WorldWideScience

Sample records for high pumping rates

  1. Solid state pump lasers with high power and high repetition rate

    Oba, Masaki; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    We built a laser diode pumped solid state green laser (LDPSSGL) rated at high repetition rate. Two laser heads are placed in one cavity with a rotator in between to design to avoid thermal lensing and thermal birefringence effect. Although average green laser power higher than 10 W was obtained at 1 kHz repetition rate with pulse width of 20-30 nsec, the beam quality was so much deteriorated that energy efficiency was as low as 2 %. Learning from this experience that high power oscillator causes a lot of thermal distortion not only in the laser rod but also in the Q-switch device, we proceeded to built a oscillator/amplifier system. A low power oscillator has a slab type crystal in the cavity. As a result spatial distribution of laser power was extremely improved. As we expect that the high repetition rate solid state laser should be CW operated Q-switch type laser from the view point of lifetime of diode lasers, a conventional arc lamp pumped CW Q-switch green YAG laser of which the repetition rate is changeable from 1 kHz to 5 kHz and the pulse width is 250-570 nsec was also tested to obtain pumping characteristics of a dye laser as a function of power, pulse width etc., and dye laser pulse width of 100-130 nsec were obtained. (author)

  2. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    Schulz, Michael

    2013-08-15

    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  3. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    Schulz, Michael

    2013-08-01

    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  4. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  5. Development of high repetition rate ultra-short pulse solid state lasers pumped by laser diodes

    Ueda, Ken-ichi; Lu, Jianren; Takaichi, Kazunori; Yagi, Hideki; Yanagitani, Takakimi; Kaminskii, Alexander; Kawanaka, Junji

    2004-01-01

    A novel technique for ceramic lasers has been developed recently. Self-energy-driven sintering of nano-and micro particles created the fully transparent Nd:YAG ceramics. The ceramic YAG demonstrated high efficiency operation (optical-to-optical conversion of 60% in end pumping) and solid-phase crystals growth and the possible scaling were investigated principally. Typical performance of ceramic YAG laser has been reviewed. The present status and future prospect of the ceramic lasers technologies were discussed. (author)

  6. High-vacuum plasma pump

    Dorodnov, A.M.; Minajchev, V.E.; Miroshkin, S.I.

    1980-01-01

    The action of an electric-arc high-vacuum pump intended for evacuating the volumes in which the operation processes are followed by a high gas evolution is considered. The operation of the pump is based on the principle of controlling the getter feed according to the gas load and effect of plasma sorbtion pumping. The pump performances are given. The starting pressure is about 5 Pa, the limiting residual pressure is about 5x10 -6 Pa, the pumping out rate of nitrogen in the pressure range 5x10 -5 -5x10 -3 Pa accounts for about 4000 l/s, the power consumption comes to 6 kW. Analyzing the results of the test operation of the pump, it has been concluded that its principal advantages are the high starting pressure, controlled getter feed rate and possibility of pumping out the gases which are usually pumped out with difficulty. The operation reliability of the pump is defined mainly by reliable operation of the ignition system of the vacuum arc [ru

  7. HIGH REPETITION RATE MICROCHIP ER3+,YB3+:YAL3(BO34 DIODE-PUMPED LASER

    K. N. Gorbachenya

    2012-01-01

    Full Text Available Diode-pumped passively Q-switched microchip Er,Yb:YAl3(BO34 laser for range-finding has been demonstrated. By using a Co2+:MgAl2O4 as a saturable absorber TEM00–mode Q-switched average output power of 315 mW was demonstrated at 1522 nm with pulse duration of 5 ns and pulse energy of 5,25 μJ at a repetition rate of 60 kHz.

  8. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.

    Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E

    2013-08-15

    We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.

  9. High Voltage Charge Pump

    Emira, Ahmed A.; Abdelghany, Mohamed A.; Elsayed, Mohannad Yomn; Elshurafa, Amro M; Salama, Khaled N.

    2014-01-01

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  10. High Voltage Charge Pump

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  11. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  12. High efficiency, variable geometry, centrifugal cryogenic pump

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  13. High temperature industrial heat pumps

    Berghmans, J. (Louvain Univ., Heverlee (Belgium). Inst. Mechanica)

    1990-01-01

    The present report intends to describe the state of the art of high temperature industrial heat pumps. A description is given of present systems on the market. In addition the research and development efforts on this subject are described. Compression (open as well as closed cycle) systems, as well as absorption heat pumps (including transformers), are considered. This state of the art description is based upon literature studies performed by a team of researchers from the Katholieke Universiteit Leuven, Belgium. The research team also analysed the economics of heat pumps of different types under the present economic conditions. The heat pumps are compared with conventional heating systems. This analysis was performed in order to evaluate the present condition of the heat pump in the European industry.

  14. High pressure liquid gas pump

    Acres, R. L.

    1972-01-01

    Design and development of two types of pumps for handling liquefied gases are discussed. One pump uses mechanical valve shift and other uses pneumatic valve shift. Illustrations of pumps are provided and detailed description of operation is included.

  15. Fusion reactor high vacuum pumping

    Sedgley, D.W.; Walthers, C.R.; Jenkins, E.M.

    1992-01-01

    This paper reports on recent experiments which have shown the practicality of using activated carbon (coconut charcoal) at 4K to pump helium and hydrogen isotopes for a fusion reactor. Both speed and capacity for deuterium/helium and tritium/helium-3 mixtures were satisfactory. The long-term effects of tritium on the charcoal/cement system developed by Grumman and LLNL was now known; therefore a program was undertaken to see what, if any, effect long-term tritium exposure has on the cryosorber. Several charcoal on aluminum test samples were subjected to six months exposure of tritium at approximately 77 K. The tritium was scanned several times with a residual gas analyzer and the speed-capacity performance of the samples was measured before, approximately one-third way through, and after the exposure. Modest effects were noted which would not seriously restrict the use of charcoal as a cryosorber for fusion reactor high-vacuum pumping applications

  16. Neutral pumping rates for a next step tokamak ignition device

    Galambos, J.D.; Peng, Y.K.M.; Heifetz, D.

    1985-01-01

    Neutral pumping rates are calculated for pump-limiter and divertor options of a next step tokamak ignition device using a method that accounts for the coupled effects of neutral transport and plasma transport. For both pump limiters and divertors the plasma flow into the channel surrounding the neutralizer plate is greatly reduced by the neutral recycling. The fraction of this flow that is pumped can be large (>50%) but in general is dependent on the particular geometry and plasma conditions. It is estimated that pumping speeds greater than or approximately 10 5 L/s are adequate for the exhaust requirements in the pump-limiter and the divertor cases

  17. Compact and highly efficient laser pump cavity

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  18. High temperature thermoacoustic heat pump

    Tijani, H.; Spoelstra, S. [Energy research Centre of the Netherlands, 1755 ZG Petten (Netherlands)

    2012-06-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. A thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestics and offices energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6% and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  19. High Temperature Thermoacoustic Heat Pump

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-07-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  20. High-vacuum pumping out of hydrogen isotopes by compressed and electrophysical pumps

    Bychkova, A.D.; Ershova, Z.V.; Saksaganskij, G.L.; Serebrennikov, D.V.

    1982-01-01

    To explain the selection of parameters of vacuum systems of projected thermonuclear devices, experiments are performed on the pumping-out of deuterium and tritium by high-vacuum pumps of different types. The values of the fast response of turbomolecular, diffusion vapour-mercury, magneto-discharge and titanium getter pumps in the operation pressure range are determined. The rate of sorption of hydrogen isotopes by non-spraying gas absorber of cial alloy depending on the amount of the gas absorbed and temperature, is measured. Gas current is determined by the pressure drop on the diagram of the known conductivity. Individual calibration of manometric converters for different gases using a mercury burette is performed preliminarily. The means of high-vacuum pumping-out that have been studied have the following values of fast response for tritium (relatively to protium): turbomolecular pump-0.95; evaporation getter pump-0.25; magneto-discharge pumps-0.65-0.9; cial alloy-0.1...0.5

  1. Effect of Non-linear Velocity Loss Changes in Pumping Stage of Hydraulic Ram Pumps on Pumping Discharge Rate

    Reza Fatahialkouhi

    2018-03-01

    the previous researchers. Comparing the results indicates that in the proposed model, noticing that the recommended equations of pumping stage are presented based on nonlinear closing theory of the impulse valve, the model accuracy for predicting relative pumping rate has been increased up to 3% compared with linear closure theory (Lansford and Dugan, 1941 and has been increased up to 5% compared with rapid closure theory (Tacke, 1988.

  2. Campaign for A-rated circulator pumps - a proven strategy

    Lueders, Christian; Wilke, Goeran (The Danish Electricity Saving Trust (Denmark)); Dam Wied, Martin (Wormslev - NRGi Raadgivning A/S (Denmark))

    2009-07-01

    1.2 million households in Denmark have a central heating circulator pump. An estimated 800,000 pumps installed are old and inefficient. Potential savings per year of 400 GWh and 200,000 tons of CO{sub 2} can be achieved by replacing these obsolete pumps. However, many consumers and installers have neither an opinion about, nor play an active role in choosing a circulator pump. This paper documents how it is possible to promote the wider use of A-rated circulator pumps via an offensive campaign strategy to get both consumers and installers to participate actively in the choice of pump, thereby increasing the market share of A-rated pumps sold. The campaign is based on a broadly-based push-pull strategy which aims to influence both consumers and suppliers simultaneously. The strategy consists of the following elements: Involvement of the supply side via voluntary agreements with producers, wholesalers, installers, and their trade organisations; Partnerships with installers in order to secure fixed price installations for A-rated pumps; Influencing consumers through magazine advertisements and TV commercials. The market share for A-rated circulator pumps in Denmark grew from 15-60% in the period January 2006 to the end of October 2008. In a new phase, the strategy is switching the focus to OEM and boiler producers, and producers of heat exchangers for district and underfloor heating systems. The aim of the current phase was for A pumps to have accounted for 60% of the Danish market by the end of 2008

  3. Flow Rate In Microfluidic Pumps As A Function Of Tension and Pump Motor Head Speed

    Irwin, Anthony; McBride, Krista

    2015-03-01

    As the use of microfluidic devices has become more common in recent years the need for standardization within the pump systems has grown. The pumps are ball bearing rotor microfluidic pumps and work off the idea of peristalsis. The rapid contraction and relaxation propagating down a tube or a microfluidic channel. The ball bearings compress the tube (occlusion) and move along part of the tube length forcing fluid to move inside of the tube in the same direction of the ball bearings. When the ball bearing rolls off the area occupied by the microfluidic channel, its walls and ceiling undergo restitution and a pocket of low pressure is briefly formed pulling more of the liquid into the pump system. Before looking to standardize the pump systems it must be known how the tension placed by the pumps bearing heads onto the PDMS inserts channels affect the pumps performance (mainly the flow rate produced). The relationship of the speed at which the bearings on the motor head spin and the flow rate must also be established. This research produced calibration curves for flow rate vs. tension and rpm. These calibration curves allow the devices to be set to optimal user settings by simply varying either the motor head tension or the motor head speed. I would like to acknowledge the help and support of Vanderbilt University SyBBURE program, Christina Marasco, Stacy Sherod, Franck Block and Krista McBride.

  4. High-repetition-rate setup for pump-probe time-resolved XUV-IR experiments employing ion and electron momentum imaging

    Pathak, Shashank; Robatjazi, Seyyed Javad; Wright Lee, Pearson; Raju Pandiri, Kanaka; Rolles, Daniel; Rudenko, Artem

    2017-04-01

    J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan KS, USA We report on the development of a versatile experimental setup for XUV-IR pump-probe experiments using a 10 kHz high-harmonic generation (HHG) source and two different charged-particle momentum imaging spectrometers. The HHG source, based on a commercial KM Labs eXtreme Ultraviolet Ultrafast Source, is capable of delivering XUV radiation of less than 30 fs pulse duration in the photon energy range of 17 eV to 100 eV. It can be coupled either to a conventional velocity map imaging (VMI) setup with an atomic, molecular, or nanoparticle target; or to a novel double-sided VMI spectrometer equipped with two delay-line detectors for coincidence studies. An overview of the setup and results of first pump-probe experiments including studies of two-color double ionization of Xe and time-resolved dynamics of photoionized CO2 molecule will be presented. This project is supported in part by National Science Foundation (NSF-EPSCOR) Award No. IIA-1430493 and in part by the Chemical science, Geosciences, and Bio-Science division, Office of Basic Energy Science, Office of science, U.S. Department of Energy. K.

  5. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    Lai, Z N; Wu, P; Wu, D Z; Wang, L Q

    2013-01-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m 3 /h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result

  6. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  7. High capacity getter pump for UHV operation

    Manini, P.; Marino, M.; Belloni, F.; Porro, M.

    1993-01-01

    UHV pumps based on non-evaporable getter coated strips find widespread use in particle accelerators, synchrotron radiation machines and nuclear fusion experimental devices. Depending on the geometric constraints, pressure operation conditions and the foreseen gas loads, optimized getter structures, such as modules and cartridges, can be designed and assembled into a high-efficiency pump. In the present paper, the design and performance of a newly conceived High Capacity Getter Pump (HCGP) based on sintered getter bodies, in the shape of blades instead of strips, is illustrated. The porosity and the specific surface area of the blades and their arrangement in the cartridge have been optimized to significantly increase sorption capacity at a given speed. These pumps are well suited for those applications where a very high gas load is expected during the machine operation. The sintered getter bodies increase surface area and capacity, requiring less frequent reactivation and facilitating greater overall life of the pump. A discussion of the experimental results in terms of sorption speed and capacity for various gases is presented

  8. Wall relaxation rates for an optically pumped NA vapor

    Swenson, D.R.; Anderson, L.W.

    1986-01-01

    The wall relaxation rates for an optically pumped Na vapor have been measured for a variety of wall surfaces. We find that fluorocarbon rubber (Fluorel, Viton) and organosilicones (silicone rubber, dry film) at a temperature of 250 C have respectively relaxation rates that correspond on the average to 10 to 15 and 200 to 500 bounces before depolarization occurs. 7 refs., 3 figs

  9. High aspect ratio, remote controlled pumping assembly

    Brown, Steve B.; Milanovich, Fred P.

    1995-01-01

    A miniature dual syringe-type pump assembly which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor.

  10. Sodium flow rate measurement method of annular linear induction pumps

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.

    2012-01-01

    Highlights: ► We found a new method of flow rate monitoring of electromagnetic pump. ► The method is very simple and does not require a large space. ► The method was verified with an experiment and a numerical analysis. ► The experimental data and the numerical results are in good agreement. - Abstract: The present paper proposes a method for measuring sodium flow rate of annular linear induction pumps. The feature of the method lies in measuring the leaked magnetic field with measuring coils near the stator end on the outlet side and in correlating it with the sodium flow rate. This method is verified through an experiment and a numerical analysis. The data obtained in the experiment reveals that the correlation between the leaked magnetic field and the sodium flow rate is almost linear. The result of the numerical analysis agrees with the experimental data. The present method will be particularly effective to sodium flow rate monitoring of each one of plural annular linear induction pumps arranged in parallel in a vessel which forms a large-scale pump unit.

  11. PUMPS

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  12. Sodium flow rate measurement method of annular linear induction pump

    Araseki, Hideo

    2011-01-01

    This report describes a method for measuring sodium flow rate of annular linear induction pumps arranged in parallel and its verification result obtained through an experiment and a numerical analysis. In the method, the leaked magnetic field is measured with measuring coils at the stator end on the outlet side and is correlated with the sodium flow rate. The experimental data and the numerical result indicate that the leaked magnetic field at the stator edge keeps almost constant when the sodium flow rate changes and that the leaked magnetic field change arising from the flow rate change is small compared with the overall leaked magnetic field. It is shown that the correlation between the leaked magnetic field and the sodium flow rate is almost linear due to this feature of the leaked magnetic field, which indicates the applicability of the method to small-scale annular linear induction pumps. (author)

  13. Benefits and risks of using smart pumps to reduce medication error rates: a systematic review.

    Ohashi, Kumiko; Dalleur, Olivia; Dykes, Patricia C; Bates, David W

    2014-12-01

    Smart infusion pumps have been introduced to prevent medication errors and have been widely adopted nationally in the USA, though they are not always used in Europe or other regions. Despite widespread usage of smart pumps, intravenous medication errors have not been fully eliminated. Through a systematic review of recent studies and reports regarding smart pump implementation and use, we aimed to identify the impact of smart pumps on error reduction and on the complex process of medication administration, and strategies to maximize the benefits of smart pumps. The medical literature related to the effects of smart pumps for improving patient safety was searched in PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) (2000-2014) and relevant papers were selected by two researchers. After the literature search, 231 papers were identified and the full texts of 138 articles were assessed for eligibility. Of these, 22 were included after removal of papers that did not meet the inclusion criteria. We assessed both the benefits and negative effects of smart pumps from these studies. One of the benefits of using smart pumps was intercepting errors such as the wrong rate, wrong dose, and pump setting errors. Other benefits include reduction of adverse drug event rates, practice improvements, and cost effectiveness. Meanwhile, the current issues or negative effects related to using smart pumps were lower compliance rates of using smart pumps, the overriding of soft alerts, non-intercepted errors, or the possibility of using the wrong drug library. The literature suggests that smart pumps reduce but do not eliminate programming errors. Although the hard limits of a drug library play a main role in intercepting medication errors, soft limits were still not as effective as hard limits because of high override rates. Compliance in using smart pumps is key towards effectively preventing errors. Opportunities for improvement include upgrading drug

  14. Experimental study on effects of double pumps switching on water supply flow rate

    Wang Xin; Han Weishi

    2012-01-01

    Flow characteristics in the process of switching one centrifugal pump to the other was investigated experimentally using a closed loop with two centrifugal pumps and two check valves. Characteristics of the check valves responding and the flow rate changing during the process of switching was studied by experimental data analysis. The results show that in the switching process with high and low original flow rate, the restoring time is 26 s and 21 s respectively; the lowest flow rates are 59.4% and 87.2% out of that in normal water supply, and the average deficit of feed water is 20.8% and 7.5% respectively. Compared to double-pump switching with low flow rate, a longer transition time. more intense flow fluctuations and increased water loss are observed with high flow rate, which has significantly effects on the stability of water supply. (authors)

  15. 7 CFR 58.219 - High pressure pumps and lines.

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The high...

  16. Stress Introduction Rate Alters the Benefit of AcrAB-TolC Efflux Pumps.

    Langevin, Ariel M; Dunlop, Mary J

    2018-01-01

    Stress tolerance studies are typically conducted in an all-or-none fashion. However, in realistic settings-such as in clinical or metabolic engineering applications-cells may encounter stresses at different rates. Therefore, how cells tolerate stress may depend on its rate of appearance. To address this, we studied how the rate of stress introduction affects bacterial stress tolerance by focusing on a key stress response mechanism. Efflux pumps, such as AcrAB-TolC of Escherichia coli , are membrane transporters well known for the ability to export a wide variety of substrates, including antibiotics, signaling molecules, and biofuels. Although efflux pumps improve stress tolerance, pump overexpression can result in a substantial fitness cost to the cells. We hypothesized that the ideal pump expression level would involve a rate-dependent trade-off between the benefit of pumps and the cost of their expression. To test this, we evaluated the benefit of the AcrAB-TolC pump under different rates of stress introduction, including a step, a fast ramp, and a gradual ramp. Using two chemically diverse stresses, the antibiotic chloramphenicol and the jet biofuel precursor pinene, we assessed the benefit provided by the pumps. A mathematical model describing these effects predicted the benefit as a function of the rate of stress introduction. Our findings demonstrate that as the rate of introduction is lowered, stress response mechanisms provide a disproportionate benefit to pump-containing strains, allowing cells to survive beyond the original inhibitory concentrations. IMPORTANCE Efflux pumps are ubiquitous in nature and provide stress tolerance in the cells of species ranging from bacteria to mammals. Understanding how pumps provide tolerance has far-reaching implications for diverse fields, from medicine to biotechnology. Here, we investigated how the rate of stressor appearance impacts tolerance. We focused on two distinct substrates of AcrAB-TolC efflux pumps, the

  17. High power diode pumped solid state lasers

    Solarz, R.; Albrecht, G.; Beach, R.; Comaskey, B.

    1992-01-01

    Although operational for over twenty years, diode pumped solid state lasers have, for most of their existence, been limited to individual diodes pumping a tiny volume of active medium in an end pumped configuration. More recent years have witnessed the appearance of diode bars, packing around 100 diodes in a 1 cm bar which have enabled end and side pumped small solid state lasers at the few Watt level of output. This paper describes the subsequent development of how proper cooling and stacking of bars enables the fabrication of multi kill average power diode pump arrays with irradiances of 1 kw/cm peak and 250 W/cm 2 average pump power. Since typical conversion efficiencies from the diode light to the pumped laser output light are of order 30% or more, kW average power diode pumped solid state lasers now are possible

  18. A novel high efficiency solar photovoltalic pump

    Diepens, J.F.L.; Smulders, P.T.; Vries, de D.A.

    1993-01-01

    The daily average overall efficiency of a solar pump system is not only influenced by the maximum efficiency of the components of the system, but just as much by the correct matching of the components to the local irradiation pattern. Normally centrifugal pumps are used in solar pump systems. The

  19. Novel High Pressure Pump-on-a-Chip Technology, Phase II

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. proposes to develop a novel high pressure "pump-on-a-chip" (HPPOC) technology capable of generating high pressure and flow rate on...

  20. Leak rate analysis of the Westinghouse Reactor Coolant Pump

    Boardman, T.; Jeanmougin, N.; Lofaro, R.; Prevost, J.

    1985-07-01

    An independent analysis was performed by ETEC to determine what the seal leakage rates would be for the Westinghouse Reactor Coolant Pump (RCP) during a postulated station blackout resulting from loss of ac electric power. The object of the study was to determine leakage rates for the following conditions: Case 1: All three seals function. Case 2: No. 1 seal fails open while Nos. 2 and 3 seals function. Case 3: All three seals fail open. The ETEC analysis confirmed Westinghouse calculations on RCP seal performance for the conditions investigated. The leak rates predicted by ETEC were slightly lower than those predicted by Westinghouse for each of the three cases as summarized below. Case 1: ETEC predicted 19.6 gpm, Westinghouse predicted 21.1 gpm. Case 2: ETEC predicted 64.7 gpm, Westinghouse predicted 75.6 gpm. Case 3: ETEC predicted 422 gpm, Westinghouse predicted 480 gpm. 3 refs., 22 figs., 6 tabs

  1. High-efficiency diode-pumped femtosecond Yb:YAG ceramic laser

    Zhou, Binbin; Wei, Z.Y.; Zou, Y.W.

    2010-01-01

    A highly efficient diode-end-pumped femtosecond Yb:yttrium aluminum garnet (YAG) ceramic laser was demonstrated. Pumped by a 968 nm fiber-coupled diode laser, 1.9 W mode-locked output power at a repetition rate of 64.27 MHz was obtained with 3.5 W absorbed pump power, corresponding to a slope...... efficiency of 76%. Our measurement showed that the pulse duration was 418 fs with the central wavelength of 1048 nm....

  2. A high-flow holweck pump for fusion applications

    Iseli, M.; Dinner, P.J.; Murdoch, D.K.

    1995-01-01

    Present concepts for power reactors require high pumping speed for the torus exhaust (10 5 -10 6 1/s) with low tritium inventories. Conventional approaches using Compound Cryopumps necessitate high tritium inventories and Turbomolecular pumps require large scale-up in throughput and are sensitive to eddy current heating of the rotor and sudden venting thrust. Cooling the gas to low temperature (20K) increases the gas density at the pump-entrance enough to obtain high throughputs from compact mechanical devices such as molecular drag pumps. A numerical model of such a pump and experimental results confirm the high pumping speed achievable with this concept. The model is used for extrapolation and optimisation of the design of a prototype. (orig.)

  3. Design of a high-pressure circulating pump for viscous liquids.

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 degrees C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 degrees C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 degrees C on a daily basis for a total of more than 1500 h of operation functioning trouble free.

  4. Improvement of performance of vibration pump for molten salt at high temperature

    Watanabe, Hideo; Hashimoto, Hiroyuki; Katagiri, Kazunari; Tang Bomin.

    1996-01-01

    An experimental study was conducted to improve the performance of a vibration pump using a vibrating pipe for conveying the molten salt at 784 K. A new system to measure the pump performance safely at such a high temperature was developed, which was characterized by simplicity in construction and ease of operation. All parts of the system, including a pump, valves and a volume tank to measure the volumetric flow rate, were placed in a cylindrical tank. The pump was driven by an air actuator. Experimental results indicated that the measuring system fulfilled the intended function: the pump worked effectively and its performance was safely evaluated at a high temperature. A few possible improvements related to the construction of the pump were suggested based on the results. (author)

  5. High-efficiency pumps drastically reduce energy consumption

    Anon

    2002-05-01

    Wilo's Stratos pumps for air conditioning and other domestic heating applications combine the advantages of wet runner technology with an innovative electronic commutator motor. The energy consumption of these high-efficiency pumps is halved compared with similar wet runner designs. With vast numbers of pumps used in buildings across Europe alone, the adoption of this technology potentially offers significant energy sayings. (Author)

  6. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    Chen, T; Liu, Y L; Sun, Y B; Wang, L Q; Wu, D Z

    2013-01-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated

  7. Failure cause and failure rate evaluation on pumps of BWR plants in PSA. Hypothesis testing for typical or plant specific failure rate of pumps

    Sanada, Takahiro; Nakamura, Makoto

    2009-01-01

    In support of domestic nuclear industry effort to gather and analyze failure data of components concerning nuclear power plants, Nuclear Information Archives (NUCIA) are published for useful information to help PSA. This report focuses on NUCIA pertaining to pumps in domestic nuclear power plants, and provides the reliable estimation on failure rate of pumps resulting from failure cause analysis and hypothesis testing of classified and plant specific failure rate of pumps for improving quality in PSA. The classified and plant specific failure rate of pumps are estimated by analyzing individual domestic nuclear power plant's data of 26 Boiling Water Reactors (BWRs) concerning functionally structurally classified pump failures reported from beginning of commercial operation to March 31, 2007. (author)

  8. Solar Pumped High Power Solid State Laser for Space Applications

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  9. High brightness diode-pumped organic solid-state laser

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien, E-mail: sebastien.forget@univ-paris13.fr [Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, F-93430, Villetaneuse (France); CNRS, UMR 7538, LPL, F-93430, Villetaneuse (France)

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  10. High population increase rates.

    1991-09-01

    In addition to its economic and ethnic difficulties, the USSR faces several pressing demographic problems, including high population increase rates in several of its constituent republics. It has now become clear that although the country's rigid centralized planning succeeded in covering the basic needs of people, it did not lead to welfare growth. Since the 1970s, the Soviet economy has remained sluggish, which as led to increase in the death and birth rates. Furthermore, the ideology that held that demography could be entirely controlled by the country's political and economic system is contradicted by current Soviet reality, which shows that religion and ethnicity also play a significant role in demographic dynamics. Currently, Soviet republics fall under 2 categories--areas with high or low natural population increase rates. Republics with low rates consist of Christian populations (Armenia, Moldavia, Georgia, Byelorussia, Russia, Lithuania, Estonia, Latvia, Ukraine), while republics with high rates are Muslim (Tadzhikistan, Uzbekistan, Turkmenistan, Kirgizia, Azerbaijan Kazakhstan). The later group has natural increase rates as high as 3.3%. Although the USSR as a whole is not considered a developing country, the later group of republics fit the description of the UNFPA's priority list. Another serious demographic issue facing the USSR is its extremely high rate of abortion. This is especially true in the republics of low birth rates, where up to 60% of all pregnancies are terminated by induced abortions. Up to 1/5 of the USSR's annual health care budget is spent on clinical abortions -- money which could be better spent on the production of contraceptives. Along with the recent political and economic changes, the USSR is now eager to deal with its demographic problems.

  11. Statistical analysis of nuclear power plant pump failure rate variability: some preliminary results

    Martz, H.F.; Whiteman, D.E.

    1984-02-01

    In-Plant Reliability Data System (IPRDS) pump failure data on over 60 selected pumps in four nuclear power plants are statistically analyzed using the Failure Rate Analysis Code (FRAC). A major purpose of the analysis is to determine which environmental, system, and operating factors adequately explain the variability in the failure data. Catastrophic, degraded, and incipient failure severity categories are considered for both demand-related and time-dependent failures. For catastrophic demand-related pump failures, the variability is explained by the following factors listed in their order of importance: system application, pump driver, operating mode, reactor type, pump type, and unidentified plant-specific influences. Quantitative failure rate adjustments are provided for the effects of these factors. In the case of catastrophic time-dependent pump failures, the failure rate variability is explained by three factors: reactor type, pump driver, and unidentified plant-specific influences. Finally, point and confidence interval failure rate estimates are provided for each selected pump by considering the influential factors. Both types of estimates represent an improvement over the estimates computed exclusively from the data on each pump

  12. High vacuum portable pumping station suitable for accelerator use

    Stattel, P.; Briggs, J.; DeBoer, W.; Skelton, R.

    1985-01-01

    The need for a Portable Pump Station for Ultra High Vacuum use became apparent when the ''Isabelle'' collider was first being designed. A Portable Pump Station had to be developed which contained the following features: maneuverability, compact size, rugged, self protected against various failures, capable of running unattended, and capable of reaching 10 -9 torr. The Pump Station that was developed and other variations are the subject of this paper. Emphasis will be on the Isabelle and HITL versions. 1 ref., 2 figs., 1 tab

  13. Pressurizer pump reliability analysis high flux isotope reactor

    Merryman, L.; Christie, B.

    1993-01-01

    During a prolonged outage from November 1986 to May 1990, numerous changes were made at the High Flux Isotope Reactor (HFIR). Some of these changes involved the pressurizer pumps. An analysis was performed to calculate the impact of these changes on the pressurizer system availability. The analysis showed that the availability of the pressurizer system dropped from essentially 100% to approximately 96%. The primary reason for the decrease in availability comes because off-site power grid disturbances sometimes result in a reactor trip with the present pressurizer pump configuration. Changes are being made to the present pressurizer pump configuration to regain some of the lost availability

  14. Cavitation performance improvement of high specific speed mixed-flow pump

    Chen, T; Sun, Y B; Wu, D Z; Wang, L Q

    2012-01-01

    Cavitation performance improvement of large hydraulic machinery such as pump and turbine has been a hot topic for decades. During the design process of the pumps, in order to minimize size, weight and cost centrifugal and mixed-flow pump impellers are required to operate at the highest possible rotational speed. The rotational speed is limited by the phenomenon of cavitation. The hydraulic model of high-speed mixed-flow pump with large flow rate and high pumping head, which was designed based on the traditional method, always involves poor cavitation performance. In this paper, on the basis of the same hydraulic design parameters, two hydraulic models of high-speed mixed-flow pump were designed by using different methods, in order to investigate the cavitation and hydraulic performance of the two models, the method of computational fluid dynamics (CFD) was adopted for internal flow simulation of the high specific speed mixed-flow pump. Based on the results of numerical simulation, the influences of impeller parameters and three-dimensional configuration on pressure distribution of the blades' suction surfaces were analyzed. The numerical simulation results shows a better pressure distribution and lower pressure drop around the leading edge of the improved model. The research results could provide references to the design and optimization of the anti-cavitation blade.

  15. A High-Energy Good-Beam-Quality Krypton-Lamp-Pumped Nd:YAG Solid-State Laser with One Pump Cavity

    LIU Xue-Sheng; WANG Zhi-Yong; YAN Xin; CAO Ying-Hua

    2008-01-01

    We investigate a high-energy good-beam-quality krypton-lamp-pumped pulsed Nd:YAG solid-state laser with one pump cavity.The symmetrical resonator laser is developed and is rated at 80 J with beam parameter product 12mm mrad.The total system electro-optics efficiency of the lamp-pumped YAG laser is as high as 3.3% and the stability of output energy is ±2% with pulse width tunable between 0.1 ms and 10ms.The experimental results are consistent with the theoretical analysis and simulation.

  16. High Speed Pump-Probe Apparatus for Observation of Transitional Effects in Ultrafast Laser Micromachining Processes

    Ilya Alexeev

    2015-12-01

    Full Text Available A pump-probe experimental approach has been shown to be a very efficient tool for the observation and analysis of various laser matter interaction effects. In those setups, synchronized laser pulses are used to create an event (pump and to simultaneously observe it (probe. In general, the physical effects that can be investigated with such an apparatus are restricted by the temporal resolution of the probe pulse and the observation window. The latter can be greatly extended by adjusting the pump-probe time delay under the assumption that the interaction process remains fairly reproducible. Unfortunately, this assumption becomes invalid in the case of high-repetition-rate ultrafast laser material processing, where the irradiation history strongly affects the ongoing interaction process. In this contribution, the authors present an extension of the pump-probe setup that allows to investigate transitional and dynamic effects present during ultrafast laser machining performed at high pulse repetition frequencies.

  17. Optimization of High-Energy Implanter Beamline Pumping

    LaFontaine, Marvin; Pharand, Michel; Huang Yongzhang; Pokidov, Ilya; Ferrara, Joseph

    2006-01-01

    A high-energy implanter process chamber and its pumping configuration were designed to minimize the residual gas density in the endstation. A modified Nastran trade mark sign finite-element analysis (FEA) code was used to calculate the pressure distribution and gas flow within the process chamber. The modified FE method was readily applied to the internal geometry of the scan chamber, the corrector magnet waveguide, and the process chamber, which included the scan arm assembly, 300mm wafer, and plasma electron flood gun (PEF). Using the modified Nastran code, the gas flow and pressure distribution within the beamline geometry were calculated. The gas load consisted of H2, which is generated by photoresist (PR) outgassing from the 300mm wafer, and Xe from the plasma electron flood gun. Several pumping configurations were assessed, with each consisting of various locations and pumping capacities of vacuum pumps. The pressure distribution results for each configuration are presented, along with pumping efficiency results which are helpful in selecting the optimum pump configuration. The analysis results were compared to measured data, indicating a good correlation between the two

  18. Arrayed architectures for multi-stage Si-micromachined high-flow Knudsen pumps

    Qin, Yutao; An, Seungdo; Gianchandani, Yogesh B

    2015-01-01

    This paper reports an evaluation and a comparison of two architectures for implementing Si-micromachined high-flow Knudsen pumps. Knudsen pumps, which operate on the principle of thermal transpiration, have been shown to have great promise for micro-scale gas phase fluidic systems such as micro gas chromatographs. Simultaneously achieving both a high flow rate and adequate blocking pressure has been a persistent challenge, which is addressed in this work by combining multiple pumps in series and addressing the resulting challenges in thermal management. The basic building block is a Si-micromachined pump with  ≈100 000 parallel channels in a 4 mm  ×  6 mm footprint. In the primary approach, multiple pump stages are stacked vertically with interleaved Si-micromachined spacers. A stacked 4-stage Knudsen pump has a form factor of 10 mm  ×  8 mm  ×  6 mm. In an alternate approach, multiple stages are arranged in a planar array. The experimental results demonstrate multiplication of the output pressure head with the number of stages, while the flow rate is maintained. For example, a stacked 4-stage Knudsen pump with 8 W power operated at atmospheric pressure provided a blocking pressure of 0.255 kPa, which was 3.6  ×  of that provided by a single-stage pump with 2 W power; while both provided a  ≈  30 sccm maximum flow rate. The performance can be customized for practical applications such as micro gas chromatography. (paper)

  19. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    Horton, W. Travis [Purdue University; Groll, Eckhard A. [Purdue University; Braun, James E. [Purdue University

    2014-06-01

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested

  20. Pump

    Mole, C.J.

    1983-01-01

    An electromagnetic pump for circulating liquid -metal coolant through a nuclear reactor wherein opposite walls of a pump duct serve as electrodes to transmit current radially through the liquid-metal in the ducts. A circumferential electric field is supplied to the liquid-metal by a toroidal electromagnet which has core sections interposed between the ducts. The windings of the electromagnet are composed of metal which is superconductive at low temperatures and the electromagnet is maintained at a temperature at which it is superconductive by liquid helium which is fed through the conductors which supply the excitation for the electromagnet. The walls of the ducts joining the electrodes include metal plates insulated from the electrodes backed up by insulators so that they are capable of withstanding the pressure of the liquid-metal. These composite wall structures may also be of thin metal strips of low electrical conductivity backed up by sturdy insulators. (author)

  1. Off-pump versus on-pump CABG in high-risk patients

    Linde, Jesper; Møller, Christian; Hughes, Pia

    2006-01-01

    During recent years Conventional Coronary Artery Bypass Grafting (cCABG) and Off-Pump Coronary Bypass (OPCAB) have been compared in several randomised and non-randomised studies. Focus has been on postoperative outcome with short-term follow-up in low-risk patients and therefore little is known...... of the effectiveness of OPCAB in high-risk patients. Furthermore, it is unknown if a potential beneficial short-term outcome is consistent over time....

  2. LD-pumped erbium and neodymium lasers with high energy and output beam quality

    Kabanov, Vladimir V.; Bezyazychnaya, Tatiana V.; Bogdanovich, Maxim V.; Grigor'ev, Alexandr V.; Lebiadok, Yahor V.; Lepchenkov, Kirill V.; Ryabtsev, Andrew G.; Ryabtsev, Gennadii I.; Shchemelev, Maxim A.

    2013-05-01

    Physical and fabrication peculiarities which provide the high output energy and beam quality for the diode pumped erbium glass and Nd:YAG lasers are considered. Developed design approach allow to make passively Q-switched erbium glass eye-safe portable laser sources with output energy 8 - 12 mJ (output pulse duration is less than 25 ns, pulse repetition rate up to 5 Hz) and beam quality M2 less than 1.3. To reach these values the erbium laser pump unit parameters were optimized also. Namely, for the powerful laser diode arrays the optimal near-field fill-factor, output mirror reflectivity and heterostructure properties were determined. Construction of advanced diode and solid-state lasers as well as the optical properties of the active element and the pump unit make possible the lasing within a rather wide temperature interval (e.g. from minus forty till plus sixty Celsius degree) without application of water-based chillers. The transversally pumped Nd:YAG laser output beam uniformity was investigated depending on the active element (AE) pump conditions. In particular, to enhance the pump uniformity within AE volume, a special layer which practically doesn't absorb the pump radiation but effectively scatters the pump and lasing beams, was used. Application of such layer results in amplified spontaneous emission suppression and improvement of the laser output beam uniformity. The carried out investigations allow us to fabricate the solid-state Nd:YAG lasers (1064 nm) with the output energy up to 420 mJ at the pulse repetition rate up to 30 Hz and the output energy up to 100 mJ at the pulse repetition rate of of 100 Hz. Also the laser sources with following characteristics: 35 mJ, 30 Hz (266 nm); 60 mJ, 30 Hz (355 nm); 100 mJ, 30 Hz (532 nm) were manufactured on the base of the developed Nd:YAG quantrons.

  3. High-energy high-efficiency Nd:YLF laser end-pump by 808 nm diode

    Ma, Qinglei; Mo, Haiding; Zhao, Jay

    2018-04-01

    A model is developed to calculate the optimal pump position for end-pump configuration. The 808 nm wing pump is employed to spread the absorption inside the crystal. By the optimal laser cavity design, a high-energy high-efficiency Nd:YLF laser operating at 1053 nm is presented. In cw operation, a 13.6 W power is obtained with a slope efficiency of 51% with respect to 30 W incident pump power. The beam quality is near diffraction limited with M2 ∼ 1.02. In Q-switch operation, a pulse energy of 5 mJ is achieved with a peak power of 125 kW at 1 kHz repetition rate.

  4. Determination of pump flow rate during cardiopulmonary bypass in obese patients avoiding hemodilution.

    Santambrogio, Luisa; Leva, Cristian; Musazzi, Giorgio; Bruno, Piergiorgio; Vailati, Andrea; Zecchillo, Franco; Di Credico, Germano

    2009-01-01

    During cardiopulmonary bypass the pump flow is usually set on 2.4 L/min/m(2) of body surface area (BSA) to guarantee adequate tissue perfusion without differences for patient constitutional type. The present study attempts to evaluate the adequacy of pump flow rate in obese patients, considering the ideal weight instead of the real one, avoiding the overflow side effects and hemodilution. Obese patients with body mass index (BMI) > 30 presented for cardiac surgery were randomized in two groups: in one the cardiopulmonary bypass was led traditionally, in the other, pump flow rate was calculated on ideal BMI of 25. Demographics, preoperative tests, and monitoring data were registered. Mortality at hospital discharge and 30 days after were analyzed. The pump flow rate between the groups was different (4.46 vs. 4.87; p = 0.004); there were no differences in organ perfusion (SvO(2); diuresis) and mortality, but the study group presented fewer complications and blood transfusions. The BSA is widely used as the biometric unit to normalize physiologic parameters included pump flow rate, but it is disputable if this practice is correct also in obese patients. The study group, in which pump flow rate was set on ideal BSA, presented no difference in diuresis and mixed venous saturation but fewer complications and fewer perioperative blood transfusions.

  5. The flow Rate Accuracy of Elastomeric Infusion Pumps After Repeated Filling.

    Mohseni, Masood; Ebneshahidi, Amin

    2014-05-01

    One of the frequent applications of elastomeric infusion pumps is postoperative pain management. In daily practice, the disposable pumps get refilled with modified medication combinations in the successive days; although, the accuracy of infusion rates is unknown to clinicians. Our aim was to evaluate the effect of repeated filling on the delivery rate accuracy of an elastomeric pump available in our market. We examined 10 elastomeric infusion pumps (BOT-802, Nanchang Biotek Medical Device Company, China) with 100 mL capacity and nominal flow of 5 mL/h. Each pump was filled for three times, accounting for 30 series of experiments. A microset scaled in mL was used to measure the pump deliveries. Flow profile and reliability of infusion rate were analyzed after repeated use. The mean flow rate in the three series of measurements showed a gradual increase; however, the difference was not statistically significant (5.01 ± 0.07 vs. 5.03 ± 0.06 vs. 5.06 ± 0.08 mL/h; P = 0.81). The percentage of the flow rate error (deviation from 5 mL/h ± 15%) was 100% in the first and second hours of infusion, 96% in the third hour, 60% in the 20th hour and zero percent in the rest of the infusion time. This study indicated that the delivery rate accuracy of elastomeric infusion pumps is preserved after repeated usage. These laboratory findings suggested that elastomeric pumps could be safely refilled in the successive days to provide postoperative analgesia.

  6. Application of the constant rate of pressure change method to improve jet pump performance

    Long, X P; Yang, X L

    2012-01-01

    This paper adopts a new method named the constant rate of pressure change (CRPC) to improve the jet pump performance. The main contribution of this method is that the diffuser generates uniform pressure gradient. The performance of the jet pump with new diffusers designed by the CRPC method, obtained by CFD methods, was compared with that of the jet pump with traditional conical diffusers. It is found that the CRPC diffuser produces a linear pressure increase indeed. The higher friction loss and the separation decrease the CRPC diffuser efficiency and then lower the pump efficiency. The pump with shorter throats has higher efficiency at small flow ratio while its efficiency is lower than the original pump at lager flow ratio and the peak efficiency of the pumps with the throat length of 5-6 Dt is higher than that of the pumps with other throat length. When the throat length is less than 4 Dt, the CRPC diffuser efficiency is higher than the conical diffuser. The CRPC method could also be used to design the nozzle and other situations needing the pressure change gradually.

  7. A new box system for a high pressure tritium pump

    Wilson, S.W.; Borree, R.J.; Chambers, D.I.; Souers, P.C.; Merrill, J.T.; Wiggins, R.K.

    1988-01-01

    A 200 MPa (30 kpsi) high pressure tritium pump inside a box system is described. This system is currently under construction but all representative mechanical parts have been fabricated and tested. The pump is a conventional mechanical-plus-cryostaged system, so that most of the interesting features are in the box. The system contains nine separate sections, with automatic pressure balancing and venting systems. Five sections are hood-to-box convertible enclosures with inflatable door seals. The procedure of cryostaging with liquid argon is described. Special detail is given to valves and motor shaft seals. 3 refs., 4 figs

  8. Heat pumps; Synergy of high efficiency and low carbon electricity

    Koike, Akio

    2010-09-15

    Heat pump is attracting wide attention for its high efficiency to utilize inexhaustible and renewable ambient heat in the environment. With its rapid innovation and efficiency improvement, this technology has a huge potential to reduce CO2 emissions by replacing currently widespread fossil fuel combustion systems to meet various heat demands from the residential, commercial and industrial sectors. Barriers to deployment such as low public awareness and a relatively long pay-back period do exist, so it is strongly recommended that each country implement policies to promote heat pumps as a renewable energy option and an effective method to combat global warming.

  9. Procurement specification high vacuum test chamber and pumping system

    1976-01-01

    The specification establishes requirements for a high-vacuum test chamber, associated vacuum pumps, valves, controls, and instrumentation that shall be designed and fabricated for use as a test chamber for testing a closed loop Brayton Isotope Power System (BIPS) Ground Demonstration System (GDS). The vacuum system shall include all instrumentation required for pressure measurement and control of the vacuum pumping system. A general outline of the BIPS-GDS in the vacuum chamber and the preliminary piping and instrumentation interface to the vacuum chamber are shown

  10. Design manual. [High temperature heat pump for heat recovery system

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  11. Evaluation and testing of metering pumps for high-level nuclear waste slurries

    Peterson, M.E.; Perez, J.M. Jr.; Blair, H.T.

    1986-06-01

    The metering pump system that delivers high-level liquid wastes (HLLW) slurry to a melter is an integral subsystem of the vitrification process. The process of selecting a pump for this application began with a technical review of pumps typically used for slurry applications. The design and operating characteristics of numerous pumps were evaluated against established criteria. Two pumps, an air-displacement slurry (ADS) pump and an air-lift pump, were selected for further development. In the development activity, from FY 1983 to FY 1985, the two pumps were subjected to long-term tests using simulated melter feed slurries to evaluate the pumps' performances. Throughout this period, the designs of both pumps were modified to better adapt them for this application. Final reference designs were developed for both the air-displacement slurry pump and the air-lift pump. Successful operation of the final reference designs has demonstrated the feasibility of both pumps. A fully remote design of the ADS pump has been developed and is currently undergoing testing at the West Valley Demonstration Project. Five designs of the ADS pump were tested and evaluated. The initial four designs proved the operating concept of the ADS pump. Weaknesses in the ADS pump system were identified and eliminated in later designs. A full-scale air-lift pump was designed and tested as a final demonstration of the air-lift pump's capabilities

  12. BIOMATERIALS FOR ROTARY BLOOD PUMPS

    VANOEVEREN, W

    Rotary blood pumps are used for cardiac assist and cardiopulmonary support since mechanical blood damage is less than with conventional roller pumps. The high shear rate in the rotary pump and the reduced anticoagulation of the patient during prolonged pumping enforces high demands on the

  13. Temporal dynamics of high repetition rate pulsed single longitudinal ...

    ing (GIG) cavity, single-mode dye laser pumped by high repetition rate ... in a high loss cavity, a detailed theoretical study and optimization of cavity ..... rate for high conversion efficiency and longer pulse width of the single-mode dye laser.

  14. High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.

    Lauterborn, W; Judt, A; Schmitz, E

    1993-01-01

    A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.

  15. High-efficiency design optimization of a centrifugal pump

    Heo, Man Woong; Ma, Sang Bum; Shim, Hyeon Seok; Kim, Kwang Yong [Dept. of Mechanical Engineering, Inha University, Incheon (Korea, Republic of)

    2016-09-15

    Design optimization of a backward-curved blades centrifugal pump with specific speed of 150 has been performed to improve hydraulic performance of the pump using surrogate modeling and three-dimensional steady Reynolds-averaged Navier-Stokes analysis. The shear stress transport model was used for the analysis of turbulence. Four geometric variables defining the blade hub inlet angle, hub contours, blade outlet angle, and blade angle profile of impeller were selected as design variables, and total efficiency of the pump at design flow rate was set as the objective function for the optimization. Thirty-six design points were chosen using the Latin hypercube sampling, and three different surrogate models were constructed using the objective function values calculated at these design points. The optimal point was searched from the constructed surrogate model by using sequential quadratic programming. The optimum designs of the centrifugal pump predicted by the surrogate models show considerable increases in efficiency compared to a reference design. Performance of the best optimum design was validated compared to experimental data for total efficiency and head.

  16. Design of Annular Linear Induction Pump for High Temperature Liquid Lead Transportation

    Kwak, Jae Sik; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    EM(Electro Magnetic) Pump is divided into two parts, which consisted of the primary one with electromagnetic core and exciting coils, and secondary one with liquid lead flow. The main geometrical variables of the pump included core length, inner diameter and flow gap while the electromagnetic ones covered pole pitch, turns of coil, number of pole pairs, input current and input frequency. The characteristics of design variables are analyzed by electrical equivalent circuit method taking into account hydraulic head loss in the narrow annular channel of the ALIP. The design program, which was composed by using MATLAB language, was developed to draw pump design variables according to input requirements of the flow rate, developing pressure and operation temperature from the analyses. The analysis on the design of ALIP for high temperature liquid lead transportation was carried for the produce of ALIP designing program based on MATLAB. By the using of ALIP designing program, we don't have to bother about geometrical relationship between each component during detail designing process because code calculate automatically. And prediction of outputs about designing pump can be done easily before manufacturing. By running the code, we also observe and analysis change of outputs caused by changing of pump factors. It will be helpful for the research about optimization of pump outputs.

  17. A highly reliable cryogenic mixing pump with no mechanical moving parts

    Chen, W.; Niblick, A. L.

    2017-12-01

    This paper presents the design and preliminary test results of a novel cryogenic mixing pump based on magnetocaloric effect. The mixing pump is developed to enable long-term cryogenic propellant storage in space by preventing thermal stratification of cryogens in storage tanks. The mixing pump uses an innovative thermodynamic process to generate fluid jets to promote fluid mixing, eliminating the need for mechanical pumps. Its innovative mechanism uses a solid magnetocaloric material to alternately vaporize and condense the cryogen in the pumping chamber, and thus control the volume of the fluid inside the pumping chamber to produce pumping action. The pump is capable of self-priming and can generate a high-pressure rise. This paper discusses operating mechanism and design consideration of the pump, introduces the configuration of a brassboard cryogenic pump, and presents the preliminary test results of the pump with liquid nitrogen.

  18. Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques

    Yang, Xufei; Xu, Jinliang; Miao, Zheng; Zou, Jinghuang; Yu, Chao

    2015-01-01

    An ORC (organic Rankine cycle) was developed with R123 as the working fluid. The heat capacity is in ∼100 kW. The match between pump and expander is investigated. Lower pump frequencies (f 10 Hz) adapt low expander torques only, and cause unstable flow and pump cavitation for larger expander torques. Ultra-low expander torques generate sufficiently high vapor superheatings to decrease expander efficiencies. Ultra-high expander torques achieve saturation vapor at the expander inlet, causing liquid droplets induced shock wave to worsen expander performance. An optimal range of expander torques exists to have better expander performance. A liquid subcooling of 20 °C is necessary to avoid pump cavitation. Expander powers and efficiencies show parabola shapes versus expander torques, or vapor superheatings at the expander inlet. The optimal vapor superheating is 13 °C. The cavitation mechanisms and measures to avoid cavitation are analyzed. This paper notes the overestimation of ORC performance by equilibrium thermodynamic analysis. Assumptions should be dependent on experiments. Future studies are suggested on organic fluid flow, heat transfer and energy conversion in various components. - Highlights: • The match between pump and expander is investigated. • A liquid subcooling of 20 °C is needed at pump inlet. • A vapor superheating of 13 °C is necessary at expander inlet. • Cavitation in pumps and expanders are analyzed. • The equilibrium thermodynamics overestimate ORC performances.

  19. Isothermal pumping analysis for high-altitude tethered balloons.

    Kuo, Kirsty A; Hunt, Hugh E M

    2015-06-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe.

  20. High-average-power diode-pumped Yb: YAG lasers

    Avizonis, P V; Beach, R; Bibeau, C M; Emanuel, M A; Harris, D G; Honea, E C; Monroe, R S; Payne, S A; Skidmore, J A; Sutton, S B

    1999-01-01

    A scaleable diode end-pumping technology for high-average-power slab and rod lasers has been under development for the past several years at Lawrence Livermore National Laboratory (LLNL). This technology has particular application to high average power Yb:YAG lasers that utilize a rod configured gain element. Previously, this rod configured approach has achieved average output powers in a single 5 cm long by 2 mm diameter Yb:YAG rod of 430 W cw and 280 W q-switched. High beam quality (M(sup 2)= 2.4) q-switched operation has also been demonstrated at over 180 W of average output power. More recently, using a dual rod configuration consisting of two, 5 cm long by 2 mm diameter laser rods with birefringence compensation, we have achieved 1080 W of cw output with an M(sup 2) value of 13.5 at an optical-to-optical conversion efficiency of 27.5%. With the same dual rod laser operated in a q-switched mode, we have also demonstrated 532 W of average power with an M(sup 2) and lt; 2.5 at 17% optical-to-optical conversion efficiency. These q-switched results were obtained at a 10 kHz repetition rate and resulted in 77 nsec pulse durations. These improved levels of operational performance have been achieved as a result of technology advancements made in several areas that will be covered in this manuscript. These enhancements to our architecture include: (1) Hollow lens ducts that enable the use of advanced cavity architectures permitting birefringence compensation and the ability to run in large aperture-filling near-diffraction-limited modes. (2) Compound laser rods with flanged-nonabsorbing-endcaps fabricated by diffusion bonding. (3) Techniques for suppressing amplified spontaneous emission (ASE) and parasitics in the polished barrel rods

  1. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: Functional significance

    2013-01-01

    During excitation, muscle cells gain Na+ and lose K+, leading to a rise in extracellular K+ ([K+]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na+,K+-ATPase (also known as the Na+,K+ pump) is often essential for adequate clearance of extracellular K+. As a result of their electrogenic action, Na+,K+ pumps also help reverse depolarization arising during excitation, hyperkalemia, and anoxia, or from cell damage resulting from exercise, rhabdomyolysis, or muscle diseases. The ability to evaluate Na+,K+-pump function and the capacity of the Na+,K+ pumps to fill these needs require quantification of the total content of Na+,K+ pumps in skeletal muscle. Inhibition of Na+,K+-pump activity, or a decrease in their content, reduces muscle contractility. Conversely, stimulation of the Na+,K+-pump transport rate or increasing the content of Na+,K+ pumps enhances muscle excitability and contractility. Measurements of [3H]ouabain binding to skeletal muscle in vivo or in vitro have enabled the reproducible quantification of the total content of Na+,K+ pumps in molar units in various animal species, and in both healthy people and individuals with various diseases. In contrast, measurements of 3-O-methylfluorescein phosphatase activity associated with the Na+,K+-ATPase may show inconsistent results. Measurements of Na+ and K+ fluxes in intact isolated muscles show that, after Na+ loading or intense excitation, all the Na+,K+ pumps are functional, allowing calculation of the maximum Na+,K+-pumping capacity, expressed in molar units/g muscle/min. The activity and content of Na+,K+ pumps are regulated by exercise, inactivity, K+ deficiency, fasting, age, and several hormones and pharmaceuticals. Studies on the α-subunit isoforms of the Na+,K+-ATPase have detected a relative increase in their number in response to exercise and the glucocorticoid dexamethasone but have not

  2. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: functional significance.

    Clausen, Torben

    2013-10-01

    During excitation, muscle cells gain Na(+) and lose K(+), leading to a rise in extracellular K(+) ([K(+)]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na(+),K(+)-ATPase (also known as the Na(+),K(+) pump) is often essential for adequate clearance of extracellular K(+). As a result of their electrogenic action, Na(+),K(+) pumps also help reverse depolarization arising during excitation, hyperkalemia, and anoxia, or from cell damage resulting from exercise, rhabdomyolysis, or muscle diseases. The ability to evaluate Na(+),K(+)-pump function and the capacity of the Na(+),K(+) pumps to fill these needs require quantification of the total content of Na(+),K(+) pumps in skeletal muscle. Inhibition of Na(+),K(+)-pump activity, or a decrease in their content, reduces muscle contractility. Conversely, stimulation of the Na(+),K(+)-pump transport rate or increasing the content of Na(+),K(+) pumps enhances muscle excitability and contractility. Measurements of [(3)H]ouabain binding to skeletal muscle in vivo or in vitro have enabled the reproducible quantification of the total content of Na(+),K(+) pumps in molar units in various animal species, and in both healthy people and individuals with various diseases. In contrast, measurements of 3-O-methylfluorescein phosphatase activity associated with the Na(+),K(+)-ATPase may show inconsistent results. Measurements of Na(+) and K(+) fluxes in intact isolated muscles show that, after Na(+) loading or intense excitation, all the Na(+),K(+) pumps are functional, allowing calculation of the maximum Na(+),K(+)-pumping capacity, expressed in molar units/g muscle/min. The activity and content of Na(+),K(+) pumps are regulated by exercise, inactivity, K(+) deficiency, fasting, age, and several hormones and pharmaceuticals. Studies on the α-subunit isoforms of the Na(+),K(+)-ATPase have detected a relative increase in their

  3. Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.

    Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel

    2012-04-01

    The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.

  4. Pumping behavior of ion pump elements at high and misaligned magnetic fields

    Hseuh, H. C.; Jiang, W. S.; Mapes, M.

    1994-11-01

    The pumping speeds of several diode type ion pump elements with cell radii of 5 mm, 5.5 mm, 6 mm, 9 mm and 12 mm were measured while being subjected to a magnetic field B, ranging from 500 Gauss up to 15 KG, and misalignment angles (angles between the direction of B and the anode axis) from 0 to 13 degrees. The pumping speeds of elements with the 9 mm and 12 mm cells peaked around 1--2 KG, then dropped off rapidly with an increasing magnetic field. The pumping speeds of the smaller cell elements remained constant with an increasing magnetic field. The pumping speeds of all the elements decreased with increasing misalignment. The measured pumping speeds from this study are 3--4 times lower than the calculated pumping, speeds using previously reported empirical formulae.

  5. Pumping behavior of ion pump elements at high and misaligned magnetic fields

    Hseuh, H.C.; Jiang, W.S.; Mapes, M.

    1994-01-01

    The pumping speeds of several diode type ion pump elements with cell radii of 5 mm, 5.5 mm, 6 mm, 9 mm and 12 mm were measured while being subjected to a magnetic field B, ranging from 500 Gauss up to 15 KG, and misalignment angles (angles between the direction of B and the anode axis) from 0 to 13 degrees. The pumping speeds of elements with the 9 mm and 12 mm cells peaked around 1--2 KG, then dropped off rapidly with an increasing magnetic field. The pumping speeds of the smaller cell elements remained constant with an increasing magnetic field. The pumping speeds of all the elements decreased with increasing misalignment. The measured pumping speeds from this study are 3--4 times lower than the calculated pumping, speeds using previously reported empirical formulae

  6. Rate equation modelling of the optically pumped spin-exchange source

    Stenger, J.; Rith, K.

    1995-01-01

    Sources for spin polarized hydrogen or deuterium, polarized via spin-exchange of a laser optically pumped alkali metal, can be modelled by rate equations. The rate equations for this type of source, operated either with hydrogen or deuterium, are given explicitly with the intention of providing a useful tool for further source optimization and understanding. Laser optical pumping of alkali metal, spin-exchange collisions of hydrogen or deuterium atoms with each other and with alkali metal atoms are included, as well as depolarization due to flow and wall collisions. (orig.)

  7. The role of elastomeric pumps in postoperative analgesia in orthopaedics and factors affecting their flow rate.

    Theodorides, Anthony Andreas

    2017-12-01

    Elastomeric pumps are mechanical devices composed of an elastomeric balloon reservoir into which the drug to be infused is stored, a protective casing (used by some manufacturers), a flow controller and a wound catheter. In orthopaedics they are used to provide continuous local infiltration analgesia. In this way patients rely less on other routes of analgesia and thus avoid their systemic side effects. Studies have shown good response to analgesia with these pumps for the first 24 hours but their benefit is not as clear at 48 and 72 hours. There are numerous factors that affect the flow rate of elastomeric pumps. Some are inherent to all elastomeric pumps such as: the pressure exerted by the elastomeric balloon, catheter size, the vertical height of the pump in relation to the wound, viscosity and partial filling. There are also other factors which vary according to the manufacturer such as: the optimal temperature to obtain the desired flow rate as this directly affects viscosity, the dialysate that the analgesic drug is mixed with (ie normal saline or 5% dextrose), and the storage conditions of the fluid to be infused. It is thus essential to follow the clinical guidelines provided by the manufacturer in order to obtain the desired flow rate. Copyright the Association for Perioperative Practice.

  8. Observation of advanced particle removal rates in pump limiter simulation experiments

    Goebel, D.M.; Conn, R.W.

    1984-05-01

    The performance of particle removal schemes for density and impurity control in tokamaks and mirror machines depends strongly on the plasma parameters and local recycling near the plasma neutralizier plates and gas pumping ducts. The relationship between plasma density, electron temperature, ion energy and gas flow and particle removal rate through a pumping duct located near a plasma neutralizer plate has been experimentally investigated in the steady state plasma device PISCES. Results indicate that initially the particle removal by pumps at the end of the duct is proportional to the plasma flux to the plate. A nonlinear increase in the pumping rate occurs when the ionization mean free path for neutrals from the plate becomes less than the plasma radius. The transition from a transparent to an opaque plasma due to local ionization of the neutrals produced at the neutralizer plate greatly enhances the particle removal rate by recycling of the neutral gas as it flows away from the neutralizer plate or out of the pumping ducts. Parameters were varied to determine the importance of ballistic scattering of higher energy ions from the plate, but no effects were found in these experiments

  9. Evaluating an approach to improving the adoption rate of wireless drug library updates for smart pumps.

    Poppe, Lindsey B; Eckel, Stephen F

    2011-01-15

    An academic medical center's approach to improving the adoption rate of wireless drug library updates for smart pumps was evaluated. A multidisciplinary team composed of pharmacy, nursing, medical engineering, materials management, and patient equipment personnel at an academic medical center collaborated to update the drug libraries of more than 1800 smart pumps via a wireless control system. Two pilot tests were completed to identify and resolve issues before the live wireless update was attempted. The second pilot test, a passive approach, produced an adoption rate of 42% of 1804 pumps at the end of one week and a rate of 56% on day 10. The goal of 80% was not achieved until day 22. The change to an active multidisciplinary process three months later produced an adoption rate of 80% for 1869 pumps on day 10, resulting in a 45.4% increase in the adoption rate between the two trials on day 10 (p libraries reduced the amount of time required to reach a goal adoption rate of 80%.

  10. A High-Energy, 100 Hz, Picosecond Laser for OPCPA Pumping

    Hongpeng Su

    2017-09-01

    Full Text Available A high-energy diode-pumped picosecond laser system centered at 1064 nm for optical parametric chirped pulse amplifier (OPCPA pumping was demonstrated. The laser system was based on a master oscillator power amplifier configuration, which contained an Nd:YVO4 mode-locked seed laser, an LD-pumped Nd:YAG regenerative amplifier, and two double-pass amplifiers. A reflecting volume Bragg grating with a 0.1 nm reflective bandwidth was used in the regenerative amplifier for spectrum narrowing and pulse broadening to suit the pulse duration of the optical parametric amplifier (OPA process. Laser pulses with an energy of 316.5 mJ and a pulse duration of 50 ps were obtained at a 100 Hz repetition rate. A top-hat beam distribution and a 0.53% energy stability (RMS were achieved in this system.

  11. High-current electron accelerator for gas-laser pumping

    Badaliants, G R; Mamikonian, V A; Nersisian, G Ts; Papanian, V O

    1978-11-26

    A high-current source of pulsed electron beams has been developed for the pumping of UV gas lasers. The parameters of the device are: energy of 0.3-0.7 MeV pulse duration of 30 ns and current density (in a high-pressure laser chamber) of 40-100 A/sq cm. The principal feature of the device is the use of a rectangular cold cathode with incomplete discharge along the surface of the high-permittivity dielectric. Cathodes made of stainless steel, copper, and graphite were investigated.

  12. Using NEG-pumping near a high density internal target

    Gruber, Alexander; Marton, Johann; Widmann, Eberhard; Zmeskal, Johann [Stefan Meyer Institut fuer Subatomare Physik, OeAW (Germany); Orth, Herbert [GSI, Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2009-07-01

    The universal detector PANDA will be constructed at the future high-energy antiproton storage ring HESR at FAIR (Facility for Antiproton and Ion Research, GSI/Darmstadt). It will use antiproton beams (1.5 to 15 GeV/c) for hadron physics in the charmonium region. The Stefan Meyer Institut (SMI) contributes to major parts of the PANDA detector like the hydrogen cluster-jet target and the vacuum system of the antiproton - target interaction zone. To ensure low background, the residual gas load in the interaction zone and in the antiproton beam-pipe has to be minimised. Most of the gas load will come from the high density internal hydrogen target. As the detector will cover almost the full solid angle, the installation of pumps near the interaction zone is impossible. Therefore the use of NEG (non-evaporative-getter) coated beam pipes has been considered as an alternative. Two setups with NEG coated tubes have been installed at SMI as prototypes of the PANDA interaction zone. General parameters of the NEG-film, its outgassing behaviour, the pumping speed and the pumping capacity for hydrogen have been tested. The results of the studies on the PANDA-interaction region are presented.

  13. Using NEG-pumping near a high density internal target

    Gruber, A.; Marton, J.; Widmann, E.; Zmeskal, J.; Orth, H.

    2008-01-01

    Full text: The Stefan Meyer Institut (SMI) is part of the international PANDA collaboration. The universal detector will be constructed at the future high-energy antiproton storage ring HESR at FAIR (Facility for Antiproton and Ion Research, GSI/Darmstadt). PANDA will use antiproton beams (1.5 to 15 GeV/c) for hadron physics in the charmonium region. SMI contributes to major parts of the PANDA detector like the hydrogen cluster-jet target and the vacuum system of the antiproton - target interaction zone. To ensure low background, the residual gas load in the interaction zone and in the antiproton beam-pipe has to be minimized. Most of the gas load, of course will come from the high density internal hydrogen target. Since the PANDA detector will cover almost the full solid angle, the installation of pumps near the interaction zone is impossible. Therefore, the use of NEG (non-evaporative-getter) coated beam pipes has been considered as an alternative. Two setups with NEG coated tubes have been installed at SMI as prototypes of the PANDA interaction zone. The outgassing behavior, the pumping speed and the pumping capacity for hydrogen have been tested. The status of the studies of the interaction region will be presented. (author)

  14. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    M. Benghanem

    2018-03-01

    Full Text Available This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia. The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed. Keywords: Photovoltaic water pumping system, Solar radiation data, Simulation, Flow rate

  15. Highly efficient solar-pumped Nd:YAG laser.

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.

  16. High average power diode pumped solid state lasers for CALIOPE

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  17. Test results for the Oasis 3C high performance water-pumping windmill

    Eggleston, D.M. [DME Engineering, Midland, TX (United States)

    1997-12-31

    The WINDTech International, L.L.C. Oasis 3C, a 3 m diameter, high-performance water-pumping windmill, was tested at the DME Engineering Wind Test Site just south of Midland, Texas from August through December, 1996. This machine utilizes a 3:1 gearbox with rotating counterweights, similar to a conventional oilfield pumping unit, driven by a multibladed rotor. The rotating counterweight system balances most of the pumping loads and reduces gear loads and starting torque by a factor of at least two and often by a factor of four or more. The torque reduction substantially extends gear and bearing life, and reduces wind speeds required for starting by 30 to 50% or more. The O3C was tested pumping from a quiescent fluid depth of 12.2 m (40 ft) from a 28.3 m (93 ft)-deep well, with additional pumping depth simulated using a pressure regulator valve system. A 9.53 cm (3.75 in.) diameter Harbison-Fischer seal-less single-acting piston pump was used to eliminate pump seal friction as a variable, and standard O3C stroke lengths of 30.5 and 15.2 cm (12 and 6 inches) were used. The regulator spring was set to give a maximum stroke rate of 33 strokes per minute. The water pumped was returned to the well after flowing through a settling tank. The tests were performed in accordance with AWEA WECS testing standards. Instrumentation provided 16 channels of data to accurately measure machine performance, including starting wind speeds, flow rates, O3C azimuth, tail furl angle, wind direction tracking errors, RPM, sucker rod loads, and other variables. The most significant performance data is summarized herein. A mathematical model of machine performance was developed that fairly accurately predicts performance for each of three test conditions. The results verify that the O3C is capable of pumping water at wind speeds from 30% to more than 50% lower than comparable un-counterbalanced units.

  18. Glucose Pump Test can be Used to Measure Blood Flow Rate of ...

    The aim of study is to determine whether glucose pump test (GPT) is used for surveillance of native AV fistulas by using Doppler US as reference. Methods: In 93 chronic hemodialysis patients with native AV fistula, blood flow rates were measured by Doppler US and GPT. For GPT, glucose was infused to 16 mL/min by ...

  19. Measurement of the electron quenching rate in an electron beam pumped KrF* laser

    Nishioka, Hajime; Kurashima, Toshio; Kuranishi, Hideaki; Ueda, Kenichi; Takuma, Hiroshi; Sasaki, Akira; Kasuya, Koichi.

    1988-01-01

    The electron quenching rate of KrF * in an electron beam pumped laser has been studied by accurately measuring the saturation intensity in a mixture of Ar/Kr/F 2 = 94/6/0.284. The input intensity of the measurements was widely varied from 100 W cm -2 (small signal region) to 100 MW cm -2 (absorption dominant region) in order to separate laser parameters which are small signal gain coefficient, absorption coefficient, and saturation intensity from the measured net gain coefficients. The gas pressure and the pump rate were varied in the range of 0.5 to 2.5 atm and 0.3 to 1.4 MW cm -3 , respectively. The electron quenching rate constant of 4.5 x 10 -7 cm 3 s -1 was obtained from the pressure and the pump rate dependence of the KrF * saturation intensity with the temperature dependence of the rate gas 3-body quenching rate as a function of gas temperature to the -3rd power. The small signal gain coefficients calculated with the determined quenching rate constants shows excellent agreement with the measurements. (author)

  20. Measurement of the electron quenching rate in an electron beam pumped KrF/sup */ laser

    Nishioka, Hajime; Kurashima, Toshio; Kuranishi, Hideaki; Ueda, Kenichi; Takuma, Hiroshi; Sasaki, Akira; Kasuya, Koichi.

    1988-09-01

    The electron quenching rate of KrF/sup */ in an electron beam pumped laser has been studied by accurately measuring the saturation intensity in a mixture of Ar/Kr/F/sub 2/ = 94/6/0.284. The input intensity of the measurements was widely varied from 100 W cm/sup -2/ (small signal region) to 100 MW cm/sup -2/ (absorption dominant region) in order to separate laser parameters which are small signal gain coefficient, absorption coefficient, and saturation intensity from the measured net gain coefficients. The gas pressure and the pump rate were varied in the range of 0.5 to 2.5 atm and 0.3 to 1.4 MW cm/sup -3/, respectively. The electron quenching rate constant of 4.5 x 10/sup -7/ cm/sup 3/s/sup -1/ was obtained from the pressure and the pump rate dependence of the KrF/sup */ saturation intensity with the temperature dependence of the rate gas 3-body quenching rate as a function of gas temperature to the -3rd power. The small signal gain coefficients calculated with the determined quenching rate constants shows excellent agreement with the measurements.

  1. High reliability flow system - an assessment of pump reliability and optimisation of the number of pumps

    Butterfield, J.M.

    1981-01-01

    A system is considered where a number of pumps operate in parallel. Normally, all pumps operate, driven by main motors fed from the grid. Each pump has a pony motor fed from an individual battery supply. Each pony motor is normally running, but not engaged to the pump shaft. On demand, e.g. failure of grid supplies, each pony motor is designed to clutch-in automatically when the pump speed falls to a specified value. The probability of all the pony motors failing to clutch-in on demand must be demonstrated with 95% confidence to be less than 10 -8 per demand. This assessment considers how the required reliability of pony motor drives might be demonstrated in practice and the implications on choice of the number of pumps at the design stage. The assessment recognises that not only must the system prove to be extremely reliable, but that demonstration that reliability is adequate must be done during plant commissioning, with practical limits on the amount of testing performed. It is concluded that a minimum of eight pony motors should be provided, eight pumps each with one pony motor (preferred) or five pumps each with two independent pony motors. A minimum of two diverse pony motor systems should be provided. (author)

  2. Electrokinetic pumps and actuators

    Phillip M. Paul

    2000-01-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps

  3. Electrokinetic pumps and actuators

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  4. Minimizing transient influence in WHPA delineation: An optimization approach for optimal pumping rate schemes

    Rodriguez-Pretelin, A.; Nowak, W.

    2017-12-01

    For most groundwater protection management programs, Wellhead Protection Areas (WHPAs) have served as primarily protection measure. In their delineation, the influence of time-varying groundwater flow conditions is often underestimated because steady-state assumptions are commonly made. However, it has been demonstrated that temporary variations lead to significant changes in the required size and shape of WHPAs. Apart from natural transient groundwater drivers (e.g., changes in the regional angle of flow direction and seasonal natural groundwater recharge), anthropogenic causes such as transient pumping rates are of the most influential factors that require larger WHPAs. We hypothesize that WHPA programs that integrate adaptive and optimized pumping-injection management schemes can counter transient effects and thus reduce the additional areal demand in well protection under transient conditions. The main goal of this study is to present a novel management framework that optimizes pumping schemes dynamically, in order to minimize the impact triggered by transient conditions in WHPA delineation. For optimizing pumping schemes, we consider three objectives: 1) to minimize the risk of pumping water from outside a given WHPA, 2) to maximize the groundwater supply and 3) to minimize the involved operating costs. We solve transient groundwater flow through an available transient groundwater and Lagrangian particle tracking model. The optimization problem is formulated as a dynamic programming problem. Two different optimization approaches are explored: I) the first approach aims for single-objective optimization under objective (1) only. The second approach performs multiobjective optimization under all three objectives where compromise pumping rates are selected from the current Pareto front. Finally, we look for WHPA outlines that are as small as possible, yet allow the optimization problem to find the most suitable solutions.

  5. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  6. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    Benghanem, M.; Daffallah, K. O.; Almohammedi, A.

    2018-03-01

    This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV) water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m) and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia). The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan) in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed.

  7. Low-cost, high-performance nonevaporable getter pumps using nonevaporable getter pills

    Kodama, Hiraku; Ohno, Shinya; Tanaka, Masatoshi; Tanaka, Masato; Okudaira, Koji K.; Mase, Kazuhiko; Kikuchi, Takashi

    2016-01-01

    Nonevaporable getter (NEG) pumps are widely used for maintaining a clean ultrahigh vacuum (UHV) of ≤10"−"8" Pa because of their high pumping speeds for hydrogen (H_2) and active gases in the UHV region. In addition, they are oil free, evaporation free, sputtering free, sublimation free, magnetic field free, vibration free, economical, compact, lightweight, and energy saving. In the present paper, the authors report a new NEG pump which is composed of commercial 60 NEG pills (ϕ10 × 3 mm; 70 wt. % Zr, 24.6 wt. % V, and 5.4 wt. % Fe), titanium parts, a DN 40 conflat flange, and a tantalum heater. The NEG pills are vertically and radially aligned around the heater to maximize the effective area for pumping. After activation at 400 °C for 30 min, the pumping speeds of the NEG pump were measured with the orifice method. Pumping speeds of 140–130, 200–140, 190–130, and 35–17 l/s were estimated for H_2, CO, CO_2, and N_2 gasses, respectively, in a pumped-quantity range of 0.01–0.1 Pa l. Since the NEG pump is composed of a heating unit and a NEG module, the pumping speeds can be improved by increasing the number of NEG modules. These NEG pumps are favorable alternatives to sputtering ion pumps or titanium sublimation pumps.

  8. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  9. Pumped storage in systems with very high wind penetration

    Tuohy, A.; O'Malley, M.

    2011-01-01

    This paper examines the operation of the Irish power system with very high levels of wind energy, with and without pumped storage. A unit commitment model which accounts for the uncertainty in wind power is used. It is shown that as wind penetration increases, the optimal operation of storage depends on wind output as well as load. The main benefit from storage is shown to be a decrease in wind curtailment. The economics of the system are examined to find the level at which storage justifies its capital costs and inefficiencies. It is shown that the uncertainty of wind makes the option of storage more attractive. The size of the energy store has an impact on results. At lower levels of installed wind (up to approximately 50% of energy from wind in Ireland), the reduction in curtailment is insufficient to justify building storage. At greater levels of wind, storage reduces curtailment sufficiently to justify the additional capital costs. It can be seen that if storage replaces OCGTs in the plant mix instead of CCGTs, then the level at which it justifies itself is lower. Storage increases the level of carbon emissions at wind penetration below 60%. - Research highlights: → Examines operation of pumped storage unit in a system with levels of wind from 34%-68% of energy. → High capital cost of storage is not justified until system has high (approx. 45%) wind penetration. → Results are driven by the amount of wind curtailment avoided and plant mix of system. → Other flexible options (e.g. interconnection) offer many of the same benefits as storage.

  10. High Rate Digital Demodulator ASIC

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  11. Generation of nanosecond laser pulses at a 2.2-MHz repetition rate by a cw diode-pumped passively Q-switched Nd3+:YVO4 laser

    Nghia, Nguyen T; Hao, Nguyen V; Orlovich, Valentin A; Hung, Nguyen D

    2011-01-01

    We report a new configuration of a high-repetition rate nanosecond laser based on a semiconductor saturable absorber mirror (SESAM). The SESAM is conventional technical solution for passive mode-locking at 1064 nm and simultaneously used as a highly reflecting mirror and a saturable absorber in a high-Q and short cavity of a cw diode-end-pumped a-cut Nd 3+ :YVO 4 laser. Two laser beams are coupled out from the cavity using an intracavity low-reflection thin splitter. The laser characteristics are investigated as functions of pump and resonator parameters. Using a 1.8-W cw pump laser diode at 808 nm, the passively Q-switched SESAMbased laser generates 22-ns pulses with an average power of 275 mW at a pulse repetition rate of 2250 kHz.

  12. High Power Q-Switched Dual-End-Pumped Ho:YAG Laser

    Xiao-Ming, Duan; Ying-Jie, Shen; Tong-Yu, Dai; Bao-Quan, Yao; Wang Yue-Zhu, E-mail: xmduan@hit.edu.cn [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2012-09-15

    We report the high power acousto-optically Q-switched operation of a dual-end-pumped Ho:YAG laser at room temperature. For the Q-swithched mode, a maximum pulse energy of 2.4 mJ and a minimum pulse width of 23 ns at the repetition rate of 10 kHz are achieved, resulting in a peak power of 104.3 kW. The beam quality factor of M{sup 2} {approx} 1.5, which is demonstrated by a knife-edge method. In addition, the Ho:YAG laser is employed as a pumping source of ZGP optical parametric oscillator, and its total average output power is 13.2 W at 3.9 {mu}m and 4.4 {mu}m with a slope efficiency of 68.4%.

  13. Industrial Heat Pump for a High Temperature District Heating Application

    Poulsen, Claus Nørgaard

    by excess thermal energy from thermal solar panels. An industrial heat pump system using the natural refrigerant ammonia, is extracting the thermal energy from the storage when needed, and produce hot water at 85°C, for the district heating grid. The heat pump also acts as contributor to electricity grid...

  14. Domestic wells have high probability of pumping septic tank leachate

    Bremer, J. E.; Harter, T.

    2012-08-01

    Onsite wastewater treatment systems are common in rural and semi-rural areas around the world; in the US, about 25-30% of households are served by a septic (onsite) wastewater treatment system, and many property owners also operate their own domestic well nearby. Site-specific conditions and local groundwater flow are often ignored when installing septic systems and wells. In areas with small lots (thus high spatial septic system densities), shallow domestic wells are prone to contamination by septic system leachate. Mass balance approaches have been used to determine a maximum septic system density that would prevent contamination of groundwater resources. In this study, a source area model based on detailed groundwater flow and transport modeling is applied for a stochastic analysis of domestic well contamination by septic leachate. Specifically, we determine the probability that a source area overlaps with a septic system drainfield as a function of aquifer properties, septic system density and drainfield size. We show that high spatial septic system density poses a high probability of pumping septic system leachate. The hydraulic conductivity of the aquifer has a strong influence on the intersection probability. We find that mass balance calculations applied on a regional scale underestimate the contamination risk of individual drinking water wells by septic systems. This is particularly relevant for contaminants released at high concentrations, for substances that experience limited attenuation, and those that are harmful even at low concentrations (e.g., pathogens).

  15. Domestic wells have high probability of pumping septic tank leachate

    J. E. Bremer

    2012-08-01

    Full Text Available Onsite wastewater treatment systems are common in rural and semi-rural areas around the world; in the US, about 25–30% of households are served by a septic (onsite wastewater treatment system, and many property owners also operate their own domestic well nearby. Site-specific conditions and local groundwater flow are often ignored when installing septic systems and wells. In areas with small lots (thus high spatial septic system densities, shallow domestic wells are prone to contamination by septic system leachate. Mass balance approaches have been used to determine a maximum septic system density that would prevent contamination of groundwater resources. In this study, a source area model based on detailed groundwater flow and transport modeling is applied for a stochastic analysis of domestic well contamination by septic leachate. Specifically, we determine the probability that a source area overlaps with a septic system drainfield as a function of aquifer properties, septic system density and drainfield size. We show that high spatial septic system density poses a high probability of pumping septic system leachate. The hydraulic conductivity of the aquifer has a strong influence on the intersection probability. We find that mass balance calculations applied on a regional scale underestimate the contamination risk of individual drinking water wells by septic systems. This is particularly relevant for contaminants released at high concentrations, for substances that experience limited attenuation, and those that are harmful even at low concentrations (e.g., pathogens.

  16. Advances in high repetition rate, ultra-short, gigawatt laser systems for time-resolved spectroscopy

    DiMauro, L.F.

    1991-01-01

    The objective of this article is to emphasize the current advances in the development of high-repetition rate amplifier pumps. Although this review highlights amplifier pump development, any recent data from achieved outputs via the tunable amplifier section is also discussed. The first section describes desirable parameters attributable to the pump amplifier while the rest of the article deals with specific examples for various options. The pump amplifiers can be characterized into two distinct classes; those achieving operation in the hundred hertz regime and those performing at repetition rates ≥1kHz. 23 refs., 4 figs

  17. A high power picosecond Nd:YVO4 master oscillator power amplifier system pumped by 880 nm diodes

    Yan, S; Yan, X; Yu, H; Zhang, L; Guo, L; Sun, W; Hou, W; Lin, X

    2013-01-01

    We present a high power 880 nm diode-pumped passively mode-locked Nd:YVO 4 oscillator, followed by an 880 nm diode-pumped Nd:YVO 4 amplifier. In the oscillator, a maximum power of 8.7 W was obtained with a repetition rate of 63 MHz and pulse duration of 32 ps, corresponding to an optical efficiency of 36%. The beam quality factors M 2 were measured to be M x 2 =1.2 and M y 2 =1.1 9, respectively. The amplifier generated up to 19.1 W output power with the pulse width and repetition rate remaining unaltered after amplification. (paper)

  18. Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.

    Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan

    2014-12-10

    High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1  nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.

  19. High-Temperature Salt Pump Review and Guidelines - Phase I Report

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hazelwood, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-05-01

    Fluoride salt cooled high-temperature reactor (FHR) concepts include pumps for forced circulation of the primary and secondary coolants. As part of a cooperative research and development agreement between the Shanghai Institute of Applied Physics and the Oak Ridge National Laboratory (ORNL), a research project was initiated to aid in the development of pumps for high-temperature salts. The objectives of the task included characterization of the behavior of an existing ORNL LSTL pump; design and test a modified impeller and volute for improved pump characteristics; and finally, provide lessons learned, recommendations, and guidelines for salt pump development and design. The pump included on the liquid salt test loop (LSTL) at ORNL served as a case study. This report summarizes the progress to date. The report is organized as follows. First, there is a review, focused on pumps, of the significant amount of work on salts at ORNL during the 1950s 1970s. The existing pump on the LSTL is then described. Plans for hot and cold testing of the pump are then discussed, including the design for a cold shakedown test stand and the required LSTL modifications for hot testing. Initial hydraulic and vibration modeling of the LSTL pump is documented. Later, test data from the LSTL will be used to validate the modeling approaches, which could then be used for future pump design efforts. Some initial insights and test data from the pump are then provided. Finally, some preliminary design goals and requirements for a future LSTL pump are provided as examples of salt pump design considerations.

  20. High-Temperature Salt Pump Review and Guidelines - Phase I Report

    Robb, Kevin R.; Jain, Prashant K.; Hazelwood, Thomas J.

    2016-01-01

    Fluoride salt cooled high-temperature reactor (FHR) concepts include pumps for forced circulation of the primary and secondary coolants. As part of a cooperative research and development agreement between the Shanghai Institute of Applied Physics and the Oak Ridge National Laboratory (ORNL), a research project was initiated to aid in the development of pumps for high-temperature salts. The objectives of the task included characterization of the behavior of an existing ORNL LSTL pump; design and test a modified impeller and volute for improved pump characteristics; and finally, provide lessons learned, recommendations, and guidelines for salt pump development and design. The pump included on the liquid salt test loop (LSTL) at ORNL served as a case study. This report summarizes the progress to date. The report is organized as follows. First, there is a review, focused on pumps, of the significant amount of work on salts at ORNL during the 1950s 1970s. The existing pump on the LSTL is then described. Plans for hot and cold testing of the pump are then discussed, including the design for a cold shakedown test stand and the required LSTL modifications for hot testing. Initial hydraulic and vibration modeling of the LSTL pump is documented. Later, test data from the LSTL will be used to validate the modeling approaches, which could then be used for future pump design efforts. Some initial insights and test data from the pump are then provided. Finally, some preliminary design goals and requirements for a future LSTL pump are provided as examples of salt pump design considerations.

  1. High-brightness fiber-coupled pump laser development

    Price, Kirk; Karlsen, Scott; Leisher, Paul; Martinsen, Robert

    2010-02-01

    We report on the continued development of high brightness laser diode modules at nLIGHT Photonics. These modules, based on nLIGHT's PearlTM product platform, demonstrate excellence in output power, brightness, wavelength stabilization, and long wavelength performance. This system, based on 14 single emitters, is designed to couple diode laser light into a 105 μm fiber at an excitation NA of under 0.14. We demonstrate over 100W of optical power at 9xx nm with a diode brightness exceeding 20 MW/cm2-str with an operating efficiency of approximately 50%. Additional results show over 70W of optical coupled at 8xx nm. Record brilliance at wavelengths 14xx nm and longer will also be demonstrated, with over 15 W of optical power with a beam quality of 7.5 mm-mrad. These results of high brightness, high efficiency, and wavelength stabilization demonstrate the pump technology required for next generation solid state and fiber lasers.

  2. High and ultra-high vacuum pumping techniques: applications in accelerators and storage rings

    Schaefer, G.

    1988-01-01

    A survey is given on gas transfer pumps, especially Turbomolecular pumps, and entrapment pumps (cryopumps and getter pumps) mainly with regard to their application in evacuating particle accelerators and storage rings. (A.C.A.S.) [pt

  3. High efficiency-large capacity circulating water pump for Hamaoka Nuclear Power Station unit No.3

    Ito, Akihiko; Sasamuro, Takemi; Takeda, Hirohisa.

    1988-01-01

    No.3 plant in the Hamaoka Nuclear Power Station, Chube Electric Power Co., Inc. is the latest plant of 1100 MW class BWR type, which began the commercial operation in August, 1987. The seawater intake and discharge system of this plant is composed of the channel exceeding 2 km in the total length from the intake tower to the discharge port. The circulating water pump installed in this system has the capacity of 1620 m 3 /min and the total head of 16.5 m, which are the largest in the world. It attained the efficiency as high as more than 90%. Three pumps supply seawater to three-body condensers. The design of the impeller and the casing for obtaining high efficiency, the structural design for facilitating maintenance, the manufacture of a model pump and the performance test using it and so on are reported. The most important item in the manufacture was the form of the onebody impeller weighing 4.5t. The confirmation of the performance of the actual machines was carried out as a part of the synthetic function confirmation test at the power station, and the flow rate was measured with Pitot tubes and ultrasonic flowmeters. (Kako, I.)

  4. All-Glass Fiber Amplifier Pumped by Ultra-High Brightness Pumps

    2016-02-15

    coating can exceed its long-term damage threshold. Such a concern obviously does not apply to a fiber with gold protective coating [14]. Thus in... coated triple-clad fibers, we are developing triple-clad Yb fiber with gold coating for improved thermal management. 2.1 Pump laser The two...is still an acrylate coating outside the glass clad for fiber handling and protection . Calculation shows that the temperature of the fiber acrylate

  5. Insulin appearance of subcutaneously infused insulin: influence of the basal rate pulse interval of the infusion pump.

    Birch, K; Hildebrandt, P; Jensen, B M; Kühl, C; Brange, J

    1985-05-01

    To compare the metabolic control and the pharmacokinetics of infused insulin using an insulin pump (Auto-Syringe AS 6C) which provides the basal rate in pulses every 2-10 min with a pump (Medix Syringe Driver 209) providing the basal rate in pulses every 15-60 min, 6 C-peptide negative diabetic patients received, in random order, identical, but individual, insulin treatment during one 4-day period using the Auto-Syringe pump and another 4-day period using the Medix pump. On the fourth day of each period, blood glucose and plasma-free insulin were estimated every 30 min for 7 hr and every 5 min for the next hour. Plasma-free insulin was significantly higher on 3 time points out of the 26 possible when using the Medix pump, but this was not reflected in the blood glucose concentrations which were similar in the 2 periods. The results indicate that, from a metabolic and pharmacokinetic point of view, insulin pumps working with larger intervals between the basal rate pulses are just as good as the more technically advanced and hence often more expensive pumps which provide the basal rate in more and smaller pulses.

  6. Coast-down model based on rated parameters of reactor coolant pump

    Jiang Maohua; Zou Zhichao; Wang Pengfei; Ruan Xiaodong

    2014-01-01

    For a sudden loss of power in reactor coolant pump (RCP), a calculation model of rotor speed and flow characteristics based on rated parameters was studied. The derived model was verified by comparing with the power-off experimental data of 100D RCP. The results indicate that it can be used in preliminary design calculation and verification analysis. Then a design criterion of RCP was described based on the calculation model. The moment of inertia in AP1000 RCP was verified by this criterion. (authors)

  7. Low voltage electroosmotic pump for high density integration into microfabricated fluidic systems

    Heuck, F.C.A.; Staufer, U.

    2011-01-01

    A low voltage electroosmotic (eo) pump suitable for high density integration into microfabricated fluidic systems has been developed. The high density integration of the eo pump required a small footprint as well as a specific on-chip design to ventilate the electrolyzed gases emerging at the

  8. Causes and proposed resolutions of high vibration in NWTF transfer pumps

    Trawinski, B.J.

    1993-01-01

    This Technical Report is intended to communicate the findings from the latest phase of New Waste Transfer Facility (NWTF) transfer pump testing. These tests have identified causes for the high pump vibrations that have been observed during previous phases of transfer pump startup testing, and have led to recommendations for resolving the vibration problem. The paper describes the problem, the test methodology, observations, and recommend actions to correct the vibration problem

  9. P-Q characteristic of the electromagnetic pump with the flow rate of 60 l/min

    Kim, Hee Reyoun; KIm, Jong Man; Cha, Jae Eun; Choi, Jong Hyun; Nam, Ho Yoon

    2005-01-01

    In general, an EM pump has been employed to circulate electrically conductive liquids like molten metals by Lorentz force generated from the magnetic field and its perpendicular current. Especially, at the Liquid Metal Reactor (LMR) which uses liquid sodium with high electrical conductivity as a coolant, an EM pump is noticed due to advantages over mechanical pump such as no rotating part, no noise and simplicity. In the present study, the EM pump of a pilot annular linear induction type with the flowrate of 60 l/min is designed by using electrical equivalent circuit method that is applied to linear induction machines. The designed pump is manufactured by consideration of the requirements of material and function in high temperature and sodium environments. Experimental characterization is carried out according to input currents and frequency. And compared analyses between theoretical prediction and experimental results are performed

  10. Low-cost, high-performance nonevaporable getter pumps using nonevaporable getter pills

    Kodama, Hiraku; Ohno, Shinya; Tanaka, Masatoshi [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Tanaka, Masato; Okudaira, Koji K. [Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku 263-8522 (Japan); Mase, Kazuhiko, E-mail: mase@post.kek.jp; Kikuchi, Takashi [Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2016-09-15

    Nonevaporable getter (NEG) pumps are widely used for maintaining a clean ultrahigh vacuum (UHV) of ≤10{sup −8 }Pa because of their high pumping speeds for hydrogen (H{sub 2}) and active gases in the UHV region. In addition, they are oil free, evaporation free, sputtering free, sublimation free, magnetic field free, vibration free, economical, compact, lightweight, and energy saving. In the present paper, the authors report a new NEG pump which is composed of commercial 60 NEG pills (ϕ10 × 3 mm; 70 wt. % Zr, 24.6 wt. % V, and 5.4 wt. % Fe), titanium parts, a DN 40 conflat flange, and a tantalum heater. The NEG pills are vertically and radially aligned around the heater to maximize the effective area for pumping. After activation at 400 °C for 30 min, the pumping speeds of the NEG pump were measured with the orifice method. Pumping speeds of 140–130, 200–140, 190–130, and 35–17 l/s were estimated for H{sub 2}, CO, CO{sub 2}, and N{sub 2} gasses, respectively, in a pumped-quantity range of 0.01–0.1 Pa l. Since the NEG pump is composed of a heating unit and a NEG module, the pumping speeds can be improved by increasing the number of NEG modules. These NEG pumps are favorable alternatives to sputtering ion pumps or titanium sublimation pumps.

  11. Analysis of hypocycloid drive application in a high-pressure fuel pump

    Bor Mateusz

    2017-01-01

    Full Text Available This paper undertakes the problem of applying a hypocycloid mechanism in the drive of pumping sections of high-pressure pumps for Diesel combustion engines. The authors have reviewed existing pump drive mechanisms, analyzed the weak links in existing solutions and discussed the latest trends in common rail systems. Further sections describe the design of a pump utilizing a hypocycloid mechanism, demonstrate beneficial functional features and present selected results of the assembly’s dynamic simulation. As a result of work, a pump model was developed, with operating parameters that do not deviate from those of the latest solutions of leading manufacturers, simultaneously eliminating the greatest flaws of existing pumps that lead to their premature wear.

  12. High temperature absorption compression heat pump for industrial waste heat

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    Heat pumps are currently receiving extensive interest because they may be able to support the integration of large shares of fluctuating electricity production based on renewable sources, and they have the potential for the utilization of low temperature waste heat from industry. In most industries......, the needed temperature levels often range from 100°C and up, but until now, it has been quite difficult to find heat pump technologies that reach this level, and thereby opening up the large-scale heat recovery in the industry. Absorption compression heat pumps can reach temperatures above 100°C......, and they have proved themselves a very efficient and reliable technology for applications that have large temperature changes on the heat sink and/or heat source. The concept of Carnot and Lorenz efficiency and its use in the analysis of system integration is shown. A 1.25 MW system having a Carnot efficiency...

  13. Metal additive manufacturing of a high-pressure micro-pump

    Wits, Wessel Willems; Weitkamp, Sander J.; van Es, J.; van Es, Johannes

    2013-01-01

    For the thermal control of future space applications pumped two-phase loops are an essential part to handle the increasing thermal power densities. This study investigates the design of a reliable, leak tight, low-weight and high-pressure micro-pump for small satellite applications. The developed

  14. High-performace cladding-pumped erbium-doped fibre laser and amplifier

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Lipatov, D S; Vechkanov, N N; Guryanov, Aleksei N

    2012-01-01

    We report cladding-pumped erbium-doped fibre laser and amplifier configurations. Through fibre design optimisation, we have achieved a record-high laser slope efficiency, 40 % with respect to absorbed pump power (λ = 976 nm), and an output power of 7.5 W. The erbium-doped fibre amplifier efficiency reaches 32 %.

  15. Development of low-cost, high-performance non-evaporable getter (NEG) pumps

    Mase, Kazuhiko, E-mail: mase@post.kek.jp [Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan); SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba 305-0801 (Japan); Tanaka, Masato [Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku 263-8522 (Japan); Ida, Naoya [Faculty of Science and Technology, Hirosaki University, 1 Bunkyocho, Hirosaki 036-8560 (Japan); Kodama, Hiraku [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Kikuchi, Takashi [Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2016-07-27

    Low-cost, high-performance non-evaporable getter (NEG) pumps were constructed using commercial NEG pills comprising 70 wt% Zr, 24.6 wt% V, and 5.4 wt% Fe, a conflat flange with an outer diameter of 70, 152, or 203 mm (DN 40 CF, DN 100 CF, and DN 160 CF, respectively), and a tantalum heater. After activation at 400 °C for 30 min, the pumping speeds of a DN 40 CF NEG pump measured with the orifice method were 47–40, 8–6, 24–17, and 19–15 L/s for H{sub 2}, N{sub 2}, CO, and CO{sub 2} gasses, respectively. NEG pumps using DN 100 CF and DN 160 CF were also developed, and their pumping speeds are estimated. These NEG pumps are favorable alternatives to sputtering ion pumps in VSX beamlines because they do not produce hydrocarbons except during the activation period. The NEG pumps can also be used for accelerators, front ends, end stations, and differential pumping systems.

  16. LOX/LH2 vane pump for auxiliary propulsion systems

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  17. A copper bromide vapour laser with a high pulse repetition rate

    Shiyanov, D V; Evtushenko, Gennadii S; Sukhanov, V B; Fedorov, V F

    2002-01-01

    The results of an experimental study of a copper bromide vapour laser with a discharge-channel diameter above 2.5 cm and a high pump-pulse repetition rate are presented. A TGU1-1000/25 high-power tacitron used as a switch made it possible to obtain for the first time a fairly high output radiation power for pump-pulse repetition rates exceeding 200 kHz. At a maximum pump-pulse repetition rate of 250 kHz achieved in a laser tube 2.6 cm in diameter and 76 cm long, the output power was 1.5 W. The output powers of 3 and 10.5 W were reached for pump-pulse repetition rates of 200 and 100 kHz, respectively. These characteristics were obtained without circulating a buffer gas and (or) low-concentration active impurities through the active volume. (active media. lasers)

  18. Geothermal Heat Pumps Score High Marks in Schools.

    National Renewable Energy Lab (DOE).

    Geothermal heat pumps (GHPs) are showing their value in providing lower operating and maintenance costs, energy efficiency, and superior classroom comfort. This document describes what GHPs are and the benefits a school can garner after installing a GHP system. Three case studies are provided that illustrate these benefits. Finally, the Department…

  19. Increasing the pump-up rate to polarize 3He gas using spin-exchange optical pumping method

    Lee, W.T.; Tong Xin; Rich, Dennis; Liu Yun; Fleenor, Michael; Ismaili, Akbar; Pierce, Joshua; Hagen, Mark; Dadras, Jonny; Robertson, J. Lee

    2009-01-01

    In recent years, polarized 3 He gas has increasingly been used as neutron polarizers and polarization analyzers. Two of the leading methods to polarize the 3 He gas are the spin-exchange optical pumping (SEOP) method and the meta-stable exchange optical pumping (MEOP) method. At present, the SEOP setup is comparatively compact due to the fact that it does not require the sophisticated compressor system used in the MEOP method. The temperature and the laser power available determine the speed, at which the SEOP method polarizes the 3 He gas. For the quantity of gas typically used in neutron scattering work, this speed is independent of the quantity of the gas required, whereas the polarizing time using the MEOP method is proportional to the quantity of gas required. Currently, using the SEOP method to polarize several bar-liters of 3 He to 70% polarization would require 20-40 h. This is an order of magnitude longer than the MEOP method for the same quantity of gas and polarization. It would therefore be advantageous to speed up the SEOP process. In this article, we analyze the requirements for temperature, laser power, and the type of alkali used in order to shorten the time required to polarize 3 He gas using the SEOP method.

  20. Estimation of Leak Rate from the Emergency Pump Well in L-Area Complex Basin

    Duncan, A

    2005-01-01

    This report provides an estimate of the leak rate from the emergency pump well in L-basin that is to be expected during an off-normal event. This estimate is based on expected shrinkage of the engineered grout (i.e., controlled low strength material) used to fill the emergency pump well and the header pipes that provide the dominant leak path from the basin to the lower levels of the L-Area Complex. The estimate will be used to provide input into the operating safety basis to ensure that the water level in the basin will remain above a certain minimum level. The minimum basin water level is specified to ensure adequate shielding for personnel and maintain the ''as low as reasonably achievable'' concept of radiological exposure. The need for the leak rate estimation is the existence of a gap between the fill material and the header pipes, which penetrate the basin wall and would be the primary leak path in the event of a breach in those pipes. The gap between the pipe and fill material was estimated based on a full scale demonstration pour that was performed and examined. Leak tests were performed on full scale pipes as a part of this examination. Leak rates were measured to be on the order of 0.01 gallons/minute for completely filled pipe (vertically positioned) and 0.25 gallons/minute for partially filled pipe (horizontally positioned). This measurement was for water at 16 feet head pressure and with minimal corrosion or biofilm present. The effect of the grout fill on the inside surface biofilm of the pipes is the subject of a previous memorandum

  1. Improvement in motor performance during high pressure pump starting at NDDP, Kalpakkam

    Nagaraj, R.; Murugan, V.; Thalor, K.L.; Saxena, A.K.; Dangore, A.Y.; Prabhakar, S.; Tiwari, P.K.

    2007-01-01

    The major energy requirement required for a Sea Water Reverse Osmosis is in the form of Electrical Energy. The primary energy requirement in the process is the electrical energy fed to High Pressure Pumps to pressurize the feed sea water to membranes. This High pressure pump being a high inertia load requires very high torque at the time of starting. This high starting torque requirement results in increased acceleration time of the motor which subsequently increases the strain on the upstream electrical system from motor feeder to transformer. Such starting characteristic necessitates provision of special starting scheme for the high pressure pump motors. Sea water reverse osmosis (SWRO) plant of Nuclear Desalination Demonstration Project (NDDP) was commissioned in October 2002 at Kalpakkam, India. This paper presents the experiences of problems faced due to the typical starting characteristics of High Pressure pumps and provision of series reactor type motor starter for the same. (author)

  2. Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis.

    Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong

    2014-09-24

    We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.

  3. Electricity demand profile with high penetration of heat pumps in Nordic area

    Liu, Zhaoxi; Wu, Qiuwei; Nielsen, Arne Hejde

    2013-01-01

    This paper presents the heat pump (HP) demand profile with high HP penetration in the Nordic area in order to achieve the carbon neutrality power system. The calculation method in the European Standard EN14825 was used to estimate the HP electricity demand profile. The study results show...... there will be high power demand from HPs and the selection of supplemental heating for heat pumps has a big impact on the peak electrical power load of heating. The study in this paper gives an estimate of the scale of the electricity demand with high penetration of heat pumps in the Nordic area....

  4. High temperature semiconductor diode laser pumps for high energy laser applications

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2018-02-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  5. Book of presentations of the International Workshop on High Temperature Heat Pumps

    Modern society moves towards an electrifed energy system based on wind, solarand other renewable sources. Utilizing these sources effciently by heat pumps ishighly attractive and a significant potential for improving the energy system byextensive adaptation of heat pumping technology in all fields...... exists. However, challenges are present for heat pump technology. In particular for high temperature applications like industrial processes and to some extent district heating, heat pumps are not yet commercially available. In some countries the expansion already occurs, but other places the development...... is much more limited. Some obstacles relate to regulations and boundary conditions which may not be favorablefor heat pumps and electrification. But, the level of the technology willprobably also improve with regards to temperature limits, efficiency, capacity, and economy, and hence inherently become...

  6. Operating experience with a high capacity helium pump under supercritical conditions

    Lehmann, W.; Minges, J.

    1984-01-01

    This chapter discusses the development and testing of a high-capacity piston pump to provide forced cooling for large superconducting magnets. The pump is a three cylinder, vertically arranged single-acting piston pump equipped with a frequency controlled three-phase geared motor operating at room temperature. The pump is capable of delivering up to 150 g/s at a maximum speed of 310 rpm and under the inlet conditions of 4 bar/4.5 K. No decline was noticed in delivery head and efficiencies during more than 560 hours of operation. It is concluded that the pump satisfies all requirements for circulating large mass flows across great pressure differences as needed (e.g. in fusion magnet design)

  7. High pumping-power fiber combiner for double-cladding fiber lasers and amplifiers

    Zheng, Jinkun; Zhao, Wei; Zhao, Baoyin; Li, Zhe; Chang, Chang; Li, Gang; Gao, Qi; Ju, Pei; Gao, Wei; She, Shengfei; Wu, Peng; Hou, Chaoqi; Li, Weinan

    2018-03-01

    A high pumping-power fiber combiner for backward pumping configurations is fabricated and demonstrated by manufacturing process refinement. The pump power handling capability of every pump fiber can extend to 600 W, corresponding to the average pump coupling efficiency of 94.83%. Totally, 2.67-kW output power with the beam quality factor M2 of 1.41 was obtained, using this combiner in the fiber amplifier experimental setup. In addition, the temperature of the splicing region was less than 50.0°C in the designed combiner under the action of circulating cooling water. The experimental results prove that the designed combiner is a promising integrated all-fiber device for multikilowatt continuous-wave fiber laser with excellent beam quality.

  8. Investigation on transient flow of a centrifugal charging pump in the process of high pressure safety injection

    Zhang, Fan, E-mail: zhangfan4060@gmail.com; Yuan, Shouqi; Fu, Qiang; Tao, Yi

    2015-11-15

    Highlights: • The transient flow characteristics of the charging pump with the first stage impeller in the HPSI process have been investigated numerically by CFD. • The hydraulic performance of the charging pump during the HPSI are discussed, andthe absolute errors between the simulated and measured results are analyzed in the paper. • Pressure fluctuation in the impeller and flow pattern in the impeller were studied in the HPSI process. It is influenced little at the beginning of the HPSI process while fluctuates strongly in the end of the HPSI process. - Abstract: In order to investigate the transient flow characteristics of the centrifugal charging pump during the transient transition process of high pressure safety injection (HPSI) from Q = 148 m{sup 3}/h to Q = 160 m{sup 3}/h, numerical simulation and experiment are implemented in this study. The transient flow rate, which is the most important factor, is obtained from the experiment and works as the boundary condition to accurately accomplish the numerical simulation in the transient process. Internal characteristics under the variable operating conditions are analyzed through the transient simulation. The results shows that the absolute error between the simulated and measured heads is less than 2.26% and the absolute error between the simulated and measured efficiency is less than 2.04%. Pressure fluctuation in the impeller is less influenced by variable flow rate in the HPSI process, while flow pattern in the impeller is getting better and better with the flow rate increasing. As flow rate increases, fluid blocks on the tongue of the volute and it strikes in this area at large flow rate. Correspondingly, the pressure fluctuation is intense and vortex occurs gradually during this period, which obviously lowers the efficiency of the pump. The contents of the current work can provide references for the design optimization and fluid control of the pump used in the transient process of variable operating

  9. Investigation on transient flow of a centrifugal charging pump in the process of high pressure safety injection

    Zhang, Fan; Yuan, Shouqi; Fu, Qiang; Tao, Yi

    2015-01-01

    Highlights: • The transient flow characteristics of the charging pump with the first stage impeller in the HPSI process have been investigated numerically by CFD. • The hydraulic performance of the charging pump during the HPSI are discussed, andthe absolute errors between the simulated and measured results are analyzed in the paper. • Pressure fluctuation in the impeller and flow pattern in the impeller were studied in the HPSI process. It is influenced little at the beginning of the HPSI process while fluctuates strongly in the end of the HPSI process. - Abstract: In order to investigate the transient flow characteristics of the centrifugal charging pump during the transient transition process of high pressure safety injection (HPSI) from Q = 148 m"3/h to Q = 160 m"3/h, numerical simulation and experiment are implemented in this study. The transient flow rate, which is the most important factor, is obtained from the experiment and works as the boundary condition to accurately accomplish the numerical simulation in the transient process. Internal characteristics under the variable operating conditions are analyzed through the transient simulation. The results shows that the absolute error between the simulated and measured heads is less than 2.26% and the absolute error between the simulated and measured efficiency is less than 2.04%. Pressure fluctuation in the impeller is less influenced by variable flow rate in the HPSI process, while flow pattern in the impeller is getting better and better with the flow rate increasing. As flow rate increases, fluid blocks on the tongue of the volute and it strikes in this area at large flow rate. Correspondingly, the pressure fluctuation is intense and vortex occurs gradually during this period, which obviously lowers the efficiency of the pump. The contents of the current work can provide references for the design optimization and fluid control of the pump used in the transient process of variable operating conditions.

  10. Macroscopic Magnetic Coupling Effect: The Physical Origination of a High-Temperature Superconducting Flux Pump

    Wang, Wei; Coombs, Tim

    2018-04-01

    We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.

  11. Diode pumped 1kHz high power Nd:YAG laser with excellent beam quality

    Godfried, Herman; Godfried, H.P; Offerhaus, Herman L.

    1997-01-01

    The design and operation of a one kilohertz diode pumped all solid-state Nd:YAG master oscillator power amplifier system with a phase conjugate mirror is presented. The setup allows high power scaling without reduction in beam quality.

  12. Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals

    2015-10-13

    412TW-PA-15560 Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals...TITLE AND SUBTITLE Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals...density storage of gases remains a major technological hurdle for many fields. The U.S. Department of Energy (DOE), for example, reduced their hydrogen

  13. High-power diode laser bars as pump sources for fiber lasers and amplifiers (Invited Paper)

    Bonati, G.; Hennig, P.; Wolff, D.; Voelckel, H.; Gabler, T.; Krause, U.; T'nnermann, A.; Reich, M.; Limpert, J.; Werner, E.; Liem, A.

    2005-04-01

    Fiber lasers are pumped by fibercoupled, multimode single chip devices at 915nm. That"s what everybody assumes when asked for the type of fiber laser pumps and it was like this for many years. Coming up as an amplifier for telecom applications, the amount of pump power needed was in the range of several watts. Highest pump powers for a limited market entered the ten watts range. This is a range of power that can be covered by highly reliable multimode chips, that have to survive up to 25 years, e.g. in submarine applications. With fiber lasers entering the power range and the application fields of rod and thin disc lasers, the amount of pump power needed raised into the area of several hundred watts. In this area of pump power, usually bar based pumps are used. This is due to the much higher cost pressure of the industrial customers compared to telecom customers. We expect more then 70% of all industrial systems to be pumped by diode laser bars. Predictions that bar based pumps survive for just a thousand hours in cw-operation and fractions of this if pulsed are wrong. Bar based pumps have to perform on full power for 10.000h on Micro channel heat sinks and 20.000h on passive heatsinks in industrial applications, and they do. We will show a variety of data, "real" long time tests and statistics from the JENOPTIK Laserdiode as well as data of thousands of bars in the field, showing that bar based pumps are not just well suitable for industrial applications on high power levels, but even showing benefits compared to chip based pumps. And it"s reasonable, that the same objectives of cost effectiveness, power and lifetime apply as well to thin disc, rod and slab lasers as to fiber lasers. Due to the pumping of fiber lasers, examples will be shown, how to utilize bars for high brightness fiber coupling. In this area, the automation is on its way to reduce the costs on the fibercoupling, similar to what had been done in the single chip business. All these efforts are

  14. High-flow, low-head pumps provide safe passage for Pacific salmon

    Anon

    2004-01-01

    The installation of 29 ultra-low head, high capacity submersible pump and auxiliary equipment at the Rocky Reach Dam in Washington State to allow juvenile salmon safe passage on their journey down the Columbia River to the Pacific Ocean is described. The reputed cost of the project is US$160 million; its purpose is to get juvenile salmon safely around the Rocky Reach Dam without interfering with the dam's original mission of generating electric power. The project is the most expensive fish bypass on any Columbia River dam. Getting the salmon safely around the dam is intended to reduce the impact of hydroelectric power projects on the basin's salmon stocks which are now estimated at less than 10 per cent of their historic size, despite major hatchery programs. The Columbia River has the second largest volume flow of any river in the United States, and millions of people depend on it for employment in water-related industries, and for transportation. The new horizontally installed propeller pump was developed by ITT Flygt; it utilizes planetary gear reduced to match the motor speed with the propeller rpm. Each 90 kW propeller pump has a flow rate of seven cubic meters per second at a head of 0.55 metres. The auxiliary equipment includes 10 racks of flap gates to prevent reverse flow, electric controls, remote supervision, testing, installation and maintenance facilities. It is anticipated that the new bypass will allow the Chelan County Public Utility Department, owners of the facility, to phase out all current spills, except for a 16 per cent spill for 40 days each spring for Sockeye salmon which tend to travel too deep to use the bypass. Prior to installation of this new facility, 60 to 70 per cent of average daily flow in the spring and summer had to be sacrificed to accommodate all species of salmon and steelhead, with corresponding losses of power generating capacity

  15. Equilibrium configuration for a high current pumped divertor

    Lazzaro, E.; Keegan, B.

    1989-01-01

    A realistic design of a pumped divertor plasma configuration to be fitted to the JET vessel can be obtained as a compromise among various geometrical, physical and technical constraints. The possibility of reaching a satisfactory solution has been analysed for plasmas up to 6 MA. Optimisation of the plasma coupling to the RF antennae requires a largely asymmetric distribution of ampere turns in the PF coils and some mechanical flexibility. The calculations presented were carried out using the specially developed JET equilibrium and configuration analysis codes. (U.K.)

  16. Modern methods of high-pressure fuel pump common rail power system diagnostics

    Kyshchun В.

    2016-08-01

    Full Text Available We've considered high pressure fuel pumps design features and equipment for their diagnosis. It was noted that the reliability of the fuel elements Common Rail system primarily provide precision parts of the fuel equipment. As a consequence, the aim of study was comparative analysis and laborious of modern methods of the high pressure fuel pump diagnosing. In particular, the definition of a technical condition of the fuel pump was carried out using a special stand and by measuring the fuel pressure and duty cycle of the pressure regulator signal. As an object of our research we've chosen Bosch № 0445010008 fuel pump (from Mercedes Benz E320cdi in which the plunger pairs were changed alternately with different technical conditions. Preliminary fuel pump parameters were determined by hydraulic testing. Based on conducted experiments we've found out that fuel pressure measurement change method and the duty cycle of the pressure regulator signal at the starting and full load modes less laborious compared to the definition of a technical condition of the pump on the stand. The results of both methods of diagnosing confirmed identity of the fuel pumps.

  17. Measurement of phytoplankton photosynthesis rate using a pump-and-probe fluorometer

    Taras K. Antal

    2001-09-01

    Full Text Available In this work we have studied the possibility of determining the rate of phytoplankton photosynthesis in situ using a submersible pump-and-probe fluorometer in water areas differing in their trophic level, as well as in climatic and hydrophysical characteristics. A biophysical model was used to describe the relationship between photosynthesis, underwater irradiance, and the intensity of phytoplankton fluorescence excited by an artificial light source. Fluorescence intensity was used as a measure of light absorption by phytoplankton and for assessing the efficiency of photochemical energy conversion at photosynthetic reaction centers. Parameters of the model that could not be measured experimentally were determined by calibrating fluorescence and irradiance data against the primary production measured in the Baltic Sea with the radioactive carbon method. It was shown that the standard deviation of these parameters in situ did not exceed 20%, and the use of their mean values to estimate the phytoplankton photosynthetic rate showed a good correlation between the calculated and meas

  18. Iodine laser of high efficiency and fast repetition rate

    Hohla, K; Witte, K J

    1976-07-01

    The scaling laws of an iodine laser of high efficiency and fast repetition rate are reported. The laser is pumped with a new kind of low pressure Hg-UV-lamps which convert 32% of the electrical input in UV-light in the absorption band of the iodine laser and which can be fired up to 100 Hz. Details of a 10 kJ/1 nsec system as dimensions, energy density, repetition rate, flow velocity, gas composition and gas pressure and the overall efficiency are given which is expected to be about 2%.

  19. Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers

    Lillieholm, Mads; Galili, Michael; Grüner-Nielsen, L.

    2016-01-01

    We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain is charac......We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain...... bandwidth. However, an inverse scaling of the TOD with the dispersion fluctuations, leads to different CW-optimized fibers, which depend only on the even dispersion-orders....

  20. Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture

    Kim, Ji Young; Park, Seong Ryong; Baik, Young Jin; Chang, Ki Chang; Ra, Ho Sang; Kim, Min Sung [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kim, Yong Chan [Korea University, Seoul (Korea, Republic of)

    2011-12-15

    This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than 90 .deg. C when the heat source and sink temperatures were 50 .deg. C. Experiments with various NH{sub 3}/H{sub 2}O mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific NH{sub 3} concentration.

  1. GaAs-based high temperature electrically pumped polariton laser

    Baten, Md Zunaid; Bhattacharya, Pallab, E-mail: pkb@eecs.umich.edu; Frost, Thomas; Deshpande, Saniya; Das, Ayan [Center for Photonic and Multiscale Nanomaterials, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Lubyshev, Dimitri; Fastenau, Joel M.; Liu, Amy W. K. [IQE, Inc., 119 Technology Drive, Bethlehem, Pennsylvania 18015 (United States)

    2014-06-09

    Strong coupling effects and polariton lasing are observed at 155 K with an edge-emitting GaAs-based microcavity diode with a single Al{sub 0.31}Ga{sub 0.69}As/Al{sub 0.41}Ga{sub 0.59}As quantum well as the emitter. The threshold for polariton lasing is observed at 90 A/cm{sup 2}, accompanied by a reduction of the emission linewidth to 0.85 meV and a blueshift of the emission wavelength by 0.89 meV. Polariton lasing is confirmed by the observation of a polariton population redistribution in momentum space and spatial coherence. Conventional photon lasing is recorded in the same device at higher pump powers.

  2. Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier

    Liu, Yakun; Tao, Rumao; Su, Rongtao; Wang, Xiaolin; Ma, Pengfei; Zhang, Hanwei; Zhou, Pu; Si, Lei

    2018-04-01

    This paper presents an investigation of the effect of pump wavelength drift on the threshold of mode instability (MI) in high-power ytterbium-doped fiber lasers. By using a semi-analytical model, we study the effects of pump wavelength drift with a central pump wavelength around 976 nm and 915 nm, respectively. The influences of the pump absorption coefficient and total pump absorption are considered simultaneously. The results indicate that the effect of pump wavelength drift around 976 nm is stronger than that around 915 nm. For more efficient suppression of MI by shifting the pump wavelength, efficient absorption of pump power is required. The MI thresholds for fibers with different total pump absorptions and cladding diameters are compared. When the total pump absorption is increased, the gain saturation is enhanced, which results in the MI being mitigated more effectively and being more sensitive to pump wavelength drift. The MI threshold in gain fibers with larger inner cladding diameter is higher but more dependent upon pump wavelength. The results of this work can help in optimizing the pump wavelength and fiber parameters and suppressing MI in high-power fiber lasers.

  3. High temperature heat pumps for industrial cooling; Hoejtemperatur varmepumper til industriel koeling

    Rasmussen, Lars; Nielsen, Jacob [Advansor A/S, Aarhus (Denmark); Kronborg, H. [Cronborg, Holstebro (Denmark); Skouenborg, K. [Jensens Koekken, Struer (Denmark)

    2013-03-15

    This report deals with theoretical analysis of various types of integration of heat pumps in the industry, as well as a demonstration plant that serves the project's practical execution. The report describes the system integration between heat pumps and existing industrial cooling systems. Ammonia plants in industry are estimated to have an allocation of 85%, which is why only an analysis of this type of installation as surplus heat supplier is included in this report. In contrast, heat pumps with both CO{sub 2} and Isobutane as the refrigerant are analysed, since these are the interesting coolants for generating high temperature heat. It can be seen through the project that the combination of heat pump with existing cooling installations may produce favorable situations where the efficiency of the heat pump is extremely high while at the same time electricity and water consumption for the cooling system is reduced. The analysis reflects that CO{sub 2} is preferred over Isobutane in the cases where a high level of temperature boost is desired, whereas Isobutane is preferable at low level of temperature boost. In the demonstration project, the report shows that the heat pump alone has a COP of 4.1, while the achieved COP is 5.5 when by considering the system as a whole. In addition to increased performance the solution profits by having a reduction in CO{sub 2} emissions of 81 tons/year and a saving of 470,000 DKK/year. (LN)

  4. High power operation of cladding pumped holmium-doped silica fibre lasers.

    Hemming, Alexander; Bennetts, Shayne; Simakov, Nikita; Davidson, Alan; Haub, John; Carter, Adrian

    2013-02-25

    We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.

  5. Lithium bromide high-temperature absorption heat pump: coefficient of performance and exergetic efficiency

    Izquierdo, M [Consejo Superior de Investigaciones Cientificas, Madrid (ES). Inst. de Optica; Aroca, S [Escuela Tecnica Superior de Ingenieros Industriales, Valladolid (ES). Catedratico de Ingenieria Termica

    1990-04-01

    A theoretical study of a lithium bromide absorption heat pump, used as a machine type I and aimed to produce heat at 120{sup 0}C via waste heat sources at 60{sup 0}C, is given. Real performance conditions are stated for each component of the machine. By means of thermodynamic diagrams (p, t, x) and (h, x), the required data are obtained for calculation of the heat recovered in the evaporator Q{sub e}, the heat delivered to the absorber Q{sub a} and to the condenser Q{sub c}, and the heat supplied to the generator Q{sub g}. The heat delivered by the hot solution to the cold solution in the heat recovered Q{sub r}, and the work W{sub p} done by the solution pump are calculated. The probable COP is calculated as close to 1.4 and the working temperature in the generator ranges from 178 to 200{sup 0}C. The heat produced by the heat pump is 22% cheaper than that obtained from a cogeneration system comprising a natural gas internal combustion engine and high temperature heat pump with mechanical compression. Compared with a high temperature heat pump with mechanical compression, the heat produced by the absorption heat pump is 31% cheaper. From (h, x) and (s, x) diagrams, exergy losses for each component can be determined leading to an exergetic efficiency of 75% which provides the quality index of the absorption cycle. (author).

  6. Development of laser diode-pumped high average power solid-state laser for the pumping of Ti:sapphire CPA system

    Maruyama, Yoichiro; Tei, Kazuyoku; Kato, Masaaki; Niwa, Yoshito; Harayama, Sayaka; Oba, Masaki; Matoba, Tohru; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Laser diode pumped all solid state, high repetition frequency (PRF) and high energy Nd:YAG laser using zigzag slab crystals has been developed for the pumping source of Ti:sapphire CPA system. The pumping laser installs two main amplifiers which compose ring type amplifier configuration. The maximum amplification gain of the amplifier system is 140 and the condition of saturated amplification is achieved with this high gain. The average power of fundamental laser radiation is 250 W at the PRF of 200 Hz and the pulse duration is around 20 ns. The average power of second harmonic is 105 W at the PRF of 170 Hz and the pulse duration is about 16 ns. The beam profile of the second harmonic is near top hat and will be suitable for the pumping of Ti:sapphire laser crystal. The wall plug efficiency of the laser is 2.0 %. (author)

  7. Sodium pumping: pump problems

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  8. High-power fiber-coupled pump lasers for fiber lasers

    Kasai, Yohei; Aizawa, Takuya; Tanaka, Daiichiro

    2018-02-01

    We present high-power fiber-coupled pump modules utilized effectively for ultra-high power single-mode (SM) fiber lasers. Maximum output power of 392 W was achieved at 23 A for 915 nm pump, and 394 W for 976 nm pump. Fiber core diameter is 118 μm and case temperature is 25deg. C. Polarization multiplexing technique was newly applied to our optical system. High-reliability of the laser diodes (LD) at high-power operation has been demonstrated by aging tests. Advanced package structure was developed that manages uncoupled light around input end of the fiber. 800 hours continuous drive with uncoupled light power of 100 W has been achieved.

  9. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate.

    Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2016-06-15

    We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.

  10. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  11. Optically pumped laser systems

    DeMaria, A.J.; Mack, M.E.

    1975-01-01

    Laser systems which are pumped by an electric discharge formed in a gas are disclosed. The discharge is in the form of a vortex stabilized electric arc which is triggered with an auxiliary energy source. At high enough repetition rates residual ionization between successive pulses contributes to the pulse stabilization. The arc and the gain medium are positioned inside an optical pumping cavity where light from the arc is coupled directly into the gain medium

  12. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  13. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  14. Experimental analysis on performance of high temperature heat pump and desiccant wheel system

    Sheng, Ying; Zhang, Yufeng; Deng, Na

    2013-01-01

    In order to solve the problem of high energy consumption for regeneration of desiccant wheel in the rotary desiccant system, high temperature heat pump and desiccant wheel (HTHP&DW) system and corresponding air conditioning unit is built and tested in the extensive thermal hygrometric environment...

  15. A high field optical-pumping spin-exchange polarized deuterium source

    Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Poelker, M.; Potterveld, D.H.; Young, L.; Zeidman, B.; Toporkov, D.

    1992-01-01

    Recent results from a prototype high field optical-pumping spin-exchange polarized deuterium source are presented. Atomic polarization as high as 62% have been observed with an intensity of 6.3 x 10 17 atoms-sec -1 and 65% dissociation fraction

  16. High-efficiency pump for space helium transfer. Final Technical Report

    Hasenbein, R.; Izenson, M.G.; Swift, W.L.; Sixsmith, H.

    1991-12-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space

  17. Thermal characteristics of high-temperature R718 heat pumps with turbo compressor thermal vapor recompression

    Šarevski, Milan N.; Šarevski, Vasko N.

    2017-01-01

    Highlights: • High pressure ratio, high speed, transonic R718 centrifugal compressors. • High efficient industrial evaporators/concentrators with turbo thermal vapor recompression. • Utilization of waste heat from industrial thermal and processing systems. • R718 is an ideal refrigerant for the novel high-temperature industrial heat pumps. • Application of single-stage R718 centrifugal compressors. - Abstract: Characteristics of R718 centrifugal compressors are analyzed and range of their applications in industrial high-temperature heat pumps, district heating systems and geothermal green house heating systems are estimated. Implementation of turbo compressor thermal vapor recompression in industrial evaporating/concentrating plants for waste heat utilization results in a high energy efficiency and in other technical, economical and environmental benefits. A novel concept of turbo compression R718 heat pumps is proposed and an assessment of their thermal characteristics is presented for utilization of waste heat from industrial thermal plants and systems (boilers, furnaces, various technological and metallurgical cooling processes, etc.), and for applications in district heating and geothermal green house heating systems. R718 is an ideal refrigerant for the novel high-temperature turbo compression industrial heat pumps. Direct evaporation and condensation are advantages of the proposed system which lead to higher COP, and to simplification of the plant and lower cost.

  18. High-k shallow traps observed by charge pumping with varying discharging times

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen; Chang, Ting-Chang; Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju; Wang, Bin-Wei; Cao, Xi-Xin; Chen, Hua-Mao; Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu

    2013-01-01

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO 2 /metal gate stacks. N T -V high level characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N T for extra contribution of I cp traps. N T is the number of traps, and I cp is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I cp traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti x N 1−x metal gate concentrations. Next, N T -V high level characteristic curves with different falling times (t falling time ) and base level times (t base level ) show that extra contribution of I cp traps decrease with an increase in t falling time . By fitting discharge formula for different t falling time , the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t falling time . This current cannot be measured by the charge pumping technique. Subsequent measurements of N T by charge pumping technique at t base level reveal a remainder of electrons trapped in high-k bulk shallow traps

  19. Understanding High Rate Behavior Through Low Rate Analog

    2014-04-28

    challenges in high rate character- isation of polymers. The most important is that, owing to their low stress wavespeed, the structural response of...box’ tool, to provide supporting date for the rate dependent mechanical character- isation . Experiments were performed on a TA instruments Q800

  20. Progress in high duty cycle, highly efficient fiber coupled 940-nm pump modules for high-energy class solid-state lasers

    Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.

    2018-03-01

    Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.

  1. Centrifugal pumps

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  2. Pumping mechanisms in sputter-ion pumps low pressure operation

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump. 13 refs., 5 figs., 1 tab

  3. Pumping mechanisms in sputter-ion pumps low pressure operation

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 is pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump

  4. High-inertia hermetically sealed main coolant pump for next generation passive nuclear power plants

    Kujawski, Joseph M.; Nair, Bala R.; Vijuk, Ronald P.

    2003-01-01

    The main coolant pump for the Westinghouse AP1000 advanced passive nuclear power plant represents a significant scale-up in power, flow capacity, and physical size from its predecessor designed for the smaller AP600 power plant. More importantly, the AP1000 pump incorporates several innovative features that contribute to improved efficiency, operational reliability, and plant safety. The features include an internals design which provides the highest hydraulic efficiency achieved in commercial nuclear power plant applications. Another feature is the use of a distributed inertial mass system in the rotating assembly to develop the high rotational inertia to meet the extended system flow coastdown requirement for core heat removal in the event of loss of power to the pumps. This advanced canned motor pump also incorporates the latest development in higher operating voltage, providing plant designers with the ability to eliminate plant transformers and operate directly on the site electrical bus in many cases. The salient features of the pump design and performance data are presented in this paper. (author)

  5. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F

    2015-01-01

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)

  6. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 1

    Rothuizen, Erasmus Damgaard; Madsen, C.; Elmegaard, Brian

    2014-01-01

    The purpose of the Isolated System Energy Charging (ISEC) is to provide a high-efficient ammonia heat pump system for hot water production. The ISEC concept uses two storage tanks for the water, one discharged and one charged. The charged tank is used for the industrial process while the discharged...... tank, is charging. Charging is done by circulating the water in the tank through the condenser several times and thereby gradually heats the water. This result in a lower condensing temperature than if the water was heated in one step. A dynamic model of the system, implemented in Dymola, is used...... to investigate the performance of the ISEC system. The ISEC concept approaches the efficiency of a number of heat pumps in series and the COP of the system may reach 6.8, which is up to 25 % higher than a conventional heat pump heating water in one step....

  7. Analysis and design of a charge pump circuit for high output current applications

    van Steenwijk, Gijs; van Steenwijk, Gijs; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans

    1993-01-01

    A charge pump circuit has been developed that can deliver high currents even for a system supply voltage of 3 V. The circuit consists of capacitances, connected by MOS switches. The influence of the on-resistance of the switches on the circuit's output resistance has been analysed. The switches are

  8. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows

    Eck, van H.J.N.; Koppers, W.R.; Rooij, van G.J.; Goedheer, W.J.; Engeln, R.A.H.; Schram, D.C.; Lopes Cardozo, N.J.; Kleyn, A.W.

    2009-01-01

    The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial

  9. Advancements in high-power high-brightness laser bars and single emitters for pumping and direct diode application

    An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg

    2015-03-01

    We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.

  10. A comparison of the hourly output between the Ambu® Smart-Infuser™ Pain Pump and the On-Q Pump® with Select-A-Flow™ Variable Rate Controller with standard and overfill volumes.

    Iliev, Peter; Bhalla, Tarun; Tobias, Joseph D

    2016-04-01

    The Ambu Smart-Infuser Pain Pump and the On-Q Pump with Select-a-Flow Variable Rate Controller are elastomeric devices with a flow regulator that controls the rate of infusion of a local anesthetic agent through a peripheral catheter. As a safety evaluation, we evaluated the infusion characteristics of these two devices when filled with manufacturer recommended standard volumes and when overfilled with a volume 50% in excess of that which is recommended. Nineteen disposable devices from the two manufacturers were used in this study. Nine were filled with 0.9% normal saline according to the respective manufacturers' recommendations (four Ambu pumps were filled with 650 ml and five On-Q pumps were filled with 550 ml) and 10 devices were 150% overfilled (five Ambu pumps were filled with 975 ml and five On-Q pumps were filled with 825 ml). All of the devices were set to infuse at 10 ml · h(-1) at room temperature (21°C) for 12 h. The fluid delivered during each 2-h period was measured using a graduated column. The On-Q pump (in the settings of normal fill and 150% overfill) delivered a significantly higher output per hour than the set rate during the first 8 h, while the Ambu pump delivered a value close to the set rate of 10 ml · h(-1). No significant difference in the hourly delivered output was noted for either device when comparing the normal fill to the 150% overfill groups. This investigation demonstrates that no change in the hourly output occurs with overfilling of these home infusion devices. However, as noted previously, the hourly output from the On-Q device is significantly higher than the set rate during the initial 8 h of infusion which could have potential clinical implications. © 2016 John Wiley & Sons Ltd.

  11. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  12. Optimization of E r-density profile for efficient pumping and high signal gain in Erbium-doped fiber amplifiers

    Arzi, E.; Hassani, A.; Esmaili Seraji, F.

    2000-01-01

    Recently, the Erbium-Doped Fiber Amplifier has been shown to have a great potentiality in Fiber-Optics Communication. A model is suggested for calculating the E r-density profile, using the propagation and rate equations of a homogeneous two-level laser medium in Erbium-Doped Fiber Amplifier, such that efficient pumping and high signal gain is achieved for different fiber waveguide structure. The result of this numerical calculation shows that the gain, compared with the gain of the existing Erbium-Doped Fiber Amplifier, is higher by a factor of 3.5. This model is applicable in all active waveguides and any other dopant as well

  13. Simulation of a high efficiency multi-bed adsorption heat pump

    TeGrotenhuis, W.E.; Humble, P.H.; Sweeney, J.B.

    2012-01-01

    Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here enables high efficiency by effectively transferring heat from beds being cooled to beds being heated. A simplified lumped-parameter model and detailed finite element analysis are used to simulate a sorption compressor, which is used to project the overall heat pump coefficient of performance. Results are presented for ammonia refrigerant and a nano-structured monolithic carbon sorbent specifically modified for the application. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system. - Highlights: ► A multi-bed concept for adsorption heat pumps is capable of high efficiency. ► Modeling is used to simulate sorption compressor and overall heat pump performance. ► Results are presented for ammonia refrigerant and a nano-structured monolithic carbon sorbent. ► The majority of the efficiency benefit is obtained with four beds. ► Predicted COP as high as 1.24 for cooling is comparable to SEER 13 or 14 for electric heat pumps.

  14. Pumping behavior of sputter ion pumps

    Chou, T.S.; McCafferty, D.

    The ultrahigh vacuum requirements of ISABELLE is obtained by distributed pumping stations. Each pumping station consists of 1000 l/s titanium sublimation pump for active gases (N 2 , H 2 , O 2 , CO, etc.), and a 20 l/s sputter ion pump for inert gases (methane, noble gases like He, etc.). The combination of the alarming production rate of methane from titanium sublimation pumps (TSP) and the decreasing pumping speed of sputter ion pumps (SIP) in the ultrahigh vacuum region (UHV) leads us to investigate this problem. In this paper, we first describe the essential physics and chemistry of the SIP in a very clean condition, followed by a discussion of our measuring techniques. Finally measured methane, argon and helium pumping speeds are presented for three different ion pumps in the range of 10 -6 to 10 -11 Torr. The virtues of the best pump are also discussed

  15. Packaging of high-power bars for optical pumping and direct applications

    Heinemann, Stefan; An, Haiyan; Barnowski, Tobias; Jiang, John; Negoita, Viorel; Roff, Robert; Vethake, Thilo; Boucke, Konstantin; Treusch, Georg

    2015-03-01

    Continuous cost reduction, improved reliability and modular platform guide the design of our next generation heatsink and packaging process. Power scaling from a single device effectively lowers the cost, while electrical insulation of the heatsink, low junction temperature and hard solder enable high reliability. We report on the latest results for scaling the output power of bars for optical pumping and materials processing. The epitaxial design and geometric structures are specific for the application, while packaging with minimum thermal impedance, low stress and low smile are generic features. The isolated heatsink shows a thermal impedance of 0.2 K/W and the maximum output power is limited by the requirement of a junction temperature of less than 68oC for high reliability. Low contact impedance are addressed for drive currents of 300 A. For pumping applications, bars with a fill factor of 60% are deployed emitting more than 300 W of output power with an efficiency of about 55% and 8 bars are arranged in a compact pump module emitting 2 kW of collimated power suitable for pumping disk lasers. For direct applications we target coupling kilowatts of output powers into fibers of 100 μm diameter with 0.1 NA based on dense wavelength multiplexing. Low fill factor bars with large optical waveguide and specialized coating also emit 300 W.

  16. Development of Discrete Power Supply with Charge Pump Method for High Powered Sonar System

    Kristian Ismail

    2012-07-01

    Full Text Available Power supply is one of the electronic devices that can provide electric energy for electronic systems or other systems. There are several types of power supplies that can be applied depend on the requirement and functions. One example is the use of power supply for sonar systems. Sonar system is a device which can be used to detect a target under water. The sonar system is an electronic circuit that requires a power supply with specific characteristics when the sonar functions as a transmitter and a receiver in the specific span time (when on and the specific lag time (when off. This paper discusses the design of power supply for high-powered sonar systems with discrete methods in which high power supply is only applied when the acoustic waves radiated under water. Charge pump was used to get the appropriate output voltage from lower input voltage. Charge pump utilized a combination of series and parallel connections of capacitors. The working mode of this power supply used the lag time as the calculation of time to charge charge pump capacitors in parallel while the span time was used for the calculation of discharging the charge pump capacitors in series.

  17. High efficiency and good beam quality of electro-optic, cavity-dumped and double-end pumped Nd:YLF laser

    Tang, X. X.; Fan, Z. W.; Qiu, J. S.; Lian, F. Q.; Zhang, X. L.

    2012-06-01

    In this paper, we describe a Nd:YLF laser based on high-speed RTP electro-optical cavity dumping technique. Two home-made 150 W fiber pump modules are used from both sides to pump Nd:YLF crystal. Coupling systems are the key elements in end-pumped solid-state lasers, the aberrations of which greatly affect the efficiency of the lasers. In order to get high efficient and good quality laser output, the optical software ZEMAX is used to design a four-piece coupling system. When the pumped energy is 32 mJ at the repetition rate of 1 Hz, the output energy is 6.5 mJ with 2.5 ns pulse width. When the pumped energy is 13.1 W at the repetition rate of 200 Hz, the output energy is 2.2 W with small M 2 factor where M {/x 2} is 1.04, and M {/y 2} is 1.05, and the light-light conversion efficiency is up to 16.8%.

  18. High efficiency pump combiner fabricated by CO2 laser splicing system

    Zhu, Gongwen

    2018-02-01

    High power combiners are of great interest for high power fiber lasers and fiber amplifiers. With the advent of CO2 laser splicing system, power combiners are made possible with low manufacturing cost, low loss, high reliability and high performance. Traditionally fiber optical components are fabricated with flame torch, electrode arc discharge or filament heater. However, these methods can easily leave contamination on the fiber, resulting inconsistent performance or even catching fire in high power operations. The electrodes or filaments also degrade rapidly during the combiner manufacturing process. The rapid degradation will lead to extensive maintenance, making it unpractical or uneconomic for volume production. By contrast, CO2 laser is the cleanest heating source which provides reliable and repeatable process for fabricating fiber optic components including high power combiners. In this paper we present an all fiber end pumped 7x1 pump combiner fabricated by CO2 laser splicing system. The input pump fibers are 105/125 (core/clad diameters in μm) fibers with a core NA of 0.22. The output fiber is a 300/320 fiber with a core NA of 0.22. The average efficiency is 99.4% with all 7 ports more than 99%. The process is contamination-free and highly repeatable. To our best knowledge, this is the first report in the literature on power combiners fabricated by CO2 laser splicing system. It also has the highest reported efficiency of its kind.

  19. Glucose pump test can be used to measure blood flow rate of native arteriovenous fistula in chronic hemodialysis.

    Yavuz, Y C; Selcuk, N Y; Altıntepe, L; Güney, I; Yavuz, S

    2018-01-01

    In chronic hemodialysis patients, the low flow of vascular access may leads to inadequate dialysis, increased rate of hospitalization, morbidity, and mortality. It was found that surveillance should be performed for native arteriovenous (AV) should not be performed for AV graft in various studies. However, surveillance was done in graft AV fistulas in most studies. Doppler ultrasonography (US) was suggested for surveillance of AV fistulas by the last vascular access guideline of National Kidney Foundation Disease Outcomes Quality Initiative (NKF KDOQI). The aim of study is to determine whether glucose pump test (GPT) is used for surveillance of native AV fistulas by using Doppler US as reference. In 93 chronic hemodialysis patients with native AV fistula, blood flow rates were measured by Doppler US and GPT. For GPT, glucose was infused to 16 mL/min by pump and was measured at basal before the infusion and 11 s after the start of the infusion by glucometer. Doppler US was done by an expert radiologist. Used statistical tests were Mann-Whitney U test, Friedman test, regression analysis, and multiple regression analysis. Median values of blood flow rates measured by GPT (707 mL/min) and by Doppler US (700 mL/min) were not different (Z = 0.414, P = 0.678). Results of GPT and Doppler US measurements were positive correlate by regression analysis. The mean GPT value of diabetic patients (n = 39; 908 mL/min) was similar to that of nondiabetic patients (n = 54; 751 mL/min; Z = 1.31, P = 0.188). GPT values measured at three different dialysis session did not differ from each other that by Friedman test (F = 0.92, P = 0.39). This showed that GPT was stable and reliable. Glucose pump test can be used to measure blood flow rate of native AV fistula. GPT is an accurate and reliable test.

  20. Sodium-immersed self-cooled electromagnetic pump design and development of a large-scale coil for high temperature

    Oto, Akihiro; Naohara, Nobuyuki; Ishida, Masayoshi; Katsuki, Kenji; Kumazawa, Ryouji

    1995-01-01

    A sodium-immersed, self-cooled electromagnetic (EM) pump was recently studied as a prospective innovative technology to simplify a fast breeder reactor plant system. The EM pump for a primary pump, a pump type, was designed, and the structural concept and the system performance were clarified. For the flow control method, a constant voltage/frequency method was preferable from the point of view of pump performance and efficiency. The insulation life was tested on a large-scale coil at high temperature as part of the development of a large-capacity EM pump. Mechanical and electrical damage were not observed, and the insulation performance was quite good. The insulation system could also be applied to large-scale coils

  1. High-k shallow traps observed by charge pumping with varying discharging times

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen [Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang@mail.phys.nsysu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan, Taiwan (China); Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Wang, Bin-Wei; Cao, Xi-Xin [Department of Embedded System Engineering, Peking University, Beijing, P.R.China (China); Chen, Hua-Mao [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu [Device Department, United Microelectronics Corporation, Tainan Science Park, Taiwan (China)

    2013-11-07

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.

  2. Study of high-pressure cryogenic pumps with different methods of delivery control

    Braun, V.M.; Brailovskii, Y.L.; Pavlenko, Y.A.; Tsokalo, I.V.

    1986-01-01

    This paper describes new reciprocating pumps with smooth control of delivery in a running pump. Control is effected either by changing the length of the piston stroke or by changing the speed of the driving motor. The individual features of the two methods are described. In the first method (mechanical), delivery is controlled in the range 50 to 100%. A separate actuating mechanism is needed to connect the pump to an automatic control system. This method complicates the driving mechanism and increases the bulk and cost of production. In the second method of controlling the speed of the electric motor, an electric drive fitted with a frequency thyristor is used. AC induction motors series 4A working at current frequencies of 60 HZ are used. By this method, delivery control could be enhanced by 1.3 times. Comparative tests were made on pumps using the above methods of control. The tests demonstrated the possibilities of using the frequency thyristor converters. The complexity and high cost of EKT type drives is largely compensated by the convenience and simplicity of control in a wide range. The mechanical control is advantageous only in low-output units

  3. Pump--probe measurements of state-to-state rotational energy transfer rates in N2 (v=1)

    Sitz, G.O.; Farrow, R.L.

    1990-01-01

    We report direct measurements of the state-to-state rotational energy transfer rates for N 2 (υ=1) at 298 K. Stimulated Raman pumping of Q-branch (υ=1 left-arrow 0) transitions is used to prepare a selected rotational state of N 2 in the υ=1 state. After allowing an appropriate time interval for collisions to occur, 2+2 resonance-enhanced multiphoton ionization is used (through the a 1 Π g left-arrow X 1 Σ + g transition) to detect the relative population of the pumped level and other levels to which rotational energy transfer has occurred. We have performed a series of measurements in which a single even rotational level (J i =0--14) is excited and the time-dependent level populations are recorded at three or more delay times. This data set is then globally fit to determine the best set of state-to-state rate constants. The fitting procedure does not place any constraints (such as an exponential gap law) on the J or energy dependence of the rates. We compare our measurements and best-fit rates with results predicted from phenomenological rate models and from a semiclassical scattering calculation of Koszykowski et al. [J. Phys. Chem. 91, 41 (1987)]. Excellent agreement is obtained with two of the models and with the scattering calculation. We also test the validity of the energy-corrected sudden (ECS) scaling theory for N 2 by using our experimental transfer rates as basis rates (J=L→0), finding that the ECS scaling expressions accurately predict the remaining rates

  4. Pulse forming networks for fast pumping of high power electron-beam-controlled CO2 lasers

    Riepe, K.B.

    1975-01-01

    The transverse electric discharge is a widely used technique for pumping CO 2 lasers at high pressures for the generation, simply and efficiently, of very high power laser pulses. The development of the electron-beam-controlled discharge has allowed the application of the transverse discharge to large aperture, very high energy systems. LASL is now in the process of assembly and checkout of a CO 2 laser which is designed to generate a one nanosecond pulse containing 10 kilojoules, for use in laser fusion experiments. The front end of this laser consists of a set of preamplifiers and a mode locked oscillator with electro-optic single pulse switchout. The final amplifier stage consists of four parallel modules, each one consisting of a two-sided electron gun, and two 35 x 35 x 200 cm gas pumping regions operating at a pressure of 1800 torr with a 3/ 1 / 4 /1 (He/N 2 /CO 2 ) laser mix. (auth)

  5. Effect of non-condensable gas on heat transfer in steam turbine condenser and modelling of ejector pump system by controlling the gas extraction rate through extraction tubes

    Strušnik, Dušan; Golob, Marjan; Avsec, Jurij

    2016-01-01

    Graphical abstract: Control of the amount of the pumped gases through extraction tubes. The connecting locations interconnect the extraction tubes for STC gas pumping. The extraction tubes are fitted with 3 control valves to control the amount of the pumped gas depending on the temperature of the pumped gas. The amount of the pumped gas increases through the extraction tubes, where the pumped gases are cooler and decreases, at the same time, through the extraction tubes, where the pumped gases are warmer. As a result, pumping of a larger amount of NCG is ensured and of a smaller amount of CG, given that the NCG concentration is the highest on the colder places. This way, the total amount of the pumped gases from the STC can be reduced, the SEPS operates more efficiently and consumes less energy for its operation. - Highlights: • Impact of non-condensable gas on heat transfer in a steam turbine condenser. • The ejector system is optimised by selecting a Laval nozzle diameter. • Simulation model of the control of the amount of pumped gases through extraction tubes. • Neural network and fuzzy logic systems used to control gas extraction rate. • Simulation model was designed by using real process data from the thermal power plant. - Abstract: The paper describes the impact of non-condensable gas (NCG) on heat transfer in a steam turbine condenser (STC) and modelling of the steam ejector pump system (SEPS) by controlling the gas extraction rate through extraction tubes. The ideal connection points for the NCG extraction from the STC are identified by analysing the impact of the NCG on the heat transfer and measuring the existing system at a thermal power plant in Slovenia. A simulation model is designed using the Matlab software and Simulink, Neural Net Work, Fuzzy Logic and Curve Fitting Toolboxes, to control gas extraction rate through extraction tubes of the gas pumped from the STC, thus optimising the operation of the steam ejector pump system (SEPS). The

  6. Changes in basal rates and bolus calculator settings in insulin pumps during pregnancy in women with type 1 diabetes

    Mathiesen, Jonathan M; Secher, Anna L; Ringholm, Lene

    2014-01-01

    OBJECTIVE: To explore insulin pump settings in a cohort of pregnant women with type 1 diabetes on insulin pump therapy with a bolus calculator. METHODS: Twenty-seven women with type 1 diabetes on insulin pump therapy were included in this study. At 8, 12, 21, 27 and 33 weeks, insulin pump setting...

  7. 1018 nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915 nm with output power above 100 W

    Midilli, Yakup; Efunbajo, Oyewole Benjamin; Şimşek, Bartu

    2017-01-01

    laser were also addressed in this study. Finally, we have tested this system for high power experimentation and obtained 67% maximum optical-to-optical efficiency at an approximately 110 W output power level. To the best of our knowledge, this is the first 1018 nm ytterbium-doped all-fiber laser pumped...

  8. Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate

    Dantan, Aurelien Romain; Laurat, Julien; Ourjoumtsev, Alexei

    2007-01-01

    We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors a...... as high as 17 and 320 nJ Fourier-limited pulses are obtained at a 800 kHz repetition rate....

  9. Energy efficiency in pumps

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  10. Energy efficiency in pumps

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  11. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...... limits may be possible to exceed if needed for actual applications. Feasible heat supply temperatures using these component limits are investigated. A feasible solution is defined as one that satisfies constraints on the COP, low and high pressure, compressor discharge temperature, vapour water content...... and volumetric heat capacity. The ammonia mass fraction and the liquid circulation ratio both influence these constraining parameters. The paper investigates feasible combinations of these parameters through the use of a numerical model. 28 bar components allow temperatures up to 111 °C, 50 bar up to 129°C...

  12. On-chip high-voltage generator design design methodology for charge pumps

    Tanzawa, Toru

    2016-01-01

    This book provides various design techniques for switched-capacitor on-chip high-voltage generators, including charge pump circuits, regulators, level shifters, references, and oscillators.  Readers will see these techniques applied to system design in order to address the challenge of how the on-chip high-voltage generator is designed for Flash memories, LCD drivers, and other semiconductor devices to optimize the entire circuit area and power efficiency with a low voltage supply, while minimizing the cost.  This new edition includes a variety of useful updates, including coverage of power efficiency and comprehensive optimization methodologies for DC-DC voltage multipliers, modeling of extremely low voltage Dickson charge pumps, and modeling and optimum design of AC-DC switched-capacitor multipliers for energy harvesting and power transfer for RFID.

  13. Three-Dimensional Numerical Analysis of an Operating Helical Rotor Pump at High Speeds and High Pressures including Cavitation

    Zhou Yang

    2017-01-01

    Full Text Available High pressures, high speeds, low noise and miniaturization is the direction of development in hydraulic pump. According to the development trend, an operating helical rotor pump (HRP at high speeds and high pressures has been designed and produced, which rotational speed can reach 12000r/min and outlet pressure is as high as 25MPa. Three-dimensional simulation with and without cavitation inside the HRP is completed by the means of the computational fluid dynamics (CFD in this paper, which contributes to understand the complex fluid flow inside it. Moreover, the influences of the rotational speeds of the HRP with and without cavitation has been simulated at 25MPa.

  14. Radio frequency energy coupling to high-pressure optically pumped nonequilibrium plasmas

    Plonjes, Elke; Palm, Peter; Lee, Wonchul; Lempert, Walter R.; Adamovich, Igor V.

    2001-01-01

    This article presents an experimental demonstration of a high-pressure unconditionally stable nonequilibrium molecular plasma sustained by a combination of a continuous wave CO laser and a sub-breakdown radio frequency (rf) electric field. The plasma is sustained in a CO/N 2 mixture containing trace amounts of NO or O 2 at pressures of P=0.4 - 1.2atm. The initial ionization of the gases is produced by an associative ionization mechanism in collisions of two CO molecules excited to high vibrational levels by resonance absorption of the CO laser radiation with subsequent vibration-vibration (V-V) pumping. Further vibrational excitation of both CO and N 2 is produced by free electrons heated by the applied rf field, which in turn produces additional ionization of these species by the associative ionization mechanism. In the present experiments, the reduced electric field, E/N, is sufficiently low to preclude field-induced electron impact ionization. Unconditional stability of the resultant cold molecular plasma is enabled by the negative feedback between gas heating and the associative ionization rate. Trace amounts of nitric oxide or oxygen added to the baseline CO/N 2 gas mixture considerably reduce the electron - ion dissociative recombination rate and thereby significantly increase the initial electron density. This allows triggering of the rf power coupling to the vibrational energy modes of the gas mixture. Vibrational level populations of CO and N 2 are monitored by infrared emission spectroscopy and spontaneous Raman spectroscopy. The experiments demonstrate that the use of a sub-breakdown rf field in addition to the CO laser allows an increase of the plasma volume by about an order of magnitude. Also, CO infrared emission spectra show that with the rf voltage turned on the number of vibrationally excited CO molecules along the line of sight increase by a factor of 3 - 7. Finally, spontaneous Raman spectra of N 2 show that with the rf voltage the vibrational

  15. High burn rate solid composite propellants

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  16. High-efficiency heat pump technology using metal hydrides (eco-energy city project)

    Morita, Y.; Harada, T.; Niikura, J.; Yamamoto, Y.; Suzuki, J. [Human Environmental Systems Development Center, Matsushita Electric Industrial Co., Ltd., Moriguchi, Osaka (Japan); Gamo, T. [Corporate Environmental Affairs Div., Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan)

    1999-07-01

    Metal hybrides are effective materials for utilizing hydrogen as a clean energy medium. That is, when the metal hydrides absorb or desorb the hydrogen, a large heat output of reaction occurs. So, the metal hydrides can be applied to a heat pump. We have researched on a high efficiency heat pump technology using their metal hydrides. In this report, a double effect type metal hydride heat pump configuration is described in which the waste heat of 160 C is recovered in a factory cite and transported to areas far distant from the industrial district. In the heat recovery unit, a low pressure hydrogen is converted into highly effective high pressure hydrogen by applying the metal hydrides. Other metal hydrides perform the parts of heating by absorbing the hydrogen and cooling by desorbing the hydrogen in the heat supply unit. One unit scale of the system is 3 kW class as the sum of heating and cooling. This system using the hydrogen absorbing alloy also has good energy storage characteristics and ambient hydrogen pressure self-safety control ability. Furthermore, this heating and cooling heat supply system is not harmful to the natural environment because it is a chlorofluorocarbon-free, and low noise type system. We have developed in the following element technologies to attain the above purposes, that is development of hydrogen absorbing alloys with high heat outputs and technologies to construct the heat pump system. This study is proceeded at present as one of the programs in New Sunshine Project, which aims for development of ingenious energy utilization technology to achieve reduction of primary energy consumption with keeping cultural and wealthy life and preventing deterioration of global environment. (orig.)

  17. Versatile ultrafast pump-probe imaging with high sensitivity CCD camera

    Pezeril , Thomas; Klieber , Christoph; Temnov , Vasily; Huntzinger , Jean-Roch; Anane , Abdelmadjid

    2012-01-01

    International audience; A powerful imaging technique based on femtosecond time-resolved measurements with a high dynamic range, commercial CCD camera is presented. Ultrafast phenomena induced by a femtosecond laser pump are visualized through the lock-in type acquisition of images recorded by a femtosecond laser probe. This technique allows time-resolved measurements of laser excited phenomena at multiple probe wavelengths (spectrometer mode) or conventional imaging of the sample surface (ima...

  18. A new glove-box system for a high-pressure tritium pump

    Wilson, S.W.; Borree, R.J.; Chambers, D.I.; Chang, Y.; Merrill, J.T.; Souers, P.C.; Wiggins, R.K.

    1988-01-01

    A new glove-box system that was designed around a high-pressure tritium pump is described. The system incorporates new containment ideas such as ''burpler'' passive pressure controls, valves that can be turned from outside the box, inflatable door seals, ferro-fluidic motor-shaft seals, and rapid box-to-hood conversion during cryostaging. Currently under construction, the system will contain nine separate sections with automatic pressure-balancing and venting systems. 3 refs., 5 figs

  19. Pump-probe study of atoms and small molecules with laser driven high order harmonics

    Cao, Wei

    A commercially available modern laser can emit over 1015 photons within a time window of a few tens of femtoseconds (10-15second), which can be focused into a spot size of about 10 mum, resulting in a peak intensity above 1014W/cm2. This paves the way for table-top strong field physics studies such as above threshold ionization (ATI), non-sequential double ionization (NSDI), high order harmonic generation (HHG), etc.. Among these strong laser-matter interactions, high order harmonic generation, which combines many photons of the fundamental laser field into a single photon, offers a unique way to generate light sources in the vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) region. High order harmonic photons are emitted within a short time window from a few tens of femtoseconds down to a few hundreds of attoseconds (10 -18second). This highly coherent nature of HHG allows it to be synchronized with an infrared (IR) laser pulse, and the pump-probe technique can be adopted to study ultrafast dynamic processes in a quantum system. The major work of this thesis is to develop a table-top VUV(EUV) light source based on HHG, and use it to study dynamic processes in atoms and small molecules with the VUV(EUV)-pump IR-probe method. A Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) apparatus is used for momentum imaging of the interaction products. Two types of high harmonic pump pulses are generated and applied for pump-probe studies. The first one consists of several harmonics forming a short attosecond pulse train (APT) in the EUV regime (around 40 eV). We demonstrate that, (1) the auto-ionization process triggered by the EUV in cation carbon-monoxide and oxygen molecules can be modified by scanning the EUV-IR delay, (2) the phase information of quantum trajectories in bifurcated high harmonics can be extracted by performing an EUV-IR cross-correlation experiment, thus disclosing the macroscopic quantum control in HHG. The second type of high harmonic source

  20. Aerosol core nuclear reactor for space-based high energy/power nuclear-pumped lasers

    Prelas, M.A.; Boody, F.P.; Zediker, M.S.

    1987-01-01

    An aerosol core reactor concept can overcome the efficiency and/or chemical activity problems of other fuel-reactant interface concepts. In the design of a laser using the nuclear energy for a photon-intermediate pumping scheme, several features of the aerosol core reactor concept are attractive. First, the photon-intermediate pumping concept coupled with photon concentration methods and the aerosol fuel can provide the high power densities required to drive high energy/power lasers efficiently (about 25 to 100 kW/cu cm). Secondly, the intermediate photons should have relatively large mean free paths in the aerosol fuel which will allow the concept to scale more favorably. Finally, the aerosol core reactor concept can use materials which should allow the system to operate at high temperatures. An excimer laser pumped by the photons created in the fluorescer driven by a self-critical aerosol core reactor would have reasonable dimensions (finite cylinder of height 245 cm and radius of 245 cm), reasonable laser energy (1 MJ in approximately a 1 millisecond pulse), and reasonable mass (21 kg uranium, 8280 kg moderator, 460 kg fluorescer, 450 kg laser medium, and 3233 kg reflector). 12 references

  1. High-rate lithium thionyl chloride cells

    Goebel, F.

    1982-03-01

    A high-rate C cell with disc electrodes was developed to demonstrate current rates which are comparable to other primary systems. The tests performed established the limits of abuse beyond which the cell becomes hazardous. Tests include: impact, shock, and vibration tests; temperature cycling; and salt water immersion of fresh cells.

  2. Lithium thionyl chloride high rate discharge

    Klinedinst, K. A.

    1980-04-01

    Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.

  3. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    Concomitant chemoradiotherapy with high dose rate brachytherapy as a definitive treatment modality for locally advanced cervical cancer. T Refaat, A Elsaid, N Lotfy, K Kiel, W Small Jr, P Nickers, E Lartigau ...

  4. Design of high-brightness TEM00-mode solar-pumped laser for renewable material processing

    Liang, D.; Almeida, J.

    2014-08-01

    The conversion of sunlight into laser light by direct solar pumping is of ever-increasing importance because broadband, temporally constant, sunlight is converted into laser light, which can be a source of narrowband, collimated, rapidly pulsed, radiation with the possibility of obtaining extremely high brightness and intensity. Nonlinear processes, such as harmonic generation, might be used to obtain broad wavelength coverage, including the ultraviolet wavelengths, where the solar flux is very weak. The direct excitation of large lasers by sunlight offers the prospect of a drastic reduction in the cost of coherent optical radiation for high average power materials processing. This renewable laser has a large potential for many applications such as high-temperature materials processing, renewable magnesium-hydrogen energy cycle and so on. We propose here a scalable TEM00 mode solar laser pumping scheme, which is composed of four firststage 1.13 m diameter Fresnel lenses with its respective folding mirrors mounted on a two-axis automatic solar tracker. Concentrated solar power at the four focal spots of these Fresnel lenses are focused individually along a common 3.5 mm diameter, 70 mm length Nd:YAG rod via four pairs of second-stage fused-silica spherical lenses and third-stage 2D-CPCs (Compound Parabolic Concentrator), sitting just above the laser rod which is also double-pass pumped by four V-shaped pumping cavities. Distilled water cools both the rod and the concentrators. 15.4 W TEM00 solar laser power is numerically calculated, corresponding to 6.7 times enhancement in laser beam brightness.

  5. Industrial heat pumps for high temperatures - a pilot project; Industrielle varmepumper for hoeje temperaturer - et forprojekt

    Johansson, M. [Dansk Energi Analyse A/S, Frederiksberg (Denmark); Weel, M.; Mikkelsen, J. [Weel and Sandvig, Kgs. Lyngby (Denmark)

    2012-03-15

    This project investigates the possibility of using mass produced and inexpensive turbo compressor technology for heat pumping in the industry. The compressors are designed for the compression of air and used by the automotive industry in connection with turbo-chargers. The heat pumps are primarily intended to use water as the working medium, which in addition to having no environmental loads, is suitable for the heat pumping at temperatures above about 60 deg. C and up to about 200 deg. C, a temperature level which is considerably higher than what has previously been observed covered with heat pumping. In this project, a Danish-produced high-speed gear (Rotrex) is used, which has just been developed to said compressor technology. In cooperation with Rotrex, the modifications relevant to a standard unit were analyzed and assessed. The project identified some areas of industry where heat pumping using this technology is considered to be attractive. A pilot plant operating with steam in a total of 12 hours is demonstrated. In more than 3 hours, the pilot plant was coupled so that it delivered useful heat supply to the evaporator. The plant has during the tests worked satisfactorily, and there is no evidence of problems with leaks in the compressor shaft sealings, neither in relation to the leakage of oil or steam, which was one of the central issues to clarify with the demonstration. In the limited testing period no problems were detected that could not be immediately resolved, i.e. the transmission in the form of a belt drive with high speed from the engine to the friction gear. In the determination of the performance of the compressor during the trial operation with steam as a working medium, it is shown that the conversion efficiency are within the expected range when taking into account the uncertainties in the measurements and the calculation method. In the experiment, no measurement of steam flow through the compressor was made, because of a greatly reduced

  6. A Methodology for the Optimization of Flow Rate Injection to Looped Water Distribution Networks through Multiple Pumping Stations

    Christian León-Celi

    2016-12-01

    Full Text Available The optimal function of a water distribution network is reached when the consumer demands are satisfied using the lowest quantity of energy, maintaining the minimal pressure required at the same time. One way to achieve this is through optimization of flow rate injection based on the use of the setpoint curve concept. In order to obtain that, a methodology is proposed. It allows for the assessment of the flow rate and pressure head that each pumping station has to provide for the proper functioning of the network while the minimum power consumption is kept. The methodology can be addressed in two ways: the discrete method and the continuous method. In the first method, a finite set of combinations is evaluated between pumping stations. In the continuous method, the search for the optimal solution is performed using optimization algorithms. In this paper, Hooke–Jeeves and Nelder–Mead algorithms are used. Both the hydraulics and the objective function used by the optimization are solved through EPANET and its Toolkit. Two case studies are evaluated, and the results of the application of the different methods are discussed.

  7. Numerical Investigation of Periodically Unsteady Pressure Field in a High Power Centrifugal Diffuser Pump

    Ji Pei

    2014-05-01

    Full Text Available Pressure fluctuations are the main factors that can give rise to reliability problems in centrifugal pumps. The periodically unsteady pressure characteristics caused by rotor-stator interaction have been investigated by CFD calculation in a residual heat removal pump. Side chamber flow effect is also considered for the simulation to accurately predict the flow in whole flow passage. The pressure fluctuation results in time and frequency domains were considered for several typical monitoring points in impeller and diffuser channels. In addition, the pressure fluctuation intensity coefficient (PFIC based on standard deviation was defined on each grid node for entire space and impeller revolution period. The results show that strong pressure fluctuation intensity can be found in the gap between impeller and diffuser. As a source, the fluctuation can spread to the upstream and downstream flow channels as well as the side chamber channels. Meanwhile, strong pressure fluctuation intensity can be found in the discharge tube of the circular casing. In addition, the obvious influence of operational flow rate on the PFIC distribution can be found. The analysis indicates that the pressure fluctuations in the aspects of both frequency and intensity can be used to comprehensively evaluate the unsteady pressure characteristics in centrifugal pumps.

  8. A highly self-adaptive cold plate for the single-phase mechanically pumped fluid loop for spacecraft thermal management

    Wang, Ji-Xiang; Li, Yun-Ze; Zhang, Hong-Sheng; Wang, Sheng-Nan; Liang, Yi-Hao; Guo, Wei; Liu, Yang; Tian, Shao-Ping

    2016-01-01

    Highlights: • A highly self-adaptive cold plate integrated with paraffin-based actuator is proposed. • Higher operating economy is attained due to an energy-efficient strategy. • A greater compatibility of the current space control system is obtained. • Model was entrenched theoretically to design the system efficiently. • A strong self-adaptability of the cold plate is observed experimentally. - Abstract: Aiming to improve the conventional single-phase mechanically pumped fluid loop applied in spacecraft thermal control system, a novel actively-pumped loop using distributed thermal control strategy was proposed. The flow control system for each branch consists primarily of a thermal control valve integrated with a paraffin-based actuator residing in the front part of each corresponding cold plate, where both coolant’s flow rate and the cold plate’s heat removal capability are well controlled sensitively according to the heat loaded upon the cold plate due to a conversion between thermal and mechanical energies. The operating economy enhances remarkably owing to no energy consumption in flow control process. Additionally, realizing the integration of the sensor, controller and actuator systems, it simplifies structure of the traditional mechanically pumped fluid loop as well. Revolving this novel scheme, mathematical model regarding design process of the highly specialized cold plate was entrenched theoretically. A validating system as a prototype was established on the basis of the design method and the scheduled objective of the controlled temperature (43 °C). Then temperature control performances of the highly self-adaptive cold plate under various operating conditions were tested experimentally. During almost all experiments, the controlled temperature remains within a range of ±2 °C around the set-point. Conclusions can be drawn that this self-driven control system is stable with sufficient fast transient responses and sufficient small steady

  9. High efficient heat pump system using storage tanks to increase COP by means of the ISEC concept - Part 1: Model validation

    Rothuizen, Erasmus; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    The purpose of the ISEC concept is to provide a high-efficient heat pump system for hot water production.The ISEC concept uses two storage tanks for the water, one discharged and one charged. Hot water for theindustrial process is tapped from the charged tank, while the other tank is charging....... This result in a lower condensingtemperature than if the water was heated in one step. Two test setups were built, one to test the performanceof the heat pump gradually heating the water and one to investigate the stratification in the storage tanks.Furthermore, a dynamic model of the system was implemented....... Charging is done bycirculating the water in the tank through the condenser of a heat pump several times and thereby graduallyheating the water. The charging is done with a higher mass flow rate than the discharging to reach severalcirculations of the water during the time frame of one discharging...

  10. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  11. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 2

    Olesen, Martin F.; Madsen, Claus; Olsen, Lars

    2014-01-01

    The Isolated System Energy Charging (ISEC) concept allows for a high efficiency of a heat pump system for hot water production. The ISEC concept consists of two water storage tanks, one charged and one discharged. The charged tank is used for the industrial process, while the discharged tank...... is charging. The charging of the tank is done by recirculating water through the condenser and thereby gradually heating the water. The modelling of the system is described in Part I [1]. In this part, Part II, an experimental test setup of the tank system is reported, the results are presented and further...... modelling of the heat pump and tank system is performed (in continuation of Part I). The modelling is extended to include the system performance with different natural refrigerants and the influence of different types of compressors....

  12. Optimization analysis of high temperature heat pump coupling to desiccant wheel air conditioning system

    Sheng, Ying; Zhang, Yufeng; Fang, Lei

    2014-01-01

    The high temperature heat pump and desiccant wheel (HTHP&DW) system can make full use of heat released from the condenser of heat pump for DW regeneration without additional heat. In this study, DW operation in the HTHP&DW system was investigated experimentally, and the optimization analysis...... of HTHP&DW system was carried out. The performance of DW had influence on the dehumidification (evaluated by dehumidification and regeneration effectiveness) and cooling load (evaluated by thermal and adiabatic effectiveness). The results show that the enthalpy increase occurred in all the experiments...... of the system. When the regeneration temperature is 63°C, the maximal dehumidification effectiveness is 35.4% and the satisfied adiabatic effectiveness is 88%, which contributes to the optimal balance between dehumidification and cooling. © 2014 Tianjin University and Springer-Verlag Berlin Heidelberg....

  13. Effects of air vessel on water hammer in high-head pumping station

    Wang, L; Wang, F J; Zou, Z C; Li, X N; Zhang, J C

    2013-01-01

    Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled

  14. Effects of air vessel on water hammer in high-head pumping station

    Wang, L.; Wang, F. J.; Zou, Z. C.; Li, X. N.; Zhang, J. C.

    2013-12-01

    Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled.

  15. Vacuum ultraviolet Ar2*laser pumped by a high-intensity laser

    Kubodera, Shoichi; Kaku, Masanori; Higashiguchi, Takeshi

    2004-01-01

    We observed a small-signal gain of Ar 2 * emission at 126 nm by use of an Ar-filled hollow fiber to guide the ultrashort-pulse high-intensity laser propagation. The small signal gain coefficient was measured to be 0.05 cm -1 at 126 nm. Kinetic analysis revealed that the electrons produced by the high-intensity laser through an optical-field ionization process initiated the Ar 2 * production process. This laser scheme could be combined with high harmonic radiation of the pump laser in the vacuum ultraviolet (VUV), leading to the production of amplified ultrashort VUV pulses. (author)

  16. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Pumping liquid metal at high temperatures up to 1,673 kelvin

    Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; Chavan, A.; Gilleland, B.; Yuan, C.; Chueh, W. C.; Sandhage, K. H.; Kawajiri, Y.; Henry, A.

    2017-10-01

    Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.

  18. Very high repetition-rate electro-optical cavity-dumped Nd: YVO4 laser with optics and dynamics stabilities

    Liu, Xuesong; Shi, Zhaohui; Huang, Yutao; Fan, Zhongwei; Yu, Jin; Zhang, Jing; Hou, Liqun

    2015-02-01

    In this paper, a very high repetition-rate, short-pulse, electro-optical cavity-dumped Nd: YVO4 laser is experimentally and theoretically investigated. The laser performance is optimized from two aspects. Firstly, the laser resonator is designed for a good thermal stability under large pump power fluctuation through optics methods. Secondly, dynamics simulation as well as experiments verifies that cavity dumping at very high repetition rate has better stability than medium/high repetition rate. At 30 W, 880 nm pump power, up to 500 kHz, constant 5 ns, stable 1064 nm fundamental-mode laser pulses can be obtained with 10 W average output power.

  19. Impact of surgeon experience on the rate of blood transfusion in off-pump coronary artery bypass.

    Chen, Jeng-Wei; Hsu, Ron-Bin

    2016-03-01

    Off-pump coronary artery bypass (OPCAB) reduces the rate of blood transfusion. No studies have focused on the effect of surgeon experience on the transfusion rate. We sought to assess the transfusion rate in OPCAB and to evaluate the effect of surgeon experience. Retrospective review of 1055 consecutive patients undergoing OPCAB between 2000 and 2012. Patients were divided into tripartites by the year of operation (2000-2004, 2005-2008, and 2009-2012). Surgeon experience was evaluated with revascularization index and conversion rate. Mode of intervention was elective in 768, urgency in 185, and emergency in 102 patients (10%). Blood transfusion was associated with increased rates of hospital mortality and sternal wound/bloodstream infections. Revascularization index was 1.22 ± 0.29 per patient and increased over time, from 1.05 ± 0.21 in 2000-2004 to 1.39 ± 0.26 in 2009-2012. Conversion rate was 10% and decreased over time, from 17% in 2000-2004 to 6% in 2009-2012. The average rate of blood transfusion was 58% and decreased over time, from 74% in 2000-2004 to 41% in 2009-2012. Rate of red blood cell transfusion was 56% and decreased from 72% in 2000-2004 to 40% in 2009-2012. Rate of platelet transfusion was 21% and decreased from 25% in 2000-2004 to 15% in 2009-2012.The most significant decrease in the transfusion rate was observed in nonemergency cases. Surgeon experience reduced the need of blood transfusion after OPCAB. Increasing surgeon experience was associated with a 33% reduction in blood transfusion rate. Copyright © 2015. Published by Elsevier B.V.

  20. Solar Pumping : The Basics

    World Bank Group

    2018-01-01

    Solar photovoltaic water pumping (SWP) uses energy from solar photovoltaic (PV) panels to power an electric water pump. The entire process, from sunlight to stored energy, is elegant and simple. Over last seven years, the technology and price of solar pumping have evolved dramatically and hence the opportunities it presents. Solar pumping is most competitive in regions with high solar inso...

  1. High Strain Rate Characterisation of Composite Materials

    Eriksen, Rasmus Normann Wilken

    -reinforced polymers, were considered, and it was first shown that the loading history controls equilibrium process. Then the High-speed servo-hydraulic test machine was analysed in terms its ability to create a state of constant strain rate in the specimen. The invertible inertial forces in the load train prevented...... from designing and constructing a high-speed servo-hydraulic test machine and by performing a comprehensive test series. The difficulties encountered in the test work could be addressed with the developed analysis. The conclusion was that the High-speed servo-hydraulic test machine is less suited...... for testing fibre-reinforced polymers due to their elastic behaviour and low strain to failure. This is problematic as the High-speed servo-hydraulic test machine closes the gap between quasi-static tests rates and lower strain rates, which are achievable with the Split Hopkinson Pressure Bar. The Split...

  2. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  3. Analysis of Nd3+:glass, solar-pumped, high-powr laser systems

    Zapata, L. E.; Williams, M. D.

    1989-01-01

    The operating characteristics of Nd(3+):glass lasers energized by a solar concentrator were analyzed for the hosts YAG, silicate glass, and phosphate glass. The modeling is based on the slab zigzag laser geometry and assumes that chemical hardening methods for glass are successful in increasing glass hardness by a factor of 4. On this basis, it was found that a realistic 1-MW solar-pumped laser might be constructed from phosphate glass 4 sq m in area and 2 mm thick. If YAG were the host medium, a 1-MW solar-pumped laser need only be 0.5 sq m in area and 0.5 cm thick, which is already possible. In addition, Nd(3+) doped glass fibers were found to be excellent solar-pumped laser candidates. The small diameter of fibers eliminates thermal stress problems, and if their diameter is kept small (10 microns), they propagate a Gaussian single mode which can be expanded and transmitted long distances in space. Fiber lasers could then be used for communications in space or could be bundled and the individual beams summed or phase-matched for high-power operation.

  4. The effect of culture density and proliferation rate on the expression of ouabain-sensitive Na/K ATPase pumps in cultured human retinal pigment epithelium

    Burke, J.M.; Jaffe, G.J.; Brzeski, C.M.

    1991-01-01

    The number and activity of ouabain-sensitive Na/K ATPase pumps expressed by many cell types in vitro, including human retinal pigment epithelial cells (RPE), have been shown to decline with increasing culture density. Cell proliferation also declined as cultures became dense so it was unclear if pump number was modulated by cell proliferation or culture confluency. By exposing RPE cultures to various feeding regimens, using culture medium containing or lacking serum, it was possible to produce RPE cultures with a range of culture densities and growth rates. These were analyzed for proliferative activity by quantifying [ 3 H]thymidine incorporation and for Na/K ATPase pump number by measuring specific [ 3 H]ouabain binding. The results suggest that pump number is modulated by culture density and, further, that the density-dependent regulation of pump number requires serum. Although density-dependent modulation of culture growth is also serum requiring, cell proliferation and pump number did not appear to be related; cultures of similar density which differed significantly in growth rate had similar numbers of pumps. The view that elevated numbers of pumps were not necessarily found in proliferating cells was further supported by qualitative examination of radioautographs of cells dually labeled with [ 3 H]thymidine and [ 3 H]ouabain. Cycling cells which had [ 3 H]thymidine-labeled nuclei did not have notably higher labeling with [ 3 H]ouabain. However, [ 3 H]ouabain labeling, as an indicator of pump site number and distribution, did vary among cells in an RPE population and also within individual cells. This latter observation suggests that unpolarized RPE cells in sparse cultures may have regionally different requirements for ionic regulation

  5. The effect of culture density and proliferation rate on the expression of ouabain-sensitive Na/K ATPase pumps in cultured human retinal pigment epithelium

    Burke, J.M.; Jaffe, G.J.; Brzeski, C.M. (Medical College of Wisconsin, Milwaukee (USA))

    1991-06-01

    The number and activity of ouabain-sensitive Na/K ATPase pumps expressed by many cell types in vitro, including human retinal pigment epithelial cells (RPE), have been shown to decline with increasing culture density. Cell proliferation also declined as cultures became dense so it was unclear if pump number was modulated by cell proliferation or culture confluency. By exposing RPE cultures to various feeding regimens, using culture medium containing or lacking serum, it was possible to produce RPE cultures with a range of culture densities and growth rates. These were analyzed for proliferative activity by quantifying ({sup 3}H)thymidine incorporation and for Na/K ATPase pump number by measuring specific ({sup 3}H)ouabain binding. The results suggest that pump number is modulated by culture density and, further, that the density-dependent regulation of pump number requires serum. Although density-dependent modulation of culture growth is also serum requiring, cell proliferation and pump number did not appear to be related; cultures of similar density which differed significantly in growth rate had similar numbers of pumps. The view that elevated numbers of pumps were not necessarily found in proliferating cells was further supported by qualitative examination of radioautographs of cells dually labeled with ({sup 3}H)thymidine and ({sup 3}H)ouabain. Cycling cells which had ({sup 3}H)thymidine-labeled nuclei did not have notably higher labeling with ({sup 3}H)ouabain. However, ({sup 3}H)ouabain labeling, as an indicator of pump site number and distribution, did vary among cells in an RPE population and also within individual cells. This latter observation suggests that unpolarized RPE cells in sparse cultures may have regionally different requirements for ionic regulation.

  6. Hydrogen pumping and release by graphite under high flux plasma bombardment

    Hirooka, Y.; Leung, W.K.; Conn, R.W.; Goebel, D.M.; LaBombard, B.; Nygren, R.; Wilson, K.L.

    1988-01-01

    Inert gas (helium or argon) plasma bombardment has been found to increase the surface gas adsorptivity of isotropic graphite (POCO-graphite), which can then getter residual gases in a high vacuum system. The inert gas plasma bombardment was carried out at a flux ≅ 1 x 10 18 ions s -1 cm -2 to a fluence of the order of 10 21 ions/cm 2 and at temperatures around 800 0 C. The gettering capability of graphite can be easily recovered by repeating inert gas plasma bombardment. The activated graphite surface exhibits a smooth, sponge-like morphology with significantly increased pore openings, which correlates with the observed increase in the surface gas adsorptivity. The activated graphite surface has been observed to pump hydrogen plasma particles as well. From calibrated H-alpha measurements, the dynamic hydrogen retention capacity is evaluated to be as large as 2 x 10 18 H/cm 2 at temperatures below 100 0 C and at a plasma bombarding energy of 300 eV. The graphite temperature was varied between 15 and 480 0 C. Due to the plasma particle pumping capability, hydrogen recycling from the activated graphite surface is significantly reduced, relative to that from a pre-saturated surface. A pre-saturated surface was also observed to reproducibly pump a hydrogen plasma to a concentration of 9.5 x 10 17 H/cm 2 . The hydrogen retention capacity of graphite is found to decrease with increasing temperature. A transient pumping mechanism associated with the sponge-like surface morphology is conjectured to explain the large hydrogen retention capacity. Hydrogen release behavior under helium and argon plasma bombardment was also investigated, and the result indicated the possibility of some in-pore retrapping effect. 43 refs., 11 figs

  7. A Novel Analytical Solution for Estimating Aquifer Properties and Predicting Stream Depletion Rates by Pumping from a Horizontally Anisotropic Aquifer

    Huang, Y.; Zhan, H.; Knappett, P.

    2017-12-01

    Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and managers to exploit groundwater resource reasonably while protecting stream ecosystem.

  8. Thrombus Formation at High Shear Rates.

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  9. Study on solid-liquid two-phase unsteady flow characteristics with different flow rates in screw centrifugal pump

    Li, R N; Wang, H Y; Han, W; Shen, Z J; Ma, W

    2013-01-01

    The screw centrifugal pump is used as an object, and the unsteady numerical simulation of solid-liquid two-phase flow is carried out under different flow rate conditions in one circle by choosing the two-phase flow of sand and water as medium, using the software FLUENT based on the URANS equations, combining with sliding mesh method, and choosing the Mixture multiphase flow model and the SIMPLE algorithm. The results show that, with the flow rate increasing, the change trends for the pressure on volute outlet are almost constant, the fluctuation trends of the impeller axial force have a little change, the pressure and the axial force turn to decrease on the whole, the radial force gradually increases when the impeller maximum radius passes by half a cycle near the volute outlet, and the radial force gradually decreases when the maximum radius passes by the other half a cycle in a rotation cycle. The distributions of the solid particles are very uneven under a small flow rate condition on the face. The solid particles under a big flow rate condition are distributed more evenly than the ones under a small flow rate condition on the back. The theoretical basis and reference are provided for improving its working performance

  10. Electrokinetic pump

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  11. Modelling of the work processes high-pressure pump of common rail diesel injection system

    Botwinska Katarzyna

    2016-01-01

    Full Text Available Common rail injection systems are becoming a more widely used solution in the fuel systems of modern diesel engines. The main component and the characteristic feature of the system is rail injection of the fuel under high pressure, which is passed to the injector and further to the combustion chamber. An important element in this process is the high-pressure pump, continuing adequate pressure in the rail injection system. Common rail (CR systems are being modified in order to optimise their work and virtual simulations are a useful tool in order to analyze the correctness of operation of the system while varying the parameters and settings, without any negative impact on the real object. In one particular study, a computer simulation of the pump high-pressure CR system was made in MatLab environment, based on the actual dimensions of the object – a one-cylinder diesel engine, the Farymann Diesel 18W. The resulting model consists of two parts – the first is responsible for simulating the operation of the high-pressure pump, and the second responsible for simulation of the remaining elements of the CR system. The results of this simulation produced waveforms of the following parameters: fluid flow from the manifold to the injector [m3/s], liquid flow from the manifold to the atmosphere [m3/s], and manifold pressure [Pa]. The simulation results allow for a positive verification of the model and the resulting system could become a useful element of simulation of the entire position and control algorithm.

  12. High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis

    Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.

    2018-02-01

    Diode side-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency and reliability. This paper summarizes the results of simulation of the most predominant active media that are used in high power diode pumped solid-state (DPSS) laser systems. Nd:YAG, Nd:glass, and Nd:YLF rods laser systems were simulated using the special finite element analysis software program LASCAD. A performance trade off analysis for Nd:YAG, Nd:glass, and Nd:YLF rods was performed in order to predict the system optimized parameters and to investigate thermally induced thermal fracture that may occur due to heat load and mechanical stress. The simulation results showed that at the optimized values Nd:YAG rod achieved the highest output power of 175W with 43% efficiency and heat load of 1.873W/mm3. A negligible changes in laser output power, heat load, stress, and temperature distributions were observed when the Nd:YAG rod length was increased from 72 to 80mm. Simulation of Nd:glass at different rod diameters at the same pumping conditions showed better results for mechanical stress and thermal load than that of Nd:YAG and Nd:YLF which makes it very suitable for high power laser applications especially for large rod diameters. For large rod diameters Nd:YLF is mechanically weaker and softer crystal compared to Nd:YAG and Nd:glass due to its poor thermomechanical properties which limits its usage to only low to medium power systems.

  13. Operation of a high-gradient superconducting radio-frequency cavity with a non-evaporable getter pump

    Ciovati, G.; Geng, R.; Lushtak, Y.; Manini, P.; Maccallini, E.; Stutzman, M.

    2017-01-01

    The use of non-evaporable getter (NEG) pumps in particle accelerators has increased significantly over the past few years because of their large pumping speed, particularly for hydrogen, compared to the size of the pump. A concern about using such pumps in superconducting radio-frequency (SRF) accelerators is the possibility of shedding particulates which could then migrate into the SRF cavities and produce field emission, therefore degrading the cavity performance. One option to mitigate such issue is to use sintered getter materials which intrinsically offer superior mechanical and particle retention properties. In this article we present the results from cryogenic RF tests of a high-gradient SRF cavity after being evacuated several times with an NEG pump equipped with sintered getter disks and placed in close proximity to the cavity. The results showed that the cavity performance was not affected by the pump up to the quench gradient of 34 MV/m. As a result of this study, two such NEG pumps have been installed next to a cryomodule in the CEBAF accelerator to maintain ultra-high vacuum in the SRF cryomodule and two adjacent warm girder sections.

  14. Operation of a high-gradient superconducting radio-frequency cavity with a non-evaporable getter pump

    Ciovati, G., E-mail: gciovati@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Geng, R. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Lushtak, Y.; Manini, P.; Maccallini, E. [SAES Getters, S.p.A, Viale Italia, 77, 20020 Lainate, MI (Italy); Stutzman, M. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2017-01-11

    The use of non-evaporable getter (NEG) pumps in particle accelerators has increased significantly over the past few years because of their large pumping speed, particularly for hydrogen, compared to the size of the pump. A concern about using such pumps in superconducting radio-frequency (SRF) accelerators is the possibility of shedding particulates which could then migrate into the SRF cavities and produce field emission, therefore degrading the cavity performance. One option to mitigate such issue is to use sintered getter materials which intrinsically offer superior mechanical and particle retention properties. In this article we present the results from cryogenic RF tests of a high-gradient SRF cavity after being evacuated several times with an NEG pump equipped with sintered getter disks and placed in close proximity to the cavity. The results showed that the cavity performance was not affected by the pump up to the quench gradient of 34 MV/m. As a result of this study, two such NEG pumps have been installed next to a cryomodule in the CEBAF accelerator to maintain ultra-high vacuum in the SRF cryomodule and two adjacent warm girder sections.

  15. High frame rate synthetic aperture duplex imaging

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... estimation is −1.8% and the relative standard deviation 5.4%. The approach can thus estimate both high and low velocities with equal accuracy and thereby makes it possible to present vector flow images with a high dynamic range. Measurements are made using the SARUS research scanner, a linear array......Conventional color flow images are limited in velocity range and can either show the high velocities in systole or be optimized for the lower diastolic velocities. The full dynamics of the flow is, thus, hard to visualize. The dynamic range can be significantly increased by employing synthetic...

  16. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  17. User friendliness, efficiency & spray quality of stirrup pumps versus hand compression pumps for indoor residual spraying.

    Kumar, Vijay; Kesari, Shreekant; Chowdhury, Rajib; Kumar, Sanjiv; Sinha, Gunjan; Hussain, Saddam; Huda, M Mamun; Kroeger, Axel; Das, Pradeep

    2013-01-01

    Indoor residual spraying (IRS) is a proven tool to reduce visceral leishmaniasis vectors in endemic villages. In India IRS is being done with stirrup pumps, whereas Nepal, Bangladesh, and other countries use compression pumps. The present study was conducted with the objectives to compare the efficiency, cost and user friendliness of stirrup and compression pumps. The study was carried out in Gorigawan village of the Vaishali district in north Bihar and included a total population of 3259 inhabitants in 605 households. Spraying with 50 per cent DDT was done by two teams with 6 persons per team under the supervision of investigators over 5 days with each type of pump (10 days in total using 2 stirrup pumps and 3 compression pumps) by the same sprayers in an alternate way. The spraying technique was observed using an observation check list, the number of houses and room surfaces sprayed was recorded and an interview with sprayers on their satisfaction with the two types of pumps was conducted. On average, 65 houses were covered per day with the compression pump and 56 houses were covered with the stirrup pump. The surface area sprayed per squad per day was higher for the compression pump (4636 m²) than for the stirrup pump (4102 m²). Observation showed that it was easy to maintain the spray swath with the compression pump but very difficult with the stirrup pump. The wastage of insecticide suspension was negligible for the compression pump but high for the stirrup pump. The compression pump was found to be more user friendly due to its lower weight, easier to operate, lower operation cost, higher safety and better efficiency in terms of discharge rate and higher area coverage than the stirrup pump.

  18. Baltimore District Tackles High Suspension Rates

    Maxwell, Lesli A.

    2007-01-01

    This article reports on how the Baltimore District tackles its high suspension rates. Driven by an increasing belief that zero-tolerance disciplinary policies are ineffective, more educators are embracing strategies that do not exclude misbehaving students from school for offenses such as insubordination, disrespect, cutting class, tardiness, and…

  19. Endorectal high dose rate brachytherapy quality assurance

    Devic, S.; Vuong, T.; Evans, M.; Podgorsak, E.

    2008-01-01

    We describe our quality assurance method for preoperative high dose rate (HDR) brachytherapy of endorectal tumours. Reproduction of the treatment planning dose distribution on a daily basis is crucial for treatment success. Due to the cylindrical symmetry, two types of adjustments are necessary: applicator rotation and dose distribution shift along the applicator axis. (author)

  20. Magnetic-Flux Pumping in High-Performance, Stationary Plasmas with Tearing Modes

    Petty, C. C.; Austin, M. E.; Holcomb, C. T.; Jayakumar, R. J.; La Haye, R. J.; Luce, T. C.; Makowski, M. A.; Politzer, P. A.; Wade, M. R.

    2009-01-01

    Analysis of the change in the magnetic field pitch angles during edge localized mode events in high performance, stationary plasmas on the DIII-D tokamak shows rapid (<1 ms) broadening of the current density profile, but only when a m/n=3/2 tearing mode is present. This observation of poloidal magnetic-flux pumping explains an important feature of this scenario, which is the anomalous broadening of the current density profile that beneficially maintains the safety factor above unity and forestalls the sawtooth instability

  1. On-the-Fly Control of High-Harmonic Generation Using a Structured Pump Beam

    Hareli, Liran; Lobachinsky, Lilya; Shoulga, Georgiy; Eliezer, Yaniv; Michaeli, Linor; Bahabad, Alon

    2018-05-01

    We demonstrate experimentally a relatively simple yet powerful all-optical enhancement and control technique for high harmonic generation. This is achieved by using as a pump beam two different spatial optical modes interfering together to realize tunable periodic quasi-phase matching of the interaction. With this technique, we demonstrate on-the-fly quasi-phase matching of harmonic orders 29-41 at ambient gas pressure levels of 50 and 100 Torr, where an up to 100-fold enhancement of the emission is observed. The technique is scalable to different harmonic orders and ambient pressure conditions.

  2. High-power diode-side-pumped intracavity-frequency-doubled continuous wave 532 nm laser

    Zhang Yuping; Zhang Huiyun; Zhong Kai; Li Xifu; Wang Peng; Yao Jianquan

    2007-01-01

    An efficient and high-power diode-side-pumped cw 532 nm green laser based on a V-shaped cavity geometry, and capable of generating 22.7 W green radiation with optical conversion efficiency of 8.31%, has been demonstrated. The laser is operated with rms noise amplitude of less than 1% and with M 2 -parameter of about 6.45 at the top of the output power. This laser has the potential for scaling to much higher output power. (authors)

  3. High-resolution multiphoton microscopy with a low-power continuous wave laser pump.

    Chen, Xiang-Dong; Li, Shen; Du, Bo; Dong, Yang; Wang, Ze-Hao; Guo, Guang-Can; Sun, Fang-Wen

    2018-02-15

    Multiphoton microscopy (MPM) has been widely used for three-dimensional biological imaging. Here, based on the photon-induced charge state conversion process, we demonstrated a low-power high-resolution MPM with a nitrogen vacancy (NV) center in diamond. Continuous wave green and orange lasers were used to pump and detect the two-photon charge state conversion, respectively. The power of the laser for multiphoton excitation was 40 μW. Both the axial and lateral resolutions were improved approximately 1.5 times compared with confocal microscopy. The results can be used to improve the resolution of the NV center-based quantum sensing and biological imaging.

  4. High-energy kHz mid-IR tunable PPSLT-based OPO pumped at 1064 nm

    Gaydardzhiev, A; Chuchumishev, D; Draganov, D; Buchvarov, I [Department of Physics, Sofia University, 5 James Bourchier Blvd., BG-1164, Sofia (Bulgaria)

    2012-06-30

    We report a single-frequency sub-nanosecond optical parametric oscillator (OPO) based on periodically poled stoichiometric lithium tantalate (PPSLT), pumped by a 1064-nm amplified microchip laser at a repetition rate of 0.5 kHz. Using a 11-mm-long PPSLT crystal polled with three different domain periods (30.2, 30.3, 30.4 {mu}m) and changing the temperature of the crystal from 20 Degree-Sign C to 265 Degree-Sign C, we have achieved wavelength tuning between 2990 nm and 3500 nm. The high nonlinearity of the used medium and the large aperture (2 mm) ensure the maximum idler output energy of {approx}0.5 mJ in the whole tuning range, corresponding to average {approx}10.5 % idler conversion efficiency and {approx}250 mW of average power. Sub-nanosecond pulse durations have been obtained for the idler at 0.88-ns pulse duration of the pump.

  5. LMFBR with booster pump in pumping loop

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  6. High performance hydraulic design techniques of mixed-flow pump impeller and diffuser

    Kim, Sung; Lee, Kyoung Yong; Kim, Joon Hyung; Kim, Jin Hyuk; Jung, Uk Hee; Choi, Young Seok

    2015-01-01

    In this paper, we describe a numerical study about the performance improvement of a mixed-flow pump by optimizing the design of the impeller and diffuser using a commercial computational fluid dynamics (CFD) code and design-of-experiments (DOE). The design variables of impeller and diffuser in the vane plane development were defined with a fixed meridional plane. The design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffuser. The vane plane development was controlled using the blade-angle in a fixed meridional plane. The blade shape of the impeller and diffuser were designed using a traditional method in which the inlet and exit angles are connected smoothly. First, the impeller optimum design was performed with impeller design variables. The diffuser optimum design was performed with diffuser design variables while the optimally designed impeller shape was fixed. The importance of the impeller and diffuser design variables was analyzed using 2 k factorial designs, and the design optimization of the impeller and diffuser design variables was determined using the response surface method (RSM). The objective functions were defined as the total head (Ht) and the total efficiency (ηt) at the design flow rate. The optimally designed model was verified using numerical analysis, and the numerical analysis results for both the optimum model and the reference model were compared to determine the reasons for the improved pump performance. A pump performance test was carried out for the optimum model, and its reliability was proved by a comparative analysis of the results of the numerical analysis and an experiment using the optimum model.

  7. Review of magnetohydrodynamic pump applications

    O.M. Al-Habahbeh

    2016-06-01

    Full Text Available Magneto-hydrodynamic (MHD principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps. In this work, the progress achieved in this field is surveyed and organized according to the type of application. The literature of the past 27 years is searched for the major developments of MHD applications. MHD seawater thrusters are promising for a variety of applications requiring high flow rates and velocity. MHD molten metal pump is important replacement to conventional pumps because their moving parts cannot stand the molten metal temperature. MHD molten salt pump is used for nuclear reactor coolants due to its no-moving-parts feature. Nanofluid MHD pumping is a promising technology especially for bioapplications. Advantages of MHD include silence due to no-moving-parts propulsion. Much progress has been made, but with MHD pump still not suitable for wider applications, this remains a fertile area for future research.

  8. Glucose Pump Test can be Used to Measure Blood Flow Rate of ...

    2018-02-07

    Feb 7, 2018 ... Blood flow rates of AV fistula can be affected by osmotic and oncotic pressures of blood and arterial blood pressures. Sodium, glucose, hemoglobin, and albumin are significant effectors, created osmotic and oncotic pressures [Table 3]. Blood levels of hemoglobin. (Hb), albumin, sodium (Na), and glucose ...

  9. Glucose Pump Test can be Used to Measure Blood Flow Rate of ...

    2018-02-07

    Feb 7, 2018 ... In 93 chronic hemodialysis patients with native AV fistula, blood flow rates were measured by Doppler US .... Arterial blood pressure from nonvascular access arm was measured by aneroid sphygmomanometer. The patients did not .... to detect differences in treatments across multiple test attempts. P < 0.05 ...

  10. Hardware and software system for monitoring oil pump operation in power high-voltage transformers

    Михайло Дмитрович Дяченко

    2017-07-01

    Full Text Available The article considers the basic prerequisites for the creation of an automated monitoring system for oil pumps of high-voltage transformers. This is due to the fact that the long operation of oil pumps results in deterioration and destruction of bearings, rubbing of the rotor, breakage and damage to the impeller, leakage, etc., which inevitably causes a significant decrease in the insulating properties of the transformer oil and leads to expenditures for its further recovery. False triggerings of gas protection sometimes occur. Continuous operation of the electric motor also requires additional equipment to protect the motor itself from various emergency situations, such as a short in the stator winding, a housing breakdown, an incomplete phase mode, etc. The use of stationary systems provides: diagnosing defects at an early stage of their development, increasing the reliability and longevity of the equipment components, increasing the overhaul period, decreasing the number of emergency stops, and adjusting the schedule of preventative maintenance. The basic principles of identification of the damaged part of the oil pump are given, the hardware and algorithmic solutions are considered in the work. The full-scale tests of the model sample on the power transformer of the high-voltage substation confirmed the assumption of the possibility of detecting the damaged unit separating it from the rest connected in one mechanical structure. A detailed analysis of the operation of each of the units is carried out by means of the general substation switchboard and displayed as graphs, diagrams and text messages. When the limit values of vibration are reached, faults in the operation of the unit are detected, the overlimit current values, a warning alarm is activated, and the command to disconnect the damaged unit is issued. The optimal solution for the organization of the information collection system using the principle of sensor networks, but combined

  11. High Arsenic contamination in drinking water Hand-Pumps in Khap Tola, West Champaran, Bihar, India

    Siddharth eBhatia

    2014-11-01

    Full Text Available This study tests the drinking water supply of a marginalized village community of Khap Tola in the state of Bihar, a state in Northern India. Based on hand pump drinking water sample testing and analysis, we found that there was high levels of arsenic (maximum value being 397 ppb , in excess of the WHO limits of 10ppb. Analysis showed 57% of the samples from private hand-pumps in the shallow aquifer zone of 15-35m have arsenic greater than 200 ppb. Using GIS overlay analysis technique it was calculated that 25% of the residential area in the village is under high risk of arsenic contamination. Further using USEPA guidelines, it was calculated that children age group 5-10 years are under high risk of getting cancer. The Hazard Quotient calculated for 21 children taken for study, indicated that children may have adverse non-carcinogenic health impacts, in the future, with continued exposure. Since the area adds a new arsenic contaminated place in India, further geochemical analysis and health assessment needs to be done in this district of West Champaran in, Bihar.

  12. High strain rate behaviour of polypropylene microfoams

    Martínez A.B.

    2012-08-01

    Full Text Available Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc. or personal safety (helmets, knee-pads, etc.. In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s−1 in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB. Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  13. High strain rate behaviour of polypropylene microfoams

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  14. High dose rate endobronchial brachytherapy - treatment technique

    Carvalho, Heloisa de Andrade; Aisen, Salim; Haddad, Cecilia Maria Kalil; Nadalin, Wladimir; Pedreira Junior, Wilson Leite; Chavantes, Maria Cristina

    1998-01-01

    High dose rate endobronchial brachytherapy is efficient in symptom relief due to obstructive endobronchial malignancies. However, it's role in survival improvement for patients with lung cancer is not yet established. The use of this treatment in increasing, specially in the developing countries. The purpose of this paper is to present the treatment technique used in the Radiotherapy Department of the Hospital da Clinicas, University of Sao Paulo, based on an experience of 60 cases treated with 180 procedures. Some practical suggestions and rules adopted in the Department are described. The severe complications rate is 6.7%, demonstrating an adequate patient selection associated with the technique utilized. (author)

  15. Electronics for very high rate tracking detectors

    Williams, H.H.; Dressnandt, N.; Ekenberg, T.; Gerds, E.J.; Newcomer, F.M.; Tedja, S.; Van Berg, R.; Van der Speigel, J.

    1995-01-01

    Results are presented on a system of electronics designed for very high rate tracking detectors at the SSC and LHC. The primary goal was a system for signal detection, time measurement, and readout for the straw tracker for SDC. An integrated circuit incorporating eight channels of amplifier-shaper-discriminator (including detector tail cancellation), and two different integrated circuits for time measurement are described. The performance of tracking measurements up to counting rates of 8 MHz per wire is reported, as well as preliminary results from a baseline restoration circuit. (orig.)

  16. Development of high power pumping system for capillary discharge EUV laser

    Sakai, Yusuke; Komatsu, Takanori; Watanabe, Masato; Okino, Akitoshi; Hotta, Eiki

    2008-01-01

    Development of high power pumping system for capillary discharge soft X-ray laser is reported. The pulsed power system consists of a 2.2 μF LC generator, a 2:54 step-up transformer and a 3 nF water capacitor. Taking advantage of high efficiency configuration, step-up ratio of water capacitor voltage to LC generator initial voltage is about 40 times. Consequently, obtained water capacitor voltage reaches about 450 kV when LC generator was charged to 12.5 kV. As a consequent, possibility of charging a water capacitor to 1 MV is demonstrated. With this extremely compact system, discharge current could be increased to nearly 100 kA through moderately long capillary, which leads to generation of high-density and high-temperature plasma column in order to realize EUV laser. (author)

  17. Efficient high power operation of erbium 3 µm fibre laser diode-pumped at 975 nm

    Jackson, S.D.; King, T.A.; Pollnau, Markus

    2000-01-01

    Efficient CW operation of a 2.71 um Er,Pr:ZBLAN double-clad fibre laser pumped with a single diode laser operating at a wavelength of 975 nm is described. A maximum output power of 0.5 W and a slope efficiency of 25% (with respect to the launched pump power) were obtained. Threshold pump powers of <

  18. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  19. Pumping machinery theory and practice

    Badr, Hassan M

    2014-01-01

    Pumping Machinery Theory and Practice comprehensively covers the theoretical foundation and applications of pumping machinery. Key features: Covers characteristics of centrifugal pumps, axial flow pumps and displacement pumpsConsiders pumping machinery performance and operational-type problemsCovers advanced topics in pumping machinery including multiphase flow principles, and two and three-phase flow pumping systemsCovers different methods of flow rate control and relevance to machine efficiency and energy consumptionCovers different methods of flow rate control and relevance to machine effi

  20. High strain rate studies in rock

    Grady, D.

    1977-01-01

    Dynamic compression studies using high velocity impact are usually considered to involve a catastrophic process of indeterminate loading rate by which a material is brough to a shock compressed state. Although this is frequently the case, methods are also available to control the rate of strain during the shock compression process. One of the most accurate of these methods makes use of the anomalous nonlinear elastic property of glass to transform an initial shock or step wave input into a ramp wave of known amplitude and duration. Fused silica is the most carefully calibrated material for this purpose and, when placed between the test specimen and the impact projectile, can provide loading strain rates in the range of 10 4 /s to 10 6 /s for final stress states of approximately 3.9 GPa or less.Ramp wave compression experiments have been conducted on dolomite at strain rates of 3 x 10 4 /s. Both initial yielding and subsequent deformation at this strain rate agrees well with previous shock wave studies (epsilon-dotapprox.10 6 /s) and differs substantially from quasi-static measurements (epsilon-dotapprox.10 -4 /s). The ramp wave studies have also uncovered a pressure-induced phase transition in dolomite initiating at 4.0 GPa

  1. A study of water pump efficiency for household water demand at Lubuklinggau

    Emiliawati, Anna

    2017-11-01

    Water pump is a device to transport liquid from one place to another. This device is used in most of household in Indonesia. Small-scale water pump which is effective to lift more discharge is generally used. The ones that are most preferred are centrifugal types which having low absorbability. Pump performance is limited by pressure level in real electrical power whereas pump efficiency is influenced by head and discharge. The research aims to find out the efficiency of five distinct brands of home water pumps which are broadly distributed in market. Efficiency analysis take by laboratorium and financial analysis using NPV and BCR are done in order to obtained dicharge and pressure from each pump. At the end of the research, one out of 5 home water pump brands will be selected as the optimal working home water pump with low operational expense based on the utilizing age. The result of the research shows that the maximum efficiency value among various brands of water pump is diverse. Each value is arranged as follow from water pump A to E orderly: 12,9%, 13,5%, 12,8%, 14,8%, and 3,4%. From the calculation, water demand of South Lubuklinggau at stage 1 is 1117,7 l/s and stage 2 is 3495,2 l/s.. Moreover, the researcher conducts of investment, operation and maintenance cost with 25 years pump utilizing age towards 2 conditions (1) of maximum efficiency, i.e. pump A Rp16.563.971; pump B Rp12.163.798; pump C Rp11.809.513,2; pump D Rp11.473.928,3; pump E Rp12.648.708,3; (2) of max discharge, i.e. pump A Rp111.993.822,8; pump B Rp26.128.845,1; pump C Rp51.697.208,8; pump D Rp51.098.687,4; pump E Rp22.915.952,7;Financial analysis with interest rate 13% show a positive NPV(+) for all pump except pump A in max efficiency and a negative NPV (-) for all except pump B in max discharge. BCR value for max efficiency are pump A 0,8; pump B 1,6; pump C 1,7; pump D 1,7 and pump E 1,3. And for max discharge are pump A 0,2; pump B 1,1; pump C 0,7; pump D 0,7 and pump E 0,9. Result

  2. SUSPENSION-FEEDING IN MARINE SPONGES HALICHONDRIA-PANICEA AND HALICLONA-URCEOLUS - EFFECTS OF TEMPERATURE ON FILTRATION-RATE AND ENERGY-COST OF PUMPING

    Riisgård, H.U.; Thomassen, S.; Jakobsen, H.

    1993-01-01

    Filtration rate (measured as clearance of algal cells) was measured at different temperatures in the sponge Halichondria panicea. An increase in water temperature from 6 to 12-degrees-C caused the mean filtration rate to increase 4.3 +/- 2.3 times. This value was higher than previously found...... for other marine ciliary suspension-feeding animals. Filtration rate at 12-degrees-C was also measured in Haliclona urceolus by means of an indirect clearance method in addition to a direct technique for measuring pumping rate. It was found that the 2 sponge species had near-identical filtration rates......, with maximum rates of approximately 60 ml min-1 (g dry weight)-1 at 12-degrees-C. The normal pump pressure, or operating point O(p), of a standard sponge (based on our own measurements and calculations from literature data for a 0.1 g dry weight Haliclona sp.) was estimated as the sum of main contributions...

  3. Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures

    Zhang, Shengjun; Wang, Huaixin; Guo, Tao [Department of Thermal Energy and Refrigeration Engineering, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China)

    2010-05-15

    Experimental investigations were carried out on non-azeotropic refrigerant mixtures, named M1A (mass fraction of 20%R152a and 80%R245fa), M1B (mass fraction of 37% R152a and 63%R245fa) and M1C (mass fraction of 50%R152a and 50%R245fa), based on a water-to-water heat pump system in the condensing temperature range of 70-90 C with a cycle temperature lift of 45 C. Performance of R245fa was tested for comparison. Unfair factors in experimental comparative evaluation research with the same apparatus were identified and corrected. Experimental cycle performance of the mixtures were tested and compared with improved experimental assessment methodology. The results show that all of the mixtures deliver higher discharge temperature, higher heating capacity, higher COP and higher {epsilon}{sub h,c} than R245fa. M1B presents the most excellent cycle performance and is recommended as working fluid for moderate/high temperature heat pump. (author)

  4. High repetition rate intense ion beam source

    Hammer, D.A.; Glidden, S.C.; Noonan, B.

    1992-01-01

    This final report describes a ≤ 150kV, 40kA, 100ns high repetition rate pulsed power system and intense ion beam source which is now in operation at Cornell University. Operation of the Magnetically-controlled Anode Plasma (MAP) ion diode at > 100Hz (burst mode for up to 10 pulse bursts) provides an initial look at repetition rate limitations of both the ion diode and beam diagnostics. The pulsed power systems are capable of ≥ 1kHz operation (up to 10 pulse bursts), but ion diode operation was limited to ∼100Hz because of diagnostic limitations. By varying MAP diode operating parameters, ion beams can be extracted at a few 10s of keV or at up to 150keV, the corresponding accelerating gap impedance ranging from about 1Ω to about 10Ω. The ability to make hundreds of test pulses per day at an average repetition rate of about 2 pulses per minute permits statistical analysis of diode operation as a function of various parameters. Most diode components have now survived more than 10 4 pulses, and the design and construction of the various pulsed power components of the MAP diode which have enabled us to reach this point are discussed. A high speed data acquisition system and companion analysis software capable of acquiring pulse data at 1ms intervals (in bursts of up to 10 pulses) and processing it in ≤ min is described

  5. High strain rate deformation of layered nanocomposites.

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L

    2012-01-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  6. High strain rate deformation of layered nanocomposites

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  7. High-frame-rate digital radiographic videography

    King, Nicholas S. P.; Cverna, Frank H.; Albright, Kevin L.; Jaramillo, Steven A.; Yates, George J.; McDonald, Thomas E.; Flynn, Michael J.; Tashman, Scott

    1994-10-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100 microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  8. Rotor-dynamic design aspects for a variable frequency drive based high speed cryogenic centrifugal pump in fusion devices

    Das, Jotirmoy; Vaghela, Hitensinh; Bhattacharya, Ritendra; Patel, Pratik; Shukla, Vinit; Shah, Nitin; Sarkar, Biswanath

    2015-01-01

    Superconducting magnets of large size are inevitable for fusion devices due to high magnetic field requirements. Forced flow cooling of the superconducting magnets with high mass flowrate of the order ∼3 kg/s is required to keep superconducting magnets within its safe operational boundaries during various plasma scenarios. This important requirement can be efficiently fulfilled by employing high capacity and high efficiency cryogenic centrifugal pumps. The efficiency > 70% will ensure overall lower heat load to the cryoplant. Thermo-hydraulic design of cryogenic centrifugal pump revealed that to achieve the operational regime with high efficiency, the speed should be ∼ 10,000 revolutions per minute. In this regard, the rotor-dynamic design aspect is quite critical from the operational stability point of view. The rotor shaft design of the cryogenic pump is primarily an outcome of optimization between thermal heat-in leak at cryogenic temperature level from ambient, cryogenic fluid impedance and designed rotation speed of the impeller wheel. The paper describes the basic design related to critical speed of the rotor shaft, rotor whirl and system instability prediction to explore the ideal operational range of the pump from the system stability point of view. In the rotor-dynamic analysis, the paper also describes the Campbell plots to ensure that the pump is not disturbed by any of the critical speeds, especially while operating near the nominal and enhanced operating modes. (author)

  9. Efficient high-peak-power and high-repetition-rate eye-safe laser using an intracavity KTP OPO

    Guo, J; Jiao, Z X; Wang, B; He, G Y

    2015-01-01

    An efficient high-peak-power and high-repetition-rate intracavity KTP optical parametric oscillator pumped by a Q-switched Nd:YVO 4 laser is demonstrated. We achieved 1.5 W output power of 1.5 μm at 10 kHz repetition rate with the pulse duration of 6 ns. The maximum peak power of 25 kW and the maximum pulse energy of 150 μJ have been obtained. The maximum conversion efficiency of 9.5% is achieved with respect to a laser diode power of 10.5 W. (paper)

  10. High counting rate resistive-plate chamber

    Peskov, V.; Anderson, D.F.; Kwan, S.

    1993-05-01

    Parallel-plate avalanche chambers (PPAC) are widely used in physics experiments because they are fast ( 5 counts/mm 2 . A resistive-plate chamber (RPC) is similar to the PPAC in construction except that one or both of the electrodes are made from high resistivity (≥10 10 Ω·cm) materials. In practice RPCs are usually used in the spark mode. Resistive electrodes are charged by sparks, locally reducing the actual electric field in the gap. The size of the charged surface is about 10 mm 2 , leaving the rest of the detector unaffected. Therefore, the rate capability of such detectors in the spark mode is considerably higher than conventional spark counters. Among the different glasses tested the best results were obtained with electron type conductive glasses, which obey Ohm's law. Most of the work with such glasses was done with high pressure parallel-plate chambers (10 atm) for time-of-flight measurements. Resistive glasses have been expensive and produced only in small quantities. Now resistive glasses are commercially available, although they are still expensive in small scale production. From the positive experience of different groups working with the resistive glasses, it was decided to review the old idea to use this glass for the RPC. This work has investigated the possibility of using the RPC at 1 atm and in the avalanche mode. This has several advantages: simplicity of construction, high rate capability, low voltage operation, and the ability to work with non-flammable gases

  11. On high interest rates in Brazil

    Francisco Lafaiete Lopes

    2014-03-01

    Full Text Available This article examines the question of why interest rates are so high in Brazil as compared to the international average. It looks at theoretical arguments based on excessive government deficits, structural lack of private savings, inflation bias, excessive investment demand and fear of floating. An informal look at the evidence does not strongly corroborate any of these arguments. Hence a wise central bank should consider "testing" the market to make sure it is not dealing with an extreme equilibrium configuration or a long standing disequilibrium.

  12. Flashing motor at high transition rate

    Ai Baoquan; Wang Liqiu; Liu Lianggang

    2007-01-01

    The movement of a Brownian particle in a fluctuating two-state periodic potential is investigated. At high transition rate, we use a perturbation method to obtain the analytical solution of the model. It is found that the net current is a peaked function of thermal noise, barrier height and the fluctuation ratio between the two states. The thermal noise may facilitate the directed motion at a finite intensity. The asymmetry parameter of the potential is sensitive to the direction of the net current

  13. Concrete volute pumps: technology review and improvement

    Prunières, R.; Longatte, F.; Catelan, F. X.; Philippot, J. M.

    2012-11-01

    When pumps need to deliver large water flow rates (typically more than 5 m3.s-1), concrete volute pumps (CVP) offer an interesting alternative to standard vertical wet-pit pumps. One of the major advantages of CVP is its simplicity in terms of design, manufacturability and maintainability. In addition, CVP geometrical arrangement allows to reach high performances in terms of hydraulic and mechanical behaviour. These advantages can be specifically appreciated when such pumps are used in the energy field for Power Plants which need high flow rate and reliability, and can lead to important financial savings over the Plant lifetime compared to vertical wet-pit pumps. Finally, as CVP was for a long time limited to total head rise lower than 30 mWC, it was established through CFD analysis that the addition of guide vanes between the impeller and the volute allows to achieve higher head rise without risk.

  14. Adsorption pump for helium pumping out

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  15. Study of Peak Expiratory Flow Rate as the Assessment of Lung Function in Occupationally Exposed Petrol Pump Workers of Western Maharashtra

    Patil Smita V

    2016-04-01

    Full Text Available Background: Fast urbanization trends, rapid industrial growth, globalization, and poor environmental conditions at work places have created a lot of healthrelated issues. Aim and Objectives: The aim of this study is to investigate Peak Expiratory Flow Rate (PEFR as the assessment of lung function in occupationally exposed petrol pump workers and also check whether PEFR increases or decreases with duration of exposure. Material and Methods: The study was conducted on 60 male petrol pump workers between age group of 20-40 years who were working as petrol filling attendants for more than one year from western Maharashtra. 50 normal healthy males with same socioeconomic status were chosen as controls to find out the effect of occupational exposure to petroleum product on PEFR as the assessment of lung function tests. Petrol pump workers were divided into three groups based on their duration of exposure i.e. 1- 5 yrs, 6- 10 yrs and more than 11 years. PEFR of petrol pump workers and control was measured by using a Mini Wright peak flow meter which is a portable device for measuring ventilator functions. Comparisons was done using unpaired t-test for 2 groups comparisons and one way ANOVAfor multiple groups of exposures. Results: The PEFR was significantly lower decrease (p=0.001 around petrol pump workers (389.17 as compared to control (534.2. As year of exposure increased mean value of PEFR was significantly decreased from 452.17, 378.00 and 283.64 respectively in petrol pump workers. Conclusion: The results suggested that respiratory functions i.e. PEFR of occupationally exposed petrol pump workers are significantly reduced as compared to controls, also PEFR is significantly reduced with increase in the duration of exposure.

  16. High dose rate brachytherapy for oral cancer

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Koizumi, Masahiko; Ogawa, Kazuhiko; Furukawa, Souhei

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. (author)

  17. High dose rate brachytherapy for oral cancer.

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  18. High performance magnetic bearings suitable for noise cancellation in permanent magnet motor driven pumps

    Zmood, R.; Cholewka, J.; Patak, C.; Feng, G.; Zhang, C.; Maleri, T.; Pinder, B.; McDonald, R.; Homrigh, J.

    1991-01-01

    Conventional pumps having external drive motors experience problems due to bearing noise. In addition failure of bearings and seals can lead to limited operational reliability and impaired integrity of these pumps. Pumps using DC brushless motors and magnetic bearings offer means of overcoming these problems. A design of a pump having a DC brushless motor and magnetic bearings with a potential for Naval applications in ships and submarines is discussed. In this paper attention is given to the selection of the magnetic bearings suitable for achieving active noise cancellation

  19. Ultra Fast, High Rep Rate, High Voltage Spark Gap Pulser

    1995-07-01

    current rise time. The spark gap was designed to have a coaxial geometry reducing its inductance. Provisions were made to pass flowing gas between the...ULTRA FAST, HIGH REP RATE, HIGH VOLTAGE SPARK GAP PULSER Robert A. Pastore Jr., Lawrence E. Kingsley, Kevin Fonda, Erik Lenzing Electrophysics and...Modeling Branch AMSRL-PS-EA Tel.: (908)-532-0271 FAX: (908)-542-3348 U.S. Army Research Laboratory Physical Sciences Directorate Ft. Monmouth

  20. High-speed flow visualization in a pump-turbine under off-design operating conditions

    Hasmatuchi, V; Roth, S; Botero, F; Avellan, F; Farhat, M

    2010-01-01

    The flow hydrodynamics in a low specific speed radial pump-turbine reduced scale model is experimentally investigated under off-design operating conditions in generating mode. Wall pressure measurements, in the stator, synchronized with high-speed flow visualizations in the vaneless space between the impeller and the guide vanes using air bubbles injection are performed. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuations is observed mainly in channels between wicket gates. The spectral analysis shows a rise of one stall cell, rotating with about 70% of the impeller frequency, at runaway, which further increases as the zero discharge condition is approached. Then a specific image processing technique is detailed and applied to create a synthetic instantaneous view of the flow pattern on the entire guide vanes circumference for an operating point in turbine-brake mode, where backflow and vortices accompany the stall passage.

  1. Anomalously high intercombination line ratios in symbiotic stars; extreme Bowen pumping?

    Kastner, S.O.; Bhatia, A.K.; Feibelman, W.A.

    1989-01-01

    We assemble International Ultraviolet Explorer observations of the ratio of the O III intercombination lines near 1660 A, showing that the observed ratios in symbiotic stars are significantly higher than the theoretically predicted optically thin limit of 2.5. The presence of an enhancing physical process is thereby indicated. It is suggested that Bowen pumping of the lower level of the 1666.2 A line in an 'external saturation' limit, coupled with appreciable optical depth, could logically explain the high ratios. Some tentative evidence for this is presented and the relevance of far-infrared observations of the O III 51.8 and 88.3 μm lines in symbiotic sources is emphasized. (author)

  2. A Numerical Study on the Impeller Meridional Curvature of High Pressure Multistage Pump

    Kim, Deok Su; Jean, Sang Gyu; Mamatov, Sanjar [Hyosung Goodsprings, Inc., Busan (Korea, Republic of); Park, Warn Gyu [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-07-15

    This paper presents the hydraulic design an impeller and radial diffuser of a high-pressure multistage pump for reverse osmosis. The flow distribution and hydraulic performance for the meridional design of the impeller were analyzed numerically. Optimization was conducted based on the response surface method by varying the hub and shroud meridional curvatures, while maintaining the impeller outlet diameter, outlet width, and eye diameter constant. The analysis results of the head and efficiency with the variation in the impeller meridional profile showed that angle of the front shroud near the impeller outlet (εDs) had the highest effect on head increase, while the hub inlet length (d1i) and shroud curvature (Rds) had the highest effect on efficiency. From the meridional profile variation, an approximately 0.5% increase in efficiency was observed compared with the base model (case 25).

  3. Performance of water source heat pump system using high-density polyethylene tube heat exchanger wound with square copper wire

    Xin Wen Zhang

    2015-07-01

    Full Text Available Surface water source heat pump system is an energy-efficient heat pump system. Surface water heat exchanger is an important part of heat pump system that can affect the performance of the system. In order to enhance the performance of the system, the overall heat transfer coefficient (U value of the water exchanger using a 32A square copper coiled high-density polyethylene tube was researched. Comparative experiments were conducted between the performance of the coiled high-density polyethylene tube and the 32A smooth high-density polyethylene tube. At the same time, the coefficient of performance of the heat pump was investigated. According to the result, the U value of the coiled tube was 18% higher than that of the smooth tube in natural convection and 19% higher in forced convection. The coefficient of performance of the heat pump with the coiled tube is higher than that with the smooth tube. The economic evaluation of the coiled tube was also investigated.

  4. A highly efficient Ho:YAG laser in-band pumped by a linewidth-narrowed Tm:YLF laser

    Duan, X M; Yang, C H; Yao, B Q; Wang, Y Z; Zhang, W S

    2013-01-01

    A highly efficient Tm:YLF-Ho:YAG laser system is presented in this paper. To obtain the narrow linewidth 1908 nm laser output, a volume Bragg grating combined with a Fabry–Perot (FP) etalon were used as wavelength selection devices. The maximum output power of 28.7 W was obtained with a slope efficiency of 42.3% in the Tm:YLF laser. An output wavelength of 1908.1 nm and FWHM linewidth of 60 pm were achieved at the maximum output level. Using this Tm:YLF laser as the pump source, high efficiency continuous wave and Q-switched operation of a Ho:YAG laser was demonstrated. Operating at continuous wave mode, up to 73.3% slope efficiency and 67.4% optical conversion efficiency were obtained in the Ho:YAG laser, corresponding to a diode-to-Ho optical conversion efficiency of 23.7%. For the Q-switched mode, when the incident Tm power was 27.3 W, the maximum single pulse energy of 3.4 mJ, pulse width of 15 ns and peak power of 229.3 kW were achieved at the pulse repetition rate of 5 kHz. The maximum average power of 18.3 W, pulse width of 18 ns and peak power of 103.6 kW were obtained at the pulse repetition rate of 10 kHz. (paper)

  5. 2.097μ Cth:YAG flashlamp pumped high energy high efficiency laser operation (patent pending)

    Bar-Joseph, Dan

    2018-02-01

    Flashlamp pumped Cth:YAG lasers are mainly used in medical applications (urology). The main laser transition is at 2.13μ and is called a quasi-three level having an emission cross-section of 7x10-21 cm2 and a ground state absorption of approximately 5%/cm. Because of the relatively low absorption, combined with a modest emission cross-section, the laser requires high reflectivity output coupling, and therefore high intra-cavity energy density which limits the output to approximately 4J/pulse for reliable operation. This paper will describe a method of efficiently generating high output energy at low intra-cavity energy density by using an alternative 2.097μ transition having an emission cross-section of 5x10-21 cm2 and a ground level absorption of approximately 14%/cm.

  6. High Concentration of Heat Pumps in Suburban Areas and Reduction of Their Impact on the Electricity Network

    Pruissen, O.P. van; Kamphuis, I.G.

    2011-01-01

    One of the challenges of the near future for a more renewable Dutch electricity infrastructure is the embedding of high concentrations of heat pumps in currently built domestic residences. In the Dutch situation demand of electricity occurs simultaneously with demand of heat, high electricity peak

  7. Operation of high rate microstrip gas chambers

    Barr, A J; Bouclier, Roger; Capéans-Garrido, M; Dominik, Wojciech; Manzin, G; Million, Gilbert; Hoch, M; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1996-01-01

    We describe recent measurements carried out in well controlled and reproducible conditions to help understanding the factors affecting the short and long term behaviour of Microstrip Gas Chambers. Special care has been taken concerning the gas purity and choice of materials used in the system and for the detectors construction. Detectors built on glasses with surface resistivity in the range $10^{13}-10^{15} \\Omega/\\Box$ have shown satisfactory performance as they do not show charging-up process at high rate and stand the large doses required for the future high luminosity experiments (~10 mC·cm-1·yr-1). Concerning the lifetime measurements, it has been observed that chambers manufactured on high-resistivity glass are far more susceptible of suffering ageing than detectors made on low resistivity, electron-conducting supports, independently of the metal used for the artwork (chromium or gold) at least in clean gas conditions. The successfully operation in the laboratory of detectors manufactured on diamond-...

  8. Wavelength switchable high-power diode-side-pumped rod Tm:YAG Laser around 2µm.

    Wang, Caili; Du, Shifeng; Niu, Yanxiong; Wang, Zhichao; Zhang, Chao; Bian, Qi; Guo, Chuan; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Lei, Wenqiang; Xu, Zuyan

    2013-03-25

    We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 μm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 μm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.

  9. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  10. Development of high-power optically-pumped far-infrared lasers for plasma diagnostics

    Yamanaka, Masanobu; Yamanaka, Tatsuhiko; Mitsuishi, Akiyoshi; Fujita, Shigeru; Tsunawaki, Yoshiaki.

    1982-01-01

    The activities for developing an over 0.1-MW optically-pumped 385-μm D 2 O laser and a CW optically-pumped 382.9-μm CH 2 F 2 laser as local oscillator for measurement of ion temperature in Tokamaks are described. (author)

  11. Consideration of wear rates at high velocity

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  12. Photovoltaic pump systems

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  13. Ionospheric plasma escape by high-altitude electric fields: Magnetic moment ''pumping''

    Lundin, R.; Hultqvist, B.

    1989-01-01

    Measurements of electric fields and the composition of upward flowing ionospheric ions by the Viking spacecraft have provided further insight into the mass dependent plasma escape process taking place in the upper ionosphere. The Viking results of the temperature and mass-composition of individual ion beams suggest that upward flowing ion beams can be generated by a magnetic moment ''pumping'' mechanism caused by low-frequency transverse electric field fluctuations, in addition to a field aligned ''quasi-electrostatic'' acceleration process. Magnetic moment ''pumping'' within transverse electric field gradients can be described as a conversion of electric drift velocity to cyclotron velocity by the inertial drift in time-dependent electric field. This gives an equal cyclotron velocity gain for all plasma species, irrespective of mass. Oxygen ions thus gain 16 times as much transverse energy as protons. In addition to a transverse energy gain above the escape energy, a field-aligned quasi-electrostatic acceleration is considered primarily responsible for the collimated upward flow of ions. The field-aligned acceleration adds a constant parallel energy to escaping ionospheric ions. Thus, ion beams at high altitudes can be explained by a bimodal acceleration from both a transverse (equal velocity) and a parallel (equal energy) acceleration process. The Viking observations also show that the thermal energy of ion beams, and the ion beam width are mass dependent. The average O + /H + ''temperature ratio has been found to be 4.0 from the Viking observations. This is less than the factor of 16 anticipated from a coherent transverse electric field acceleration but greater than the factor of 1 (or even less than 1) expected from a turbulent acceleration process. copyright American Geophysical Union 1989

  14. Reactor coolant purification system circulation pumps (CUW pumps)

    Tsutsui, Toshiaki

    1979-01-01

    Coolant purification equipments for BWRs have been improved, and the high pressure purifying system has become the main type. The quantity of purifying treatment also changed to 2% of the flow rate of reactor feed water. As for the circulation pumps, canned motor pumps are adopted recently, and the improvements of reliability and safety are attempted. The impurities carried in by reactor feed water and the corrosion products generated in reactors and auxiliary equipments are activated by neutron irradiation or affect heat transfer adversely, adhering to fuel claddings are core structures. Therefore, a part of reactor coolant is led to the purification equipments, and returned to reactors after the impurities are eliminated perfectly. At the time of starting and stopping reactors, excess reactor water and the contaminated water from reactors are transferred to main condenser hot wells or waste treatment systems. Thus the prescribed water quality is maintained. The operational modes of and the requirements for the CUW pumps, the construction and the features of the canned motor type CUW pumps are explained. Recently, a pump operated for 11 months without any maintenance has been disassembled and inspected, but the wear of bearings has not been observed, and the high reliability of the pump has been proved. (Kako, I.)

  15. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    Albach, D.

    2010-01-01

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author) [fr

  16. High Data Rate Architecture (HiDRA)

    Hylton, Alan; Raible, Daniel

    2016-01-01

    high-rate laser terminals. These must interface with the existing, aging data infrastructure. The High Data Rate Architecture (HiDRA) project is designed to provide networked store, carry, and forward capability to optimize data flow through both the existing radio frequency (RF) and new laser communications terminal. The networking capability is realized through the Delay Tolerant Networking (DTN) protocol, and is used for scheduling data movement as well as optimizing the performance of existing RF channels. HiDRA is realized as a distributed FPGA memory and interface controller that is itself controlled by a local computer running DTN software. Thus HiDRA is applicable to other arenas seeking to employ next-generation communications technologies, e.g. deep space. In this paper, we describe HiDRA and its far-reaching research implications.

  17. Experimental characterization of true spontaneous emission rate of optically-pumped InGaAs/GaAs quantum-well laser structure

    Q.-N. Yu

    2017-08-01

    Full Text Available In this paper, an experimental approach to acquiring true spontaneous emission rate of optically-pumped InGaAs/GaAs quantum-well laser structure is described. This method is based on a single edge-emitting laser chip with simple sample processing. The photoluminescence spectra are measured at both facets of the edge-emitting device and transformed to the spontaneous emission rate following the theory described here. The unusual double peaks appearing in the spontaneous emission rate spectra are observed for the InGaAs/GaAs quantum-well structure. The result is analyzed in terms of Indium-rich island and Model-Solid theories. The proposed method is suitable for electrically-pumped quantum-well laser structures, as well.

  18. An electrostatic ion pump with nanostructured Si field emission electron source and Ti particle collectors for supporting an ultra-high vacuum in miniaturized atom interferometry systems

    Basu, Anirban; Velásquez-García, Luis F

    2016-01-01

    We report a field emission-based, magnetic-less ion pump architecture for helping maintain a high vacuum within a small chamber that is compatible with miniaturized cold-atom interferometry systems. A nanostructured silicon field emitter array, with each nano-sharp tip surrounded by a self-aligned proximal gate electrode, is used to generate a surplus of electrons that cause impact ionization of gas molecules. A two-stage cylindrical electron collector, made of titanium, is used to increase the travel distance of the electrons, augmenting the ionization probability; gas ionization is subsequently followed by gettering of the ions by a negatively charged, annular-shaped titanium electrode. A proof-of-concept pump prototype was characterized using a 25 cm 3 stainless steel vacuum chamber backed up by an external turbomolecular pump, a diaphragm pump, and a standard ion pump. Pumping action was observed with the electrostatic pump operating alone after an initial rapid rise of the chamber pressure due to electron/ion scrubbing. In addition, running the electrostatic pump in combination with the standard ion pump results in a lower vacuum level compared to the vacuum level produced by the standard ion pump acting alone. A proposed reduced-order model accurately predicts the functional dependence of the pressure versus time data and provides a good estimate of the characteristic pumping time constant inferred from the experiments. (paper)

  19. Photocathodes for High Repetition Rate Light Sources

    Ben-Zvi, Ilan [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy. Center for Accelerator Science and Education

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and

  20. Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system.

    Almeida, J; Liang, D; Vistas, C R; Guillot, E

    2015-03-10

    We report a large improvement in the collection and slope efficiency of an Nd:YAG solar laser pumped by a heliostat-parabolic mirror system. A conical fused silica lens was used to further concentrate the solar radiation from the focal zone of a 2 m diameter primary concentrator to a Nd:YAG single-crystal rod within a conical pump cavity, which enabled multipass pumping to the active medium. A 56 W cw laser power was measured, corresponding to 21.1  W/m2 record-high solar laser collection efficiency with the heliostat-parabolic mirror system. 4.9% slope efficiency was calculated, corresponding to 175% enhancement over our previous result.

  1. No major differences in 30-day outcomes in high-risk patients randomized to off-pump versus on-pump coronary bypass surgery: the best bypass surgery trial

    Møller, Christian H; Perko, Mario J; Lund, Jens T

    2010-01-01

    Off-pump coronary artery bypass grafting compared with coronary revascularization with cardiopulmonary bypass seems safe and results in about the same outcome in low-risk patients. Observational studies indicate that off-pump surgery may provide more benefit in high-risk patients. Our objective...... was to compare 30-day outcomes in high-risk patients randomized to coronary artery bypass grafting without or with cardiopulmonary bypass....

  2. Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator

    Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.

    2004-01-01

    A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved

  3. Highly Efficient Optical Pumping of Spin Defects in Silicon Carbide for Stimulated Microwave Emission

    Fischer, M.; Sperlich, A.; Kraus, H.; Ohshima, T.; Astakhov, G. V.; Dyakonov, V.

    2018-05-01

    We investigate the pump efficiency of silicon-vacancy-related spins in silicon carbide. For a crystal inserted into a microwave cavity with a resonance frequency of 9.4 GHz, the spin population inversion factor of 75 with the saturation optical pump power of about 350 mW is achieved at room temperature. At cryogenic temperature, the pump efficiency drastically increases, owing to an exceptionally long spin-lattice relaxation time exceeding one minute. Based on the experimental results, we find realistic conditions under which a silicon carbide maser can operate in continuous-wave mode and serve as a quantum microwave amplifier.

  4. Penis Pump

    ... your appointment might be less involved. Choosing a penis pump Some penis pumps are available without a ... it doesn't get caught in the ring. Penis pumps for penis enlargement Many advertisements in magazines ...

  5. Centrifugal Pump Monitoring and Determination of Pump Characteristic Curves Using Experimental and Analytical Solutions

    Marius Stan

    2018-02-01

    Full Text Available Centrifugal pumps are widely used in the industry, especially in the oil and gas sector for fluids transport. Classically, these are designed to transfer single phase fluids (e.g., water at high flow rates and relatively low pressures when compared with other pump types. As part of their constructive feature, centrifugal pumps rely on seals to prevent air entrapment into the rotor during its normal operation. Although this is a constructive feature, water should pass through the pump inlet even when the inlet manifold is damaged. Modern pumps are integrated in pumping units which consist of a drive (normally electric motor, a transmission (when needed, an electronic package (for monitoring and control, and the pump itself. The unit also has intake and outlet manifolds equipped with valves. Modern systems also include electronic components to measure and monitor pump working parameters such as pressure, temperature, etc. Equipment monitoring devices (vibration sensors, microphones are installed on modern pumping units to help users evaluate the state of the machinery and detect deviations from the normal working condition. This paper addresses the influence of air-water two-phase mixture on the characteristic curve of a centrifugal pump; pump vibration in operation at various flow rates under these conditions; the possibilities of using the results of experimental investigations in the numerical simulations for design and training purposes, and the possibility of using vibration and sound analysis to detect changes in the equipment working condition. Conclusions show that vibration analysis provides accurate information about the pump’s functional state and the pumping process. Moreover, the acoustic emission also enables the evaluation of the pump status, but needs further improvements to better capture and isolate the usable sounds from the environment.

  6. Brachytherapy treatment with high dose rate

    Santana Rodriguez, Sergio Marcelino; Rodriguez Rodriguez, Lissi Lisbet; Ciscal Chiclana, Onelio Alberto

    2009-01-01

    Retrospectively analyze results and prognostic factors of cervical cancer patients treated with radio concomitant cisplatin-based chemotherapy, radiation therapy combined modality. Methods: From January 2003 to December 2007, 198 patients with invasive cervical cancer were treated at the Oncology Department of Hospital Robau Celestino Hernandez (brachytherapy performed at INOR). The most common age group was 31 to 40 years. The histology in squamous cell carcinoma accounted for 84.3% of cases. The treatment consisted of external pelvic irradiation and vaginal brachytherapy, high dose rate. Concomitant chemotherapy consisted of cisplatin 40 mg/m2 weekly with a maximum of 70 mg for 5 weeks. Results: 66.2% of patients completed 5 cycles of chemotherapy. The median overall survival was 39 months, overall survival, disease-free survival and survival free of locoregional recurrence at 5 years of 78%, 76% and 78.6% respectively .. We found that clinical stage, histological type (adenocarcinoma worst outcome) were statistically related to level of response. Conclusions: Treatment with external pelvic radiation, brachytherapy and concurrent weekly cisplatin in patients with stage IIIB cervical cancer is feasible in the Chilean public health system, well tolerated and results comparable to international literature. (Author)

  7. Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-01-01

    We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.

  8. Femtosecond pump-probe studies of phonons and carriers in bismuth under high pressure

    Kasami, M.; Ogino, T.; Mishina, T.; Yamamoto, S.; Nakahara, J.

    2006-01-01

    We investigate the high-pressure phase of Bi under hydrostatic pressure using pump-probe spectroscopy at pressures up to 3.0 GPa, and we observe coherent phonons signal and relaxation signal of photo-excited carriers at Bi(II) and Bi(III) phases. The pressure dependence of the coherent phonons shows that the amplitude of coherent phonons is extremely small and the frequency of coherent phonons changes at high-pressure phases. As results from our experiment, we obtain its frequencies are 2.5 and 2.2 THz at Bi(II) and Bi(III), respectively. Furthermore, photo-excited carrier relaxation indicates drastic changes near 2.5 GPa. Bismuth transforms from semimetal to semiconductor near 2.5 GPa, and band-overlapping between at L-point and at T-point disappears. We consider that the drastic changes of the photo-excited carrier relaxation are strongly correlated with the band-overlapping disappearing

  9. Ground source heat pump performance in case of high humidity soil and yearly balanced heat transfer

    Schibuola, Luigi; Tambani, Chiara; Zarrella, Angelo; Scarpa, Massimiliano

    2013-01-01

    Highlights: • GSHPs are simulated in case of humid soil and yearly balanced heat transfer. • Humid soil and yearly balanced heat transfer imply higher compactness of GSHPs. • Resulting GSHPs are compared with other traditional and innovative HVAC systems. • GSHPs score best, especially in case of inverter-driven compressors. - Abstract: Ground source heat pump (GSHP) systems are spreading also in Southern Europe, due to their high energy efficiency both in heating and in cooling mode. Moreover, they are particularly suitable in historical cities because of difficulties in the integration of heating/cooling systems into buildings subjected to historical preservation regulations. In these cases, GSHP systems, especially the ones provided with borehole heat exchangers, are a suitable solution instead of gas boilers, air-cooled chillers or cooling towers. In humid soils, GSHP systems are even more interesting because of their enhanced performance due to higher values of soil thermal conductivity and capacity. In this paper, GSHP systems operating under these boundary conditions are analyzed through a specific case study set in Venice and related to the restoration of an historical building. With this analysis the relevant influences of soil thermal conductivity and yearly balanced heat transfer in the design of the borehole field are shown. In particular, the paper shows the possibility to achieve higher compactness of the borehole field footprint area when yearly balanced heat transfer in the borehole field is expected. Then, the second set of results contained in the paper shows how GSHP systems designed for high humidity soils and yearly balanced heat loads at the ground side, even if characterized by a compact footprint area, may still ensure better performance than other available and more common technologies such as boilers, air-cooled chillers, chillers coupled with cooling towers and heat pumps and chillers coupled with lagoon water. As a consequence

  10. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    Jun Dong; Yu He; Xiao Zhou; Shengchuang Bai [Department of Electronics Engineering, School of Information Science and Engineering, Xiamen, 361005 (China)

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)

  11. Incidence of Clostridium difficile infection in patients receiving high-risk antibiotics with or without a proton pump inhibitor.

    Gordon, D; Young, L R; Reddy, S; Bergman, C; Young, J D

    2016-02-01

    Considering the incidence and severity of Clostridium difficile infection (CDI), risk reduction strategies are crucial. Prior studies suggest that proton pump inhibitor (PPI) use can increase the risk of CDI over antibiotics alone; however, data and guidelines have been conflicting. The aim was to compare CDI incidence in patients receiving high-risk antibiotics, comparing rates in those prescribed a PPI versus those without overlapping PPI exposure. This retrospective cohort study assessed the incidence of CDI in veterans receiving high-risk antibiotics over an approximately three-year period. High-risk antibiotics were defined as: ciprofloxacin, levofloxacin, moxifloxacin, clindamycin, ceftriaxone, cefotaxime, ceftazidime, or cefixime. We identified subjects who were prescribed any high-risk antibiotic, finding 3513 on a concomitant PPI and 6149 not taking a PPI. Of these subjects, 111 were diagnosed with CDI and met inclusion criteria. Baseline characteristics, CDI severity, length of hospitalization and antibiotic therapy prior to infection were similar in both groups. The incidence of CDI was significantly higher in patients prescribed a PPI (odds ratio: 2.2; 95% confidence interval: 1.52-3.23; P=0.0001). A strong association was found between concurrent PPI use with fluoroquinolones (P=0.005) and clindamycin (P=0.045). The use of PPIs together with high-risk antibiotics was associated with a significantly higher incidence of CDI. Our study provides further support for the CDI prevention strategy of judicious PPI use, especially in patients receiving high-risk antibiotics. Prudent avoidance of PPIs may reduce the incidence of CDI, a major cause of morbidity and mortality worldwide. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Air sampling by pumping through a filter: effects of air flow rate, concentration, and decay of airborne substances

    Šoštarić, Marko; Petrinec, Branko; Babić, Dinko

    2016-01-01

    This paper tackles the issue of interpreting the number of airborne particles adsorbed on a filter through which a certain volume of sampled air has been pumped. This number is equal to the product of the pumped volume and particle concentration in air, but only if the concentration is constant over time and if there is no substance decomposition on the filter during sampling. If this is not the case, one must take into account the inconstancy of the concentration and the decay law for a give...

  13. Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency.

    Dubinskii, M; Zhang, J; Ter-Mikirtychev, V

    2009-05-15

    We report the performance of a resonantly cladding-pumped, Yb-free, Er-doped fiber laser. We believe this is the first reported resonantly cladding-pumped fiber-Bragg-grating-based, Er-doped, large-mode-area (LMA) fiber laser. The laser, pumped by fiber-coupled InGaAsP/InP laser diode modules at 1,532.5 nm, delivers approximately 48 W of cw output at 1,590 nm. It is believed to be the highest power ever reported from a Yb-free Er-doped LMA fiber. This fully integrated laser also has the optical-to-optical efficiency of approximately 57%, to the best of our knowledge, the highest efficiency reported for cladding-pumped unidirectionally emitting Er-doped laser.

  14. A Compact, Light-weight, Reliable and Highly Efficient Heat Pump for, Phase I

    National Aeronautics and Space Administration — RTI proposes to develop an efficient, reliable, compact and lightweight heat pump for space applications. The proposed effort is expected to lead to (at the end of...

  15. High mitogenomic evolutionary rates and time dependency.

    Subramanian, S.; Denver, D.R.; Millar, C.D.; Heupink, T.; Aschrafi, A.; Emslie, S.D.; Baroni, C.; Lambert, D.M.

    2009-01-01

    Using entire modern and ancient mitochondrial genomes of Adelie penguins (Pygoscelis adeliae) that are up to 44000 years old, we show that the rates of evolution of the mitochondrial genome are two to six times greater than those estimated from phylogenetic comparisons. Although the rate of

  16. How does pressure overload cause cardiac hypertrophy and dysfunction? High-ouabain affinity cardiac Na+ pumps are crucial.

    Blaustein, Mordecai P

    2017-11-01

    Left ventricular hypertrophy is frequently observed in hypertensive patients and is believed to be due to the pressure overload and cardiomyocyte stretch. Three recent reports on mice with genetically engineered Na + pumps, however, have demonstrated that cardiac ouabain-sensitive α 2 -Na + pumps play a key role in the pathogenesis of transaortic constriction-induced hypertrophy. Hypertrophy was delayed/attenuated in mice with mutant, ouabain-resistant α 2 -Na + pumps and in mice with cardiac-selective knockout or transgenic overexpression of α 2 -Na + pumps. The latter, seemingly paradoxical, findings can be explained by comparing the numbers of available (ouabain-free) high-affinity (α 2 ) ouabain-binding sites in wild-type, knockout, and transgenic hearts. Conversely, hypertrophy was accelerated in α 2 -ouabain-resistant (R) mice in which the normally ouabain-resistant α 1 -Na + pumps were mutated to an ouabain-sensitive (S) form (α 1 S/S α 2 R/R or "SWAP" vs. wild-type or α 1 R/R α 2 S/S mice). Furthermore, transaortic constriction-induced hypertrophy in SWAP mice was prevented/reversed by immunoneutralizing circulating endogenous ouabain (EO). These findings show that EO and its receptor, ouabain-sensitive α 2 , are critical factors in pressure overload-induced cardiac hypertrophy. This complements reports linking elevated plasma EO to hypertension, cardiac hypertrophy, and failure in humans and elucidates the underappreciated role of the EO-Na + pump pathway in cardiovascular disease. Copyright © 2017 the American Physiological Society.

  17. Hydrogen pumping and release by graphite under high flux plasma bombardment

    Hirooka, Y.; Leung, W.K.; Conn, R.W.; Goebel, D.M.; Labombard, B.; Nygren, R.; Wilson, K.L.

    1988-01-01

    Inert gas (helium or argon) plasma bombardment has been found to increase the surface gas adsorptivity of isotropic graphite (POCO-graphite), which can then getter residual gases in a high vacuum system. The inert gas plasma bombardment was carried out at a flux ∼ 1 x 10 18 ions s -1 cm -2 to a fluence of the order of 10 21 ions/cm 2 and at temperatures around 800 degree C. The plasma bombarding energy was varied between 100 and 200 eV. The gettering speed of the activated graphite surface is estimated to be as large as 25 liters s -1 cm -2 at total pressures between 10 -6 and 10 -7 torr. The gettering capacity estimated is 0.025 torr-liter/cm 2 at room temperature. The gettering capability of graphite can be easily recovered by repeating inert gas plasma bombardment. The activated graphite surface exhibits a smooth, sponge-like morphology with significantly increased pore openings, which correlates with the observed increase in the surface gas adsorptivity. The activated graphite surface has been observed to pump hydrogen plasma particles as well. From calibrated H-alpha measurements, the dynamic hydrogen retention capacity is evaluated to be as large as 2 x 10 18 H/cm 2 at temperatures below 100 degree C and at a plasma bombarding energy of 300 eV

  18. Heat pump cycle by hydrogen-absorbing alloys to assist high-temperature gas-cooled reactor in producing hydrogen

    Satoshi, Fukada; Nobutaka, Hayashi

    2010-01-01

    A chemical heat pump system using two hydrogen-absorbing alloys is proposed to utilise heat exhausted from a high-temperature source such as a high-temperature gas-cooled reactor (HTGR), more efficiently. The heat pump system is designed to produce H 2 based on the S-I cycle more efficiently. The overall system proposed here consists of HTGR, He gas turbines, chemical heat pumps and reaction vessels corresponding to the three-step decomposition reactions comprised in the S-I process. A fundamental research is experimentally performed on heat generation in a single bed packed with a hydrogen-absorbing alloy that may work at the H 2 production temperature. The hydrogen-absorbing alloy of Zr(V 1-x Fe x ) 2 is selected as a material that has a proper plateau pressure for the heat pump system operated between the input and output temperatures of HTGR and reaction vessels of the S-I cycle. Temperature jump due to heat generated when the alloy absorbs H 2 proves that the alloy-H 2 system can heat up the exhaust gas even at 600 deg. C without any external mechanical force. (authors)

  19. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  20. High energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator with a deformed pump and optimal crystal location for angle tuning.

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Chen, Zhenlei

    2017-03-20

    A high energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator (TPO) has been demonstrated by using a deformed pump. The deformed pump is cut from a beam spot of 2 mm in diameter by a 1-mm-wide slit. In comparison with a small pump spot (1-mm diameter), the THz-wave coupling area for the deformed pump is increased without limitation to the low-frequency end of the tuning range. Besides, the crystal location is specially designed to eliminate the alteration of the output position of the pump during angle tuning, so the initially adjusted nearest pumped region to the THz-wave exit surface is maintained throughout the tuning range. The tuning range is 0.58-2.5 THz for the deformed pump, while its low frequency end is limited at approximately 1.2 THz for the undeformed pump with 2 mm diameter. The highest THz-wave output of 2 μJ, which is 2.25 times as large as that from the pump of 1 mm in diameter, is obtained at 1.15 THz under 38 mJ (300  MW/cm2) pumping. The energy conversion efficiency is 5.3×10-5.

  1. Cheetah: A high frame rate, high resolution SWIR image camera

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  2. Diagnosis of Centrifugal Pump Faults Using Vibration Methods

    Albraik, A; Althobiani, F; Gu, F; Ball, A

    2012-01-01

    Pumps are the largest single consumer of power in industry. This means that faulty pumps cause a high rate of energy loss with associated performance degradation, high vibration levels and significant noise radiation. This paper investigates the correlations between pump performance parameters including head, flow rate and energy consumption and surface vibration for the purpose of both pump condition monitoring and performance assessment. Using an in-house pump system, a number of experiments have been carried out on a centrifugal pump system using five impellers: one in good condition and four others with different defects, and at different flow rates for the comparison purposes. The results have shown that each defective impeller performance curve (showing flow, head, efficiency and NPSH (Net Positive Suction Head) is different from the benchmark curve showing the performance of the impeller in good condition. The exterior vibration responses were investigated to extract several key features to represent the healthy pump condition, pump operating condition and pump energy consumption. In combination, these parameter allow an optimal decision for pump overhaul to be made.

  3. Diagnosis of Centrifugal Pump Faults Using Vibration Methods

    Albraik, A.; Althobiani, F.; Gu, F.; Ball, A.

    2012-05-01

    Pumps are the largest single consumer of power in industry. This means that faulty pumps cause a high rate of energy loss with associated performance degradation, high vibration levels and significant noise radiation. This paper investigates the correlations between pump performance parameters including head, flow rate and energy consumption and surface vibration for the purpose of both pump condition monitoring and performance assessment. Using an in-house pump system, a number of experiments have been carried out on a centrifugal pump system using five impellers: one in good condition and four others with different defects, and at different flow rates for the comparison purposes. The results have shown that each defective impeller performance curve (showing flow, head, efficiency and NPSH (Net Positive Suction Head) is different from the benchmark curve showing the performance of the impeller in good condition. The exterior vibration responses were investigated to extract several key features to represent the healthy pump condition, pump operating condition and pump energy consumption. In combination, these parameter allow an optimal decision for pump overhaul to be made [1].

  4. High heat flux testing impact on the Tore Supra toroidal pumped limiter achievement

    Schlosser, J.; Escourbiac, F.; Cordier, J.J.; Mitteau, R.; Durocher, A.; Grosman, A.

    2003-01-01

    The toroidal pumped limiter of Tore Supra is made of 576 elementary high heat flux (HHF) cooled plasma-facing components (PFCs) and designed to sustain 10 MW/m 2 in steady state. One of the main technical difficulties is to ensure a high quality of the bond between the carbon fiber composite armor tile and the water-cooled heat sink due to the high thermal stresses that develop at the bond during operation. Consequently, a HHF facility able to reproduce in service operation of PFCs is required all along the development and manufacturing route. In Europe, the FE200 facility (electron beam, 200 kW, France) operating since 1991, was extensively used for such a development. A first testing campaign in 1995 was devoted to the qualification of this bond: AMC technology from Plansee GmbH was selected. Afterwards, a second campaign on scale-one elements (1996) allowed an optimization of the element design and series production to be launched. During the mass production, a non-destructive control process - cheaper and faster than HHF testing - based on infrared characterization was routinely operated on 100% of the manufactured elements. Strong variability of the bond quality was observed and a repair process allowing the replacement of deficient tiles was developed. In 2000 and 2001, 2 campaigns of HHF testing were launched to correlate the non-destructive measurements and to optimize and validate the repair process. This was done, in two steps, with success. This yielded moreover interesting information for qualifying both tests across each other and also to analyze the fatigue evolution of the bond. The qualification and the achievement of the Tore Supra limiter has greatly been made possible by such HHF tests, which appears as essential before and during PFC manufacturing. (authors)

  5. New approach to exploit optimally the PV array output energy by maximizing the discharge rate of a directly-coupled photovoltaic water pumping system (DC/PVPS)

    Boutelhig, Azzedine; Hadj Arab, Amar; Hanini, Salah

    2016-01-01

    Highlights: • Mismatches on a designed d-c PV pumping system have been highlighted. • A new approach predicting the maximal discharge has been developed. • The approach has been discussed versus its linearity coefficient. • The approach effectiveness has been investigated and approved. • Theoretical and experimental obtained values have been compared and approved. - Abstract: A directly-coupled photovoltaic water pumping system (DC/PVPS) is generally designed by considering the worst month conditions on lowest daylight-hours, the maximum monthly daily required water volume and tank to store the excess water. In case of absence of hydraulic storage (water tank) or it is not enough dimensioned, the extra amount of pumped water is lost or is not reasonably used, when the system is operated on full daylight-hour. Beside that the extra amount of energy, which might be produced by the PV generator, is not exploited, when the system is operated only during a specified period-time needed to satisfy the demand. Beyond the accurate design that satisfying the end-user, a new approach has been developed as target to exploit maximally the PV array energy production, by maximizing the discharge rate of the system. The methodology consists of approaching maximally the demanded energy to the supplied energy on full operating day. Based on the demand/supply energy condition, the approach has been developed, upon the PV array and the pump performance models. The issued approach predicts the maximum delivery capacity of the system on monthly daily water volumes versus the monthly daily averages of solar irradiation, previously recorded. Its efficacy has been investigated and discussed according to the estimated and experimental values of its linearity coefficient, following the characterization tests of a designed system, carried out at our pumping test facility in Ghardaia (Algeria). The new theoretically and experimentally obtained flow-rates fit well, except

  6. Performance and Costs of Ductless Heat Pumps in Marine-Climate High-Performance Homes -- Habitat for Humanity The Woods

    Lubliner, Michael [Washington State Univ., Pullman, WA (United States); Howard, Luke [Washington State Univ., Pullman, WA (United States); Hales, David [Washington State Univ., Pullman, WA (United States); Kunkle, Rick [Washington State Univ., Pullman, WA (United States); Gordon, Andy [Washington State Univ., Pullman, WA (United States); Spencer, Melinda [Washington State Univ., Pullman, WA (United States)

    2016-02-23

    This final Building America Partnership report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing.

  7. Ceramic high-rate timing RPCs

    Lopes, L.; Ferreira Marques, R.; Fonte, P.; Hennetier, L.; Pereira, A.; Sousa Correia, A.M.

    2006-01-01

    Following some previous work, we report here considerable improvements on the counting rate capability of timing RPCs by the use of ceramic electrodes with a resistivity of 10 9 Ω.cm. The X-ray sensitivity of the detector depends linearly on the counting rate with a slope of 9% per 100 kHz/cm 2 , free from charge depletion effects, while keeping a timing accuracy, measured with 511 keV synchronous photon pairs, around 90 ps σ up to 75 kHz/cm 2

  8. High-resolution LES of the rotating stall in a reduced scale model pump-turbine

    Pacot, Olivier; Avellan, François; Kato, Chisachi

    2014-01-01

    Extending the operating range of modern pump-turbines becomes increasingly important in the course of the integration of renewable energy sources in the existing power grid. However, at partial load condition in pumping mode, the occurrence of rotating stall is critical to the operational safety of the machine and on the grid stability. The understanding of the mechanisms behind this flow phenomenon yet remains vague and incomplete. Past numerical simulations using a RANS approach often led to inconclusive results concerning the physical background. For the first time, the rotating stall is investigated by performing a large scale LES calculation on the HYDRODYNA pump-turbine scale model featuring approximately 100 million elements. The computations were performed on the PRIMEHPC FX10 of the University of Tokyo using the overset Finite Element open source code FrontFlow/blue with the dynamic Smagorinsky turbulence model and the no-slip wall condition. The internal flow computed is the one when operating the pump-turbine at 76% of the best efficiency point in pumping mode, as previous experimental research showed the presence of four rotating cells. The rotating stall phenomenon is accurately reproduced for a reduced Reynolds number using the LES approach with acceptable computing resources. The results show an excellent agreement with available experimental data from the reduced scale model testing at the EPFL Laboratory for Hydraulic Machines. The number of stall cells as well as the propagation speed corroborates the experiment

  9. High-resolution LES of the rotating stall in a reduced scale model pump-turbine

    Pacot, Olivier; Kato, Chisachi; Avellan, François

    2014-03-01

    Extending the operating range of modern pump-turbines becomes increasingly important in the course of the integration of renewable energy sources in the existing power grid. However, at partial load condition in pumping mode, the occurrence of rotating stall is critical to the operational safety of the machine and on the grid stability. The understanding of the mechanisms behind this flow phenomenon yet remains vague and incomplete. Past numerical simulations using a RANS approach often led to inconclusive results concerning the physical background. For the first time, the rotating stall is investigated by performing a large scale LES calculation on the HYDRODYNA pump-turbine scale model featuring approximately 100 million elements. The computations were performed on the PRIMEHPC FX10 of the University of Tokyo using the overset Finite Element open source code FrontFlow/blue with the dynamic Smagorinsky turbulence model and the no-slip wall condition. The internal flow computed is the one when operating the pump-turbine at 76% of the best efficiency point in pumping mode, as previous experimental research showed the presence of four rotating cells. The rotating stall phenomenon is accurately reproduced for a reduced Reynolds number using the LES approach with acceptable computing resources. The results show an excellent agreement with available experimental data from the reduced scale model testing at the EPFL Laboratory for Hydraulic Machines. The number of stall cells as well as the propagation speed corroborates the experiment.

  10. Centrifugal pumps

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  11. Multi-Fresnel lenses pumping approach for improving high-power Nd:YAG solar laser beam quality.

    Liang, Dawei; Almeida, Joana

    2013-07-20

    To significantly improve the present-day high-power solar laser beam quality, a three-stage multi-Fresnel lenses approach is proposed for side-pumping either a Nd:YAG single-crystal or a core-doped Sm(3+)Nd:YAG ceramic rod. Optimum pumping and laser beam parameters are found through ZEMAX and LASCAD numerical analysis. The proposed scheme offers a uniform absorption profile along the rod. 167 W laser power can be achieved, corresponding to 29.3 W/m(2) collection efficiency. High brightness figure of merit of 8.34 W is expected for the core-doped rod within a convex-concave resonator, which is 1300 times higher than that of the most-recent high-power solar laser.

  12. METHODS OF IMPROVING THE MUD PUMP VALVE LIFE

    Miruna BĂLTĂREȚU IANCU

    2015-11-01

    Full Text Available Petroleum drilling rigs are used for identifying geologic reservoirs and for creating wells for extraction. The mud pumps of drilling rigs are operated at high mud rates to make possible the drilling process. The durability of the mud pump valves to erosive wear, due to the action of abrasive drilling fluid containing solid particles, depends on their constructive form and on the mud flow velocity. This paper analyzes a few methods of increasing the wear resistance of mud pump valves.

  13. Underground Pumped Hydroelectric Storage (UPHS). Program report, April 1-September 30, 1979. ANL Activity No. 49964

    Blomquist, C.A.; Frigo, A.A.; Tam, S.W.; Clinch, J.M.

    1979-10-01

    The Argonne National Laboratory Underground Pumped Hydroelectric Storage activities for the second half of FY 1979 are described. Activities include program management and support, subcontract work, and systems studies. Information is given on the preliminary design, hydraulic performance, and cost of high-head, 350-MW capacity, single- and two-stage reversible, Francis-type pump turbines. Similar information is also presented on 350- and 500-MW capacity, multistage, unregulated, reversible, pump turbines. An assessment of the application potential of controlled-flow rate pumps and pump turbines is included. The effects of the charge/discharge ratio of a pumped stoage plant is also discussed.

  14. Porphyromonas gingivalis is highly sensitive to inhibitors of a proton-pumping ATPase.

    Sekiya, Mizuki; Shimoyama, Yu; Ishikawa, Taichi; Sasaki, Minoru; Futai, Masamitsu; Nakanishi-Matsui, Mayumi

    2018-04-15

    Porphyromonas gingivalis is a well-known Gram-negative bacterium that causes periodontal disease. The bacterium metabolizes amino acids and peptides to obtain energy. An ion gradient across its plasma membrane is thought to be essential for nutrient import. However, it is unclear whether an ion-pumping ATPase responsible for the gradient is required for bacterial growth. Here, we report the inhibitory effect of protonophores and inhibitors of a proton-pumping ATPase on the growth of P. gingivalis. Among the compounds examined, curcumin and citreoviridin appreciably reduced the bacterial growth. Furthermore, these compounds inhibited the ATPase activity in the bacterial membrane, where the A-type proton-pumping ATPase (A-ATPase) is located. This study suggests that curcumin and citreoviridin inhibit the bacterial growth by inhibiting the A-ATPase in the P. gingivalis membrane. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Transition to high rate aerospace NDI processes

    Vanderheiden, Bert; Thomson, Clint; Ivakhnenko, Igor; Garner, Chuck

    2018-04-01

    With the rapidly expanding use of carbon fiber composite materials in military and commercial aircraft, processes to manufacture and inspect the structural components must evolve to ensure economic viability. Inspection techniques which were developed to inspect products produced at a rate of one or two structures a month are not fast or flexible enough to inspect more than 8500 parts per month. This presentation describes the evolution of phased array ultrasonic inspection systems to provide the increased rate capacity, the flexibility to accommodate multiple unique designs, and the ability to rapidly adjust to product design changes. The paper will describe how system developments were made in response to new programs resulting in a much less expensive, higher degree of accuracy, increased flexibility, and lower cycle time inspections.

  16. High exposure rate hardware ALARA plan

    Nellesen, A.L.

    1996-10-01

    This as low as reasonably achievable review provides a description of the engineering and administrative controls used to manage personnel exposure and to control contamination levels and airborne radioactivity concentrations. HERH waste is hardware found in the N-Fuel Storage Basin, which has a contact dose rate greater than 1 R/hr and used filters. This waste will be collected in the fuel baskets at various locations in the basins

  17. Why Are Real Interest Rates So High?

    Zvi Bodie; Alex Kane; Robert L. McDonald

    1983-01-01

    This paper applies the Capital Asset Pricing Model to help explain the anomalous behavior of real interest rates during the last several years. Specifically,we are able to show that the increased volatility of bond prices since the change in Federal Reserve operating procedure in October 1979 has substantially increased the required real risk premium on long term bonds. We also consider and reject the possibility that increased risk alone accounts for the recent increase in the short-term rea...

  18. Comparative Study for Evaluation of Mass Flow Rate for Simple Solar Still and Active with Heat Pump

    Hidouri Khaoula

    2017-07-01

    Full Text Available In isolated and arid areas, especially in the almost Maghreb regions, the abundant solar radiation intensity along the year and the available brackish water resources are the two favorable conditions for using solar desalination technology to produce fresh water. The present study is based on the use of three groups of correlation, for evaluating mass transfer. Theoretical results are compared with those obtained experimentally for a Simple Solar Distiller (SSD and a Simple Solar Distiller Hybrid with a Heat Pump (SSDHP stills. Experimental results and those calculated by Lewis number correlation show good agreements. Results obtained by Dunkle, Kumar and Tiwari correlations are not satisfactory with the experimental ones. Theoretical results, as well as statistical analysis, are presented. The model with heat pump ( for two configurations (111 and (001 give more output compared with the model without heat pump ((000 and (110. This results where agree for the use of the statistic results, the error it less with Lewis number as compared with the different correlation.

  19. Ground source heat pumps versus high efficiency natural gas furnaces in Alberta

    Shaw, J.

    2003-02-02

    For the past twenty years or so, the heating and cooling of numerous buildings in northern Europe has been accomplished using ground source heat pumps (GSHPs), while in North America they have been in use for approximately ten years. In the Prairies, natural gas furnaces dominate, while GSHP are more popular in eastern Canada. The author noted that natural gas furnaces have an efficiency of 80 per cent or less, while high efficiency natural gas (HENG) furnaces, more expensive, have an efficiency in the 90 per cent range. A brief outline of the principles behind GSHPs was provided. The Coefficient of Performance (COP) of GSHP reaches up to 500 per cent depending whether the unit is cooling or heating. The amount of heat produced by a heating system expressed as a percentage of the energy input required to operate the system is the definition used for the efficiency. In those cases where it is possible to amortize the initial costs, pay now or obtain a subsidy, the installation of GSHP is advantageous. Several factors affect the total cost of heating a building, such as the airtightness of the building and its insulation, the coldness of the climate, and the inside controlled temperature setting. The author then examined the cost of operating a GSHP versus a natural gas furnace. In most examples studied, the cost of operating a GSHP was less than the cost of operating a natural gas furnace. The Total Equivalent Warming Impact (TEWI) of GSHPs and HENG furnaces was examined. The author concluded that the cost of heating by GSHP in Alberta will be lower than the cost of heating by HENG which requires a separate air conditioning unit for the summer months, with additional improvements in efficiency and insulation. 7 refs., 4 tabs.

  20. Performance and Costs of Ductless Heat Pumps in Marine-Climate High-Performance Homes -- Habitat for Humanity The Woods

    Lubliner, Michael [Building America Partnership for Improved Residential Construction, Olympia, WA (United States). Washington States Univ. Energy Program; Howard, Luke [Building America Partnership for Improved Residential Construction, Olympia, WA (United States). Washington States Univ. Energy Program; Hales, David [Building America Partnership for Improved Residential Construction, Olympia, WA (United States). Washington States Univ. Energy Program; Kunkle, Rick [Building America Partnership for Improved Residential Construction, Olympia, WA (United States). Washington States Univ. Energy Program; Gordon, Andy [Building America Partnership for Improved Residential Construction, Olympia, WA (United States). Washington States Univ. Energy Program; Spencer, Melinda [Building America Partnership for Improved Residential Construction, Olympia, WA (United States). Washington States Univ. Energy Program

    2016-02-18

    The Woods is a Habitat for Humanity (HFH) community of ENERGY STAR Homes Northwest (ESHNW)-certified homes located in the marine climate of Tacoma/Pierce County, Washington. This research report builds on an earlier preliminary draft 2014 BA report, and includes significant billing analysis and cost effectiveness research from a collaborative, ongoing Ductless Heat Pump (DHP)research effort for Tacoma Public Utilities (TPU) and Bonneville Power Administration (BPA). This report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing such as HFH. Tacoma Public Utilities (TPU) and Bonneville Power Administration (BPA). This report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing such as HFH.

  1. Variable load failure mechanism for high-speed load sensing electro-hydrostatic actuator pump of aircraft

    Cun SHI

    2018-05-01

    Full Text Available This paper presents a novel transient lubrication model for the analysis of the variable load failure mechanism of high-speed pump used in Load Sensing Electro-Hydrostatic Actuator (LS-EHA. Focusing on the slipper/swashplate pair partial abrasion, which is considered as the dominant failure mode in the high-speed condition, slipper dynamic models are established. A forth sliding motion of the slipper on the swashplate surface is presented under the fact that the slipper center of mass will rotate around the center of piston ball when the swashplate angle is dynamically adjusted. Besides, extra inertial tilting moments will be produced for the slipper based on the theorem on translation of force, which will increase rapidly when LS-EHA pump operates under high-speed condition. Then, a dynamic lubricating model coupling with fluid film thickness field, temperature field and pressure field is proposed. The deformation effects caused by thermal deflection and hydrostatic pressure are considered. A numerical simulation model is established to validate the effectiveness and accuracy of the proposed model. Finally, based on the load spectrum of aircraft flight profile, the variable load conditions and the oil film characteristics are analyzed, and series of variable load rules of oil film thickness with variable speed/variable pressure/variable displacement are concluded. Keywords: Coupling lubrication model, Electro-Hydrostatic Actuator (EHA, High-speed pump, Partial abrasion, Slipper pair, Variable load

  2. Coupling of high temperature nuclear reactor with chemical plant by means of steam loop with heat pump

    Kopeć Mariusz

    2017-01-01

    Full Text Available High temperature nuclear reactors (HTR can be used as an excellent, emission-free source of technological heat for various industrial applications. Their outlet helium temperature (700°-900°C allows not only for heat supply to all processes below 600°C (referred to as “steam class”, but also enables development of clean nuclear-assisted hydrogen production or coal liquefaction technologies with required temperatures up to 900°C (referred to as “chemical class”. This paper presents the results of analyses done for various configurations of the steam transport loop coupled with the high-temperature heat pump designed for “chemical class” applications. The advantages and disadvantages as well as the key issues are discussed in comparison with alternative solutions, trying to answer the question whether the system with the steam loop and the hightemperature heat pump is viable and economically justified.

  3. Development of high repetition rate nitric oxide planar laser induced fluorescence imaging

    Jiang, Naibo

    This thesis has documented the development of a MHz repitition rate pulse burst laser system. Second harmonic and third harmonic efficiencies are improved by adding a Phase Conjugate Mirror to the system. Some high energy fundamental, second harmonic, and third harmonic burst sequences consisting of 1--12 pulses separated in time by between 4 and 12 microseconds are now routinely obtained. The reported burst envelopes are quite uniform. We have also demonstrated the ability to generate ultra-high frequency sequences of broadly wavelength tunable, high intensity laser pulses using a home built injection seeded Optical Parametric Oscillator (OPO), pumped by the second and third harmonic output of the pulse burst laser. Typical OPO output burst sequences consist of 6--10 pulses, separated in time by between 6 and 10 microseconds. With third harmonic pumping of the OPO system, we studied four conditions, two-crystal Singly Resonant OPO (SRO) cavity, three-crystal OPO cavity, single pass two-crystal Doubly Resonant OPO (DRO) cavity and double pass two-crystal OPO cavity. The double pass two-crystal OPO cavity gives the best operation in burst mode. For single pass OPO, the average total OPO conversion efficiency is approximately 25%. For double pass OPO, the average total OPO conversion efficiency is approximately 35%. As a preliminary work, we studied 532nm pumping of a single crystal OPO cavity. With single pulse pumping, the conversion efficiency can reach 30%. For both 355nm and 532nm pumping OPO, we have demonstrated injection seeding. The OPO output light linewidth is significantly narrowed. Some preliminary etalon traces are also reported. By mixing the OPO signal output at 622nm with residual third harmonic at 355nm, we obtained 226nm burst sequences with average pulse energy of ˜0.2 mJ. Injection seeding of the OPO increases the energy achieved by a factor of ˜2. 226nm burst sequences with reasonably uniform burst envelopes are reported. Using the system we

  4. Using NIF to Test Theories of High-Pressure, High-Rate Plastic Flow in Metals

    Rudd, Robert E.; Arsenlis, A.; Cavallo, R. M.; Huntington, C. M.; McNaney, J. M.; Park, H. S.; Powell, P.; Prisbrey, S. T.; Remington, B. A.; Swift, D.; Wehrenberg, C. E.; Yang, L.

    2017-10-01

    Precisely controlled plasmas are playing key roles both as pump and probe in experiments to understand the strength of solid metals at high energy density (HED) conditions. In concert with theoretical advances, these experiments have enabled a predictive capability to model material strength at Mbar pressures and high strain rates. Here we describe multiscale strength models developed for tantalum starting with atomic bonding and extending up through the mobility of individual dislocations, the evolution of dislocation networks and so on until the ultimate material response at the scale of an experiment. Experiments at the National Ignition Facility (NIF) probe strength in metals ramp compressed to 1-8 Mbar. The model is able to predict 1 Mbar experiments without adjustable parameters. The combination of experiment and theory has shown that solid metals can behave significantly differently at HED conditions. We also describe recent studies of lead compressed to 3-5 Mbar. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  5. High energy erbium laser end-pumped by a laser diode bar array coupled to a Nonimaging Optic Concentrator

    Tanguy , Eric; Feugnet , Gilles; Pocholle , Jean-Paul; Blondeau , R.; Poisson , M.A.; Duchemin , J.P.

    1998-01-01

    International audience; A high energy Er3+, Yb3+:glass laser end pumped by a laser diode array emitting at 980 nm coupled to a Nonimaging Optic Concentrator (NOC) is demonstrated. Energy up to 100 mJ and a 16% slope efficiency are achieved in a plano-plano laser cavity. The energy transfer coefficient from Yb3+ to Er3+ is estimated by a new method.

  6. Pumps of molten metal based on magnetohydrodynamicprinciple for cooling high-temperature nuclear reactors

    Doležel, Ivo; Donátová, M.; Karban, P.; Ulrych, B.

    2009-01-01

    Roč. 85, č. 4 (2009), s. 13-15 ISSN 0033-2097 R&D Projects: GA ČR(CZ) GA102/07/0496 Institutional research plan: CEZ:AV0Z20570509 Keywords : pumps of molten metal * magnetohydrodynamic principle * nuclear reactors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.196, year: 2009

  7. High efflux pump activity and gene expression at baseline linked to ...

    Phenotypic TB drug resistance, also known as drug tolerance, has been previously attributed to slowed bacterial growth in vivo. The increased activity and expression of efflux systems can lower the intracellular concentration of many antibiotics thus reducing their efficacy. We hypothesized that efflux pump activation and ...

  8. Magnetohydrodynamic pumps for molten salts in cooling loops of high-temperature nuclear reactors

    Doležel, Ivo; Kotlan, V.; Ulrych, B.

    2011-01-01

    Roč. 87, č. 5 (2011), s. 28-33 ISSN 0033-2097 Grant - others:GA MŠk(CZ) MEB051041 Institutional research plan: CEZ:AV0Z20570509 Keywords : magnetohydrodynamic pump * molten salt * electric field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.244, year: 2011 http://pe.org.pl/

  9. A high-efficiency electrically-pumped single-photon source based on a photonics nanowire

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    An electrically-pumped single-photon source design with a predicted efficiency of 89% is proposed. The design is based on a quantum dot embedded in a photonic nanowire with tailored ends and optimized contact electrodes. Unlike cavity-based approaches, the photonic nanowire features broadband...

  10. Off-pump Coronary Artery Bypass Graft in a High Risk Patient ...

    On-pump coronary artery bypass graft (CABG) entails the use of cardiopulmonary bypass (CPB). The procedure is safe but it's not without complications like neurocognitive deficits, cerebrovascular accidents, myocardial ischemic injury and activation of inflammatory pathways that contribute to pulmonary, renal, hematologic ...

  11. Fabrication of a novel cascade high-pressure electro-osmotic pump.

    Zhang, Feifang; Wang, Rong; Han, Tingting; Yang, Bingcheng; Liang, Xinmiao

    2011-07-07

    A novel cascade electro-osmotic pump (EOP) has been fabricated by alternately connecting a cation monolithic column and anion monolithic column in series. In this manner, the change of electric polarity between each stage of the cascade EOP is easily achieved and the pressure output of the EOP could be greatly enhanced without increase of the applied voltage.

  12. High-fidelity modelling of an exciplex pumped alkali laser with radiative transport

    Palla, Andrew D; Carroll, David L; Verdeyen, Joseph T; Heaven, Michael C

    2011-01-01

    The exciplex-pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapour, Ar, and ethane by pumping Cs-Ar atomic collision pairs and subsequent dissociation of diatomic, electronically excited CsAr molecules (exciplexes or excimers). Because of the addition of atomic collision pairs and exciplex states, modelling of the XPAL system is far more complicated than the modelling of the classic diode-pumped alkali laser (DPAL). In this paper, we discuss BLAZE-V time-dependent multi-dimensional modelling of this new laser system including radiative transport and parasitic loss effects. A two-dimensional, time-dependent baseline simulation of a pulsed XPAL is presented and compared to data. Good agreement is achieved on a laser pulse full width at half-maximum and laser pulse rise time. Parametric simulations of pulsed XPAL system configurations similar to that of the baseline case, given both four- and five-level laser operation, are presented in which good agreement is obtained with outcoupled laser energy as a function of absorbed pump energy data. The potential impact of parasitic losses on modelled system configurations is discussed.

  13. High-fidelity modelling of an exciplex pumped alkali laser with radiative transport

    Palla, Andrew D; Carroll, David L; Verdeyen, Joseph T [CU Aerospace, Champaign, IL 61820 (United States); Heaven, Michael C, E-mail: apalla@cuaerospace.com [Department of Chemistry, Emory University, Atlanta, GA 30322 (United States)

    2011-07-14

    The exciplex-pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapour, Ar, and ethane by pumping Cs-Ar atomic collision pairs and subsequent dissociation of diatomic, electronically excited CsAr molecules (exciplexes or excimers). Because of the addition of atomic collision pairs and exciplex states, modelling of the XPAL system is far more complicated than the modelling of the classic diode-pumped alkali laser (DPAL). In this paper, we discuss BLAZE-V time-dependent multi-dimensional modelling of this new laser system including radiative transport and parasitic loss effects. A two-dimensional, time-dependent baseline simulation of a pulsed XPAL is presented and compared to data. Good agreement is achieved on a laser pulse full width at half-maximum and laser pulse rise time. Parametric simulations of pulsed XPAL system configurations similar to that of the baseline case, given both four- and five-level laser operation, are presented in which good agreement is obtained with outcoupled laser energy as a function of absorbed pump energy data. The potential impact of parasitic losses on modelled system configurations is discussed.

  14. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Kerschberger, P; Gehrer, A

    2010-01-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  15. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  16. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm.

    Jackson, Stuart D

    2009-08-01

    A high-power diode-cladding-pumped Ho(3+), Pr(3+)-doped fluoride glass fiber laser is demonstrated. The laser produced a maximum output power of 2.5 W at a slope efficiency of 32% using diode lasers emitting at 1,150 nm. The long-emission wavelength of 2.94 microm measured at maximum pump power, which is particularly suited to medical applications, indicates that tailoring of the proportion of Pr(3+) ions can provide specific emission wavelengths while providing sufficient de-excitation of the lower laser level.

  17. High readmission rate after heart valve surgery

    Sibilitz, K L; Berg, S K; Thygesen, L C

    2015-01-01

    investigated. RESULTS: After valve surgery, the self-reported health was lower (Short Form-36 (SF-36) Physical Component Scale (PCS): 44.5 vs. 50.6 and Mental Component Scale (MCS): 51.9 vs. 55.0, pClinical signs......BACKGROUND: After heart valve surgery, knowledge on long-term self-reported health status and readmission is lacking. Thus, the optimal strategy for out-patient management after surgery remains unclear. METHODS: Using a nationwide survey with linkage to Danish registers with one year follow-up, we...... included all adults 6-12months after heart valve surgery irrespective of valve procedure, during Jan-June 2011 (n=867). Participants completed a questionnaire regarding health-status (n=742), and answers were compared with age- and sex-matched healthy controls. Readmission rates and mortality were...

  18. High dose rate brachytherapy source measurement intercomparison.

    Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette

    2017-06-01

    This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR 192 Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single 192 Ir source using their own equipment and local protocols. Results were compared to the 192 Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for 192 Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.

  19. Development and Evaluation of High Bioavailable Sustained-Release Nimodipine Tablets Prepared with Monolithic Osmotic Pump Technology.

    Kong, Hua; Yu, Fanglin; Liu, Yan; Yang, Yang; Li, Mingyuan; Cheng, Xiaohui; Hu, Xiaoqin; Tang, Xuemei; Li, Zhiping; Mei, Xingguo

    2018-01-01

    Frequent administration caused by short half-life and low bioavailability due to poor solubility and low dissolution rate limit the further application of poorly water-soluble nimodipine, although several new indications have been developed. To overcome these shortcomings, sophisticated technologies had to be used since the dose of nimodipine was not too low and the addition of solubilizers could not resolve the problem of poor release. The purpose of this study was to obtain sustained and complete release of nimodipine with a simple and easily industrialized technology. The expandable monolithic osmotic pump tablets containing nimodipine combined with poloxamer 188 and carboxymethylcellulose sodium were prepared. The factors affecting drug release including the amount of solubilizing agent, expanding agent, retarding agent in core tablet and porogenic agent in semipermeable film were optimized. The release behavior was investigated both in vitro and in beagle dogs. It was proved that the anticipant release of nimodipine could be realized in vitro. The sustained and complete release of nimodipine was also realized in beagles because the mean residence time of nimodipine from the osmotic pump system was longer and Cmax was lower than those from the sustained-release tablets in market while there was no difference in AUC(0-t) of the monolithic osmotic pump tablets and the sustained release tablets in market. It was reasonable to believe that the sustained and complete release of poorly watersoluble nimodipine could be realized by using simple expandable monolithic osmotic pump technology combined with surfactant. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Survey of pumps for tritium gas

    Dowell, T.M.

    1983-05-01

    This report considers many different types of pumps for their possible use in pumping tritium gas in the low, intermediate and high vacuum ranges. No one type of pump is suitable for use over the wide range of pumping pressure required in a typical pumping system. The favoured components for such a system are: bellows pump (low vacuum); orbiting scroll pump (intermediate vacuum); magnetically suspended turbomolecular pump (high vacuum); cryopump (high vacuum). Other pumps which should be considered for possible future development are: mound modified vane pump; SRTI wobble pump; roots pump with canned motor. It is proposed that a study be made of a future tritium pumping system in a Canadian tritium facility, e.g. a tritium laboratory

  1. High-deposition-rate ceramics synthesis

    Allendorf, M.D.; Osterheld, T.H.; Outka, D.A. [Sandia National Laboratories, Livermore, CA (United States)] [and others

    1995-05-01

    Parallel experimental and computational investigations are conducted in this project to develop validated numerical models of ceramic synthesis processes. Experiments are conducted in the High-Temperature Materials Synthesis Laboratory in Sandia`s Combustion Research Facility. A high-temperature flow reactor that can accommodate small preforms (1-3 cm diameter) generates conditions under which deposition can be observed, with flexibility to vary both deposition temperature (up to 1500 K) and pressure (as low as 10 torr). Both mass spectrometric and laser diagnostic probes are available to provide measurements of gas-phase compositions. Experiments using surface analytical techniques are also applied to characterize important processes occuring on the deposit surface. Computational tools developed through extensive research in the combustion field are employed to simulate the chemically reacting flows present in typical industrial reactors. These include the CHEMKIN and Surface-CHEMKIN suites of codes, which permit facile development of complex reaction mechanisms and vastly simplify the implementation of multi-component transport and thermodynamics. Quantum chemistry codes are also used to estimate thermodynamic and kinetic data for species and reactions for which this information is unavailable.

  2. Liquid Argon Calorimeter performance at High Rates

    Seifert, F; The ATLAS collaboration

    2013-01-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $3\\cdot10^{11}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  3. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  4. Design and experimental characterization of an EM pump

    Kim, Hee Reyoung; Hong, Sang Hee

    1999-01-01

    Generally, an EM (electromagnetic) pump is been employed to circulate electrically conducting liquids by using the Lorentz force. Especially, at the liquid metal reactor (LMR), which uses liquid sodium with high electrical conductivity as a coolant, an EM pump is needed due to its advantages over a mechanical pump, such as no rotating parts, no noise, and simplicity. In this research, an EM pump of a pilot annular linear induction type with a flow rate of 200 l/min was designed by using the electrical equivalent-circuit method. The pump was designed and manufactured by considering material and environmental (high temperature and liquid sodium) requirements. The pump performance was experimentally characterized based on input currents, voltage, power, and frequency. Also, the theoretical prediction was compared with the experimental result

  5. High School Graduation Rates:Alternative Methods and Implications

    Jing Miao; Walt Haney

    2004-01-01

    The No Child Left Behind Act has brought great attention to the high school graduation rate as one of the mandatory accountability measures for public school systems. However, there is no consensus on how to calculate the high school graduation rate given the lack of longitudinal databases that track individual students. This study reviews literature on and practices in reporting high school graduation rates, compares graduation rate estimates yielded from alternative methods, and estimates d...

  6. Conceptual design of a high heat flux toroidal pumped limiter for Tore Supra

    Doceul, L.; Schlosser, J.; Chappuis, Ph.; Chatelier, M.; Cocat, J.P.; Deck, C.; Faisse, F.; Grosman, A.; Mitteau, R.; Tonon, G.

    1994-01-01

    In the frame of the Tore-Supra upgrade, where it is planned to inject up to 25 MW during a time up to 1000 s, a complete toroidal pumped limiter covered of CFC (Carbon Fiber Composite) tiles is being designed. The design is based on the important experience gained from the operation on Tore Supra of actively cooled plasma facing components and pumped limiters. This toroidal limiter covers 7.5 m 2 of the bottom part of the inner vessel and is composed of 576 elementary components. Each element is built from dispersion strengthened copper (DSCu) protected by brazed CFC flat tiles and cooled by pressurised water at 150 deg C. This limiter is designed to sustain 15 MW of convective power. (author) 7 refs.; 5 figs., 3 tabs

  7. Continuous mixer, process and use in a pumping plant for a high viscosity fluid

    Cholet, H.

    1993-03-12

    The invention concerns a novel continuous mixer comprising a rotary shaft carrying two or more vanes for mixing two or more fluids of different viscosities supplied at the inlet of the mixer body and for providing, at the mixer body outlet, a mixture of viscosity lower than that of the more or most viscous fluid. Preferentially, the vane profile is such that, without fluid circulation, rotation of the vanes produces a reaction force parallel to the rotational axis and in the same direction as the resulting flow or does not produce a reaction force of significant magnitude parallel to the rotational axis. The mixer shaft is connected to a pump shaft which is rotated by hydraulic motor driven by pressurized fluid injection. The mixer is used especially for facilitating viscous crude oil pumping from directional wells including horizontal or inclined portions.

  8. Detection of pump degradation

    Casada, D.

    1995-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  9. Optical pumping of Rb by Ti:Sa laser and high-power laser diode

    Buchta, Zdeněk; Rychnovský, Jan; Lazar, Josef

    2006-01-01

    Roč. 8, č. 1 (2006), s. 350-354 ISSN 1454-4164 R&D Projects: GA AV ČR IAA1065303; GA ČR GA102/04/2109 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical pumping * Ti:Sa laser * laser diode * emission linewidth * spectroscopy * laser frequency stabilization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.106, year: 2006

  10. High-power extended cavity laser optimized for optical pumping ot Rb

    Buchta, Zdeněk; Číp, Ondřej; Lazar, Josef

    2007-01-01

    Roč. 18, č. 9 (2007), N77-N80 ISSN 0957-0233 R&D Pro jects: GA ČR GA102/04/2109; GA MŠk(CZ) LC06007; GA AV ČR IAA200650504; GA AV ČR IAA1065303 Institutional research plan: CEZ:AV0Z20650511 Keywords : laser diode * emission linewidth * diffraction grating * optical pumping * spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.297, year: 2007

  11. Wavefront improvement in an end-pumped high-power Nd:YAG zigzag slab laser.

    Shin, Jae Sung; Cha, Yong-Ho; Lim, Gwon; Kim, Yonghee; Kwon, Seong-Ouk; Cha, Byung Heon; Lee, Hyeon Cheor; Kim, Sangin; Koh, Kwang Uoong; Kim, Hyun Tae

    2017-08-07

    Techniques for wavefront improvement in an end-pumped Nd:YAG zigzag slab laser amplifier were proposed and demonstrated experimentally. First, a study on the contact materials was conducted to improve the heat transfer between the slab and cooling blocks and to increase the cooling uniformity. Among many attempts, only the use of silicon oil showed an improvement in the wavefront. Thus, the appropriate silicone oil was applied to the amplifier as a contact material. In addition, the wavefront compensation method using a glass rod array was also applied to the amplifier. A very low wavefront distortion was obtained through the use of a silicone-oil contact and glass rod array. The variance of the optical path difference for the entire beam height was 3.87 μm at a pump power of 10.6 kW, and that for the 80% section was 1.69 μm. The output power from the oscillator was 3.88 kW, which means the maximum output extracted from the amplifier at a pump power of 10.6 kW.

  12. Hanford high level waste (HLW) tank mixer pump safe operating envelope reliability assessment

    Fischer, S.R.; Clark, J.

    1993-01-01

    The US Department of Energy and its contractor, Westinghouse Corp., are responsible for the management and safe storage of waste accumulated from processing defense reactor irradiated fuels for plutonium recovery at the Hanford Site. These wastes, which consist of liquids and precipitated solids, are stored in underground storage tanks pending final disposition. Currently, 23 waste tanks have been placed on a safety watch list because of their potential for generating, storing, and periodically releasing various quantities of hydrogen and other gases. Tank 101-SY in the Hanford SY Tank Farm has been found to release hydrogen concentrations greater than the lower flammable limit (LFL) during periodic gas release events. In the unlikely event that an ignition source is present during a hydrogen release, a hydrogen burn could occur with a potential to release nuclear waste materials. To mitigate the periodic gas releases occurring from Tank 101-SY, a large mixer pump currently is being installed in the tank to promote a sustained release of hydrogen gas to the tank dome space. An extensive safety analysis (SA) effort was undertaken and documented to ensure the safe operation of the mixer pump after it is installed in Tank 101-SY.1 The SA identified a need for detailed operating, alarm, and abort limits to ensure that analyzed safety limits were not exceeded during pump operations

  13. Development of solar concentrators for high-power solar-pumped lasers.

    Dinh, T H; Ohkubo, T; Yabe, T

    2014-04-20

    We have developed unique solar concentrators for solar-pumped solid-state lasers to improve both efficiency and laser output power. Natural sunlight is collected by a primary concentrator which is a 2  m×2  m Fresnel lens, and confined by a cone-shaped hybrid concentrator. Such solar power is coupled to a laser rod by a cylinder with coolant surrounding it that is called a liquid light-guide lens (LLGL). Performance of the cylindrical LLGL has been characterized analytically and experimentally. Since a 14 mm diameter LLGL generates efficient and uniform pumping along a Nd:YAG rod that is 6 mm in diameter and 100 mm in length, 120 W cw laser output is achieved with beam quality factor M2 of 137 and overall slope efficiency of 4.3%. The collection efficiency is 30.0  W/m2, which is 1.5 times larger than the previous record. The overall conversion efficiency is more than 3.2%, which can be comparable to a commercial lamp-pumped solid-state laser. The concept of the light-guide lens can be applied for concentrator photovoltaics or other solar energy optics.

  14. Heat pumps

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  15. Pump safety device

    Timmermans, Francis; Vandervorst, Jean.

    1981-01-01

    Safety device for longitudinally leak proofing the shaft of a pump in the event of the fracture of the dynamic seal separating the pump fluid high pressure chamber from the low pressure chamber. It is designed for fitting to the primary pumps of nuclear reactors. It includes a hollow cyclindrical piston located coaxially around the pump shaft and normally housed in a chamber provided for this purpose in the fixed housing of the dynamic seal, and means for moving this piston coaxially so as to compress a safety O ring between the shaft and the piston in the event of the dynamic seal failing [fr

  16. High School Graduation Rates:Alternative Methods and Implications

    Jing Miao

    2004-10-01

    Full Text Available The No Child Left Behind Act has brought great attention to the high school graduation rate as one of the mandatory accountability measures for public school systems. However, there is no consensus on how to calculate the high school graduation rate given the lack of longitudinal databases that track individual students. This study reviews literature on and practices in reporting high school graduation rates, compares graduation rate estimates yielded from alternative methods, and estimates discrepancies between alternative results at national, state, and state ethnic group levels. Despite the graduation rate method used, results indicate that high school graduation rates in the U.S. have been declining in recent years and that graduation rates for black and Hispanic students lag substantially behind those of white students. As to graduation rate method preferred, this study found no evidence that the conceptually more complex methods yield more accurate or valid graduation rate estimates than the simpler methods.

  17. Electromagnetic circulation pump for corrosive gases

    Noe, P.; Delafosse, D.; Deletre, G.

    1965-01-01

    In order to transport very corrosive products (fluorinated compounds) we have been led to develop a totally metallic circulation pump capable of operating at above room temperatures and with a molecular vacuum. We have aimed at maximum simplicity both in its conception and in its operation. The tests showed that the compression ratios produced, although not high are interesting (1.5 at a pressure of 100 torr) (see curve I). The flow-rate range is very wide: about one hundred ccs/atm/min. to 3000 ccs/atm/min. (see curves IV, V, VI). The desorption of this pump presents no difficulty if both the aspiration and the reject sides are pumped together. A hole of 2 mm diameter drilled in the piston makes it possible to desorb the space between the two segments. The price of this pump is not high: 1300 F, with the electrical cabinet. (authors) [fr

  18. The Effect of Minimum Wage Rates on High School Completion

    Warren, John Robert; Hamrock, Caitlin

    2010-01-01

    Does increasing the minimum wage reduce the high school completion rate? Previous research has suffered from (1. narrow time horizons, (2. potentially inadequate measures of states' high school completion rates, and (3. potentially inadequate measures of minimum wage rates. Overcoming each of these limitations, we analyze the impact of changes in…

  19. High regression rate, high density hybrid fuels, Phase I

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  20. Heat pumps

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  1. The american high school graduation rate : trends and levels

    Heckman, James J.; LaFontaine, Paul A.

    2008-01-01

    This paper uses multiple data sources and a unified methodology to estimate the trends and levels of the U.S. high school graduation rate. Correcting for important biases that plague previous calculations, we establish that (a) the true high school graduation rate is substantially lower than the official rate issued by the National Center for Educational Statistics; (b) it has been declining over the past 40 years; (c) majority/minority graduation rate differentials are substantial and have n...

  2. High Temperature Heat Pump Integration using Zeotropic Working Fluids for Spray Drying Facilities

    Zühlsdorf, Benjamin; Bühler, Fabian; Mancini, Roberta

    2017-01-01

    source and sink best possibly. Therefore, a set of six common working fluids is defined and the possible binary mixtures of these fluids are analyzed. The performance of the fluids is evaluated based on the energetic performance (COP) and the economic potential (NPV). The results show...... and show a large potential to reuse the excess heat from exhaust gases. This study analyses a heat pump application with an improved integration by choosing the working fluid as a mixture in such a way, that the temperature glide during evaporation and condensation matches the temperature glide of the heat...

  3. Quantum data locking for high-rate private communication

    Lupo, Cosmo; Lloyd, Seth

    2015-01-01

    We show that, if the accessible information is used as a security quantifier, quantum channels with a certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit below the rate of non-private classical communication. This result is obtained by exploiting the quantum data locking effect. The price to pay to achieve such a high private communication rate is that accessible information security is in general not composable. However, composable security ...

  4. High-Rate Strong-Signal Quantum Cryptography

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  5. Deuterium pumping and erosion behavior of selected graphite materials under high flux plasma bombardment in PISCES

    Hirooka, Y.; Conn, R.W.; Goebel, D.M.; LaBombard, B.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.

    1988-06-01

    Deuterium plasma recycling and chemical erosion behavior of selected graphite materials have been investigated using the PISCES-A facility. These materials include: Pyro-graphite; 2D-graphite weave; 4D-graphite weave; and POCO-graphite. Deuterium plasma bombardment conditions are: fluxes around 7 /times/ 10 17 ions s/sup /minus/1/cm/sup /minus/2/; exposure time in the range from 10 to 100 s; bombarding energy of 300 eV; and graphite temperatures between 20 and 120/degree/C. To reduce deuterium plasma recycling, several approaches have been investigated. Erosion due to high-fluence helium plasma conditioning significantly increases the surface porosity of POCO-graphite and 4D-graphite weave whereas little change for 2D-graphite weave and Pyro-graphite. The increased pore openings and refreshed in-pore surface sites are found to reduce the deuterium plasma recycling and chemical erosion rates at transient stages. The steady state recycling rates for these graphite materials can be also correlated to the surface porosity. Surface topographical modification by machined-grooves noticeably reduces the steady state deuterium recycling rate and the impurity emission from the surface. These surface topography effects are attributed to co-deposition of remitted deuterium, chemically sputtered hydrocarbon and physically sputtered carbon under deuterium plasma bombardment. The co-deposited film is found to have a characteristic surface morphology with dendritic microstructures. 18 ref., 4 figs., 1 tab

  6. An improved resonantly driven piezoelectric gas pump

    Wu, Yue; Liu, Yong; Liu, Jianfang; Jiao, Xiaoyang; Yang, Zhigang; Wang, Long

    2013-01-01

    Piezoelectric pumps have the potential to be used in a variety of applications, such as in air circulation and compression. However, piezoelectric membrane pumps do not have enough driving capacity, and the heat induced during the direct contact between the driving part and the gas medium cannot be dissipated smoothly. When the gas is blocked, the piezoelectric vibrator generates heat quickly, which may eventually lead to damage. Resonantly driven piezoelectric stack pumps have high performance but no price advantage. In this situation, a novel, resonantly driven piezoelectric gas pump with annular bimorph as the driver is presented. In the study, the working principle of the novel pump was analyzed, the vibration mechanics model was determined, and the displacement amplified theory was studied. The outcome indicates that the displacement amplification factor is related with the original displacement provided by the piezoelectric bimorph. In addition, the displacement amplification effect is related to the stiffness of the spring lamination, adjustment spring, and piezoelectric vibrator, as well as to the systematic damping factor and the driving frequency. The experimental prototypes of the proposed pump were designed, and the displacement amplification effect and gas output performance were measured. At 70 V of sinusoidal AC driving voltage, the improved pump amplified the piezoelectric vibrator displacement by 4.2 times, the maximum gas output flow rate reached 1685 ml/min, and the temperature of the bimorph remained normal after 2000 hours of operation when the gas medium was blocked.

  7. Investigation into the Effects of the Variable Displacement Mechanism on Swash Plate Oscillation in High-Speed Piston Pumps

    Xu Fang

    2018-04-01

    Full Text Available High-speed, pressure-compensated variable displacement piston pumps are widely used in aircraft hydraulic systems for their high power density. The swash plate is controlled by the pressure-compensated valve, which uses pressure feedback so that the instantaneous output flow of the pump is exactly enough to maintain a presetting pressure. The oscillation of the swash plate is one of the major excitation sources in the high-speed piston pump, which may cause lower efficiency, shorter service life, and even serious damage. This paper presents an improved model to investigate the influence of the variable displacement mechanism on the swash plate oscillation and introduces some feasible ways to reduce oscillation of the swash plate. Most of the variable structural parameters of the variable displacement mechanism are taken into consideration, and their influences on swash plate oscillation are discussed in detail. The influence of the load pipe on the oscillation of the swash plate is considered in the improved model. A test rig is built and similarities between the experiments and simulated results prove that the simulation model can effectively predict the variable displacement mechanism state. The simulation results show that increasing the volume of the outlet chamber, the spring stiffness of the control valve, the action area of the actuator piston, and offset distance of the actuator piston can significantly reduce the oscillation amplitude of the swash plate. Furthermore, reducing the diameter of the control valve spool and the dead volume of the actuator piston chamber can also have a positive effect on oscillation amplitude reduction.

  8. Piston-pump-type high frequency oscillatory ventilation for neonates with congenital diaphragmatic hernia: a new protocol.

    Tamura, M; Tsuchida, Y; Kawano, T; Honna, T; Ishibashi, R; Iwanaka, T; Morita, Y; Hashimoto, H; Tada, H; Miyasaka, K

    1988-05-01

    High frequency ventilation and extracorporeal membrane oxygenation (ECMO) are devices that are expected to save the lives of newborn infants whose pulmonary conditions have deteriorated. A piston-pump-type high-frequency oscillator (HFO), developed by Bryan and Miyasaka called "Hummingbird," is considered to be superior to high frequency "jet" ventilators or those of the flow-interrupter type, and was used successfully in two neonates with congenital diaphragmatic hernia (CDH) in a high-risk group. The first baby was on a conventional ventilator with pharmacologic support for the first 54 hours and then operated on. Postoperative deterioration necessitated the use of HFO for the next eight days. The infant then recovered uneventfully. For the second baby, HFO was necessary both preoperatively and postoperatively. This baby had a major diaphragmatic defect and her case was complicated with pneumothorax. There was a long stormy course on HFO (total, 70 days), but the patient was successfully extubated on the 75th day postoperatively and is now doing well. We believe active long preoperative stabilization with pharmacologic support and preoperative and postoperative hyperventilation with a piston-pump-type HFO may be a new innovative strategy for the management of severe CDH patients.

  9. High-power diode-side-pumped rod Tm:YAG laser at 2.07 μm.

    Wang, Caili; Niu, Yanxiong; Du, Shifeng; Zhang, Chao; Wang, Zhichao; Li, Fangqin; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Xu, Zuyan

    2013-11-01

    We report a high-power diode-laser (LD) side-pumped rod Tm:YAG laser of around 2 μm. The laser was water-cooled at 8°C and yielded a maximum output power of 267 W at 2.07 μm, which is the highest output power for an all solid-state cw 2.07 μm rod Tm:YAG laser reported as far as we know. The corresponding optical-optical conversion efficiency was 20.7%, and the slope efficiency was about 29.8%, respectively.

  10. Modelling the fluid structure interaction produced by a waterhammer during shutdown of high-pressure pumps

    Erath, W.; Nowotny, B.; Maetz, J.

    1999-01-01

    Measurements of an experiment in a pipe system with pump shutdown and valve closing have been performed in the nuclear power plant KRB II (Gundremmingen, Germany). Comparative calculations of fluid and structure including interaction show an excellent agreement with the measured results. Theory and implementation of the fluid structure interaction (FSI) and the results of the comparison are described. The following measurements have been compared with calculations: (1) experiments in Delft, Netherlands to analyse the FSI; and (2) experiment with pump shutdown and valve closing in the nuclear power plant KRB II has been performed. It turns out, that the consideration of the FSI is necessary for an exact calculation of 'soft' piping systems. It has significant application in current waterhammer problems. For example, water column closure, vapour collapse, check valve slamming continues to create waterhammers in the energy industry. An important consequence of the FSI is mostly a significant increase of the effective structural damping. This mitigates - so far in all KED's calculations the FSI has taken into account - an amplification of pipe movements due to pressure waves in resonance with structural eigenvalues. To investigate the integrity of pipe systems pipe stresses are calculated. Taking FSI into account they are reduced by 10-40% in the actual case. (orig.)

  11. Compact and high repetition rate Kerr-lens mode-locked 532 nm Nd:YVO4 laser

    Li, Zuohan; Peng, Jiying; Yuan, Ruixia; Yao, Jianquan; Zheng, Yi; Wang, Tongtong

    2015-01-01

    A compact and feasible CW Kerr-lens-induced mode-locked 532 nm Nd:YVO 4 laser system was experimentally demonstrated for the first time with theoretical analysis. Kerr-lens mode locking with intracavity second harmonic generation provides a promising method to generate a high-repetition-rate picosecond green laser. With an incident pump power of 6 W, the average output power of mode locking was 258 mW at a high repetition rate of 1.1 GHz. (paper)

  12. Pumping behavior of sputtering ion pump

    Chou, T.S.; Bittner, J.; Schuchman, J.

    1991-12-31

    To optimize the design of a distributed ion pump (DIP) for the Superconducting X-Ray Lithography Source (SXLS) the stability of the rotating electron cloud at very high magnetic field beyond transition, must be re-examined. In this work the pumping speed and frequency spectrum of a DIP at various voltages (1 to 10 KV) and various magnetic fields (0.1 to 4 Tesla) are measured. Three cell diameters 10 mm, 5 mm and 2.5 mm, each 8 mm long, and with 3 or 4 mm gaps between anode and cathode are investigated. In this study both the titanium cathodes and the stainless steel anode plates are perforated with holes comparable in size to the anode cell diameters. Only the partially saturated pumping behavior is under investigation. The ultimate pressure and conditioning of the pump will be investigated at a later date when the stability criterion for the electron cloud is better understood.

  13. Pumping behavior of sputtering ion pump

    Chou, T.S.; Bittner, J.; Schuchman, J.

    1991-01-01

    To optimize the design of a distributed ion pump (DIP) for the Superconducting X-Ray Lithography Source (SXLS) the stability of the rotating electron cloud at very high magnetic field beyond transition, must be re-examined. In this work the pumping speed and frequency spectrum of a DIP at various voltages (1 to 10 KV) and various magnetic fields (0.1 to 4 Tesla) are measured. Three cell diameters 10 mm, 5 mm and 2.5 mm, each 8 mm long, and with 3 or 4 mm gaps between anode and cathode are investigated. In this study both the titanium cathodes and the stainless steel anode plates are perforated with holes comparable in size to the anode cell diameters. Only the partially saturated pumping behavior is under investigation. The ultimate pressure and conditioning of the pump will be investigated at a later date when the stability criterion for the electron cloud is better understood.

  14. High rate flame synthesis of highly crystalline iron oxide nanorods

    Merchan-Merchan, W; Taylor, A M; Saveliev, A V

    2008-01-01

    Single-step flame synthesis of iron oxide nanorods is performed using iron probes inserted into an opposed-flow methane oxy-flame. The high temperature reacting environment of the flame tends to convert elemental iron into a high density layer of iron oxide nanorods. The diameters of the iron oxide nanorods vary from 10 to 100 nm with a typical length of a few microns. The structural characterization performed shows that nanorods possess a highly ordered crystalline structure with parameters corresponding to cubic magnetite (Fe 3 O 4 ) with the [100] direction oriented along the nanorod axis. Structural variations of straight nanorods such as bends, and T-branched and Y-branched shapes are frequently observed within the nanomaterials formed, opening pathways for synthesis of multidimensional, interconnected networks

  15. Pumping life

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    The name PUMPKIN may suggest a research centre focused on American Halloween traditions or the investigation of the growth of vegetables – however this would be misleading. Researchers at PUMPKIN, short for Centre for Membrane Pumps in Cells and Disease, are in fact interested in a large family o......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  16. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  17. High Graduate Unemployment Rate and Taiwanese Undergraduate Education

    Wu, Chih-Chun

    2011-01-01

    An expansion in higher education in combination with the recent global economic recession has resulted in a high college graduate unemployment rate in Taiwan. This study investigates how the high unemployment rate and financial constraints caused by economic cutbacks have shaped undergraduates' class choices, job needs, and future income…

  18. Circuit and interconnect design for high bit-rate applications

    Veenstra, H.

    2006-01-01

    This thesis presents circuit and interconnect design techniques and design flows that address the most difficult and ill-defined aspects of the design of ICs for high bit-rate applications. Bottlenecks in interconnect design, circuit design and on-chip signal distribution for high bit-rate

  19. Characterization of high power flashlamps and application to Nd:glass laser pumping

    Powell, H.T.; Erlandson, A.C.; Jancaitis, K.S.

    1986-01-01

    Detailed spectral and temporal measurements of the output radiation from Xe flashlamps are reported together with their use in predicting the pumping efficiency of Nd-doped laser glass. We have made absolute spectral-intensity measurements for 0.5, 1.5, and 4.2-cm-bore flashlamps for input powers ranging from 5 to 90 kW/cm 2 and pulselengths of 600 μs. Under quasi-stationary conditions these flashlamps emit essentially identical spectra when excited at equal input power per unit-area of the bore. This behavior is characteristic of an optically-thick radiator although it is not completely clear why flashlamps should behave this way. A simple model is also described which accounts for the transient response of flashlamps by characterizing the output spectra and radiation efficiencies in terms of the radiant output power rather than the electrical input power. 23 refs., 16 figs

  20. High-power, cladding-pumped all-fiber laser with selective transverse mode generation property.

    Li, Lei; Wang, Meng; Liu, Tong; Leng, Jinyong; Zhou, Pu; Chen, Jinbao

    2017-06-10

    We demonstrate, to the best of our knowledge, the first cladding-pumped all-fiber oscillator configuration with selective transverse mode generation based on a mode-selective fiber Bragg grating pair. Operating in the second-order (LP 11 ) mode, maximum output power of 4.2 W is obtained with slope efficiency of about 38%. This is the highest reported output power of single higher-order transverse mode generation in an all-fiber configuration. The intensity distribution profile and spectral evolution have also been investigated in this paper. Our work suggests the potential of realizing higher power with selective transverse mode operation based on a mode-selective fiber Bragg grating pair.

  1. Cost-Effectiveness of Intravenous Proton Pump Inhibitors in High-Risk Bleeders

    Sander Veldhuyzen van Zanten

    2004-01-01

    Full Text Available There is unequivocal evidence that proton pump inhibitors (PPIs are currently the most effective acid suppressive agents available. Intravenous (IV formulations have been developed, although only IV pantoprazole is available in Canada. In patients presenting with serious upper gastrointestinal (GI bleeding due to duodenal or gastric ulcers, it has always been believed that IV administration of acid-lowering agents would improve clinical outcomes. The reason behind this thinking is twofold. First, there is in vitro evidence that formed clots are more stable at or near neutral pH (1. Second, by administering the agent intravenously, suppression of acid production is achieved much more quickly, thereby promoting more rapid healing of the ulcer and reducing the risk of persistent or recurrent bleeding. Interestingly and surprisingly, however, the data for intravenous H2-blockers have been disappointing (2. This failure to demonstrate clinical benefit has never been fully explained.

  2. High power uv metal vapor ion lasers pumped by thermal energy charge exchange

    Kan, T.

    1975-01-01

    The requirement for efficient and scalable laser sources for laser isotope separation (LIS) has recently been brought into sharp focus. The lack of suitable coherent sources is particularly severe in the uv, a spectral region of interest for more efficient and advanced isotope separation schemes. This report explores the general class of metal vapor ion lasers pumped by thermal energy charge exchange (TECX) as possible scalable coherent sources for LIS with the following potential characteristics: (1) availability of discrete wavelengths spanning the wavelength region between 2000 A less than lambda less than 8000 A, (2) pulsed or cw operation in the multi-kilowatt average power levels, (3) overall device efficiencies approaching one percent, and (4) the engineering of practical laser devices using relatively benign electron beam technology. (U.S.)

  3. Introduction to State Estimation of High-Rate System Dynamics.

    Hong, Jonathan; Laflamme, Simon; Dodson, Jacob; Joyce, Bryan

    2018-01-13

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model.

  4. Honda WT20K1C 2 inch electric driven trash pump and Honda ES6500c generator

    1992-01-01

    Recovery of highly volatile hydrocarbon spills has always presented safety problems due to the explosive, flammable nature of the product being recovered. In an effort to increase safety, decrease spill response time, and improve recovery and/or pumping of hydrocarbons, an electric driven trash pump has been designed, developed, and tested. This pump has the capacity to recover and/or pump volatile and flammable substances such as condensate, gasoline, diesel fuel, and light gravity crude oil products in a safe manner. The pumping unit consists of an electric motor rated for use in hazardous locations, a trash pump with a Duraprene impeller and pump body, a motor/pump frame, and a Honda ES6500c generator that powers the pump motor through up to 100 feet of cable. A remote control switch is used to operate the unit so that workers can stay at least 30 m away while it is running. 5 figs

  5. Processing of high-temperature superconductors at high strain rates

    Mamalis, A.G.; Pantazsopoulos, G.; Manolakos, D.E.; Szalay, A.

    2000-01-01

    This new book provides, for the first time, a systematic, unified presentation of all steps in the processing of high-temperature superconductor materials, ranging from synthesis of various systems to fabrication and industrial applications. Also covered are characterization techniques and current directions in research and development. The authors are leading specialists who bring to this new book their many years of experience in research, education and industrial engineering work in superconductor materials. This book is primarily focused on the bulk-fabrication techniques of high-temperature ceramic superconducting components, especially on the combination of dynamic powder-consolidation and subsequent deformation processing. The properties of these ceramics, which are difficult-to-form materials by applying conventional techniques, are combined for the net-shape manufacturing of such components for the construction of HTS deviceshor e llipsis. However, very important topics such as superconducting structures, chemical synthesis, film fabrication and characterization techniques are also reviewedhor e llipsis to provide a complete, comprehensive view of superconductors engineering

  6. High dose rate brachytherapy in treatment of high grade astrocytomas

    Garcia-Alejo, R.; Delgado, J.M.; Cerro, E. del; Torres, J.J.; Martinez, R.

    1996-01-01

    From May 1994 to June 1995, 18 patients with high grade astrocytomas were entered prospectively on a selective protocol combining surgery, external beam radiotherapy, stereotactic interstitial implantation with HDR Iridium 192 and chemotherapy. Only those patients with tumor size 100cc or less average dimension, high grade astrocytoma, Karnofsky 70 or greater, unilateral, circumscribed, unifocal, tumor stable or responding to external radiation and supratentorial were included in the study. Ages ranged from 16 to 69 years. There were 13 males and 5 females. Surgery consisted of biopsy only in 3 patients, subtotal resection in 11, and gross total resection in 4 patients. Focal external beam radiation portals included the contrast enhancing mass on CT scan plus a 3 cm margin. The protocol called for minimum tumor dose of 60 Gy to be given in 2 Gy daily fractions. An interstitial brachytherapy boost was to be performed two weeks after the conclusion of external beam radiation. The dose was 30 Gy in 4 fractions. The authors analyze on basis on their personal experience, the possibilities and the limits offered by this therapeutic procedure in neuro-oncology. Using stereotactic techniques, interstitial brachytherapy of brain tumors was technically possible with negligible acute morbidity and mortality, and appeared to be effective and may provide for an increase in tumor control in selected cases

  7. Impact of high-frequency pumping on anomalous finite-size effects in three-dimensional topological insulators

    Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.

    2018-02-01

    Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.

  8. Electroosmotic pumps for microflow analysis

    Wang, Xiayan; Wang, Shili; Gendhar, Brina; Cheng, Chang; Byun, Chang Kyu; Li, Guanbin; Zhao, Meiping; Liu, Shaorong

    2009-01-01

    With rapid development in microflow analysis, electroosmotic pumps are receiving increasing attention. Compared to other micropumps, electroosmotic pumps have several unique features. For example, they are bi-directional, can generate constant and pulse-free flows with flow rates well suited to microanalytical systems, and can be readily integrated with lab-on-chip devices. The magnitude and the direction of flow of an electroosmotic pump can be changed instantly. In addition, electroosmotic pumps have no moving parts. In this article, we discuss common features, introduce fabrication technologies and highlight applications of electroosmotic pumps. PMID:20047021

  9. End-pumped Nd:YAG Q-switched laser with high energy and narrow pulse for glass carving

    Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu

    2009-05-01

    In order to raise the accuracy of glass carving and improve deep cutting, a novel diode end-pumed solid-state laser is researched. Selecting proper volume of laser crytal, one continue wave laser diode which longitudinally pumped Nd:YAG crystal is performed and an applied optics coupling system is designed with self focusing.Computing with ray trace software and MATLAB software, the best parameter is obtained, so pumping beam is coupled efficiently to Nd:YAG.Used a Cr4+:YAG crystal with the singnal transmission of 82% and a line plane-concave cavity, nanosecond narrow pulse is gotten. After two thermal-electrical coolers kept the laser to work at constant temperature instead of water cooling, the volume of laser is markedly reduced. The method of thermal-electrical cooling could increase the system efficiency,achieve the effect of low mode output.Experimental results indicate that the maximum laser output energy in 1064 nm is 118mJ,pulse width is 5 ns, conversion efficiency from light to light is 15.7% under the condition of the incident power of 5 W and the diameter of the output laser spot is less than 1 mm. This end-pumped Nd:YAG Q-switched laser with the light output of high quality and long life, which has 0.01 mm accuracy after lens focusing can satisfy the glass carving with higher precision, rapid speed as well as easy control. It can be used in carving all kinds of glass and replace current CO2 laser.

  10. Thermal fracture and pump limit of Nd: glass

    Wang Mingzhe; Ma Wen; Tan Jichun; Zhang Yongliang; Li Mingzhong; Jing Feng

    2011-01-01

    Based on published fracture experiments and 3D transient finite-element analyses, and taking the first principal stress as the criterion and the Griffith crack theory to determine the critical fracture stress, a Weibull statistical model is established to predict the fracture possibility of Nd: glass with certain pump parameters. Other issues which limit the pump power are also presented. The results show that the fracture limit of laser medium depends on the optical polishing technology. For a short pulse and high energy Nd: glass laser, taking America's polishing technology in the 1990s as reference,the pump saturation limits the pump power to 18 kW/cm 2 when the repetition rate is lower than 1 Hz, while the thermal fracture limits the pump power when the repetition rate is higher than 10 Hz. (authors)

  11. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.

  12. An acoustic method for characterizing the onset of cavitation in nozzles and pumps

    Courbiere, P.

    1984-12-01

    The high sodium flow rates required by the reactor power rating have led to the use of sodium loop and pump designs in which a cavitation hazard exists. This paper discusses CEA test results on incipient cavitation, and examines pump impeller scale effects, sodium-water similitude criteria and the influence of the entrained gas content in the sodium flow

  13. Diode-laser-pumped high efficiency continuous-wave operation at 912 nm laser in Nd:GdVO4 crystal

    Yu, X; Chen, F; Gao, J; Li, X D; Yan, R P; Zhang, K; Yu, J H; Zhang, Z H

    2009-01-01

    High efficiency operation on continuous-wave (cw) 912 nm laser at room temperature in Nd:GdVO 4 crystal pumped by 808 nm diode-laser is reported in this letter. The maximum output power of 8.0 W was obtained at the incident un-polarized pump power of 47.0 W, giving the corresponding optical-to-optical conversion efficiency of 17.0% and the average slope efficiency of 22.9%. Further tests show that the lasing threshold is reduced and the efficiency is increased evidently when using the π-polarized 808 nm pump source. 4.8 W 912 nm laser was achieved at the polarized pump power of 21.8 W, optical-to-optical conversion efficiency is increased to 22.0% and average slope efficiency is up to 33.6%

  14. Variability of Basal Rate Profiles in Insulin Pump Therapy and Association with Complications in Type 1 Diabetes Mellitus.

    Laimer, Markus; Melmer, Andreas; Mader, Julia K; Schütz-Fuhrmann, Ingrid; Engels, Heide-Rose; Götz, Gabriele; Pfeifer, Martin; Hermann, Julia M; Stettler, Christoph; Holl, Reinhard W

    2016-01-01

    Traditionally, basal rate profiles in continuous subcutaneous insulin infusion therapy are individually adapted to cover expected insulin requirements. However, whether this approach is indeed superior to a more constant BR profile has not been assessed so far. This study analysed the associations between variability of BR profiles and acute and chronic complications in adult type 1 diabetes mellitus. BR profiles of 3118 female and 2427 male patients from the "Diabetes-Patienten-Verlaufsdokumentation" registry from Germany and Austria were analysed. Acute and chronic complications were recorded 6 months prior and after the most recently documented basal rate. The "variability index" was calculated as variation of basal rate intervals in percent and describes the excursions of the basal rate intervals from the median basal rate. The variability Index correlated positively with severe hypoglycemia (r = .06; p1), hypoglycemic coma (r = .05; p = 0.002), and microalbuminuria (r = 0.05; p = 0.006). In addition, a higher variability index was associated with higher frequency of diabetic ketoacidosis (r = .04; p = 0.029) in male adult patients. Logistic regression analysis adjusted for age, gender, duration of disease and total basal insulin confirmed significant correlations of the variability index with severe hypoglycemia (β = 0.013; p1) and diabetic ketoacidosis (β = 0.012; p = 0.017). Basal rate profiles with higher variability are associated with an increased frequency of acute complications in adults with type 1 diabetes.

  15. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.

    Plocková, J; Chmelík, J

    2001-05-25

    Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.

  16. Design of liquid lithium pumps for FMIT

    Adkins, H.E.

    1983-01-01

    In the Fusion Materials Irradiation Test (FMIT) facility, a jet of liquid lithium is bombarded by accelerated deuterons to generate high energy neutrons for materials testing. The lithium system will include two electromagnetic pumps, a 750 gpm main pump and a 10 gpm auxiliary pump. The larger pump was designed and built in 1982, following extensive testing of a similar pump in the Experimental Lithium System. Design of the auxiliary pump has been completed, but fabrication has not started. This paper discusses the design considerations leading to selection of the Annular Linear Induction Pump (ALIP) concept for these applications. Design parameters, fabrication procedures, and results of pump testing are also reviewed

  17. Test of a cryogenic helium pump

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  18. Pivotal role of α2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease

    Chen, Ling; Hamlyn, John M.; Leenen, Frans H. H.; Lingrel, Jerry B.; Wier, W. Gil; Zhang, Jin

    2016-01-01

    Abstract Reduced smooth muscle (SM)‐specific α2 Na+ pump expression elevates basal blood pressure (BP) and increases BP sensitivity to angiotensin II (Ang II) and dietary NaCl, whilst SM‐α2 overexpression lowers basal BP and decreases Ang II/salt sensitivity. Prolonged ouabain infusion induces hypertension in rodents, and ouabain‐resistant mutation of the α2 ouabain binding site (α2R/R mice) confers resistance to several forms of hypertension. Pressure overload‐induced heart hypertrophy and failure are attenuated in cardio‐specific α2 knockout, cardio‐specific α2 overexpression and α2R/R mice. We propose a unifying hypothesis that reconciles these apparently disparate findings: brain mechanisms, activated by Ang II and high NaCl, regulate sympathetic drive and a novel neurohumoral pathway mediated by both brain and circulating endogenous ouabain (EO). Circulating EO modulates ouabain‐sensitive α2 Na+ pump activity and Ca2+ transporter expression and, via Na+/Ca2+ exchange, Ca2+ homeostasis. This regulates sensitivity to sympathetic activity, Ca2+ signalling and arterial and cardiac contraction. PMID:27350568

  19. Studies of high-δ (baffled) and low-δ (open) pumped divertor operation on DIII-D

    Allen, S.L.; Fenstermacher, M.E.; Greenfield, C.M.

    1998-08-01

    The authors report new experimental results with the RDP-OB (Radiative Divertor Project-outer baffle) and cryopump in both upper single-null (USN) and double-null (DN) ELMing H-mode discharges. The baffled divertor reduced the core ionization (∼2--2.5x), in reasonable agreement with predictions from UEDGE/DEGAS modeling (∼3.75x). The upper cryopump achieved density control of n e /n gw ∼ 0.22 (line density/Greenwald density) with Z eff ∼ 2 in high-δ plasmas. The measured exhaust is comparable to the lower pump, except at lower core electron densities (n e 19 m -3 ). Efficient impurity exhaust was obtained with deuterium SOL flow. Preliminary experiments with DN operation has shown that the particle exhaust to the upper pump depends on the up/down magnetic balance. Preliminary experiments indicate that the DN exhaust is roughly 40--50% of the USN exhaust at n e ∼ 4 x 10 19 m -3

  20. Quantum data locking for high-rate private communication

    Lupo, Cosmo; Lloyd, Seth

    2015-01-01

    We show that, if the accessible information is used as a security quantifier, quantum channels with a certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit below the rate of non-private classical communication. This result is obtained by exploiting the quantum data locking effect. The price to pay to achieve such a high private communication rate is that accessible information security is in general not composable. However, composable security holds against an eavesdropper who is forced to measure her share of the quantum system within a finite time after she gets it. (paper)

  1. Reliability of reactor plant water cleanup pumps

    Pearson, J.L.

    1979-01-01

    Carolina Power and Light Company's Brunswick 2 nuclear plant experienced a high reactor water cleanup pump-failure rate until inlet temperature and flow were reduced and mechanical modifications were implemented. Failures have been zero for about one year, and water cleanup efficiency has increased

  2. Effectiveness of high interest rate policy on exchange rates: A reexamination of the Asian financial crisis

    Chin Diew Lai

    2006-09-01

    Full Text Available One of the most controversial issues in the aftermath of the Asian financial crisis has been the appropriate response of monetary policy to a sharp decline in the value of some currencies. In this paper, we empirically examine the effects on Asian exchange rates of sharply higher interest rates during the Asian financial crisis. Taking account of the currency contagion effect, our results indicate that sharply higher interest rates helped to support the exchange rates of South Korea, the Philippines, and Thailand. For Malaysia, no significant causal relation is found from the rate of interest to exchange rates, as the authorities in Malaysia did not actively adopt a high interest rate policy to defend the currency.

  3. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  4. Frequency and magnetic field mapping of magnetoelastic spin pumping in high overtone bulk acoustic wave resonator

    N. I. Polzikova

    2018-05-01

    Full Text Available We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE dc voltage driven by an acoustic spin pumping (ASP in a bulk acoustic wave (BAW resonator formed by a Al-ZnO-Al-YIG(1-GGG-YIG(2-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ∼ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2 to Pt in the area ∼ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H on the (f, H plane. At the same time a significant asymmetry of the VISHE(fn(H value in reference to the magnetoelastic resonance (MER line fMER(H position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.

  5. Frequency and magnetic field mapping of magnetoelastic spin pumping in high overtone bulk acoustic wave resonator

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Luzanov, V. A.; Raevskiy, A. O.; Kotov, V. A.

    2018-05-01

    We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE) dc voltage driven by an acoustic spin pumping (ASP) in a bulk acoustic wave (BAW) resonator formed by a Al-ZnO-Al-YIG(1)-GGG-YIG(2)-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ˜ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2) to Pt in the area ˜ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H) together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H) on the (f, H) plane. At the same time a significant asymmetry of the VISHE(fn(H)) value in reference to the magnetoelastic resonance (MER) line fMER(H) position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.

  6. How Did Successful High Schools Improve Their Graduation Rates?

    Robertson, Janna Siegel; Smith, Robert W.; Rinka, Jason

    2016-01-01

    The researchers surveyed 23 North Carolina high schools that had markedly improved their graduation rates over the past five years. The administrators reported on the dropout prevention practices and programs to which they attributed their improved graduation rates. The majority of schools reported policy changes, especially with suspension. The…

  7. Research of narrow pulse width, high repetition rate, high output power fiber lasers for deep space exploration

    Tang, Yan-feng; Li, Hong-zuo; Wang, Yan; Hao, Zi-qiang; Xiao, Dong-Ya

    2013-08-01

    As human beings expand the research in unknown areas constantly, the deep space exploration has become a hot research topic all over the world. According to the long distance and large amount of information transmission characteristics of deep space exploration, the space laser communication is the preferred mode because it has the advantages of concentrated energy, good security, and large information capacity and interference immunity. In a variety of laser source, fibre-optical pulse laser has become an important communication source in deep space laser communication system because of its small size, light weight and large power. For fiber lasers, to solve the contradiction between the high repetition rate and the peak value power is an important scientific problem. General Q technology is difficult to obtain a shorter pulse widths, This paper presents a DFB semiconductor laser integrated with Electro-absorption modulator to realize the narrow pulse width, high repetition rate of the seed source, and then using a two-cascaded high gain fiber amplifier as amplification mean, to realize the fibre-optical pulse laser with pulse width 3ns, pulse frequency 200kHz and peak power 1kW. According to the space laser atmospheric transmission window, the wavelength selects for 1.06um. It is adopted that full fibre technology to make seed source and amplification, pumping source and amplification of free-space coupled into fiber-coupled way. It can overcome that fibre lasers are vulnerable to changes in external conditions such as vibration, temperature drift and other factors affect, improving long-term stability. The fiber lasers can be modulated by PPM mode, to realize high rate modulation, because of its peak power, high transmission rate, narrow pulse width, high frequency stability, all technical indexes meet the requirements of the exploration of deep space communication technology.

  8. Effect of high heating rate on thermal decomposition behaviour of ...

    the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into considera- ... does not change the process of releasing hydrogen from titanium hydride ... from titanium hydride in a sequence of steps.

  9. Treatment of the prostate cancer with high dose rate brachytherapy

    Martinez, Alvaro; Torres Silva, Felipe

    2002-01-01

    The prostate cancer treatment in early stages is controversial. The high dose rate brachytherapy has been used like monotherapy or boost with external beam radiotherapy in advanced disease. This paper describes the technique and the advantages over other modalities

  10. Effect of high heating rate on thermal decomposition behaviour of ...

    Effect of high heating rate on thermal decomposition behaviour of titanium hydride ... hydride powder, while switching it from internal diffusion to chemical reaction. ... TiH phase and oxides form on the powder surface, controlling the process.

  11. The Contribution of Compressional Magnetic Pumping to the Energization of the Earth's Outer Electron Radiation Belt During High-Speed Stream-Driven Storms

    Borovsky, Joseph E.; Horne, Richard B.; Meredith, Nigel P.

    2017-12-01

    Compressional magnetic pumping is an interaction between cyclic magnetic compressions and pitch angle scattering with the scattering acting as a catalyst to allow the cyclic compressions to energize particles. Compressional magnetic pumping of the outer electron radiation belt at geosynchronous orbit in the dayside magnetosphere is analyzed by means of computer simulations, wherein solar wind compressions of the dayside magnetosphere energize electrons with electron pitch angle scattering by chorus waves and by electromagnetic ion cyclotron (EMIC) waves. The magnetic pumping is found to produce a weak bulk heating of the electron radiation belt, and it also produces an energetic tail on the electron energy distribution. The amount of energization depends on the robustness of the solar wind compressions and on the amplitude of the chorus and/or EMIC waves. Chorus-catalyzed pumping is better at energizing medium-energy (50-200 keV) electrons than it is at energizing higher-energy electrons; at high energies (500 keV-2 MeV) EMIC-catalyzed pumping is a stronger energizer. The magnetic pumping simulation results are compared with energy diffusion calculations for chorus waves in the dayside magnetosphere; in general, compressional magnetic pumping is found to be weaker at accelerating electrons than is chorus-driven energy diffusion. In circumstances when solar wind compressions are robust and when EMIC waves are present in the dayside magnetosphere without the presence of chorus, EMIC-catalyzed magnetic pumping could be the dominant energization mechanism in the dayside magnetosphere, but at such times loss cone losses will be strong.

  12. Increased strength of concrete subject to high loading rates

    Curbach, M.

    1987-01-01

    Within the scope of this work various problems are discussed which occur in connection with concrete under high tensile loading rates (e.g. when a plane crashes on a nuclear power plant very high loads occur which act only for a very short time). Particularly the causes for the already frequently noticed increases in strength with increasing loading rates are investigated and also the question whether this increased strength can be taken into account when dimensioning a construction. (MM) [de

  13. Quantum Communication with a High-Rate Entangled Photon Source

    Wilson, Nathaniel C.; Chaffee, Dalton W.; Lekki, John D.; Wilson, Jeffrey D.

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  14. Use of imitation mathematical model of phosphorus system for analysis of rates of production-destruction processes in reservoir of the Zagorsk pumped-storage plant

    Leonov, A.V.; Margolina, G.L.; Sokolov, A.G.

    1993-01-01

    The rates of production-destruction processes in water media are traditionally measured for investigation of the conditions of operation of water-ecology systems and to study the role of microorganisms in the transformation of substances of different origins. One possibility for investigation of the production-destruction process is the use of numerical analytic methods and, in particular, of imitation mathematical modeling. The task of this investigation consisted of evaluation, from observations carried out in 1989, of the rates of production-destruction processes in the water of the reservoir of the Zagorsk pumped-storage plant by means of an imitation mathematical model of a phosphorus system. The model was based on a study of the characteristics of transformation of phosphorus in the water media, as well as by comparison of evaluations of the rates of the above-mentioned processes by two methods -- an experimental one (a modification of the oxygen flask method) and an analytical one (an imitation model of a phosphorus system). 7 refs., 6 figs., 4 tabs

  15. Outcomes of peptic ulcer bleeding following treatment with proton pump inhibitors in routine clinical practice: 935 patients with high- or low-risk stigmata.

    Lanas, Angel; Carrera-Lasfuentes, Patricia; García-Rodríguez, Luis A; García, Santiago; Arroyo-Villarino, María Teresa; Ponce, Julio; Bujanda, Luis; Calleja, José L; Polo-Tomas, Mónica; Calvet, Xavier; Feu, Faust; Perez-Aisa, Angeles

    2014-10-01

    To assess rates of further bleeding, surgery and mortality in patients hospitalized owing to peptic ulcer bleeding. Consecutive patients hospitalized for peptic ulcer bleeding and treated with a proton pump inhibitor (PPI) (esomeprazole or pantoprazole) were identified retrospectively in 12 centers in Spain. Patients were included if they had high-risk stigmata (Forrest class Ia-IIb, underwent therapeutic endoscopy and received intravenous PPI ≥120 mg/day for ≥24 h) or low-risk stigmata (Forrest class IIc-III, underwent no therapeutic endoscopy and received intravenous or oral PPI [any dose]). Of 935 identified patients, 58.3% had high-risk stigmata and 41.7% had low-risk stigmata. After endoscopy, 88.3% of high-risk patients and 22.1% of low-risk patients received intravenous PPI therapy at doses of at least 160 mg/day. Further bleeding within 72 h occurred in 9.4% and 2.1% of high- and low-risk patients, respectively (p peptic ulcer bleeding and treated with PPIs, patients with high-risk stigmata have a higher risk of further bleeding and surgery, but not of death, than those with low-risk stigmata.

  16. Mechanical pumping at low temperature

    Perin, J.P.; Claudet, G.; Disdier, F.

    1995-01-01

    This novel concept consist of a mechanical pump able to run at low temperature (25K). Since gas density varies inversely with temperature, this pump would deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are order of magnitude reduction in size, weight, when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. This pump would be a solution to allow continuously tritium extraction and minimize the mass inventory. (orig.)

  17. Particle removal with pump limiters in ISX-B

    Mioduszewski, P.; Emerson, L.C.; Simpkins, J.E.

    1983-01-01

    First pump limiter experiments were performed on ISX-B. Two pump limiter modules were installed in the top and bottom of one toroidal sector of the tokamak. The modules consist of inertia cooled, TiC coated graphite heads and Zr-Al getter pumps each with a pumping speed of 1000 to 2000 l/s. The objective of the initial experiments was the demonstration of plasma particle control with pump limiters. The first set of experiments were performed in ohmic discharges (OH) in which the effect of the pump limiters on the plasma density was clearly demonstrated. In discharges characterized by: I/sub p/ = 110 kA, B/sub T/ = 15 kG, anti n/sub e/ = 1 - 5 x 10 13 cm -3 and t = 0.3 s the pressure rise in the pump limiters was typically 2 mTorr with the pumps off and 0.7 mTorr after activating the pumps. When the pumps were activated, the line-average plasma density decreased by up to a factor 2 at identical gas flow rates. The second set of measurements were performed in neutral beam heated discharges (NBI) with injected powers between 0.6 MW and 1.0 MW. Due to a cooling problem on one of the Zr-Al pumps the NBI experiments were carried out with one limiter only. The maximum pressure observed in NBI-discharges was 5 mTorr without activating the pumps, i.e., approximately twice as high as in OH-discharges. The exhaust efficiency, which is defined as the removed particle flux over the total particle flux in the scrape-off layer is estimated to be 5%

  18. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  19. Scavenged body heat powered infusion pump

    Bell, Alexander; Ehringer, William D; McNamara, Shamus

    2013-01-01

    An infusion pump powered by body heat is investigated in this paper, with the goal of addressing the needs of dermal wound healing. The infusion pump incorporates a Knudsen gas pump, a type of thermally driven pump, to pneumatic push the pharmaceutical agent from a reservoir. Two designs are considered: an integrated pump and reservoir, and a design with cascaded pump and reservoir. Thermal models are developed for both pumps, and the simulations agree well with the experimental results. The integrated pump and reservoir design uses hydrophobic materials to prevent a flow from occurring unless the infusion pump is placed on a human body. Flow rates in the µL min −1 range for the integrated pump and reservoir, and approximately 70 µL min −1 for the cascaded pump were obtained. The dynamic behavior of the cascaded pump is described based on the thermal models. Multiple copies of the cascaded pump are easily made in series or parallel, to increase either the pressure or the flow rate. The flow rate of multiple pumps in series does not change, and the pressure of multiple pumps in parallel does not change. (paper)

  20. Diaphragm Pump With Resonant Piezoelectric Drive

    Izenson, Michael G.; Kline-Schoder, Robert J.; Shimko, Martin A.

    2007-01-01

    A diaphragm pump driven by a piezoelectric actuator is undergoing development. This pump is intended to be a prototype of lightweight, highly reliable pumps for circulating cooling liquids in protective garments and high-power electronic circuits, and perhaps for some medical applications. The pump would be highly reliable because it would contain no sliding seals or bearings that could wear, the only parts subject to wear would be two check valves, and the diaphragm and other flexing parts could be designed, by use of proven methods, for extremely long life. Because the pump would be capable of a large volumetric flow rate and would have only a small dead volume, its operation would not be disrupted by ingestion of gas, and it could be started reliably under all conditions. The prior art includes a number piezoelectrically actuated diaphragm pumps. Because of the smallness of the motions of piezoelectric actuators (typical maximum strains only about 0.001), the volumetric flow rates of those pumps are much too small for typical cooling applications. In the pump now undergoing development, mechanical resonance would be utilized to amplify the motion generated by the piezoelectric actuator and thereby multiply the volumetric flow rate. The prime mover in this pump would be a stack of piezoelectric ceramic actuators, one end of which would be connected to a spring that would be part of a spring-and-mass resonator structure. The mass part of the resonator structure would include the pump diaphragm (see Figure 1). Contraction of the spring would draw the diaphragm to the left, causing the volume of the fluid chamber to increase and thereby causing fluid to flow into the chamber. Subsequent expansion of the spring would push the diaphragm to the right, causing the volume of the fluid chamber to decrease, and thereby expelling fluid from the chamber. The fluid would enter and leave the chamber through check valves. The piezoelectric stack would be driven electrically to

  1. Electromagnetic pump technology

    Prabhakar, R.

    1994-01-01

    Fast Breeder Reactors have an important role to play in our nuclear power programme. Liquid metal sodium is used as the coolant for removing fission heat generated in fast reactors and a distinctive physical property of sodium is its high electrical conductivity. This enables application of electromagnetic (EM) pumps, working on same principle as electric motors, for pumping liquid sodium. Due to its lower efficiency as compared to centrifugal pumps, use of EM pumps has been restricted to reactor auxiliary circuits and experimental facilities. As part of our efforts to manufacture fast reactor components indigenously, work on the development of two types of EM pumps namely flat linear induction pump (FLIP) and annular linear induction pump (ALIP) has been undertaken. Design procedures based on an equivalent circuit approach have been established and results from testing a 5.6 x 10E-3 Cum/s (20 Cum/h) FLIP in a sodium loop were used to validate the procedure. (author). 7 refs., 6 figs

  2. Numerical study of pressure fluctuations transfer law in different flow rate of turbine mode in a prototype pump turbine

    Sun, Y K; Zuo, Z G; Liu, S H; Wu, Y L; Liu, J T; Qin, D Q; Wei, X Z

    2013-01-01

    Numerical simulation using SST k-w turbulence model was carried out, to predict pressure fluctuation transfer law in turbine mode. Three operating points with different mass flow rates are simulated. The results of numerical simulation show that, the amplitude and frequency of pressure fluctuations in different positions are very different. The transfer law of amplitude and frequency of pressure fluctuations change with different position and different mass flow rate. Blade passing frequency (BPF) is the first dominant frequency in vaneless space, while component in this frequency got smaller in the upstream and downstream of vaneless space when the mass flow is set. Furthermore triple blade passing frequency (3BPF) component obtained a different transfer law through the whole flow passage. The amplitude and frequency of pressure fluctuations is also different in different circumference position of vaneless space. When the mass flow is different, the distribution of pressure fluctuations in circumference is different. The frequency component of pressure fluctuations in all the positions is different too

  3. High power diode-pumped continuous wave and Q-switch operation of Tm,Ho:YVO4 laser

    Yao, B Q; Li, G; Meng, P B; Zhu, G L; Ju, Y L; Wang, Y Z

    2010-01-01

    High power diode-pumped continuous wave (CW) and Q-switch operation of Tm,Ho:YVO 4 laser is reported. Using two Tm,Ho:YVO 4 rods in a single cavity, up to 20.2 W of CW output lasing at 2054.7 nm was obtained under cryogenic temperature of 77 K with an optical to optical conversion efficiency of 32.9%. For Q-switch operation, up to 19.4 W of output was obtained under 15 kHz pulse repetition frequency (PRF) with a minimum pulse width of 24.2 ns. In addition, different pulse repetition frequencies of Q-switch operation with 10.0 kHz, 12.5 kHz and 15.0 kHz were investigated comparatively

  4. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    Bibeault, Mark Leonide [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  5. Stretching of red blood cells at high strain rates

    Mancuso, J. E.; Ristenpart, W. D.

    2017-10-01

    Most work on the mechanical behavior of red blood cells (RBCs) in flow has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this Rapid Communication, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that both the Kelvin-Voigt and Skalak viscoelastic models capture the observed stretching dynamics, up to strain rates as high as 2000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  6. Measurement and control of the frequency chirp rate of high-order harmonic pulses

    Mauritsson, J.; Johnsson, P.; Lopez-Martens, R.; Varju, K.; L'Huillier, A.; Kornelis, W.; Biegert, J.; Keller, U.; Gaarde, M.B.; Schafer, K.J.

    2004-01-01

    We measure the chirp rate of harmonics 13 to 23 in argon by cross correlation with a 12 femtosecond probe pulse. Under low ionization conditions, we directly measure the negative chirp due to the atomic dipole phase, and show that an additional chirp on the pump pulse is transferred to the qth harmonic as q times the fundamental chirp. Our results are in accord with simulations using the experimentally measured 815 nm pump and probe pulses. The ability to measure and manipulate the harmonic chirp rate is essential for the characterization and optimization of attosecond pulse trains

  7. Solidification at the High and Low Rate Extreme

    Meco, Halim [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  8. Pedalling rate affects endurance performance during high-intensity cycling

    Nielsen, Jens Steen; Hansen, Ernst Albin; Sjøgaard, Gisela

    2004-01-01

    The purpose of this study into high-intensity cycling was to: (1) test the hypothesis that endurance time is longest at a freely chosen pedalling rate (FCPR), compared to pedalling rates 25% lower (FCPR-25) and higher (FCPR+25) than FCPR, and (2) investigate how physiological variables......, and endurance time at W90 with FCPR-25, FCPR, and FCPR+25. Power reserve was calculated as the difference between applied power output at a given pedalling rate and peak crank power at this same pedalling rate. W90 was 325 (47) W. FCPR at W90 was 78 (11) rpm, resulting in FCPR-25 being 59 (8) rpm and FCPR+25...... time was negatively related to VO(2max), W90 and % MHC I, while positively related to power reserve. In conclusion, at group level, endurance time was longer at FCPR and at a pedalling rate 25% lower compared to a pedalling rate 25% higher than FCPR. Further, inter-individual physiological variables...

  9. Liquid metals pumping

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  10. 46 CFR 182.520 - Bilge pumps.

    2010-10-01

    ...) Highly resistant to salt water, petroleum oil, heat, and vibration. (g) If a fixed hand pump is used to... GPM). (b) A portable hand bilge pump must be: (1) Capable of pumping water, but not necessarily..., including wiring, and size and number of batteries, is designed to allow all bilge pumps to be operated...

  11. Mechanical pumping at low temperature

    Perin, J.P.; Claudet, G.; Disdier, F.

    1994-12-31

    This new concept consists of a mechanical pump able to run at low temperature (25 K). Since gas density varies inversely with temperature, the pump could deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are reduction of an order of magnitude in size and weight when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. Results obtained at 80 K and 25 K with a Holweck type molecular drag pump of 100 mm diameter and with few stages of a turbomolecular pump running at the same temperatures, are given. This pump would be a solution to allow continuous tritium extraction and minimize the mass inventory for the ITER (International Tokamak Experiment Reactor). 5 figs., 2 tabs., 4 refs.

  12. Pump testing in the nuclear industry: The comprehensive test and other considerations

    Hoyle, T.F.

    1992-01-01

    The American Society of Mechanical Engineers Operations and Maintenance Working Group on Pumps and Valves is working on a revision to their pump testing Code, ISTB-1990. This revision will change the basic philosophy of pump testing in the nuclear industry. Currently, all pumps are required to be tested quarterly, except those installed in dry sumps. In the future standby pumps will receive only a start test quarterly to ensure the pump comes up to speed and pressure or flow. Then, on a biennial basis all pumps would receive a more extensive test. This comprehensive test would require high accuracy test gauges to be used, and the pumps would be required to be tested near pump design flow. Testing on minimum flow loops would not be permitted except in rare cases. Additionally. during the comprehensive test, measurements of vibration, flow, and pressure would all be taken. The OM-6 standard (ISTB Code) will also require that reference values of flow rate and differential pressure be taken at several points instead of just one point, which is current practice. The comprehensive test is just one step in ensuring the adequacy of pump testing in the nuclear industry. This paper also addresses other concerns and makes recommendations for increased quality of testing of certain critical pumps and recommendations for less stringent or no tests on less critical pumps

  13. Portable photovoltaic irrigation pumps

    Furber, J. D.

    1980-07-01

    Experiences in developing a solar-powered irrigation pump to meet the needs of poor farmers in developing nations are summarized. The design which evolved is small and portable, employing a high-efficiency electric pump, powered by photovoltaic panels. Particular emphasis is placed on how the system works, and on early field problems experienced with the first prototypes. The resolution of these problems and the performance of actual systems in various countries is presented and user responses are noted.

  14. Electromagnetic pump

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  15. Decay rate of the false vacuum at high temperatures

    Eboli, O.J.P.; Marques, G.C.

    1986-01-01

    We investigate, within the semiclassical approach, the high temperature behaviour of the decay rate (Γ) of the metastable vacuum in Field Theory. We exhibit some exactly soluble (1+1) and (3+1) dimensional examples and develop a formal expression for γ in the high temperature limit. (Author) [pt

  16. Authoritative School Climate and High School Dropout Rates

    Jia, Yuane; Konold, Timothy R.; Cornell, Dewey

    2016-01-01

    This study tested the association between school-wide measures of an authoritative school climate and high school dropout rates in a statewide sample of 315 high schools. Regression models at the school level of analysis used teacher and student measures of disciplinary structure, student support, and academic expectations to predict overall high…

  17. High-repetition-rate short-pulse gas discharge.

    Tulip, J; Seguin, H; Mace, P N

    1979-09-01

    A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.

  18. On-Line High Dose-rate Gamma Irradiation Test of the Profibus/DP module

    Cho, Jai Wan; Choi, Young Soo; Kim, Chang Hoi; Koo, In Soo; Hong, Seok Boong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The field bus data communication is considered for application in nuclear environments. The nuclear facilities, including nuclear power plants, high radioactivity waste disposals, reprocessing plants and thermonuclear fusion installations can benefit from the unique advantages of the field bus communication network for the smart field instruments and controls. A major problem which arises when dealing with one in these nuclear environments, in special circumstances such as the RCS (reactor coolant system) area, is the presence of high gamma-ray irradiation fields. Radioactive constraints for the DBA(design basis accident) qualification of the RTD transmitter installed in the inside of the RCS pump are typically on the order of 4kGy/h with total doses up to 10kGy. In order to use an industrial field bus communication network as an ad-hoc sensor data link in the vicinity of the RCS area of the nuclear power plant, the robust survivability of these system in such intense gamma-radiation fields therefore needs to be verified. We have conducted high dose-rate (up to 4kGy) gamma irradiation experiments on a profibus/DP communication module. In this paper we describe the evolution of its basic characteristics with high dose-rate gamma irradiation and shortly explain the observed phenomena.

  19. Authoritative school climate and high school dropout rates.

    Jia, Yuane; Konold, Timothy R; Cornell, Dewey

    2016-06-01

    This study tested the association between school-wide measures of an authoritative school climate and high school dropout rates in a statewide sample of 315 high schools. Regression models at the school level of analysis used teacher and student measures of disciplinary structure, student support, and academic expectations to predict overall high school dropout rates. Analyses controlled for school demographics of school enrollment size, percentage of low-income students, percentage of minority students, and urbanicity. Consistent with authoritative school climate theory, moderation analyses found that when students perceive their teachers as supportive, high academic expectations are associated with lower dropout rates. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Evolution of high tooth replacement rates in sauropod dinosaurs.

    D'Emic, Michael D; Whitlock, John A; Smith, Kathlyn M; Fisher, Daniel C; Wilson, Jeffrey A

    2013-01-01

    Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days). Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size), and derived titanosaurs and diplodocoids independently evolved the highest known tooth replacement rates among archosaurs.

  1. Evolution of high tooth replacement rates in sauropod dinosaurs.

    Michael D D'Emic

    Full Text Available BACKGROUND: Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. METHODOLOGY/PRINCIPAL FINDINGS: We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days. Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. CONCLUSIONS/SIGNIFICANCE: Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size, and derived titanosaurs and

  2. Low dose rate and high dose rate intracavitary treatment for cervical cancer

    Hareyama, Masato; Oouchi, Atsushi; Shidou, Mitsuo

    1997-01-01

    From 1984 through 1993, 144 previous untreated patients with carcinoma of uterine cervix were treated with either low dose rate 137 Cs therapy (LDR) or high dose rate 60 Co therapy (HDR). The local failure rates for more than 2-years for the primary lesions were 11.8% (8 of 63 patients) for LDR and 18.0% (11 of 61 patients). Rectal complication rates were significantly lower for HDR versus LDR (14.3% VS. 32.8%. p<0.01). Also, bladder complication rates were significantly lower for HDR versus LDR (0% VS. 10.4%, p<0.005). Treatment results in term of local control were equivalent for HDR and LDR treatment. However, the incidence of complications was higher for the LDR group than for the HDR group. (author)

  3. On-line PWR RHR pump performance testing following motor and impeller replacement

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  4. Vacuum pump age effects by the exposure to the corrosive gases on the Cr etch rate as observed using optical emission spectroscopy in an Ar/O{sub 2}/Cl{sub 2} mixed plasma

    Park, Seolhye; Roh, Hyun-Joon; Jang, Yunchang; Jeong, Sangmin; Ryu, Sangwon; Choe, Jae-Myung; Kim, Gon-Ho, E-mail: ghkim@snu.ac.kr

    2016-03-31

    Vacuum pumps of different ages were used to prepare Cl{sub 2} based plasmas for use in Cr etching. The effects of the vacuum pump age on the etching results were investigated using optical emission spectroscopy analysis. The composition of gas at the base pressure was mainly nitrogen and oxygen, although the ratio depended on the vacuum pump age and therefore, modulated the etch rate in a manner that was difficult to monitor. The effects of the pump age on the etch rate were clearly observed in the Cl{sub 2} plasma-assisted chromium film etching process, in which oxygen and chlorine radicals were responsible for the etching process. The electron energy distribution function (EEDF), which provided a proxy for the thermal equilibrium properties of the etching plasmas, was monitored. The shape of EEDF was derived from an analysis of the optical emission spectral data using an analysis model described previously. Because molecular nitrogen has a higher threshold energy and a larger cross-section of inelastic collisional processes than oxygen, the tail of the EEDF depends on the mixing ratio between nitrogen and oxygen. The various mechanisms that contribute to the chromium etch rate varied with subtle differences in the vacuum conditions, which were determined by age of the turbo molecular pump. The rates at which oxygen and chlorine radicals were generated were estimated using the measured EEDF, and the estimated oxygen radical and etching product contents were verified by comparing the residual gas analyzer data. The results revealed that the residual nitrogen partial pressures in two etchers equipped with either a new or an aged pump differed by 0.18%, and the EEDF tail areas differed by 10{sup −4}. Importantly, the chromium etch rates in these two instruments differed by 30%. These results suggest that the chamber-to-chamber mismatch should be monitored during plasma-assisted device fabrication processes. - Highlights: • We observed the vacuum pump age effect

  5. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai

    1999-09-01

    . Since the failure rate allowable for an amplifier is not a function of the number of pumps employed in the amplifier, the allowable failure rate of an individual pump laser is decreasing for next-generation amplifiers. This will lead to specifications for terrestrial pumps well below 1000 FIT, and may lead to the case where high power amplifiers need laser pump reliability to approach 100 FIT. In addition, 980 nm laser diodes are now being deployed in submarine systems where failure rates lower than 100 FIT are commonly specified. It is obvious that both terrestrial and submarine markets are pushing allowable failure rates for pumps for optical amplifiers to continually decrease. A second push for improvement is in the output power of 980 nm pump modules. There exist a number of motivations for increasing the output power of pump lasers. First, each additional channel in a DWDM system requires additional power. To first order, a doubling in channel count implies a doubling in pump power. Second, larger amplifiers require multiple pumps. Higher output power from pump modules allows for fewer pumps, less complicated control systems and smaller size amplifiers. The discussion of this paper will focus on how current development progress of 980 nm laser diodes addresses these issues: better reliability and higher output powers.

  6. Cascade conical refraction for annular pumping of a vortex Nd:YAG laser and selective excitation of low- and high-order Laguerre–Gaussian modes

    Wu, Yongxiao; Wang, Zhongyang; Chen, Sanbin; Shirakwa, Akira; Ueda, Ken-ichi; Li, Jianlang

    2018-05-01

    We proposed an efficient and vortex Nd:YAG laser for selective lasing of low- and high-order vortex modes, in which multiple-ring pump light was originated from cascaded conical refraction of multiple biaxial crystals. In our proof of concept demonstration, we used two-crystal cascade conical refraction to generate two-ring pump light; the mutual intensity ratio and relative separation of the inner ring and outer ring were controlled by rotating the second biaxial crystal and by moving the imaging lens, respectively. As a result, we obtained selective excitation of Laguerre–Gaussian (LG01 and LG03) vortex modes in the end-pump Nd:YAG laser. For LG01-mode output, the laser power reached 439 mW with 52.5% slope efficiency; for LG03-mode output, the laser power reached 160 mW with 41.3% slope efficiency. Our results revealed that the multiple-ring pumping technique based on cascaded conical refraction would pave the way for realization of the efficient and switchable excitation of low- and high-order LG modes in an end-pumped solid-state laser.

  7. Diode Pumped Alkaline Laser System: A High Powered, Low SWaP Directed Energy Option for Ballistic Missile Defense High-Level Summary - April 2017

    Wisoff, P. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-28

    The Diode-Pumped Alkali Laser (DPAL) system is an R&D effort funded by the Missile Defense Agency (MDA) underway at Lawrence Livermore National Laboratory (LLNL). MDA has described the characteristics needed for a Boost Phase directed energy (DE) weapon to work against ICBM-class threat missiles. In terms of the platform, the mission will require a high altitude Unmanned Aerial Vehicle (UAV) that can fly in the “quiet” stratosphere and display long endurance – i.e., days on station. In terms of the laser, MDA needs a high power, low size and weight laser that could be carried by such a platform and deliver lethal energy to an ICBM-class threat missile from hundreds of kilometers away. While both the military and industry are pursuing Directed Energy for tactical applications, MDA’s objectives pose a significantly greater challenge than other current efforts in terms of the power needed from the laser, the low size and weight required, and the range, speed, and size of the threat missiles. To that end, MDA is funding two R&D efforts to assess the feasibility of a high power (MWclass) and low SWaP (size, weight and power) laser: a fiber combining laser (FCL) project at MIT’s Lincoln Laboratory, and LLNL’s Diode-Pumped Alkali Laser (DPAL) system.

  8. An alternative arrangement of metered dosing fluid using centrifugal pump

    Islam, Md. Arafat; Ehsan, Md.

    2017-06-01

    Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for

  9. Pumps and pump facilities. 2. ed.

    Bohl, W.; Bauerfeind, H.; Gutmann, G.; Leuschner, G.; Matthias, H.B.; Mengele, R.; Neumaier, R.; Vetter, G.; Wagner, W.

    1981-01-01

    This book deals with the common fundamental aspects of liquid pumps and gives an exemplary choice of the most important kinds of pumps. The scientific matter is dealt with by means of practical mathematical examples among other ways of presenting the matter. Survey of contents: Division on main operational data of pumps - pipe characteristics - pump characteristics - suction behaviour of the pumps - projecting and operation of rotary pumps - boiler feed pumps - reactor feed pumps - oscillating positive-displacement pumps - eccentric spiral pumps. (orig./GL) [de

  10. Measurement of viscosity of slush at high shear rates

    小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru

    1988-01-01

    Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.

  11. Radiobiological aspects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation

    Turesson, I.

    1990-01-01

    The biological effects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation in interstitial and intracavitary radiotherapy and total body irradiation are discussed in terms of dose-rate fractionation sensitivity for various tissues. A scaling between dose-rate and fraction size was established for acute and late normal-tissue effects which can serve as a guideline for local treatment in the range of dose rates between 0.02 and 0.005 Gy/min and fraction sizes between 8.5 and 2.5 Gy. This is valid provided cell-cycle progression and proliferation can be ignored. Assuming that the acute and late tissue responses are characterized by α/β values of about 10 and 3 Gy and a mono-exponential repair half-time of about 3 h, the same total doses given with either of the two methods are approximately equivalent. The equivalence for acute and late non-hemopoietic normal tissue damage is 0.02 Gy/min and 8.5 Gy per fraction; 0.01 Gy/min and 5.5 Gy per fraction; and 0.005 Gy/min and 2.5Gy per fraction. A very low dose rate, below 0.005 Gy/min, is thus necessary to simulate high dose-rate radiotherapy with fraction sizes of about 2Gy. The scaling factor is, however, dependent on the repair half-time of the tissue. A review of published data on dose-rate effects for normal tissue response showed a significantly stronger dose-rate dependence for late than for acute effects below 0.02 Gy/min. There was no significant difference in dose-rate dependence between various acute non-hemopoietic effects or between various late effects. The consistent dose-rate dependence, which justifies the use of a general scaling factor between fraction size and dose rate, contrasts with the wide range of values for repair half-time calculated for various normal-tissue effects. This indicates that the model currently used for repair kinetics is not satisfactory. There are also few experimental data in the clinical dose-rate range, below 0.02 Gy/min. It is therefore

  12. Nuclear-pumped lasers

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  13. Gas fired heat pumps

    Seifert, M.

    2006-01-01

    The condensing gas boiler is now state of the art and there is no more room for improvement in performance, technically speaking. The next logical step to improve the overall efficiency is to exploit ambient heat in combination with the primary source of energy, natural gas. That means using natural-gas driven heat pumps and gas-fired heat pumps. Based on this, the Swiss Gas Industry decided to set up a practical test programme enjoying a high priority. The aim of the project 'Gas-fired heat pump practical test' is to assess by field tests the characteristics and performance of the foreign serial heat pumps currently on the market and to prepare and promote the introduction on the market place of this sustainable natural-gas technology. (author)

  14. JET pump limiter

    Sonnenberg, K.; Deksnis, E.; Shaw, R.; Reiter, D.

    1988-01-01

    JET plans to install two pump limiter modules which can be used for belt-limiter, inner-wall and X-point discharges and, also, for 1-2s as the main limiter. A design is presented which is compatible with two diagnostic systems, and which allows partial removal of the pump limiter to provide access for remote-handling operations. The high heat-flux components are initially cooled during a pulse. Heat is removed between discharges by radiation and pressure contacts to a water-cooled support structure. The pumping edge will be made of annealed pyrolytic graphite. Exhaust efficiency has been estimated, for a 1-d edge model, using a Monte-Carlo calculation of neutral gas transport. When the pump limiter is operated together with other wall components we expect an efficiency of ≅ 5% (2.5 x 10 21 part/s). As a main limiter the efficiency increases to about 10%. (author)

  15. U.S. High School Graduation Rates: Patterns and Explanations

    Richard J. Murnane

    2013-01-01

    I survey the evidence on patterns in U.S. high school graduation rates over the period 1970–2010 and report the results of new research conducted to fill in holes in the evidence. I begin by pointing out the strengths and limitations of existing data sources. I then describe six striking patterns in graduation rates. They include stagnation over the last three decades of the twentieth century, significant race-, income-, and gender-based gaps, and significant increases in graduation rates o...

  16. THE AMERICAN HIGH SCHOOL GRADUATION RATE: TRENDS AND LEVELS*

    Heckman, James J.; LaFontaine, Paul A.

    2009-01-01

    This paper applies a unified methodology to multiple data sets to estimate both the levels and trends in U.S. high school graduation rates. We establish that (a) the true rate is substantially lower than widely used measures; (b) it peaked in the early 1970s; (c) majority/minority differentials are substantial and have not converged for 35 years; (d) lower post-1970 rates are not solely due to increasing immigrant and minority populations; (e) our findings explain part of the slowdown in college attendance and rising college wage premiums; and (f) widening graduation differentials by gender help explain increasing male-female college attendance gaps. PMID:20625528

  17. THE AMERICAN HIGH SCHOOL GRADUATION RATE: TRENDS AND LEVELS.

    Heckman, James J; Lafontaine, Paul A

    2010-05-01

    This paper applies a unified methodology to multiple data sets to estimate both the levels and trends in U.S. high school graduation rates. We establish that (a) the true rate is substantially lower than widely used measures; (b) it peaked in the early 1970s; (c) majority/minority differentials are substantial and have not converged for 35 years; (d) lower post-1970 rates are not solely due to increasing immigrant and minority populations; (e) our findings explain part of the slowdown in college attendance and rising college wage premiums; and (f) widening graduation differentials by gender help explain increasing male-female college attendance gaps.

  18. A review of reaction rates in high temperature air

    Park, Chul

    1989-01-01

    The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.

  19. High rate tests of the LHCb RICH Upgrade system

    Blago, Michele Piero

    2016-01-01

    One of the biggest challenges for the upgrade of the LHCb RICH detectors from 2020 is to readout the photon detectors at the full 40 MHz rate of the LHC proton-proton collisions. A test facility has been setup at CERN with the purpose to investigate the behaviour of the Multi Anode PMTs, which have been proposed for the upgrade, and their readout electronics at high trigger rates. The MaPMTs are illuminated with a monochromatic laser that can be triggered independently of the readout electronics. A first series of tests, including threshold scans, is performed at low trigger rates (20 kHz) for both the readout and the laser with the purpose to characterise the behaviour of the system under test. Then the trigger rate is increased in two separate steps. First the MaPMTs are exposed to high illumination by triggering the pulsed laser at a high (20 MHz) repetition rate while the DAQ is readout at the same low rate as before. In this way the performance of the MaPMTs and the attached electronics can be evaluated ...

  20. Semi-solid electrodes having high rate capability

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2017-11-28

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.