogen+total phosphorus+total potassium) in organic fertilizer from maggot treatment was 10.72% (dry weight), which was far more than that of organic fertilizer made by conventional composting with bulking agents (about 8.0%). Dried maggots as feed meet the national standard (GB/T19164-2003) for commercial fish meal in China, which contained 55.32 ± 1.09% protein; 1.34 ± 0.02% methionine; 4.15 ± 0.10% lysine. This study highlights housefly maggot-treated composting can be considered sustainable alternatives for pig manure management to achieve high-quality organic fertilizer and maggots as feed without bulking agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Compost supplementation with nutrients and microorganisms in composting process.

    Science.gov (United States)

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  1. Co-composting of sewage sludge and Echinochloa pyramidalis (Lam.)

    African Journals Online (AJOL)

    Yaoundé-Cameroon) in order to assess the effect of three sewage sludge: Macrophyte ratios on the co-composting process and compost quality. The ratios were T1: 25 kg of plant material (Echinochloa pyramidalis) and 75 kg sludge; T2: 50 kg ...

  2. Feasibility of medical stone amendment for sewage sludge co-composting and production of nutrient-rich compost.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Awasthi, Sanjeev Kumar; Li, Ronghua; Zhao, Junchao; Ren, Xiuna; Wang, Meijing; Chen, Hongyu; Zhang, Zengqiang

    2018-06-15

    The feasibility of medical stone (MS) amendment as an innovative additive for dewatered fresh sewage sludge (DFSS) co-composting was assessed using a 130-L vessel-scale composter. To verify successful composting, five treatments were designed with four different dosages (2, 4, 6, and 10) % of MS with a 1:1 mixture (dry weight) of DFSS + wheat straw (WS). The WS was used as a bulking agent. A control without any amendment treatment was carried out for the purpose of comparison. For DFSS co-composting, the amendment with MS improved the mineralization efficiency and compost quality in terms of CO 2 emissions, dehydrogenase enzyme (DE), electrical conductivity (EC), water-solubility, and total nutrients transformation. The DTPA-extractable Cu and Zn were also estimated to confirm the immobilization ability of the applied MS. Seed germination and plant growth tests were conducted to ensure the compost stability and phytotoxicity for Chinese cabbage (Brassica rapa chinensis L.) growth and biomass, as well as chlorophyll content. The results showed that during the bio-oxidative phase, DOC, DON, AP, NH 4 + -N, and NO 3 - -N increased drastically in all the MS-blended treatments, except the application of 2% MS and the control treatment; significantly lower water-soluble nutrients were observed in the 2% MS and control treatments. A novel additive with 6-10% MS dosages considerably enhanced the organic matter conversion in the stable end-product (compost) and reduced the maturity period by two weeks compared to the 2% MS and control treatments. Consequently, the maturity parameters (e.g., EC, SGI, NH 4 + -N, DOC, and DON) confirmed that compost with 6-10% MS became more stable and mature within four weeks of DFSS co-composting. At the end of composting, significantly higher DTPA-extractable Cu and Zn contents were observed in the control treatment, and subsequently, in the very low application (10%) of MS. Higher MS dosage lowered the pH and EC to within the permissible

  3. Study and assessment of segregated biowaste composting: The case study of Attica municipalities.

    Science.gov (United States)

    Malamis, D; Bourka, A; Stamatopoulou, Ε; Moustakas, K; Skiadi, O; Loizidou, M

    2017-12-01

    This work aims to assess the operation of the first large scale segregated biowaste composting scheme in Greece to divert Household Food Waste (HFW) from landfill and produce a material which can be recovered and used as compost. The source separation and collection of HFW was deployed in selected areas in Attica Region serving about 3700 households. Sorted HFW is collected & transported to the Mechanical and Biological Treatment (MBT) plant in Attica Region that has been designed to produce Compost Like Output (CLO) from mixed MSW. The MBT facility has been adjusted in order to receive and treat aerobically HFW mixed with shredded green waste in a dedicated composting tunnel. The composting process was monitored against temperature, moisture and oxygen content indicating that the biological conditions are sufficiently developed. The product quality was examined and assessed against the quality specifications of EU End of Waste Criteria for biowaste subjected to composting aiming to specify whether the HFW that has undergone recovery ceases to be waste and can be classified as compost. More specifically, the heavy metals concentrations (Cr, Cu, Ni, Cd, Pb, Zn and Hg) are within the set limits and much lower compared to the CLO material that currently is being produced at the MBT plant. In regard to the hygienic requirements of the product it has been found that the process conditions result in a pathogen free material (i.e. E. Coli and Salmonella) which does not favor the growth of viable weeds and plant propagules, while it acquires sufficient organic matter content for soil fertilization. Noticeable physical impurities (mainly fractions of glass) have been detected exceeding the quality control threshold limit of 0.5% w/w (plastics, metals and glass). The latter is related to the missorted materials and to the limited pre-treatment configurations prior to composting. The above findings indicate that effective source separation of biowaste is prerequisite for

  4. Effects of mixing and covering with mature compost on gaseous emissions during composting.

    Science.gov (United States)

    Luo, Wen Hai; Yuan, Jing; Luo, Yi Ming; Li, Guo Xue; Nghiem, Long D; Price, William E

    2014-12-01

    This study investigated effects of mature compost on gaseous emissions during composting using pig manure amended with corn stalks. Apart from a control treatment, three treatments were conducted with the addition of 5% (wet weight of raw materials) of mature compost: (a) mixing raw materials with mature compost at the beginning of composting; (b) covering raw materials with mature compost throughout the experimental period; and (c) covering raw materials with mature compost at the start of composting, but incorporating it into composting pile on day 6 of composting. Mature compost used for the last treatment was inoculated with 2% (wet weight) of raw materials of strain M5 (a methanotrophic bacterium) solution. During 30-d of composting, three treatments with the addition of mature compost could reduce CH4 emission by 53-64% and N2O emission by 43-71%. However, covering with mature compost throughout the experimental period increased cumulative NH3 emission by 61%, although it could reduce 34% NH3 emission in the first 3d. Inoculating strain M5 in mature compost covered on the top of composting pile within first 6d enhanced CH4 oxidation, but simultaneously increased N2O emission. In addition, mixing with mature compost could improve compost maturity. Given the operational convenience in practice, covering with mature compost and then incorporating it into composting pile is a suitable approach to mitigate gaseous emissions during composting. Copyright © 2014. Published by Elsevier Ltd.

  5. Effects of earthworm casts and zeolite on the two-stage composting of green waste

    International Nuclear Information System (INIS)

    Zhang, Lu; Sun, Xiangyang

    2015-01-01

    Highlights: • Earthworm casts (EWCs) and clinoptilolite (CL) were used in green waste composting. • Addition of EWCs + CL improved physico-chemical and microbiological properties. • Addition of EWCs + CL extended the duration of thermophilic periods during composting. • Addition of EWCs + CL enhanced humification, cellulose degradation, and nutrients. • Combined addition of 0.30% EWCs + 25% CL reduced composting time to 21 days. - Abstract: Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21 days with the optimized two-stage composting method rather than in the 90–270 days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL

  6. Effects of earthworm casts and zeolite on the two-stage composting of green waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu, E-mail: zhanglu1211@gmail.com; Sun, Xiangyang, E-mail: xysunbjfu@gmail.com

    2015-05-15

    Highlights: • Earthworm casts (EWCs) and clinoptilolite (CL) were used in green waste composting. • Addition of EWCs + CL improved physico-chemical and microbiological properties. • Addition of EWCs + CL extended the duration of thermophilic periods during composting. • Addition of EWCs + CL enhanced humification, cellulose degradation, and nutrients. • Combined addition of 0.30% EWCs + 25% CL reduced composting time to 21 days. - Abstract: Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21 days with the optimized two-stage composting method rather than in the 90–270 days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL.

  7. Fractionation characterization and speciation of heavy metals in composts and compost and compost-amended soils

    International Nuclear Information System (INIS)

    Lwegbue, C. M.A.; Emuh, F.N.; Isirimah, N.O.; Egun, A.C.

    2007-01-01

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation and chemical extraction. Chemical extraction schemes are most frequently used approach to fractionate trace metals in soils, sewage sludge and composts. Several variations exist in the sequential extraction procedures. These variations include reagent types, strength, volume and extraction time. A main drawback shared by all sequential extraction schemes is that the procedures themselves are complex and time consuming. This setback has been overcome by the use of ultrasound accelerated extraction which reduce the extraction time for the entire extraction steps to about 90 minutes allowing composting process to be monitored more frequently which help to provide detailed understanding of the partitioning behaviour of heavy metals. Inspite of the variability the sequential extraction schemes, they all aimed at correlating each fraction with the mobility and plant availability of each metal. Several studies have shown that phase association of heavy metal in composts include water-soluble, exchangeable, precipitated as discrete phases, co-precipitate in metal oxides and adsorbed or complexed by organic ligands and residual forms. The phase association and solubility of metals changes over composting time thereby altering metal availability. It is apparent that the positive effects of resulting from compost application far outweigh the negative effect, but more research is needed on a wide range of municipal solid waste compost with more precise determination of the fate of municipal solid waste compost applied trace metals in the environment. (author)

  8. Qualidade de esterco de ave poedeira submetido a dois tipos de tratamentos de compostagem Quality of poultry manure submitted to two types of composting treatments

    Directory of Open Access Journals (Sweden)

    Fabiano G. dos Santos

    2010-10-01

    Full Text Available Neste trabalho se avaliou a qualidade de compostos de esterco de ave poedeira produzidos em pilhas de compostagem e se testaram os seguintes tratamentos: 1 sem gesso e sem revolvimento; 2 com gesso e sem revolvimento; 3 sem gesso e com revolvimento e 4 com gesso e com revolvimento. Para avaliar a qualidade dos compostos foram considerados os padrões do Ministério de Agricultura, Pecuária e Abastecimento (MAPA, estabelecidos para ovos e larvas de helmintos, Salmonella sp, coliformes totais e fecais, Cd, Cr, Ni, Pb, Se, C, N, umidade, relações C:N, C:CTC (Capacidade de troca de cátions e pH. Os compostos obtidos nas pilhas revolvidas atenderam aos padrões de qualidade, exceto o teor de C, que foi menor. Nos compostos das pilhas com gesso e não revolvidas, o teor deste elemento excedeu o mínimo exigido mas os valores de N, de ovos de helmintos e de umidade, não corresponderam ao padrão do MAPA. Os teores de metais e de Se dos compostos foram menores que o máximo permitido, exceto o de Cd, cujo teor foi elevado no esterco utilizado nas pilhas sem gesso. Este aditivo decresceu o valor do pH dos compostos e aumentou o teor de N das pilhas não revolvidas. Em relação a todos os atributos avaliados, os melhores compostos foram obtidos nas pilhas revolvidas.The quality of poultry manure composts obtained from composting heaps were evaluated, in the following treatments: 1 without gypsum and turning; 2 without gypsum and with turning; 3 with gypsum and turning; 4 with gypsum and without turning. The quality of composts was evaluated with the Department of Agricultural (DA standards established to the occurrence of eggs and grubs of helminthes, Salmonella sp, fecal and total coliforms, Cd, Cr, Ni, Pb, Se, C, N, humidity, C:N and C:CEC rations, and pH. The quality of composts from the turned heaps agrees with the DA standards, except the C content, which was lower. In the composts obtained from heaps with gypsum addition and without turner

  9. Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting.

    Science.gov (United States)

    Kumari, Priyanka; Lee, Joonhee; Choi, Hong-Lim

    2016-04-01

    We studied airborne contaminants (airborne particulates and odorous compounds) emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC) and aerated static pile composting (SAPC). In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles), volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1) were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS) and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems.

  10. Influence of in-house composting of reused litter on litter quality, ammonia volatilisation and incidence of broiler foot pad dermatitis.

    Science.gov (United States)

    Martins, R S; Hötzel, M J; Poletto, R

    2013-01-01

    1. The objectives of this study were to evaluate the residual effects of two windrow composting methods for reused litter on its quality (pH, moisture, ammonia), ammonia (NH3) volatilisation and the prevalence (scores 0-4) of foot pad dermatitis (FPD) and hock burn (HB) on d 1, 7, 14 and 21 of age in broilers. Litter was allowed to compost for 8 d within a 14-d interval between flocks. 2. The composting methods studied were with or without a PVC plastic sheet. The same procedures were applied for three consecutive flocks, with litter initially having been used for 12 flocks. Data were analysed with a mixed model of repeated measures of day, with main effects and interactions of day, composting method, litter age (block) and house nested within method. 3. At d 1, litter NH3 and NH3 volatilisation were higher in the covered litter method. Litter moisture increased to 45.3% as broilers aged. The incidence of FPD also increased with age. No signs of HB were found in any bird throughout the trials. 4. There was no effect of litter composting methods on the prevalence of FPD or body weight at any age. 5. Litter moisture should be controlled to avoid NH3 volatilisation reaching critical levels. Windrow composting of litter with a PVC plastic sheet may not be required when considering the broiler housing environment.

  11. Integration of a Communal Henhouse and Community Composter to Increase Motivation in Recycling Programs: Overview of a Three-Year Pilot Experience in Noáin (Spain

    Directory of Open Access Journals (Sweden)

    Francesco Storino

    2018-03-01

    Full Text Available This paper presents a three-year pilot experience of a new municipal waste management system developed in Navarre, Spain that integrates composting and hens. The aim of this new system is to motivate the general public to participate more in waste prevention programs. The Composter-Henhouse (CH is a compact facility comprised of a henhouse and three composters. This is shared by 30 families who provide the organic part of their kitchen waste to feed the hens. Hens help speed up the composting process by depositing their droppings and turning the organic residue into compost. This study assesses the CH in terms of treatment capacity, the technical adequacy of the composting process, the quality and safety of the compost obtained and some social aspects. Over three years, the CH has managed nearly 16.5 tons of organic waste and produced approximately 5600 kg of compost and more than 6000 high-quality fresh eggs. No problems or nuisances have been reported and the level of animal welfare has been very high. The follow up of the composting process (temperature, volume reduction and compost maturity and a physicochemical and microbiological analysis of the compost have ensured the proper management of the process. The level of involvement and user satisfaction has been outstanding and the project has presented clear social benefits.

  12. Effects of bean dregs and crab shell powder additives on the composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2018-07-01

    Composting is an effective and economic technology for the recycling of organic waste. In this study, bean dregs (BD) (at 0, 35, and 45%) and crab shell powder (CSP) (at 0, 15, and 25%) were evaluated as additives during the two-stage composting of green waste (GW). The GW used in this experiment mainly consisted of branch cuttings collected during the maintenance of the urban green landscape. Combined additions of BD and CSP improved composting conditions and compost quality in terms of composting temperature, specific surface area, average pore diameter, pH and EC values, carbon dioxide release, ammonia and nitrous oxide emissions, E 4 /E 6 ratio, elemental composition and atomic ratios, organic matter degradation, microbial numbers, enzyme activities, compost phytotoxicity, and environmental and economic benefits. The combined addition of 35% BD and 25% CSP to the two-stage composting of GW resulted in the highest quality compost product in only 22 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Composite Compost Produced from Organic Waste

    Directory of Open Access Journals (Sweden)

    Lăcătuşu Radu

    2016-10-01

    Full Text Available The soil fertilization in ecological agriculture is done mostly using organic fertilizers. Some of them are prepared as compost from waste, but other haven’t, until now, any recycling possibility. In this context, for the preparation of new types of compost, we used three type of waste: sewage sludge from waste water treatment, marine algae and farmyard manure. We have made four different composting variants, each consisting of different proportions of the three waste: equal parts (33.33% of each waste, 50% of each of the three wastes separately, the difference being made up in equal amounts (25% of the other two wastes. Composting process was performed in Könemann silos (cubs with side by 1.20m and lasted 60 days, from July 19 until September 16, when the composted material has passed the stages of reduction and oxidation. During composting process, in the reductive stage the material has reached a temperature up to 63°C Celsius, enough heat for its sterilization. Initial material, semi composted and final composted material were been chemical analyzed, especially in terms of macro- and microelements, analytical results revealing high and normal content of such chemicals. Therefore the achieved compost could be used in organic farming systems.

  14. Assessment of bacterial diversity during composting of agricultural byproducts

    Science.gov (United States)

    2013-01-01

    Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of different agricultural byproducts like wheat bran, rice bran, rice husk, along with grass clippings and bulking agents. Here it has been attempted to assess the diversity of culturable bacteria during composting of agricultural byproducts. Results The culturable bacterial diversity was assessed during the process by isolating the most prominent bacteria. Bacterial population was found to be maximum during the mesophilic phase, but decreased during the thermophilic phase and declined further in the cooling and maturation phase of composting. The bacterial population ranged from 105 to 109 cfu g-1 compost. The predominant bacteria were characterized biochemically, followed by 16S rRNA gene sequencing. The isolated strains, both Gram-positive and Gram-negative groups belonged to the order Burkholderiales, Enterobacteriales, Actinobacteriales and Bacillales, which includes genera e.g. Staphylococcus, Serratia, Klebsiella, Enterobacter, Terribacillus, Lysinibacillus Kocuria, Microbacterium, Acidovorax and Comamonas. Genera like Kocuria, Microbacterium, Acidovorax, Comamonas and some new species of Bacillus were also identified for the first time from the compost made from agricultural byproducts. Conclusion The use of appropriate nitrogen amendments and bulking agents in composting resulted in good quality compost. The culture based strategy enabled us to isolate some novel bacterial isolates like Kocuria, Microbacterium, Acidovorax and Comamonas first time from agro-byproducts compost

  15. Effects of drying pretreatment and particle size adjustment on the composting process of discarded flue-cured tobacco leaves.

    Science.gov (United States)

    Zhao, Gui-Hong; Yu, Yan-Ling; Zhou, Xiang-Tong; Lu, Bin-Yu; Li, Zi-Mu; Feng, Yu-Jie

    2017-05-01

    The main characteristic of discarded flue-cured tobacco leaves is their high nicotine content. Aerobic composting is an effective method to decrease the nicotine level in tobacco leaves and stabilize tobacco wastes. However, high levels of nicotine in discarded flue-cured tobacco leaves complicate tobacco waste composting. This work proposes a drying pretreatment process to reduce the nicotine content in discarded flue-cured tobacco leaves and thus enhance its carbon-to-nitrogen ratio to a suitable level for composting. The effect of another pretreatment method, particle size adjustment, on composting efficiency was also tested in this work. The results indicated that the air-dried (nicotine content: 1.35%) and relatively long discarded flue-cured tobacco leaves (25 mm) had a higher composting efficiency than damp (nicotine content: 1.57%) and short discarded flue-cured tobacco leaves (15 mm). When dry/25 mm discarded flue-cured tobacco leaves mixed with tobacco stems in an 8:2 ratio was composted at a temperature above 55 °C for 9 days, the nicotine content dropped from 1.29% to 0.28%. Since the discarded flue-cured tobacco leaves was successfully composted to a fertile and harmless material, the germination index values increased to 85.2%. The drying pretreatment and particle size adjustment offered ideal physical and chemical conditions to support microbial growth and bioactivity during the composting process, resulting in efficient conversion of discarded flue-cured tobacco leaves into a high quality and mature compost.

  16. Composting of Sewage Sludge Using Recycled Matured Compost as a Single Bulking Agent

    Science.gov (United States)

    Zhang, Xiangyang; Ren, Jian; Niu, Huasi; Wu, Xingwu

    2010-11-01

    Pretreatment (bulking agent choice and mixing) is an essential phase of dewatered raw sludge (RS) composting affecting its industrialization significantly. In this paper recycled compost (RC) was chosen as a single bulking agent in the composting experiment instead of other agents such as sawdust, rice straw, MSW, and the mixing machine was developed for mixing of SS and RC. According to the mixing experiment, SS and RC can be mixed uniformly and formed into small particles of 10˜15 mm in diameter, which improved the availability of oxygen during composting. The effect of different volumetric ratios of RS to RC, 1:1 (Exp.1), 1:2 (Exp.2) and 1:4 (Exp.3), on the performance of composting was investigated in detail. Temperature, oxygen consumption rate, organic matter, C/N ratio and moisture content were monitored in each experiment. In despite of low initial C/N of the mixture, intensive fermentation happened in all the experiments. Exp.1 and Exp.2 achieved stability and sanitization, but Exp 1 took more days to accomplish the fermentation. Exp 3 maintained thermophilic temperatures for a shortest time and did not satisfy the necessary sanitation requirements because more RC was recycled. In all experiments, the moisture content of their final composts were too high to be used as bulking agents before extra moisture was reduced. RS: RC = 1:2 (v/v) was the optimum and advisable proportion for the industrialization of sewage sludge composting of, the composting period was about 10 days, and the aeration rate 0.05 m3/(m3ṡmin) was appropriate in this study.

  17. Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting

    Directory of Open Access Journals (Sweden)

    Priyanka Kumari

    2016-04-01

    Full Text Available We studied airborne contaminants (airborne particulates and odorous compounds emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC and aerated static pile composting (SAPC. In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles, volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1 were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems.

  18. Compost-amended biofiltration swale evaluation.

    Science.gov (United States)

    2011-09-01

    From May 2009 through June 2010, Herrera Environmental Consultants conducted hydrologic : and water quality monitoring of a compost-amended biofiltration swale and a standard (control) : biofiltration swale in the median of State Route 518 for the Wa...

  19. Composting and compost utilization: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo

    2009-11-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.

  20. TPK Sarimukti, Cipatat, West Bandung compost toxicity test using Allium test

    Energy Technology Data Exchange (ETDEWEB)

    Wardini, Trimurti Hesti; Notodarmojo, Peni Astrini [Biology Study Program, School of Life Science and Technology, Bandung Institute of Technology (Indonesia)

    2015-09-30

    TPK Sarimukti, Cipatat, West Bandung produced 2 kinds of compost from traditional market waste, liquid and solid compost. The aim of this research is to evaluate toxicity of compost produced in TPK Sarimukti using shallots (Allium cepa). Tests carried out by treated shallots with liquid compost (2,5%, 5%, 10% and 12,5% (w/v)) or solid compost (25%, 50%, 75% and 100% (w/v)) for 48 hours. Results showed reduced root growth rate and mitotic index (MI) in accordance with increased concentrations of compost. Sub lethal concentrations are liquid compost 5% and 10% and solid compost 75%. Lethal concentrations are liquid compost 12,5 % and solid compost 100%. Micronuclei (MN) increased with increase in liquid compost concentration. MN found at very high frequencies in highest solid compost concentration (100%), but very low at lower concentrations. Cells with binuclei and cell necrosis increased with increasing concentrations of given compost. Nuclear anomalies (NA) found in high frequency in 75% and 100% solid compost. Based on research, we can conclude that liquid compost is more toxic because it can reduce MI and root growth rate at lower concentrations than solid compost. Both types of compost have genotoxic properties because it can induce chromosome aberration (CA), MN, binuclei and NA formation.

  1. Remediation of metal polluted mine soil with compost: Co-composting versus incorporation

    International Nuclear Information System (INIS)

    Tandy, Susan; Healey, John R.; Nason, Mark A.; Williamson, Julie C.; Jones, Davey L.

    2009-01-01

    Trace element contamination of post-industrial sites represents a major environmental problem and sustainable management options for remediating them are required. This study compared two strategies for immobilizing trace elements (Cu, Pb, Zn, and As) in mine spoil: (1) co-composting contaminated soil with organic wastes and (2) conventional incorporation of mature compost into contaminated soil. Sequential chemical extraction of the soil was performed to determine temporal changes in trace element fractionation and bioavailability during composting and plant growth. We show that mine spoil can be co-composted successfully and this action causes significant shifts in metal availability. However, co-composting did not lead to significant differences in metal partitioning in soil or in plant metal uptake compared with simply mixing mine spoil with mature compost. Both treatments promoted plant growth and reduced metal accumulation in plants. We conclude that co-composting provides little additional benefit for remediating trace-element-polluted soil compared with incorporation of compost. - Co-composting did not provide enhanced stabilization of trace elements over the conventional addition of compost to contaminated land

  2. Temperature control strategy to enhance the activity of yeast inoculated into compost raw material for accelerated composting.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Hirai, Hidehira

    2017-07-01

    The effects of inoculating the mesophilic yeast Pichia kudriavzevii RB1, which is able to degrade organic acids, on organic matter degradation in composting were elucidated. When model food waste with high carbohydrate content (C/N=22.3) was used, fluctuation in the inoculated yeast cell density was observed, as well as fluctuation in the composting temperature until day 5 when the temperature rose to 60°C, which is lethal for the yeast. After the decrease in yeast, acetic acid accumulated to levels as high as 20mg/g-ds in the composting material and vigorous organic matter degradation was inhibited. However, by maintaining the temperature at 40°C for 2days during the heating phase in the early stage of composting, both the organic acids originally contained in the raw material and acetic acid produced during the heating phase were degraded by the yeast. The concentration of acetic acid was kept at a relatively low level (10.1mg/g-ds at the highest), thereby promoting the degradation of organic matter by other microorganisms and accelerating the composting process. These results indicate that temperature control enhances the effects of microbial inoculation into composts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. CHNS ANALYSIS TOWARDS FOOD WASTE IN COMPOSTING

    Directory of Open Access Journals (Sweden)

    Abdul Rahman

    2018-01-01

    Full Text Available High food waste generation in Malaysia that reached up to 15, 000 tonnes per day assign for major problems towards environment, economy and social aspect. Alternative method had been studied for the past years, but composting was seen among the best possible solution to treat this matter. Composting not only has an environmentally method but it also produces a valuable end product that will benefit in agricultural sector. Further studies had been done in this paper to represent their macro and micro nutrient quality as well as their bioavailability towards plant and the analysis of data collected in both CHNS analyser and mathematical method using ultimate analysis. This study also applied enhanced composting process with its segregation, drying, grinding and standard aeration time. Each container has been rotated for 5 minutes yet different resting time was applied which are 25, 55, 155 minutes namely A, B, C and D within 2 hours period. Result shown that overall Carbon (C, Nitrogen (N and Sulphur (S concentration increases as the higher aeration was applied while the Hydrogen vice versa. The highest elemental percentage distribution recorded is carbon (31% while the lowest recorded is S (0.115%. The data collected from Ultimate Analysis was seen not applicable to be use as it has the same content as food waste after composting. The compound molecular formula recorded was C29H7N5S. Regarding ratio of carbon to nitrogen results, it was found that it ranged from 5.39 to 5.71% for different compost treatment under study, where the lowest value of C and N ratio (5.39% for sample C and the highest value (5.71% was obtained for sample B with all has the same C/N ratio which is 6: 1 which suitable range in application of soil amendment. Therefore, this study found a significant relationship between chemical factors and compost formation which contribute to better analysis, especially to food waste management.

  4. Assessment of co-composting process with high load of an inorganic industrial waste.

    Science.gov (United States)

    Soares, Micaela A R; Quina, Margarida J; Reis, Marco S; Quinta-Ferreira, Rosa

    2017-01-01

    This study aims to investigate the co-composting of an inorganic industrial waste (eggshell - ES) in very high levels (up to 60% w/w). Since composting is a process in which solid, liquid and gaseous phases interact in a very complex way, there is a need to shed light on statistical tools that can unravel the main relationships structuring the variability associated to this process. In this study, PCA and data visualisation were used with that purpose. The co-composting tests were designed with increasing quantities of ES (0, 10, 20, 30 and 60%ES w/w) mixed with industrial potato peel and rice husks. Principal component analysis showed that physical properties like free air space, bulk density and moisture are the most relevant variables for explaining the variability due to ES content. On the other hand, variability in time dynamics is mostly driven by some chemical and phytoxicological parameters, such as organic matter decay and nitrate content. Higher ES incorporation (60% ES) enhanced the initial biological activity of the mixture, but the higher bulk density and lower water holding capacity had a negative effect on the aerobic biological activity as the process evolved. Nevertheless, pathogen-killing temperatures (>70°C for 11h) were attained. All the final products obtained after 90days were stable and non-phytotoxic. This work proved that valorisation of high amounts of eggshell by co-composting is feasible, but prone to be influenced by the physical properties of the mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Microbial additives in the composting process

    Directory of Open Access Journals (Sweden)

    Noelly de Queiroz Ribeiro

    Full Text Available ABSTRACT Composting is the process of natural degradation of organic matter carried out by environmental microorganisms whose metabolic activities cause the mineralization and partial humification of substances in the pile. This compost can be beneficially applied to the soil as organic fertilizer in horticulture and agriculture. The number of studies involving microbial inoculants has been growing, and they aim to improve processes such as composting. However, the behavior of these inoculants and other microorganisms during the composting process have not yet been described. In this context, this work aimed to investigate the effects of using a microbial inoculum that can improve the composting process and to follow the bacterial population dynamics throughout the process using the high-resolution melt (HRM technique. To do so, we analysed four compost piles inoculated with Bacillus cereus, Bacillus megaterium, B. cereus + B. megaterium and a control with no inoculum. The analyses were carried out using samples collected at different stages of the process (5th to 110th days. The results showed that the bacterial inocula influenced the process of composting, altering the breakdown of cellulose and hemicelluloses and causing alterations to the temperature and nitrogen levels throughout the composting process. The use of a universal primer (rDNA 16S allowed to follow the microbial succession during the process. However, the design of a specific primer is necessary to follow the inoculum throughout the composting process with more accuracy.

  6. Production of well-matured compost from night-soil sludge by an extremely short period of thermophilic composting.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Ohtaki, Akihito; Takemoto, Minoru; Fujiwara, Shunrokuro

    2011-03-01

    The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60°C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (E(C)), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., E(C)=10% and 20%). It was found that the larger the E(C), the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Product quality and microbial dynamics during vermicomposting and maturation of compost from pig manure.

    Science.gov (United States)

    Villar, Iria; Alves, David; Mato, Salustiano

    2017-11-01

    This research evaluates, through microbial dynamics, the use of earthworms Eisenia andrei for maturation of pre-composted pig manure in comparison with maturation under static conditions and with vermicomposting of fresh pig manure. Therefore, two substrates were used (fresh and pre-composted pig manure) and four treatments were developed: fresh manure vermicomposting, control of fresh manure without earthworms, pre-composting followed by vermicomposting and static maturation of pre-composted manure. In order to determine the microbial dynamics, the enzymatic activities and profiles of phospholipid fatty acids (PLFAs) were evaluated over a 112-days period. Physicochemical and biological parameters of the obtained products were also analyzed. The presence of earthworms significantly reduced (pquality values, it is necessary to optimize the vermicompost aging phase period to improve the stability. Static maturation presented stability on microbial dynamics that indicated a slow degradation of organic compounds so that, maturation of pre-composted manure through vermicomposting is better option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of the raw materials and mixing ratio of composted wastes on the dynamic of organic matter stabilization and nitrogen availability in composts of Sub-Saharan Africa.

    Science.gov (United States)

    Kaboré, Théodore Wind-Tinbnoma; Houot, Sabine; Hien, Edmond; Zombré, Prosper; Hien, Victor; Masse, Dominique

    2010-02-01

    The effect of raw materials and their proportions in initial mixtures on organic matter (OM) stabilization and nitrogen (N) availability during pit composting in Sub-Saharan Africa was assessed using biochemical fractionation and laboratory incubations to characterize composts sampled throughout the composting process. Stabilization of OM occurred more rapidly in mixtures with slaughter-house wastes, it was progressive in mixture with household refuses while tree leaves compost remained unstable. Carbon mineralization from compost samples was positively correlated to water soluble and hemicellulose-like organic fractions. Mixtures containing large proportions of household refuses reached the highest stability and total N but available N remained weak. Slaughter-house wastes in the initial mixtures made possible to reach good OM stabilization and the largest N availability. The nature of initial mixing influenced composting parameters, OM stabilization and N availability. It is suggested mixing household refuses and slaughter-house wastes with tree leaves to reach better amending and fertilizer qualities of composts.

  9. ASSESSMENT OF THE BACTERIOLOGICAL QUALITY OF COMPOST FROM A YARD WASTE PROCESSING FACILITY

    Science.gov (United States)

    Citizen concern over possible pathogenic microorganism contamination in compost and in a runoff collection pond prompted a U.S. Environmental Protection Agency (EPA) investigation. One out of eight samples collected from the distribution pile at a yard waste compost processing f...

  10. The relative isotopic abundance (δ13C, δ15N) during composting of agricultural wastes in relation to compost quality and feedstock.

    Science.gov (United States)

    Inácio, Caio T; Magalhães, Alberto M T; Souza, Paulo O; Chalk, Phillip M; Urquiaga, Segundo

    2018-05-01

    Variations in the relative isotopic abundance of C and N (δ 13 C and δ 15 N) were measured during the composting of different agricultural wastes using bench-scale bioreactors. Different mixtures of agricultural wastes (horse bedding manure + legume residues; dairy manure + jatropha mill cake; dairy manure + sugarcane residues; dairy manure alone) were used for aerobic-thermophilic composting. No significant differences were found between the δ 13 C values of the feedstock and the final compost, except for dairy manure + sugarcane residues (from initial ratio of -13.6 ± 0.2 ‰ to final ratio of -14.4 ± 0.2 ‰). δ 15 N values increased significantly in composts of horse bedding manure + legumes residues (from initial ratio of +5.9 ± 0.1 ‰ to final ratio of +8.2 ± 0.5 ‰) and dairy manure + jatropha mill cake (from initial ratio of +9.5 ± 0.2 ‰ to final ratio of +12.8 ± 0.7 ‰) and was related to the total N loss (mass balance). δ 13 C can be used to differentiate composts from different feedstock (e.g. C 3 or C 4 sources). The quantitative relationship between N loss and δ 15 N variation should be determined.

  11. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration.

    Science.gov (United States)

    Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin

    2009-10-01

    Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.

  12. Struvite for composting of agricultural wastes with termite mound: Utilizing the unutilized.

    Science.gov (United States)

    Karak, Tanmoy; Sonar, Indira; Nath, Jyoti Rani; Paul, Ranjit Kumar; Das, Sampa; Boruah, Romesh Kumar; Dutta, Amrit Kumar; Das, Kuntal

    2015-01-01

    Although, compost is the store house of different plant nutrients, there is a concern for low amount of major nutrients especially nitrogen content in prepared compost. The present study deals with preparation of compost by using agricultural wastes with struvite (MgNH4PO4·6H2O) along with termite mound. Among four composting mixtures, 50kg termite mound and 2.5kg struvite with crop residues (stover of ground nut: 361.65kg; soybean: 354.59kg; potato: 357.67kg and mustard: 373.19kg) and cow dung (84.90kg) formed a good quality compost within 70days of composting having nitrogen, phosphorus and potassium as 21.59, 3.98 and 34.6gkg(-1), respectively. Multivariate analysis of variance revealed significant differences among the composts. The four composts formed two (pit 1, pit 2 and pit 3, pit 4) different groups. Two principal components expressed more than 97% of the total variability. Hierarchical cluster analysis resulted two homogeneous groups of composts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Compost quality and its function as a soil conditioner of recultivation layers - a critical review

    Science.gov (United States)

    Beck-Broichsitter, Steffen; Fleige, Heiner; Horn, Rainer

    2018-01-01

    During a period of 4 years, soil chemical and physical properties of the temporary capping system in Rastorf (Northern Germany) were estimated, whereby compost was partly used as soil improver in the upper recultivation layer. The air capacity and the available water capacity of soil samples were first determined in 2013 (without compost), and then in 2015 (with compost) under laboratory conditions. Herein, the addition of compost had a positive effect on: the air capacity up to 13.4 cm3 cm-3; and the available water capacity up to 20.1 cm3 cm-3 in 2015, in the recultivation layer (0-20 cm). However, taking into account the in situ results of the tensiometer and frequency domain reflectometry measurements, the addition of compost had a negative effect. The soil-compost mixture led to restricted remoistening even after a normal summer drying period in autumn and induced more negative matric potentials in the recultivation layer. In summary, the soil-improving effect of the compost addition, in conjunction with an increased water storage capacity, is undeniable and was demonstrated in a combined field and laboratory study. Therefore, intensive hydrophobicity can inhibit the homogeneous remoistening of the soil, resulting in a decreased hydraulic effectiveness of the sealing system.

  14. ANALYSIS OF BIODEGRABILITY OF DEGRADABLE/BIODEGRADABLE PLASTIC MATERIAL IN CONTROLLED COMPOSTING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2016-09-01

    Full Text Available We have obtained eight degradable/biodegradable materials based on starch (certified compostable, sample 4–7, HDPE mixed with totally degradable plastic additive (TDPA, sample 2 and polyethylene with the addition of pro-oxidant additive (d2w, sample 1. Composition of sample 3 has not been reported. The materials have been tested as to the rate and character of their degradability/biodegradability in controlled composting conditions. Experiment explored also the effect of degradation/biodegradation of plastic bags on compost quality. The material of the original samples was subjected to assessment using the Nicolet 6700 FT-IR spectrometer, the outcome thereof was obtaining infrared spectra of the samples. For further specification the original samples were tested using the thermogravimetrical analysis. The texture of the foils at different stages of degradation is presented in the Scanning Electron Microscope (SEM photographs. Plastic bags certified as compostable have degraded in laboratory conditions and their degradation had no impact on the quality and features of compost. Selected samples (4, 6 showed significant erosion on surface when subjected to the SEM analysis. Samples labeled (by their producers as 100% degradable (samples 1, 2, 3 did not show any visual signs of degradation and the process of degradation had no impact on the quality and features of compost. Only one of the samples (sample 1 showed certain erosion of surface when submitted for the SEM analysis.

  15. Features of the compost received by use of dairy whey

    Directory of Open Access Journals (Sweden)

    V. V. Smolnikova

    2010-01-01

    Full Text Available In the article features cjmposting of organic materials are considered at use of a traditional way and fermenting additives. Indicators of quality of the composts received with the use of dairy whey and a bacterial preparation as the fermenting additive are investigated. Comparison of the received samples of composts on such indicators of quality as is spent: humidity, acidity, the maintenance of organic substance in recalculation on dry weight, quantity of the general and fmmonium nitrogen.

  16. Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity.

    Science.gov (United States)

    Zhang, Zhenhua; Zhao, Juan; Yu, Cigang; Dong, Shanshan; Zhang, Dini; Yu, Ran; Wang, Changyong; Liu, Yan

    2015-12-01

    Improper treatment of penicillin fermentation fungi residue (PFFR), one of the by-products of penicillin production process, may result in environmental pollution due to the high concentration of penicillin. Aerobic co-composting of PFFR with pig manure was determined to degrade penicillin in PFFR. Results showed that co-composting of PFFR with pig manure can significantly reduce the concentration of penicillin in PFFR, make the PFFR-compost safer as organic fertilizer for soil application. More than 99% of penicillin in PFFR were removed after 7-day composting. PFFR did not affect the composting process and even promote the activity of the microorganisms in the compost. Quantitative PCR (qPCR) indicated that the bacteria and actinomycetes number in the AC samples were 40-80% higher than that in the pig-manure compost (CK) samples in the same composting phases. This research indicated that the aerobic co-composting was a feasible PFFR treatment method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Comparison normal composting with composting using effective microorganisms for poultry carcasses disposal in poultry farms

    Directory of Open Access Journals (Sweden)

    D. M. Taher

    2009-01-01

    Full Text Available Composting offers a convenient and environmentally acceptable safe, effective method for the disposal of carcasses as an alternative method to burning, burial and rendering. This study was conducted to evaluate the effects of a natural biological products containing an effective microorganisms namily; Lactic acid bacill (Lactobacillus plantarum; L. casei Streptococcus Lactis., Photosynthetic bacteria (Rhodopseudomonas palustris; Rhodobacter sphaeroides,Yeast (Saccharomyces cerevisiae; Candida utilis Toula, Pichia Jadinii, Actinomycetes (Streptomyces albus; S. griseus., and Fermenting fungi (Aspergillus oryzae; Mucor hiemalis in the composting activity of poultry carcasses. The composting stacks constitute multi alternative layers of wood shaves, hay, poultry carcasses and then wood shaves and so on. The layers have been bypassed with plastic tubes for oxygen supply. Moreover, a petri dishes of salmonella and E. coli colonies were introduced within poultry carcasses layer. After 8 days of the experimental period this study follows the physical properties of the composting process according to its odor intesity, color and pH level as well as the bacterial reisolation from the stored colonies. Results indicate that the biological products increase the temperature of the composting stack (66-68° C with a minimal odors as the pH meters recording 5.4 as compared to the control composting stack (52-64° C and pH 6.8 with offender odors. On the other hand ,the biological product inhibit the bacterial reisolation offers since the 10the day of the experiment, however, in the normal composting stack that periods will prolonged till the 17 days of the experiment. Interestingly, the biological product induce high and rapid digestable rate for the poultry carcasses which shown within 25 days of the experiment, in comparison to the normal composting stack which induce that effects in 60 days. In conclusion, the addition of effective microorganism to the

  18. EVALUATION OF THE BIOSOLIDS COMPOST MATURITY IN SOUTH ISFAHAN WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh, M. R. Shahmansouri, H. Pourmoghadas

    2008-04-01

    Full Text Available The composting process is a useful method of producing a stabilized material that can be used as a source of nutrients and soil conditioner. Maturity of compost is essential for its optimal use as a soil amendment and a source of plant nutrients as well. Immature composts pose problems of malodors and flies and phytotoxicity and pollution during use. Stability and maturity both are required for compost quality control. Compost maturity tests can be classified into physical, chemical, plant, and microbial activity assays. In this study, several methods of evaluating the stability and maturity of composted biosolids were compared based on chemical and biological properties. The sludge used of windrow composting was obtained from the drying beds of South Isfahan wastewater treatment plant. The results showed that, C/N ratio after 100 days of composting reached to 15/1; NH4/NO3 ratio decreased with increase of the time dewatered sludge compost, which this loss is 57.3%. The content of volatile solids, 28.8% decreased with composting time. The number of fecal coliforms in the initial sewage sludge compost was 17.9´106 and at the end of composting was 898MPN/g of total solids and the compost process provided class A pathogen criteria. Use of chemical and biological parameters exhibited three phases: rapid decomposition (day 40, stabilization (day 80 and maturation (day 100 in biosolids compost. Thus, the biosolid compost was mature and ready for use as an agricultural substrate after about 100 days of composting.

  19. Composting as a strategy to reduce greenhouse gas emissions

    International Nuclear Information System (INIS)

    Paul, J.W.; Wagner-Riddle, C.; Thompson, A.; Fleming, R.; MacAlpine, A.

    2001-01-01

    Composting animal manure has the potential to reduce emissions of nitrous oxide (N 2 O) and methane (CH 4 ) from agriculture. Agriculture has been recognized as a major contributor of greenhouse gases, releasing an estimated 81% and 70% of the anthropogenic emissions of nitrous oxide (N 2 O) and methane (CH 4 ), respectively. A significant amount of methane is emitted during the storage of liquid manure, whereas nitrous oxide is emitted from the storage of manure and from soil following manure or fertilizer application. Composting animal manure can reduce GHG emissions in two ways; by reducing nitrous oxide and methane emissions during manure storage and application, and by reducing the amount of manufactured fertilizers and the GHG associated with their production and use. We will present information of GHG emissions and potentials for reduction based on available data, and on specific composting experiments. Nitrous oxide and methane emissions were monitored on an enclosed composting system processing liquid hog manure. Measurements indicated that total GHG emissions during composting were 24% of the Tier 2 IPCC estimates for traditional liquid hog manure management on that farm. Previous research has also indicated little nitrous oxide emission following application of composted manure to soil. The method of composting has a large impact on GHG emissions, where GHG emissions are higher from outdoor windrow composting systems than from controlled aerated systems. Further research is required to assess the whole manure management system, but composting appears to have great potential to reduce GHG emissions from agriculture. The bonus is that composting also addresses a number of other environmental concerns such as pathogens, surface and groundwater quality and ammonia emissions. (author)

  20. Compost maturity and nitrogen availability by co-composting of paddy husk and chicken manure amended with clinoptilolite zeolite.

    Science.gov (United States)

    Latifah, Omar; Ahmed, Osumanu Haruna; Susilawati, Kassim; Majid, Nik Muhamad

    2015-04-01

    The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives. © The Author(s) 2015.

  1. Composting Technology and the Impact of Compost on Soil Biochemical Properties

    International Nuclear Information System (INIS)

    Abdel-aziz, Reda Abdel Thaher; Al-Barakh, Fahad bin Nasser

    2005-01-01

    Organic farming is one of several approaches to sustainable agriculture. Properly managed, organic farming reduces or eliminates environmental pollution and helps conserve water and soil on the farm. Organic farming systems require significantly greater amounts of organic fertilizers input than conventional systems. Because of the shortage of organic fertilizers in arid areas, composting is a way to transform waste materials left over from agricultural production and processing into a useful resource. Mature compost is an excellent organic fertilizer and soil amendment. The potential of composting to turn on-farm waste material into farm resources makes it an attractive proposition. Composting offers several benefits such as to enhance soil fertility and soil health, thereby increasing agricultural productivity, improving soil biodiversity, reducing ecological risks and improving the environment. Aerobic composting of some agricultural wastes (peanut, wheat straw and palm tree wastes) was carried out to raise its fertilizing value compared with widely used organic fertilizer, farmyard manure. The influence of composted and non-composted agricultural wastes on the availability of nitrogen, phosphorus and potassium (NPK) in sandy soil, as well as the uptake of these elements by corn plants, was also studied. Results indicated a rapid degradation of palm tree and wheat straw wastes as compared with peanut wastes. The composting process raised the fertilizing value of agricultural wastes as indicated by increase in nutritional availability. The application of the composted wastes as organic fertilizers to sandy soil increased the content of available N, P and K. Results showed that the application of different composted organic materials increased the dry weight and NPK uptake by corn plants. (author)

  2. Removal of tetracyclines, sulfonamides, and quinolones by industrial-scale composting and anaerobic digestion processes.

    Science.gov (United States)

    Liu, Hang; Pu, Chengjun; Yu, Xiaolu; Sun, Ying; Chen, Junhao

    2018-02-15

    This study evaluated and compared the removal of antibiotics by industrial-scale composting and anaerobic digestion at different seasons. Twenty compounds belonged to three classes of widely used veterinary antibiotics (i.e., tetracyclines, sulfonamides, and quinolones) were investigated. Results show that of the three groups of antibiotics, tetracyclines were dominant in swine feces and poorly removed by anaerobic digestion with significant accumulation in biosolids, particularly in winter. Compared to that in winter, a much more effective removal (> 97%) by anaerobic digestion was observed for sulfonamides in summer. By contrast, quinolones were the least abundant antibiotics in swine feces and exhibited a higher removal by anaerobic digestion in winter than in summer. The overall removal of antibiotics by aerobic composting could be more than 90% in either winter or summer. Nevertheless, compost products from livestock farms in Beijing contained much higher antibiotics than commercial organic fertilizers. Thus, industrial composting standards should be strictly applied to livestock farms to further remove antibiotics and produce high quality organic fertilizer.

  3. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value

  4. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping, E-mail: zongpingw@hust.edu.cn; Liu, Zizheng; Xiong, Ya

    2014-11-15

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.

  5. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    International Nuclear Information System (INIS)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-01-01

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments

  6. Utilization of solar energy in sewage sludge composting: fertilizer effect and application.

    Science.gov (United States)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-11-01

    Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55°C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Greenhouse gas emissions from food and garden waste composting

    OpenAIRE

    Ermolaev, Evgheni

    2015-01-01

    Composting is a robust waste treatment technology. Use of finished compost enables plant nutrient recycling, carbon sequestration, soil structure improvement and mineral fertiliser replacement. However, composting also emits greenhouse gases (GHG) such as methane (CH₄) and nitrous oxide (N₂O) with high global warming potential (GWP). This thesis analysed emissions of CH₄ and N₂O during composting as influenced by management and process conditions and examined how these emissions could be ...

  8. A Combination of Biochar-Mineral Complexes and Compost Improves Soil Bacterial Processes, Soil Quality, and Plant Properties.

    Science.gov (United States)

    Ye, Jun; Zhang, Rui; Nielsen, Shaun; Joseph, Stephen D; Huang, Danfeng; Thomas, Torsten

    2016-01-01

    Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC) carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e., a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and composted chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  9. Towards low carbon society in Iskandar Malaysia: Implementation and feasibility of community organic waste composting.

    Science.gov (United States)

    Bong, Cassendra Phun-Chien; Goh, Rebecca Kar Yee; Lim, Jeng-Shiun; Ho, Wai Shin; Lee, Chew-Tin; Hashim, Haslenda; Abu Mansor, Nur Naha; Ho, Chin Siong; Ramli, Abdul Rahim; Takeshi, Fujiwara

    2017-12-01

    Rapid population growth and urbanisation have generated large amount of municipal solid waste (MSW) in many cities. Up to 40-60% of Malaysia's MSW is reported to be food waste where such waste is highly putrescible and can cause bad odour and public health issue if its disposal is delayed. In this study, the implementation of community composting in a village within Iskandar Malaysia is presented as a case study to showcase effective MSW management and mitigation of GHG emission. The selected village, Felda Taib Andak (FTA), is located within a palm oil plantation and a crude palm oil processing mill. This project showcases a community-composting prototype to compost food and oil palm wastes into high quality compost. The objective of this article is to highlight the economic and environment impacts of a community-based composting project to the key stakeholders in the community, including residents, oil palm plantation owners and palm oil mill operators by comparing three different scenarios, through a life cycle approach, in terms of the greenhouse gas emission and cost benefit analysis. First scenario is the baseline case, where all the domestic waste is sent to landfill site. In the second scenario, a small-scale centralised composting project was implemented. In the third scenario, the data obtained from Scenario 2 was used to do a projection on the GHG emission and costing analysis for a pilot-scale centralised composting plant. The study showed a reduction potential of 71.64% on GHG emission through the diversion of food waste from landfill, compost utilisation and significant revenue from the compost sale in Scenario 3. This thus provided better insight into the feasibility and desirability in implementing a pilot-scale centralised composting plant for a sub-urban community in Malaysia to achieve a low carbon and self-sustainable society, in terms of environment and economic aspects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution.

    Science.gov (United States)

    Tsui, Lo; Roy, William R

    2008-09-01

    One commercial compost sample was pyrolyzed to produce chars as a sorbent for removing the herbicide atrazine from solution. The sorption behavior of compost-based char was compared with that of an activated carbon derived from corn stillage. When compost was pyrolyzed, the char yield was greater than 45% when heated under air, and 52% when heated under N(2). In contrast, when the corn stillage was pyrolyzed under N(2), the yield was only 22%. The N(2)-BET surface area of corn stillage activated carbon was 439 m(2)/g, which was much greater than the maximum compost char surface area of 72 m(2)/g. However, the sorption affinity of the compost char for dissolved atrazine was comparable to that of the corn stillage activated carbon. This similarity could have resulted from the initial organic waste being subjected to a relatively long period of thermal processes during composting, and thus, the compost was more thermally stable when compared with the raw materials. In addition, microorganisms transformed the organic wastes into amorphous humic substances, and thus, it was likely that the microporisity was enhanced. Although this micropore structure could not be detected by the N(2)-BET method, it was apparent in the atrazine sorption experiment. Overall, the experimental results suggested that the compost sample in current study was a relatively stable material thermally for producing char, and that it has the potential as a feed stock for making high-quality activated carbon.

  11. Relationships between stability, maturity, water-extractable organic matter of municipal sewage sludge composts and soil functionality.

    Science.gov (United States)

    Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio

    2015-09-01

    Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil.

  12. Characterization of explosives processing waste decomposition due to composting. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Ho, C.H.; Tyndall, R.L.; Vass, A.A.; Caton, J.E.; Caldwell, W.M.

    1994-09-01

    The objective of this work was to provide data and methodology assisting the transfer and acceptance of composting technology for the remediation of explosives-contaminated soils and sediments. Issues and activities addressed included: (a) chemical and toxicological characterization of compost samples from new field composting experiments, and the environmental availability of composting efficiency by isolation of bacterial consortia and natural surfactants from highly efficient composts, and (c) improved assessment of compost product suitability for land application.

  13. Critical evaluation of municipal solid waste composting and potential compost markets.

    Science.gov (United States)

    Farrell, M; Jones, D L

    2009-10-01

    Mechanical biological treatment (MBT) of mixed waste streams is becoming increasingly popular as a method for treating municipal solid waste (MSW). Whilst this process can separate many recyclates from mixed waste, the resultant organic residue can contain high levels of heavy metals and physical and biological contaminants. This review assesses the potential end uses and sustainable markets for this organic residue. Critical evaluation reveals that the best option for using this organic resource is in land remediation and restoration schemes. For example, application of MSW-derived composts at acidic heavy metal contaminated sites has ameliorated soil pollution with minimal risk. We conclude that although MSW-derived composts are of low value, they still represent a valuable resource particularly for use in post-industrial environments. A holistic view should be taken when regulating the use of such composts, taking into account the specific situation of application and the environmental pitfalls of alternative disposal routes.

  14. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects.

    Science.gov (United States)

    Luo, Yuan; Liang, Jie; Zeng, Guangming; Chen, Ming; Mo, Dan; Li, Guoxue; Zhang, Difang

    2018-01-01

    Compost is commonly used for the growth of plants and the remediation of environmental pollution. It is important to evaluate the quality of compost and seed germination test is a powerful tool to examine the toxicity of compost, which is the most important aspect of the quality. Now the test is widely adopted, but the main problem is that the test results vary with different methods and seed species, which limits the development and application of it. The standardization of methods and the modelization of seeds can contribute to solving the problem. Additionally, according to the probabilistic theory of seed germination, the error caused by the analysis and judgment methods of the test results can be reduced. Here, we reviewed the roles, problems and prospects of the seed germination test in the studies of compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Composting: Fast 2.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    Composting is a way of using organic wastes from yards and kitchens to help plants grow. This book discusses how composting happens in nature, the classification of composting methods, and their characteristics. Examples of containers for aerobic/anaerobic decomposition are introduced along with sample activities. The process of aerobic/anaerobic…

  16. Evaluation of compost blankets for erosion control from disturbed lands.

    Science.gov (United States)

    Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G

    2011-03-01

    Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier

  17. Differences in the mobility of Cd, Cu, Pb and Zn during composting of two types of household bio-waste collected in four seasons.

    Science.gov (United States)

    Hanc, Ales; Szakova, Jirina; Ochecova, Pavla

    2014-09-01

    The objective of this study was to evaluate the mobility of Cd, Cu, Pb and Zn during 3 different compost aeration rates of household bio-waste, originating in urban settlement (U-bio-waste) and family house buildings (F-bio-waste). The first two weeks, when the thermophilic composting phase became, the highest decline of exchangeable content was recorded. After 12 weeks of composting, lower exchangeable content was found in the case of U-bio-waste composts than F-bio-waste composts, despite higher loss of fresh mass. The order of fractions in both final composts was as follows: residual>oxidizable>reducible>exchangeable. The exchangeable portion of total content in final composts decreased in this order: Zn (17%), Cd (11%), Pb (4%) and Cu (3%). Regarding the low exchangeable content of heavy metals and high-quality organic matter, these types of composts could be used not only as fertilizer, but for remediation of metals contaminated land. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Compost duurzaam ingezet. De Compost Scorekaarten: een instrument voor het afwegen van de waarde van compost

    OpenAIRE

    Schrik, Yannick; Koopmans, Chris

    2015-01-01

    Het duurzame gebruik van een reststof zoals compost hangt sterk samen met de waarde die de compost heeft bij toepassing. Deze publicatie geeft via heldere Compost Score Kaarten inzicht in het vinden van de juiste compostsoort voor het gewenste doel. Of het nu gaat om organischestofvoorziening, verbetering van de bodemstructuur of de nutriëntenvoorziening van gewassen: een bewuste keuze voor de compostsoort en –kwaliteit draagt bij aan een duurzame inzet en duurzaam hergebruik van reststoffen.

  19. Composted versus Raw Olive Mill Waste as Substrates for the Production of Medicinal Mushrooms: An Assessment of Selected Cultivation and Quality Parameters

    Directory of Open Access Journals (Sweden)

    Georgios I. Zervakis

    2013-01-01

    Full Text Available Two-phase olive mill waste (TPOMW, “alperujo” is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota, that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120–135% for Pleurotus spp. and 125% for A. cylindracea and productivity in subsequent cultivation experiments on substrates supplemented with 20–40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium. Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste.

  20. Composted versus raw olive mill waste as substrates for the production of medicinal mushrooms: an assessment of selected cultivation and quality parameters.

    Science.gov (United States)

    Zervakis, Georgios I; Koutrotsios, Georgios; Katsaris, Panagiotis

    2013-01-01

    Two-phase olive mill waste (TPOMW, "alperujo") is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota), that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120-135% for Pleurotus spp. and 125% for A. cylindracea) and productivity in subsequent cultivation experiments on substrates supplemented with 20-40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium). Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste.

  1. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, N.S., E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Kunhikrishnan, A. [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do 441-707 (Korea, Republic of); Choppala, G.K.; Thangarajan, R. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, SA 5095 (Australia); Cooperative Research Centre for Contaminants Assessment and Remediation of the Environment (CRC CARE), University of South Australia, SA 5095 (Australia); Chung, J.W. [Department of Environmental Engineering, Gyeongnam National University of Science and Technology, Dongjin-ro 33, Jinju, Gyeongnam, 660-758 (Korea, Republic of)

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t{sub 1/2}) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: Black

  2. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility

    International Nuclear Information System (INIS)

    Bolan, N.S.; Kunhikrishnan, A.; Choppala, G.K.; Thangarajan, R.; Chung, J.W.

    2012-01-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t 1/2 ) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. - Graphical abstract: Stabilization of compost using clay materials (e.g. allophane) enhances carbon sequestration in soils. Highlights: ► Comparison of decomposition rate

  3. Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon.

    Science.gov (United States)

    Oldfield, Thomas L; Sikirica, Nataša; Mondini, Claudio; López, Guadalupe; Kuikman, Peter J; Holden, Nicholas M

    2018-07-15

    This work assessed the potential environmental impact of recycling organic materials in agriculture via pyrolysis (biochar) and composting (compost), as well its combination (biochar-compost blend) versus business-as-usual represented by mineral fertiliser. Life cycle assessment methodology was applied using data sourced from experiments (FP7 project Fertiplus) in three countries (Spain, Italy and Belgium), and considering three environmental impact categories, (i) global warming; (ii) acidification and (iii) eutrophication. The novelty of this analysis is the inclusion of the biochar-compost blend with a focus on multiple European countries, and the inclusion of the acidification and eutrophication impact categories. Biochar, compost and biochar-compost blend all resulted in lower environmental impacts than mineral fertiliser from a systems perspective. Regional differences were found between biochar, compost and biochar-compost blend. The biochar-compost blend offered benefits related to available nutrients and sequestered C. It also produced yields of similar magnitude to mineral fertiliser, which makes its acceptance by farmers more likely whilst reducing environmental impacts. However, careful consideration of feedstock is required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effect of addition of organic waste on reduction of Escherichia coli during cattle feces composting under high-moisture condition.

    Science.gov (United States)

    Hanajima, Dai; Kuroda, Kazutaka; Fukumoto, Yasuyuki; Haga, Kiyonori

    2006-09-01

    To ensure Escherichia coli reduction during cattle feces composting, co-composting with a variety of organic wastes was examined. A mixture of dairy cattle feces and shredded rice straw (control) was blended with organic wastes (tofu residue, rice bran, rapeseed meal, dried chicken feces, raw chicken feces, or garbage), and composted using a bench-scale composter under the high-moisture condition (78%). The addition of organic waste except chicken feces brought about maximum temperatures of more than 55 degrees C and significantly reduced the number of E. coli from 10(6) to below 10(2)CFU/g-wet after seven days composting, while in the control treatment, E. coli survived at the same level as that of raw feces. Enhancements of the thermophilic phase and E. coli reduction were related to the initial amount of easily digestible carbon in mass determined as BOD. BOD value more than 166.2 mg O2/DMg brought about significant E. coli reduction.

  5. Simulation of Organic Matter and Pollutant Evolution during Composting: The COP-Compost Model.

    Science.gov (United States)

    Lashermes, G; Zhang, Y; Houot, S; Steyer, J P; Patureau, D; Barriuso, E; Garnier, P

    2013-01-01

    Organic pollutants (OPs) are potentially present in composts and the assessment of their content and bioaccessibility in these composts is of paramount importance. In this work, we proposed a model to simulate the behavior of OPs and the dynamic of organic C during composting. This model, named COP-Compost, includes two modules. An existing organic C module is based on the biochemical composition of the initial waste mixture and simulates the organic matter transformation during composting. An additional OP module simulates OP mineralization and the evolution of its bioaccessibility. Coupling hypotheses were proposed to describe the interactions between organic C and OP modules. The organic C module, evaluated using experimental data obtained from 4-L composting pilots, was independently tested. The COP-Compost model was evaluated during composting experiments containing four OPs representative of the major pollutants detected in compost and targeted by current and future regulations. These OPs included a polycyclic aromatic hydrocarbon (fluoranthene), two surfactants (4--nonylphenol and a linear alkylbenzene sulfonate), and an herbicide (glyphosate). Residues of C-labeled OP with different bioaccessibility were characterized by sequential extraction and quantified as soluble, sorbed, and nonextractable fractions. The model was calibrated and coupling the organic C and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Inside the small-scale composting of kitchen and garden wastes: Thermal performance and stratification effect in vertical compost bins.

    Science.gov (United States)

    Arrigoni, Juan Pablo; Paladino, Gabriela; Garibaldi, Lucas Alejandro; Laos, Francisca

    2018-06-01

    Decentralized composting has been proposed as a best available practice, with a highly positive impact on municipal solid wastes management plans. However, in cold climates, decentralized small-scale composting performance to reach thermophilic temperatures (required for the product sanitization) could be poor, due to a lack of critical mass to retain heat. In addition, in these systems the composting process is usually disturbed when new portions of fresh organic waste are combined with previous batches. This causes modifications in the well-known composting evolution pattern. The objective of this work was to improve the understanding of these technical aspects through a real-scale decentralized composting experience carried out under cold climate conditions, in order to assess sanitization performance and to study the effects of fresh feedstock additions in the process evolution. Kitchen and garden organic wastes were composted in 500 L-static compost bins (without turning) for 244 days under cold climate conditions (Bariloche, NW Patagonia, Argentina), using pine wood shavings in a ratio of 1.5:1 v: v (waste: bulking agent). Temperature profile, stability indicators (microbial activity, carbon and nitrogen contents and ratio) and other variables (pH and electrical conductivity), were monitored throughout the experience. Our results indicate that small-scale composting (average generation rate of 7 kg d -1 ) is viable under cold weather conditions, since thermophilic sanitization temperatures (> 55 °C) were maintained for 3 consecutive days in most of the composting mass, according to available USEPA regulations commonly used as a reference for pathogens control in sewage sludge. On the other hand, stability indicators showed a differentiated organic matter degradation process along the compost bins height. Particularly, in the bottommost composting mix layer the process took a longer period to achieve compost stability than the upper layers, suggesting

  7. Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils.

    Science.gov (United States)

    Cao, Yune; Gao, Yanming; Qi, Yanbin; Li, Jianshe

    2018-03-01

    Excessive fertilization is a common agricultural practice that has largely reduced soil nutrient retention capacity and led to nutrient leaching in China. To reduce nutrient leaching, in this study, we evaluated the application of biochar, compost, and biochar-compost on soil properties, leaching water quality, and cucumber plant growth in soils with different nutrient levels. In general, the concentrations of nutrients and heavy metals in leaching water were higher under high-nutrient conditions than under low-nutrient conditions. Both biochar and compost efficiently enhanced soil cation exchange capacity (CEC), water holding capacity (WHC), and microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP), reduced the potential leaching of nutrients and heavy metals, and improved plant growth. The efficiency of biochar and compost in soil CEC, WHC, MBC, MBN, and MBP and plant growth was enhanced when applied jointly. In addition, biochar and biochar-enhanced compost efficiently suppressed plant-parasitic nematode infestation in a soil with high levels of both N and P. Our results suggest that biochar-enhanced compost can reduce the potential environmental risks in excessively fertilized vegetable soils.

  8. Investigation of biomethylation of arsenic and tellurium during composting

    International Nuclear Information System (INIS)

    Diaz-Bone, Roland A.; Raabe, Maren; Awissus, Simone; Keuter, Bianca; Menzel, Bernd; Kueppers, Klaus; Widmann, Renatus; Hirner, Alfred V.

    2011-01-01

    Though the process of composting features a high microbiological activity, its potential to methylate metals and metalloids has been little investigated so far in spite of the high impact of this process on metal(loid) toxicity and mobility. Here, we studied the biotransformation of arsenic, tellurium, antimony, tin and germanium during composting. Time resolved investigation revealed a highly dynamic process during self-heated composting with markedly differing time patterns for arsenic and tellurium species. Extraordinary high concentrations of up to 150 mg kg -1 methylated arsenic species as well as conversion rates up to 50% for arsenic and 5% for tellurium were observed. In contrast, little to no conversion was observed for antimony, tin and germanium. In addition to experiments with metal(loid) salts, composting of arsenic hyperaccumulating ferns Pteris vittata and P. cretica grown on As-amended soils was studied. Arsenic accumulated in the fronds was efficiently methylated resulting in up to 8 mg kg -1 methylated arsenic species. Overall, these studies indicate that metal(loid)s can undergo intensive biomethylation during composting. Due to the high mobility of methylated species this process needs to be considered in organic waste treatment of metal(loid) contaminated waste materials.

  9. Nitrogen losses and chemical parameters during co-composting of solid wastes and liquid pig manure.

    Science.gov (United States)

    Vázquez, M A; de la Varga, D; Plana, R; Soto, M

    2017-07-04

    The aim of this research was to study nitrogen losses during the treatment of the liquid fraction (LF) of pig manure by co-composting and to establish the best conditions for compost production with higher nitrogen and low heavy metal contents. Windrows were constituted with the solid fraction (SF) of pig manure, different organic waste (SF of pig manure, sawdust and grape bagasse) as co-substrate and Populus spp. wood chips as bulking material and watered intensely with the LF. Results show that nitrogen losses ranged from 30% to 66% of initial nitrogen and were mainly governed by substrate to bulking mass ratio and liquid fraction to substrate (LF/S) ratio, and only secondarily by operational parameters. Nitrogen losses decreased from 55-65% at low LF/S ratios (1.7-1.9 m 3 /t total solids (TS)) to 30-39% at high LF/S ratios (4.4-4.7 m 3 /t TS). Therefore, integrating the LF in the composting process at high LF/S ratios favoured nitrogen recovery and conservation. Nitrogen in the fine fraction (ranging from 27% to 48% of initial nitrogen) was governed by operational parameters, namely pH and temperature. Final compost showed low content in most heavy metals, but Zn was higher than the limits for compost use in agriculture. Zn content in the obtained compost varied from 1863 to 3269 mg/kg dm, depending on several factors. The options for obtaining better quality composts from the LF of pig manure are selecting co-substrates with low heavy metal content and using them instead of the SF of pig manure.

  10. Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure-Physico-chemical characterization of the processed organic matter.

    Science.gov (United States)

    Hachicha, Salma; Sellami, Fatma; Cegarra, Juan; Hachicha, Ridha; Drira, Noureddine; Medhioub, Khaled; Ammar, Emna

    2009-02-15

    Olive mill sludge (OMS), a by-product resulting from natural evaporation of olive oil processing effluent, poses a major environmental threat. A current cost-effective practice of OMS management is composting. A mixture of OMS (60%) with poultry manure (PM) was successfully composted for 210 days. During the process, effluents of olive oil mill and confectionary were used to keep moisture at optimal level (40-60%). Biological indicators reflecting stability of the compost (microbial biota respiration and enumeration, and germination index) were analysed for the assessment of the product quality. The composted mixture showed a high microbial activity with a succession of microbial populations depending on the temperature reached during the biodegradation. The pathogen content from PM decreased with composting as did phytotoxic compounds. Phenols and lipids were reduced, respectively, by 40% and 84% while germination index increased with composting progress. Fourier transform infrared (FTIR) spectroscopic analysis revealed that the final compost improved the aromatic content compared to the starting materials, with a decrease in aliphatic groups and a reduction in the easily assimilated components by the microflora acting during the biological process. The final compost was characterized by relatively high organic matter content (26.21%), a low C/N ratio (16.21), an alkaline pH (8.32), a relatively high electrical conductivity (9.21mS/cm) and a high level of nutrients. The germination index for Lepidium sativum L. was 87.71% after 210 days of composting, showing that the final compost was not phytotoxic.

  11. Swine manure composting by means of experimental turning equipment.

    Science.gov (United States)

    Chiumenti, A; Da Borso, F; Rodar, T; Chiumenti, R

    2007-01-01

    The purpose of research was to test the effectiveness of a prototype of a turning machine and to evaluate the feasability of a farm-scale composting process of the solid fraction of swine manure. A qualitative evaluation of the process and final product was made by monitoring the following parameters: process temperature, oxygen concentration inside the biomass, gaseous emissions (CH4, CO2, NH3, N2O), respiration index, humification index, total and volatile solids, carbon and nitrogen, pH and microbial load. The prototype proved to be very effective from a technical-operational point of view. The composting process exhibited a typical time-history, characterised by a thermophilic phase followed by a curing phase [Chiumenti, A., Chiumenti, R., Diaz, L.F., Savage, G.M., Eggerth, L.L., Goldstein, N., 2005. Modern Composting Technologies. BioCycle-JG Press, Emmaus, PA, USA]. Gas emissions from compost the windrow were more intense during the active phase of the process and showed a decreasing trend from the thermophilic to the curing phase. The final compost was characterized by good qualitative characteristics, a significant level of humification [Rossi, L., Piccinini, S., 1999. La qualità agronomica dei compost derivanti da liquami suinicoli. (Agronomic quality of swine manure compost). L'informatore Agrario 38, 29-31] and no odor emissions. This method of managing manure represents an effective, low cost approach that could be an interesting opportunity for swine farms.

  12. Heterogeneity of zeolite combined with biochar properties as a function of sewage sludge composting and production of nutrient-rich compost.

    Science.gov (United States)

    Kumar Awasthi, Mukesh; Wang, Meijing; Pandey, Ashok; Chen, Hongyu; Kumar Awasthi, Sanjeev; Wang, Quan; Ren, Xiuna; Hussain Lahori, Altaf; Li, Dong-Sheng; Li, Ronghua; Zhang, Zengqiang

    2017-10-01

    In the present study, biochar combined with a higher dosage of zeolite (Z) and biochar (B) alone were applied as additives for dewatered fresh sewage sludge (DFSS) composting using 130-L working volume lab-scale reactors. We first observed that the addition of a mixture of B and Z to DFSS equivalent to 12%B+10% (Z-1), 15% (Z-2) and 30% (Z-3) zeolite (dry weight basis) worked synergistically as an amendment and increased the composting efficiency compared with a treatment of 12%B alone amended and a control without any amendment. In a composting reactor, the addition of B+Z may serve as a novel approach for improving DFSS composting and the quality of the end product in terms of the temperature, water-holding capacity, CO 2 emissions, electrical conductivity, water-soluble and total macro-nutrient content and phytotoxicity. The results indicated that during the thermophilic phase, dissolved organic carbon, NH 4 + -N and NO 3 - -N increased drastically in all biochar amended treatments, whereas considerably low water-soluble nutrients were observed in the control treatment throughout and at the end of the composting. Furthermore, the maturity parameters and dissolved organic carbon (DOC) indicated that compost with 12%B+15%Z became more mature and humified within 35days of DFSS composting, with the maturity parameters, such as CO 2 evolution and the concentration of NH 4 + -N in the compost, being within the permissible limits of organic farming in contrast to the control. Furthermore, at the end of composting, the addition of higher dosage of biochar (12%) alone and 12% B+Z lowered the pH by 7.15 to 7.86 and the electrical conductivity by 2.65 to 2.95mScm -1 as compared to the control, while increased the concentrations of water-soluble nutrients (gkg -1 ) including available phosphorus, sodium and potassium. In addition, greenhouse experiments demonstrated that the treatment of 150kgha -1 biochar combined with zeolite and that of 12%B alone improved the yield of

  13. Evaluation of pilot-scale in-vessel composting for Hanwoo manure management.

    Science.gov (United States)

    Jeong, Kwang-Hwa; Kim, Jung Kon; Ravindran, Balsubramani; Lee, Dong Jun; Wong, Jonathan Woon-Chung; Selvam, Ammaiyappan; Karthikeyan, Obuli P; Kwag, Jung-Hoon

    2017-12-01

    The study investigated the effect of in-vessel composting process on Hanwoo manure in two different South Korea regions (Pyeongchang and Goechang) with sawdust using vertical cylindrical in-vessel bioreactor for 42days. The stability and quality of Hanwoo manure in both regions were improved and confirmed through the positive changes in physico-chemical and phytotoxic properties using different commercial seed crops. The pH and electrical conductivity (EC, ds/m) of composted manure in both regions were slightly increased. At the same time, carbon:nitrogen (C:N) ratio and ammonium nitrogen:nitrate nitrogen (NH 4 + -N:NO 3 - -N) ratio decreased to 13.4-16.1 and 0.36-0.37, respectively. The germination index (GI, %) index was recorded in the range of 67.6-120.9%, which was greater than 50%, indicating phytotoxin-free compost. Although, composted manure values in Goechang region were better in significant parameters, overall results confirmed that the composting process could lead to complete maturation of the composted product in both regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    Science.gov (United States)

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Compost versus vermicompost as substrate constituents for rooting shrub cuttings

    Energy Technology Data Exchange (ETDEWEB)

    Fornes, F.; Mendoza-Hernandez, D.; Belda, R. M.

    2013-06-01

    The feasibility of composted (C), composted plus vermicomposted (V1) and straight vermicomposted (V2) tomato crop waste as component of rooting media for Euonymus japonicus Microphylla and Lavandula angustifolia vegetative propagation was studied. Mixes of C, V1 and V2 with coir fibre (CF) at the proportions 100:0, 75:25, 50:50, 25:75, 0:100 (v:v) were assayed. Physical, physico-chemical and nutritional characteristics of all materials and mixes were determined and correlated with cutting rooting and growth performances. The compost and the two vermicomposts were markedly different from CF. They had higher bulk density and lower total porosity than CF. Compost had lower water-holding capacity and shrinkage in response to drying than vermicomposts and CF. Compost and vermicomposts were alkaline materials whilst CF was almost neutral. Electrical conductivity (EC) was low in CF and vermicomposts, and high in compost due to the high mineral contents, mainly of K+, SO{sub 4} {sup 2}- and Na+ in this material. EC and the ions contributing to it (K+, SO{sub 4} {sup 2}-, Na+) showed highly significative inverse correlations with rooting percentage for the two species and with root and shoot growth but only for E. japonicus. Due to its high EC, compost C (average rooting = 22.5%) performed worse than vermicomposts V1 (av. rooting = 97%) and V2 (av. rooting = 98%) whilst the latter performed similarly to CF control (av. rooting = 100%). Thus vermicomposts appeared to be more appropriate than compost as rooting media constituent. (Author) 39 refs.

  16. Compost versus vermicompost as substrate constituents for rooting shrub cuttings

    Directory of Open Access Journals (Sweden)

    F. Fornes

    2013-04-01

    Full Text Available The feasibility of composted (C, composted plus vermicomposted (V1 and straight vermicomposted (V2 tomato crop waste as component of rooting media for Euonymus japonicus ‘Microphylla’ and Lavandula angustifolia vegetative propagation was studied. Mixes of C, V1 and V2 with coir fibre (CF at the proportions 100:0, 75:25, 50:50, 25:75, 0:100 (v:v were assayed. Physical, physico chemical and nutritional characteristics of all materials and mixes were determined and correlated with cutting rooting and growth performances. The compost and the two vermicomposts were markedly different from CF. They had higher bulk density and lower total porosity than CF. Compost had lower water holding capacity and shrinkage in response to drying than vermicomposts and CF. Compost and vermicomposts were alkaline materials whilst CF was almost neutral. Electrical conductivity (EC was low in CF and vermicomposts, and high in compost due to the high mineral contents, mainly of K+, SO42– and Na+ in this material. EC and the ions contributing to it (K+, SO42–, Na+ showed highly significative inverse correlations with rooting percentage for the two species and with root and shoot growth but only for E. japonicus. Due to its high EC, compost C (average rooting = 22.5% performed worse than vermicomposts V1 (av. rooting = 97% and V2 (av. rooting = 98% whilst the latter performed similarly to CF control (av. rooting = 100%. Thus vermicomposts appeared to be more appropriate than compost as rooting media constituent.

  17. Composting in small laboratory pilots: Performance and reproducibility

    International Nuclear Information System (INIS)

    Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.; Houot, S.

    2012-01-01

    Highlights: ► We design an innovative small-scale composting device including six 4-l reactors. ► We investigate the performance and reproducibility of composting on a small scale. ► Thermophilic conditions are established by self-heating in all replicates. ► Biochemical transformations, organic matter losses and stabilisation are realistic. ► The organic matter evolution exhibits good reproducibility for all six replicates. - Abstract: Small-scale reactors ( 2 consumption and CO 2 emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures.

  18. Solid State Culture Conditions for Composting Sewage Sludge

    Directory of Open Access Journals (Sweden)

    N.A. Kabbashi

    2012-10-01

    Full Text Available Composting is applied to treat sewage sludge from treatment plants to enhance its quality and suitability for agricultural use. In this work the optimal conditions for composting sewage sludge from domestic wastewater treatment plants in a horizontal drum bioreactor (HDB were investigated. This study investigated the physico-chemical conditions affecting the use of filamentous fungi in composting. The average number of faecal coliforms was 2.3  107 bacteria/g waste dry weight at the beginning of the composting process, and decreased considerably to 8.2  103, 8.1  103, 8.5  103, 8.0  103,and 8.4  103 bacteria/g, respectively for experiments T1 to T5. This decrease was presumably the result of raising temperature. The phase of hygienisation was marked by a very significant decrease in the number of E. coli cells (1.8  107, to 3.7  103, 3.8  103, 3.3  103, 3.2  103, and 3.6  103 bacteria/g for T1 to T5 experiments, respectively: A second aspect was the investigation of a possible reduction of hazardous pollutants.  The highest concentration was for Fe and the lowest for Pb, showing that Fe is the most loosely bound to the sewage sludge organic matrix and Pb the most strongly bound, the Cd reduction by composting was more than 50%.Keywords: Sewage sludge, compost, horizontal drum bioreactor, hazardous.

  19. The role of cow dung and kitchen manure composts and their non-aerated compost teas in reducing the incidence of foliar diseases of Lycopersicon esculentum (Mill

    Directory of Open Access Journals (Sweden)

    A. Ngakou

    2014-06-01

    Full Text Available Compost teas are fermented watery extracts of composted materials used for their beneficial effect on plants. A study was conducted in the field to compare the efficacy of cow dung and kitchen manure composts and their derived non-aerated compost teas on disease symptoms expression and severity of Lycopersicon esculentum. The experimental layout was a complete randomised block design comprising six treatments, each of which was repeated three times: the negative control plot (Tm-; the positive control or fungicide plot (Tm+; the cow dung compost plot (Cpi; the kitchen manure compost plot (Cpii; the compost tea derived cow dung plot (Tci; and the compost tea derived kitchen manure plot (Tcii. Compost tea derived cow dung was revealed to be richer in elemental nutrients (N, P, K than compost tea from kitchen manure, and significantly (p < 0.0001 enhanced fruit yield per plant. Similarly, the two composts and their derived compost teas significantly (p < 0.0001 reduced the incidence and severity of disease symptoms compared to the controls, with the highest efficacy accounting for cow dung compost and compost tea. Although the non-aerated compost teas were not amended with micro-organisms, these results suggest that the two compost teas in use were rich enough in microbial pathogen antagonists, and therefore, are perceived as potential alternatives to synthetic chemical fungicides. Future work will attempt to identify these microbial antagonists with highly suppressive activity in the non-aerated compost teas.

  20. Chestnut green waste composting for sustainable forest management: Microbiota dynamics and impact on plant disease control.

    Science.gov (United States)

    Ventorino, Valeria; Parillo, Rita; Testa, Antonino; Viscardi, Sharon; Espresso, Francesco; Pepe, Olimpia

    2016-01-15

    Making compost from chestnut lignocellulosic waste is a possible sustainable management strategy for forests that employs a high-quality renewable organic resource. Characterization of the microbiota involved in composting is essential to better understand the entire process as well as the properties of the final product. Therefore, this study investigated the microbial communities involved in the composting of chestnut residues obtained from tree cleaning and pruning. The culture-independent approach taken highlighted the fact that the microbiota varied only slightly during the process, with the exception of those of the starting substrate and mature compost. The statistical analysis indicated that most of the bacterial and fungal species in the chestnut compost persisted during composting. The dominant microbial population detected during the process belonged to genera known to degrade recalcitrant lignocellulosic materials. Specifically, we identified fungal genera, such as Penicillium, Fusarium, Cladosporium, Aspergillus and Mucor, and prokaryotic species affiliated with Bacilli, Actinobacteria, Flavobacteria and γ-Proteobacteria. The suppressive properties of compost supplements for the biocontrol of Sclerotinia minor and Rhizoctonia solani were also investigated. Compared to pure substrate, the addition of compost to the peat-based growth substrates resulted in a significant reduction of disease in tomato plants of up to 70 % or 51 % in the presence of Sclerotinia minor or Rhizoctonia solani, respectively. The obtained results were related to the presence of putative bio-control agents and plant growth-promoting rhizobacteria belonging to the genera Azotobacter, Pseudomonas, Stenotrophomonas, Bacillus, Flavobacterium, Streptomyces and Actinomyces in the chestnut compost. The composting of chestnut waste may represent a sustainable agricultural practice for disposing of lignocellulosic waste by transforming it into green waste compost that can be used to

  1. Chemical and Microbial Dynamics during Composting of Herbal Pharmaceutical Industrial Waste

    Directory of Open Access Journals (Sweden)

    Farhan Zameer

    2010-01-01

    Full Text Available A study was performed to analyze the dynamics of chemical, biochemical and microbial parameters during composting of herbal pharmaceutical waste. All the parameters were analyzed at three different intervals of composting (1st, 15th and 60th days. Temperature of the compost pile was initially high (46.2 °C and on 60th day it dropped to 33.3 °C. The pH of the sample was initially acidic (2.39 and with the progress of decomposition gradually changed to neutrality (7.55. Electrical conductivity (EC value was high (3.8 mS during last day of composting compared to other stages. The activity of degradative enzymes namely amylase, invertase and urease were initially high (4.1, 4.79 mg of glucose/g/h and 0.19 mg of ammonia/g/h respectively while it decreased with composting. The beneficial microbial load was initially low and very high at the last stages of decomposition. The bioassay studies using compost extracts revealed that the 60th day old sample was not phytotoxic in nature.

  2. Feasibility study of green wastes composting with digested and dewatering sludge from municipal wastewater treatment plant in Iran

    Directory of Open Access Journals (Sweden)

    Neamat Jaafarzadeh Haghighi Fard

    2015-09-01

    Full Text Available Background: Composting as a waste management technology is becoming more widespread. The purpose of this study was to assess the feasibility and to find the most effective composting process for the ratio of green waste, digested and dewatered sludge from Chonibieh wastewater treatment plant in the west region of Ahvaz. Methods: The composting time was 23 days and the evaluated parameters in this period of the study were organic carbon, total nitrogen, phosphorus, carbon to nitrogen ratio (C/N, moisture content and pH. The C/N ratio was maintained at 30 with weight:weight ratio of 1:1, 1:2, 1:3 (digested and dewatered sludge to green waste. Results: It was observed that vessel R3 produced higher quality of compost with final total nitrogen (1.28%, final total phosphorus (0.71%, final total organic carbon (TOC (25.78% and C/N (20.65% within the 23 days of composting. While vessel R1 produced higher final total nitrogen and total phosphorus with lower amount of total coliform indicating suitable quality of composting. Therefore, the results showed that the characteristics of dewatered sludge mixed with green waste proportion of green waste significantly influenced the compost quality and process dynamics. The results also showed that the quality of final products in all the conditions was in agreement with Global Organic Textile Standard (GOTS and World Health Organization (WHO guidelines. However, the moisture content ratios were lower than the mentioned guidelines. With regards to microbial quality, all three ratios were in agreement with US Environmental Protection Agency (EPA and Iranian guidelines. Conclusion: It is suggested that the final product of composting can be safely used in farmland and green space.

  3. Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Lazcano, C.; Arnold, J.; Tato, A.; Zaller, J. G.; Dominguez, J.

    2009-07-01

    Abstract Post transplant success after nursery stage is strongly influenced by plant morphology. Cultural practices strongly shape plant morphology, and substrate choice is one of the most determining factors. Peat is the most often used amendment in commercial potting substrates, involving the exploitation of non-renewable resources and the degradation of highly valuable peatland ecosystems and therefore alternative substrates are required. Here the feasibility of replacing peat by compost or vermicompost for the production of tomato plants in nurseries was investigated through the study of the effect of increasing proportions of these substrates (0%, 10%, 20%, 50%, 75% and 100%) in target plant growth and morphological features, indicators of adequate post-transplant growth and yield. Compost and vermicompost showed to be adequate substrates for tomato plant growth. Total replacement of peat by vermicompost was possible while doses of compost higher than 50% caused plant mortality. Low doses of compost (10 and 20%) and high doses of vermicompost produced significant increases in aerial and root biomass of the tomato plants. In addition these treatments improved significantly plant morphology (higher number of leaves and leaf area, and increased root volume and branching). The use of compost and vermicompost constitute an attractive alternative to the use of peat in plant nurseries due to the environmental benefits involved but also due to the observed improvement in plant quality. Additional key words: peat moss, plant nursery, soil-less substrate, Solanum lycopersicum L. (Author) 37 refs.

  4. Biomass ash reutilisation as an additive in the composting process of organic fraction of municipal solid waste.

    Science.gov (United States)

    Asquer, Carla; Cappai, Giovanna; De Gioannis, Giorgia; Muntoni, Aldo; Piredda, Martina; Spiga, Daniela

    2017-11-01

    In this work the effects of selected types of biomass ash on the composting process and final product quality were studied by conducting a 96-day long experiment where the source separated organic fraction of municipal waste, mixed with wood prunings that served as bulking agent, was added with 0%, 2%, 4% and 8% wt/wt of biomass ash. The evolution over time of the main process parameters was observed, and the final composts were characterised. On the basis of the results, both the composting process and the quality of the final product were improved by ash addition. Enhanced volatile solids reduction and biological stability (up to 32% and 52%, respectively, as compared to the unamended product) were attained when ash was added, since ash favored the aerobic degradation by acting asa physical conditioner. In the final products, higher humification of organic matter (expressed in terms of the humification index, that was 2.25 times higher in the most-enriched compost than in the unamended one) and total Ca, K, Mg and P content were observed when ash was used. The latter aspect may influence the composts marketability positively, particularly with regards to potassium and phosphorus. The heavy metals content, that is regarded as the main environmental disadvantage when using ash asa composting additive, did not negatively affect the final composts quality. However, some other controversial effects of ash, related to the moisture and temperature values attained during the process, pH (8.8-9.2 as compared to 8.2 of the unamended compost) and electrical conductivity levels (up to 53% higher as compared to the unamended compost) in the final composts, were also observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Composting: a growth market

    International Nuclear Information System (INIS)

    Bueker, D.; Guenther, H.; Komodromos, A.

    1994-01-01

    The paper explains the current state of affairs in composting in Germany from the angles of licensing, engineering, the number and scale of existing and projected plants, the market for compost, and the prospective market for composting plants. (orig.) [de

  6. An integrated approach of composting methodologies for solid waste management

    Directory of Open Access Journals (Sweden)

    K. Kumaresan

    2016-03-01

    Full Text Available Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  7. An integrated approach of composting methodologies for solid waste management

    International Nuclear Information System (INIS)

    Kumaresan, K.; Balan, R.; Sridhar, A.; Aravind, J.; Kanmani, P.

    2016-01-01

    Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, p H and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  8. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring.

    Science.gov (United States)

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-11-15

    Conventional wastewater treatment generates large amounts of organic matter-rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation-RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  9. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    Directory of Open Access Journals (Sweden)

    Beatriz Temporal-Lara

    2016-11-01

    Full Text Available Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine for proper maturation of the compost. Adequate (near real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation—RPD = 2.68, humification ratio (RPD = 2.23, total exchangeable carbon (RPD = 2.07 and total organic carbon (RPD = 1.66 with a modular and cost-effective visible and near infrared (VNIR spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  10. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, O.N.; Haynes, R.J. [University of Queensland, St Lucia, Qld. (Australia)

    2009-11-15

    Increasing proportions of coal fly ash were co-composted with municipal green waste to produce manufactured soil for landscaping use. Only the 100% green waste treatment reached a thermophilic composting phase ({ge} 50{sup o}C) which lasted for 6 days. The 25% and 50% ash treatments reached 36-38{sup o}C over the same period while little or no self-heating occurred in the 75% and 100% ash treatments. Composted green waste had a low bulk density and high total and macro-porosity. Addition of 25% ash to green waste resulted in a 75% increase in available water holding capacity. As the proportions of added ash in the composts increased, the organic C, soluble C, microbial biomass C, basal respiration and activities of beta-glucosidase, L-asparaginase, alkali phosphatase and arylsulphatase enzymes in the composted products all decreased. It could be concluded that addition of fly ash to green waste at a proportion higher than 25% did not improve the quality parameters of manufactured soil.

  11. Addition of seaweed and bentonite accelerates the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2017-11-01

    Green waste (GW) is an important recyclable resource, and composting is an effective technology for the recycling of organic solid waste, including GW. This study investigated the changes in physical and chemical characteristics during the two-stage composting of GW with or without addition of seaweed (SW, Ulva ohnoi) (at 0, 35, and 55%) and bentonite (BT) (at 0.0, 2.5%, and 4.5%). During the bio-oxidative phase, the combined addition of SW and BT improved the physicochemical conditions, increased the respiration rate and enzyme activities, and decreased ammonia and nitrous oxide emissions. The combination of SW and BT also enhanced the quality of the final compost in terms of water-holding capacity, porosity, particle-size distribution, water soluble organic carbon/organic nitrogen ratio, humification, nutrient content, and phytotoxicity. The best quality compost, which matured in only 21days, was obtained with 35% SW and 4.5% BT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of the composting process using ear corn residue and three other conventional bulking agents during cow manure composting under high-moisture conditions.

    Science.gov (United States)

    Hanajima, Dai

    2014-10-01

    To elucidate the characteristics of ear corn residue as a bulking agent, the composting process using this residue was compared with processes using three other conventional materials such as sawdust, wheat straw and rice husk, employing a bench-scale composting reactor. As evaluated via biochemical oxygen demand (BOD), ear corn residue contains 3.3 and 2.0 times more easily digestible materials than sawdust and rice husk, respectively. In addition, mixing ear corn residue with manure resulted in reduced bulk density, which was the same as that of wheat straw and was 0.58 and 0.67 times lower than that of sawdust and a rice husk mixture, respectively. To evaluate temperature generation during the composting process, the maximum temperature and area under the temperature curve (AUCTEMP) were compared among the mixed composts of four bulking agents. Maximum temperature (54.3°C) as well as AUCTEMP (7310°C●h) of ear corn residue were significantly higher than those of sawdust and rice husk (Pcompost. Along with the value of AUCTEMP, the highest organic matter losses of 31.1% were observed in ear corn residue mixed compost, followed by wheat straw, saw dust and rice husk. © 2014 Japanese Society of Animal Science.

  13. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    Science.gov (United States)

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.

  14. Interactions Between Beneficial and Harmful Microorganisms: From the Composting Process to Compost Application

    OpenAIRE

    Fuchs, Jacques G.

    2010-01-01

    Numerous microorganisms are involved in the composting process, but their precise roles are often unknown. Compost microorganisms are influenced by the composition of the substrate and by the temperature in the compost pile. In addition, different microorganisms also influence each other, e.g. through competition. In the first phase of composting, microbial activity increase drastically, leading to a rise in temperature. The initial bacterial dominance is replaced by a fungal one during compo...

  15. Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system.

    Science.gov (United States)

    Sun, Zhao-Yong; Zhang, Jing; Zhong, Xiao-Zhong; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2016-05-01

    In the present study, we developed an efficient composting process for the solid fraction of dairy manure (SFDM) using lab-scale systems. We first evaluated the factors affecting the SFDM composting process using different thermophilic phase durations (TPD, 6 or 3days) and aeration rates (AR, 0.4 or 0.2 lmin(-1)kg(-1)-total solid (TS)). Results indicated that a similar volatile total solid (VTS) degradation efficiency (approximately 60%) was achieved with a TPD of 6 or 3days and an AR of 0.4 l min(-1) kg(-1)-TS (hereafter called higher AR), and a TPD of 3days resulted in less N loss caused by ammonia stripping. N loss was least when AR was decreased to 0.2 l min(-1) kg(-1)-TS (hereafter called lower AR) during the SFDM composting process. However, moisture content (MC) in the composting pile increased at the lower AR because of water production by VTS degradation and less water volatilization. Reduced oxygen availability caused by excess water led to lower VTS degradation efficiency and inhibition of nitrification. Adding sawdust to adjust the C/N ratio and decrease the MC improved nitrification during the composing processes; however, the addition of increasing amounts of sawdust decreased NO3(-) concentration in matured compost. When an improved composting reactor with a condensate removal and collection system was used for the SFDM composting process, the MC of the composting pile was significantly reduced, and nitrification was detected 10-14days earlier. This was attributed to the activity of ammonia-oxidizing bacteria (AOB). Highly matured compost could be generated within 40-50days. The VTS degradation efficiency reached 62.0% and the final N content, NO3(-) concentration, and germination index (GI) at the end of the composting process were 3.3%, 15.5×10(3)mg kg(-1)-TS, and 112.1%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.

    Science.gov (United States)

    Smith, Stephen R

    2009-01-01

    The content, behaviour and significance of heavy metals in composted waste materials is important from two potentially conflicting aspects of environmental legislation in terms of: (a) defining end-of-waste criteria and increasing recycling of composted residuals on land and (b) protecting soil quality by preventing contamination. This review examines the effects of heavy metals in compost and amended soil as a basis for achieving a practical and sustainable balance between these different policy objectives, with particular emphasis on agricultural application. All types of municipal solid waste (MSW) compost contain more heavy metals than the background concentrations present in soil and will increase their contents in amended soil. Total concentrations of heavy metals in source-segregated and greenwaste compost are typically below UK PAS100 limits and mechanical segregated material can also comply with the metal limits in UK PAS100, although this is likely to be more challenging. Zinc and Pb are numerically the elements present in the largest amounts in MSW-compost. Lead is the most limiting element to use of mechanically-segregated compost in domestic gardens, but concentrations are typically below risk-based thresholds that protect human health. Composted residuals derived from MSW and greenwaste have a high affinity for binding heavy metals. There is general consensus in the scientific literature that aerobic composting processes increase the complexation of heavy metals in organic waste residuals, and that metals are strongly bound to the compost matrix and organic matter, limiting their solubility and potential bioavailability in soil. Lead is the most strongly bound element and Ni the weakest, with Zn, Cu and Cd showing intermediate sorption characteristics. The strong metal sorption properties of compost produced from MSW or sewage sludge have important benefits for the remediation of metal contaminated industrial and urban soils. Compost and sewage sludge

  17. Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation?

    Science.gov (United States)

    Land application of compost has been a promising remediation strategy for soil health and environmental quality, but substantial emissions of greenhouse gases, especially N2O, need to be controlled during making and using compost. Biochar as a bulking agent for composting has bee...

  18. Wat is goede compost?

    NARCIS (Netherlands)

    Willekens, K.; Janmaat, L.

    2014-01-01

    Compost wordt voor meerdere doelen ingezet. Als meststof, maar ook om de organische stofbalans op peil te houden. Maar compost heeft nog meer voordelen. Zo worden aan compost ziektewerende eigenschappen toegekend. Het doel van compostgebruik bepaalt voor een groot deel welke prijs er voor wordt

  19. Progress of organic matter degradation and maturity of compost produced in a large-scale composting facility.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Marui, Taketoshi

    2011-06-01

    To monitor the progress of organic matter degradation in a large-scale composting facility, the percentage of organic matter degradation was determined by measuring CO(2) evolution during recomposting of compost samples withdrawn from the facility. The percentage of organic matter degradation was calculated as the ratio of the amount of CO(2) evolved from compost raw material to that evolved from each sample during recomposting in the laboratory composting apparatus. It was assumed that the difference in the cumulative emission of CO(2) between the compost raw material and a sample corresponds to the amount of CO( 2) evolved from the sample in the composting facility. Using this method, the changes in organic matter degradation during composting in practical large-scale composting facilities were estimated and it was found that the percentage of organic matter degradation increased more vigorously in the earlier stages than in the later stages of composting. The percentage of organic matter degradation finally reached 78 and 55% for the compost produced from garbage-animal manure mixture and distillery waste (shochu residue), respectively. It was thus ascertained that organic matter degradation progressed well in both composting facilities. Furthermore, by performing a plant growth assay, it was observed that the compost products of both the facilities did not inhibit seed germination and thus were useful in promoting plant growth.

  20. AGARICUS BLAZEI MURRILL MUSHROOM COMPOST STUDY ANAEROBIC AND AEROBIC PHASES

    Directory of Open Access Journals (Sweden)

    Sándor Rózsa

    2017-12-01

    Full Text Available Compost for the production of Agaricus blazei Murrill mushrooms, is produced from wheat straw, straw-bedded horse manure, chicken manure and gypsum. The substrate is made in two processes called Phase I (anaerobic and Phase II (aerobic. Phase I includes mixing and moistening of the ingredients and a period of uncontrolled self-heating where temperatures will rise to 80ºC. Phase II starts with a pasteurization period of 8h at 56-60ºC and continues with a conditioning period at 45ºC for up to 7 days until volatile NH3 has been cleared from the process by air. Quality parameters for compost cannot be established directly. Moisture and nitrogen contents and pH can be adjusted at the start of Phase I, but the values will be affected during processing. In this paperwork, we studied the physical properties (water content, electrical conductivity and chemical composition (pH, organic matter, nitrogen, calcium, magnesium, ammonia of four recipes of compost: classical, synthetic, mixt and original. During the experience, we recorded every hour the compost and the air temperature and the air relative humidity. The highest yield was obtained on synthetic compost with 42 kg mushrooms on 100 kg of compost.

  1. Effects of pH and microbial composition on odour in food waste composting

    Science.gov (United States)

    Sundberg, Cecilia; Yu, Dan; Franke-Whittle, Ingrid; Kauppi, Sari; Smårs, Sven; Insam, Heribert; Romantschuk, Martin; Jönsson, Håkan

    2013-01-01

    A major problem for composting plants is odour emission. Slow decomposition during prolonged low-pH conditions is a frequent process problem in food waste composting. The aim was to investigate correlations between low pH, odour and microbial composition during food waste composting. Samples from laboratory composting experiments and two large scale composting plants were analysed for odour by olfactometry, as well as physico-chemical and microbial composition. There was large variation in odour, and samples clustered in two groups, one with low odour and high pH (above 6.5), the other with high odour and low pH (below 6.0). The low-odour samples were significantly drier, had lower nitrate and TVOC concentrations and no detectable organic acids. Samples of both groups were dominated by Bacillales or Actinobacteria, organisms which are often indicative of well-functioning composting processes, but the high-odour group DNA sequences were similar to those of anaerobic or facultatively anaerobic species, not to typical thermophilic composting species. High-odour samples also contained Lactobacteria and Clostridia, known to produce odorous substances. A proposed odour reduction strategy is to rapidly overcome the low pH phase, through high initial aeration rates and the use of additives such as recycled compost. PMID:23122203

  2. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review.

    Science.gov (United States)

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2017-06-01

    Waste management strategies for organic residues, such as composting and vermicomposting, have been implemented in some developed and developing countries to solve the problem of organic solid waste (OSW). Yet, these biological treatment technologies do not always result in good quality compost or vermicompost with regards to sanitation capacity owing to the presence of bacterial pathogenic substances in objectionable concentrations. The presence of pathogens in soil conditioners poses a potential health hazard and their occurrence is of particular significance in composts and/or vermicomposts produced from organic materials. Past and present researches demonstrated a high-degree of agreement that various pathogens survive after the composting of certain OSW but whether similar changes in bacterial pathogenic loads arise during vermitechnology has not been thoroughly elucidated. This review garners information regarding the status of various pathogenic bacteria which survived or diffused after the composting process compared to the status of these pathogens after the vermicomposting of OSW with the aim of achieving sanitation goals. This work is also indispensable for the specification of compost quality guidelines concerning pathogen loads which would be specific to treatment technology. It was hypothesized that vermicomposting process for OSW can be efficacious in sustaining the existence of pathogenic organisms most specifically; human pathogens under safety levels. In summary, earthworms can be regarded as a way of obliterating pathogenic bacteria from OSW in a manner equivalent to earthworm gut transit mechanism which classifies vermicomposting as a promising sanitation technique in comparison to composting processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Waste utilization of red snapper (Lutjanus sp.) fish bone to improve phosphorus contents in compost

    Science.gov (United States)

    Ramadhani, S.; Iswanto, B.; Purwaningrum, P.

    2018-01-01

    The purpose of this research is to get the idea that bone waste will be the P content enhancer in compost so that the compost produced meets the standard P levels specified in SNI 19-7030-2004 which regulating compost quality standard. Nutrient levels were obtained in fish bone meal (FBM) are C (3.35%), N (0.48%), P (30.90%) and K (0.02%). Effects of fish bone meal to the rising levels of P in the compost has been known. P levels of compost B, C, D, and E increased at 428.57; 542.85; 657.14 and 914.28% against the compost A (blank). FBM ideal addition indicated in compost B, as much as 15 gr, with a P content of 0.37% and has been passed according standards (0.10% for P). C/N ratio decreased over the 21 days period of composting, with the greatest decline was compost E with a ratio of 16:1. Highest nitrogen (N) levels recorded respectively in compost B and C with value of 1.09% and the lowest of recorded N content was compost A, D and E (1.08%). N content in all samples of compost were eligible minimum N of 0.40%. Carbon (C) is the highest recorded in compost B; 20.20% and the lowest in the compost E; 17.34%. Highest and lowest C levels on the compost has met the minimum C of 9.80%. Composting is done in a bucket as an aerobic composter (with air holes), compost pile turnover for each sample is controlled as much as once/2 days. Mesophilic period (23-450C) occurs during the 21-day period of composting. Compost B has P content of 0.37%, so it has fulfilled the provisions of SNI 19-7030-2004 about the recommended compost standard.

  4. Essential oil production of lemongrass (Cymbopogon citratus under organic compost containing sewage sludge

    Directory of Open Access Journals (Sweden)

    Júlia V. d'Ávila

    Full Text Available ABSTRACT One of the main urban polluting agents are the sewers, which even with proper treatment end up generating a polluting waste, the sewage sludge. One of the options for the disposal of this sludge is the use in agriculture, due to its high content of organic matter and nutrients. This study aimed to use urban sewage sludge for lemongrass cultivation and essential oil production. The plants were grown in soil containing different organic compost doses (0, 5, 10, 20, 40 and 60 t ha-1, formed from the sewage sludge composting process and waste of urban vegetation pruning. At harvest, plants were analyzed for the concentration of nutrients, chlorophyll content, number of tillers, biomass production, essential oil content and the microbiological quality of the leaves. The results showed that the addition of the compost increased the levels of nutrients in the plants, mainly nitrogen, positively influencing the production of tillers, biomass, chlorophyll contents, yield and essential oil content.

  5. [Effects of sludge compost used as lawn medium on lawn growth and soil and water environment].

    Science.gov (United States)

    Jin, Shu-Quan; Zhou, Jin-Bo; Chen, Ruo-Xia; Lin, Bin; Wang, De-Yao

    2013-10-01

    To address effect of the sludge compost-containing medium on the growth of Manila lawn and environment quality, a pot experiment was conducted using six treatments based on contrasting sludge compost addition volume ratios in the soil system (i. e., 0% , 10% , 25% , 50% , 75% and 100%). The results indicated that the growth potential of Manila lawn was increased with increasing sludge compost addition volume ratio. The content of Hg in Manila plant was significantly positively correlated with that in the lawn medium. Although the contents of Cr, Cd and Hg in the lawn medium were synchronously increased with increasing sludge compost addition volume ratio in the soil system, their contents were all lower than the critical levels of third-class standard in the National Soil Environmental Quality Standard. The heavy metal and nitrate concentrations detected in percolating water were significantly positively correlated with those in the lawn medium, respectively. When the sludge compost addition volume ratio was more than 50% in this study, both heavy metal and nitrate concentrations in percolating water would exceed the maximum allowable levels of the National Groundwater Environment Quality Standard.

  6. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation.

    Science.gov (United States)

    Quecholac-Piña, Xochitl; García-Rivera, Mariel Anel; Espinosa-Valdemar, Rosa María; Vázquez-Morillas, Alethia; Beltrán-Villavicencio, Margarita; Cisneros-Ramos, Adriana de la Luz

    2017-11-01

    Plastics are widely used in the production of short-life products, which are discarded producing an accumulation of these materials and problems due to their persistence in the environment and waste management systems. Degradable plastics (compostable, oxodegradable) have been presented as an alternative to decrease the negative effect of plastic waste. In this research, the feasibility of degrading a commercially available compostable film and oxodegradable polyethylene, with and without previous abiotic oxidation, is assessed in a home composting system. Reactors (200 L) were used to degrade the plastic films along with a mixture of organic food waste (50 %), mulch (25 %), and dry leaves (25 %), amended with yeast and a solution of brown sugar to increase the speed of the process. The presence of the plastic film did not affect the composting process, which showed an initial increase in temperature and typical profiles for moisture content, pH, with a final C/N of 17.4. After 57 days, the compostable plastic has decreased its mechanical properties in more than 90 %, while the oxodegradable film did not show significant degradation if it was not previously degraded by UV radiation. The use of these plastics should be assessed against the prevailing waste management system in each city or country. In the case of Mexico, which lacks the infrastructure for industrial composting, home composting could be an option to degrade compostable plastics along organic waste. However, more testing is needed in order to set the optimal parameters of the process.

  7. Improving sewage sludge composting by addition of spent mushroom substrate and sucrose.

    Science.gov (United States)

    Meng, Liqiang; Zhang, Shumei; Gong, Hainan; Zhang, Xiancheng; Wu, Chuandong; Li, Weiguang

    2018-04-01

    The effects of spent mushroom substrate (SMS) and sucrose (S) amendment on emissions of nitrogenous gas (mainly NH 3 and N 2 O) and end products quality of sewage sludge (SS) composting were evaluated. Five treatments were composted for 20 days in laboratory-scale using SS with different dosages of SMS and S, without additive amended treatment used as control. The results indicated that SMS amendments especially combination with S promoted dehydrogenase activity, CO 2 production, organic matter degradation and humification in the composting, and maturity indices of composting also showed that the 30%SMS+2%S treatment could be much more appropriate to improve the composting process, such as total Kjeldahl nitrogen, nitrification index, humic acids/fulvic acids ratio and germination index, while the emissions of NH 3 and N 2 O were reduced by 34.1% and 86.2%, respectively. These results shown that the moderate addition of SMS and S could improve the compost maturity and reduce nitrogenous gas emission. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Methodological interference of biochar in the determination of extracellular enzyme activities in composting samples

    Science.gov (United States)

    Jindo, K.; Matsumoto, K.; García Izquierdo, C.; Sonoki, T.; Sanchez-Monedero, M. A.

    2014-07-01

    Biochar application has received increasing attention as a means to trap recalcitrant carbon and enhance soil fertility. Hydrolytic enzymatic assays, such as β-glucosidase and phosphatase activities, are used for the assessment of soil quality and composting process, which are based on use of p-nitrophenol (PNP) derivatives as substrate. However, sorption capacity of biochar can interfere with colorimetric determination of the hydrolysed PNP, either by the sorption of the substrate or the reaction product of hydrolysis into biochar surface. The aim of the present work is to study the biochar sorption capacity for PNP in biochar-blended composting mixtures in order to assess its impact on the estimation of the colorimetric-based enzymatic assays. A retention test was conducted by adding a solution of known amounts of PNP in universal buffer solution (pH = 5, 6.5 and 11, corresponding to the β-glucosidase, acid and alkaline phosphatase activity assays, respectively), in samples taken at the initial stage and after maturation stage from four different composting piles (two manure composting piles; PM: poultry manure, CM: cow manure and two other similar piles containing 10% of additional biochar (PM + B, CM + B)). The results show that biochar-blended composts (PM + B, CM + B) generally exhibited low enzymatic activities, compared to manure compost without biochar (PM, CM). In terms of the difference between the initial and maturation stage of composting process, the PNP retention in biochar was shown higher at maturation stage, caused most probably by an enlarged proportion of biochar inside compost mixture after the selective degradation of easily decomposable organic matter. TThe retention of PNP on biochar was influenced by pH dependency of sorption capacity of biochar and/or PNP solubility, since PNP was more efficiently retained by biochar at low pH values (5 and 6.5) than at high pH values (11).

  9. Investigation into Total Carbon in Sewage Sludge and Compost

    Directory of Open Access Journals (Sweden)

    Eglė Zuokaitė

    2011-02-01

    Full Text Available The relation between soil and climate change is highly important. The soil is a part of the climate change problem; however, it could also be a part of the solution to the encountered problem. For a better understanding and estimation of climate gas emissions and for slowing down these processes, more investigation in this field is required. Sustainable soil usage could help with saving or even increasing the amount of carbon in the soil. Such process will sustain the balance of climate gas emissions. Soil carbon is an essential element that determines soil fertility. Recently, the importance of organic materials for soil quality and the applicability of sewage sludge to enrich the soil using such materials have been discussed. Sewage sludge as an organic carbon source can improve soil quality. The best way to stabilise and immobilise carbon is mineralisation that occurs in the composting process. The article analyses and evaluates the loss of organic carbon content during the composting process of sewage sludge and explores loss rates by adding various natural supplements (wood shavings and chips, milled bark, grained branches, peat and zeolite.Article in Lithuanian

  10. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    Science.gov (United States)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  11. Adding Cellulosic Ash to Composting Mix as a Soil Amendment

    Directory of Open Access Journals (Sweden)

    Jathwa Abd Alkareem Ibrahim

    2016-04-01

    Full Text Available Solid waste generation and composition in Baghdad is typically affected by population growth, urbanization, improved economic conditions, changes in lifestyles and social and cultural habits. A burning chamber was installed to burn cellulosic waste only. It was found that combustion reduced the original volume and weight of cellulosic waste by 97.4% and 85% respectively. A batch composting study was performed to evaluate the feasibility of co-composting organic food waste with the cellulosic bottom ash in three different weight ratios (w/w [95/5, 75/25, 50/50]. The composters were kept in controlled aerobic conditions for 7 days. Temperature, moisture, and pH were measured hourly as process successful indicators. Maximum temperature ranged between (41 to 53 ºC. Results showed that the blend of M2 [OFMSW: BCA] [75:25] was the most beneficial to composting. It maintained the highest temperature for the longest duration for 9hrs. at (53 ºC, achieved the highest nitrogen content(1.65% , a C/N ratio of (14.18 %, nitrification index(N-NH4/N-NO3 of (0.29,nitrogen, phosphorous and potassium(NPK(1.65, 1.22, 1.73% respectively, seed germination 80% indicating that the achieved compost is mature and stable. Heavy metal contents (Cd, Cr, Cu, Mn, Ni, Pb and Zn were detected in the above compost and all were lower than the regulation limits of the metal quality standards for compost and stabilized bio-waste.

  12. EM.1 Compost and its effects on the nodulation, growth and yield of berseem (trifolium alexandrinum) crop

    International Nuclear Information System (INIS)

    Daur, I.; Abusuwar, A. O.

    2015-01-01

    To wisely utilize local organic resources and enhance their quality in order to effectively fertilize agricultural crops, a blend of organic resources, comprising cow manure, poultry manure, and kitchen waste (2:1:1 ratio by volume), was composted with (Compost EM.1) and without (Compost plain) effective microorganisms (EM.1). Various parameters including temperature, pH, carbon (C), nitrogen (N), and the C/N ratio were recorded during composting to assess the effects of EM.1 on this process. After completion of the composting process, the effects of the resultant composts on the nodulation, growth, and yield of berseem (Trifolium alexandrinum L.) crop were tested in a field trial. Temperature and pH were lower and the N content was higher in Compost EM.1 than in Compost plain throughout composting. C degradation was also faster in Compost EM.1 than in Compost plain. Consequently, the C/N ratio stabilized faster in Compost EM.1, leading to rapid completion of composting. In the field trial, composts showed no significant effect on nodulation or the shoot-to-root ratio. However, in comparison to Compost plain, Compost EM.1 significantly increased the leaf-to-stem ratio and the fresh and dry yields of berseem. We conclude that EM.1 enhances the composting process and the yield of berseem crop. (author)

  13. Closing the nutrient loops in (peri) urban farming systems through composting

    DEFF Research Database (Denmark)

    Nigatu, Abebe Nigussie

    waste management practices in developing countries and ensure sustainable crop production via the biotransformation of urban waste into a high-quality soil amendment. First, I aimed at determining the causes for the limited use of organic amendments in small-scale urban farming systems. I interviewed...... 220 urban farmers in Ethiopia and found that competition for agricultural waste between fuel, feed and soil amendment is a major cause for the limited use of organic amendments. I demonstrated that allocation of agricultural waste for soil amendment is linked with farmers’ livelihood strategies. I...... also studied variation in compost demand among different farmer groups, and the socio-economic variables which explained these variations. Gaseous losses of ammonia and greenhouse gas (GHG) emissions occur during composting of nitrogen-rich urban waste. Several technologies could reduce these losses...

  14. Presence of Legionella and Free-Living Amoebae in Composts and Bioaerosols from Composting Facilities

    Science.gov (United States)

    Conza, Lisa; Pagani, Simona Casati; Gaia, Valeria

    2013-01-01

    Several species of Legionella cause Legionnaires’ disease (LD). Infection may occur through inhalation of Legionella or amoebal vesicles. The reservoirs of Legionella are water, soil, potting soil and compost. Some species of free-living amoebae (FLA) that are naturally present in water and soil were described as hosts for Legionella. This study aimed to understand whether or not the composting facilities could be sources of community-acquired Legionella infections after development of bioaerosols containing Legionella or FLA. We looked for the presence of Legionella (by co-culture) and FLA (by culture) in composts and bioaerosols collected at four composting facilities located in southern Switzerland. We investigated the association between the presence of Legionella and compost and air parameters and presence of FLA. Legionella spp. (including L. pneumophila) were detected in 69.3% (61/88) of the composts and FLA (mainly Acanthamoeba, Vermamoeba, Naegleria and Stenamoeba) in 92.0% (81/88). L. pneumophila and L. bozemanii were most frequently isolated. FLA as potential host for Legionella spp. were isolated from 40.9% (36/88) of the composts in all facilities. In Legionella-positive samples the temperature of compost was significantly lower (P = 0.012) than in Legionella-negative samples. Of 47 bioaerosol samples, 19.1% (9/47) were positive for FLA and 10.6% (5/47) for L. pneumophila. Composts (62.8%) were positive for Legionella and FLA contemporaneously, but both microorganisms were never detected simultaneously in bioaerosols. Compost can release bioaerosol containing FLA or Legionella and could represent a source of infection of community-acquired Legionella infections for workers and nearby residents. PMID:23844174

  15. Presence of Legionella and free-living Amoebae in composts and bioaerosols from composting facilities.

    Directory of Open Access Journals (Sweden)

    Lisa Conza

    Full Text Available Several species of Legionella cause Legionnaires' disease (LD. Infection may occur through inhalation of Legionella or amoebal vesicles. The reservoirs of Legionella are water, soil, potting soil and compost. Some species of free-living amoebae (FLA that are naturally present in water and soil were described as hosts for Legionella. This study aimed to understand whether or not the composting facilities could be sources of community-acquired Legionella infections after development of bioaerosols containing Legionella or FLA. We looked for the presence of Legionella (by co-culture and FLA (by culture in composts and bioaerosols collected at four composting facilities located in southern Switzerland. We investigated the association between the presence of Legionella and compost and air parameters and presence of FLA. Legionella spp. (including L. pneumophila were detected in 69.3% (61/88 of the composts and FLA (mainly Acanthamoeba, Vermamoeba, Naegleria and Stenamoeba in 92.0% (81/88. L. pneumophila and L. bozemanii were most frequently isolated. FLA as potential host for Legionella spp. were isolated from 40.9% (36/88 of the composts in all facilities. In Legionella-positive samples the temperature of compost was significantly lower (P = 0.012 than in Legionella-negative samples. Of 47 bioaerosol samples, 19.1% (9/47 were positive for FLA and 10.6% (5/47 for L. pneumophila. Composts (62.8% were positive for Legionella and FLA contemporaneously, but both microorganisms were never detected simultaneously in bioaerosols. Compost can release bioaerosol containing FLA or Legionella and could represent a source of infection of community-acquired Legionella infections for workers and nearby residents.

  16. Composting swine manure from high rise finishing facilities

    Science.gov (United States)

    Over the last twenty years there have been considerable increases in the incidence of human infections with bacteria that are resistant to commonly used antibiotics. This has precipitated concerns about the use of antibiotics in livestock production. Composting of swine manure has several advantages...

  17. Performance of Elaeis Guineensis Leaves Compost in Filter Media for Stormwater Treament Through Column Study

    Science.gov (United States)

    Takaijudin, H.; Ghani, A. A.; Zakaria, N. A.; Tze, L. L.

    2016-07-01

    Compost based materials arv e widely used in filter media for improving soil capability and plant growth. The aim of this paper is to evaluate different types of compost materials used in engineered soil media through soil column investigation. Three (3) column, namely C1 (control), C2 and C3 had different types compost (10%) which were, commercial compost namely PEATGRO, Compost A and Compost B were prepared with 60% medium sand and 30% of topsoil. The diluted stormwater runoff was flushed to the columns and it was run for six (6) hour experiment. The influent and effluent samples were collected and tested for Water Quality Index (WQI) parameters. The results deduced that C3 with Elaeis Guineensis leaves compost (Compost B) achieved 90.45 (Class II) better than control condition which accomplished 84 (Class II) based on WQI Classification. C3 with Compost A (African Mahogany Leaves Compost) obtained only 59.39 (Class III). C3 with the composition of Compost B effectively removed most pollutants, including Chemical Oxygen Demand (COD, Ammoniacal Nitrogen (NH3-N), were reduced by 89±4% and 96.6±0.9%, respectively. The result concluded that Elaeis Guineensis leaves compost is recommended to be used as part of engineered soil media due to its capabilities in eliminating stormwater pollutants.

  18. Vermi composting--organic waste management and disposal.

    Science.gov (United States)

    Kumar, J Sudhir; Subbaiah, K Venkata; Rao, P V V Prasada

    2012-01-01

    Solid waste is an unwanted byproduct of modern civilization. Landfills are the most common means of solid waste disposal. But the increasing amount of solid waste is rapidly filling existing landfills, and new sites are difficult to establish. Alternatives to landfills include the use of source reduction, recycling, composting and incineration, as well as use of landfills. Incineration is most economical if it includes energy recovery from the waste. Energy can be recovered directly from waste by incineration or the waste can be processed to produce storable refuse derived fuel (RDF). Information on the composition of solid wastes is important in evaluating alternative equipment needs, systems, management programs and plans. Pulverization of municipal solid waste is done and the pulverized solid waste is dressed to form a bed and the bed is fed by earthworms which convert the bed into vermi compost. The obtained vermi compost is sent to Ministry of Environment & Forests (MoEF) recognized lab for estimating the major nutrients, i.e. Potassium (K), Phosphorous (P), Nitrogen (N) and Micro-nutrient values. It is estimated that 59 - 65 tons of wet waste can be collected in a town per day and if this wet waste is converted to quality compost, around 12.30 tons of vermi compost can be generated. If a Municipal Corporation manages this wet waste an income of over (see text symbol) for 0.8 9 crore per anum can be earned which is a considerable amount for providing of better services to public.

  19. Composting of organically amended/treated hardwood and softwood sawdust

    International Nuclear Information System (INIS)

    Takyi-Lartey, Rita

    2015-07-01

    Sawdust is a major waste produced by the wood industry. Adding value to sawdust through composting is one of the surest means by which environmental pollution could be minimized. About 500 kg of softwood and hardwood sawdust were separately mixed with mucuna leaves and kitchen waste in the ratio of 3:1:1 on weight basis and heaped using effluent from abattoir to develop composts. Objectives of the study were to monitor changes in the physico-chemical properties, NH4"+ ‒ N, NO3"‒ ‒ N, C:N ratio, minerals N, K, P, microbial load and toxic elements in the composts during a 12 week period. Germination test was also done to evaluate the stability and maturity of the composts developed. Degradation of softwood sawdust compost (SSC) was better in the mesophilic phase while that of hardwood sawdust compost (HSC) occurred in the thermophilic phase. Thus, significantly higher amount of the organic material in SSC was decomposed during the period as compared to HSC. Also, greater percentage of the nitrogen in the initial material of SSC was converted into plant-available inorganic nitrogen (NH4"+ and NO3"‒) than was achieved in HSC. Hence, most of the mineral nitrogen in HSC that was converted was lost, probably in the thermophilic phase. On the contrary, the amount of organic nitrogen contained in the finished composts of both SSC and HSC were adequately good for application to the soil. Additionally, concentrations of pathogenic microorganisms in SSC and HSC products were within acceptable limits in terms of toxicity on growing plants. The softwood sawdust compost was relatively more stable as compared to HSC under the experimental conditions. Concentrations of heavy metals in both SSC and HSC were also within acceptable limits that would cause no toxicity to plants. Also, moisture contents in both SSC and HSC were within the good range (40 - 60%) required for a good compost. Thus both SSC and HSC produced were of good quality. Further research targeting specific

  20. Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Sharma, S. [Indian Institute of Technology, New Delhi (India). Centre for Rural Development and Technology

    2002-11-01

    Preliminary studies were conducted on wheat straw to test the technical viability of an integrated system of composting, with bioinoculants and subsequent vermicomposting, to overcome the problem of lignocellulosic waste degradation, especially during the winter season. Wheat straw was pre-decomposed for 40 days by inoculating it with Pleurotus sajor-caju, Trichoderma harzianum, Aspergillus niger and Azotobacter chroococcum in different combinations. This was followed by vermicomposting for 30 days. Chemical analysis of the samples showed a significant decrease in cellulose, hemicellulose and lignin contents during pre-decomposition and vermicomposting. The N, P, K content increased significantly during pre-decomposition with bioinoculants. The best quality compost, based on chemical analysis, was prepared where the substrate was treated with all the four bioinoculants together followed by vermicomposting. Results indicated that the combination of both the systems reduced the overall time required for composting and accelerated the composting of ligno-cellulosic waste during the winter season besides producing a nutrient-enriched compost product. (author)

  1. Effect of Turning Frequency on Composting of Empty Fruit Bunches Mixed with Activated Liquid Organic Fertilizer

    Science.gov (United States)

    Trisakti, B.; Lubis, J.; Husaini, T.; Irvan

    2017-03-01

    Composting of Empty Fruit Bunch (EFB) by mixing it with activated liquid organic fertilizer (ALOF) is an alternative way in the utilization of solid waste produced from the palm oil mill (POM). This research was to determine the effect of turning frequency on the rate of composting of EFB mixed with ALOF in a basket composter. The composting process was started with cutting the EFB into pieces with size 1-3 cm, inserting the EFB pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding ALOF until moisture content (MC) in the range of 55-65%. During composting, the MC was maintained at 55-65% range by adding the ALOF. The turning frequency on each composter was varied i.e. once in every 1, 2, 3, 4, and 5 days. The parameters analysed during composting were temperature, pH, MC, compost weight, water holding capacity (WHC), CN ratio, and the quality of the final compost. Composting was carried out for 40 days and the best result obtained at turning frequency was 3 days. The best compost characteristic was pH 9.0; MC 57.24%; WHC 76%; CN ratio 12.15%; P 0.58%; and K 0. 95%.

  2. Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting.

    Science.gov (United States)

    Li, Yun; Luo, Wenhai; Li, Guoxue; Wang, Kun; Gong, Xiaoyan

    2018-02-01

    This study investigated the performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation during pig manure composting with cornstalk as the bulking agent. Results show that phosphogypsum increased nitrous oxide (N 2 O) emission, but significantly reduced ammonia (NH 3 ) emission and thus enhanced the mineral and total nitrogen (TN) contents in compost. Although N 2 O emission could be reduced by adding calcium magnesium phosphate fertilizer, NH 3 emission was considerably increased, resulting in an increase in TN loss during composting. By blending these two additives, both NH 3 and N 2 O emissions could be mitigated, achieving effective nitrogen conservation in composting. More importantly, with the addition of 20% TN of the mixed composting materials, these two additives could synergistically improve the compost maturity and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effects of moderate and high rates of biochar and compost on grapevine growth in a greenhouse experiment

    Directory of Open Access Journals (Sweden)

    Arianna Bozzolo

    2017-03-01

    Full Text Available Biochar is used as soil amendment and enhancer of plant growth, but the mechanisms involved in grapevine are not understood. In this study, the short-term effects of amendments were evaluated in a trial combining three substrates (biochar, compost, peat-based media with three doses (30, 70, 100% along a time sequence on 1-year-old bare root cuttings of grapevine. Amendments were analyzed for elemental composition. Soil pH, electrical conductivity (EC, chlorophyll (CHL, flavonoids (FL, anthocyans (ANT and nitrogen balance index (NBI were measured.Biochar differed from other amendments for stable C structures, where nutrients and lignin residues were high in compost. Biochar increased soil pH, whereas biochar plus compost mixture augmented EC. The amended plants had detrimental effects on root, true and lateral leaves. Nevertheless, at the lowest rate biochar increased the primary shoot and total scion to root biomass ratio. Among biochemicals, ANT and NBI were mostly affected by biochar, while compost gave only slight increments. Thus, although biochar rate was not adequate for the shedding in open field our results suggest that biochar might be useful in nursery when used at low dosages.

  4. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system.

    Science.gov (United States)

    Shrestha, Karuna; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Midmore, David J

    2011-09-01

    Microbially enhanced compost extracts ('compost tea') are being used in commercial agriculture as a source of nutrients and for their perceived benefit to soil microbiology, including plant disease suppression. Rumen content material is a waste of cattle abattoirs, which can be value-added by conversion to compost and 'compost tea'. A system for compost extraction and microbial enhancement was characterised. Molasses amendment increased bacterial count 10-fold, while amendment based on molasses and 'fish and kelp hydrolysate' increased fungal count 10-fold. Compost extract incubated at 1:10 (w/v) dilution showed the highest microbial load, activity and humic/fulvic acid content compared to other dilutions. Aeration increased the extraction efficiency of soluble metabolites, and microbial growth rate, as did extraction of compost without the use of a constraining bag. A protocol of 1:10 dilution and aerated incubation with kelp and molasses amendments is recommended to optimise microbial load and fungal-to-bacterial ratio for this inoculum source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Municipal household waste used as complement material for composting chicken manure and crop residues

    Directory of Open Access Journals (Sweden)

    Guillaume L. Amadji

    2013-06-01

    Full Text Available There are few organic materials available as agricultural soil amendment because their low chemical content means that large quantities are required. In order to improve the availability of raw materials for composting, as well as the quality of the compost produced, municipal solid waste (MW was added to cotton-seed residue (CSR and to the association of CSR with chicken manure (M in different weight/weight (MW/added materials ratios of 5:1 and 2:1. Aerobic composting was processed and compost yield was determined, as well as compost particle size and pH. Also, the compost bulk density and its water holding capacity were determined as well as contents of total nitrogen, carbon, phosphorus, calcium (Ca, magnesium and heavy metals. According to its pH and carbon/nitrogen ratio values, the municipal waste of Cotonou was judged to be a good raw material for composting in order to improve availability of the organic source of nutrients. The composts produced with MW+M+CSR had the highest potential for amending Ferralsols, especially with a mixture of 2:1 (200 kg MW+100 kg M+100 kg CSR that could be applied at 10 t ha–1. However, further improvement in composting methods was suggested to increase Ca++ and reduce mercury contents, respectively. Moreover, potassium balance should be improved in the produced compost.

  6. A statistical analysis to assess the maturity and stability of six composts.

    Science.gov (United States)

    Komilis, Dimitrios P; Tziouvaras, Ioannis S

    2009-05-01

    Despite the long-time application of organic waste derived composts to crops, there is still no universally accepted index to assess compost maturity and stability. The research presented in this article investigated the suitability of seven types of seeds for use in germination bioassays to assess the maturity and phytotoxicity of six composts. The composts used in the study were derived from cow manure, sea weeds, olive pulp, poultry manure and municipal solid waste. The seeds used in the germination bioassays were radish, pepper, spinach, tomato, cress, cucumber and lettuce. Data were analyzed with an analysis of variance at two levels and with pair-wise comparisons. The analysis revealed that composts rendered as phytotoxic to one type of seed could enhance the growth of another type of seed. Therefore, germination indices, which ranged from 0% to 262%, were highly dependent on the type of seed used in the germination bioassay. The poultry manure compost was highly phytotoxic to all seeds. At the 99% confidence level, the type of seed and the interaction between the seeds and the composts were found to significantly affect germination. In addition, the stability of composts was assessed by their microbial respiration, which ranged from approximately 4 to 16g O(2)/kg organic matter and from 2.6 to approximately 11g CO(2)-C/kg C, after seven days. Initial average oxygen uptake rates were all less than approximately 0.35g O(2)/kg organic matter/h for all six composts. A high statistically significant correlation coefficient was calculated between the cumulative carbon dioxide production, over a 7-day period, and the radish seed germination index. It appears that a germination bioassay with radish can be a valid test to assess both compost stability and compost phytotoxicity.

  7. Developing Optimal Combination of Bulking Agents in an In-Vessel Composting of Vegetable Waste

    Directory of Open Access Journals (Sweden)

    C. C. Monson

    2010-01-01

    Full Text Available The objective of the study is to determine the optimum combination of feed stock components for composting the organic solid waste, a prerequisite for effective microbial degradation and for obtaining quality compost. Combination of dry leaves with locally available bulking agents like sawdust, wood shavings, paddy straw, sugarcane bagasse and rice husk are composted along with vegetable waste in a laboratory scale reactor for the study. The central core of composting process is replicated in controlled conditions in the in-vessel by keeping initial feed stock C/N ratio fixed between 30 and 35. The study is monitored for 14 days for the variations in temperature, pH, moisture and macronutrients C and N of the compost. It is found that composting vegetable waste with the combination of paddy straw and dry leaves provided best results of C/N ratio of 17.58 confirming that, if right feedstock components are provided, an effective environment for the growth of microorganisms is achieved to accelerate the process to produce a resultant C/N ratio acceptable to be used as compost.

  8. A combination of biochar-mineral complexes and compost improves soil bacterial processes, soil quality and plant properties

    Directory of Open Access Journals (Sweden)

    JUN eYE

    2016-04-01

    Full Text Available Organic farming avoids the use of synthetic fertilizers and promises food production with minimal environmental impact, however this farming practice does not often result in the same productivity as conventional farming. In recent years, biochar has received increasing attention as an agricultural amendment and by coating it with minerals to form biochar-mineral complex (BMC carbon retention and nutrient availability can be improved. However, little is known about the potential of BMC in improving organic farming. We therefore investigated here how soil, bacterial and plant properties respond to a combined treatment of BMC and an organic fertilizer, i.e. a compost based on poultry manure. In a pakchoi pot trial, BMC and compost showed synergistic effects on soil properties, and specifically by increasing nitrate content. Soil nitrate has been previously observed to increase leaf size and we correspondingly saw an increase in the surface area of pakchoi leaves under the combined treatment of BMC and chicken manure. The increase in soil nitrate was also correlated with an enrichment of bacterial nitrifiers due to BMC. Additionally, we observed that the bacteria present in the compost treatment had a high turnover, which likely facilitated organic matter degradation and a reduction of potential pathogens derived from the manure. Overall our results demonstrate that a combination of BMC and compost can stimulate microbial process in organic farming that result in better vegetable production and improved soil properties for sustainable farming.

  9. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus.

    Science.gov (United States)

    Jurak, Edita; Kabel, Mirjam A; Gruppen, Harry

    2014-01-30

    Changes of plant cell wall carbohydrate structures occurring during the process to make suitable compost for growth of Agaricus bisporus are unknown. In this paper, composition and carbohydrate structures in compost samples collected during composting and mycelium growth were analyzed. Furthermore, different extracts of compost samples were prepared with water, 1M and 4M alkali and analyzed. At the beginning of composting, 34% and after 16 days of mycelium growth 27% of dry matter was carbohydrates. Carbohydrate composition analysis showed that mainly cellulose and poorly substituted xylan chains with similar amounts and ratios of xylan building blocks were present in all phases studied. Nevertheless, xylan solubility increased 20% over the period of mycelium growth indicating partial degradation of xylan backbone. Apparently, degradation of carbohydrates occurred over the process studied by both bacteria and fungi, mainly having an effect on xylan-chain length and solubility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2017-12-01

    The objective of this study was to determine the effects of cow dung (CD) (at 0%, 20%, and 35%) and/or spent coffee grounds (SCGs) (at 0%, 30%, and 45%) as amendments in the two-stage co-composting of green waste (GW); the percentages refer to grams of amendment per 100g of GW based on dry weights. The combined addition of CD and SCGs improved the conditions during co-composting and the quality of the compost product in terms of composting temperature; particle-size distribution; mechanical properties; nitrogen changes; low-molecular weight compounds; humic substances; the degradation of lignin, cellulose, and hemicellulose; enzyme activities; the contents of total Kjeldahl nitrogen, total phosphorus, and total potassium; and the toxicity to germinating seeds. The combined addition of 20% CD and 45% SCGs to GW resulted in the production of the highest quality compost product and did so in only 21days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Changes in cadmium mobility during composting and after soil application

    International Nuclear Information System (INIS)

    Hanc, Ales; Tlustos, Pavel; Szakova, Jirina; Habart, Jan

    2009-01-01

    The effect of twelve weeks of composting on the mobility and bioavailability of cadmium in six composts containing sewage sludge, wood chips and grass was studied, along with the cadmium immobilization capacity of compost. Two different soils were used and Cd accumulation measured in above-ground oat biomass (Avena sativa L.). Increasing pH appears to be an important cause of the observed decreases in available cadmium through the composting process. A pot experiment was performed with two different amounts of compost (9.6 and 28.8 g per kg of soil) added into Fluvisol with total Cd 0.255 mg kg -1 , and contaminated Cambisol with total Cd 6.16 mg kg -1 . Decrease of extractable Cd (0.01 mol l -1 CaCl 2 ) was found in both soils after compost application. The higher amount of compost immobilized an exchangeable portion of Cd (0.11 mol l -1 CH 3 COOH extractable) in contaminated Cambisol unlike in light Fluvisol. The addition of a low amount of compost decreased the content of Cd in associated above-ground oat biomass grown in both soils, while a high amount of compost decreased the Cd content in oats only in the Cambisol.

  12. [Effects of mushroom residue compost on growth and nutrient accumulation of Larix principis-rupprechtii containerized transplants].

    Science.gov (United States)

    Teng, Fei; Liu, Yong; Lou, Jun Shan; Sun, Qiao Yu; Wan, Fang Fang; Yang, Chen; Zhang, Jin

    2016-12-01

    Excessive use of peat may cause some environmental problems. To alleviate the negative effect, an experiment was conducted with the mushroom residue compost to replace peat in Larix principis-rupprechtii containerized transplant production, and the proportion of mushroom residue compost was 0% (T 0 , control), 15% (T 1 ), 18.75% (T 2 ), 25% (T 3 ), 37.50% (T 4 ), 50% (T 5 ), 56.25% (T 6 ) and 60% (T 7 ), respectively. The physical and chemical features of the substrates and its effect on the vegetative growth and nutrient accumulation of L. principis-rupprechtii containerized transplants were studied. The results showed when the proportion of mushroom residue compost in the substrate accounted for 50% or less, there was no significant difference in the transplant height, diameter, and biomass compared with the control, and the nutrient concentration in T 2 , T 4 , T 5 treatments was significantly higher than in T 0 . The pH value was sub-acidic to neutral which was suitable to the transplant growth. When the compost proportion accounted for more than 50%, the pH value was altered to alkali and was not suitable to the transplant growth. When the proportion of mushroom residue compost accounted for 15%, the plant grew best, and the height, diameter, and total biomass got the highest. Therefore, using mushroom residue compost to replace peat in L. principis-rupprechtii containerized transplants cultivation was feasible and the maximum replacement ratio could reach 50%. The high quality transplants could be obtained when the compost replacement ratio was 15%.

  13. Process Improvements: Aerobic Food Waste Composting at ISF Academy

    Science.gov (United States)

    Lau, Y. K.

    2015-12-01

    ISF Academy, a school with 1500 students in Hong Kong, installed an aerobic food waste composting system in November of 2013. The system has been operational for over seven months; we will be making improvements to the system to ensure the continued operational viability and quality of the compost. As a school we are committed to reducing our carbon footprint and the amount of waste we send to the local landfill. Over an academic year we produce approximately 27 metric tons of food waste. Our system processes the food waste to compost in 14 days and the compost is used by our primary school students in a organic farming project.There are two areas of improvement: a) if the composting system becomes anaerobic, there is an odor problem that is noticed by the school community; we will be testing the use of a bio-filter to eliminate the odor problem and, b) we will be working with an equipment vendor from Australia to install an improved grease trap system. The grease and oil that is collected will be sold to a local company here in Hong Kong that processes used cooking oil for making biofuels. This system will include a two stage filtration system and a heated vessel for separating the oil from the waste water.The third project will be to evaluate biodegradable cutlery for the compositing in the system. Currently, we use a significant quantity of non-biodegradable cutlery that is then thrown away after one use. Several local HK companies are selling biodegradable cutlery, but we need to evaluate the different products to determine which ones will work with our composting system. The food waste composting project at ISF Academy demonstrates the commitment of the school community to a greener environment for HK, the above listed projects will improve the operation of the system.

  14. Effect of Initial Moisture Content on the in-Vessel Composting Under Air Pressure of Organic Fraction of MunicipalSolid Waste in Morocco

    Directory of Open Access Journals (Sweden)

    Abdelhadi Makan

    2013-01-01

    Full Text Available This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  15. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco.

    Science.gov (United States)

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-03

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  16. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    Directory of Open Access Journals (Sweden)

    Mountadar Mohammed

    2013-01-01

    Full Text Available Abstract This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  17. Managing soil nutrients with compost in organic farms of East Georgia

    Science.gov (United States)

    Ghambashidze, Giorgi

    2013-04-01

    Soil Fertility management in organic farming relies on a long-term integrated approach rather than the more short-term very targeted solutions common in conventional agriculture. Increasing soil organic matter content through the addition of organic amendments has proven to be a valuable practice for maintaining or restoring soil quality. Organic agriculture relies greatly on building soil organic matter with compost typically replacing inorganic fertilizers and animal manure as the fertility source of choice. In Georgia, more and more attention is paid to the development of organic farming, occupying less than 1% of total agricultural land of the country. Due to increased interest towards organic production the question about soil amendments is arising with special focus on organic fertilizers as basic nutrient supply sources under organic management practice. In the frame of current research two different types of compost was prepared and their nutritional value was studied. The one was prepared from organic fraction municipal solid waste and another one using fruit processing residues. In addition to main nutritional properties both composts were tested on heavy metals content, as one of the main quality parameter. The results have shown that concentration of main nutrient is higher in municipal solid waste compost, but it contains also more heavy metals, which is not allowed in organic farming system. Fruit processing residue compost also has lower pH value and is lower in total salt content being is more acceptable for soil in lowlands of East Georgia, mainly characterised by alkaline reaction. .

  18. Effect of different form of mineral nitrogen fertilizer and organic fertilization with compost on yield and quality of various field-grown vegetable crops (radish, carrot, spinach and tubers celery). Quality investigation through electrochemical method and the determination of p-value

    International Nuclear Information System (INIS)

    El-Sherbiny, M.

    1998-10-01

    This study was conducted to determine the effect of nitrogen form (calcium-nitrate, nitramoncal, ammonsulfate and urea) and the compost fertilization on yield and quality of different vegetable crops, which were grown under field condition at the same nitrogen fertilizer levels. In addition to evaluate the yield, the nitrate contents and p-value have been tested to determine the quality. Following results have been found: yield: the mineral nitrogen form had no significant effect on yield by radish, carrot, and celery. Spinach is positive responded by a different form of nitrogen fertilizer. The same yield results were nearly obtained by the use of compost, compared to another nitrogen fertilizer. Nitrate content: the nitrate content is investigated in edible plant parts. The nitrogen forms have been effected nitrate contents on researched vegetable crops. Generally, the minimum nitrate content is found in control variant and by use of compost, and too by ammonsulfate or urea fertilizer. The maximum nitrate content is reached by use of calcium-nitrate and nitramoncal fertilizer. Spinach leaves had less nitrate contents than stalks. P-value: results of examination shows a major relation between nitrogen fertilizer form and p-value. With the exception of carrot, had compost and control variants of radish, spinach and celery the highest significant p-value in comparison with another nitrogen fertilizer. The lowest p-value is obtained by application of calcium-nitrate and nitramoncal fertilizer, also for a better quality. (author)

  19. Assessing Soil Nutrient Additions through Different Composting ...

    African Journals Online (AJOL)

    The use of vermi-compost in northern Ethiopia is not a common practice. It is, therefore, important to understand the possible impediments through studying its chemical and biological properties and its extra contribution compared to other composting techniques. Four compost types (vermi-compost, conventional compost, ...

  20. Effect of turning frequency and season on composting materials from swine high-rise facilities

    Science.gov (United States)

    Composting of swine manure has several advantages, liquid slurries are converted to solid, the total volume of material is reduced and the stabilized product is more easily transported off-site. Despite this, swine waste is generally stored, treated and applied in its liquid form. The high-rise fini...

  1. Proposal on placing of composting place in micro-region Lednice and Valtice

    Directory of Open Access Journals (Sweden)

    Pavel Zemánek

    2004-01-01

    Full Text Available In relation to entrance of Czech Republic to the European union and with wo-revolving harmonization of our law order with EU direction, happen to classification of composting meaning. In presents act there are two circle of problems. First is utilization of rising waste, the second is perfection of soil fertility and raising of enviroment quality.The contribution deal with problems of modelling solution of place to biowaste composting and it´s optimum placing, applied on concrete conditions of the Lednice-Valtice Area. The basis is placement of dominant producer of biowaste, their kind, quantity and season in relation to prescription of compost fill. The proposal of compost technology enable determine size of place and help solve its placing.Circumscribed method is able to find practical exploitation at creation of place suggestion in real condition of existent areas.

  2. Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste

    Directory of Open Access Journals (Sweden)

    Vempalli Sudharsan Varma

    2017-11-01

    Full Text Available The study aimed to characterize the microbial population involved in lignocellulose degradation during drum composting of mixed organic waste i.e. vegetable waste, cattle manure, saw dust and dry leaves in a 550 L rotary drum composter. Lignocellulose degradation by different microbial populations was correlated by comparing results from four trials, i.e., Trial 1 (5:4, Trial 2 (6:3, Trial 3 (7:2 and Trial 4 (8:1 of varying waste combinations during 20 days of composting period. Due to proper combination of waste materials and agitation in drum composter, a maximum of 66.5 and 61.4 °C was achieved in Trial 1 and 2 by observing a temperature level of 55 °C for 4–6 d. The study revealed that combinations of waste materials had a major effect on the microbial degradation of waste material and quality of final compost due to its physical properties. However, Trial 1 was observed to have longer thermophilic phase leading to higher degradation of lignocellulosic fractions. Furthermore, Fourier transform infrared spectrometer and fluorescent spectroscopy confirmed the decrease in aliphatic to aromatic ratio and increase in polyphenolic compounds of the compost. Heterotrophic bacteria were observed predominantly due to the readily available organic matter during the initial period of composting. However, fungi and actinomycetes were active in the degradation of lignocellulosic fractions.

  3. Composting of cow dung and crop residues using termite mounds as bulking agent.

    Science.gov (United States)

    Karak, Tanmoy; Sonar, Indira; Paul, Ranjit K; Das, Sampa; Boruah, R K; Dutta, Amrit K; Das, Dilip K

    2014-10-01

    The present study reports the suitability of termite mounds as a bulking agent for composting with crop residues and cow dung in pit method. Use of 50 kg termite mound with the crop residues (stover of ground nut: 361.65 kg; soybean: 354.59 kg; potato: 357.67 kg and mustard: 373.19 kg) and cow dung (84.90 kg) formed a good quality compost within 70 days of composting having nitrogen, phosphorus and potassium as 20.19, 3.78 and 32.77 g kg(-1) respectively with a bulk density of 0.85 g cm(-3). Other physico-chemical and germination parameters of the compost were within Indian standard, which had been confirmed by the application of multivariate analysis of variance and multivariate contrast analysis. Principal component analysis was applied in order to gain insight into the characteristic variables. Four composting treatments formed two different groups when hierarchical cluster analysis was applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Changes in antibiotic concentrations and antibiotic resistome during commercial composting of animal manures.

    Science.gov (United States)

    Xie, Wan-Ying; Yang, Xin-Ping; Li, Qian; Wu, Long-Hua; Shen, Qi-Rong; Zhao, Fang-Jie

    2016-12-01

    The over-use of antibiotics in animal husbandry in China and the concomitant enhanced selection of antibiotic resistance genes (ARGs) in animal manures are of serious concern. Thermophilic composting is an effective way of reducing hazards in organic wastes. However, its effectiveness in antibiotic degradation and ARG reduction in commercial operations remains unclear. In the present study, we determined the concentrations of 15 common veterinary antibiotics and the abundances of 213 ARGs and 10 marker genes for mobile genetic elements (MGEs) in commercial composts made from cattle, poultry and swine manures in Eastern China. High concentrations of fluoroquinolones were found in the poultry and swine composts, suggesting insufficient removal of these antibiotics by commercial thermophilic composting. Total ARGs in the cattle and poultry manures were as high as 1.9 and 5.5 copies per bacterial cell, respectively. After thermophilic composting, the ARG abundance in the mature compost decreased to 9.6% and 31.7% of that in the cattle and poultry manure, respectively. However, some ARGs (e.g. aadA, aadA2, qacEΔ1, tetL) and MGE marker genes (e.g. cintI-1, intI-1 and tnpA-04) were persistent with high abundance in the composts. The antibiotics that were detected at high levels in the composts (e.g. norfloxacin and ofloxacin) might have posed a selection pressure on ARGs. MGE marker genes were found to correlate closely with ARGs at the levels of individual gene, resistance class and total abundance, suggesting that MGEs and ARGs are closely associated in their persistence in the composts under antibiotic selection. Our research shows potential disseminations of antibiotics and ARGs via compost utilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices.

    Directory of Open Access Journals (Sweden)

    Jieying Huang

    Full Text Available Changes in physicochemical characteristics, chemical structures and maturity of swine, cattle and chicken manures and composts during 70-day composting without addition of bulking agents were investigated. Physicochemical characteristics were measured by routine analyses and chemical structures by solid-state 13C NMR and FT-IR. Three manures were of distinct properties. Their changes in physicochemical characteristics, chemical structures, and maturity were different not only from each other but also from those with addition of bulking agents during composting. Aromaticity in chicken manure composts decreased at first, and then increased whereas that in cattle and swine manure composts increased. Enhanced ammonia volatilization occurred without addition of bulking agents. NMR structural information indicated that cattle and chicken composts were relatively stable at day 36 and 56, respectively, but swine manure composts were not mature up to day 70. Finally, the days required for three manures to reach the threshold values of different maturity indices were different.

  6. Bioremediation of Heavy Metals and Organic Toxicants by Composting

    Directory of Open Access Journals (Sweden)

    Allen V. Barker

    2002-01-01

    Full Text Available Hazardous organic and metallic residues or by-products can enter into plants, soils, and sediments from processes associated with domestic, municipal, agricultural, industrial, and military activities. Handling, ingestion, application to land or other distributions of the contaminated materials into the environment might render harm to humans, livestock, wildlife, crops, or native plants. Considerable remediation of the hazardous wastes or contaminated plants, soils, and sediments can be accomplished by composting. High microbial diversity and activity during composting, due to the abundance of substrates in feedstocks, promotes degradation of xenobiotic organic compounds, such as pesticides, polycyclic aromatic hydrocarbons (PAHs, and polychlorinated biphenyls (PCBs. For composting of contaminated soils, noncontaminated organic matter should be cocomposted with the soils. Metallic pollutants are not degraded during composting but may be converted into organic combinations that have less bioavailability than mineral combinations of the metals. Degradation of organic contaminants in soils is facilitated by addition of composted or raw organic matter, thereby increasing the substrate levels for cometabolism of the contaminants. Similar to the composting of soils in vessels or piles, the on-site addition of organic matter to soils (sheet composting accelerates degradation of organic pollutants and binds metallic pollutants. Recalcitrant materials, such as organochlorines, may not undergo degradation in composts or in soils, and the effects of forming organic complexes with metallic pollutants may be nonpermanent or short lived. The general conclusion is, however, that composting degrades or binds pollutants to innocuous levels or into innocuous compounds in the finished product.

  7. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.

    Science.gov (United States)

    Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali

    2012-10-01

    Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Compost: Brown gold or toxic trouble?

    Science.gov (United States)

    Kovacic, D.A.; Cahill, R.A.; Bicki, T.J.

    1992-01-01

    Limited data are available regarding the occurrence of potentially hazardous constituents in raw, uncomposted yard wastes, partially composted yard wastes, and finished compost (15, 16). Environmental monitoring at composting operations or facilities is lacking, and currently published research on the environmental fate of composted yard waste constituents is extremely limited. The cost of thoroughly investigating the fate of toxicants in yard waste may seem needlessly expensive, but it is much less than the cost of cleaning up contaminated sites and groundwater. Could yard waste compost sites become Superfund sites? The cost of a thorough testing program throughout the United States may be several million dollars, but that is only a fraction of the funds spent initiating and developing yard waste composting facilities, let alone the potentially much greater cost of environmental remediation. There is still time to address these problems and to develop sound state and federal guidelines for siting and operating yard waste compost facilities. The rush to implement landfill alternatives such as composting should not be the major driving force in determining legislation governing solid waste management. ?? 1991 American Chemical Society.

  9. In-Vessel Composting of Simulated Long-Term Missions Space-Related Solid Wastes

    Science.gov (United States)

    Rodriguez-Carias, Abner A.; Sager, John; Krumins, Valdis; Strayer, Richard; Hummerick, Mary; Roberts, Michael S.

    2002-01-01

    Reduction and stabilization of solid wastes generated during space missions is a major concern for the Advanced Life Support - Resource Recovery program at the NASA, Kennedy Space Center. Solid wastes provide substrates for pathogen proliferation, produce strong odor, and increase storage requirements during space missions. A five periods experiment was conducted to evaluate the Space Operation Bioconverter (SOB), an in vessel composting system, as a biological processing technology to reduce and stabilize simulated long-term missions space related solid-wastes (SRSW). For all periods, SRSW were sorted into components with fast (FBD) and slow (SBD) biodegradability. Uneaten food and plastic were used as a major FBD and SBD components, respectively. Compost temperature (C), CO2 production (%), mass reduction (%), and final pH were utilized as criteria to determine compost quality. In period 1, SOB was loaded with a 55% FBD: 45% SBD mixture and was allowed to compost for 7 days. An eleven day second composting period was conducted loading the SOB with 45% pre-composted SRSW and 55% FBD. Period 3 and 4 evaluated the use of styrofoam as a bulking agent and the substitution of regular by degradable plastic on the composting characteristics of SRSW, respectively. The use of ceramic as a bulking agent and the relationship between initial FBD mass and heat production was investigated in period 5. Composting SRSW resulted in an acidic fermentation with a minor increase in compost temperature, low CO2 production, and slightly mass reduction. Addition of styrofoam as a bulking agent and substitution of regular by biodegradable plastic improved the composting characteristics of SRSW, as evidenced by higher pH, CO2 production, compost temperature and mass reduction. Ceramic as a bulking agent and increase the initial FBD mass (4.4 kg) did not improve the composting process. In summary, the SOB is a potential biological technology for reduction and stabilization of mission space

  10. Thermophilic composting of municipal solid waste

    International Nuclear Information System (INIS)

    Elango, D.; Thinakaran, N.; Panneerselvam, P.; Sivanesan, S.

    2009-01-01

    Process of composting has been developed for recycling of organic fraction of municipal solid waste (MSW). The bioreactor design was modified to reduce the composting process time. The main goal of this investigation was to find the optimal value of time period for composting of MSW in thermophilic bioreactor under aerobic condition. The temperature profiles correlated well with experimental data obtained during the maturation process. During this period biological degraders are introduced in to the reactor to accelerate the composting process. The compost materials were analyzed at various stages and the environmental parameters were considered. The final composting materials contained large organic content with in a short duration of 40 days. The quantity of volume reduction of raw MSW was 78%. The test result shows that the final compost material from the thermophilic reactor provides good humus to build up soil characteristics and some basic plant nutrients

  11. Chinese medicinal herbal residues as a bulking agent for food waste composting.

    Science.gov (United States)

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2018-02-01

    This study aimed to co-compost Chinese medicinal herbal residues (CMHRs) as the bulking agent with food waste (FW) to develop a high value antipathogenic compost. The FW, sawdust (SD) and CMHRs were mixed at three different mixing ratios, 5:5:1, 2:2:1 and 1:1:1 on dry weight basis. Lime at 2.25% was added to the composting mix to buffer the pH during the composting. A control without lime addition was also included. The mixtures were composted in 20-L in-vessel composters for 56 days. A maximum of 67.2% organic decomposition was achieved with 1:1:1 mixing ratio within 8 weeks. The seed germination index was 157.2% in 1:1:1 mixing ratio, while other ratios showed compost food waste at the dry weight ratio of 1:1:1 (FW: SD: CMHRs) was recommended for FW-CMHRs composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Assessing thermal conductivity of composting reactor with attention on varying thermal resistance between compost and the inner surface.

    Science.gov (United States)

    Wang, Yongjiang; Niu, Wenjuan; Ai, Ping

    2016-12-01

    Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting.

    Science.gov (United States)

    Wang, Ke; Wu, Yiqi; Li, Weiguang; Wu, Chuandong; Chen, Zhiqiang

    2018-03-01

    Mature compost recycling is widely used to reduce the dosage of organic bulking agent in actual composting process. In this study, the effects of mature compost amendment on N 2 O emission and denitrification genes were investigated in 47 days composting of sewage sludge and rice husks. The results showed that mature compost amendment dramatically augmented N 2 O emission rate in mesophilic phase and CO 2 emission rate in thermophilic phase of composting, respectively. The cumulative amount of N 2 O emission increased by more than 23 times compared to the control. Mature compost amendment not only reduced moisture and pH, but also significantly increased NO 3 - -N and NO 2 - -N concentrations. The correlation matrices indicated that NO 3 - -N, narG and norB were the main factors influencing N 2 O emission rate in sludge composting with mature compost recycling, but the N 2 O emission rate was significantly correlated to NO 2 - -N, nirK and norB in the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Occupational hygiene of windrow composting. Aumakompostoinnin tyoehygienia

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, K; Wihersaari, M [Technical Research Centre of Finland, Jyvaeskylae (Finland). Combustion and Thermal Engineering Lab.; Huvio, T; Lundstroem, Y [Helsingin kaupungin vesi- ja viemaerilaitos, Helsinki (Finland); Veijalainen, A [Jyvaeskylae Univ. (Finland). Dept. of Chemistry

    1993-01-01

    The occupational air in windrow composting of digested sewage sludge, raw sludge and source separated biowaste was investigated for microbe, endotoxin and dust concentrations and for odour level during turning and sieving of composts. The normal parameters of composting were investigated at the same time. The composting of the source separated biowaste was so vigorous that the drying due to heat generation may have slowed the process. Composting of the digested and the raw sludge took place much more slowly. In all composts, the measured values for heavy metals stayed well below specified norms. The composts were hygienic: no Salmonella bacteria were found in a single sample. The formation of odorous compounds was measured in small composters: more such compounds were formed in the thermophile stage of biowaste composts than in the digested sludge composts. Among the gases that were released, dimethyl sulphide, dimethyl disulphide, e-pinene and limonene clearly exceeded the odour threashould. Endotoxins and dust concentrations in the occupational air were small. Total dust concentrations in the cabs of composting machines at times exceeded the eight-hour HTP concentration for organic dust. Especially in the occupational air of the biowaste and raw sludge composts, the concentrations of bacteria and fungi exceeded 10[sup 2]-10[sup 5] cfu/m[sup 3] during turning. This concentration level may cause respiratory ailments. The identified fungi included members of the genera Aspergillus, Penicillum and Cladosporum, which are associated with allergies. The microbes and dust concentrations measured in this study of windrow composting are comparable to the findings of corresponding studies from other composting plants, landfills and waste treatment plants.

  15. Suppressive composts: microbial ecology links between abiotic environments and healthy plants.

    Science.gov (United States)

    Hadar, Yitzhak; Papadopoulou, Kalliope K

    2012-01-01

    Suppressive compost provides an environment in which plant disease development is reduced, even in the presence of a pathogen and a susceptible host. Despite the numerous positive reports, its practical application is still limited. The main reason for this is the lack of reliable prediction and quality control tools for evaluation of the level and specificity of the suppression effect. Plant disease suppression is the direct result of the activity of consortia of antagonistic microorganisms that naturally recolonize the compost during the cooling phase of the process. Thus, it is imperative to increase the level of understanding of compost microbial ecology and population dynamics. This may lead to the development of an ecological theory for complex ecosystems as well as favor the establishment of hypothesis-driven studies.

  16. Composting of high moisture content swine manure with corncob in a pilot-scale aerated static bin system.

    Science.gov (United States)

    Zhu, Nengwu

    2006-10-01

    Pilot composting experiments of swine manure with corncob were conducted to evaluate the performance of the aerated static bin composting system. Effects of temperature control (60 and 70 degrees C) and moisture content (70% and 80%) were monitored on the composting by measuring physical and chemical indexes. The results showed that (1) the composting system could destroy pathogens, converted nitrogen from unstable ammonia to stable organic forms, and reduced the volume of waste; (2) significant difference of NH(4)(+)-N (P(12) = 0.074), and (NO(3)(-) + NO(2)(-))-N (P(12) = 0.085) was found between the temperature control treatments; (3) anaerobic reaction in the treatment with 80% moisture content resulted in significant difference of pH (P(23) = 0.006), total organic matter (P(23) = 0.003), and germination index (P(23) = 0.040) between 70% and 80%. Therefore, the optimum initial moisture content was less than 80% with the composting of swine manure and corncob by using the composting system.

  17. A microbiological study on irradiated sludge composting

    International Nuclear Information System (INIS)

    Pongpat, S.; Hashimoto, Shoji.

    1993-03-01

    Effect of fermentation temperature on microorganisms in sewage sludge compost and suppressive effect of the compost on Fusarium oxysporum were investigated. Dehydrated sewage sludge was irradiated at 10 kGy by cobalt 60 gamma ray source and fermented at various temperatures with six different seed-composts. It was found that microorganisms showed higher growth in irradiated sludge at the temperature around 30 to 40degC. One of the seed-composts and compost produced from the seed-compost showed the remarkable effects of suppression on F. oxysporum. It can be also observed that the composts produced by lower temperature fermentation showed higher suppression. (author)

  18. A microbiological study on irradiated sludge composting

    Energy Technology Data Exchange (ETDEWEB)

    Pongpat, S. [Office of Atomic Energy for Peace, Bangkok (Thailand); Hashimoto, Shoji

    1993-03-01

    Effect of fermentation temperature on microorganisms in sewage sludge compost and suppressive effect of the compost on Fusarium oxysporum were investigated. Dehydrated sewage sludge was irradiated at 10 kGy by cobalt 60 gamma ray source and fermented at various temperatures with six different seed-composts. It was found that microorganisms showed higher growth in irradiated sludge at the temperature around 30 to 40degC. One of the seed-composts and compost produced from the seed-compost showed the remarkable effects of suppression on F. oxysporum. It can be also observed that the composts produced by lower temperature fermentation showed higher suppression. (author).

  19. Composting of soils/sediments and sludges containing toxic organics including high energy explosives. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, R.C.; Kitchens, J.F.

    1993-07-01

    Laboratory and pilot-scale experimentation were conducted to evaluate composting as an on-site treatment technology to remediate soils contaminated with hazardous waste at DOE`s PANTEX Plant. Suspected contaminated sites within the PANTEX Plant were sampled and analyzed for explosives, other organics, and inorganic wastes. Soils in drainage ditches and playas at PANTEX Plant were found to be contaminated with low levels of explosives (including RDX, HMX, PETN and TATB). Additional sites previously used for solvent disposal were heavily contaminated with solvents and transformation products of the solvent, as well as explosives and by-products of explosives. Laboratory studies were conducted using {sup 14}C-labeled explosives and {sup 14}C-labeled diacetone alcohol contaminated soil loaded into horse manure/hay composts at three rates: 20, 30, and 40%(W/W). The composts were incubated for six weeks at approximately 60{degree}C with continuous aeration. All explosives degraded rapidly and were reduced to below detection limits within 3 weeks in the laboratory studies. {sup 14}C-degradates from {sup 14}C-RDX, {sup 14}C-HMX and {sup 14}C-TATB were largely limited to {sup 14}CO{sub 2} and unextracted residue in the compost. Volatile and non-volatile {sup 14}C-degradates were found to result from {sup 14}C-PETN breakdown, but these compounds were not identified. {sup 14}C-diacetone alcohol concentrations were significantly reduced during composting. However, most of the radioactivity was volatilized from the compost as non-{sup 14}CO{sub 2} degradates or as {sup 14}C-diacetone alcohol. Pilot scale composts loaded with explosives contaminated soil at 30% (W/W) with intermittent aeration were monitored over six weeks. Data from the pilot-scale study generally was in agreement with the laboratory studies. However, the {sup 14}C-labeled TATB degraded much faster than the unlabeled TATB. Some formulations of TATB may be more resistant to composting activity than others.

  20. Utilization of household organic compost in zinc adsorption system

    Science.gov (United States)

    Cundari, Lia; Isvaringga, Nyiayu Dita; Arinda, Yesica Maharani

    2017-11-01

    Zinc (Zn) is one of the heavy metals which is polluted to the environment in an amount greater than 15 mg/L [1]. Zinc contamination caused by the disposal of industrial waste such as batteries, electroplating, paint and other industries. One of the Zinc recovery technique that is relatively inexpensive, simple, high effectiveness and efficiency, and can be regenerated is adsorption using compost. This study has been carried out the preparation of compost from organic household waste and cow manure and its application to Zinc recovery. In this research, the raw material of compost is varied. There is an organic household waste (A1) and a mixture of organic household waste and cow manure with ratio 7:6 (A2). Decomposition of A1 and A2 with addition Effective Microorganism (EM4) requires 21 days, with 3 times inversion. Zinc adsorption is done by using a compost variation of 0.5 g, 1 g, and 2 g in every 100 and 200 mg/L Zn concentration solution. The batch process is applied to analyze the capacity of adsorption. Determination of capacity of adsorption based on the Langmuir, Freundlich, and Temkin isotherm model. Direct observation and spectrophotometry are applied in research methodology. The results show that compost A1 and A2 have fulfilled Indonesian Standart of compost and have the ability to reduce Zinc concentration to 94-96%. It indicates highly recommended biosorbent that can be applied to Zinc adsorption.

  1. Significant plant growth stimulation by composted as opposed to untreated Biochar

    Science.gov (United States)

    Kammann, Claudia; Messerschmidt, Nicole; Müller, Christoph; Steffens, Diedrich; Schmidt, Hans-Peter; Koyro, Hans-Werner

    2013-04-01

    The application of production-fresh, untreated biochar does not always result in yield improvements, in particular in temperate or boreal soils. Therefore the use of biochar for soil C sequestration, although desirable from a global change mitigation point of view, may never be implemented without proven and economically feasible pathways for biochar effects in agriculture. To investigate earlier reports of the beneficial effects of composting biochar (e.g. Fischer & Glaser, 2012) we conducted a fully replicated (n=3, +/- biochar) large-scale composting study at the Delinat Institute in Arbaz, Switzerland. The materials were manures (bovine, horse and chicken), straw, stone meal and composting was performed with our without +20 vol.% of a woody biochar (German Charcoal GmbH). Interestingly, the rotting temperature was significantly higher in the biochar-compost while C and N were retained to a certain extent. To investigate the effect of composting ("ageing") on biochar effects, a completely randomized full-factorial pot study was carried out in the greenhouse using the pseudo-cereal Chenopodium quinoa. The three factors used in the study were (I) type of biochar addition ("aged", "fresh", or zero BC), (II) addition of compost and (III) low and high application rates of a full NPK-fertilizer (equivalent to 28 and 140 kg N ha-1, NPK + micronutrients) in several doses. The growth medium was a poor loamy sand. Biochars and compost were all added at a rate of 2% (w/w) to the soil. From the start there was a considerable difference between the growth of Quinoa with the fresh compared to the aged biochar. The fresh biochar produced the well-known reduction in plant growth compared to the unamended control. This reduction was alleviated to a certain extent by the addition of either compost and/or increased fertilization. In contrast the co-composted biochar always resulted in a highly significant stimulation of the Quinoa yield (roots, shoots, inflorescences). This

  2. Characterization of a soil amendment derived from co-composting of agricultural wastes and biochar

    Science.gov (United States)

    Curaqueo, Gustavo; Ángel Sánchez-Monedero, Miguel; Meier, Sebastián; Medina, Jorge; Panichini, Marcelo; Borie, Fernando; Navia, Rodrigo

    2016-04-01

    The aim of this study was to characterize a compost blend prepared from sheep manure and oat straw in a co-composting process enriched with oat husk biochar (BC). For this, a co-composting trial was carried out in rotatories bins of 200 L capacity. Three mixtures (piles) were assayed: BC0: sheep manure (SM) 65% w/w with 35% w/w oat straw (OS) and no biochar; BC5: SM 62.5% w/w, 32.5% of OS and 5% of BC and BC10: SM 60% w/w, 30% of OS and 10% of BC. The piles were turned 3 times per week in the first week, and then once a week until the end of the composting process (140 days). The temperature and humidity of the piles were monitored continually and the humidity was maintained in a range from 55% to 65%. The maturity of final compost was evaluated by FTIR and Solvita Test analysis. At the same time a chemical characterization including macro and micro nutrient for each compost was performed and the compost phytotoxic effect was evaluated by a germination test using aqueous extract over lettuce, radish and wheat seeds. FTIR analysis showed bands attributed to aromatic C=C, C=O stretching of amide groups, quinone C=O and/or C=O of H-bonded conjugated ketones (1640 cm-1) which are typical in biological stabilized composts and compost with high concentration of highly aromatic materials such as biochar, which seems to become relatively more intense specially in BC10 treatment. Both composts were characterized by a Solvita maturity index of 7, reflecting an adequate degree of maturation. The CO2 emission was lower in the piles enriched with BC compared to control treatment without BC. In the same way, NH3 index was 5 for all the treatments indicating a null NH3 emission. In this respect, a decrease in the N-NH4 content was related with the use of BC which indicate that BC could reduce N-losses during composting favoring nitrification process. Chemical characterization showed pH values higher than 8 for all piles and EC ranged from 8.6 to 14.7 dS cm-1. The Total N and P

  3. Nitrous oxide flux from landfill leachate-sawdust nitrogenous compost

    International Nuclear Information System (INIS)

    Hui, C.H.; So, M.K.; Lee, C.M.; Chan, G.Y.S.

    2003-01-01

    Composted nitrogenous waste has the potential to produce excessive amounts of nitrous oxide (N 2 O), a potent greenhouse gas that also contributes to stratospheric ozone depletion. In this laboratory study, sawdust was irrigated with varying amounts of landfill leachate with high NH 4 + -N content (3950 mg l -1 ). Physicochemical properties, including the amount of N 2 O produced, were monitored during the composting process over 28 days. A rapid decline in NH 4 + -N in the first 4 days and increasing NO 3 - -N for 11 days was followed by lower but stabilized levels of available-N, even with repeated leachate irrigation. Less than 0.03% of the leachate-applied N was lost as N 2 O. Higher leachate applications as much as tripled N 2 O production, but this represented a lesser proportion overall of the total nitrogen. Addition of glucose to the composting process had no significant effect on N 2 O production. The derived sawdust-leachate compost supported healthy growth of Sesbania rostrata. It is concluded that compost can be produced from sawdust irrigated with landfill leachate without substantial emission of N 2 O, although excessive flux of N 2 O remains about high application rates over longer time periods. (Author)

  4. Comparative study of different techniques of composting and their stability evaluation in municipal solid waste

    International Nuclear Information System (INIS)

    Iqbal, M.K.; Khan, R.A.; Nadeem, A.; Hussnain, A.

    2012-01-01

    Spatial differences in the physical and chemical characteristics related to maturity of composted organic matter are strongly influenced by composting methods. For evaluation of compost maturity three locally fabricated composters (aerobic, mixed type, anaerobic) processes were examined at seven days interval up to 91 days by loading MSW along with bulking agent. Gradual changes in physico chemical characteristics (temperature, pH, moisture, CEC, humification) related to stability and maturity of compost were studied and compared. Increase in ammonia nitrogen level due to rise in temperature was maximum in aerobic process. Substantial increase in CEC in aerobic process was earlier which leads to establish the optimal degree of maturity as compared to other processes. FA and HI decrease rapidly as composting progressed. Optimal level in stability and maturity parameters like C:N, HA, DH and HR were attained earlier in aerobic process as compared to mixed type and anaerobic processes due to continuous aeration. The parameters (HR, DH, FA, HA), which indicate the compost stability were correlated among themselves. The parameters defining maturity such as CEC, ammonia nitrate and C:N ratio were also related to above mention parameters. The compost from the aerobic process provided good humus and micro nutrients. Result from this study will assist in method optimization and quality of the compost product. (author)

  5. Degradation of morphine in opium poppy processing waste composting.

    Science.gov (United States)

    Wang, Yin Quan; Zhang, Jin Lin; Schuchardt, Frank; Wang, Yan

    2014-09-01

    To investigate morphine degradation and optimize turning frequency in opium poppy processing waste composting, a pilot scale windrow composting trial was run for 55 days. Four treatments were designed as without turning (A1), every 5 days turning (A2), every 10 days turning (A3) and every 15 days turning (A4). During composting, a range of physicochemical parameters including the residual morphine degradation, temperature, pH, and the contents of total C, total N, total P and total K were investigated. For all treatments, the residual morphine content decreased below the detection limit and reached the safety standards after day 30 of composting, the longest duration of high temperature (⩾50 °C) was observed in A3, pH increased 16.9-17.54%, total carbon content decreased 15.5-22.5%, C/N ratio reduced from 46 to 26, and the content of total phosphorus and total potassium increased slightly. The final compost obtained by a mixture of all four piles was up to 55.3% of organic matter, 3.3% of total nutrient (N, P2O5 and K2O) and 7.6 of pH. A turning frequency of every ten days for a windrow composting of opium poppy processing waste is recommended to produce homogenous compost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. COMPOSTING AS A WAY TO CONVERT CELLULOSIC BIOMASS AND ORGANIC WASTE INTO HIGH-VALUE SOIL AMENDMENTS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2010-11-01

    Full Text Available Plant-derived cellulosic materials play a critical role when organic wastes are composted to produce a beneficial amendment for topsoil. This review article considers publications dealing with the science of composting, emphasizing ways in which the cellulosic and lignin components of the composted material influence both the process and the product. Cellulose has been described as a main source of energy to drive the biological transformations and the consequent temperature rise and chemical changes that are associated with composting. Lignin can be viewed as a main starting material for the formation of humus, the recalcitrant organic matter that provides the water-holding, ion exchange, and bulking capabilities that can contribute greatly to soil health and productivity. Lignocellulosic materials also contribute to air permeability, bulking, and water retention during the composting process. Critical variables for successful composting include the ratio of carbon to nitrogen, the nature of the cellulosic component, particle size, bed size and format, moisture, pH, aeration, temperature, and time. Composting can help to address solid waste problems and provides a sustainable way to enhance soil fertility.

  7. The Learning of Compost Practice in University

    Science.gov (United States)

    Agustina, T. W.; Rustaman, N. Y.; Riandi; Purwianingsih, W.

    2017-09-01

    The compost as one of the topics of the Urban Farming Movement in Bandung city, Indonesia. The preliminary study aims to obtain a description of the performance capabilities and compost products made by students with STREAM (Science-Technology-Religion-Art-Mathematics) approach. The method was explanatory sequential mixed method. The study was conducted on one class of Biology Education students at the one of the universities in Bandung, Indonesia. The sample was chosen purposively with the number of students as many as 44 people. The instruments were making Student Worksheets, Observation Sheets of Performance and Product Assessment, Rubric of Performance and Product, and Field Notes. The indicators of performance assessment rubrics include Stirring of Compost Materials and Composting Technology in accordance with the design. The product assessment rubric are a Good Composting Criteria and Compost Packaging. The result of can be stated most students have good performance. However, the ability to design of compost technology, compost products and the ability to pack compost are still lacking. The implication of study is students of Biology Education require habituation in the ability of designing technology.

  8. Date palm and the activated sludge co-composting actinobacteria sanitization potential.

    Science.gov (United States)

    El Fels, Loubna; Hafidi, Mohamed; Ouhdouch, Yedir

    2016-01-01

    The objective of this study was to find a connection between the development of the compost actinobacteria and the potential involvement of antagonistic thermophilic actinomycetes in compost sanitization as high temperature additional role. An abundance of actinobacteria and coliforms during the activated sludge and date palm co-composting is determined. Hundred actinomycete isolates were isolated from the sample collected at different composting times. To evaluate the antagonistic effects of the different recovered actinomycete isolates, several wastewater-linked microorganisms known as human and plant potential pathogens were used. The results showed that 12 isolates have an in vitro inhibitory effect on at least 9 of the indicator microorganisms while only 4 active strains inhibit all these pathogens. The antimicrobial activities of sterilized composting time extracts are also investigated.

  9. Anaerobic composting of pyrethrum waste with and without effective ...

    African Journals Online (AJOL)

    user

    production through composting of solid pyrethrum remains after extraction of pyrethrins (marc). ... production of biogas at EM ratio 1:500 v/v, while biogas produced at EM ratio of 1:250 v/v ..... Handbook of Drinking Water Quality (2nd edition),.

  10. Compost bioremediation of hydrocarbon-contaminated soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... The use of composting in bioremediation has received little attention (Potter et al., ..... Counts of microorganisms in the compost during composting. Values are means of three ..... chlorinated pesticides. J. Water Poll. Cont. Fed.

  11. Development of functional composts using spent coffee grounds, poultry manure and biochar through microbial bioaugmentation.

    Science.gov (United States)

    Emmanuel, S Aalfin; Yoo, Jangyeon; Kim, Eok-Jo; Chang, Jae-Soo; Park, Young-In; Koh, Sung-Cheol

    2017-11-02

    Spent coffee grounds (SCG), poultry manure, and agricultural waste-derived biochar were used to manufacture functional composts through microbial bioaugmentation. The highest yield of tomato stalk-based biochar (40.7%) was obtained at 450°C with a surface area of 2.35 m 2 g -1 . Four pilot-scale composting reactors were established to perform composting for 45 days. The ratios of NH 4 + -N/NO 3 - -N, which served as an indicator of compost maturity, indicate rapid, and successful composting via microbial bioaugmentation and biochar amendment. Moreover, germination indices for radish also increased by 14-34% through augmentation and biochar amendment. Microbial diversity was also enhanced in the augmented and biochar-amended composts by 7.1-8.9%, where two species of Sphingobacteriaceae were dominant (29-43%). The scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) were enhanced by 14.1% and 8.6% in the fruits of pepper plants grown in the presence of the TR-2 (augmentation applied only) and TR-3 (both augmentation and biochar amendment applied) composts, respectively. Total phenolic content was also enhanced by 68% in the fruits of the crops grown in TR-3. Moreover, the other compost, TR-L (augmentation applied only), boosted DPPH scavenging activity by 111% in leeks compared with commercial organic fertilizer, while TR-3 increased the phenolic content by 44.8%. Composting facilitated by microbial augmentation and biochar amendment shortened the composting time and enhanced the quality of the functional compost. These results indicate that functional compost has great potential to compete with commercially available organic fertilizers and that the novel composting technology could significantly contribute to the eco-friendly recycling of organic wastes such as spent coffee grounds, poultry manure, and agricultural wastes.

  12. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources; El compostaje como tecnologia para el tratamiento de residuos: compostaje de bagazo de sorgo dulce con diferentes fuentes nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J; Carrasco, J E; Negro, M J

    1996-10-01

    The purpose of this work is to study aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the proteic synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, in industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH{sub 4}NO{sub 3}, taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37 degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing stillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO{sub 3} as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources.

  13. A systematic approach to evaluate parameter consistency in the inlet stream of source separated biowaste composting facilities: A case study in Colombia.

    Science.gov (United States)

    Oviedo-Ocaña, E R; Torres-Lozada, P; Marmolejo-Rebellon, L F; Torres-López, W A; Dominguez, I; Komilis, D; Sánchez, A

    2017-04-01

    Biowaste is commonly the largest fraction of municipal solid waste (MSW) in developing countries. Although composting is an effective method to treat source separated biowaste (SSB), there are certain limitations in terms of operation, partly due to insufficient control to the variability of SSB quality, which affects process kinetics and product quality. This study assesses the variability of the SSB physicochemical quality in a composting facility located in a small town of Colombia, in which SSB collection was performed twice a week. Likewise, the influence of the SSB physicochemical variability on the variability of compost parameters was assessed. Parametric and non-parametric tests (i.e. Student's t-test and the Mann-Whitney test) showed no significant differences in the quality parameters of SSB among collection days, and therefore, it was unnecessary to establish specific operation and maintenance regulations for each collection day. Significant variability was found in eight of the twelve quality parameters analyzed in the inlet stream, with corresponding coefficients of variation (CV) higher than 23%. The CVs for the eight parameters analyzed in the final compost (i.e. pH, moisture, total organic carbon, total nitrogen, C/N ratio, total phosphorus, total potassium and ash) ranged from 9.6% to 49.4%, with significant variations in five of those parameters (CV>20%). The above indicate that variability in the inlet stream can affect the variability of the end-product. Results suggest the need to consider variability of the inlet stream in the performance of composting facilities to achieve a compost of consistent quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of woody peat and superphosphate on compost maturity and gaseous emissions during pig manure composting.

    Science.gov (United States)

    Zhang, Difang; Luo, Wenhai; Yuan, Jing; Li, Guoxue; Luo, Yuan

    2017-10-01

    This study investigated the effect of calcium superphosphate on compost maturity and gaseous emissions during pig manure composting with woody peat as the bulking agent. Two treatments were conducted with or without the addition of calcium superphosphate (10% dry weight of the composting mass), which were denoted as the control and superphosphate-amended treatment, respectively. Results show that the composting temperature of both treatments was higher than 50°C for more than 5days, which is typically required for pathogen destruction during manure composting. Compared to the control treatment, the superphosphate-amended treatment increased the emission of nitrogen oxide, but reduced the emission of methane, ammonia and hydrogen sulfide by approximately 35.5%, 37.9% and 65.5%, respectively. As a result, the total greenhouse gas (GHG) emission during manure composting was reduced by nearly 34.7% with the addition of calcium superphosphate. The addition of calcium superphosphate increased the content of humic acid (indicated by E 4 /E 6 ratio). Nevertheless, the superphosphate-amended treatment postponed the biological degradation of organic matter and produced the mature compost with a higher electrical conductivity in comparison with the control treatment. Copyright © 2017. Published by Elsevier Ltd.

  15. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal.

    Science.gov (United States)

    Song, Hocheol; Yim, Gil-Jae; Ji, Sang-Woo; Neculita, Carmen Mihaela; Hwang, Taewoon

    2012-11-30

    Pilot-scale field-testing of passive bioreactors was performed to evaluate the efficiency of a mixture of four substrates (cow manure compost, mushroom compost, sawdust, and rice straw) relative to mushroom compost alone, and of the effect of the Fe/Mn ratio, during the treatment of acid mine drainage (AMD) over a 174-day period. Three 141 L columns, filled with either mushroom compost or the four substrate mixture (in duplicate), were set-up and fed with AMD from a closed mine site, in South Korea, using a 4-day hydraulic retention time. In the former bioreactor, effluent deterioration was observed over 1-2 months, despite the good efficiency predicted by the physicochemical characterization of mushroom compost. Steady state effluent quality was then noted for around 100 days before worsening in AMD source water occurred in response to seasonal variations in precipitation. Such changes in AMD quality resulted in performance deterioration in all reactors followed by a slow recovery toward the end of testing. Both substrates (mushroom compost and mixtures) gave satisfactory performance in neutralizing pH (6.1-7.8). Moreover, the system was able to consistently reduce sulfate from day 49, after the initial leaching out from organic substrates. Metal removal efficiencies were on the order of Al (∼100%) > Fe (68-92%) > Mn (49-61%). Overall, the mixed substrates showed comparable performance to mushroom compost, while yielding better effluent quality upon start-up. The results also indicated mushroom compost could release significant amounts of Mn and sulfate during bioreactor operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. In-vessel composting of household wastes

    International Nuclear Information System (INIS)

    Iyengar, Srinath R.; Bhave, Prashant P.

    2006-01-01

    The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for a period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes

  17. Effects of Vermi compost and Compost tea Application on the Growth criteria of Corn (Zea mays

    Directory of Open Access Journals (Sweden)

    R Afsharmanesh

    2016-07-01

    Full Text Available Introduction Maize (Zea mays is a cereal crop that is grown widely throughout the world in a range of agroecological environments. .Its value as a cost-effective ruminant feed is one of the main reasons that farmers grow it. However, lack of nutrients such as N and P, are the principal obstacles - to crop production under low input agricultural systems leading to dependency on chemical fertilizers. Long-term use of chemical fertilizers destroy soil physicochemical properties and it reduced permeability which restricts root growth, nutrient uptake and plant production. Therefore, the use of organic fertilizers can help to enrich the soil root zone As a result growth and yield will improve. Materials and Methods In order to study the effects of different levels of vermicompost and foliar application of tea compost on growth characteristics of the hybrid maize genotype 713, a greenhouse experiment was conducted as a factorial experiment in randomized complete block design with three replications at the Vali-e-Asr University of Rafsanjan, during 2013. Treatments were included vermicompost (0, 5%, 10%, 15%, 20%, 25% and 30% pot weight and tea composts (foliar application, non-foliar application. Measured traits were included root dry weight, root volume, leaf dry weight, stem dry weight, macro nutrient concentration (N and P and micro nutrient concentration (Zn, Mn, Fe and Cu. All the data were subjected to the statistical analysis (two-way ANOVA using SAS software (SAS 9.1.3. Differences between the treatments were performed by Duncan’s multiple range test (DMRT at 1% confidence interval. Results and Discussion Results indicated that leaf and stem dry weight affected by the application of vermicompost and tea compost. However, the interaction effects had no significant effects on the leaf and stem dry weight. Application of tea compost increased 20% and 50% leaf dry weight and stem dry weight of corn compared to non- foliar application

  18. Innovative biocatalytic production of soil substrate from green waste compost as a sustainable peat substitute.

    Science.gov (United States)

    Kazamias, Georgios; Roulia, Maria; Kapsimali, Ioanna; Chassapis, Konstantinos

    2017-12-01

    In the present work, a new simple and quick eco-friendly method is discussed to handle effectively the green wastes and produce a sustainable peat substitute of high quality on the large scale. Principal physicochemical parameters, i.e., temperature, moisture, specific weight, pH, electrical conductivity and, also, microorganisms, organic matter, humic substances, total Kjeldahl nitrogen and total organic carbon, C/N ratio, ash, metal content and phytotoxicity, were monitored systematically. Humic substances content values were interrelated to both C/N ratio and pH values and, similarly, bulk density, TOC, TKN, C/N, GI, ash and organic matter were found interconnected to each other. A novel biocatalyst, extremely rich in soil microorganisms, prepared from compost extracts and peaty lignite, accelerated the biotransformation. Zeolite was also employed. The compost does not demonstrate any phytotoxicity throughout the entire biotransformation process and has increased humic substances content. Both humic substances content and germination index can be employed as maturation indices of the compost. Addition of compost, processed for 60 days only, in cultivations of grass plants led to a significant increase in the stem mass and root size, annotating the significant contribution of the compost to both growth and germination. The product obtained is comparable to peat humus, useful as peat substitute and can be classified as a first class soil conditioner suitable for organic farming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Response of Weeping Lantana (Lantana montevidensis to Compost-Based Growing Media and Electrical Conductivity Level in Soilless Culture: First Evidence

    Directory of Open Access Journals (Sweden)

    Giuseppe Cristiano

    2018-03-01

    Full Text Available The most common substrate for potted ornamental plants is prepared with Sphagnum peat; however, the cost and declining availability of high-quality peat, due to environmental constraints, make it necessary to investigate for alternative organic materials. The present study aimed to determine the effects of partial compost replacement with peat and the optimum electrical conductivity (EC level of the nutrient solution in potted weeping lantana [L. montevidensis (Spreng. Briq.] under a recirculating soilless system. Three compost-based substrates were prepared by mixing peat (Pe with sewage sludge-based compost (Co. at a rate of 0% (Pe90Co0Pu10, control, 30% (Pe60Co30Pu10, or 60% (Pe30Co60Pu10, respectively. The soilless recirculated closed system was equipped with two different EC levels (high and low of nutrient solution. Growing media main characteristics and plant bio-morphometric parameters were evaluated. Our first evidence clearly demonstrates that the replacement of peat with compost at doses of 30% and 60% gave the poorest results for plant diameter, shoots, leaves, flowers, and fresh and dry mass, probably indicating that the physical characteristics of the compost based substrates may be the major factor governing plant growth rate. Compost media pH and EC values, too, showed negative effects on plant growth. Considering the effect of EC level, all morphological traits were significantly improved by high EC compared to low EC in weeping lantana. Thus, based on first evidence, further research is needed on organic materials for the establishment of ecological substrates with optimal physicochemical characteristics for the growth of weeping lantana.

  20. HOW DO DEGRADABLE/BIODEGRADABLE PLASTIC MATERIALS DECOMPOSE IN HOME COMPOSTING ENVIRONMENT?

    Directory of Open Access Journals (Sweden)

    Magdalena Vaverková

    2014-10-01

    Full Text Available This paper provides information about biodegradability of polymeric (biodegradable/degradable materials advertised as 100%-degradable or certified as compostable, which may be a part of biodegradable waste, in home composting conditions. It describes an experiment that took place in home wooden compost bins and contained 9 samples that are commonly available in retail chains in the Czech Republic and Poland. The experiment lasted for the period of 12 weeks. Based on the results thereof it can be concluded that polyethylene samples with additive (samples 2, 4, 7 have not decomposed, their color has not changed and that no degradation or physical changes have occurred. Samples 1, 3 and 5 certified as compostable have not decomposed. Sample 6 exhibited the highest decomposition rate. Samples 8, 9 (tableware exhibited high degree of decomposition. The main conclusion from this study is that degradable/biodegradable plastics or plastics certified as compostable are not suitable for home composting.

  1. Estimating the spatial distribution of field-applied mushroom compost in the Brandywine-Christina River Basin using multispectral remote sensing

    Science.gov (United States)

    Moxey, Kelsey A.

    The world's greatest concentration of mushroom farms is settled within the Brandywine-Christina River Basin in Chester County in southeastern Pennsylvania. This industry produces a nutrient-rich byproduct known as spent mushroom compost, which has been traditionally applied to local farm fields as an organic fertilizer and soil amendment. While mushroom compost has beneficial properties, the possible over-application to farm fields could potentially degrade stream water quality. The goal of this study was to estimate the spatial extent and intensity of field-applied mushroom compost. We applied a remote sensing approach using Landsat multispectral imagery. We utilized the soil line technique, using the red and near-infrared bands, to estimate differences in soil wetness as a result of increased soil organic matter content from mushroom compost. We validated soil wetness estimates by examining the spectral response of references sites. We performed a second independent validation analysis using expert knowledge from agricultural extension agents. Our results showed that the soil line based wetness index worked well. The spectral validation illustrated that compost changes the spectral response of soil because of changes in wetness. The independent expert validation analysis produced a strong significant correlation between our remotely-sensed wetness estimates and the empirical ratings of compost application intensities. Overall, the methodology produced realistic spatial distributions of field-applied compost application intensities across the study area. These spatial distributions will be used for follow-up studies to assess the effect of spent mushroom compost on stream water quality.

  2. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources; El compostaje como tecnologIa para el tratamiento de residuos: compostaje de bagazo de sorgo dulce con diferentes fuentes nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J; Carrasco, J E; Negro, M J

    1996-07-01

    The purpose of this work is to study the aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the protein synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH4NO3. taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing spillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO3 as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources. (Author) 15 refs.

  3. Fate of pharmaceuticals and pesticides in fly larvae composting

    Energy Technology Data Exchange (ETDEWEB)

    Lalander, C., E-mail: cecilia.lalander@slu.se [Department of Energy and Technology, Swedish University of Agricultural Sciences (Sweden); Senecal, J.; Gros Calvo, M. [Department of Energy and Technology, Swedish University of Agricultural Sciences (Sweden); Ahrens, L.; Josefsson, S.; Wiberg, K. [Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (Sweden); Vinnerås, B. [Department of Energy and Technology, Swedish University of Agricultural Sciences (Sweden)

    2016-09-15

    A novel and efficient organic waste management strategy currently gaining great attention is fly larvae composting. High resource recovery efficiency can be achieved in this closed-looped system, but pharmaceuticals and pesticides in waste could potentially accumulate in every loop of the treatment system and spread to the environment. This study evaluated the fate of three pharmaceuticals (carbamazepine, roxithromycin, trimethoprim) and two pesticides (azoxystrobin, propiconazole) in a fly larvae composting system and in a control treatment with no larvae. It was found that the half-life of all five substances was shorter in the fly larvae compost (< 10% of control) and no bioaccumulation was detected in the larvae. Fly larvae composting could thus impede the spread of pharmaceuticals and pesticides into the environment. - Highlights: • Degradation of pharmaceuticals and pesticides in fly larvae composting (FLC). • Half-life considerably shorter in FLC than in control with no larvae. • Half-life of carbamazepine was less than two days in FLC. • No bioaccumulation in larvae detected. • FLC could impede the spreading of pharmaceuticals and pesticide in the environment.

  4. Fate of pharmaceuticals and pesticides in fly larvae composting

    International Nuclear Information System (INIS)

    Lalander, C.; Senecal, J.; Gros Calvo, M.; Ahrens, L.; Josefsson, S.; Wiberg, K.; Vinnerås, B.

    2016-01-01

    A novel and efficient organic waste management strategy currently gaining great attention is fly larvae composting. High resource recovery efficiency can be achieved in this closed-looped system, but pharmaceuticals and pesticides in waste could potentially accumulate in every loop of the treatment system and spread to the environment. This study evaluated the fate of three pharmaceuticals (carbamazepine, roxithromycin, trimethoprim) and two pesticides (azoxystrobin, propiconazole) in a fly larvae composting system and in a control treatment with no larvae. It was found that the half-life of all five substances was shorter in the fly larvae compost (< 10% of control) and no bioaccumulation was detected in the larvae. Fly larvae composting could thus impede the spread of pharmaceuticals and pesticides into the environment. - Highlights: • Degradation of pharmaceuticals and pesticides in fly larvae composting (FLC). • Half-life considerably shorter in FLC than in control with no larvae. • Half-life of carbamazepine was less than two days in FLC. • No bioaccumulation in larvae detected. • FLC could impede the spreading of pharmaceuticals and pesticide in the environment.

  5. Use of Jatropha curcas hull biomass for bioactive compost production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Pandey, A.K.; Lata [Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012 (India)

    2009-01-15

    The paper deals with utilization of biomass of Jatropha hulls for production of bioactive compost. In the process of Jatropha oil extraction, a large amount of hull waste is generated. It has been found that the direct incorporation of hull into soil is considerably inefficient in providing value addition to soil due to its unfavorable physicochemical characteristics (high pH, EC and phenolic content). An alternative to this problem is the bioconversion of Jatropha hulls using effective lignocellulolytic fungal consortium, which can reduce the phytotoxicity of the degraded material. Inoculation with the fungal consortium resulted in better compost of jatropha hulls within 1 month, but it takes nearly 4 months for complete compost maturation as evident from the results of phytotoxicity test. Such compost can be applied to the acidic soil as a remedial organic manure to help maintaining sustainability of the agro-ecosystem. Likewise, high levels of cellulolytic enzymes observed during bioconversion indicate possible use of fungi for ethanol production from fermentation of hulls. (author)

  6. The Compost Pile Meets the 1990's.

    Science.gov (United States)

    Paddock, Todd

    1991-01-01

    Advocates composting as a valuable alternative to the landfill for waste management. As much as two-thirds of garbage can be composted, and the process has become more cost effective. Some challenges to composting are producing a compost product that will sell and dealing with the odor created by the process. (KS)

  7. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Araya, Shogo; Mimoto, Hiroshi

    2013-09-01

    In this study, the yeast strain Pichia kudriavzevii RB1 was used as an inoculum to accelerate organic matter degradation of rabbit food with added organic acids, which was used as a model food waste for composting. The RB1 strain rapidly degraded the organic acids present in the raw compost material, leading to an increase in pH beyond the neutral level, within 2 days. Both mesophilic and thermophilic bacteria proliferated faster in the compost with RB1 inoculation than in that without inoculation. Although the yeast died with the increase in compost temperature, it affected the early stages of composting prior to the thermophilic stage and accelerated the composting process by 2 days by eliminating the initial lag phase seen in the growth of other microorganisms. Moreover, populations of Bacillus thermoamylovorans, Bacillus foraminis, and Bacillus coagulans became dominant during the thermophilic stages of both composting with and without RB1 inoculation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Composting clam processing wastes in a laboratory- and pilot-scale in-vessel system.

    Science.gov (United States)

    Hu, Zhenhu; Lane, Robert; Wen, Zhiyou

    2009-01-01

    Waste materials from the clam processing industry (offal, shells) have several special characteristics such as a high salinity level, a high nitrogen content, and a low C/N ratio. The traditional disposal of clam waste through landfilling is facing the challenges of limited land available, increasing tipping fees, and strict environmental and regulatory scrutiny. The aim of this work is to investigate the performance of in-vessel composting as an alternative for landfill application of these materials. Experiments were performed in both laboratory-scale (5L) and pilot-scale (120L) reactors, with woodchips as the bulking agent. In the laboratory-scale composting test, the clam waste and woodchips were mixed in ratios from 1:0.5 to 1:3 (w/w, wet weight). The high ratios resulted in a better temperature performance, a higher electrical conductivity, and a higher ash content than the low-ratio composting. The C/N ratio of the composts was in the range of 9:1-18:1. In the pilot-scale composting test, a 1:1 ratio of clam waste to woodchips was used. The temperature profile during the composting process met the US Environmental Protection Agency sanitary requirement. The final cured compost had a C/N ratio of 14.6, with an ash content of 167.0+/-14.1g/kg dry matter. In addition to the major nutrients (carbon, nitrogen, calcium, magnesium, phosphorus, potassium, sulfur, and sodium), the compost also contained trace amounts of zinc, manganese, copper, and boron, indicating that the material can be used as a good resource for plant nutrients.

  9. Extended abstract on the potential for Phytophthora ramorum to infest finished compost

    Science.gov (United States)

    Steven Swain; Matteo Garbelotto

    2006-01-01

    The survival rate of Phytophthora ramorum was assessed when introduced at high rates into composts of varying provenance and curing time, produced by both "turned windrow" and "forced air static pile" techniques. Survival in some compost media was high and statistically indistinguishable from positive controls (P

  10. Effect of pH, temperature and moisture content during composting of rice straw burning at different temperature with food waste and effective microorganisms

    Science.gov (United States)

    Azura Zakarya, Irnis; Baya Khalib, Siti Noor; Ramzi, Norhasykin Mohd

    2018-03-01

    Rice straw is considered as one of the most important agricultural residues and represented as one of the major by-products from rice production process. Normally, rice straw that produced after harvesting season been directly burned on-farm. Conversion of rice straw into value added compost will improve the productivity of plant, reduction of pollution towards environment and reduction of local pollution due to open burning activity. The objective of this study was to evaluate the performance of composting rice straw ash (RSA) with food waste (FW) and effective microorganisms (EM) in term of the compost quality (pH, temperature, moisture content). RSA was prepared by burning the raw rice straw at three different temperature of 300°C, 400°C and 500°C for one hour. EM used during the composting process was prepared by mixing of brown sugar, `tempe' and water that can be used after one week of fermentation process. There are four treatments of RSA-compost; RSA (300°C), RSA (400°C), RSA (500°C) and control (raw rice straw) with the same amount of compost medium; 1kg black soil, 0.5kg RSA, 3L EM and 1kg FW. The composting process happens for 30 days. During the composting process, all the parameters of RSA-compost obtained in a range like; pH value 8-10, temperature 20-50°C and moisture content 40-60%. The result showed that all compost quality of rice straw ash compost obtained in an acceptable range for final compost to establish.

  11. Sequential batch anaerobic composting (SEBAC sup TM ) of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chynoweth, D.P.; O' Keefe, D.M.; Barkdoll, A.W.; Owens, J.M. (Department of Agricultural Engineering, University of Florida, Gainesville, Florida (US)); Legrand, R. (Radian Corporation, Austin, Texas (US))

    1992-01-01

    Anaerobic high-solids digestion (anaerobic composting) is an attractive option for treatment of organic wastes. The main advantages of anaerobic composting are the lack of aeration requirements and production of methane. An anaerobic composting design, sequential batch anaerobic composting (SEBAC{sup TM}), has been developed and demonstrated at the pilot scale which has proven to be stable and effective for treatment of the non-yeard waste and yard waste organic fractions of municipal solid waste (MSW). The design employs leachate recycle for wetting, inoculation, and removal of volatile organic acids during startup. Performance is similar to that of other designs requiring heavy solids inoculation and mixing and which do not have a mechanism for volatile organic acid removal during imbalance. (au) (12 refs.).

  12. Cover crop frequency and compost effects on a legume-rye cover crop during 8 years of organic vegetables

    Science.gov (United States)

    Organic matter inputs from compost or cover crops (CC) are important to maintain or improve soil quality, but their impact in high-value vegetable production systems are not well understood. Therefore, we evaluated the effects of CC frequency (every winter versus every 4th winter) and yard-waste co...

  13. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility.

    Science.gov (United States)

    Bolan, N S; Kunhikrishnan, A; Choppala, G K; Thangarajan, R; Chung, J W

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t(1/2)) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Impacts of sporulation temperature, exposure to compost matrix and temperature on survival of Bacillus cereus spores during livestock mortality composting.

    Science.gov (United States)

    Stanford, K; Reuter, T; Gilroyed, B H; McAllister, T A

    2015-04-01

    To investigate impact of sporulation and compost temperatures on feasibility of composting for disposal of carcasses contaminated with Bacillus anthracis. Two strains of B. cereus, 805 and 1391, were sporulated at either 20 or 37°C (Sporulation temperature, ST) and 7 Log10 CFU g(-1) spores added to autoclaved manure in nylon bags (pore size 50 μm) or in sealed vials. Vials and nylon bags were embedded into compost in either a sawdust or manure matrix each containing 16 bovine mortalities (average weight 617 ± 33 kg), retrieved from compost at intervals over 217 days and survival of B. cereus spores assessed. A ST of 20°C decreased spore survival by 1·4 log10 CFU g(-1) (P Compost temperatures >55°C reduced spore survival (P compost temperatures were key factors influencing survival of B. cereus spores in mortality compost. Composting may be most appropriate for the disposal of carcasses infected with B. anthracis at ambient temperatures ≤20°C under thermophillic composting conditions (>55°C). © 2015 The Society for Applied Microbiology.

  15. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity.

    Science.gov (United States)

    Hachicha, Ridha; Rekik, Olfa; Hachicha, Salma; Ferchichi, Mounir; Woodward, Steve; Moncef, Nasri; Cegarra, Juan; Mechichi, Tahar

    2012-07-01

    The co-composting of spent coffee grounds, olive mill wastewater sludge and poultry manure was investigated on a semi-industrial scale. In order to reduce the toxicity of the phenolic fraction and to improve the degree of composting humification, composts were inoculated with the white-rot fungus Trametes versicolor in the early stages of the maturation phase. During composting, a range of physico-chemical parameters (temperature and both organic matter and C/N reduction), total organic carbon, total nitrogen, elemental composition, lignin degradation and spectroscopic characteristics of the humic acids (HAs) were determined; impacts of the composting process on germination index of Hordeum vulgare and Lactuca sativa were assessed. The coffee waste proved to be a highly compostable feedstock, resulting in mature final compost with a germination index of 120% in less than 5 months composting. In addition, inoculation with T. versicolor led to a greater degree of aromatization of HA than in the control pile. Moreover, in the inoculated mixture, lignin degradation was three times greater and HA increased by 30% (P<0.05), compared to the control pile. In the T. versicolor inoculated mixture, the averages of C and N were significantly enhanced in the HA molecules (P<0.05), by 26% and 22%, respectively. This improvement in the degree of humification was confirmed by the ratio of optical densities of HA solutions at 465 and 665 nm which was lower for HA from the treated mixture (4.5) than that from the control pile (5.4). Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Composting; Konposuto ka shori

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K. [Saitama Univ., Saitama (Japan)

    2000-02-05

    The composting method can be divided roughly into the aerobic process and the anaerobic process. The former one is a method of processing which decomposes organic substances in the work of the micro-aerobion by blowing the air in the compost material layer, and the latter one is a method for mainly decomposing the organic substance by the work of the anaerobiont microorganism without the positive contact of the material and air. Since the anaerobic process has a slow reaction rate, and emits a resistant odor, an aerobic process system is taken in many plants. In this paper, the aerobic process is described. At first, a fermenter, crush equipment, screening system and a deodorizer as the composting facilities are explained, and the problems of the composting process are described. The largest problem is to exploit a demand without a seasonal variation. It is necessary to exploit the market except for farmland and orchards in order to avoid the seasonal variation. For example, there is a demand for compost in parks, green land and golf courses. It can be also utilized for the normal plane protection of roads and railways. In addition, there are utilization applications such as barn bedding, earthworm culture floors and a deodorant of sewage urine disposal facilities. (NEDO)

  17. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants.

    Science.gov (United States)

    Goswami, Linee; Nath, Anil; Sutradhar, Sweety; Bhattacharya, Satya Sundar; Kalamdhad, Ajay; Vellingiri, Kowsalya; Kim, Ki-Hyun

    2017-09-15

    Utilization of different types of solid wastes through composting is important for environmental sustainability and restoring soil quality. Although drum composting is an efficient technology, the possibility of heavy metal contamination restricts its large-scale use. In this research, a field experiment was conducted to evaluate the impact of water hyacinth drum compost (DC) and traditional vermicompost (VC) on soil quality and crop growth in an agro-ecosystem cultivated intensively with tomato and cabbage as test crops. A substantial improvement in soil health was observed with respect to nutrient availability, physical stability, and microbial diversity due to the application of drum compost and traditional vermicompost. Moreover, soil organic carbon was enriched through increased humic and fulvic acid carbon. Interestingly, heavy metal contamination was less significant in vermicompost-treated soils than in those receiving the other treatments. The use of VC and DC in combination with recommended chemical fertilization effectively stimulated crop growth, yield, product quality, and storage longevity for both tomato and cabbage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Composting and compost utilization: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Andersen, Jacob Kragh; Møller, Jacob

    2009-01-01

    is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting...

  19. Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt.

    Science.gov (United States)

    Blaya, Josefa; López-Mondéjar, Rubén; Lloret, Eva; Pascual, Jose Antonio; Ros, Margarita

    2013-09-01

    The addition of species of Trichoderma to compost is a widespread technique used to control different plant diseases. The biological control activity of these species is mainly attributable to a combination of several mechanisms of action, which may affect the microbiota involved in the suppressiveness of compost. This study was therefore performed to determine the effect of inoculation of Trichoderma harzianum (T. harzianum) on compost, focusing on bacterial community structure (16S rRNA) and chitinase gene diversity. In addition, the ability of vineyard pruning waste compost, amended (GCTh) or not (GC) with T. harzianum, to suppress Fusarium wilt was evaluated. The addition of T. harzianum resulted in a high relative abundance of certain chitinolytic bacteria as well as in remarkable protection against Fusarium oxysporum comparable to that induced by compost GC. Moreover, variations in the abiotic characteristics of the media, such as pH, C, N and iron levels, were observed. Despite the lower diversity of chitinolytic bacteria found in GCTh, the high relative abundance of Streptomyces spp. may be involved in the suppressiveness of this growing media. The higher degree of compost suppressiveness achieved after the addition of T. harzianum may be due not only to its biocontrol ability, but also to changes promoted in both abiotic and biotic characteristics of the growing media. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Variability in physical contamination assessment of source segregated biodegradable municipal waste derived composts.

    Science.gov (United States)

    Echavarri-Bravo, Virginia; Thygesen, Helene H; Aspray, Thomas J

    2017-01-01

    Physical contaminants (glass, metal, plastic and 'other') and stones were isolated and categorised from three finished commercial composts derived from source segregated biodegradable municipal waste (BMW). A subset of the identified physical contaminant fragments were subsequently reintroduced into the cleaned compost samples and sent to three commercial laboratories for testing in an inter-laboratory trial using the current PAS100:2011 method (AfOR MT PC&S). The trial showed that the 'other' category caused difficulty for all three laboratories with under reporting, particularly of the most common 'other' contaminants (paper and cardboard) and, over-reporting of non-man-made fragments. One laboratory underreported metal contaminant fragments (spiked as silver foil) in three samples. Glass, plastic and stones were variably underreported due to miss-classification or over reported due to contamination with compost (organic) fragments. The results are discussed in the context of global physical contaminant test methods and compost quality assurance schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Aerobic composting of digested residue eluted from dry methane fermentation to develop a zero-emission process.

    Science.gov (United States)

    Huang, Yu-Lian; Sun, Zhao-Yong; Zhong, Xiao-Zhong; Wang, Ting-Ting; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2017-03-01

    Digested residue remained at the end of a process for the production of fuel ethanol and methane from kitchen garbage. To develop a zero-emission process, the compostability of the digested residue was assessed to obtain an added-value fertilizer. Composting of the digested residue by adding matured compost and a bulking agent was performed using a lab-scale composting reactor. The composting process showed that volatile total solid (VTS) degradation mainly occurred during the first 13days, and the highest VTS degradation efficiency was about 27% at the end. The raw material was not suitable as a fertilizer due to its high NH 4 + and volatile fatty acids (VFAs) concentration. However, the composting process produced remarkable results; the physicochemical properties indicated that highly matured compost was obtained within 62days of the composting process, and the final N concentration, NO 3 - concentration, and the germination index (GI) at the end of the composting process was 16.4gkg -1 -TS, 9.7gkg -1 -TS, and 151%, respectively. Real-time quantitative PCR (qPCR) analysis of ammonia oxidizers indicated that the occurrence of nitrification during the composting of digested residue was attributed to the activity of ammonia-oxidizing bacteria (AOB). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Determining thermal inactivation of Escherichia coli O157:H7 in fresh compost by simulating early phases of the composting process.

    Science.gov (United States)

    Singh, Randhir; Kim, Jinkyung; Shepherd, Marion W; Luo, Feng; Jiang, Xiuping

    2011-06-01

    A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 10(7) CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of 25:1 and 16:1, respectively, were compared in this study. In the optimal compost mix, E. coli O157:H7 survived for 72, 48, and 24 h in compost with 40% moisture and for 72, 24, and 24 h with 50% moisture at 50, 55, and 60°C, respectively, following 2 days of come-up time (rate of heating up). However, in the suboptimal compost mix, the pathogen survived for 288, 72, and 48 h in compost with 40% moisture and for 240, 72, 24 h in compost with 50% moisture at the same temperatures, respectively. Pathogen survival was longer, with 5 days of come-up time compared with 2 days of come-up. Overall, E. coli O157:H7 was inactivated faster in the compost with 50% moisture than in the compost with 40% at 55 and 60°C. Both moisture and come-up time were significant factors affecting Weibull model parameters. Our results suggest that slow come-up time at the beginning of composting can extend pathogen survival during composting. Additionally, both the C/N ratio and the initial moisture level in the compost mix affect the rate of pathogen inactivation as well.

  3. Utilization of Chicken Excretions as Compost Manure in Bolu

    Directory of Open Access Journals (Sweden)

    Cihat Kütük

    2013-11-01

    Full Text Available Turkish agricultural soils are insufficient with regard to organic matter content. Likewise, organic matter amounts in agricultural areas of Bolu are low. The benefits of organic matter to physical, chemical and biologic properties of soils are known for very long time. On the other hand, huge amount of chicken excretions are produced in Turkey with increased chicken production recently, and this result in substantial health and environmental problems. Amount of chicken excretions are estimated about 10 000 000 tons in Turkey. In Bolu, these amounts of chicken excretions are 300 000 tons per year. The most appropriate way to solve this question is to transform chicken excretions to organic manure and apply to agricultural fields. Composting is basic process for transforming of chicken excretions to organic manure. Composting is the aerobic decomposition of organic materials in the thermophilic temperature range of 40-65 °C. There are two essential methods in composting. One of them is traditional method taking much time and producing low grade manure. Another is rapid composting method taking less time and producing high grade manure under more controlled conditions. Rapid composting methods which are more acceptable as commercially in the world are windrow, rectangular agitated beds and rotating drum, respectively Selection of appropriate method is depending on composting material, environmental and economical conditions. Chicken excretions occurring large amounts in Bolu must be transformed to organic manure by means of a suitable composting method and used in agriculture. Because, chicken manure is an important resource for sustainable agriculture in Turkey and it should be evaluated.

  4. Composting of gamma-radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, W.; Hashimoto, S.; Watanabe, H.; Nishimura, K.; Watanabe, H.; Ito, H.; Takehisa, M.

    1981-01-01

    The composting of radiation disinfected sewage sludge has been studied since 1978, aiming to present a new process of sludge composting for agricultural uses. This process is composed of two steps: irradiation step to disinfect sludge, and composting step to remove odor and easily decomposable organics in sludge. In this paper, the gamma-irradiation effect on sludge cake and composting condition of irradiated sludge are discussed. (author)

  5. Influence of maize straw content with sewage sludge on composting process

    Directory of Open Access Journals (Sweden)

    Czekała Wojciech

    2016-09-01

    Full Text Available After entrance to EU in 2004, the management of sewage sludge has become more and more important problem for the new members. In Poland, one of the most promising technologies is composting process of sewage sludge with carbonaceous materials. However, the high price of typically used cereal straw forces the specialists to look for new and cheap materials used as donor of carbon and substrates creating good, porous structure of composted heap. This work presents the results of sewage sludge composting mixed with sawdust and maize straw used to create structure favorable for air exchange. The results show dynamic thermophilic phase of composting process in all cases where maize straw was used.

  6. Composting Begins at Home.

    Science.gov (United States)

    Dreckman, George P.

    1994-01-01

    Reports the results of a year-long home composting pilot program run by the city of Madison, Wisconsin. The study was designed to gather data on the amount and type of materials composted by 300 volunteer households and to determine the feasibility of a full-scale program. (LZ)

  7. Role of psychrotrophic bacteria in organic domestic waste composting in cold regions of China.

    Science.gov (United States)

    Hou, Ning; Wen, Luming; Cao, Huiming; Liu, Keran; An, Xuejiao; Li, Dapeng; Wang, Hailan; Du, Xiaopeng; Li, Chunyan

    2017-07-01

    To study the influence of psychrotrophic bacteria on organic domestic waste (ODW) composting in cold regions, twelve new efficient psychrotrophic composting strains were isolated. Together with the published representative composting strains, a phylogenetic tree was constructed showing that although the strains belong to the same phylum, the genera were markedly different. The twelve strains were inoculated into the ODW in the composting reactor at 13°C. After treatment, the indices of temperature, moisture content, pH, electrical conductivity, C/N, ammonium nitrogen, and nitrate nitrogen indicated that the compost had reached maturity. The thermophilic phase was reached at 17d, and composting was completed at 42d, a markedly shorter composting time than that in previous studies. High-throughput sequencing indicated that the inoculative strains became the dominant community during the mesophilic phase and that they enhanced the stability of the microbial community structure. Thus, psychrotrophic bacteria played a key role in low-temperature composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of pH, temperature and moisture content during composting of rice straw burning at different temperature with food waste and effective microorganisms

    Directory of Open Access Journals (Sweden)

    Zakarya Irnis Azura

    2018-01-01

    Full Text Available Rice straw is considered as one of the most important agricultural residues and represented as one of the major by-products from rice production process. Normally, rice straw that produced after harvesting season been directly burned on-farm. Conversion of rice straw into value added compost will improve the productivity of plant, reduction of pollution towards environment and reduction of local pollution due to open burning activity. The objective of this study was to evaluate the performance of composting rice straw ash (RSA with food waste (FW and effective microorganisms (EM in term of the compost quality (pH, temperature, moisture content. RSA was prepared by burning the raw rice straw at three different temperature of 300°C, 400°C and 500°C for one hour. EM used during the composting process was prepared by mixing of brown sugar, ‘tempe’ and water that can be used after one week of fermentation process. There are four treatments of RSA-compost; RSA (300°C, RSA (400°C, RSA (500°C and control (raw rice straw with the same amount of compost medium; 1kg black soil, 0.5kg RSA, 3L EM and 1kg FW. The composting process happens for 30 days. During the composting process, all the parameters of RSA-compost obtained in a range like; pH value 8-10, temperature 20-50°C and moisture content 40-60%. The result showed that all compost quality of rice straw ash compost obtained in an acceptable range for final compost to establish.

  9. Bioaerosols from composting facilities—a review

    Science.gov (United States)

    Wéry, Nathalie

    2014-01-01

    Bioaerosols generated at composting plants are released during processes that involve the vigorous movement of material such as shredding, compost pile turning, or compost screening. Such bioaerosols are a cause of concern because of their potential impact on both occupational health and the public living in close proximity to such facilities. The biological hazards potentially associated with bioaerosol emissions from composting activities include fungi, bacteria, endotoxin, and 1-3 β-glucans. There is a major lack of knowledge concerning the dispersal of airborne microorganisms emitted by composting plants as well as the potential exposure of nearby residents. This is due in part to the difficulty of tracing specifically these microorganisms in air. In recent years, molecular tools have been used to develop new tracers which should help in risk assessments. This review summarizes current knowledge of microbial diversity in composting aerosols and of the associated risks to health. It also considers methodologies introduced recently to enhance understanding of bioaerosol dispersal, including new molecular indicators and modeling. PMID:24772393

  10. Agricultural use of compost and vermicomposts from urban wastes: process, maturity and quality of products; Uso agricola de compost y vermicompost de basuras urbanas: procesos, madurez y calidad de los productos

    Energy Technology Data Exchange (ETDEWEB)

    Nogales, R.; Elvira, C.; Benitez, E.; Gallardo-Lara, F. [Departamento Agricola y Proteccion Vegetal, Estacion experimental del Zaidin, CSIC, Granada (Spain)

    1995-12-31

    In this fourth-part review, the authors discuss the positive and negative effects of the agricultural use of compost and vermicomposts from town refuse. This first part reviews the composting and vermicomposting processes, including the most important methods to evaluate the maturity of the end products.

  11. Survey the Effect of Pistachio Waste Composting Process with Different Treatments on Concentration of Heavy Metals

    Directory of Open Access Journals (Sweden)

    M Jalili

    2016-09-01

    Full Text Available Abstract Introduction: Composting is one of the pistachio wastes management methods. In the appropriate compost production nutrients and heavy metals are determinant. The aim of this study is survey the effect of pistachio wastes composting process with different treatments on the concentration of heavy metals. Methods: In this study, during the 60-day pistachio wastes composting process with two treatments of dewatered sewage sludge and cow manure, pH, EC, carbon to nitrogen ratio, Heavy metals and nutrients indicators were studied. The results were compared with WHO and Iranian National standard. Drawing the diagrams by Excel software (Version 2007 and Statistical analysis was performed by Spss Software (version 20 at a significance level of 0.005.  Results: During the 60-day composting pH initially had downward trend and then increased. The Cu, Zn, Fe, Mn and C/N ratio had downward trend and the EC, Na, K had increasing trend. Eventually, Iron, zinc, copper and manganese were less than the standard, Sodium was in Standard range and potassium was more than specified standards in the produced compost from pistachios waste with both treatments.  Conclusion: The results showed that the concentration of heavy metals and nutrients in the produced compost with both treatments were in the acceptable range. Eventually quality of produced compost with cow manure treatment due to better decomposition and greater stability was better than processed compost with dewatered sewage sludge treatment.

  12. Coffee husk composting: An investigation of the process using molecular and non-molecular tools

    Science.gov (United States)

    Shemekite, Fekadu; Gómez-Brandón, María; Franke-Whittle, Ingrid H.; Praehauser, Barbara; Insam, Heribert; Assefa, Fassil

    2014-01-01

    Various parameters were measured during a 90-day composting process of coffee husk with cow dung (Pile 1), with fruit/vegetable wastes (Pile 2) and coffee husk alone (Pile 3). Samples were collected on days 0, 32 and 90 for chemical and microbiological analyses. C/N ratios of Piles 1 and 2 decreased significantly over the 90 days. The highest bacterial counts at the start of the process and highest actinobacterial counts at the end of the process (Piles 1 and 2) indicated microbial succession with concomitant production of compost relevant enzymes. Denaturing gradient gel electrophoresis of rDNA and COMPOCHIP microarray analysis indicated distinctive community shifts during the composting process, with day 0 samples clustering separately from the 32 and 90-day samples. This study, using a multi-parameter approach, has revealed differences in quality and species diversity of the three composts. PMID:24369846

  13. Thermophilic methanogenic Archaea in compost material: occurrence, persistence and possible mechanisms for their distribution to other environments.

    Science.gov (United States)

    Thummes, Kathrin; Schäfer, Jenny; Kämpfer, Peter; Jäckel, Udo

    2007-12-01

    Since compost is widely used as soil amendment and the fact that during the processing of compost material high amounts of microorganisms are released into the air, we investigated whether compost may act as a carrier for thermophilic methanogens to temperate soils. All eight investigated compost materials showed a clear methane production potential between 0.01 and 0.98 micromol CH(4) g dw(-1)h(-1) at 50 degrees C. Single strand conformation polymorphism (SSCP) and cloning analysis indicated the presence of Methanosarcina thermophila, Methanoculleus thermophilus, and Methanobacterium formicicum. Bioaerosols collected during the turning of a compost pile showed both a highly similar SSCP profile compared to the corresponding compost material and clear methane production during anoxic incubation in selective medium at 50 degrees C. Both observations indicated a considerable release of thermophilic methanogens into the air. To analyse the persistence of compost-borne thermophilic methanogens in temperate oxic soils, we therefore studied their potential activity in compost and compost/soil mixtures, which was brought to a meadow soil, as well as in an agricultural soil fertilised with compost. After 24h anoxic incubation at 50 degrees C, all samples containing compost showed a clear methanogenic activity, even 1 year after application. In combination with the in vitro observed resilience of the compost-borne methanogens against desiccation and UV radiation we assume that compost material acts as an effective carrier for the distribution of thermophilic methanogens by fertilisation and wind.

  14. Composting trial with BioFoam® products in a full scale commercial composting facility

    NARCIS (Netherlands)

    Zee, van der M.

    2015-01-01

    The main objective of the trial was to be able to judge whether BioFoam® material degrades at sufficient rate to be composted together with regular source separated municipal solid biowaste in a full scale industrial composting facility.

  15. Microbiota Characterization of Compost Using Omics Approaches Opens New Perspectives for Phytophthora Root Rot Control.

    Science.gov (United States)

    Blaya, Josefa; Marhuenda, Frutos C; Pascual, Jose A; Ros, Margarita

    2016-01-01

    Phytophthora root rot caused by Phytophthora nicotianae is an economically important disease in pepper crops. The use of suppressive composts is a low environmental impact method for its control. Although attempts have been made to reveal the relationship between microbiota and compost suppressiveness, little is known about the microorganisms associated with disease suppression. Here, an Ion Torrent platform was used to assess the microbial composition of composts made of different agro-industrial waste and with different levels of suppressiveness against P. nicotianae. Both bacterial and fungal populations responded differently depending on the chemical heterogeneity of materials used during the composting process. High proportions (67-75%) of vineyard pruning waste were used in the most suppressive composts, COM-A and COM-B. This material may have promoted the presence of higher relative abundance of Ascomycota as well as higher microbial activity, which have proved to be essential for controlling the disease. Although no unique fungi or bacteria have been detected in neither suppressive nor conducive composts, relatively high abundance of Fusarium and Zopfiella were found in compost COM-B and COM-A, respectively. To the best of our knowledge, this is the first work that studies compost metabolome. Surprisingly, composts and peat clustered together in principal component analysis of the metabolic data according to their levels of suppressiveness achieved. This study demonstrated the need for combining the information provided by different techniques, including metagenomics and metametabolomics, to better understand the ability of compost to control plant diseases.

  16. [Fungal community structure in phase II composting of Volvariella volvacea].

    Science.gov (United States)

    Chen, Changqing; Li, Tong; Jiang, Yun; Li, Yu

    2014-12-04

    To understand the fungal community succession during the phase II of Volvariella volvacea compost and clarify the predominant fungi in different fermentation stages, to monitor the dynamic compost at the molecular level accurately and quickly, and reveal the mechanism. The 18S rDNA-denaturing gradient gel electrophoresis (DGGE) and sequencing methods were used to analyze the fungal community structure during the course of compost. The DGGE profile shows that there were differences in the diversity of fungal community with the fermentation progress. The diversity was higher in the stages of high temperature. And the dynamic changes of predominant community and relative intensity was observed. Among the 20 predominant clone strains, 9 were unknown eukaryote and fungi, the others were Eurotiales, Aspergillus sp., Melanocarpus albomyces, Colletotrichum sp., Rhizomucor sp., Verticillium sp., Penicillium commune, Microascus trigonosporus and Trichosporon lactis. The 14 clone strains were detected in the stages of high and durative temperature. The fungal community structure and predominant community have taken dynamic succession during the phase II of Volvariella volvacea compost.

  17. Studyof Wastewater and Compost Effects on Some of Soil Physical and Chemical Characteristics

    Directory of Open Access Journals (Sweden)

    M. Shakarami

    2016-09-01

    had three layers: the upper layer (Clay texture, the middle layer (clay loam and the bottom layer (sandy clay loam. After beds preparation, basil (Ocimum Basilicum was planted in them. Due to the lack of an active wastewater treatment plant in the region, raw and treated wastewaters were transported from Kermanshah, the nearest city to Hamedan. Also, municipal compost was prepared from Kermanshah Compost Company.At the end of cultivation period, the soil samples (from 0-15 cm were collected and the amount of physical (hydraulic conductivity, bulk and particle density and porosityand chemical (nitrogen, phosphorus and potassium properties were measured. Results and Discussion: The results showed that the water quality has a significant effect on all parameters and the amount of compost has significant effect on all parameters except bulk density. But, the amount of all parameters (except hydraulic conductivity was not influenced by interaction between water quality and compost levels. In all treatments, the range of hydraulic conductivity, bulk density, particle density and total porosity were varied between 23.82 to 35.61 mmh-1, 1.41 to 1.43 grcm-3, 2.51 to 2.57 grcm-3 and 42.88 to 45.19 %, respectively. Also the range of nitrogen, phosphorus, and potassium were varied between 0.06 to0.08 %, 14.64 to232.28mgkg-1,and 393.22 to519.84mgkg-1,respectively.Overall, the results indicated that using compost and wastewater increased hydraulic conductivity, porosity, nitrogen, phosphorus, and potassium of the soil in comparison to the control. Whereasbulk and particle density of soil decresed by using compost and wastewater (as a mixed material. Conclusion: In this study, we investigated the effect of wastewater and compost on some of soil physical properties (hydraulic conductivity, bulk density, particle density and total porosity and also some of chemical properties of soil nitrogen, phosphorus and potassium.The results showed that the use of wastewater and compost on soil

  18. Quantification Of Greenhouse Gases From Three Danish Composting Facilities

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Andersen, Jacob Kragh; Samuelsson, J.

    2011-01-01

    A measurement method combining a controlled trace gas release with downwind concentrations measurements was successfully used to quantify greenhouse gas (GHG) emissions from three Danish open windrow composting facilities. Overall, the results showed that composting of organic waste generate GHG...... emissions in terms of methane (CH4) and nitrous oxide (N2O) and thus contribute to climate change. At all three facilities significant CH4 emissions were occurring. The CH4 emission varied between 0.50 and 5.73 kg CH4 h-1. The highest CH4 emission (5.73 kg CH4 h-1) were measured at the Aarhus composting...... facility and was believed to be a result of the windrow lay-out with very broad and high windrows and a low turning frequency. The lowest CH4 emission (0.50 kg CH4 h-1) was measured at Fakse composting area and was most likely a result of the relatively small windrows and frequent weekly turnings. For all...

  19. Composting: Wastes to Resources. 4-H Leader's/Teacher's Guide.

    Science.gov (United States)

    Bonhotal, Jean F.; Krasny, Marianne E.

    This guide is designed for adult volunteer leaders, camp counselors, and teachers who want to set up composting projects with youth. Five sections explore: (1) an introduction to composting with illustrated instructions for making compost; (2) different methods of composting and structures needed for various composting systems; (3) how to identify…

  20. Molecular Analysis of Ammonia-Oxidizing Bacteria of the β Subdivision of the Class Proteobacteria in Compost and Composted Materials

    Science.gov (United States)

    Kowalchuk, George A.; Naoumenko, Zinaida S.; Derikx, Piet J. L.; Felske, Andreas; Stephen, John R.; Arkhipchenko, Irina A.

    1999-01-01

    Although the practice of composting animal wastes for use as biofertilizers has increased in recent years, little is known about the microorganisms responsible for the nitrogen transformations which occur in compost and during the composting process. Ammonia is the principle available nitrogenous compound in composting material, and the conversion of this compound to nitrite in the environment by chemolithotrophic ammonia-oxidizing bacteria is an essential step in nitrogen cycling. Therefore, the distribution of ammonia-oxidizing members of the β subdivision of the class Proteobacteria in a variety of composting materials was assessed by amplifying 16S ribosomal DNA (rDNA) and 16S rRNA by PCR and reverse transcriptase PCR (RT-PCR), respectively. The PCR and RT-PCR products were separated by denaturing gradient gel electrophoresis (DGGE) and were identified by hybridization with a hierarchical set of oligonucleotide probes designed to detect ammonia oxidizer-like sequence clusters in the genera Nitrosospira and Nitrosomonas. Ammonia oxidizer-like 16S rDNA was detected in almost all of the materials tested, including industrial and experimental composts, manure, and commercial biofertilizers. A comparison of the DGGE and hybridization results after specific PCR and RT-PCR suggested that not all of the different ammonia oxidizer groups detected in compost are equally active. amoA, the gene encoding the active-site-containing subunit of ammonia monooxygenase, was also targeted by PCR, and template concentrations were estimated by competitive PCR. Detection of ammonia-oxidizing bacteria in the composts tested suggested that such materials may not be biologically inert with respect to nitrification and that the fate of nitrogen during composting and compost storage may be affected by the presence of these organisms. PMID:9925559

  1. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting.

    Science.gov (United States)

    Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin

    2016-06-01

    Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days. © The Author(s) 2016.

  2. Growth of eucalyptus rooted cuttings in toxic organic waste compost of textile industry

    Directory of Open Access Journals (Sweden)

    Priscila F. de Souza

    2015-09-01

    Full Text Available ABSTRACTBiodegradation techniques may help contaminated organic wastes to become useful for plant production. The current study aimed to evaluate the efficiency of composting in the biodegradation of toxic residues from the textile industry and its use as substrate in saplings production. Cotton cloths contaminated with oil and grease, used in loom maintenance, were composted in a mixture with cattle manure. The composted material replaced coconut fiber in the substrate for the production of eucalyptus rooted cuttings: mixture of vermiculite, carbonized rice husk and coconut fiber in the ratio of 2:1:1 (v/v and using it as control. Thus, the amount of rice husks remained unchanged and the amount of vermiculite and compost varied. The compost proportion in the tested substrates were 0, 19, 37, 56 and 75%. The compost produced from textile wastes showed high nutrient levels and low levels of heavy metals. In general, the survival, growth and some growth indices of rooted cuttings produced on substrates with 19 and 37% compost were similar to those of rooted cuttings grown in commercial substrate. Composting is efficient and the material is useful for rooted cuttings production.

  3. Mineralization dynamics in soil fertilized with seaweed-fish waste compost.

    Science.gov (United States)

    Illera-Vives, Marta; López-Fabal, Adolfo; López-Mosquera, M Elvira; Ribeiro, Henrique M

    2015-12-01

    Seaweed and fish waste can be composted together to obtain fertilizer with high organic matter and nutrient contents. The nutrients, however, are mostly in organic form and must be mineralized to make them available to plants. The objective of this work was to establish a usage guideline for the compost by studying its mineralization dynamics. Also, the release of inorganic N and C from soil fertilized with the compost was monitored and modelled. C and N were released throughout the assay, to an extent significantly dependent on fertilizer rate. Mineralization of both elements fitted a first-order exponential model, and each fertilizer rate required using a specific fitting model. An increased rate favoured mineralization (especially of carbon). After 90 days, 2.3% of C and 7.7% of N were mineralized (and 23.3% of total nitrogen made plant available) with the higher rate. C mineralization was slow because organic matter in the compost was very stable. On the other hand, the relatively high initial content in mineral N of the compost increased gradually by the effect of mineralization. The amount of N available would suffice to meet the requirements of moderately demanding crops at the lower fertilizer rate, and even those of more demanding crops at the higher rate. © 2015 Society of Chemical Industry.

  4. Role of biochar as an additive in organic waste composting.

    Science.gov (United States)

    Sanchez-Monedero, M A; Cayuela, M L; Roig, A; Jindo, K; Mondini, C; Bolan, N

    2018-01-01

    The use of biochar in organic waste composting has attracted interest in the last decade due to the environmental and agronomical benefits obtained during the process. Biochar presents favourable physicochemical properties, such as large porosity, surface area and high cation exchange capacity, enabling interaction with major nutrient cycles and favouring microbial growth in the composting pile. The enhanced environmental conditions can promote a change in the microbial communities that can affect important microbially mediated biogeochemical cycles: organic matter degradation and humification, nitrification, denitrification and methanogenesis. The main benefits of the use of biochar in composting are reviewed in this article, with special attention to those related to the process performance, compost microbiology, organic matter degradation and humification, reduction of N losses and greenhouse gas emissions and fate of heavy metals. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Continuous monitoring of odours from a composting plant using electronic noses.

    Science.gov (United States)

    Sironi, Selena; Capelli, Laura; Céntola, Paolo; Del Rosso, Renato; Il Grande, Massimiliano

    2007-01-01

    The odour impact of a composting plant situated in an urbanized area was evaluated by continuously monitoring the ambient air close to the plant during a period of about 4 days using two electronic noses. One electronic nose was installed in a nearby house, and the other one inside the perimeter of the composting plant in order to compare the response of both instruments. The results of the monitoring are represented by tables that report the olfactory class and the odour concentration value attributed to the analyzed air for each of the 370 measurements carried out during the monitoring period. The electronic nose installed at the house detected the presence of odours coming from the composting plant for about 7.8% of the monitoring total duration. Of the odour detections, 86% (25 of 29 measurements) were classified as belonging to the olfactory class corresponding to the open air storage of the waste screening overflows heaps, which was therefore identified to be the major odour source of the monitored composting plant. In correspondence of the measurements during which the electronic nose inside the house detected the presence of odours from the composting plant, the olfactory classes recognized by both instruments coincide. Moreover, the electronic nose at the house detected the presence of odours from the composting plant at issue in correspondence of each odour perception of the house occupants. The results of the study show the possibility of using an electronic nose for environmental odours monitoring, which enables the classification of the quality of the air and to quantify the olfactory nuisance from an industrial source in terms of duration and odour concentration.

  6. Determining Thermal Inactivation of Escherichia coli O157:H7 in Fresh Compost by Simulating Early Phases of the Composting Process ▿

    Science.gov (United States)

    Singh, Randhir; Kim, Jinkyung; Shepherd, Marion W.; Luo, Feng; Jiang, Xiuping

    2011-01-01

    A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 107 CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of 25:1 and 16:1, respectively, were compared in this study. In the optimal compost mix, E. coli O157:H7 survived for 72, 48, and 24 h in compost with 40% moisture and for 72, 24, and 24 h with 50% moisture at 50, 55, and 60°C, respectively, following 2 days of come-up time (rate of heating up). However, in the suboptimal compost mix, the pathogen survived for 288, 72, and 48 h in compost with 40% moisture and for 240, 72, 24 h in compost with 50% moisture at the same temperatures, respectively. Pathogen survival was longer, with 5 days of come-up time compared with 2 days of come-up. Overall, E. coli O157:H7 was inactivated faster in the compost with 50% moisture than in the compost with 40% at 55 and 60°C. Both moisture and come-up time were significant factors affecting Weibull model parameters. Our results suggest that slow come-up time at the beginning of composting can extend pathogen survival during composting. Additionally, both the C/N ratio and the initial moisture level in the compost mix affect the rate of pathogen inactivation as well. PMID:21498743

  7. Simulating the dynamics of polycyclic aromatic hydrocarbon (PAH) in contaminated soil through composting by COP-Compost model.

    Science.gov (United States)

    Zhang, Yuan; Guan, Yidong; Shi, Qi

    2015-02-01

    Organic pollutants (OPs) are potentially present in composts, and the assessment of their content and bioaccessibility in these composts is of paramount importance to minimize the risk of soil contamination and improve soil fertility. In this work, integration of the dynamics of organic carbon (OC) and OPs in an overall experimental framework is first proposed and adopted to validate the applicability of the COP-Compost model and to calibrate the model parameters on the basis of what has been achieved with the COP-Compost model. The COP-Compost model was evaluated via composting experiments containing 16 US Environmental Protection Agency (USEPA) polycyclic aromatic hydrocarbons (PAHs) and the sorption coefficient (Kd) values of two types of OP: fluorenthene (FLT) and pyrene (PHE). In our study, these compounds are used to characterize the sequential extraction and are quantified as soluble, sorbed, and non-extractable fractions. The model was calibrated, and coupling the OC and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. The results show good agreement between the simulated and experimental results describing the evolution of different organic pollutants using the OP module, as well as the coupling module. However, no clear relationship is found between the Kd and the property of organic fractions. Further estimation of parameters is still necessary to modify the insufficiency of this present research.

  8. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    Science.gov (United States)

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature

  9. Sewage sludges compost and organic fraction urban solid waste from selective collection; Compostaje de lodos de depuradora y FORSU procedente de recogida selectiva

    Energy Technology Data Exchange (ETDEWEB)

    Chica, A.; Diaz, M. M.; Mohedo, J.

    2001-07-01

    The organic fraction of urban solid waste (FORSU) from selective collection has been analysed to make a good quality compost for soils an agricultural use. Different mixtures of FORSU, sludge from the municipal water treatment plant, and pruning garden has been composted in turned windrow. The composting process and the obtained refined compost were characterised. The results on evolution of pH, conductivity, C/N relation, P, metals,-organic matter and recovery yield were related. (Author) 15 refs.

  10. High-Iron Biosolids Compost-Induced Changes in Lead and Arsenic Speciation and Bioaccessibility in Co-contaminated Soils

    Science.gov (United States)

    The safety of urban farming has been questioned due to the potential for contamination in urban soils. A laboratory incubation, a field trial, and a second laboratory incubation were conducted to test the ability of high-Fe biosolids–based composts to reduce the bioaccessibil...

  11. STABILIZATION OF DEWATERED SEWAGE SLUDGE BY AEROBIC COMPOSTING METHOD: USING SAWDUST AS BULKING AGENTS

    Directory of Open Access Journals (Sweden)

    A PARVARESH

    2002-12-01

    Full Text Available Introduction. Sludge production from municipal wastewater treatment plants should have quality standards before disposal in to the environment. Environmental specialists classified sewage sludge as a hazardous waste because of high organic compounds and pathogenic microorganisms. They belive that sewage should be stabilized before disposal and so composting of sewage sludge is an effective and economical method to stabilize. Sewage sludge compost could be used to improve soil structure and enrich the soil with nutrients. Methods. To evaluate the optimum conditions of aerobic compost, the mixture of dewatered sewage sludge from Isfahan municipal waste water treatment plant and sawdust as bulking agent were used. Pilot scale study were performed in Isfahan municipal waste water treatment plant. To perform this research project, the dewatered sewage sludge with humidity between 78 to 82 percent were mixed with sawdust. Turning over method of the piles with one week interval were applied to aerate the mixture. Temperature of the piles were monitored at different depths daily. Other parameters such as N, G, organic matters and pH were determined weekly. Total and fecal coli form, and salmonella were determined at the beginning and end of the composting process, also heavy metals were measured at the same time. Results. The results of this study showed that after days, temperature of the mixture reached up to 55 G, and were stabled for 15 days. Humidity, organic matter, organic carbon and GIN ratio of the mixture decreased over the period of the study, due to increasing the temperature. Also organic matter and humidity mainly decreased in thermofilic phase. The number of total and fecal coliform and also salmonella decreased to A class standards of US.EPA at the end of the operation. Discussion. The results of the study also showed that, this type of composting method is reliable, and simple to schedule, with high flexibility and low odor

  12. Modeling composting kinetics: A review of approaches

    NARCIS (Netherlands)

    Hamelers, H.V.M.

    2004-01-01

    Composting kinetics modeling is necessary to design and operate composting facilities that comply with strict market demands and tight environmental legislation. Current composting kinetics modeling can be characterized as inductive, i.e. the data are the starting point of the modeling process and

  13. Dynamics of copper and tetracyclines during composting of water hyacinth biomass amended with peat or pig manure.

    Science.gov (United States)

    Lu, Xin; Liu, Lizhu; Fan, Ruqin; Luo, Jia; Yan, Shaohua; Rengel, Zed; Zhang, Zhenhua

    2017-10-01

    Composting is one of the post-treatment methods for phytoremediation plants. Due to a high potential of water hyacinth to accumulate pollutants, the physicochemical parameters, microbial activity as well as fates of copper (Cu) and tetracyclines (TCs) were investigated for the different amended water hyacinth biomass harvested from intensive livestock and poultry wastewater, including unamended water hyacinth (W), water hyacinth amended with peat (WP), and water hyacinth amended with pig manure (WPM) during the composting process. Pig manure application accelerated the composting process as evidenced by an increase of temperature, electrical conductivity (EC), NH 4 -N, as well as functional diversity of microbial communities compared to W and WP treatments. Composting process was slowed down by high Cu, but not by TCs. The addition of peat significantly increased the residual fraction of Cu, while pig manure addition increased available Cu concentration in the final compost. Cu could be effectively transformed into low available (oxidizable) and residual fractions after fermentation. In contrast, less than 0.5% of initial concentrations of TCs were determined at the end of 60-day composting for all treatments in the final composts. The dissipation of TCs was accelerated by the high Cu concentration during composting. Therefore, composting is an effective method for the post-treatment and resource utilization of phytoremediation plants containing Cu and/or TCs.

  14. Substitution of peat, fertiliser and manure by compost in hobby gardening: user surveys and case studies.

    Science.gov (United States)

    Andersen, Jacob K; Christensen, Thomas H; Scheutz, Charlotte

    2010-12-01

    Four user surveys were performed at recycle centres (RCs) in the Municipalities of Aarhus and Copenhagen, Denmark, to get general information on compost use and to examine the substitution of peat, fertiliser and manure by compost in hobby gardening. The average driving distance between the users' households and the RCs was found to be 4.3 km and the average amount of compost picked up was estimated at 800 kg per compost user per year. The application layer of the compost varied (between 1 and 50 cm) depending on the type of use. The estimated substitution (given as a fraction of the compost users that substitute peat, fertiliser and manure with compost) was 22% for peat, 12% for fertiliser and 7% for manure (41% in total) from the survey in Aarhus (n=74). The estimate from the survey in Copenhagen (n=1832) was 19% for peat, 24% for fertiliser and 15% for manure (58% in total). This is the first time, to the authors' knowledge, that the substitution of peat, fertiliser and manure with compost has been assessed for application in hobby gardening. Six case studies were performed as home visits in addition to the Aarhus surveys. From the user surveys and the case studies it was obvious that the total substitution of peat, fertiliser and manure was not 100%, as is often assumed when assigning environmental credits to compost. It was more likely around 50% and thus there is great potential for improvement. It was indicated that compost was used for a lot of purposes in hobby gardening. Apart from substitution of peat, fertiliser and manure, compost was used to improve soil quality and as a filling material (as a substitute for soil). Benefits from these types of application are, however, difficult to assess and thereby quantify. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Evaluation of Grape Pomace Composting Process

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2014-01-01

    Full Text Available The paper deals with the problems of composting of grape pomace in strip compost piles. The three variants of compost piles formed from grape pomace and vegetables waste, wood chips and mature in varying proportions were tested. Turning of piles was performed using windrow turner PKS 2.8, in which the achieved performance was monitored. On the performance of windrow turner has a significant influence also cross section or width and height of turning piles and the bulk density of ingredients including their moisture. In evaluating, attention has been paid to assessment of selected parameters (temperature, moisture content of the composting process. From the viewpoint of temperature course, the highest temperature reached at the piles in Var. I (64.1 °C and Var. II (55.3 °C. Moisture of compost piles in the individual variants did not differ significantly and ranged between 25–35%.

  16. Characterization of isolated fractions of dissolved organic matter derived from municipal solid waste compost.

    Science.gov (United States)

    Yu, Minda; He, Xiaosong; Liu, Jiaomei; Wang, Yuefeng; Xi, Beidou; Li, Dan; Zhang, Hui; Yang, Chao

    2018-04-14

    Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Cucumber nitrogen utilization as affected by compost levels and nitrogen rates using 15N technique

    International Nuclear Information System (INIS)

    El-Sherif, M.F.; Abdalla, A.A.; Abdalla, M.M.F.; El-Oksh, I.I.

    2005-01-01

    The beneficial effect of compost application to the sandy soil on dry matter production of shoots and fruits as well as its effect on l5N-uptake and nitrogen utilization percent of cucumber plant (Cucumis sativus L.) were studied under field conditions. Two types of natural compost (i.e. sugar cane bagasse (SC) and beet compost (BC)) with three levels (2, 4, 6 ton/fed) in addition to check treatment for each kind of compost (sheep manure with rate of 20 in/fed) combined with three rates of nitrogen fertilizer rates (50, 75, 100% from the recommended rate, i.e. 75 kg /fed) were used. The bagasse compost in both seasons gave a significantly higher response than the beet compost. There was a greet reduction in cucumber dry weight, N yield, Ndff%, FN yield and N utilization % of shoots and fruits as the level of compost application decreased. However, cucumber plants grown on high compost application level (6 ton/fed) were similar in their responses to plants grown on the check treatment. The results of N utilization indicated that the fertilizer utilization by the cucumber shoots and fruits during both seasons was significantly higher for the medium N rate (75% N) in comparison to the lowest fertigation treatment (50% N) and similar to the highest N fertigation rate (100% N). Generally, the results showed that under the experimental conditions to reach an acceptable yield with a high fertilizer utilization, it could be suggested to apply relatively medium rates of N fertigation (56.25 kg N/fed) combined with the high level ofSC compost application (6 t/fed) keeping in mind the regional site conditions

  18. Microbiota Characterization of Compost Using Omics Approaches Opens New Perspectives for Phytophthora Root Rot Control.

    Directory of Open Access Journals (Sweden)

    Josefa Blaya

    Full Text Available Phytophthora root rot caused by Phytophthora nicotianae is an economically important disease in pepper crops. The use of suppressive composts is a low environmental impact method for its control. Although attempts have been made to reveal the relationship between microbiota and compost suppressiveness, little is known about the microorganisms associated with disease suppression. Here, an Ion Torrent platform was used to assess the microbial composition of composts made of different agro-industrial waste and with different levels of suppressiveness against P. nicotianae. Both bacterial and fungal populations responded differently depending on the chemical heterogeneity of materials used during the composting process. High proportions (67-75% of vineyard pruning waste were used in the most suppressive composts, COM-A and COM-B. This material may have promoted the presence of higher relative abundance of Ascomycota as well as higher microbial activity, which have proved to be essential for controlling the disease. Although no unique fungi or bacteria have been detected in neither suppressive nor conducive composts, relatively high abundance of Fusarium and Zopfiella were found in compost COM-B and COM-A, respectively. To the best of our knowledge, this is the first work that studies compost metabolome. Surprisingly, composts and peat clustered together in principal component analysis of the metabolic data according to their levels of suppressiveness achieved. This study demonstrated the need for combining the information provided by different techniques, including metagenomics and metametabolomics, to better understand the ability of compost to control plant diseases.

  19. The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting.

    Science.gov (United States)

    Zang, Xiangyun; Liu, Meiting; Fan, Yihong; Xu, Jie; Xu, Xiuhong; Li, Hongtao

    2018-01-01

    Compost habitats sustain a vast ensemble of microbes that engender the degradation of cellulose, which is an important part of global carbon cycle. β-Glucosidase is the rate-limiting enzyme of degradation of cellulose. Thus, analysis of regulation of β-glucosidase gene expression in composting is beneficial to a better understanding of cellulose degradation mechanism. Genetic diversity and expression of β-glucosidase-producing microbial communities, and relationships of cellulose degradation, metabolic products and the relative enzyme activity during natural composting and inoculated composting were evaluated. Compared with natural composting, adding inoculation agent effectively improved the degradation of cellulose, and maintained high level of the carboxymethyl cellulose (CMCase) and β-glucosidase activities in thermophilic phase. Gene expression analysis showed that glycoside hydrolase family 1 (GH1) family of β-glucosidase genes contributed more to β-glucosidase activity in the later thermophilic phase in inoculated compost. In the cooling phase of natural compost, glycoside hydrolase family 3 (GH3) family of β-glucosidase genes contributed more to β-glucosidase activity. Intracellular β-glucosidase activity played a crucial role in the regulation of β-glucosidase gene expression, and upregulation or downregulation was also determined by extracellular concentration of glucose. At sufficiently high glucose concentrations, the functional microbial community in compost was altered, which may contribute to maintaining β-glucosidase activity despite the high glucose content. This research provides an ecological functional map of microorganisms involved in carbon metabolism in cattle manure-rice straw composting. The performance of the functional microbial groups in the two composting treatments is different, which is related to the cellulase activity and cellulose degradation, respectively.

  20. Sweet Sorghum crop. Effect of the Compost Application; Cultivo de Sorgo Dulce. Efecto de la Aplicacion de Compost

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M J; Solano, M L; Carrasco, J; Ciria, P

    1998-12-01

    A 3 year-plot experiments were performed to determined the possible persistence of the positive effects of treating soil with compost. For this purpose, a sweet sorghum bagasse compost has been used. Experiments were achieved with sweet sorghum (Sorghum bicolor. L. Moench) vr Dale as energy crop. Similar sorghum productivities were obtained both in plots with consecutive compost applications and in plots amended with mineral fertilizers. No residual effect after three years has been detected. It could be due to the low dose of compost application. (Author) 27 refs.

  1. Effective pine bark composting with the Dome Aeration Technology

    International Nuclear Information System (INIS)

    Trois, Cristina; Polster, Andreas

    2007-01-01

    monitoring revealed that prevailing climatic conditions in a subtropical location do not affect the high efficiency of this technology. However, the composition of the input material can be detrimental for production of high quality compost because of a lack of nitrate

  2. Coffee husk composting: an investigation of the process using molecular and non-molecular tools.

    Science.gov (United States)

    Shemekite, Fekadu; Gómez-Brandón, María; Franke-Whittle, Ingrid H; Praehauser, Barbara; Insam, Heribert; Assefa, Fassil

    2014-03-01

    Various parameters were measured during a 90-day composting process of coffee husk with cow dung (Pile 1), with fruit/vegetable wastes (Pile 2) and coffee husk alone (Pile 3). Samples were collected on days 0, 32 and 90 for chemical and microbiological analyses. C/N ratios of Piles 1 and 2 decreased significantly over the 90 days. The highest bacterial counts at the start of the process and highest actinobacterial counts at the end of the process (Piles 1 and 2) indicated microbial succession with concomitant production of compost relevant enzymes. Denaturing gradient gel electrophoresis of rDNA and COMPOCHIP microarray analysis indicated distinctive community shifts during the composting process, with day 0 samples clustering separately from the 32 and 90-day samples. This study, using a multi-parameter approach, has revealed differences in quality and species diversity of the three composts. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Chemical properties and hydrolytic enzyme activities for the characterisation of two-phase olive mill wastes composting.

    Science.gov (United States)

    Cayuela, M L; Mondini, C; Sánchez-Monedero, M A; Roig, A

    2008-07-01

    Two-phase olive mill waste (TPOMW) is a semisolid sludge generated during the extraction of olive oil by the two-phase centrifugation system. Among all the available disposal options, composting is gaining interest as a sustainable strategy to recycle TPOMW for agricultural purposes. The quality of compost for agronomical use depends on the degree of organic matter stabilization, but despite several studies on the topic, there is not a single method available which alone can give a certain indication of compost stability. In addition, information on the biological and biochemical properties, including the enzymatic activity (EA) of compost, is rare. The aim of this work was to investigate the suitability of some enzymatic activities (beta-glucosidase, arylsulphatase, acid-phosphatase, alkaline-phosphatase, urease and fluorescein diacetate hydrolysis (FDA)) as parameters to evaluate organic matter stability during the composting of TPOMW. These enzymatic indices were also compared to conventional stability indices. For this purpose two composting piles were prepared by mixing TPOMW with sheep manure and grape stalks in different proportions, with forced aeration and occasional turnings. The composting of TPOMW followed the common pattern reported previously for this kind of material with a reduction of 40-50% of organic matter, a gradual increase in pH, disappearance of phytotoxicity and formation of humic-like C. All EA increased during composting except acid-phosphatase. Significant correlations were found between EA and some important conventional stability indices indicating that EA can be a simple and reliable tool to determine the degree of stability of TPOMW composts.

  4. Measurements of N2O and CH4 from the aerated composting of food waste

    International Nuclear Information System (INIS)

    He, Y.; Sun, T.; Inamori, Y.; Mizuochi, M.; Kong, H.; Iwami, N.

    2000-01-01

    Emissions of N 2 O and CH 4 from an aerated composting system were investigated using small-scale simulated reactors. The results show relatively high emissions of N 2 O at the beginning of composting, in proportion to the application amount of food waste. After 2 days, the N 2 O emission decreased to 0.53 ppmv on average, near to the background level in the atmosphere (0.45 ppmv). The addition of composted cattle manure increased N 2 O emissions not only at the beginning of composting, but also during the later period and resulted in two peak emission curves. Good correlation was observed between the N 2 O concentration at the air outlet and NO 2 - concentration in waste, suggesting a generation pathway for N 2 O from NO 2 - to N 2 O. Methane was only detected in treatments containing composted cattle manure. The high emission of methane illustrates the involvement of anoxic/anaerobic microorganisms with the addition of composted manure. The result suggests the existence of anoxic or anaerobic microsite inside the waste particles even though ventilation was employed during the composting process

  5. Development of a process for radiation disinfection and composting of sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, Waichiro; Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Watanabe, Hiroshi

    1985-05-01

    Radiation disinfection of sewage sludge and composting of the irradiated sludge were studied for a purpose of their safe land application from a viewpoint of environment protection and beneficial utilization of resources. Seasonal changes of total bacterial number and coliform number in sludge cake, those of the dose required for disinfection and the regrowth of bacteria after disinfection were examined. Determination of residual bacteria werealso carried out. The dose for disinfection of coliform was 0.3-0.5 Mrad(3-5 kGy). Fermentation conditions such as temperature, pH, pressure, buking agent and seeds, were studied in addition to continuation and scale-up of the process for aerobic fermentation of irradiated sludge for a purpose of shortening the period for primary fermentation. And conditions for maintaining high oxygen permeability of sludge and deordorization were also investigated. The optimum conditions for composting were shown to be near 7 for pH, 50 0 C for temperature. Composting in a continuous process was studied based on microbiological rate expressions, and it was shown that the composting rate could be estimated from batch-experimental data. Composting in a large scale was investigated by using a small scale fermentor and a computer, and was estimated to have the same rate as in a small scale, when the fermentation conditions were maintained at the optimum. It was also shown that the diameter of sludge grain should be less than about 5 mm to obtain high oxygen permeability of sludge and maintain the fast rate in isothermal composting, and that the evolution of anmonia which is an index of ill-smell would also cease within 3 days under the optimum conditions. The products obtained in the isothermal composting of irradiated sludge were shown to be almost the same as those by usual composting processes using nonirradiated sludges. (J.P.N.)

  6. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting

    International Nuclear Information System (INIS)

    Yang, Fan; Li, Guoxue; Shi, Hong; Wang, Yiming

    2015-01-01

    Highlights: • Effect of phosphogypsum and superphosphate on composting gas emissions was studied. • The reduction mechanisms of composting gas were clarified in this study. • No negative effect was caused on maturity with phosphogypsum and superphosphate. • CH 4 and NH 3 emission was decreased with phosphogypsum and superphosphate addition. • GHG decreased by 17.4% and 7.3% with phosphogypsum and superphosphate addition. - Abstract: This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH 4 , N 2 O, and NH 3 were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH 4 emissions (by 85.8% and 80.5%, respectively) and decreased NH 3 emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N 2 O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively

  7. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China); Beijing Municipal Research Institute of Environmental Protection, Beijing 100037 (China); Li, Guoxue, E-mail: yangfan19870117@126.com [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China); Shi, Hong; Wang, Yiming [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China)

    2015-02-15

    Highlights: • Effect of phosphogypsum and superphosphate on composting gas emissions was studied. • The reduction mechanisms of composting gas were clarified in this study. • No negative effect was caused on maturity with phosphogypsum and superphosphate. • CH{sub 4} and NH{sub 3} emission was decreased with phosphogypsum and superphosphate addition. • GHG decreased by 17.4% and 7.3% with phosphogypsum and superphosphate addition. - Abstract: This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH{sub 4}, N{sub 2}O, and NH{sub 3} were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH{sub 4} emissions (by 85.8% and 80.5%, respectively) and decreased NH{sub 3} emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N{sub 2}O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively.

  8. PRACTICAL SIMULATION OF COMPOSTING IN THE LABORATORY

    Science.gov (United States)

    A closed incubation system was developed for laboratory simulation of composting conditions at the interior of a large compost pile. A conductive heat flux control system (CHFC) was used to adjust the temperature of the internal wall to that of the compost center and compensate f...

  9. Recycling of wastes from fish beneficiation by composting: chemical characteristics of the compost and efficiency of their humic acids in stimulating the growth of lettuce.

    Science.gov (United States)

    Busato, Jader Galba; de Carvalho, Caroline Moreira; Zandonadi, Daniel Basilio; Sodré, Fernando Fabriz; Mol, Alan Ribeiro; de Oliveira, Aline Lima; Navarro, Rodrigo Diana

    2017-11-23

    Waste from the beneficiation of fish was composted with crushed grass aiming to characterize their chemical composition and investigate the possibility of the use of the final compost as source of humic acids (HA) able to stimulate the growth of lettuce. Compost presented pH value, C/N ratio, and electrical conductivity that allow its use as an organic fertilizer. The element content was present in the following order of abundance in the compost: P > Ca > N > Mg > K > Fe > Zn > Mn > Mo > Cu, and the humus composition was similar to that observed in others kind of organic residues composted. The high content of oxygen pointed out a high level of oxidation of HA, in line with the predominance of phenolic acidity in the functional groups. The 13 C-NMR spectra showed marked resonances due to the presence of lipids and other materials resistant to degradation as methoxy substituent and N-alkyl groups. A concentration of 20 mg L -1 HA increased significantly both dry and wet root matter in lettuce but the CO 2 assimilation, stomatal conductance, and number of lateral roots of the plants were not affected. However, increases of 64% in the water-use efficiency was observed due to the HA addition, probably related to the root morphology alteration which resulted in 1.6-fold increase of lateral root average length and due to the higher H + extrusion activity. Reuse of residues from the fish beneficiation activity by composting may represent a safe tool to increase the value of recycled organic residues and generate HA with potential use as plant growth stimulants.

  10. The presence of insect at composting

    Science.gov (United States)

    Mudruňka, J.; Lyčková, B.; Kučerová, R.; Glogarová, V.; Závada, J.; Gibesová, B.; Takač, D.

    2017-10-01

    During composting biodegradable waste, microbic organisms reproduce massively, most of which belong to serious biopathogens which are able to penetrate various environmental layers. Their vector species include dipterous insect (Diptera) which reaches considerable amounts in composting plant premises as well as home composting units, mainly during summer months. Therefore measures must be taken to eliminate or reduce this unwanted phenomenon (sanitisation, disinfection). For evaluating obtained results, relative abundance calculation was chosen.

  11. Disease suppression and phytosanitary aspects of compost

    NARCIS (Netherlands)

    Rijn, van E.

    2007-01-01

    Western Europe, approximately 25% of the 200 million tons of municipal solid waste that is generated each year is of organic origin and therefore compostable. Presently 35% of this organic waste is composted, resulting in 9 million tons of compost, and used mainly in agriculture,

  12. Electrofocusing the compost organic matter obtained by coupling SEC-PAGE.

    Science.gov (United States)

    Cavani, Luciano; Trubetskaya, Olga; Grigatti, Marco; Trubetskoj, Oleg; Ciavatta, Claudio

    2008-07-01

    Humic acids (HA)-like extracted from compost at the beginning (t(0)) and after 130 days of composting (t(130)) were fractionated by coupling size exclusion chromatography to polyacrylamide gel electrophoresis (SEC-PAGE). HA-like fractions with the same molecular size (MS) and electrophoretic mobility were pooled and further characterised by analytical polyacrylamide gel electrofocusing (EF) and compared with HA separated from a Typic Chernozem soil. During the composting process all fractions were subjected to quantitative and qualitative modifications: the high MS fraction was degraded, the mid MS fractions were qualitatively changed, the content of low MS fractions increased and changed qualitatively. The main changes in EF pattern of the non fractionated HA-like t(130) were associated to low MS fractions. Such data seem to be reliable for explanation what mechanisms and monitoring of the evolution of the compost organic matter for their agricultural uses.

  13. [Effects of grape seed addition in swine manure-wheat straw composting on the compost microbial community and carbon and nitrogen contents].

    Science.gov (United States)

    Huang, Yi-Mei; Liu, Xue-Ling; Jiang, Ji-Shao; Huang, Hua; Liu, Dong

    2012-08-01

    Taking substrates swine manure and wheat straw (fresh mass ratio 10.5:1) as the control (PMW), a composting experiment was conducted in a self-made aerated static composting bin to study the effects of adding 8% grape seed (treatment PMW + G) on the succession of microbial community and the transformation of carbon and nitrogen in the substrates during the composting. Seven samples were collected from each treatment, according to the temperature of the compost during the 30 d composting period. The microbial population and physiological groups were determined, and the NH4(+)-N, NO3(-)-N, organic N, and organic C concentrations in the compost were measured. Grape seed addition induced a slight increase of bacterial count and a significant increase of actinomycetes count, but decreased the fungal count significantly. Grape seed addition also decreased the ratio of bacteria to actinomycetes and the counts of ammonifiers and denitrifiers, but increased the counts of nitrifiers, N-fixing bacteria, and cellulose-decomposing microorganisms. The contents of NH4(+)-N and organic C decreased, while that of NO3(-)-N increased obviously. The NO3(-)-N content in the compost was positively correlated with the actinomycetes count. During composting, the compost temperature in treatment PMW + G increased more rapidly, and remained steady in thermophilic phase, while the water content changed little, which provided a stable and higher population of actinomycetes and nitrifiers in thermophilic phase, being beneficial to the increase of compost nitrate N.

  14. Effect of biosolid waste compost on soil respiration in salt-affected soils

    Science.gov (United States)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil

  15. Organische microverontreinigingen in gft-compost

    NARCIS (Netherlands)

    Rood GA; LAE

    1994-01-01

    Het onderhavige onderzoek is een eerste verkenning geweest naar de aanwezigheid van organische microverontreinigingen in gft-compost. In deze rapportage is een indicatieve vergelijking van de gehalten in compost met de streefwaarden voor bodem (H=20%) gemaakt. Mede op basis van dit onderzoek

  16. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties.

    Science.gov (United States)

    Jain, Mayur Shirish; Jambhulkar, Rohit; Kalamdhad, Ajay S

    2018-04-01

    Composting is an efficient technology to reduce pathogenic bodies and stabilize the organic matter in organic wastes. This research work investigates an effect of biochar as amendment to improve the composting efficiency and its effect on degradation kinetics, physical and nutritional properties. Biochar (2.5, 5 and 10% (w/w)) were added into a mixture of Hydrilla verticillata, cow dung and sawdust having ratio of 8:1:1 (control), respectively. Biochar addition resulted in advanced thermophilic temperatures (59 °C) and could improve the physical properties of composting process. Owing to addition of 5% biochar as a bulking agent in composting mixture, the final product from composting, total nitrogen increased by 45% compared to the other trials, and air-filled porosity decreased by 39% and was found to be within recommended range from literature studies. Considering temperature, degradation rate and nitrogen transformation the amendment of 5% biochar is recommended for Hydrilla verticillata composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Bioremediation of industrially contaminated soil using compost and plant technology.

    Science.gov (United States)

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-05

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Managing physicochemical parameters in compost systems to ...

    African Journals Online (AJOL)

    user

    2014-02-12

    Feb 12, 2014 ... Full Length Research Paper ... respiration of compost microorganisms were monitored in each pile. ... which include high cost, production of toxic by-products ... which could promote degradation of xenobioticcompounds.

  19. Anaerobic composting of waste organic fraction. Compostaje anaerobico de la fraccion organica de los residuos

    Energy Technology Data Exchange (ETDEWEB)

    Baere, L. de; Verdonck, O.; Verstraete, W.

    1994-01-01

    The dry anaerobic composting can be carried out in mesophilic and thermophilic conditions. Gas production of 6,2 and 8.5 m''3 biogas m''3 daily in laboratory fermenters was obtained. The quality of waste is higher than obtained in aerobic process. The streptococcus sludge was destroyed. This experimental can be applied for big scale and it permits energy recovery and organic compost of municipal solid wastes. (Author)

  20. Bacterial diversity at different stages of the composting process

    Directory of Open Access Journals (Sweden)

    Paulin Lars

    2010-03-01

    Full Text Available Abstract Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants.

  1. Case Study of Survey of Occasional Application of Vinasse in Compost Production in Different Phases (during Production and after Producing Compost, at Waste Resumption Complex of Aradkooh in Tehran

    Directory of Open Access Journals (Sweden)

    A. Hemati

    2016-02-01

    Full Text Available Introduction: Recycling organic wastes has vital roles in sustainable agriculture, reducing pollutants in the environment, and nutrient enrichment of soils. Compost is the product of recycling organic waste through anaerobic treatment, which can be a good alternative.Again the use of chemical fertilizers is inappropriate. Vinasse is brown material and it is a product of industrial production of alcohol from molasses. Vinasse, a by-product of ethanol production from molasses, is a highstrength effluent with a high content of organics, mainly organic acids, reducing substances, cultured matter and glycerol. The wastewater is characterized by high concentrations of potassium, calcium, chloride and sulphate ions, a high content of suspended solids, a high CoD (Chemical oxygen Demand level and a high temperature at the moment of generation.Vinasse can be used as a supplement for enhancing compost fertilizer quality, because it has plenty of organic matter and minerals. This research was done with the purpose of surveying application of vinasse in different levels on indices of compost producing (temperature, microbial population, nitrogen, carbon, the ratio C/N, nitrate, pH and EC and producing time in different phases (during the production and after compost production for 5 months in the waste resumption complex of Aradkooh in Tehran. Materials and Methods: The method used for compost production from solid waste material was ventilating the fixed mass. In this research, the volume of ventilation was 0.6 lit air for 1 lit waste material in a minute.Four different treatments (each three replicates were applied to the compost:C0 without vinasse (control, C1, C2 and C3, respectively 10, 20 and 30 ml vinasse per kg waste material. The following factors were measured during each phase: Total-N was measured by the Kjeldahl method and organic carbon was measured by the Walkley-Black method. Thermometers were used for temperature monitoring at different

  2. Effect of adding bulking materials over the composting process of municipal solid biowastes

    Directory of Open Access Journals (Sweden)

    Ricardo Oviedo-Ocaña

    2015-12-01

    Full Text Available Biowastes (BW, the main raw materials for the composting installations in developing countries, are characterized for containing uncooked food wastes (FW, high moisture content, low porosity, acidic pH, and low C/N ratios which affects the overall composting process (CP. In this study, we evaluated the effect of adding sugarcane bagasse (SCB and star grass (SG (Cynodon plectostachyus (K. Schum. Pilg. as bulking materials (BM over the quality of the substrate, progress of the process, and quality of the obtained product. In this sense, two pilot-scale experiments were performed. The first one contained a substrate formed by 78% BW and 22% SCB (pile A. The second experiment contained a substrate formed by 66% BW and 34% SG (pile B. For each experiment, control treatments (piles A' and B' respectively were performed by using 100% BW without BM. The results showed that in both cases the adding of BM improved substrate quality (pH, moisture, and total organic C content [TOC], speeding up the starting step (2-3 d and reducing the duration of the thermophilic phase of CP (3 d. However, the physico-chemical properties of both BM increased cooling and maturation phases duration (between 15 and 20 d. Obtained products quality was improved in terms of higher TOC, cation-exchange capacity, bulk density, and higher water holding capacity. Application of obtained products A and B could improve some soil properties like major nutrient, water retention, and increasing the organic matter.

  3. Assessing Soil Nutrient Additions through Different Composting ...

    African Journals Online (AJOL)

    Bheema

    is potentially better growth medium amendment when compared with traditional compost types. The use of vermi-compost is, therefore, very helpful in terms of providing beneficial soil nutrients as compared to other compost types. In contrast to the other chemical and biological properties, the highest pH was recorded in the.

  4. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: monitoring by using an electronic nose.

    Science.gov (United States)

    López, R; Cabeza, I O; Giráldez, I; Díaz, M J

    2011-09-01

    The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Ammonia emissions from the composting of different organic wastes : dependency on process temperature

    OpenAIRE

    Pagans i Miró, Estel·la

    2006-01-01

    Ammonia emissions were quantified for the laboratory-scale composting of three typical organic wastes with medium nitrogen content: organic fraction of municipal solid wastes, raw sludge and anaerobically digested sludge; and the composting of two wastes with high nitrogen content: animal by-products from slaughterhouses and partially hydrolysed hair from the leather industry. All the wastes were mixed with the proper amount of bulking agent. Ammonia emitted in the composting of the five wast...

  6. Optimum moisture levels for biodegradation of mortality composting envelope materials.

    Science.gov (United States)

    Ahn, H K; Richard, T L; Glanville, T D

    2008-01-01

    Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.

  7. Workers' exposure to bioaerosols from three different types of composting facilities.

    Science.gov (United States)

    Bonifait, Laetitia; Marchand, Geneviève; Veillette, Marc; M'Bareche, Hamza; Dubuis, Marie-Eve; Pépin, Carole; Cloutier, Yves; Bernard, Yves; Duchaine, Caroline

    2017-10-01

    Composting is a natural dynamic biological process used to valorise putrescible organic matter. The composting process can involve vigorous movements of waste material piles, which release high concentrations of bioaerosols into the surrounding environment. There is a lack of knowledge concerning the dispersal of airborne microorganisms emitted by composting plants (CP) as well as the potential occupational exposure of composting workers. The aim of this study was to investigate the workers exposure to bioaerosols during working activities in three different types of composting facilities (domestic, manure, carcass) using two different quantification methods (cultivation and qPCR) for bacteria and moulds concentrations. As expected, even if there are differences between all CP frameworks, independently of the type of the raw compost used, the production of bioaerosols increases significantly during handling activities. Important concentrations of mesophilic moulds and mesophilic bacteria were noted in the working areas with a respective maximal concentration of 2.3 × 10 5 CFU/m 3 and 1.6 × 10 5 CFU/m 3 . A. fumigatus and thermophilic Actinomycetes were also detected in all working areas for the 3 CP. This study emphases the risks for workers to being in contact with aerosolized pathogens such as Mycobacterium and Legionella and more specifically, L. pneumophila. The presence of high concentration of these bacteria in CP suggests a potential occupational health risk. This study may lead to recommendations for the creation of limits for occupational exposure. There is a need for identifying the standards exposure limits to bioaerosols in CP and efficient recommendation for a better protection of workers' health.

  8. Mass and element balance in food waste composting facilities.

    Science.gov (United States)

    Zhang, Huijun; Matsuto, Toshihiko

    2010-01-01

    The mass and element balance in municipal solid waste composting facilities that handle food waste was studied. Material samples from the facilities were analyzed for moisture, ash, carbon, nitrogen, and the oxygen consumption of compost and bulking material was determined. Three different processes were used in the food waste composting facilities: standard in-vessel composting, drying, and stand-alone composting machine. Satisfactory results were obtained for the input/output ash balance despite several assumptions made concerning the quantities involved. The carbon/nitrogen ratio and oxygen consumption values for compost derived only from food waste were estimated by excluding the contribution of the bulking material remaining in the compost product. These estimates seemed to be suitable indices for the biological stability of compost because there was a good correlation between them, and because the values seemed logical given the operating conditions at the facilities. 2010 Elsevier Ltd. All rights reserved.

  9. Microbiological characteristics of bioaerosol at the composting plant

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2013-01-01

    Full Text Available The diversion of biodegradable waste from landfill is of key importance in developing a sustainable waste strategy for the next decade and beyond. The proliferation of waste treatment technologies such as mechanical biological treatment, anaerobic digestion and composting will be paramount in achieving this strategic goal. Composting plant is one of the end technology, which is widely used in waste processing of the biodegradable waste. These wastes originate from the maintenance of green areas in the cities and the municipalities and from the separatelly collected biodegradable waste from the citizens. There is also possible to process other biodegradable materials whose origin may be in other technologies of waste management at the composting plant. The most commonly used technology of composting is windrow system. Technological operations, which are necessary for the proper conduct of the composting process, may have negative influence on the environment in the immediate vicinity of composting plant. As pollutants we can mark particular odor and microorganisms. The largest group of microorganisms in the monitored air were psychrophilic and mesophilic bacteria and microscopic thermotolerant fungi. The amount of thermophillic actinomycetes ranged from 10 to 84.000 CFU∙m−3 (colony forming units per m3. Furthermore, it was confirmed that the maximum air contamination has been found during aeration of windrow by compost turner and during the sieving of the mature compost. For each indicator, the increase in concentrations due to the turning of compost windrow as compared to the background concentration obtained in natural environments and upwind of composting plants was determined. At a distance of 150 m from the composting plant, only low numbers of indicator organisms at a regular occurrence in the air has been found.

  10. The technical viability of using compost as an alternative sponging agent in the Manresa composting plant; Viabilidad tecnica de la utilizacion del compost como agent esponjante alternative en la planta de compostaje de Manresa

    Energy Technology Data Exchange (ETDEWEB)

    Vila Punzano, M.; Serra Dubany, X.

    2001-07-01

    The composting plant in Manresa/San Joan de Vilatorrda (Barcelona-1994) operates with sludges from waste water treatment plants or bio solids to which it adds pine bark as a sponging agent. However the high cost of this material has led it to look for substitutes. The plant has eight windrow tuners with a staying time of 15 days and subsequent maturation in static piles for several months. A trial was carried out replacing the pine bark with compost obtained in the plant. The process functioned normally when the proportion used maintained a 30% porosity. Operating in this way reduces the consumption of bark by 29%, the compost obtained by 52% and the capacity for treating sludge in the plant by 6%. An economic analysis of these factors shows that this alternative is economically viable. (Author) 12 refs.

  11. Utilisation of composted night soil in fish production

    Energy Technology Data Exchange (ETDEWEB)

    Polprasert, C.

    1984-01-01

    The stabilisation of human night soil mixed with water hyacinth (Eichhornia crassipes) and vegetable leaves by a simple composting method was found to be effective. This composting method did not require mechanical aeration or pile turning, but could retain most of the valuable nutrients and inactivate a large portion of micro-organisms present in the compost piles. A considerable yield of Tilapia could be obtained when the composted product was applied as feed to fish ponds. A discussion is included of the technical feasibility and the microbiological aspects of the integrated scheme of compost-fed fish ponds.

  12. Compost made of organic wastes suppresses fusariosis

    Science.gov (United States)

    Kuryntseva, Polina; Galitskaya, Polina; Biktasheva, Liliya; Selivanovkaya, Svetlana

    2017-04-01

    Fungal plant diseases cause dramatic yield losses worldwide. Usually, pesticides are used for soil sanitation, and it results in practically pest-free soils, although pesticides cause a biological vacuum, which present many horticultural disadvantages. Suppressive composts, which possess both fertilizing properties for plants and inhibiting properties for plant pathogens, represent an effective and environmentally friendly alternative to conventional pesticides. In this study, composts obtained from agricultural organic wastes were applied to suppress Fusarium oxysporum of tomato plants in model experiments. Composts were made of mixtures of the widespread organic wastes sampled in Tatarstan (Russia): straw (SW), corn wastes (CW), chicken manure (ChM), cattle manure (CM) and swine manure (SM). 11 two- and three-component mixtures were prepared to obtain the optimal carbon-nitrogen, moisture and pH balances, and composted for 210 days. It was found that the thermophilic phase of composting in all the mixtures lasted from 2 to 35 days, and was characterized by significant fluctuations in temperature, i.e. from 27°C to 59°C. In the initial mixtures, the dissolved organic carbon (DOC) content was between 10 and 62 mg kg-1; it fell significantly on day 13, and then continuously decreased up to day 102, and subsequently remained low. For all the mixtures, maximal respiration activity was observed in the beginning of composting (231.9 mg CO2-C g-1 day-1). After 23 days, this parameter decreased significantly, and fluctuations subsided. The phytotoxicity of the initial compost mixtures varied from 18% (SW+SM) to 100% (CW+ChM+SM, CW+ChM); however, the trends in the dynamics were similar. After 120 days of composting, 5 of 11 samples were not phytotoxic. After 120 days of composting, each mixture was divided into two parts; one was inoculated with a biopreparation consisting of four microbial strains (Trichoderma asperellum, Pseudomonas putida, Pseudomonas fluorescens and

  13. Controlling the process of composting farm biomass with the use of fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Neugebauer, M. [Warmia and Mazury Univ., Olsztyn (Poland)

    2010-07-01

    The process of composting organic waste produces organic fertilizer. The main phases of composting include the mesophilic and thermophilic stages followed by cooling down and maturing. The thermophilic phase involves a relatively high temperature, from 45 to 80 degrees C and carbon dioxide emission. Extending this phase of the composting process may reduce the entire process time and the amount of methane produced. The process can be controlled by adjusting the amount of air supplied to the compost heap and controlling the temperature in the bed or oxygen content in the air leaving the heap. Precise control would help optimize the composting process in terms of heat reception, duration of the process and the temperature inside the bed. Excess heat could be put to use elsewhere, such as warming the substrate in a greenhouse. However, overheating the heap reduces the amount of thermophilic microorganisms and may actually reduce the compost temperature, thus slow down or even stop the thermophilic phase of the composting process. A literature survey focused on complex non-linear processes has shown that systems based on fuzzy logic are effective in controlling the process.

  14. Organische microverontreinigingen in gft-compost

    NARCIS (Netherlands)

    Rood GA; LAE

    1994-01-01

    The current investigation represented an initial survey on the presence of organic contaminants in Bio-waste compost (garden, fruit and vegetable wast). This report provides an indicative comparison between the pollution levels in compost and the target value for soil (H=20%). Partly based on this

  15. Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil.

    Science.gov (United States)

    Zhang, Xu; Zhao, Yue; Zhu, Longji; Cui, Hongyang; Jia, Liming; Xie, Xinyu; Li, Jiming; Wei, Zimin

    2017-12-01

    In order to improve soil quality, reduce wastes and mitigate climate change, it is necessary to understand the balance between soil organic carbon (SOC) accumulation and depletion under different organic waste compost amended soils. The effects of proportion (5%, 15%, 30%), compost type (sewage sludge (SS), tomato stem waste (TSW), municipal solid waste (MSW), kitchen waste (KW), cabbage waste (CW), peat (P), chicken manure (CM), dairy cattle manure (DCM)) and the black soil (CK). Their initial biochemical composition (carbon, nitrogen, C:N ratio) on carbon (C) mineralization in soil amended compost have been investigated. The CO 2 -C production of different treatments were measured to indicate the levels of carbon (C) mineralization during 50d of laboratory incubation. And the one order E model (M1E) was used to quantify C mineralization kinetics. The results demonstrated that the respiration and C mineralization of soil were promoted by amending composts. The C mineralization ability increased when the percentage of compost added to the soil also increased and affected by compost type in the order CM>KW, CW>SS, DCM, TSW>MSW, P>CK at the same amended level. Based on the values of C 0 and k 1 from M1E model, a management method in agronomic application of compost products to the precise fertilization was proposed. The SS, DCM and TSW composts were more suitable in supplying fertilizer to the plant. Otherwise, The P and MSW composts can serve the purpose of long-term nutrient retention, whereas the CW and KW composts could be used as soil remediation agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Enumerating actinomycetes in compost bioaerosols at source—Use of soil compost agar to address plate 'masking'

    Science.gov (United States)

    Taha, M. P. M.; Drew, G. H.; Tamer Vestlund, A.; Aldred, D.; Longhurst, P. J.; Pollard, S. J. T.

    Actinomycetes are the dominant bacteria isolated from bioaerosols sampled at composting facilities. Here, a novel method for the isolation of actinomycetes is reported, overcoming masking of conventional agar plates, as well as reducing analysis time and costs. Repeatable and reliable actinomycetes growth was best achieved using a soil compost media at an incubation temperature of 44 °C and 7 days' incubation. The results are of particular value to waste management operators and their advisors undertaking regulatory risk assessments that support environmental approvals for compost facilities.

  17. Comparison of U.S. Environmental Protection Agency and U.S. Composting Council microbial detection methods in finished compost and regrowth potential of Salmonella spp. and Escherichia coli O157:H7 in finished compost.

    Science.gov (United States)

    Reynnells, Russell; Ingram, David T; Roberts, Cheryl; Stonebraker, Richard; Handy, Eric T; Felton, Gary; Vinyard, Bryan T; Millner, Patricia D; Sharma, Manan

    2014-07-01

    Bacterial pathogens may survive and regrow in finished compost due to incomplete thermal inactivation during or recontamination after composting. Twenty-nine finished composts were obtained from 19 U.S. states and were separated into three broad feedstock categories: biosolids (n=10), manure (n=4), and yard waste (n=15). Three replicates of each compost were inoculated with ≈ 1-2 log CFU/g of nonpathogenic Escherichia coli, Salmonella spp., and E. coli O157:H7. The U.S. Environmental Protection Agency's (EPA) protocols and U.S. Composting Council's (USCC) Test Methods for the Examination of Composting and Compost (TMECC) were compared to determine which method recovered higher percentages of inoculated E. coli (representing fecal coliforms) and Salmonella spp. from 400-g samples of finished composts. Populations of Salmonella spp. and E. coli O157:H7 were determined over 3 days while stored at 25°C and compared to physicochemical parameters to predict their respective regrowth potentials. EPA Method 1680 recovered significantly (p=0.0003) more inoculated E. coli (68.7%) than TMECC 07.01 (48.1%) due to the EPA method using more compost in the initial homogenate, larger transfer dilutions, and a larger most probable number scheme compared to TMECC 07.01. The recoveries of inoculated Salmonella spp. by Environmental Protection Agency Method 1682 (89.1%) and TMECC 07.02 (72.4%) were not statistically significant (p=0.44). The statistically similar recovery percentages may be explained by the use of a nonselective pre-enrichment step used in both methods. No physicochemical parameter (C:N, moisture content, total organic carbon) was able to serve as a sole predictor of regrowth of Salmonella spp. or E. coli O157:H7 in finished compost. However, statistical analysis revealed that the C:N ratio, total organic carbon, and moisture content all contributed to pathogen regrowth potential in finished composts. It is recommended that the USCC modify TMECC protocols to test

  18. Windrow co-composting of natural casings waste with sheep manure and dead leaves

    International Nuclear Information System (INIS)

    Makan, Abdelhadi

    2015-01-01

    Highlights: • Waste management opportunities in small and medium companies were highlighted. • Pilot scale program for windrow co-composting of natural casings was investigated. • Compost preparation, characterization and application phases were discussed. • Natural casings co-composting has proved more viable and cost effective solution. - Abstract: After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of natural casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6–0.9–0.7. Reported units are consistent with those found on fertilizer formulations

  19. Windrow co-composting of natural casings waste with sheep manure and dead leaves

    Energy Technology Data Exchange (ETDEWEB)

    Makan, Abdelhadi, E-mail: abdelhadi.makan@gmail.com

    2015-08-15

    Highlights: • Waste management opportunities in small and medium companies were highlighted. • Pilot scale program for windrow co-composting of natural casings was investigated. • Compost preparation, characterization and application phases were discussed. • Natural casings co-composting has proved more viable and cost effective solution. - Abstract: After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of natural casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6–0.9–0.7. Reported units are consistent with those found on fertilizer formulations.

  20. Air filled porosity in composting processes

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-07-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  1. Air filled porosity in composting processes

    International Nuclear Information System (INIS)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-01-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  2. Composite Compost Produced from Organic Waste

    OpenAIRE

    Lăcătuşu Radu; Căpăţână Romeo; Lăcătuşu Anca-Rovena

    2016-01-01

    The soil fertilization in ecological agriculture is done mostly using organic fertilizers. Some of them are prepared as compost from waste, but other haven’t, until now, any recycling possibility. In this context, for the preparation of new types of compost, we used three type of waste: sewage sludge from waste water treatment, marine algae and farmyard manure. We have made four different composting variants, each consisting of different proportions of the three waste: equal parts (33.33%) of...

  3. Changes in structure and function of fungal community in cow manure composting.

    Science.gov (United States)

    Wang, Ke; Yin, Xiangbo; Mao, Hailong; Chu, Chu; Tian, Yu

    2018-05-01

    In this study, dynamic changes in fungal communities, trophic modes and effect factors in 60 days composting of cow manure were analyzed by using high throughput sequencing, FUNGuild and Biolog FF MicroPlate, respectively. Orpinomyces (relative abundance >10.85%) predominated in feedstock, and Mycothermus became the dominating genus (relative abundance >75%) during the active phase. Aerobic composting treatment had a significant effect on fungal trophic modes with pathogenic fungi fading away and wood saprotrophs increasing over composting time. Fungal communities had the higher carbon sources utilization capabilities at the thermophilic phase and mature phase than those in the other periods. Oxidation reduction potential (ORP) significantly increased from -180 to 180 mV during the treatment. Redundancy analysis showed that the succession of fungal community during composting had a significant association with ORP (p composting treatment not only influenced fungal community structure, but also changed fungal trophic modes and metabolic characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Improving sustainability in the remediation of contaminated soils by the use of compost and energy valorization by Paulownia fortunei.

    Science.gov (United States)

    Madejón, Paula; Domínguez, María Teresa; Díaz, Manuel Jesús; Madejón, Engracia

    2016-01-01

    The plantation of fast growing trees in contaminated sites, in combination with the use of organic wastes, could partially solve a dual environmental problem: the disposal of these wastes and the improvement of soil quality in these degraded soils. This study evaluated the effects of two compost on the quantity and quality of Paulownia fortunei biomass and on syngas production by biomass gasification, produced by plants growing on trace elements contaminated soils. Compost increased biomass production to values similar to those produced in non-contaminated soils, due to the improvement in plant nutritional status. Moreover, biomass quality for gasification was increased by compost addition. Trace element accumulation in the biomass was relatively low and not related to biomass production or the gas quality obtained through gasification. Thus, P. fortunei plantations could pose an opportunity to improve the economic balance of the revegetation of contaminated soils, given that other commercial uses such as food or fodder crop production is not recommended in these soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Composto orgânico na produção e qualidade de sementes de brócolis Organic compost in broccoli seed yield and quality

    Directory of Open Access Journals (Sweden)

    Felipe Oliveira Magro

    2010-06-01

    from high physiological potential seeds. Although there are studies about nutrition and recommendation of fertilization to broccoli (Brassica oleracea L. var. italica Plenk, rarely it finds out works that approach the nutrients effects in seed yield and quality. The objective of this work was to evaluate the organic compost influence in broccoli seed quality and yield. The experiment was lead at São Manuel Experimental Farm and the evaluations at Horticulture Sector in Agronomic Science School (FCA/UNESP in Botucatu. The treatments were four organic compost levels (30, 60, 90 and 120 t ha-1, and control without organic compost. The experimental design was randomized blocks with four replications. The characteristics evaluated were seed yield and number of seed per plant further the characteristics related with seed quality: one thousand seed mass, germination test, first germination counting, index of germination speed and electrical conductivity. The regression showed a linear response in function of organic compost levels, where larger levels resulted higher yield despite the seed quality is not affected.

  6. Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning.

    Science.gov (United States)

    Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P

    2014-03-01

    The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Optimization of control parameters for petroleum waste composting

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Composting is being widely employed in the treatment of petroleum waste. The purpose of this study was to find the optimum control parameters for petroleum waste in-vessel composting. Various physical and chemical parameters were monitored to evaluate their influence on the microbial communities present in composting. The CO2 evolution and the number of microorganisms were measured as theactivity of composting. The results demonstrated that the optimum temperature, pH and moisture content were 56.5-59.5, 7.0-8.5 and 55%-60%, respectively. Under the optimum conditions, the removal efficiency of petroleum hydrocarbon reached 83.29% after 30 days composting.

  8. Sieving Effect of Sorting Machine with Vibration Table Type on Cacao Pod Based Compost

    Directory of Open Access Journals (Sweden)

    Siswoyo Soekarno

    2009-10-01

    Full Text Available Cacao pod is the biggest part (70% of weight of Cacao, which was not optimaly utilized.Cacao podis one of organic material that can be functioned as an organic fertilizer, such as compost. When utilizedwith right proportion, organic fertilizer is safe for plants and not degrades the soil composition. Compostingprocess is one of utilization form of Cacao pod. The size reduction of cacao pod in the organic fertilizerprocess would help to accelerate the composting process. Smaller particle size would faster interacting withenvironment, so the composting process would be well accelerated if compared to the material with biggersize. Chopping machine of Cacao pod is used to cut the biomass to be small particle in order to be able tobe utilized as some important necessity, i.e. fertilizer or farm animals feed. However, Varies compost sizewas one of the problems faced in the composting process. Therefore, the sorting process was needed tobe done after chopping process, so the compost size became uniform and fulfill the user demand. Thisresearch was aimed at knowing the slope effect of sorting machine and rotation speed (RPM. The methodused in analyzing the results of this research was comparing the treatment factors, which are shown withhistogram. As the super small size of compost recommended for applying in the fertilizing process, so theoptimum treatment combination for having high mass fraction of SS compost grade was achieved at 12oslope of sieve table and 1400 RPM motor rotation speed. As bigger the particle densities of the compostsize as smaller the compost porosity. Mass loss was very low at all treatment combination with the valuearound 0.43-1.33%, so the sieving efficiency can be said very high.

  9. Membrane bioreactor technology: A novel approach to the treatment of compost leachate

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kayleigh; Ghoshdastidar, Avik J.; Hanmore, Jillian [Department of Chemistry, Acadia University, Wolfville, NS, Canada B4P 2R6 (Canada); Frazee, James [E and Q Consulting and Associates Limited, Wolfville, NS, Canada B4P 2R1 (Canada); Tong, Anthony Z., E-mail: anthony.tong@acadiau.ca [Department of Chemistry, Acadia University, Wolfville, NS, Canada B4P 2R6 (Canada)

    2013-11-15

    Highlights: • First membrane bioreactor treatment method for compost leachate. • No chemical additive or UV radiation source in this new biological method. • Removal rates of more than 99% for organics and ammonium were achieved. • Heavy metals were reduced by at least 82.7% except copper. - Abstract: Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Water quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate.

  10. Membrane bioreactor technology: A novel approach to the treatment of compost leachate

    International Nuclear Information System (INIS)

    Brown, Kayleigh; Ghoshdastidar, Avik J.; Hanmore, Jillian; Frazee, James; Tong, Anthony Z.

    2013-01-01

    Highlights: • First membrane bioreactor treatment method for compost leachate. • No chemical additive or UV radiation source in this new biological method. • Removal rates of more than 99% for organics and ammonium were achieved. • Heavy metals were reduced by at least 82.7% except copper. - Abstract: Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Water quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate

  11. Using Biochar composts for improving sandy vineyard soils while reducing the risk of

    Science.gov (United States)

    Kammann, Claudia; Mengel, Jonathan; Mohr, Julia; Muskat, Stefan; Schmidt, Hans-Peter; Löhnertz, Otmar

    2016-04-01

    leaching compared to the control (where nearly all mineral N was lost), the larger application amount in pure compost caused rising nitrate loss rates, likely due to compost mineralization. Interestingly, this was not the case when biochar was included, either co-composted or mixed into the substrates afterwards. However, after three years, the biochar-compost treatment still showed the highest grape yield of all treatments, while the treatment with biochar mixed in after compost production did not have the same effect. The results suggest that biochar-composts, for example produced from vine making residue and greenwaste, may reduce the risk of nitrate leaching while increasing the soil organic content more permanently than other amendments. Genesio, L., Miglietta, F., Baronti, S., Vaccari, F.P., 2015. Biochar increases vineyard Productivity without affecting grape quality: Results from a four years field experiment in Tuscany. Agriculture, Ecosystems & Environment 201, 20-25. Kammann, C.I., Schmidt, H.-P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., Koyro, H.-W., Conte, P., Joseph, S., 2015. Plant growth improvement mediated by nitrate capture in cocomposted biochar. Scientific Reports 5, doi: 10.1038/srep11080. Ruysschaert, G., Nelissen, V., Postma, R., Bruun, E., O'Toole, A., Hammond, J., Rödger, J.-M.,Hylander, L., Kihlberg, T., Zwart, K., Hauggaard-Nielsen, H., Shackley, S., 2016. Field applications of pure biochar in the North Sea region and across Europe, in: Shackley, S.,Ruysschaert, G., Zwart, K., Glaser, B. (Eds.), Biochar in European Soils and Agriculture - Science and Practice. Routhledge, Oxon, UK and New York, USA.

  12. Bioavailability of phosphorus from composts and struvite in acid soils

    Directory of Open Access Journals (Sweden)

    Carmo Horta

    Full Text Available ABSTRACT The objective of this study was to assess the type and fractions of phosphorus (P forms in composts and struvite and how these P forms affect the bioavailability of P in the soil. P fertilization was performed with compost from sewage sludge (CSS, compost from poultry litter (CPL and struvite (SV and compared with single superphosphate (SSP. P forms were quantified through a sequential fractionation scheme. The first extraction was performed with H2O, the second with 0.5 M NaHCO3, the third with 0.1 M NaOH and the fourth with 1 M HCl. The release of P over time, after soil P fertilization, was assessed by incubating the fertilizers with a low-P acid soil. P bioavailability was assessed through a micro-pot experiment with the incubated soils in a growth chamber using rye plants (Secale cereale L.. Inorganic P forms in the first two fractions represented ~50% (composts, 32% (SV and 86% (SSP of the total P; and in the HCl fraction, ~40% (composts, 26% (SV and 13% (SSP of the total P. Despite the variability of the P form fractions in the composts and struvite, the P release and bioavailability were similar among the fertilized treatments. The acidic nature of the soil, which improve solubility of Ca-P forms, and the high efficiency of rye, which favors P uptake, were factors that contributed to these results.

  13. Changes in the microbial communities during co-composting of digestates☆

    Science.gov (United States)

    Franke-Whittle, Ingrid H.; Confalonieri, Alberto; Insam, Heribert; Schlegelmilch, Mirko; Körner, Ina

    2014-01-01

    Anaerobic digestion is a waste treatment method which is of increasing interest worldwide. At the end of the process, a digestate remains, which can gain added value by being composted. A study was conducted in order to investigate microbial community dynamics during the composting process of a mixture of anaerobic digestate (derived from the anaerobic digestion of municipal food waste), green wastes and a screened compost (green waste/kitchen waste compost), using the COMPOCHIP microarray. The composting process showed a typical temperature development, and the highest degradation rates occurred during the first 14 days of composting, as seen from the elevated CO2 content in the exhaust air. With an exception of elevated nitrite and nitrate levels in the day 34 samples, physical–chemical parameters for all compost samples collected during the 63 day process indicated typical composting conditions. The microbial communities changed over the 63 days of composting. According to principal component analysis of the COMPOCHIP microarray results, compost samples from the start of the experiment were found to cluster most closely with the digestate and screened compost samples. The green waste samples were found to group separately. All starting materials investigated were found to yield fewer and lower signals when compared to the samples collected during the composting experiment. PMID:24456768

  14. Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures.

    Science.gov (United States)

    Tashiro, Yukihiro; Tabata, Hanae; Itahara, Asuka; Shimizu, Natsuki; Tashiro, Kosuke; Sakai, Kenji

    2016-11-01

    A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China.

    Science.gov (United States)

    Zeng, Jianfei; Shen, Xiuli; Sun, Xiaoxi; Liu, Ning; Han, Lujia; Huang, Guangqun

    2018-05-01

    With the advantages of high treatment capacity and low operational cost, large-scale trough composting has become one of the mainstream composting patterns in composting plants in China. This study measured concentrations of O 2 , CO 2 , CH 4 and NH 3 on-site to investigate the spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China. The results showed that the temperature in the center of the pile was obviously higher than that in the side of the pile. Pore O 2 concentration rapidly decreased and maintained composting process during large-scale trough composting when the pile was naturally aerated, which will contribute to improving the current undesirable atmosphere environment in China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation.

    Science.gov (United States)

    Ren, Xiaoya; Zeng, Guangming; Tang, Lin; Wang, Jingjing; Wan, Jia; Wang, Jiajia; Deng, Yaocheng; Liu, Yani; Peng, Bo

    2018-02-01

    Large numbers of organic pollutants (OPs), such as polycyclic aromatic hydrocarbons, pesticides and petroleum, are discharged into soil, posing a huge threat to natural environment. Traditional chemical and physical remediation technologies are either incompetent or expensive, and may cause secondary pollution. The technology of soil composting or use of compost as soil amendment can utilize quantities of active microbes to degrade OPs with the help of available nutrients in the compost matrix. It is highly cost-effective for soil remediation. On the one hand, compost incorporated into contaminated soil is capable of increasing the organic matter content, which improves the soil environment and stimulates the metabolically activity of microbial community. On the other hand, the organic matter in composts would increase the adsorption of OPs and affect their bioavailability, leading to decreased fraction available for microorganism-mediated degradation. Some advanced instrumental analytical approaches developed in recent years may be adopted to expound this process. Therefore, the study on bioavailability of OPs in soil is extremely important for the application of composting technology. This work will discuss the changes of physical and chemical properties of contaminated soils and the bioavailability of OPs by the adsorption of composting matrix. The characteristics of OPs, types and compositions of compost amendments, soil/compost ratio and compost distribution influence the bioavailability of OPs. In addition, the impact of composting factors (composting temperature, co-substrates and exogenous microorganisms) on the removal and bioavailability of OPs is also studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    OpenAIRE

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-01

    Abstract This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreove...

  18. THE USE OF POULTRY SLAUGHTERHOUSE WASTE TO PRODUCE COMPOST

    OpenAIRE

    Michał Kopeć; Krzysztof Gondek; Kalina Orłowska; Zdzisław Kulpa

    2014-01-01

    Poultry industry generates large amounts of waste, which in the biological treatment process creates a number of problems. One of them is a high amount of fat and creatine which is hard to decompose. Composting process was carried out with the waste from poultry farms and abattoirs mixed with maize straw, which was used to improve the structure and to increase the amount of carbon in the substrate. The chemical composition of composts from poultry waste involving maize straw meets the minimum...

  19. Bioremediation of diesel oil-contaminated soil by composting with biowaste

    International Nuclear Information System (INIS)

    Gestel, Kristin van; Mergaert, Joris; Swings, Jean; Coosemans, Jozef; Ryckeboer, Jaak

    2003-01-01

    Composting of biowaste and diesel contaminated-soil is an efficient bioremediation method, with mature compost as a usable end product. - Soil spiked with diesel oil was mixed with biowaste (vegetable, fruit and garden waste) at a 1:10 ratio (fresh weight) and composted in a monitored composting bin system for 12 weeks. Pure biowaste was composted in parallel. In order to discern the temperature effect from the additional biowaste effect on diesel degradation, one recipient with contaminated soil was hold at room temperature, while another was kept at the actual composting temperature. Measurements of composting parameters together with enumerations and identifications of microorganisms demonstrate that the addition of the contaminated soil had a minor impact on the composting process. The first-order rate constant of diesel degradation in the biowaste mixture was four times higher than in the soil at room temperature, and 1.2 times higher than in the soil at composting temperature

  20. Removal of five fluoroquinolone antibiotics during broiler manure composting.

    Science.gov (United States)

    Yang, Bing; Meng, Lei; Xue, Nandong

    2018-02-01

    Composting is a cost-effective approach for the removal of antibiotics from the environment; however, the consequence of this approach on fluoroquinolone antibiotics is limited. The fate of five representative fluoroquinolone antibiotics, namely ciprofloxacin, enrofloxacin, lomefloxacin, norfloxacin, and sarafloxacin, was investigated in a pilot-scale composting of broiler manure over 42 days. The effect of antibiotic concentrations (at a dose of 15, 30, or 60 mg/kg for each and a control without antibiotic addition) on the composting process was also assessed. The 42-day composting showed 45.3-75.4% of antibiotic removal with species-specific patterns. However, the observed variations in such removal among both antibiotics concentrations and composting times were not significant in most cases, possibly indicating a slight side-effect of the tested antibiotic concentrations on the composting process. To the best of our knowledge, this study is among few studies with a focus on the persistence of fluoroquinolone antibiotics during a pilot-scale composting, which warrants further study in regards to the mechanism underlying the removal of these compounds during composting.

  1. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    Science.gov (United States)

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. INFLUENCE OF TEMPERATURE AND RELATIVE HUMIDITY ON THE STUDDED AGARICUS BLAZEI MURRILL MUSHROOM COMPOST

    Directory of Open Access Journals (Sweden)

    Sándor Rózsa

    2017-12-01

    Full Text Available Almond mushroom, Agaricus blazei Murrill, is the so-called secondary saprophyte, developing on partially processed substrate, in which microorganisms reduced complex ligno-cellulose compounds. Numerous authors have shown that due to the similar life cycle in the cultivation of almond mushroom technologies developed for white button mushroom may be applied. However, almond mushroom requires high temperature and high humidity as well as access to light to form fruiting bodies. In Brazil, due to the advantageous climatic conditions this species is frequently grown outdoors; however, in other countries - mainly due to its high temperature requirements - such cultivation system is risky and may only be successful during very warm summers. In this study, we analyzed four kind of compost studded by Agaricus blazei Murrill mushroom mycelium. We recorded every hour the air and compost temperature and the air relative humidity. The best studded compost was the classical, followed by synthetic and then by the mixt compost.

  3. Radiation disinfection of sewage sludge and composting of the irradiated sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Kawakami, Waichiro

    1985-01-01

    In the radiation disinfected sewage sludge, its stabilization is necessary with the composting. In this disinfected sludge, there is no need of keeping it at high temperature at the cost of fermentation velocity. The fermentation velocity can thus be set to obtain its maximum value. In sewage sludge utilization of farm land, to prevent the contamination with pathogenic bacteria and the secondary pollution, the radiation disinfection of dehydrated sludge and the composting of the disinfected sludge have been studied. The disinfection effect when an electron accelerator is used for the radiation source is described. Then, the composting of the disinfected sludge is described in chemical kinetics of the microorganisms. (Mori, K.)

  4. Respirometric screening of several types of manure and mixtures intended for composting.

    Science.gov (United States)

    Barrena, Raquel; Turet, Josep; Busquets, Anna; Farrés, Moisès; Font, Xavier; Sánchez, Antoni

    2011-01-01

    The viability of mixtures from manure and agricultural wastes as composting sources were systematically studied using a physicochemical and biological characterization. The combination of different parameters such as C:N ratio, free air space (FAS) and moisture content can help in the formulation of the mixtures. Nevertheless, the composting process may be challenging, particularly at industrial scales. The results of this study suggest that if the respirometric potential is known, it is possible to predict the behaviour of a full scale composting process. Respiration indices can be used as a tool for determining the suitability of composting as applied to manure and complementary wastes. Accordingly, manure and agricultural wastes with a high potential for composting and some proposed mixtures have been characterized in terms of respiration activity. Specifically, the potential of samples to be composted has been determined by means of the oxygen uptake rate (OUR) and the dynamic respirometric index (DRI). During this study, four of these mixtures were composted at full scale in a system consisting of a confined pile with forced aeration. The biological activity was monitored by means of the oxygen uptake rate inside the material (OURinsitu). This new parameter represents the real activity of the process. The comparison between the potential respirometric activities at laboratory scale with the in situ respirometric activity observed at full scale may be a useful tool in the design and optimization of composting systems for manure and other organic agricultural wastes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands.

    Science.gov (United States)

    Rao, Juluri R; Watabe, Miyuki; Stewart, T Andrew; Millar, B Cherie; Moore, John E

    2007-01-01

    In Ireland, conversion of biodegradable farm wastes such as pig manure spent mushroom compost and poultry litter wastes to pelletised fertilisers is a desirable option for farmers. In this paper, results obtained from the composting of pig waste solids (20% w/w) blended with other locally available biodegradable wastes comprising poultry litter (26% w/w), spent mushroom compost (26% w/w), cocoa husks (18% w/w) and moistened shredded paper (10% w/w) are presented. The resulting 6-mo old 'mature' composts had a nutrient content of 2.3% total N, 1.6% P and 3.1% K, too 'low' for direct use as an agricultural fertiliser. Formulations incorporating dried blood or feather meal amendments enriched the organic N-content, reduced the moisture in mature compost mixtures and aided the granulation process. Inclusion of mineral supplements viz., sulphate of ammonia, rock phosphate and sulphate of potash, yielded slow release fertilisers with nutrient N:P:K ratios of 10:3:6 and 3:5:10 that were suited for amenity grasslands such as golf courses for spring or summer application and autumn dressing, respectively. Rigorous microbiological tests carried out throughout the composting, processing and pelletising phases indicated that the formulated organo-mineral fertilisers were free of vegetative bacterial pathogens.

  6. Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste.

    Science.gov (United States)

    Kopčić, Nina; Vuković Domanovac, Marija; Kučić, Dajana; Briški, Felicita

    2014-02-01

    Efficient composting process requires set of adequate parameters among which physical-chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min(-1). During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a "mirror image" of the oxygen concentration curve while the peak values of the temperature were occurred 9.5h after the peak oxygen consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Disposal and utilization of broiler slaughter waste by composting

    Directory of Open Access Journals (Sweden)

    N Bharathy

    2012-12-01

    Full Text Available Aim: To know the feasibility of hygienic and environmentally safe method of disposal of broiler slaughter house waste with coir pith and caged layer manure. Materials and Methods: Compost bins (4 feet x 4 feet x 4 feet were established with concrete blocks with air holes to facilitate aerobic composting. The broiler slaughter waste and coconut coir pith waste were collected from the local market, free of cost. The caged layer manure available from poultry farms were utilized as manure substrate. Physical properties and chemical composition of ingredients were analyzed and a suitable compost recipe was formulated (USDA-NRCS, 2000. Two control bins were maintained simultaneously, using caged layer manure with coir pith waste and water in a ratio of 0.8:3:1.2 (T and another one bin using caged layer manure alone(T . 2 3 Results: At the end of composting, moisture content, weight and the Volume of the compost were reduced significantly (P<0.01, pH, EC, TDS, total organic carbon and total nitrogen content were also significantly (P<0.01 reduced at the finishing of composting. Calcium, phosphorous and potassium content was progressively increased during composting period. The finished compost contains undetectable level of salmonella. Cowpea and sorghum seeds showed positive germination percentage when this finished compost was used. It indicated that all of the finished compost was free from phytotoxin substances. Conclusion: The results indicated that, composting of slaughter waste combined with coir pith waste may be a hygienic and environmentally safe method of disposal of broiler slaughter house waste [Vet. World 2012; 5(6.000: 359-361

  8. Determination of an empirical formula for organic composition of mature compost produced in Isfahan-Iran composting plant in 2013

    Directory of Open Access Journals (Sweden)

    Parvin Razmjoo

    2015-01-01

    Full Text Available Aims: The aims of this study were to analyze the carbon, hydrogen, nitrogen, sulfur, and oxygen (CHNS-O content of compost derived from Isfahan-Iran municipal solid waste using thermal elemental analyzer and to develop an approximate empirical chemical formula for the organic fraction of the mature compost as a function of its elemental composition. Materials and Methods: The compost samples (1 kg were collected from different parts of the windrows and thoroughly mixed in accordance with standard methods. After drying and milling, each sample was introduced to an elemental analyzer to measure their CHNS-O contents. The moisture content, temperature, and pH value were also monitored in three different windrows during the process. Results: An approximate chemical empirical formula calculated for the organic fraction of the compost was: C 204 H 325 O 85 N 77 S. Conclusion: According to this formula, it appears that the mature compost produced in the site contains higher value of nondegradable nitrogen, which leads to a lower total C/N ratio. Therefore, improving the primary separation of raw material in the composting plant particularly severance of plastic materials can result in an optimum C/N ratio.

  9. Use of composts in the remediation of heavy metal contaminated soil.

    Science.gov (United States)

    Farrell, Mark; Jones, Davey L

    2010-03-15

    High levels of heavy metals in soil can ultimately lead to pollution of drinking water and contamination of food. Consequently, sustainable remediation strategies for treating soil are required. The potential ameliorative effect of several composts derived from source-separated and mixed municipal wastes were evaluated in a highly acidic heavily contaminated soil (As, Cu, Pb, Zn) in the presence and absence of lime. Overall, PTE (potentially toxic element) amelioration was enhanced by compost whilst lime had little effect and even exacerbated PTE mobilization (e.g. As). All composts reduced soil solution PTE levels and raised soil pH and nutrient levels and are well suited to revegetation of contaminated sites. However, care must be taken to ensure correct pH management (pH 5-6) to optimize plant growth whilst minimizing PTE solubilization, particularly at high pH. In addition, 'metal excluder' species should be sown to minimize PTE entry into the food chain. (c) 2009 Elsevier B.V. All rights reserved.

  10. Comparison of U.S. Environmental Protection Agency and U.S. Composting Council... Escherichia coli O157:H7 in finished compost

    Science.gov (United States)

    Composting management or conditions that result in inadequate exposure of the compostable materials to destructive time-temperature regimens can result in survival of enteric human pathogens. Bacterial pathogens, such as Escherichia coli O157:H7 and Salmonella spp., can regrow in finished compost. ...

  11. Monitoring of biopile composting of oily sludge.

    Science.gov (United States)

    Kriipsalu, Mait; Nammari, Diauddin

    2010-05-01

    This paper describes a bioreactor set-up used to simulate degradation of petroleum hydrocarbons in a static biopile. The large-scale test was performed in a 28 m(3) custom-designed reactor. Oily sludge (40% by weight, having 7% dry matter [DM], and hydrocarbons C(10)-C(40) 160,000 mg kg(-1) DM) was mixed with organic-rich amendments - mature oil-compost (40%) and garden waste compost (20%). Within the reactor, the temperature and soil gases were monitored continuously during 370 days via 24 measurement points. Also, moisture content was continuously recorded and airflow through compost mix occasionally measured. Three-dimensional ordinary kriging spatial models were created to describe the dynamic variations of temperature, air distribution, and hydrocarbon concentration. There were large temperature differences in horizontal and vertical sections during initial months of composting only. Water content of the mixture was uneven by layers, referring on relocation of moisture due to aeration and condensation. The air distribution through the whole reactor varied largely despite of continuous aeration, while the concentration of O(2) was never reduced less than 1-2% on average. The results showed that composting of sludge using force-aerated static biopile technology was justified during the first 3-4 months, after which the masses could be re-mixed and heaped for further maturation in low-tech compost windrows. After 370 days of treatment, the content of hydrocarbons (C( 10)-C(40)) in the compost mixture was reduced by 68.7%.

  12. Composting projects under the Clean Development Mechanism: Sustainable contribution to mitigate climate change

    International Nuclear Information System (INIS)

    Rogger, Cyrill; Beaurain, Francois; Schmidt, Tobias S.

    2011-01-01

    The Clean Development Mechanism (CDM) of the Kyoto Protocol aims to reduce greenhouse gas emissions in developing countries and at the same time to assist these countries in sustainable development. While composting as a suitable mitigation option in the waste sector can clearly contribute to the former goal there are indications that high rents can also be achieved regarding the latter. In this article composting is compared with other CDM project types inside and outside the waste sector with regards to both project numbers and contribution to sustainable development. It is found that, despite the high number of waste projects, composting is underrepresented and a major reason for this fact is identified. Based on a multi-criteria analysis it is shown that composting has a higher potential for contribution to sustainable development than most other best in class projects. As these contributions can only be assured if certain requirements are followed, eight key obligations are presented.

  13. Methane and Carbon Dioxide Emissions from Different Composting Periods

    Directory of Open Access Journals (Sweden)

    Cheng-Hsiung Chang

    2009-01-01

    Full Text Available To investigate green house gas emissions from compost preparations, methane and carbon dioxide concentrations and emission rates at different accumulative times and composting periods were determined. While the accumulative time was less than 10 min with a closed acrylic chamber, meth ane and carbon dioxide emissions in creased slightly but with high fluntuation in the sampling e ror, and these values decreased significantly when the accumulative time was more than 20 min. During the 8 weeks of composting, the methane emission rate reaches its peak near the end of the second week and the carbon dioxide emission rate does the same near the end of third week. Meth ane and carbon dioxide emissions had high val ues at the first stage of com post ing and then de creased grad u ally for the ma tu rity of com post. Carbon dioxide emission (y was significantly related to temperature (x1, moisture content (x2, and total or ganiccarbon (x3; and there gression equation is: y = 3.11907x1 + 6.19236x2 - 6.63081x3 - 50.62498. The re gres sion equa tion be tween meth ane emis sion (y? and mois ture con tent (x2, pH (x4, C/N ra tio (x5, and ash con tent (x6 is: y?= 0.13225x2 - 0.97046x4 - 1.10599x5 - 0.55220x6 + 50.77057 in the ini tial com post ing stage (weeks 1 to 3; while, the equa tion is: y?= 0.02824x2 - 0.0037x4 - 0.1499x5 - 0.07013x6 + 4.13589 in the later compost ing stage (weeks 4 to 8. Dif ferent stage composts have significant variation of properties and greenhouse gas emissions. Moreover, the emissions may be reduced by manipulating the proper factors.

  14. The evaluation of stability and maturity during the composting of cattle manure.

    Science.gov (United States)

    Gómez-Brandón, María; Lazcano, Cristina; Domínguez, Jorge

    2008-01-01

    We examined chemical, microbiological and biochemical parameters in order to assess their effectiveness as stability and maturity indicators during the composting process of cattle manure. The composting material obtained after 15 d in trenches and at different times during the maturation phase (i.e. 80, 180 and 270 d) were analyzed. We found that the material collected at the end of the active phase was inadequate to be applied to soil as organic amendment due to its high content of NH4+, its high level of phytotoxicity and the low degree of organic matter stability. After a maturation period of 80 d, the stability of the sample increased. This was shown by a reduction in the dissolved organic carbon (DOC) content and NH4+ concentration and also by a reduction in the microbial activity and biomass; however, 180 d of composting were not sufficient to reduce the phytotoxicity to levels consistent for a safe soil application. Among the various parameters studied, the change in DOC with composting time gave a good indication of stability.

  15. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure.

    Science.gov (United States)

    Ma, Shuangshuang; Fang, Chen; Sun, Xiaoxi; Han, Lujia; He, Xueqin; Huang, Guangqun

    2018-07-01

    Bacteria play an important role in organic matter degradation and maturity during aerobic composting. This study analyzed composting with or without a membrane cover in laboratory-scale aerobic composting reactor systems. 16S rRNA gene analysis was used to study the bacterial community succession during composting. The richness of the bacterial community decreased and the diversity increased after covering with a semi-permeable membrane and applying a slight positive pressure. Principal components analysis based on operational taxonomic units could distinguish the main composting phases. Linear Discriminant Analysis Effect Size analysis indicated that covering with a semi-permeable membrane reduced the relative abundance of anaerobic Clostridiales and pathogenic Pseudomonas and increased the abundance of Cellvibrionales. In membrane-covered aerobic composting systems, the relative abundance of some bacteria could be affected, especially anaerobic bacteria. Covering could effectively promote fermentation, reduce emissions and ensure organic fertilizer quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. HEAVY METAL ASPECTS OF COMPOST USE

    Science.gov (United States)

    Composts prepared from municipal solid waste, biosolids, food processing wastes, manures, yard debris, and agricultural byproducts and residues are increasingly available for agricultural use. Although many benefits are possible from use of composts, these products must be safe f...

  17. Agroindustrial composts to reduce the use of peat and fungicides in the cultivation of muskmelon seedlings.

    Science.gov (United States)

    Morales, Ana Belen; Ros, Margarita; Ayuso, Luis Miguel; Bustamante, Maria de Los Angeles; Moral, Raul; Pascual, Jose Antonio

    2017-02-01

    Environmental concerns about peat extraction in wetland ecosystems have increased. Therefore, there is an international effort to evaluate alternative organic substrates for the partial substitution of peat. The aim of this work was to use different composts (C1-C10) obtained from the fruit and vegetable processing industry (pepper, carrot, broccoli, orange, artichoke residues, sewage sludge (citric and pepper) and vineyard pruning wastes) to produce added-value composts as growing media with suppressive effect against Fusarium oxysporum f.sp. melonis (FOM) in muskmelon. Composts showed values of water-soluble carbon fractions and dehydrogenase activity that allowed them to be considered mature and stabilized. All compost treatments produced significantly (F = 7.382; P values. Treatments T-C5, T-C7 and T-C8 showed percentages of disease incidence that were significantly (F = 16.052; P values below 50%. Composts produced are suitable components of mixed compost-peat growing media, providing a 50% substitution of peat. Furthermore, some of these composts also showed an added value as a suppressive organic medium against Fusarium wilt in muskmelon seedling, a fact probably related to high pH and pepper wastes and high content of pruning waste as initial raw materials. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Isolation and screening phosphate solubilizers from composts as biofertilizer

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Khairuddin Abdul Rahim; Latiffah Norddin; Abdul Razak Ruslan

    2006-01-01

    Phosphate solubilizers are miroorganisms that able to solubilize insoluble inorganic phosphate compounds or hydrolyze organic phosphate to inorganic P. Therefore make the P to be available for plant and consequently enhance plant growth and yield. Recently, phosphate solubilizing microorganisms has been shown to play an important role in the biofertilizer industry. Fifty-one bacterial were isolated from eleven composts. Most of the phosphate solubilizers were isolated from natural farming composted compost and normal composting compost. This shows that both of these composts are more suitable to use for phosphate solubilizer isolation compare commercial composts. Fourteen of the isolates were found to be phosphate solubilizers. These isolates produced a clear zone on the phosphate agar plates, showing their potential as biofertilizer. AP3 was significantly produced the largest clear zone compared with other isolates. This indicates that isolate AP 3 could be a good phosphate solubilizer. Thus, their effectiveness in the greenhouse and field should be evaluated. (Author)

  19. Emission of Gases during Composting of Solid Waste

    Directory of Open Access Journals (Sweden)

    Dajana Kučić

    2017-10-01

    Full Text Available Composting is a biochemical process converting organic components into stable compost with release of heat, water, CO2 and NH3. The objective of this work was to determine the amount of CO2 and NH3 in the exhaust gases during composting of tobacco waste (TW and mixture of tobacco and grape waste (TGW. The cumulative evolved CO2 during 21 days of composting of TW and TGW, per mass of volatile matter, was 94.01 g kg−1 and 208.18 g kg−1, respectively, and cumulative evolved NH3 during composting of TW and TGW, per mass of volatile matter, was 504.81 mg kg−1 and 122.45 mg kg−1, respectively.

  20. Effect of phosphate - solubilizing bacteria and compost on the nutritional characteristics of the oil palm crop (Elaeis guineensis Jacq. in Casanare, Colombia

    Directory of Open Access Journals (Sweden)

    Anamaría García

    2012-08-01

    Full Text Available In accordance with interest to include biological practices in fertilization programs for commercially important crops, the effect of a bioinoculant application based on phosphate solubilizing bacteria along with compost was evaluated on oil palm cultivation in the nursery stage and in a definitive area. The five treatments that were evaluated included: (C compost, (CQ compost and chemical fertilizers 50/50, (IC compost and inoculant, (IQ chemical fertilizers and inoculant and (ICQ inoculant, compost and chemical fertilizers 50/50; as a positive control it was used a plant group fertilized with traditional chemical compounds. Organic matter was added at 2% (w/w at nursery stage and 15 kg/plant in the definitive area. Response variables includedagronomic variables were evaluated (total height, height to bifurcation, bulb diameter and number of leaves and soil physicochemical variables (pH, oxidizable organic carbon (OOC, extractable phosphorus and total boron, measured during 8 months in the nursery area and 6 months in the definitive area. The results showed that the evaluated compost constitutes an alternative for palm fertilization in the definitive area, as source of nutrients that meet crop demand at this stage of the crop, matching the nutritional levels of the control plants (P≥0.005. Meanwhile, in the nursery area, chemical fertilization is essential to ensure the quality of the plants during the first stage of growth, since, at this stage, plants require high amount of N, which is not supplied by the compost. Finally, it was not possible to demonstrate the promoting effect of the microbial inoculant on plant growth, so it is necessary to complement this research in regard to this product

  1. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting.

    Science.gov (United States)

    Yang, Fan; Li, Guoxue; Shi, Hong; Wang, Yiming

    2015-02-01

    This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH4, N2O, and NH3 were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH4 emissions (by 85.8% and 80.5%, respectively) and decreased NH3 emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N2O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Biotransformation of Organic Waste into High Quality Fertilizer

    DEFF Research Database (Denmark)

    Bryndum, Sofie

    Agriculture faces several challenges of future provision of nutrients such as limited P reserves and increasing prices of synthetic fertilizers and recycling of nutrients from organic waste can be an important strategy for the long-term sustainability of the agricultural systems. Organically...... and S, is often low; and (3) the unbalanced composition of nutrients rarely matches crop demands. Therefore the objective of this project was to investigate the potential for (1) recycling nutrients from agro-industrial wastes and (2) compost biotransformation into high-quality organic fertilizers...... other uses into fertilizer use would be unlikely. An estimated ~50 % of the total organic waste pool, primarily consisting of animal manure and waste from the processing of sugar cane, coffee, oil palm and oranges, is currently being re-used as “fertilizers”, meaning it is eventually returned...

  3. Copper and Zinc Uptake by Pakchoi and Rice as Affected by Applying Manure Compost with Different Levels of Cu and Zn Concentrations

    Directory of Open Access Journals (Sweden)

    Huang T. H.

    2013-04-01

    Full Text Available Cu and Zn are frequently added to livestock diets as additives to increase feed efficiency and production. This practice resulted in the higher contents of Cu and Zn in excrement of livestock. The aim of this study is to evaluate the effect of Cu and Zn concentration of manure compost and its application rates on the production and quality of pakchoi and rice. The pot experiments were conducted and the six manure compost were applied at 3 rates (20, 40, and 80 ton/ha, including the control and chemical fertilizer treatments. Results showed that the yield of the crops was enhanced by the compost application, and the Cu and Zn concentration in the edible part of crops were in normal range (pakchoi: Cu 1.8-10.4 mg/kg, Zn 39-160 mg/kg; rice grain: Cu 0.6-4.0 mg/kg, Zn 58-79 mg/kg. The potential risk of long-term manure compost application on soil quality was also evaluated. The total Zn concentration in soils may reach the regulation standard after 22 years of manure compost application at the rate of 40 ton/ha/year.

  4. State of art and prospectives of composting; Stato dell`arte e prospettive del compostaggio

    Energy Technology Data Exchange (ETDEWEB)

    Canditelli, M [ENEA, Centro Ricerche Trisaia, Rotondella, Matera (Italy). Dip. Ambiente

    1995-10-01

    The report illustrates the importance of composting, as a technology for wastes disposal and resource recovery. The process of aerobic stabilization, microbial mechanisms and physic-chemical parameters characterizing such activities, have been described. Importance of separate collection and compost able compound selection in the optimization of this spontaneous biotechnology for biodegradable wastes and sludge treatment, is emphasized. It is to be noted that residues that it can be used as an appropriate management process that allow the utilization of different types of wastes, converting them into a good compost, a product seems to be fit both from agronomic and environmental point of view. Regulations in force both at national and regional levels (Lombardia, Piemonte, Veneto) as well as a course to revise the present legislation, particularly suggestion to introduce a certification system, identified by an agronomic-environmental quality-mark, have also been reported.

  5. Use of composts in revegetating arid lands

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Hendrickson, P.L.

    1991-09-01

    Compost has been suggested as a soil amendment for arid lands at the US Department of Energy's Hanford Site in southeastern Washington State. The operating contractor of the site, Westinghouse Hanford Company, requested that the Pacific Northwest Laboratory conduct a literature review to compile additional information on the use of compost amendments and their benefits. This report provides background information on the factors needed for plant growth and the consequences of severe soil disturbance. This report also discussed the characteristics of composts relative to other amendments and how they each affect plant growth. Finally,regulatory requirements that could affect land application of sludge-based compost on the Hanford Site are reviewed.

  6. In situ olive mill residual co-composting for soil organic fertility restoration and by-product sustainable reuse

    Directory of Open Access Journals (Sweden)

    Teresa Casacchia

    2012-06-01

    Full Text Available The addition of organic matter in the form of compost improves overall physical, chemical and biological properties of soils but, to be really sustainable, the composting process should be carried out using the by-products available in situ. Two different soils of a Mediterranean olive orchard, one managed traditionally (NAS and the other amended with compost (AS, were investigated in a two-year experiment. Increases in total organic matter, total nitrogen and pH, were detected in AS if compared to NAS. Significant increases in total and specific microbial counts were observed in AS, with a clear amelioration of microbiological soil quality. The results demonstrated that soil amendment using compost deriving from olive mill by-products can be an important agricultural practice for supporting and stimulating soil microorganisms and, at the same time, for re-using these byproducts, so avoiding their negative environmental impact.

  7. Sweet Sorghum Crop. Effect of the Compost Application

    International Nuclear Information System (INIS)

    Negro, M. J.; Solano, M. L.; Carrasco, J.; Ciria, P.

    1998-01-01

    A 3 year-plot experiments were performed to determined the possible persistence of the positive effects of treating soil with compost. For this purpose, a sweet sorghum bagasse compost has been used. Experiments were achieved with sweet sorghum (Sorghum bicolor. L. Moench) vr Dale as energy crop. Similar sorghum productivities were obtained both in plots with consecutive compost applications and in plots amended with mineral fertilizers. No residual effect after three years has been detected. It could be due to the low dose of compost application. (Author) 27 refs

  8. The Utilization of Banana Peel in the Fermentation Liquid in Food Waste Composting

    Science.gov (United States)

    Kadir, A. A.; Rahman, N. A.; Azhari, N. W.

    2016-07-01

    Municipal solid waste in Malaysia contains a high amount of organic matters, particularly food waste. Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Food waste can be converted into useful materials such as compost. However, source separation of food waste for recycling is not commonly practiced in Malaysia due to various constraints. These constraints include low awareness among the waste generators and low demand of the products produced from the food waste such as composts. Composting is one of the alternatives that can be used in food waste disposal from Makanan Ringan Mas. The aim of the study is to convert food waste generated from Makanan Ringan Mas which is a medium sale industry located at Parit Kuari Darat, Batu Pahat by using composting method. The parameters which include temperature, pH value, NPK (Nitrogen, Phosphorus, Potassium) values has been examined. Banana peel is being used as the fermentation liquid whilst soil and coconut husk were used as the composting medium. Based on the results during the composting process, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the well controlled composting reactor was inhibited and had approached the mature phase. On the other hand, during the period of composting, the overall temperature range from 25 °C to 47 °C which shown the active phase for composting will occoured. As for NPK content Nitrogen value range is 35325 mg/L to 78775 mg/L, Phosphorus, 195.83 mg/L to 471 mg/L and potassium is 422.3 mg/L to 2046 mg/L which is sufficient to use for agricultural purpose. The comparison was made with available organic compost in the market and only showed slightly difference. Nevertheless, in comparison with common fertilizer, the NPK value of organic compost are considerably very low.

  9. On-farm production of arbuscular mycorrhizal funus inoculum in compost and vermiculite mixtures: results of on-farm demonstrations and impact of compost microbiological quality

    Science.gov (United States)

    The sustainability and profitability of many agricultural systems can be enhanced through the utilization of inoculum of arbuscular mycorrhizal fungi. Inocula are commercially available, but inoculum can also be produced on-farm in mixtures of compost and vermiculite with a nurse host plant. Demon...

  10. Migration of heavy metals in soil as influenced by compost amendments

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Mark, E-mail: m.farrell@bangor.ac.u [School of the Environment and Natural Resources, Bangor University, Gwynedd LL57 2UW (United Kingdom); Perkins, William T. [Institute of Geography and Earth Sciences, Aberystwyth University, Ceredigion SY23 3DB (United Kingdom); Hobbs, Phil J. [North Wyke Research, Okehampton, Devon EX20 2SB (United Kingdom); Griffith, Gareth W. [Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Ceredigion SY23 3DA (United Kingdom); Jones, Davey L. [School of the Environment and Natural Resources, Bangor University, Gwynedd LL57 2UW (United Kingdom)

    2010-01-15

    Soils contaminated with heavy metals can pose a major risk to freshwaters and food chains. In this study, the success of organic and inorganic intervention strategies to alleviate toxicity in a highly acidic soil heavily contaminated with As, Cu, Pb, and Zn was evaluated over 112 d in a mesocosm trial. Amelioration of metal toxicity was assessed by measuring changes in soil solution chemistry, metal leaching, plant growth, and foliar metal accumulation. Either green waste- or MSW-derived composts increased plant yield and rooting depth, reduced plant metal uptake, and raised the pH and nutrient status of the soil. We conclude that composts are well suited for promoting the re-vegetation of contaminated sites; however, care must be taken to ensure that very short-term leaching pulses of heavy metals induced by compost amendment are not of sufficient magnitude to cause contamination of the wider environment. - Composts increase rooting depth and vegetation growth over inorganic amendment in an acidic, contaminated soil.

  11. Migration of heavy metals in soil as influenced by compost amendments

    International Nuclear Information System (INIS)

    Farrell, Mark; Perkins, William T.; Hobbs, Phil J.; Griffith, Gareth W.; Jones, Davey L.

    2010-01-01

    Soils contaminated with heavy metals can pose a major risk to freshwaters and food chains. In this study, the success of organic and inorganic intervention strategies to alleviate toxicity in a highly acidic soil heavily contaminated with As, Cu, Pb, and Zn was evaluated over 112 d in a mesocosm trial. Amelioration of metal toxicity was assessed by measuring changes in soil solution chemistry, metal leaching, plant growth, and foliar metal accumulation. Either green waste- or MSW-derived composts increased plant yield and rooting depth, reduced plant metal uptake, and raised the pH and nutrient status of the soil. We conclude that composts are well suited for promoting the re-vegetation of contaminated sites; however, care must be taken to ensure that very short-term leaching pulses of heavy metals induced by compost amendment are not of sufficient magnitude to cause contamination of the wider environment. - Composts increase rooting depth and vegetation growth over inorganic amendment in an acidic, contaminated soil.

  12. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting

    Science.gov (United States)

    Torres-Climent, A.; Gomis, P.; Martín-Mata, J.; Bustamante, M. A.; Marhuenda-Egea, F. C.; Pérez-Murcia, M. D.; Pérez-Espinosa, A.; Paredes, C.; Moral, R.

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio. PMID:26418458

  13. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes during Composting.

    Science.gov (United States)

    Torres-Climent, A; Gomis, P; Martín-Mata, J; Bustamante, M A; Marhuenda-Egea, F C; Pérez-Murcia, M D; Pérez-Espinosa, A; Paredes, C; Moral, R

    2015-01-01

    The objective of this work was to study the co-composting process of wastes from the winery and distillery industry with animal manures, using the classical chemical methods traditionally used in composting studies together with advanced instrumental methods (thermal analysis, FT-IR and CPMAS 13C NMR techniques), to evaluate the development of the process and the quality of the end-products obtained. For this, three piles were elaborated by the turning composting system, using as raw materials winery-distillery wastes (grape marc and exhausted grape marc) and animal manures (cattle manure and poultry manure). The classical analytical methods showed a suitable development of the process in all the piles, but these techniques were ineffective to study the humification process during the composting of this type of materials. However, their combination with the advanced instrumental techniques clearly provided more information regarding the turnover of the organic matter pools during the composting process of these materials. Thermal analysis allowed to estimate the degradability of the remaining material and to assess qualitatively the rate of OM stabilization and recalcitrant C in the compost samples, based on the energy required to achieve the same mass losses. FT-IR spectra mainly showed variations between piles and time of sampling in the bands associated to complex organic compounds (mainly at 1420 and 1540 cm-1) and to nitrate and inorganic components (at 875 and 1384 cm-1, respectively), indicating composted material stability and maturity; while CPMAS 13C NMR provided semi-quantitatively partition of C compounds and structures during the process, being especially interesting their variation to evaluate the biotransformation of each C pool, especially in the comparison of recalcitrant C vs labile C pools, such as Alkyl /O-Alkyl ratio.

  14. Effects of Vermi-compost Fertilizer Application and Foliar Spraying on Yield and Yield Component of Isabgol (Plantago ovate L. Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Asghar Rahimi

    2017-12-01

    Full Text Available Introduction Vermi-compost is the ability of some species of earthworms to consume and break down a wide range of organic residues such as sewage sludge, animal wastes, crop residues and industrial refuse. Vermi-composts are usually more stable than their parent materials with increased availability of nutrients and improved physicochemical and microbiological properties. Aerial compost tea contains high populations of live microorganism consisting of rhizobactria, trichoderma and pseudomonas species which increase the growth and yield of the plant. Acid humic is the main humic substance and the important ingredient of soil organic matter (humus which causes increase of yield and quality of crop. The aim of this research is evaluating the effect of vermi-compost and foliar application of compost tea and acid humic on yield, yield component and mucilage content of isabgol. Vermiwash as the extract of vermi-compost is liquid organic fertilizer obtained from unit of vermiculture and vermi-compost as drainage. It is used as a foliar spraying on the leaf. Vermiwash stimulate and increase the yield of crop products and foliar application of vermiwash can be caused of plant resistance to different factors and can prevent leaf necrosis. Material and Methods In order to study the effect of vermi-compost and foliar application of tea compost and acid humic on growth indices of isabgol (Plantago ovata, an experiment was conducted as a factorial based on complete randomized design with three replications in agricultural research farm at Vali-e-Asr University of Rafsanjan. Treatments were included application of vermi-compost (0 (control, 4, 8, 12 and 16 t.ha-1 and 3 levels of foliar application (distilled water as control, acid humic and compost tea. Samples for evaluating of yield, yield components and mucilage content were taken from 1 m2 area of each treatment. Tea compost solution prepared using mix of vermi-compost, acid humic, yeast and alga extract

  15. Culturable fungi in potting soils and compost.

    Science.gov (United States)

    Haas, Doris; Lesch, Susanne; Buzina, Walter; Galler, Herbert; Gutschi, Anna Maria; Habib, Juliana; Pfeifer, Bettina; Luxner, Josefa; Reinthaler, Franz F

    2016-11-01

    In the present study the spectrum and the incidence of fungi in potting soils and compost was investigated. Since soil is one of the most important biotopes for fungi, relatively high concentrations of fungal propagules are to be expected. For detection of fungi, samples of commercial soils, compost and soils from potted plants (both surface and sub-surface) were suspended and plated onto several mycological media. The resulting colonies were evaluated qualitatively and quantitatively. The results from the different sampling series vary, but concentrations on the surface of potted plants and in commercial soils are increased tenfold compared to compost and sub-surface soils. Median values range from 9.5 × 10(4) colony forming units (CFU)/g to 5.5 × 10(5) CFU/g. The spectrum of fungi also varies in the soils. However, all sampling series show high proportion of Aspergillus and Penicillium species, including potentially pathogenic species such as Aspergillus fumigatus. Cladosporium, a genus dominant in the ambient air, was found preferably in samples which were in contact with the air. The results show that potentially pathogenic fungi are present in soils. Immunocompromised individuals should avoid handling soils or potted plants in their immediate vicinity. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Characterization of the organic fraction of earthworm humus and composts taken place starting from different substrates

    International Nuclear Information System (INIS)

    Melgarejo, M.R.; Ballesteros, M.I.; Bendeck L, M.

    1998-01-01

    In order to evaluate the quality and the humification degree of different composted materials, the organic fraction of earthworm humus obtained from kitchen and farm residues, coffee pulp, biodegradable garbage and roses residues and of composts from roses and carnation residues were characterized chemically. Thus, determination and analysis of the C/N ratio, as well as the fractionation of the organic matter and the purification and characterization of the humic acids by C, H, N, 0 elemental analysis, UV-VIS spectroscopy were done and different humification parameters were found. The fractionation of the organic matter showed a low content of extracted carbon with respect to the normal content found in the soil humus. The elemental analysis data of the humic acids from the composts and the earthworm humus did not reveal important differences between these materials, while the E4/E6 ratio provided more evident changes. The results showed that the C/N ratio is not an absolute indicative of the Maturity State of the studied materials. The best parameters to estimate the maturity degree of the composts and the earthworm humus turned out to be the polymerization ratio, the humification index and the extracted carbon/non extracted carbon ratio. Among the evaluated materials, the earthworm of roses residues showed the best conditions with respect to content and quality of the organic matter to be added to a soil

  17. Ultrahigh performance composting of sludge from food industry-comparative study of fermentation in sawdust and paper mixing methods

    International Nuclear Information System (INIS)

    Hassan, A.; Masanori, M.; Mizuho, M.; Hiroe, K.; Shahjahan, M.M.; Tohru, H.; Hori, H.

    2005-01-01

    We succeeded to develop an ultra high performance composting system for food industrial sludge by employing paper mixing method. Sludge was mixed with cut pieces (3 x 12 mm) of waste paper, like newspapers, in the range of 10-20 % (w/w) in an electric mixer to enhance the porosity and reduce water content of the mass. We followed conventional way of sawdust mixing as control. The mixture was subjected to aeration at room temperature with an electric blower at 86 L/min/m/sup 2/ bottom area of bio-reactor. The composting process completed in 10 days, in contrast to the conventional cases where it takes 60 to 90 days to complete composting, thereby reducing the time course 6 to 9 fold. Chemical analyses of the compost showed concentration nitrogen (N) 5.0%, phosphorus (P) 4.9% and potassium (K) 0.6% while all heavy metal contents were below the standard required level. The compost showed pH 7.1, EC 5.6 and C/N ratio 8. We analyzed for nitrogen release into the soil and efficacy on the germination and growth of Brassica Tapa L. the compost showed markedly good effect on the growth of the plantlets. The present study demonstrated that the paper-mixed composting method is highly efficient and energy saving. In addition, this method can lead to design a reactor which is compact but with very high capacity to convert municipal organic waste to compost. (author)

  18. Co-composting of two-phase olive-mill pomace and poultry manure with tomato harvest stalks.

    Science.gov (United States)

    Sülük, Kemal; Tosun, İsmail; Ekinci, Kamil

    2017-04-01

    In this study, two-phase olive-mill pomace with poultry manure and chopped tomato harvest stalks were composted at different initial carbon/nitrogen (C/N) ratios with fixed free air space of 35%. Composting experiment was carried out in the 15 aerobic reactors made of stainless steel and was monitored for 28 days. During the composting process, temperature, moisture content, organic matter (OM), pH, electrical conductivity, oxygen and carbon dioxide concentrations, total carbon, total nitrogen, ammonium nitrogen ([Formula: see text]), nitrate nitrogen ([Formula: see text]), and total phosphorus were monitored. Compost mass and volume changes were determined at the beginning, during remixings, and at the end of composting. While the stabilization period took less time for the mixtures containing a high amount of poultry manure, the mixtures having the high portion of two-phase olive-mill pomace took a longer time due to the structure of olive stone and its lignin content. Dry matter loss (range: 18.1-34.0%.) in the mixtures increased with an increase in the share of poultry manure and tomato stalks in the initial mixture. OM loss (range: 21.7-46.1%) for tomato stalks (measured separately) during composting increased due to an increase in the ratio of poultry manure in the initial mixtures.

  19. Biodegradation of Lignocelluloses in Sewage Sludge Composting and Vermicomposting

    Directory of Open Access Journals (Sweden)

    Hosein Alidadi

    2012-08-01

    Full Text Available Please cite this article as: Alidadi H, Najafpour AA, Vafaee A, Parvaresh A, Peiravi R. Biodegradation of lignocelluloses in sewage sludge composting and vermicomposting. Arch Hyg Sci 2012;1(1:1-5.   Aims of the Study: The aim of this study was to determine the amount of lignin degradation and biodegradation of organic matter and change of biomass under compost and vermicomposting of sewage sludge. Materials & Methods: Sawdust was added to sewage sludge at 1:3 weight bases to Carbon to Nitrogen ratio of 25:1 for composting or vermicomposting. Lignin and volatile solids were determined at different periods, of 0, 10, 30, 40 and 60 days of composting or vermicomposting period to determine the biodegradation of lignocellulose to lignin. Results were expressed as mean of two replicates and the comparisons among means were made using the least significant difference test calculated (p <0.05. Results: After 60 days of experiment period, the initial lignin increased from 3.46% to 4.48% for compost and 3.46% to 5.27% for vermicompost. Biodegradation of lignocellulose was very slow in compost and vermicompost processes. Vermicomposting is a much faster process than compost to convert lignocellulose to lignin (p <0.05. Conclusions: The organic matter losses in sewage sludge composting and vermicomposting are due to the degradation of the lignin fractions. By increasing compost age, the amount of volatile solids will decrease.

  20. Study on NPK Performance in Food Waste Composting by Using Agricultural Fermentation

    Directory of Open Access Journals (Sweden)

    Jamaludin Siti Noratifah

    2017-01-01

    Full Text Available Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Alternative disposal method for food waste could be conducted by using composting method. In this study, investigationon food waste composting by using agricultural fermentation was carried out to find out the performance of the compost. Two types of compost were produced which were commercial compost and research compost and total of 8 reactors were tested during this study. Research compost consist of coconut fiber (decomposing medium and the combination of salt and breadfruit peels as the fermentation liquid, while rice husk was used as decomposing medium for commercial compost along with fermented soybeanand brown sugar as fermentation liquid. Physical and chemical parameters which are temperature, pH value, moisture content, Total Nitrogen (N, Total Phosphorus (P and Potassium (K concentration were determined. Based on the results of 20 weeks composting, the overall temperature range from 27 °C to 45 °C which shown the active phase for composting occurred. On the other hand, during the period of composting, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the composting reactor was inhibited and had approached the mature phase. As for NPK content, Total Nitrogen value range from 98 ppm to 2268 ppm for commercial compost, while 84 ppm to 2240 ppm for research compost. Total Phosphorus has the values of0.871 ppm to 11.615 ppm for commercial compost and 1.785 ppm to 14.143 ppm for research compost. On the other hand, result for potassium is from 91.85 ppm to 645.55 ppm for commercial compost and from 133.95 ppm to 686.2 ppm for research compost. As a conclusion from the results obtained, the compost in this study is sufficient to be use for agricultural purposes and the best performance of NPK value was demonstrated by Reactor C2 from research compost.

  1. Composting of waste paint sludge containing melamine resin as affected by nutrients and gypsum addition and microbial inoculation

    International Nuclear Information System (INIS)

    Tian Yongqiang; Chen Liming; Gao Lihong; Michel, Frederick C.; Wan Caixia; Li Yebo; Dick, Warren A.

    2012-01-01

    Melamine formaldehyde resins have hard and durable properties and are found in many products, including automobile paints. These resins contain high concentrations of nitrogen and, if properly composted, can yield valuable products. We evaluated the effects of starter compost, nutrients, gypsum and microbial inoculation on composting of paint sludge containing melamine resin. A bench-scale composting experiment was conducted at 55 °C for 91 days and then at 30 °C for an additional 56 days. After 91 days, the composts were inoculated with a mixed population of melamine-degrading microorganisms. Melamine resin degradation after the entire 147 days of composting varied between 73 and 95% for the treatments with inoculation of microorganisms compared to 55–74% for the treatments without inoculation. Degradation was also enhanced by nutrients and gypsum additions. Our results infer that large scale composting of melamine resins in paint sludge is possible. - Highlights: ► Melamine resin in waste paint sludges could be efficiently composted at bench scale. ► Melamine resin degradation after 147 days of composting was 73–95% complete. ► Nutrients, gypsum and melamine-degrading microorganisms increased composting rate. ► Melamine degradation products first increased and then decreased in the compost. ► Final compost was enriched in nitrogen and other essential plant nutrients. - Melamine resin in waste paint sludges was efficiently composted at bench scale, with finished composts having low levels of heavy metals and enriched in plant nutrients.

  2. Compost production from municipal wastes of Canadian mining towns

    International Nuclear Information System (INIS)

    Jongejan, A.

    1983-01-01

    A summary of results of experiements on composting mumicipal wastes, and an overview of a type of composting process that could be used in small Canadian mining towns are given. The process is a means of waste disposal designed to produce compost. Compost can be used for the revegetation of mine-mill tailings as its sorptive properties complement the chemical action of inorganic fertilizers. The possibility of using compost instead of peat in water pollution-abatement processes can be considered. Difficulties that can be expected if a windrow composting process is continued during the low ambient-temperatures of Canadian winters can be avoided by storing the garbage-sewage mixture as hydraulically-compacted briquettes. Degradation of the briquettes takes place during mild-temperature periods without producing the foul odors of heaped garbage. A tentative plan for composting plant is presented as an illustration of the applicatin of the experimental results in a practical process. Because the process is a means of waste disposal, costs have to be divided between the municipality and the mining industry

  3. Greenhouse gas emissions from green waste composting windrow.

    Science.gov (United States)

    Zhu-Barker, Xia; Bailey, Shannon K; Paw U, Kyaw Tha; Burger, Martin; Horwath, William R

    2017-01-01

    The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH 4 emission of 254±76gCday -1 dry weight (DW) Mg -1 and lowest average N 2 O emission of 152±21mgNday -1 DW Mg -1 compared to the other seasonal piles. The highest N 2 O emissions (342±41mgNday -1 DW Mg -1 ) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O 2 ) concentration and moisture content were the most consistent factors predicting N 2 O and CH 4 emissions from all seasonal compost piles. Compared to N 2 O, CH 4 was a higher contributor to the overall global warming potential (GWP) expressed as CO 2 equivalents (CO 2 eq.). Therefore, CH 4 mitigation practices, such as increasing O 2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000Mg of CO 2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang

    2017-07-01

    The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.

  5. Conditions for energy generation as an alternative approach to compost utilization.

    Science.gov (United States)

    Raclavska, H; Juchelkova, D; Skrobankova, H; Wiltowski, T; Campen, A

    2011-01-01

    Very strict limits constrain the current possibilities for compost utilization in agriculture and for land reclamation, thus creating a need for other compost utilization practices. A favourable alternative can be compost utilization as a renewable heat source - alternative fuel. The changes of the basic physical-chemical parameters during the composting process are evaluated. During the composting process, energy losses of 920 kJ/kg occur, caused by carbohydrate decomposition (loss of 12.64% TOC). The net calorific value for mature compost was 11.169 kJ/kg dry matter. The grain size of compost below 0.045 mm has the highest ash content. The energetic utilization of compost depended on moisture, which can be influenced by paper addition or by prolonging the time of maturation to six months.

  6. DOES COMPOSTING OF BIODEGRADABLE MUNICIPAL SOLID WASTE ON THE LANDFILL BODY MAKE SENSE?

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2016-01-01

    Full Text Available In this study white mustard (Sinapis alba plants were allowed to grow in earthen pots, treated with municipal solid waste compost (MSWC to study the effect of MSWC on the plant biomass production. Twenty-one days from the establishment of the experiment sprouts and the number of growing plants occurring in the earthen pots were counted. Plants growing in the earthen pots with the compost samples exhibited an increasing plant biomass while no changes were observed in their appearance; retarded growth or necrotic changes were not recorded. The performed phytotoxicity tests show that the analyzed composts produced in the composting plant situated on the landfill surface achieved high percentages of the germinating capacity of white mustard (Sinapis alba seeds and can be therefore used in the subsequent reclamation of the concerned landfill.

  7. Earthworms change the quantity and composition of dissolved organic carbon and reduce greenhouse gas emissions during composting

    DEFF Research Database (Denmark)

    Nigatu, Abebe Nigussie; Bruun, Sander; de Neergaard, Andreas

    2017-01-01

    Dissolved organic carbon (DOC) has recently been proposed as an indicator of compost stability. We assessed the earthworms' effect on DOC content and composition during composting, and linked compost stability to greenhouse gas emissions and feeding ratio. Earthworms reduced total DOC content......, indicating larger stability of vermicompost than of thermophilic compost. The concentrations of humic acid and fulvic acid were reduced by earthworms, whereas there was no significant effect on hydrophobic neutrals and hydrophilics. The humic acid fraction was depleted more quickly than the other compounds......, indicating humic acid degradation during composting. The optimum feeding ratio decreased DOC content compared to the high feeding ratio. The lowest N2O emissions were also observed at the optimum feeding ratio. Our study confirmed the use of DOC content and composition as an indicator of compost stability...

  8. Low-cost automatic station for compost temperature monitoring

    Directory of Open Access Journals (Sweden)

    Marcelo D. L. Jordão

    Full Text Available ABSTRACT Temperature monitoring is an important procedure to control the composting process. Due to cost limitation, temperature monitoring is manual and with daily sampling resolution. The objective of this study was to develop an automatic station with US$ 150 dollars, able to monitor air temperature at two different points in a compost pile, with a 5-min time resolution. In the calibration test, the sensors showed an estimated uncertainty from ± 1 to ± 1.9 ºC. In the field validation test, the station guaranteed secure autonomy for seven days and endured high humidity and extreme temperature (> 70 °C.

  9. Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D; Warman, Phil R

    2004-09-01

    Two experiments were conducted to evaluate the effect of compost addition to soil on fractionation and bioavailability of Cu, Mn, and Zn to four crops. Soils growing Swiss chard (Beta vulgaris var. cicla L.) and basil (Ocimum basilicum L.) were amended (by volume) with 0, 20, 40, and 60% Source-Separated Municipal Solid Waste (SS-MSW) compost, and dill (Anethum graveolens L.) and peppermint (Mentha X piperita L.) were amended with 0, 20, 40, and 60% of high-Cu manure compost (by volume). The SS-MSW compost applications increased the concentration of Cu and Zn in all fractions, increased Mn in acid extractable (ACID), iron and manganese oxides (FeMnOX), and organic matter (OM) fractions, but decreased slightly exchangeable-Mn. Addition of 60% high-Cu manure compost to the soil increased Cu EXCH, ACID, FeMnOX, and OM fractions, but decreased EXCH-Mn, and did not change EXCH-Zn. Addition of both composts to soil reduced bioavailability and transfer factors for Cu and Zn. Our results suggest that mature SS-MSW and manure composts with excess Cu and Zn could be safely used as soil conditioners for agricultural crops.

  10. Municipal compost-based mixture for acid mine drainage bioremediation: Metal retention mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Oriol Gibert; Joan de Pablo; Jose Luis Cortina; Carlos Ayora [Universitat Politecnica de Catalunya, Barcelona (Spain). Departament d' Enginyeria Qumica

    2005-09-15

    An upflow packed column was operated to evaluate the potential of a mixture of municipal compost and calcite to promote sulphidogenesis in the remediation of a simulated mine water at high flows (>0.1 m d{sup -1}). Results showed that the pH was neutralised and metals (Fe, Al, Zn, Cu) were significantly removed. Metal removal was attributed to the combined result of precipitation as metal (oxy)hydroxides and carbonates, co-precipitation with these (oxy)hydroxides and sorption onto the compost surface rather than to precipitation as metal sulphides. The two last mechanisms are especially significant for Zn, whose hydroxide is not expected to precipitate at pH 6-7. Before the saturation of compost sorption sites, 60% of the influent Zn was estimated to have been removed by co-precipitation with Fe- and Al-(oxy)hydroxide and 40% by sorption onto the municipal compost.

  11. Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils.

    Science.gov (United States)

    Gou, Min; Hu, Hang-Wei; Zhang, Yu-Jing; Wang, Jun-Tao; Hayden, Helen; Tang, Yue-Qin; He, Ji-Zheng

    2018-01-15

    Composting has been suggested as a potential strategy to eliminate antibiotic residues and pathogens in livestock manure before its application as an organic fertilizer in agro-ecosystems. However, the impacts of composting on antibiotic resistance genes (ARGs) in livestock manure and their temporal succession following the application of compost to land are not well understood. We examined how aerobic composting affected the resistome profiles of cattle manure, and by constructing laboratory microcosms we compared the effects of manure and compost application to agricultural soils on the temporal succession of a wide spectrum of ARGs. The high-throughput quantitative PCR array detected a total of 144 ARGs across all the soil, manure and compost samples, with Macrolide-Lincosamide-Streptogramin B, aminoglycoside, multidrug, tetracycline, and β-lactam resistance as the most dominant types. Composting significantly reduced the diversity and relative abundance of ARGs and mobile genetic elements (MGEs) in the cattle manure. In the 120-day microcosm incubation, the diversity and abundance of ARGs in manure-treated soils were significantly higher than those in compost-treated soils at the beginning of the experiment. The level of antibiotic resistance rapidly declined over time in all manure- and compost-treated soils, coupled with similar temporal patterns of manure- and compost-derived bacterial communities as revealed by SourceTracker analysis. The network analysis revealed more intensive interactions/associations among ARGs and MGEs in manure-treated soils than in compost-treated soils, suggesting that mobility potential of ARGs was lower in soils amended with compost. Our results provide evidence that aerobic composting of cattle manure may be an effective approach to mitigate the risk of antibiotic resistance propagation associated with land application of organic wastes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Determining Thermal Inactivation of Escherichia coli O157:H7 in Fresh Compost by Simulating Early Phases of the Composting Process ▿

    OpenAIRE

    Singh, Randhir; Kim, Jinkyung; Shepherd, Marion W.; Luo, Feng; Jiang, Xiuping

    2011-01-01

    A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 107 CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of...

  13. [Interaction Between Sulfonamide Antibiotics Fates and Chicken Manure Composting].

    Science.gov (United States)

    Lin, Hui; Wang, Jian-mei; Sun, Wan-chun; Fu, Jian-rong; Chen, Hong-jin; Ma, Jun-wei

    2016-05-15

    Based on aerobic manure composting with or without the addition of a mixture of sulfadimethoxine SM2 and sulfamonomethoxine SMM (1:1, m/m), changes in the physic-chemical properties of manure compost, the microbial community physiological profiles, the antibiotics concentration and the abundances of five antibiotic resistance genes (ARGs) during the composting were tracked. The results indicated that the introduction of sulfonamide antibiotics led to inhibition on the basal respiration of manure compost during the early composting period, delayed the formation of thermophilic temperature and reduced the conversion of nutrients such as organic matter, ammonia nitrogen and nitrate nitrogen. Meanwhile, the introduction of sulfonamide antibiotics dramatically affected the physiological profile of microbial community in manure in the middle stage of composting. HPLC-MS/MS results showed that both SMM and SM2 in manure were completely degraded within 14 days, while the degradation rate of SMM was faster than that of SM2. For both composting treatments with or without addition of exogenous antibiotics, the relative abundance of sull and sul2 showed an initial decline in the first 14 or 21 days and a slight increase thereafter. The addition of exogenous antibiotics showed insignificant enhancement on increasing the relative abundance of sul1 and IntI1 in manure, but resulted in an apparent increase in sul2 relative abundance. Although the fates of tetQ and tetW during composting were different from that of sulfonamide ARGs, the introduction of sulfonamide antibiotics into manure increased the relative abundance of tetracycline ARGs. Redundancy analysis indicated that composting temperature correlated negatively with sul1, sul2 and IntI1 relative abundance in manure but had no obvious relationship with tetQ and tetW relative abundance. All the ARGs detected in this work correlated negatively with C/N ratio and the nitrate nitrogen concentration of manure compost but

  14. Avaliação da qualidade nutricional de composto orgânico produzido com resíduos de fumo Evaluation of the nutritional quality of organic compost produced with tobacco residues

    Directory of Open Access Journals (Sweden)

    Dário C. Primo

    2010-07-01

    Full Text Available O aproveitamento de resíduos agroindustriais na forma de composto orgânico, pode resultar em maior sustentabilidade para sistemas agrícolas. Propôs-se, neste trabalho, analisar a qualidade final do composto orgânico em relação à composição em nutrientes e à presença de substâncias toxocologicamente ativas. Avaliaram-se as combinações de talo de fumo triturado, esterco e rúmen bovino (TF+EB+RB, talos de fumo, esterco bovino e Microsept-Pó (TF+EB+MP e talos de fumo mais esterco bovino (TF+EB. Amostras médias de cada composto foram analisadas para determinação da concentração em macro e micronutrientes, aos 60 e 120 dias e, para verificar a concentração de nicotina e a presença ou não de resíduos agrotóxicos na matéria-prima (TF nos compostos obtidos aos 120 dias. Os dados obtidos demonstraram alta concentração de potássio (K, nitrogênio (N, cloreto (Cl e ferro (Fe no composto final em relação aos demais macro e micronutrientes. Não se detectaram resíduos de agrotóxicos na matéria-prima (TF nem a presença de nicotina nas amostras obtidas aos 120 dias, demonstrando ausência de risco de impacto ambiental no uso agrícola desses compostos. No final do processo de compostagem a mistura TF+EB foi a que resultou no composto orgânico com maior concentração em macro e micronutrientes.The use of agroindustrial waste to produce organic compost can result in greater sustainability for agricultural systems. This study aimed to analyze the final quality of the organic compost, according to their nutrients and the presence of active toxic substances. The combinations of ground tobacco stem, bovine manure and rumen (TF+EB+RB, tobacco stem, cattle manure and Microsept Dust (TF+EB+MP and tobacco stem and cattle manure (TF+EB were evaluated. Mean samples of each compost were analyzed to determine the concentration of micro and macro nutrients at 60 and 120 days and to verify the nicotine concentration and the presence or

  15. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    Directory of Open Access Journals (Sweden)

    Vidya eDe Gannes

    2012-07-01

    Full Text Available Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, coffee hulls, which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase and the finished product (mature phase. The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (groub I.1b, in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have signifcant effects on its performanc as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities with nitrification in these systems.

  16. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... compost had greater effect in improving tomato productivity. A decade-long application of composts on loamy sand improved basic chemical and physical properties which were reflected in increased fruit yield in tomato. Since no negative effect of compost was observed, we suggest that sandy soils may serve...... and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha-1 yr-1 (7.5 ton ha-1 yr-1). The soils were characterized for chemical and physical properties. Tomato was planted...

  17. Effect of compost on erodibility of loamy sand under simulated rainfall

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.M.; Vermang, J.

    2011-01-01

    Three types of composts [vegetable, fruit and yard waste compost (VFYW), garden waste compost (GW), and spent mushroom compost (SM)] were applied at a rate of 30 m3 ha−1 for 10 years to loamy sand, to determine its effect on the aggregate stability and susceptibility to water erosion. Aggregate...... significant improvement for any of the compost types. SM application resulted in a significant increase (51%) in the shear strength of the soil after rainfall. Long term compost application does not appreciably improve the resistance of loamy sand to water erosion....

  18. Assessment of compost for suppression of Fusarium oxysporum and ...

    African Journals Online (AJOL)

    The present research was conducted to evaluate the compost effectiveness on Zea mays and Hibiscus sabdarriffa under Fusarium wilt disease. Compost physical, chemical and biological characters were monitored weekly during the ripening process. Both coliform and nematode were tested. Finally, the effect of compost ...

  19. Polluted land areas purified by composting

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, A.L.; Nikula, A.

    1996-11-01

    Restoration of polluted land and development of purification methods are among the most topical environment protection issues, IVO, too, has participated in research on microbiological purification methods. The biodegrability of creosote, and agent used for impregnation of wooden power line poles, was tested in the laboratory in 1993-94. The tests revealed that soil polluted by creosote can be cleansed efficiently. In Petaejaevesi, central Finland, the results are being applied in the composting of land masses polluted by creosote. The composting, which began in summer 1995, has succeeded in line with expectations: The content of deleterious compounds fell by half after only a couple of months of composting. (orig.)

  20. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost.

    Science.gov (United States)

    Liang, Jie; Yang, Zhaoxue; Tang, Lin; Zeng, Guangming; Yu, Man; Li, Xiaodong; Wu, Haipeng; Qian, Yingying; Li, Xuemei; Luo, Yuan

    2017-08-01

    The combination of biochar and compost has been proven to be effective in heavy metals contaminated wetland soil restoration. However, the influence of different proportions between biochar and compost on immobilization of heavy metals in soil has been less studied up to date. Therefore, we investigated the effect of different ratios of biochar-compost mixtures on availability and speciation distribution of heavy metals (Cd, Zn and Cu) in wetland soil. The results showed that applying all amendment combinations into wetland soil increased gradually the total organic carbon (TOC) and water-extract organic carbon (WEOC) as the compost percentage rose in biochar-composts. The higher pH was obtained in a certain biochar addition (20% and 40%) in combinations due to efficient interaction of biochar with compost. All amendments could significantly decrease availability of Cd and Zn mainly from pH change, but increase available Cu concentration as the result of increased water-extract organic carbon and high total Cu content in compost. Moreover, amendments can decrease easily exchangeable fraction and increase reducible of Cd and Zn greatly with increase of compost content in combinations, while amendments containing compost promote transformation of Cu from Fe/Mn oxide and residual fractions to organic bindings. These results demonstrate that different ratios of biochar and compost have a significant effect on availability and speciation of heavy metals in multi-metal-contaminated wetland soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Continuous feed, on-site composting of kitchen garbage.

    Science.gov (United States)

    Hwang, Eung-Ju; Shin, Hang-Sik; Tay, Joo-Hwa

    2002-04-01

    Kitchen garbage generated at a school cafeteria was treated and stabilised in a controlled on-site composting unit for volume reduction and on-site utilisation of processed garbage. The on-site composter was fed with the garbage on a daily basis during the two-months experimental period. Compost was not removed from the unit but was entirely reused as a bulking agent in order to minimise the need for additional bulking agent and compost handling. Performance of the composter tinder this condition was investigated. Most of the easily degradable organic matter (EDM) in the garbage was biodegraded rapidly, and the final product had a low content of EDM. Lipids, total sugar, and hemi-cellulose were degraded 96%, 81%, and 66% respectively. Free air space (FAS) was higher than 0.5 all the time, so accumulation of dry matter in the unit was not significant in reducing reaction efficiency. Other reaction parameters such as pH and MC were kept within a suitable range; however, it was advisable to maintain MC at over 46%. As a result, this method of operation was able to stabilise the garbage with low sawdust demand and little compost production.

  2. Effect of organic waste compost and microbial activity on the growth ...

    African Journals Online (AJOL)

    One of the major problems of agricultural soils in the coastal areas of the Niger Delta is the low organic matter content. Therefore, land application of composted organic material as a fertilizer source not only provides essential nutrients to plants, it also improves soil quality and effectively disposes soil wastes. In this study ...

  3. Temperature profiles of Agaricus bisporus in composting stages and ...

    African Journals Online (AJOL)

    Three compost formulas using different activator materials were prepared for Agaricus bisporus cultivation. A locally available casing material known as peat of Bolu district and its different combinations with perlite were used. Temperature profiles of all mixtures during composting were measured at every composting stages ...

  4. Amending Subsoil with Composted Poultry Litter-II: Effects on Kentucky Bluegrass (Poa pratensis Establishment, Root Growth, and Weed Populations

    Directory of Open Access Journals (Sweden)

    Mili Mandal

    2013-10-01

    Full Text Available Turfgrasses established on a soil deprived of the topsoil during construction disturbance often have low levels of density and uniformity making them susceptible to weeds. Field experiments evaluated composted poultry litter incorporation into subsoil on Kentucky bluegrass growth attributes and subsequent effects on weed populations. Top 20 cm of topsoil was removed and composted poultry litter was incorporated at 0.1, or 0.2, or 0.4 cm/cm-soil into the exposed subsoil to a depth of 12.7 cm before seeding or sodding, and was compared to N-fertilized (50 × 10−4 kg m−2 and control plots. A greenhouse experiment was also conducted to determine the effect of compost incorporation rates on turfgrass rooting depth. Turfgrass yield from seeded plots with compost incorporation rates of 0.1, 0.2, and 0.4 cm/cm-soil, were 200%, 300%, and 500% more, respectively, compared to control plots. Composted poultry litter incorporated at 0.1 cm/cm-soil resulted in at least 70 seedlings in 7.6 cm−2, which was sufficient to attain 100% turf cover. Higher incorporation rates in seeded plots maintained lower numbers of buckhorn plantain and red clover than untreated plots. Rooting depth also increased linearly with compost rates. Overall, compost treatments were able to maintain superior turf cover and quality compared to conventionally fertilized or control plots.

  5. Compost Addition Enhanced Hyphal Growth and Sporulation of Arbuscular Mycorrhizal Fungi without Affecting Their Community Composition in the Soil

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-02-01

    Full Text Available Arbuscular mycorrhizal (AM fungi form symbiotic associations with most crop plant species in agricultural ecosystems, and are conspicuously influenced by various agricultural practices. To understand the impact of compost addition on AM fungi, we examined effect of four compost rates (0, 11.25, 22.5, and 45 Mg/ha on the abundance and community composition of AM fungi in seedling, flowering, and mature stage of soybean in a 1-year compost addition experiment system in Northeast China. Soybean [Glycine max (L. Merrill] was used as test plant. Moderate (22.5 Mg/ha and high (45 Mg/ha levels of compost addition significantly increased AM root colonization and extraradical hyphal (ERH density compared with control, whereas low (11.5 Mg/ha level of compost addition did not cause significant increase in AM root colonization and ERH density. AM fungal spore density was significantly enhanced by all the compost rates compared with control. The temporal variations analysis revealed that, AM root colonization in seedling stage was significantly lower than in flowering and mature stage. Although AM fungal operational taxonomic unit richness and community composition was unaffected by compost addition, some abundant AM fungal species showed significantly different response to compost addition. In mature stage, Rhizophagus fasciculatum showed increasing trend along with compost addition gradient, whereas the opposite was observed with Paraglomus sp. In addition, AM fungal community composition exhibited significant temporal variation during growing season. Further analysis indicated that the temporal variation in AM fungal community only occurred in control treatment, but not in low, moderate, and high level of compost addition treatments. Our findings highlighted the significant effects of compost addition on AM growth and sporulation, and emphasized that growth stage is a stronger determinant than 1-year compost addition in shaping AM fungal community in

  6. Compost Addition Enhanced Hyphal Growth and Sporulation of Arbuscular Mycorrhizal Fungi without Affecting Their Community Composition in the Soil.

    Science.gov (United States)

    Yang, Wei; Gu, Siyu; Xin, Ying; Bello, Ayodeji; Sun, Wenpeng; Xu, Xiuhong

    2018-01-01

    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most crop plant species in agricultural ecosystems, and are conspicuously influenced by various agricultural practices. To understand the impact of compost addition on AM fungi, we examined effect of four compost rates (0, 11.25, 22.5, and 45 Mg/ha) on the abundance and community composition of AM fungi in seedling, flowering, and mature stage of soybean in a 1-year compost addition experiment system in Northeast China. Soybean [ Glycine max (L.) Merrill] was used as test plant. Moderate (22.5 Mg/ha) and high (45 Mg/ha) levels of compost addition significantly increased AM root colonization and extraradical hyphal (ERH) density compared with control, whereas low (11.5 Mg/ha) level of compost addition did not cause significant increase in AM root colonization and ERH density. AM fungal spore density was significantly enhanced by all the compost rates compared with control. The temporal variations analysis revealed that, AM root colonization in seedling stage was significantly lower than in flowering and mature stage. Although AM fungal operational taxonomic unit richness and community composition was unaffected by compost addition, some abundant AM fungal species showed significantly different response to compost addition. In mature stage, Rhizophagus fasciculatum showed increasing trend along with compost addition gradient, whereas the opposite was observed with Paraglomus sp. In addition, AM fungal community composition exhibited significant temporal variation during growing season. Further analysis indicated that the temporal variation in AM fungal community only occurred in control treatment, but not in low, moderate, and high level of compost addition treatments. Our findings highlighted the significant effects of compost addition on AM growth and sporulation, and emphasized that growth stage is a stronger determinant than 1-year compost addition in shaping AM fungal community in black soil of

  7. Compost Addition Enhanced Hyphal Growth and Sporulation of Arbuscular Mycorrhizal Fungi without Affecting Their Community Composition in the Soil

    Science.gov (United States)

    Yang, Wei; Gu, Siyu; Xin, Ying; Bello, Ayodeji; Sun, Wenpeng; Xu, Xiuhong

    2018-01-01

    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most crop plant species in agricultural ecosystems, and are conspicuously influenced by various agricultural practices. To understand the impact of compost addition on AM fungi, we examined effect of four compost rates (0, 11.25, 22.5, and 45 Mg/ha) on the abundance and community composition of AM fungi in seedling, flowering, and mature stage of soybean in a 1-year compost addition experiment system in Northeast China. Soybean [Glycine max (L.) Merrill] was used as test plant. Moderate (22.5 Mg/ha) and high (45 Mg/ha) levels of compost addition significantly increased AM root colonization and extraradical hyphal (ERH) density compared with control, whereas low (11.5 Mg/ha) level of compost addition did not cause significant increase in AM root colonization and ERH density. AM fungal spore density was significantly enhanced by all the compost rates compared with control. The temporal variations analysis revealed that, AM root colonization in seedling stage was significantly lower than in flowering and mature stage. Although AM fungal operational taxonomic unit richness and community composition was unaffected by compost addition, some abundant AM fungal species showed significantly different response to compost addition. In mature stage, Rhizophagus fasciculatum showed increasing trend along with compost addition gradient, whereas the opposite was observed with Paraglomus sp. In addition, AM fungal community composition exhibited significant temporal variation during growing season. Further analysis indicated that the temporal variation in AM fungal community only occurred in control treatment, but not in low, moderate, and high level of compost addition treatments. Our findings highlighted the significant effects of compost addition on AM growth and sporulation, and emphasized that growth stage is a stronger determinant than 1-year compost addition in shaping AM fungal community in black soil of

  8. Stability measurements of compost trough electrolytic respirometry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arias, V.; Fernandez, F. J.; Rodriguez, L.; Villasenor, J.

    2009-07-01

    An experimental technique for compost stability measurements based on electrolytic respirometry was optimized and subsequently applied to a composting process. Anaerobically digested sewage sludge mixed with reed was composted during 90 days in a pilot scale rotary drum with forced aeration. Periodic solid samples were taken, and a previously optimized respirometric procedure was applied to them in order to measure the oxygen consumption. The resirometric experiments were made directly with a few grams of solid samples, optimum moisture and 37 degree centigrade during 96h. (Author)

  9. Stability measurements of compost trough electrolytic respirometry

    International Nuclear Information System (INIS)

    Sanchez-Arias, V.; Fernandez, F. J.; Rodriguez, L.; Villasenor, J.

    2009-01-01

    An experimental technique for compost stability measurements based on electrolytic respirometry was optimized and subsequently applied to a composting process. Anaerobically digested sewage sludge mixed with reed was composted during 90 days in a pilot scale rotary drum with forced aeration. Periodic solid samples were taken, and a previously optimized respirometric procedure was applied to them in order to measure the oxygen consumption. The resirometric experiments were made directly with a few grams of solid samples, optimum moisture and 37 degree centigrade during 96h. (Author)

  10. Variation in microbial population during composting of agro-industrial waste.

    Science.gov (United States)

    Coelho, Luísa; Reis, Mário; Dionísio, Lídia

    2013-05-01

    Two compost piles were prepared, using two ventilation systems: forced ventilation and ventilation through mechanical turning. The material to compost was a mixture of orange waste, olive pomace, and grass clippings (2:1:1 v/v). During the composting period (375 days), samples were periodically taken from both piles, and the enumeration of fungi, actinomycetes, and heterotrophic bacteria was carried out. All studied microorganisms were incubated at 25 and 55 °C after inoculation in appropriate growth media. Fungi were dominant in the early stages of both composting processes; heterotrophic bacteria proliferated mainly during the thermophilic stage, and actinomycetes were more abundant in the final stage of the composting process. Our results showed that the physical and chemical parameters: temperature, pH, moisture, and aeration influenced the variation of the microbial population along the composting process. This study demonstrated that composting of these types of wastes, despite the prolonged mesophilic stage, provided an expected microbial variation.

  11. Onderzoek naar de herkomst van zware metalen en organische stoffen in GFT-compost. Deel I.1 Kwaliteit van GFT-compost

    OpenAIRE

    Dekker PM; LAE

    1995-01-01

    GFT-compost, afkomstig van gescheiden ingezameld huishoudelijk afval, voldoet in de regel niet aan de kwaliteitseisen van zeer schone compost (AmvB BOOM). In het component-onderzoek wordt nagegaan of de belastende stoffen afkomstig zijn van bepaalde componenten in GFT, zodat deze componenten eventueel buiten de gescheiden inzameling van GFT kunnen worden gehouden. Voor elk onderzocht composteerbedrijf is het gemiddelde metaalgehalte in GFT-compost gerelateerd aan de normen voor schone en zeer...

  12. Efficacy of Fertilizer from Tubang-Bakod (JatrophaCurcas Linn Compost

    Directory of Open Access Journals (Sweden)

    Erma B. Quinay

    2015-11-01

    Full Text Available In order to determine the efficacy of fertilizer from Tubang-Bakod (Jatophacurcas Linn compost, an experiment was carried out in complete randomized block design based on 3 replications. Varied ratios of commercial organic fertilizer (COF and Jatropha compost (JC are 100:0, 50:50 and 0:100 and commercial inorganic fertilizers (CIF were used in planting. Parameters such as number of leaves, length of stems, size and color of leaves were determined after harvesting. The maximum number of leaves was noted in 100:0ratios of JC and COF; the lengthiest stem was noted in vegetables grown with 100:0 JC; while the largest size of leaf was noted in CIF. The color of leaves was the same for the varied ratios with a reading of 4 while the CIF has a reading of 5 in the leaf color chart. The macronutrients of JC have 2.09% N, 1.98%P and 17. 49%K.However the micronutrients of the compost were 203.66 ppm Zn, 326.27 ppmMnand 3997.30 ppmFe. These nutrients are essential for the plant growth. It was observed that potassium (K exceeded the standard for the COF which is 3.66 wt. %. K hastens maturity and increase the size and quality of vegetables.

  13. Reduction of pathogenic bacteria in organic compost using gamma irradiation

    International Nuclear Information System (INIS)

    Yun, Hye-Jeong; Lim, Sang-Yong; Song, Hyun-Pa; Kim, Byung-Keun; Chung, Byung-Yeoup; Kim, Dong-Ho

    2007-01-01

    Organic compost is a useful fertilizer for organic farming. However, it poses a microbiological hazard to the farm products because most of the composts are originated from excremental matters of domestic animals. In this study, the radiation treatment was performed to improve microbiological safety of organic compost and the effectiveness of gamma irradiation for inactivating Salmonella Typhimurium and Escherichia coli was investigated. The total aerobic and coliform bacteria in the 16 commercial composts were ranged from 10 5 to 10 7 CFU/ml and 0 to 10 3 CFU/ml, respectively. All coliform bacteria in the composts were eliminated by irradiation at a dose of 3 kGy, while about 10 2 CFU/ml of the total aerobic bacteria were survived up to 10 kGy. In the artificial inoculation test, the test organisms (inoculated at 10 7 CFU/g) were eliminated by irradiation at 3 kGy. Approximate D 10 values of Salmonella Typhimurium and E. coli in the compost were 0.40 and 0.25 kGy, respectively. In the cultivation test, the test organisms of the compost had transfer a lettuce leaves. The growth pattern of lettuce was not different between irradiated and non-irradiated composts

  14. Avaliação da qualidade de correctivos orgânicos comercializados na região de Entre Douro e Minho Quality evaluation of organic composts commercialized in the region of Entre Douro e Minho

    Directory of Open Access Journals (Sweden)

    J. Oliveira

    2009-01-01

    Full Text Available Quando não devidamente maturados, os compostos orgânicos podem causar fitotoxicidade, prejudicando o desenvolvimento das culturas e a produção. Esse efeito está frequentemente relacionado com a libertação de ácidos orgânicos de baixo peso molecular, de azoto na forma amoniacal e de dióxido de carbono. Este estudo tem como objectivo avaliar a qualidade de correctivos orgânicos em comercialização no Entre Douro e Minho. Para tal, procedeu-se a uma amostragem dos correctivos orgânicos disponíveis em treze cooperativas agrícolas da região do Entre Douro e Minho, e à elaboração de um pequeno inquérito. Na apreciação da qualidade, utilizaram-se os métodos químicos e biológicos. Os resultados obtidos permitem concluir que a qualidade dos compostos deve ser melhorada. Importa referir que, embora os resultados da apreciação da qualidade dos compostos efectuados com base na proposta de norma para a apreciação da qualidade do composto orgânico de Souteiro & Baptista (2001 indiquem que todos os compostos avaliados apresentam parâmetros químicos limitativos, os resultados da avaliação biológica revelam-se mais positivos.The maturity degree is a basic parameter in the apreciation of the quality of organic composts. When unstable or without enough maturity the organic amendment can cause phytotoxity by liberation of volatile organic acids, ammonium or carbon dioxide. With the present work we attempt to quantify the effective quality of composts in comercialization at Entre-Douro-e Minho farmers associations. Quality of composts were evaluated by chemical and biological methods. The results allow us to conclude that the quality of the organic composts must be improved. While the results of the chemical evaluation classify all samples as bad, biological evaluations bellow a better judgement.

  15. Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste

    International Nuclear Information System (INIS)

    Kopčić, Nina; Vuković Domanovac, Marija; Kučić, Dajana; Briški, Felicita

    2014-01-01

    Highlights: • Apple and tobacco waste mixture was efficiently composted during 22 days. • Physical–chemical and microbiological properties of the mixture were suitable the process. • Evaluation of selected mathematical model showed good prediction of the temperature. • The temperature curve was a “mirror image” of the oxygen concentration curve. • The peak values of the temperature were occurred 9.5 h after the peak oxygen consumption. - Abstract: Efficient composting process requires set of adequate parameters among which physical–chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min −1 . During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a “mirror image” of the oxygen concentration curve while the peak values of the temperature were occurred 9.5 h after the peak oxygen consumption

  16. Evaluation of laboratory-scale in-vessel co-composting of tobacco and apple waste

    Energy Technology Data Exchange (ETDEWEB)

    Kopčić, Nina, E-mail: nkopcic@fkit.hr; Vuković Domanovac, Marija; Kučić, Dajana; Briški, Felicita

    2014-02-15

    Highlights: • Apple and tobacco waste mixture was efficiently composted during 22 days. • Physical–chemical and microbiological properties of the mixture were suitable the process. • Evaluation of selected mathematical model showed good prediction of the temperature. • The temperature curve was a “mirror image” of the oxygen concentration curve. • The peak values of the temperature were occurred 9.5 h after the peak oxygen consumption. - Abstract: Efficient composting process requires set of adequate parameters among which physical–chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min{sup −1}. During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a “mirror image” of the oxygen concentration curve while the peak values of the temperature were occurred 9.5 h after the peak oxygen consumption.

  17. Passively Aerated Composting of Straw-Rich Organic Pig Manure

    NARCIS (Netherlands)

    Veeken, A.H.M.; Wilde, de V.; Szanto, G.; Hamelers, H.V.M.

    2002-01-01

    In this study pig manure from organic farming systems is composted with passive aeration. Effectiveness of the composting process strongly depended on the density of the compost. Best results were observed at a density of 700 kg/m3, where both aerobic degradation and drying were adequate and

  18. Composting and comerzialization of compost from organic wastes in Vitoria- Gasteiz (Spain); Estrategia de compostaje y comercializacion de compost de la fraccion organica de RSU para Vitoria-Gastez

    Energy Technology Data Exchange (ETDEWEB)

    Gil Franco, R.; Cebrian Otsoa, M.

    1997-12-31

    In the experience of the selective recovery in Vitoria-Gasteiz, were obtained a seria of conclusions about the best way to made the composting of the MSM`s organic part, alone or mixed with water treatment sludges, in addition to the possible actions in order to commercialize the obtained compost. (Author)

  19. Aerobic Food Waste Composting: Measurement of Green House Gases

    Science.gov (United States)

    Chung, J.

    2016-12-01

    Greenhouse gases (GHGs) are a major cause of global warming. While food waste composting can reduce the amount of waste being sent to traditional landfills, it also produces GHGs during the process. The objective of this research is to evaluate the GHGs emitted from an aerobic food composting machine, which is used in ISF. The Independent Schools Foundation Academy is a private independent school in Hong Kong with approximately 1500 students. Each academic year, the school produces 27 metric tons of food waste. In November 2013, the school installed a food waste composting system. Over the past 3 years, various improvements, such as installing a bio-filter to reduce the smell of the compost, have been made to the composting process. Meanwhile the compost is used by the primary students, as part of their experiential learning curriculum and organic farming projects. The composting process employs two machines: the Dehydra and A900 Rocket. The Dehydra reduces the mass of the food waste by separating the ground food waste and excessive water. The A900 Rocket, a composter made by Tidy Planet, processes food waste into compost in 14 days. This machine runs in an aerobic process, in which oxygen is used as an input gas and gases, such as carbon dioxide, are released. Carbon Dioxide is one of the greenhouse gases (GHGs). This research focuses on GHGs that are emitted from the A900 Rocket. The data is collected by the Gasmet DX 4015, a Fourier transform infrared spectroscopy (FTIR) multi gas analyser. This equipment measures the concentration (ppm) of different GHGs, including N2O, CO2, CH4, NH3 and CO.

  20. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing.

    Science.gov (United States)

    Galitskaya, Polina; Biktasheva, Liliya; Saveliev, Anatoly; Grigoryeva, Tatiana; Boulygina, Eugenia; Selivanovskaya, Svetlana

    2017-01-01

    Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the