WorldWideScience

Sample records for high pressure studied

  1. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  2. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  3. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  4. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  5. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  6. Fluorinert as a pressure-transmitting medium for high-pressure diffraction studies

    International Nuclear Information System (INIS)

    Varga, Tamas; Wilkinson, Angus P.; Angel, Ross J.

    2003-01-01

    Fluorinert is a liquid pressure-transmitting medium that is widely used in high-pressure diffraction work. A systematic study of five different fluorinerts was carried out using single-crystal x-ray diffraction in a diamond-anvil cell in order to determine the pressure range over which they provide a hydrostatic stress state to the sample. It was found that none of the fluorinerts studied can be considered hydrostatic above 1.2 GPa, a lower pressure than reported previously

  7. Raman study of opal at high pressure

    Science.gov (United States)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  8. Spectroscopic studies of sulfite-based polyoxometalates at high temperature and high pressure

    International Nuclear Information System (INIS)

    Quesada Cabrera, Raul; Firth, Steven; Blackman, Christopher S.; Long, De-Liang; Cronin, Leroy; McMillan, Paul F.

    2012-01-01

    Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. - Graphical abstract: Structural changes occurring within non-conventional Dawson-type [α/β-Mo 18 O 54 (SO 3 ) 2 ] 4− polyanions in the form of tetrapentylammonium salts were studied by a combination of IR, Raman and visible spectroscopy at high temperature and high pressure. Evidence of the formation of bronze-type materials above 400 K and also upon pressurization to 8 GPa is presented. This conclusion is suggested to be a general result for polyoxometalate compounds subjected to extreme conditions and it opens opportunities for the design of new materials with interesting optical and electronic properties. Highlights: ► Spectroscopy studies of non-conventional Wells–Dawson polyoxometalates (POMs) at high temperature and high pressure. ► Discussion on the stability of two POM isomers. ► Local formation of bronze-like materials: possibilities for a new synthetic method at high pressure from POM precursors.

  9. Growth and high pressure studies of zirconium sulphoselenide ...

    Indian Academy of Sciences (India)

    Growth and high pressure studies of zirconium sulphoselenide single ... tance was monitored in a Bridgman opposed anvil set-up up to 8 GPa pressure to identify .... The optical band gaps of the as-grown crystals were obtained by optical ab-.

  10. High pressure studies of planetary matter

    International Nuclear Information System (INIS)

    Ross, M.

    1989-06-01

    Those materials which are of greatest interest to the physics of the deep planetary interiors are Fe, H 2 , He and the Ices. These are sufficiently diverse and intensively studied to offer an overview of present day high pressure research. 13 refs., 1 fig

  11. High pressure effect for high-Tc superconductors

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  12. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  13. NATO Advanced Study Institute on High-Pressure Crystallography

    CERN Document Server

    Boldyreva, Elena; High-Pressure Crystallography

    2010-01-01

    This book is devoted to the theme of crystallographic studies at high pressure, with emphasis on the phenomena characteristic to the compressed state of matter, as well as experimental and theoretical techniques used to study these phenomena. As a thermodynamic parameter, pressure is remarkable in many ways. In the visible universe its value spans over sixty orders of magnitude, from the non-equilibrium pressure of hydrogen in intergalactic space, to the kind of pressure encountered within neutron stars. In the laboratory, it provides the unique possibility to control the structure and properties of materials, to dramatically alter electronic properties, and to break existing, or form new chemical bonds. This agenda naturally encompasses elements of physics (properties, structure and transformations), chemistry (reactions, transport), materials science (new materials) and engineering (mechanical properties); in addition it has direct applications and implications for geology (minerals in deep Earth environmen...

  14. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  15. High pressure studies up to 50 GPa of Bi-based high-Tc superconductors

    International Nuclear Information System (INIS)

    Staun Olsen, J.; Steenstrup, S.; Gerward, L.; Sundqvist, B.

    1991-01-01

    The high-T c superconductor with nominal composition BiSrCaCu 2 O x has been studied at high pressure, i.e. up to 50 GPa. A tetragonal structure was compatible with the measurements at all pressures, and no phase change was observed. The bulk modulus, B o =62.5 GPa, obtained has a somewhat smaller value than the one estimated earier. (orig.)

  16. A high pressure x-ray diffraction study of titanium disulfide

    International Nuclear Information System (INIS)

    Aksoy, Resul; Selvi, Emre; Knudson, Russell; Ma Yanzhang

    2009-01-01

    A high pressure angle dispersive synchrotron x-ray diffraction study of titanium disulfide (TiS 2 ) was carried out to pressures of 45.5 GPa in a diamond-anvil cell. We observed a phase transformation of TiS 2 beginning at about 20.7 GPa. The structure of the high pressure phase needs further identification. By fitting the pressure-volume data to the third-order Birch-Murnaghan equation of state, the bulk modulus, K 0T , was determined to be 45.9 ± 0.7 GPa with its pressure derivative, K' 0T , being 9.5 ± 0.3 at pressures lower than 17.8 GPa. It was found that the compression behavior of TiS 2 is anisotropic along the different axes. The compression ratio of the c-axis is about nine times larger than the a-axis when pressures are lower than 1 GPa. It suddenly decreases to three times larger at pressures of about 3 GPa. This ratio shows a linear decrease with a slope of negative 0.048 at pressures below phase transformation.

  17. [High-grade pressure sores in frail older high-risk persons. A retrospective postmortem case-control-study].

    Science.gov (United States)

    Von Renteln-Kruse, W; Krause, T; Anders, J; Kühl, M; Heinemann, A; Püschel, K

    2004-04-01

    Some old persons at risk do develop, but others, at comparable risk, do not develop high-grade pressure sores. To evaluate potentially different risk factors, we performed a post mortem case-control study in old persons who developed high-grade pressure sores within six months until 14 days before death. Consecutive cases with pressure sores grade >/=3 and potential controls at comparably high risk for pressure sores were examined before cremation. After written informed consent had been obtained by the next relatives, all available nursing and medical records of the deceased were thoroughly evaluated. Cases and controls were matched according to age, gender, immobility, and cachexia.A total of 100 cases with 71 pressure sores grade 3 and 29 pressure sores grade 4 were compared to 100 controls with 27 pressure sores grade pressure sores in frail older high-risk persons. Sedative drug effects and impaired patient compliance with preventive and therapeutic measures may also be associated with the development of high-grade pressure sores in old persons at high risk.

  18. High pressure and high temperature EXAFS and diffraction study of AgI

    International Nuclear Information System (INIS)

    Yoshiasa, Akira; Arima, Hiroshi; Fukui, Hiroshi; Okube, Maki; Katayama, Yoshinori; Ohtaka, Osamu

    2009-01-01

    We have determined the precise P-T phase diagram of AgI by in-situ high-pressure high-temperature synchrotron experiments. X-ray diffraction and XAFS measurements were performed up to 6.0 GPa and 1100 K using a multi-anvil high-pressure device and synchrotron radiation from SPring-8. In the disordered rock-salt phase, Ag ions occupy both octahedral and tetrahedral sites and twenty percent of Ag ions occupy the tetrahedral site as a maximum value at 2 GPa. From the viewpoint of the local structure analyses, some sudden changes are recognized near broad phase transition point. Analysis of EXAFS Debye-Waller factor is useful because the force constant can be decided directly even at high pressure and high temperature. Pressure influences greatly the effective potential and anharmonicity decreases with increasing pressure. (author)

  19. A study of the pressure profiles near the first pumping aperture in a high pressure photoelectron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kahk, J. Matthias; Villar-Garcia, Ignacio J. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Grechy, Lorenza; Bruce, Paul J.K.; Vincent, Peter E. [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom); Eriksson, Susanna K. [Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala (Sweden); Rensmo, Håkan; Hahlin, Maria [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Åhlund, John; Edwards, Mårten O.M. [VG Scienta AB, Box 15120, 750 15 Uppsala (Sweden); Payne, David J., E-mail: d.payne@imperial.ac.uk [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2015-11-15

    Highlights: • We have examined pressure variations in a high pressure photoelectron spectrometer. • Pressure profiles have been simulated using computational fluid dynamics modelling. • The results are useful for determining the optimal sample position for measurements. - Abstract: In a high-pressure photoelectron spectrometer, the sample is positioned close to a differential pumping aperture, behind which the pressure is several orders of magnitude lower than the pressure in the analysis chamber. To find the optimal sample position, where the path length of the photoelectrons through the high pressure region is minimized as far as possible without compromising knowledge of the actual pressure at the sample surface, an understanding of the pressure variations near the sample and the aperture is required. A computational fluid dynamics study has been carried out to examine the pressure profiles, and the results are compared against experimental spectra whose intensities are analyzed using the Beer–Lambert law. The resultant pressure profiles are broadly similar to the one previously derived from a simplistic molecular flow model, but indicate that as the pressure in the analysis chamber is raised, the region over which the pressure drop occurs becomes progressively narrower.

  20. A study of the pressure profiles near the first pumping aperture in a high pressure photoelectron spectrometer

    International Nuclear Information System (INIS)

    Kahk, J. Matthias; Villar-Garcia, Ignacio J.; Grechy, Lorenza; Bruce, Paul J.K.; Vincent, Peter E.; Eriksson, Susanna K.; Rensmo, Håkan; Hahlin, Maria; Åhlund, John; Edwards, Mårten O.M.; Payne, David J.

    2015-01-01

    Highlights: • We have examined pressure variations in a high pressure photoelectron spectrometer. • Pressure profiles have been simulated using computational fluid dynamics modelling. • The results are useful for determining the optimal sample position for measurements. - Abstract: In a high-pressure photoelectron spectrometer, the sample is positioned close to a differential pumping aperture, behind which the pressure is several orders of magnitude lower than the pressure in the analysis chamber. To find the optimal sample position, where the path length of the photoelectrons through the high pressure region is minimized as far as possible without compromising knowledge of the actual pressure at the sample surface, an understanding of the pressure variations near the sample and the aperture is required. A computational fluid dynamics study has been carried out to examine the pressure profiles, and the results are compared against experimental spectra whose intensities are analyzed using the Beer–Lambert law. The resultant pressure profiles are broadly similar to the one previously derived from a simplistic molecular flow model, but indicate that as the pressure in the analysis chamber is raised, the region over which the pressure drop occurs becomes progressively narrower.

  1. High pressure studies on uranium and thorium silicide compounds: Experiment and theory

    DEFF Research Database (Denmark)

    Yagoubi, S.; Heathman, S.; Svane, A.

    2013-01-01

    The actinide silicides ThSi, USi and USi2 have been studied under high pressure using both theory and experiment. High pressure synchrotron X-ray diffraction experiments were performed on polycrystalline samples in diamond anvil cells at room temperature and for pressures up to 54, 52 and 26 GPa...

  2. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  3. Diffraction studies of order-disorder at high pressures and temperatures

    International Nuclear Information System (INIS)

    Parise, John B.; Antao, Sytle M.; Martin, Charles D.; Crichton, Wilson

    2005-01-01

    Recent developments at synchrotron X-ray beamlines now allow collection of data suitable for structure determination and Rietveld structure refinement at high pressures and temperatures on challenging materials. These include materials, such as dolomite (CaMg(CO 3 ) 2 ) that tends to calcine at high temperatures, and Fe-containing materials, such as the spinel MgFe 2 O 4 , which tend to undergo changes in oxidation state. Careful consideration of encapsulation along with the use of radial collimation produced powder diffraction patterns virtually free of parasitic scattering from the cell in the case of large volume high-pressure experiments. These features have been used to study a number of phase transitions, especially those where superior signal-to-noise discrimination is required to distinguish weak ordering reflections. The structures adopted by dolomite, and CaSO4, anhydrite, were determined from 298 to 1466 K at high pressures. Using laser-heated diamond-anvil cells to achieve simultaneous high pressure and temperature conditions, we have observed CaSO 4 undergo phase transitions to the monazite type and at highest pressure and temperature to crystallize in the barite-type structure. On cooling, the barite structure distorts, from an orthorhombic to a monoclinic lattice, to produce the AgMnO 4 -type structure.

  4. Aging study of boiling water reactor high pressure injection systems

    International Nuclear Information System (INIS)

    Conley, D.A.; Edson, J.L.; Fineman, C.F.

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200 degrees C (2,200 degrees F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission's Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed

  5. High-pressure X-ray diffraction studies of potassium chlorate

    Energy Technology Data Exchange (ETDEWEB)

    Pravica, Michael; Bai, Ligang; Bhattacharya, Neelanjan (UNLV)

    2012-03-15

    Two static high-pressure X-ray diffraction (XRD) studies of potassium chlorate have been performed at pressures of up to {approx}14.3 GPa in a diamond anvil cell at ambient temperature using the 16 ID-B undulator beamline at the Advanced Photon Source for the X-ray source. The first experiment was conducted to ascertain decomposition rates of potassium chlorate as a function of pressure. Below 2 GPa, the sample was observed to decompose rapidly in the presence of the X-ray beam and release oxygen. Above 2 GPa (near the phase I phase II transition), the decomposition rate dramatically slowed so that good quality XRD patterns could be acquired. This suggests a phase-dependent decomposition rate. In the second study, X-ray diffraction spectra were collected at pressures from 2 to 14.3 GPa by aligning virgin portions of the sample into the focused X-ray beam at each pressure. The results suggest the co-existence of mixed monoclinic (I) and rhombohedral (II) phases of potassium chlorate near 2 GPa. At pressures beyond 4 GPa, the XRD patterns show a very good fit to KClO{sub 3} in the rhombohedral phase with space group R3m, in agreement with earlier studies. No further phase transitions were observed with pressure. Decompression of the sample to ambient pressure indicated mixed phases I and II coupled with a small amount of synchrotron X-ray-induced decomposition product. The equation of state within this pressure regime has been determined.

  6. High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide

    Energy Technology Data Exchange (ETDEWEB)

    Laniel, Dominique; Desgreniers, Serge [Laboratoire de physique des solides denses, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Downie, Laura E. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Smith, Jesse S. [High Pressure Collaborative Access Team, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Savard, Didier; Murugesu, Muralee [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2014-12-21

    Cyanuric triazide (CTA), a nitrogen-rich energetic material, was compressed in a diamond anvil cell up to 63.2 GPa. Samples were characterized by x-ray diffraction, Raman, and infrared spectroscopy. A phase transition occurring between 29.8 and 30.7 GPa was found by all three techniques. The bulk modulus and its pressure derivative of the low pressure phase were determined by fitting the 300 K isothermal compression data to the Birch-Murnaghan equation of state. Due to the strong photosensitivity of CTA, synchrotron generated x-rays and visible laser radiation both lead to the progressive conversion of CTA into a two dimensional amorphous C=N network, starting from 9.2 GPa. As a result of the conversion, increasingly weak and broad x-ray diffraction lines were recorded from crystalline CTA as a function of pressure. Hence, a definite structure could not be obtained for the high pressure phase of CTA. Results from infrared spectroscopy carried out to 40.5 GPa suggest the high pressure formation of a lattice built of tri-tetrazole molecular units. The decompression study showed stability of the high pressure phase down to 13.9 GPa. Finally, two CTA samples, one loaded with neon and the other with nitrogen, used as pressure transmitting media, were laser-heated to approximately 1100 K and 1500 K while compressed at 37.7 GPa and 42.0 GPa, respectively. In both cases CTA decomposed resulting in amorphous compounds, as recovered at ambient conditions.

  7. Parametric study of unconstrained high-pressure torsion- Finite element analysis

    International Nuclear Information System (INIS)

    Halloumi, A; Busquet, M; Descartes, S

    2014-01-01

    The high-pressure torsion (HPT) experiments have been investigated numerically. An axisymmetric model with twist was developed with commercial finite element software (Abaqus) to study locally the specificity of the stress and strain history within the transformed layers produced during HPT processing. The material local behaviour law in the plastic domain was modelled. A parametric study highlights the role of the imposed parameters (friction coefficient at the interfaces anvil surfaces/sample, imposed pressure) on the stress/strain distribution in the sample bulk for two materials: ultra-high purity iron and steel grade R260. The present modelling provides a tool to investigate and to analyse the effect of pressure and friction on the local stress and strain history during the HPT process and to couple with experimental results

  8. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  9. Self-contained high-pressure chambers for study on the Moessbauer effect at low temperatures

    International Nuclear Information System (INIS)

    Stepanov, G.N.

    1980-01-01

    Designs of two high-pressure chambers intended for studying the Moessbauer effect at low temperatures are described. The high-pressure chamber of the Bridgman anvil type is made of non magnetic materials and intended for operation at helium temperatures. The chamber employs a superconducting pressure gage. A sample and superconducting pressure gage are surrounded with a liquid medium of a high pressure at a room temperature. Measurements of the pressure were taken during heating the chamber in the vapours of liquid helium according to the known dependence of the lead superconducting transition temperature on pressure. The other high-pressure chamber of the piston-to-cylinder type can be used to study the Moessbauer effect at temperatures ranging from 4 to 300 K. Pressure in the chamber is measured by means of the superconducting pressure gage. The maximum pressure obtained in the chamber constitutes 25 kbar

  10. High pressure x-ray diffraction studies on U-Al systems

    International Nuclear Information System (INIS)

    Sahu, P.Ch.; Chandra Shekar, N.V.; Subramanian, N.; Yousuf, Mohammad; Govinda Rajan, K.

    1995-01-01

    In this paper, high pressure x-ray diffraction studies of the three U-Al compounds, namely, UAl 2 , UAl 3 and UAl 4 are presented. The experiments are carried out using a unique diamond anvil high pressure x-ray diffraction system in the Guinier geometry up to a maximum pressure of ∼ 35 GPa. The compressibility behaviour of UAl 2 is consistent with its itinerant 5f states, whereas that of UAl 3 and UAl 4 indicate more towards their localized nature. Among these three compounds, a structural phase transition in UAl 2 has been observed at ∼ 11 GPa and the structure of the high pressure phase has been identified to be of MgNi 2 type with space group P6 3 /mmc. The structure of UAl 2 at NTP is of MgCu 2 type with space group Fd3m. From the electron to atom ratio (e/α) consideration, another structural phase transition, namely, MgNi 2 -MgCu 2 at a higher pressure is proposed. Further, on a similar consideration, a new pressure induced structural sequence, namely, MgCu 2 -MgNi 2 (or MgZn 2 -MgCu 2 ) in the AB 2 type compounds of the f electron based systems is suggested. (author)

  11. Photoconductivity studies of the ferrocyanide ion under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Finston, M. I.

    1979-01-01

    The photoaquation of the ferrocyanide ion was studied using a high-pressure photoconductivity apparatus and a steady-state high-pressure mercury lamp. The first-order photocurrent rise-time could be related to the relative quantum efficiency of the photoaquation process, while the dark decay of the photocurrent yielded a relative value of the bimolecular rate-constant for the reverse reaction. Kinetic measurements were carried out on dilute solutions of potassium ferrocyanide in pure water, and in 20% ethanol. The photocurrent yield in aqueous solution was dependent upon secondary chemical equilibria which were sensitive to pressure in a predictable way. In ethanolic solution, the dependence of photocurrent yield on pressure followed the variation of the reciprocal solvent vicosity. In both aqueous and alcoholic solution, the photoaquation quantum efficiency decreased exponentially with pressure, as did the biomolecular rate-constant for the dark reaction in aqueous solution. The pressure dependence of the bimolecular rate-constant in the alcoholic solution indicated a diffusion-limited process. The pressure dependence of the photoaquation quantum yield, and of the bimolecular rate-constant in aqueous solution, was interpreted in terms of an activation volume model. The photoaquation data for both the aqueous and the alcoholic solutions agreed with a hypothetical mechanism whereby ligand-to-metal bond-breaking, and solvent-to-metal bond-formation, are effectively simultaneous. The results for the aqueous dark reaction strongly indicated breaking of the solvent-to-metal bond as the rate-limiting step.

  12. High pressure studies of fluorenone emission in plastic media

    International Nuclear Information System (INIS)

    Mitchell, D.J.; Schuster, G.B.; Drickamer, H.G.

    1977-01-01

    The energy and the quantum efficiency for fluorenone fluorescence in the crystalline state and in polymeric matrices was measured as a function of external pressure over the range 0--140 kbar. The application of high pressure induces changes in the quantum yield, which ranges from 0.001 at low pressure to a maximum of approx.0.1 at high pressure in hydrocarbon plastics. These results are interpreted as arising from the decrease in the energy of the lowest ππ excited singlet state relative to other relevant states as the external pressure is increased

  13. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    International Nuclear Information System (INIS)

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Shen, Guoyin; Shibazaki, Yuki; Wang, Yanbin

    2015-01-01

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10 5 frames/second (fps) in air and up to ∼10 4 fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures

  14. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Shen, Guoyin [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Shibazaki, Yuki [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai 980-8578 (Japan); Wang, Yanbin [GeoSoilEnviroCARS, Center for Advanced Radiation Sources, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637 (United States)

    2015-07-15

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.

  15. High-pressure nuclear magnetic resonance studies of fuel cell membranes

    Science.gov (United States)

    Mananga, Eugene Stephane

    This thesis focuses on the use of high pressure NMR to study transport properties in electrolyte membranes used for fuel cells. The main concern is in studying the self-diffusion coefficients of ions and molecules in membranes and solutions, which can be used to characterize electrolytes in fuel cells. For this purpose, a high-pressure fringe field NMR method to study transport properties in material systems useful for fuel cell and battery electrolytes, was designed, developed, and implemented. In this investigation, pressure is the thermodynamic variable to obtain additional information about the ionic transport process, which could yield the crucial parameter, activation volume. Most of the work involves proton NMR, with additional investigations of others nuclei, such as fluorine, phosphorus and lithium. Using the FFG method, two fuel cell membrane types (NAFION-117, SPTES), and different dilutions of phosphoric acid were investigated, as was LiTf salt in Diglyme solution, which is used as a lithium battery electrolyte. In addition to high-pressure NMR diffusion measurements carried out in the fringe field gradient for the investigation of SPTES, pulse field gradient spin echo NMR was also used to characterize the water diffusion, in addition to measuring diffusion rates as a function of temperature. This second method allows us to measure distinct diffusion coefficients in cases where the different nuclear (proton) environments can be resolved in the NMR spectrum. Polymer electrolyte systems, in which the mobility of both cations and anions is probed by NMR self-diffusion measurements using standard pulsed field gradient methods and static gradient measurements as a function of applied hydrostatic pressure, were also investigated. The material investigated is the low molecular weight liquid diglyme/LiCF3SO3 (LiTf) complexes which can be used as electrolytes in lithium batteries. Finally, high-pressure diffusion coefficient measurements of phosphoric acid in

  16. Study on flow regimes of high-pressure and dense-phase pneumatic conveying

    International Nuclear Information System (INIS)

    Lu Peng; Chen Xiaoping; Liang Cai; Pu Wenhao; Zhou Yun; Xu Pan; Zhao Changsui

    2009-01-01

    High-pressure and dense-phase pneumatic conveying of pulverized coal is a key technology in the field of large-scale entrained bed coal gasification. Flow regime plays an important role in two-phase flow because it affects not only flow behavior and safety operation, but also the reliability of practical processes. Few references and experiences in high-pressure and dense-phase conveying are available, especially for the flow regimes. And because of the high stickiness and electrostatic attraction of pulverized coal to the pipe wall, it is very difficult to make out the flow regimes in the conveying pipe by visualization method. Thus quartz powder was chosen as the conveyed material to study the flow regime. High-speed digital video camera was employed to photograph the flow patterns. Experiments were conducted on a pilot scale experimental setup at the pressure up to 3.6MPa. With the decrease in superficial gas velocity, three distinguishable flow regimes were observed: stratified flow, dune flow and plug flow. The characteristics of pressure traces acquired by high frequency response pressure transmitter and their EMD (Empirical Mode Decomposition) characteristics were correlated strongly with the flow regimes. Combining high-speed photography and pressure signal analysis together can make the recognition of flow patterns in the high-pressure and dense-phase pneumatic conveying system more accurate. The present work will lead to better understanding of the flow regime transition under high-pressure.

  17. Studies on Microscopic Structure of Diesel Sprays under Atmospheric and High Gas Pressures

    Directory of Open Access Journals (Sweden)

    D. Deshmukh

    2014-06-01

    Full Text Available In the present work, the spray structure of diesel from a 200-μm, single-hole solenoid injector is studied using microscopic imaging at injection pressures of 700, 1000 and 1400 bar for various gas pressures. A long-distance microscope with a high resolution camera is used for spray visualization with a direct imaging technique. This study shows that even at very high injection pressures, the spray structure in an ambient environment of atmospheric pressure reveals presence of entangled ligaments and non-spherical droplets during the injection period. With increase in the injection pressure, the ligaments tend to get smaller and spread radially. The spray structure studies are also conducted at high gas pressures in a specially designed high pressure chamber with optical access. The near nozzle spray structure at the end of the injection shows that the liquid jet breakup is improved with increase in gas density. The droplet size measurement is possible only late in the injection duration when the breakup appears to be complete and mostly spherical droplets are observed. Hence, droplet size measurements are performed after 1.3 ms from start of the injection pulse. Spatial and temporal variation in Sauter Mean Diameter (SMD is observed and reported for the case corresponding to an injection pressure of 700 bar. Overall, this study has highlighted the importance of verifying the extentof atomization and droplet shape even in dense sprays before using conventional dropsizing methods such as PDPA.

  18. High pressure {mu}SR studies: rare earths and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Kalvius, G.M., E-mail: kalvius@ph.tum.de; Schreier, E. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Ekstroem, M.; Hartmann, O. [Uppsala University, Physics Department (Sweden); Henneberger, S., E-mail: kalvius@ph.tum.de; Kratzer, A. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Waeppling, R. [Uppsala University, Physics Department (Sweden); Martin, E., E-mail: kalvius@ph.tum.de; Burghart, F.J. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Ballou, R.; Deportes, J. [CNRS, Laboratoire Louis Neel (France); Niedermayer, Ch. [University of Constance, Faculty of Physics (Germany)

    2000-11-15

    After a short introduction to {mu}SR with respect to the study of magnetic properties, followed by a brief outline of the principle of the high pressure-low temperature {mu}SR spectrometer installed at the Paul Scherrer Institute, we discuss some measurements on rare earth materials employing this instrument. They are concerned with: (1) The pressure dependence of the spin turning process in ferromagnetic Gd. (2) The volume dependence of the internal magnetic field in the heavy rare earth metals Gd, Dy, and Ho in their ordered magnetic states. (3) The response of the (first order) magnetic transition in the frustrated antiferromagnets of type RMn{sub 2} (R = Y,Gd) to pressure. (4) The variation of magnetic parameters with pressure in La{sub 2}CuO{sub 4} (powder sample), the antiferromagnetic parent compound of the high T{sub C} superconductors of type La{sub 2-x}(Sr, Ba){sub x}CuO{sub 4}. In conclusion a short outlook on further developments is given.

  19. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  20. High pressure dielectric studies on the structural and orientational glass.

    Science.gov (United States)

    Kaminska, E; Tarnacka, M; Jurkiewicz, K; Kaminski, K; Paluch, M

    2016-02-07

    High pressure dielectric studies on the H-bonded liquid D-glucose and Orientationally Disordered Crystal (ODIC) 1,6-anhydro-D-glucose (levoglucosan) were carried out. It was shown that in both compounds, the structural relaxation is weakly sensitive to compression. It is well reflected in the low pressure coefficient of the glass transition and orientational glass transition temperatures which is equal to 60 K/GPa for both D-glucose and 1,6-anhydro-D-glucose. Although it should be noted that ∂Tg(0)/∂p evaluated for the latter compound seems to be enormously high with respect to other systems forming ODIC phase. We also found that the shape of the α-loss peak stays constant for the given relaxation time independently on the thermodynamic condition. Consequently, the Time Temperature Pressure (TTP) rule is satisfied. This experimental finding seems to be quite intriguing since the TTP rule was shown to work well in the van der Waals liquids, while in the strongly associating compounds, it is very often violated. We have also demonstrated that the sensitivity of the structural relaxation process to the temperature change measured by the steepness index (mp) drops with pressure. Interestingly, this change is much more significant in the case of D-glucose with respect to levoglucosan, where the fragility changes only slightly with compression. Finally, kinetics of ODIC-crystal phase transition was studied at high compression. It is worth mentioning that in the recent paper, Tombari and Johari [J. Chem. Phys. 142, 104501 (2015)] have shown that ODIC phase in 1,6-anhydro-D-glucose is stable in the wide range of temperatures and there is no tendency to form more ordered phase at ambient pressure. On the other hand, our isochronal measurements performed at varying thermodynamic conditions indicated unquestionably that the application of pressure favors solid (ODIC)-solid (crystal) transition in 1,6-anhydro-D-glucose. This result mimics the impact of pressure on the

  1. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  2. High pressure structural behavior of YGa2: A combined experimental and theoretical study

    International Nuclear Information System (INIS)

    Sekar, M.; Shekar, N.V. Chandra; Babu, R.; Sahu, P. Ch.; Sinha, A.K.; Upadhyay, Anuj; Singh, M.N.; Babu, K. Ramesh; Appalakondaiah, S.; Vaitheeswaran, G.; Kanchana, V.

    2015-01-01

    High pressure structural stability studies were carried out on YGa 2 (AlB 2 type structure at NTP, space group P6/mmm) up to a pressure of ~35 GPa using both laboratory based rotating anode and synchrotron X-ray sources. An isostructural transition with reduced c/a ratio, was observed at ~6 GPa and above ~17.5 GPa, the compound transformed to orthorhombic structure. Bulk modulus B 0 for the parent and high pressure phases were estimated using Birch–Murnaghan and modified Birch–Murnaghan equation of state. Electronic structure calculations based on projector augmented wave method confirms the experimentally observed two high pressure structural transitions. The calculations also reveal that the ‘Ga’ networks remains as two dimensional in the high pressure isostructural phase, whereas the orthorhombic phase involves three dimensional networks of ‘Ga’ atoms interconnected by strong covalent bonds. - Graphical abstract: High pressure X-ray diffraction patterns of YGa 2 up to ~35 GPa shows an isostructural phase transition at ~5 GPa and transition to an orthorhombic structure ~14 GPa. - Highlights: • High pressure structural stability studies were carried out on YGa 2 up to 35 GPa. • An isostructural transition with reduced c/a ratio was observed above 6 GPa. • Above 17.5 GPa, the compound transformed to orthorhombic structure. • PAW based electronic structure calculations have been carried out. • Calculations confirm the experimentally observed structural transitions

  3. Psoriasis and high blood pressure.

    Science.gov (United States)

    Salihbegovic, Eldina Malkic; Hadzigrahic, Nermina; Suljagic, Edin; Kurtalic, Nermina; Sadic, Sena; Zejcirovic, Alema; Mujacic, Almina

    2015-02-01

    Psoriasis is a chronic skin ailment which can be connected with an increased occurrence of other illnesses, including high blood pressure. A prospective study has been conducted which included 70 patients affected by psoriasis, both genders, older than 18 years. Average age being 47,14 (SD= ±15,41) years, from that there were 36 men or 51,43 and 34 women or 48,57%. Average duration of psoriasis was 15,52 (SD=±12,54) years. Frequency of high blood pressure in those affected by psoriasis was 54,28%. Average age of the patients with psoriasis and high blood pressure was 53,79 year (SD=±14,15) and average duration of psoriasis was 17,19 years (SD=±13,51). Average values of PASI score were 16,65. Increase in values of PASI score and high blood pressure were statistically highly related (r=0,36, p=0,0001). Psoriasis was related to high blood pressure and there was a correlation between the severity of psoriasis and high blood pressure.

  4. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  5. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  6. High-Pressure Behaviour of β-HMX Crystal Studied by DFT-LDA

    International Nuclear Information System (INIS)

    Dan, Lian; Lai-Yu, Lu; Dong-Qing, Wei; Qing-Ming, Zhang; Zi-Zheng, Gong; Yong-Xin, Guo

    2008-01-01

    Density functional theory (DFT) with local density approximation (LDA) is employed to study the structural and electronic properties of the high explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under high pressure compression up to 40 GPa. Pressure dependences of the cell volume, lattice constants, and molecular geometry of solid β-HMX are presented and discussed. It is found that N-N and N-C bonds are subject to significant change. This may implies that these bonds may be related to the sensitivity. The band gap is calculated and plotted as a function of pressure. Compared the experimental results with other theoretical works we find that LDA gives good results

  7. High pressure structural studies on nanophase praseodymium oxide

    International Nuclear Information System (INIS)

    Saranya, L.; Chandra Shekar, N.V.; Amirthapandian, S.; Hussain, Shamima; Arulraj, A.; Sahu, P. Ch.

    2014-01-01

    The phase stability of nanocrystalline Pr 2 O 3 has been investigated under pressure by in-situ high pressure X-ray diffraction using Mao-Bell type diamond anvil cell. The ambient structure and phase of the praseodymium oxide have been resolved unambiguously using x-ray diffraction, SEM and TEM techniques. Under the action of pressure the cubic phase of the system is retained up to 15 GPa. This is unusual as other isostructural rare earth oxides show structural transformations even at lower pressures. From the best fit to the P–V data with the Murnaghan equation of state yields a bulk modulus of 171 GPa

  8. High pressure structural studies on nanophase praseodymium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Saranya, L. [Jamal Mohamed College, Tiruchirapalli 620020, Tamil Nadu (India); Chandra Shekar, N.V., E-mail: chandru@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Hussain, Shamima [UGC-DAE-CSR node, Kokilamedu 603103, Tamil Nadu (India); Arulraj, A.; Sahu, P. Ch. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)

    2014-09-15

    The phase stability of nanocrystalline Pr{sub 2}O{sub 3} has been investigated under pressure by in-situ high pressure X-ray diffraction using Mao-Bell type diamond anvil cell. The ambient structure and phase of the praseodymium oxide have been resolved unambiguously using x-ray diffraction, SEM and TEM techniques. Under the action of pressure the cubic phase of the system is retained up to 15 GPa. This is unusual as other isostructural rare earth oxides show structural transformations even at lower pressures. From the best fit to the P–V data with the Murnaghan equation of state yields a bulk modulus of 171 GPa.

  9. Study of the high-pressure helium phase diagram using molecular dynamics

    International Nuclear Information System (INIS)

    Koci, L; Ahuja, R; Belonoshko, A B; Johansson, B

    2007-01-01

    The rich occurrence of helium and hydrogen in space makes their properties highly interesting. By means of molecular dynamics (MD), we have examined two interatomic potentials for 4 He. Both potentials are demonstrated to reproduce high-pressure solid and liquid equation of state (EOS) data. The EOS, solid-solid transitions and melting at high pressures (P) were studied using a two-phase method. The Buckingham potential shows a good agreement with theoretical and experimental EOS, but does not reproduce experimental melting data. The Aziz potential shows a perfect match with theoretical melting data. We conclude that there is a stable body-centred-cubic (bcc) phase for 4 He at temperatures (T) above 340 K and pressures above 22 GPa for the Buckingham potential, whereas no bcc phase is found for the Aziz potential in the applied PT range

  10. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  11. Menopausal hormone therapy is associated with having high blood pressure in postmenopausal women: observational cohort study.

    Science.gov (United States)

    Chiu, Christine L; Lujic, Sanja; Thornton, Charlene; O'Loughlin, Aiden; Makris, Angela; Hennessy, Annemarie; Lind, Joanne M

    2012-01-01

    The relationship between menopausal hormone therapy (MHT) and cardiovascular risk remains controversial, with a number of studies advocating the use of MHT in reducing risk of cardiovascular diseases, while others have shown it to increase risk. The aim of this study was to determine the association between menopausal hormone therapy and high blood pressure. A total of 43,405 postmenopausal women were included in the study. Baseline data for these women were sourced from the 45 and Up Study, Australia, a large scale study of healthy ageing. These women reported being postmenopausal, having an intact uterus, and had not been diagnosed with high blood pressure prior to menopause. Odds ratios for the association between MHT use and having high blood pressure were estimated using logistic regression, stratified by age (high blood pressure: past menopausal hormone therapy use: high blood pressure, with the effect of hormone therapy use diminishing with increasing age. Menopausal hormone therapy use is associated with significantly higher odds of having high blood pressure, and the odds increase with increased duration of use. High blood pressure should be conveyed as a health risk for people considering MHT use.

  12. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  13. Experimental studies on radiation effects under high pressure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, E [Osaka Univ. (Japan). School of Dentistry

    1974-06-01

    The effect of oxygen tension on the radiosensitivity of tumor cells is well known, but its clinical application for radiotherapy is not yet established. Rabbits with V x 2 carcinoma in the maxilla were irradiated by /sup 60/Co under high pressure oxygen (experimental group), and compared with those treated in air (control group). For the purpose of examining the clinical effects of high pressure oxygen, an experiment was made in vivo. The following items were compared respectively: a) Tumor regression effect b) Tumor clearance rate c) Survival days d) Half size reduction time e) Inhibition of DNA synthesis in the tumor tissue. Results obtained were as follows: a) 56 per cent of animals showed tumor regression in the experimental group, whereas it occured 26 per cent in the control group. b) 53 per cent of animals showed tumor disappearance in the experimental group, while it was observed only in 13 per cent in the control group. c) Only 2 of 30 rabbits irradiated in air survived over 180 days, whereas 11 of 30 rabbits survived meanwhile in the group irradiated under high pressure oxygen. d) About 11 days were necessary to reduce the tumor size by half after irradiation in the group under high pressure oxygen, while it took 17 days in the group treated in normal air. e) DNA synthesis was inhibited more prominently in the group irradiated under high pressure oxygen in normal air.

  14. PREFACE: Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures

    Science.gov (United States)

    Liu, Haozhe; Wenk, Hans-Rudolf; Duffy, Thomas S.

    2006-06-01

    One of the major goals of geophysical research is to understand deformation in the deep Earth. The COMPRES (Consortium for Materials Properties Research in Earth Sciences) workshop on `Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures' was held on 21-23 October 2005 at the Advanced Photon Source, Argonne National Laboratory, organized by Haozhe Liu, Hans-Rudolf Wenk and Thomas S Duffy, and provided an opportunity to assemble more than 50 scientists from six countries. Experts in diamond anvil cell (DAC) design, large-volume high-pressure apparatus and data analysis defined the current state of ultra-high pressure deformation studies and explored initiatives to push the technological frontier. The DAC, when used in radial diffraction geometry, emerges as a powerful tool for investigation of plasticity and elasticity of materials at high pressures. More information regarding this workshop can be found at the website: http://www.hpcat.aps.anl.gov/Hliu/Workshop/Index1.htm. In this special issue of Journal of Physics: Condensed Matter, 17 manuscripts review the state-of-the-art and we hope they will stimulate researchers to participate in this field and take it forward to a new level. A major incentive for high-pressure research has been the need of geophysicists to understand composition, physical properties and deformation in the deep Earth in order to interpret the macroscopically observed seismic anisotropy. In the mantle and core, materials deform largely in a ductile manner at low stresses and strain rates. From observational inferences and experiments at lower pressures, it is considered plausible that deformation occurs in the field of dislocation creep or diffusion creep and deformation mechanisms depend in a complex way on stress, strain rate, pressure, temperature, grain size and hydration state. With novel apparatus such as the rotational Drickamer press or deformation DIA (D-DIA) multianvil apparatus, large volumes (approximately 10

  15. High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation

    Science.gov (United States)

    Nakano, S.; Nakayama, A.; Kikegawa, T.

    2008-07-01

    Lithium borohydride (LiBH4) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P42/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH4.

  16. High-pressure x-ray diffraction study on lithium borohydride using a synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, S [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Nakayama, A [Department of Materials Science and Engineering, Meijo University, Nagoya 468-8502 (Japan); Kikegawa, T [Photon Factory (PF), Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan)], E-mail: NAKANO.Satoshi@nims.go.jp

    2008-07-15

    Lithium borohydride (LiBH{sub 4}) was compressed up to 10 GPa using a diamond-anvil-cell to investigate its high-pressure structure. In-situ x-ray diffraction profiles indicated a pressure-induced transformation at 1.1 GPa, which was consistent with the previous experimental observation such as Raman scattering spectroscopy. The high-pressure phase was indexed on a tetragonal symmetry of P4{sub 2}/mmc, which was not corresponding some structural models proposed by previous calculation studies. An unknown substance (presumably another Li-B-H compound), which was contained in the starting material, also transformed into its high-pressure phase at 0.6 GPa without any relation to the transformation of LiBH{sub 4}.

  17. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  18. Study of CT Scan Flooding System at High Temperature and Pressure

    Science.gov (United States)

    Chen, X. Y.

    2017-12-01

    CT scan flooding experiment can scan micro-pore in different flooding stages by the use of CT scan technology, without changing the external morphology and internal structure of the core, and observe the distribution characterization in pore medium of different flooding fluid under different pressure.thus,it can rebuilt the distribution images of oil-water distribution in different flooding stages. However,under extreme high pressure and temperature conditions,the CT scan system can not meet the requirements. Container of low density materials or thin shell can not resist high pressure,while high density materials or thick shell will cause attenuation and scattering of X-ray. The experiment uses a simple Ct scanning systems.X ray from a point light source passing trough a micro beryllium shell on High pressure stainless steal container,continuously irradiates the core holder that can continuously 360° rotate along the core axis. A rare earth intensifying screen behind the core holder emitting light when irradiated with X ray can show the core X ray section image. An optical camera record the core X ray images through a transparency high pressure glazing that placed on the High pressure stainless steal container.Thus,multiple core X ray section images can reconstruct the 3D core reconstruction after a series of data processing.The experiment shows that both the micro beryllium shell and rare earth intensifying screen can work in high temperature and high pressure environment in the stainless steal container. This way that X-ray passes through a thin layer of micro beryllium shell , not high pressure stainless steal shell,avoid the attenuation and scattering of X-ray from the container shell,while improving the high-pressure experiment requirements.

  19. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  20. High pressure phase transformations revisited.

    Science.gov (United States)

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  1. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  2. An Inexpensive High Pressure Optical Absorption Cell for IR-VIS-UV Studies.

    Science.gov (United States)

    Rodgers, V. E.; Angell, C. A.

    1983-01-01

    Describes an optical cell, suitable for high-pressure studies between at least -130 and +150 degrees Celsius, which may be assembled for about $50. Discusses experimental demonstration of principles involved when using the apparatus, including effects of pressure on coordination of ions in solution and on reaction rates in solution. (JN)

  3. In situ neutron diffraction studies of high density amorphous ice under pressure

    International Nuclear Information System (INIS)

    Klotz, Stefan; Straessle, Th; Saitta, A M; Rousse, G; Hamel, G; Nelmes, R J; Loveday, J S; Guthrie, M

    2005-01-01

    We review recent in situ neutron diffraction studies on the structural pressure dependence and the recrystallization of dense amorphous ices up to 2 GPa. Progress in high pressure techniques and data analysis methods allows the reliable determination of all three partial structure factors of amorphous ice under pressure. The strong pressure dependence of the g OO (r) correlation function shows that the isothermal compression of high density amorphous ice (HDA) at 100 K is achieved by a contraction (∼ 20%) of the second-neighbour coordination shell leading to a strong increase in coordination. The g DD (r) and g OD (r) structure factors are, in contrast, only weakly sensitive to pressure. These data allow a comparison with structural features of the recently reported 'very high density amorphous ice' (VHDA) which indicates that VHDA at ambient pressure is very similar to compressed HDA, at least up to the second-neighbour shell. The recrystallization of HDA has been investigated in the range 0.3-2 GPa. It is shown that hydrogen-disordered phases are produced which normally grow only from the liquid, such as ice XII, and in particular ice IV. These findings are in good agreement with results on quench-recovered samples

  4. Ab initio pseudopotential studies of cubic BC2N under high pressure

    International Nuclear Information System (INIS)

    Pan Zicheng; Sun Hong; Chen Changfeng

    2005-01-01

    We present the results of a systematic study of the structural, electronic, and vibrational properties of various cubic BC 2 N phases under high pressure. Ab initio pseudopotential total-energy and phonon calculations have been carried out to examine the changes in the structural parameters, bonding behaviours, band structures, and dynamic instabilities caused by phonon softening in these phases. We find that an experimentally synthesized high-density phase of cubic BC 2 N exhibits outstanding stability in the structural and electronic properties up to very high pressures. On the other hand, another experimentally identified phase with lower density and lower symmetry undergoes a dramatic structural transformation with a volume and bond-length collapse and a concomitant semi-metal to semiconductor transition. A third phase is predicted to be favourable over the above-mentioned lower-density phase by the enthalpy calculations. However, the dynamic phonon calculations reveal that it develops imaginary phonon modes and, therefore, is unstable in the experimental pressure range. The calculations indicate that its synthesis may be achieved at reduced pressures. These results provide a comprehensive understanding for the high-pressure behaviour of the cubic BC 2 N phases and reveal their interesting properties that can be verified by experiments

  5. X-ray Diffraction Study of Arsenopyrite at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    D Fan; M Ma; W Zhou; S Wei; Z Chen; H Xie

    2011-12-31

    The high-pressure X-ray diffraction study of a natural arsenopyrite was investigated up to 28.2 GPa using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at National Synchrotron Light Source, Brookhaven National Laboratory. The 16:3:1 methanol-ethanol-water mixture was used as a pressure-transmitting medium. Pressures were measured using the ruby-fluorescence method. No phase change has been observed up to 28.2 GPa. The isothermal equation of state (EOS) was determined. The values of K{sub 0}, and K'{sub 0} refined with a third-order Birch-Murnaghan EOS are K{sub 0} = 123(9) GPa, and K'{sub 0} = 5.2(8). Furthermore, we confirm that the linear compressibilities ({beta}) along a, b and c directions of arsenopyrite is elastically isotropic ({beta}{sub a} = 6.82 x 10{sup -4}, {beta}{sub b} = 6.17 x 10{sup -4} and {beta}{sub c} = 6.57 x 10{sup -4} GPa{sup -1}).

  6. Raman spectroscopic studies on CeVO4 at high pressures

    International Nuclear Information System (INIS)

    Rao, Rekha; Garg, Alka B.; Wani, B.N.

    2011-01-01

    Raman scattering investigations of CeVO 4 at high pressures is reported. Polycrystalline CeVO 4 was prepared by solid state reaction of CeO 2 and V 2 O 5 . High pressure Raman spectroscopic measurements were carried out as per experimental details given

  7. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  8. High-pressure applications in medicine and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C [Centro Nacional de Ressonancia Magnetica Nuclear, Departamento de Bioquimica Medica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 (Brazil)

    2004-04-14

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  9. High-pressure applications in medicine and pharmacology

    International Nuclear Information System (INIS)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C

    2004-01-01

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic

  10. High Pressure Optical Studies of the Thallous Halides and of Charge-Transfer Complexes

    Science.gov (United States)

    Jurgensen, Charles Willard

    High pressure was used to study the insulator -to-metal transition in sulfur and the thallous halides and to study the intermolecular interactions in charge -transfer complexes. The approach to the band overlap insulator -to-metal transition was studied in three thallous halides and sulfur by optical absorption measurements of the band gap as a function of pressure. The band gap of sulfur continuously decreases with pressure up to the insulator -to-metal transition which occurs between 450 and 485 kbars. The results on the thallous halides indicate that the indirect gap decreases more rapidly than the direct gap; the closing of the indirect gap is responsible for the observed insulator -to-metal transitions. High pressure electronic and vibrational spectroscopic measurements on the solid-state complexes of HMB-TCNE were used to study the intermolecular interactions of charge -transfer complexes. The vibrational frequency shifts indicate that the degree of charge transfer increases with pressure which is independently confirmed by an increase in the molar absorptivity of the electronic charge-transfer peak. Induction and dispersion forces contribute towards a red shift of the charge-transfer peak; however, charge-transfer resonance contributes toward a blue shift and this effect is dominant for the HMB-TCNE complexes. High pressure electronic spectra were used to study the effect of intermolecular interactions on the electronic states of TCNQ and its complexes. The red shifts with pressure of the electronic spectra of TCNQ and (TCNQ)(' -) in polymer media and of crystalline TCNQ can be understood in terms of Van der Waals interactions. None of the calculations which considered intradimer distance obtained the proper behavior for either the charge-transfer of the locally excited states of the complexes. The qualitative behavior of both states can be interpreted as the effect of increased mixing of the locally excited and charge transfer states.

  11. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  12. A study on impulsive sound attenuation for a high-pressure blast flow field

    International Nuclear Information System (INIS)

    Kang, Kuk Jeong; Ko, Sung Ho; Lee, Dong Soo

    2008-01-01

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  13. A study on impulsive sound attenuation for a high-pressure blast flow field

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kuk Jeong [Agency for Defence Development, Daejeon (Korea, Republic of); Ko, Sung Ho; Lee, Dong Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2008-01-15

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  14. High-pressure electron-resonance studies of electronic, magnetic, and structural phase transitions. Progress report

    International Nuclear Information System (INIS)

    Pifer, J.H.; Croft, M.C.

    1983-01-01

    Research is described in development of a high-pressure electron-resonance probe capable of operating down to 1.5 0 K temperatures. The apparatus has been used to measure the EPR of a sample of DPPH at room temperature and zero pressure. EPR has been used to measure valence field instabilities in alloy systems. Studies have been done on metal-insulator transitions at high pressure, and are briefly described

  15. Feasibility studies of high-pressure 4π proportional counter for absolute activity measurement

    International Nuclear Information System (INIS)

    Hino, Y.; Kawada, Y.

    1988-01-01

    A high-pressure proportional counter system is constructed. The high pressure 4πβ counter system constructed is made of aluminum and is divided into two 2π counters. The gas pressure is controlled with a pressure regulator and very fine leak valves to keep the balance of a stable pressure and constant flow rate. Investigation of characteristics of th counter shows that there is an almost linear relation between voltage and pressure. The linearlity of gas gain of this counter to the electron energies is measured with different gas pressures. Quite good linear gas multiplication is obtained at 0.9 MPa. Another investigation is made of application of to activity measurement of 109 Cd. When the gas pressure is over 0.5 MPa, the proportion of collected conversion electrons to absolute activity comes to a constant value of 96 %. This is quite good agreement with the decay data of 96.4 % conversion electron emission rate. The study indicated many excellent features for activity measurement. Especially the efficiency variation technique is good for automatic data acquisition with a programmable high voltage supplier. Moreover, since it is possible to obtain absolute activity with only one sample, it will be quite useful for limited samples experiments. (N.K.)

  16. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  17. High Blood Pressure Facts

    Science.gov (United States)

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  18. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  19. Moessbauer study of phase transitions under high hydrostatic pressures. 1

    International Nuclear Information System (INIS)

    Kapitanov, E.V.; Yakovlev, E.N.

    1979-01-01

    Experimental results of the hydrostatic pressure influence on Moessbauer spectrum parameters are obtained over the pressure range including the area of structural phase transition. A linear increase of the Moessbauer effect probability (recoilless fraction) is accompanied by a linear decrease of the electron density at tin nuclei within the pressure range foregoing the phase transition. The electric resistance and the recoilless fraction of the new phase of Mg 2 Sn are lower, but the electron density at tin nuclei is greater than the initial phase ones. Hydrostatic conditions allow to fix clearly the diphasic transition area and to determine the influence of the pressure on the Moessbauer line position and on the recoilless fraction of the high pressure phase. The phase transition heat Q = 415 cal mol -1 is calculated using recoilless fractions of the high and low pressure phases at 25 kbar. The present results are qualitatively and quantitatively different from the results, obtained at nonhydrostatic conditions. (author)

  20. Study of a pressure measurement method using laser ionization for extremely-high vacuum

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    A method of measuring pressures in the range of extremely-high vacuum (XHV) using the laser ionization has been studied. For this purpose, nonresonant multiphoton ionization of various kinds of gases has been studied, and highly-sensitive ion-detection systems and an extremely-high vacuum equipment were fabricated. These results are presented in detail. Two ion-detection systems were fabricated and tested: the one is based on the pulse-counting method, and the other utilizes the image-processing technique. The former is superior in detecting a few ions or less. The latter was processing technique. The former is superior in detecting a few ions or less. The latter was verified to able to count accurately the number of ions in the range of a few to several hundreds. To obtain the information on residual gases and test our pressure measurement system, an extremely-high vacuum system was fabricated in our own fashion, attained a pressure lower than 1 x 10 -10 Pa, measured with an extractor gauge. The outgassing rate of this vacuum vessel was measured to be 7.8 x 10 -11 Pa·m 3 /s·m 2 . The surface structures and the surface compositions of the raw material, the machined material, and the machined-and-outgased material were studied by SEM and AES. Besides, the pumping characteristics and the residual gases of the XHV system were investigated in detail at each pumping stage. On the course of these studies, the method of pressure measurement using the laser-ionization has been verified to be very effective for measuring pressures in XHV. (J.P.N.)

  1. Terbium oxide at high pressures

    International Nuclear Information System (INIS)

    Dogra, Sugandha; Sharma, Nita Dilawar; Singh, Jasveer; Bandhyopadhyay, A.K.

    2011-01-01

    In this work we report the behaviour of terbium oxide at high pressures. The as received sample was characterized at ambient by X-ray diffraction and Raman spectroscopy. The X-ray diffraction showed the sample to be predominantly cubic Tb 4 O 7 , although a few peaks also match closely with Tb 2 O 3 . In fact in a recent study done on the same sample, the sample has been shown to be a mixture of Tb 4 O 7 and Tb 2 O 3 . The sample was subjected to high pressures using a Mao-Bell type diamond anvil cell upto a pressure of about 42 GPa with ruby as pressure monitor

  2. Antibodies under pressure: A Small-Angle X-ray Scattering study of Immunoglobulin G under high hydrostatic pressure.

    Science.gov (United States)

    König, Nico; Paulus, Michael; Julius, Karin; Schulze, Julian; Voetz, Matthias; Tolan, Metin

    2017-12-01

    In the present work two subclasses of the human antibody Immunoglobulin G (IgG) have been investigated by Small-Angle X-ray Scattering under high hydrostatic pressures up to 5kbar. It is shown that IgG adopts a symmetric T-shape in solution which differs significantly from available crystal structures. Moreover, high-pressure experiments verify the high stability of the IgG molecule. It is not unfolded by hydrostatic pressures of up to 5kbar but a slight increase of the radius of gyration was observed at elevated pressures. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Chain-length-dependent intermolecular packing in polyphenylenes: a high pressure study

    CERN Document Server

    Heimel, G; Oehzelt, M; Hummer, K; Koppelhuber-Bitschnau, B; Porsch, F; Ambrosch-Draxl, C; Resel, R

    2003-01-01

    We report on pressure-induced structural changes in crystalline oligo(para-phenylenes) containing two to six phenyl rings. The results are discussed with particular emphasis put on the implications these changes in intermolecular distances and molecular arrangement have on important bulk properties of this class of materials, such as optical response and charge transport. We performed energy dispersive x-ray diffraction in a systematic study on polycrystalline powders of biphenyl, para-terphenyl, p-quaterphenyl, p-quinquephenyl and p-sexiphenyl under hydrostatic pressure up to 60 kbar. Revisiting the crystal structures at ambient conditions reveals details in the packing principle. A linear relationship between the density at ambient conditions and the number of phenyl rings is found. High pressure data not only yields pressure-dependent lattice parameters and hints towards pressure-induced changes in the molecular arrangement but also allows for an analysis of the equations of state of these substances as a ...

  4. High-pressure Moessbauer study of perovskite iron oxides

    CERN Document Server

    Kawakami, T; Sasaki, T; Kuzushita, K; Morimoto, S; Endo, S; Kawasaki, S; Takano, M

    2002-01-01

    The perovskite oxides CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3 have been investigated by high-pressure sup 5 sup 7 Fe Moessbauer spectroscopy. The critical temperatures of the charge disproportionation (CD) and the magnetic order (MO) have been determined as a function of pressure. In CaFeO sub 3 the CD (2Fe sup 4 sup + -> Fe sup 3 sup + + Fe sup 5 sup +) occurs at an almost constant temperature of 290 K in the pressure range of 0-17 GPa. Above 20 GPa, the CD is suppressed. The MO temperature of 125 K at an ambient pressure rises to 300 K at 34 GPa. In La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3 the CD (3Fe sup 1 sup 1 sup / sup 3 sup + -> 2Fe sup 3 sup + + Fe sup 5 sup +) and the MO occur at the same temperature up to 21 GPa, which decreases from 207 to 165 K with increasing pressure. Above 25 GPa, however, the MO temperature rises above 400 K.

  5. High-pressure system for Compton scattering experiments

    International Nuclear Information System (INIS)

    Oomi, G.; Honda, F.; Kagayama, T.; Itoh, F.; Sakurai, H.; Kawata, H.; Shimomura, O.

    1998-01-01

    High-pressure apparatus for Compton scattering experiments has been developed to study the momentum distribution of conduction electrons in metals and alloys at high pressure. This apparatus was applied to observe the Compton profile of metallic Li under pressure. It was found that the Compton profile at high pressure could be obtained within several hours by using this apparatus and synchrotron radiation. The result on the pressure dependence of the Fermi momentum of Li obtained here is in good agreement with that predicted from the free-electron model

  6. High pressure Raman scattering study on the phase stability of LuVO4

    International Nuclear Information System (INIS)

    Rao, Rekha; Garg, Alka B.; Sakuntala, T.; Achary, S.N.; Tyagi, A.K.

    2009-01-01

    High pressure Raman spectroscopic investigations have been carried out on rare earth orthovanadate LuVO 4 upto 26 GPa. Changes in the Raman spectrum around 8 GPa across the reported zircon to scheelite transition are investigated in detail and compared with those observed in other vanadates. Co-existence of the zircon and scheelite phases is observed over a pressure range of about 8-13 GPa. The zircon to scheelite transition is irreversible upon pressure release. Subtle changes are observed in the Raman spectrum above 16 GPa which could be related to scheelite ↔ fergusonite transition. Pressure dependencies of the Raman active modes in the zircon and the scheelite phases are reported. - Graphical abstract: Study of scheelite-fergusonite transition in RVO 4 by Raman spectroscopy is rare. Here we report Raman spectroscopic investigations of LuVO 4 at high pressure to obtain insight into nature of post-scheelite phases.

  7. High pressure behaviour of uranium dicarbide (UC{sub 2}): Ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-08-28

    The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ∼8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressures placed at ∼24 GPa and ∼50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ∼17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC{sub 2} sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as

  8. High blood pressure during pregnancy is associated with future cardiovascular disease: an observational cohort study.

    Science.gov (United States)

    Tooher, Jane; Chiu, Christine L; Yeung, Kristen; Lupton, Samantha J; Thornton, Charlene; Makris, Angela; O'Loughlin, Aiden; Hennessy, Annemarie; Lind, Joanne M

    2013-01-01

    The study aimed to determine if having a hypertensive disorder of pregnancy (HDP) is a risk factor for future cardiovascular disease (CVD), independent of age and body mass index (BMI). Data were sourced from the baseline questionnaire of the 45 and Up Study, Australia, an observational cohort study. Participants were randomly selected from the Australian Medicare Database within New South Wales. A total of 84 619 women were eligible for this study, of which 71 819 were included. These women had given birth between the ages of 18 and 45 years, had an intact uterus and ovaries, and had not been diagnosed with high blood pressure prior to their first pregnancy. HDP was associated with higher odds of having high blood pressure (high blood pressure (45.6 vs 54.8 years, phigh blood pressure, compared with women who were normotensive during pregnancy (high blood pressure (<58 years: 12.48, 10.63 to 14.66; p<0.001 and ≥58 years, 5.16, 4.54 to 5.86; p<0.001), compared with healthy weight women with a normotensive pregnancy. HDP is an independent risk factor for future CVD, and this risk is further exacerbated by the presence of overweight or obesity in later life.

  9. High Pressure X-ray Absorption Studies on Correlated-Electron Systems

    International Nuclear Information System (INIS)

    Cornelius, Andrew L.

    2016-01-01

    This project used high pressure to alter the electron-electron and electron-lattice interactions in rare earth and actinide compounds. Knowledge of these properties is the starting points for a first-principles understanding of electronic and electronically related macroscopic properties. The research focused on a systematic study of x-ray absorption measurements on rare earth and actinide compounds.

  10. High pressure 129I Moessbauer studies of GeI4 molecular crystals

    International Nuclear Information System (INIS)

    Pasternak, M.P.; Taylor, R.D.

    1989-01-01

    The Moessbauer effect in 129 I in conjunction with Diamond-Anvil-Cell high pressure techniques was applied to investigate the high pressure phase(s) of the molecular crystal GeI 4 . The 129 I Quadrupole Interaction was the main probe for characterizing the intermolecular structural transformation with pressure. With increasing pressure, at about 15 GPAa, the onset of a partial molecular-association phase (HP1) is first observed. In HP1 two out of the four iodines strongly overlap to form linear chains of GeI 4 . The HP1 phase coexists with the low pressure (LP) molecular phase, but its population increases with increasing pressure. At P ∼20 GPa a second high pressure phase (HP2) is identified where all four iodines strongly overlap to form a three dimensional, fully molecular-associated structure. With increasing pressure and at P > 20 GPa, HP2 is the only phase up to P = 34 GPa, the highest pressure used. A significant hysteresis of the relative abundances with pressure is observed. The isomer shift of the HP2 and HP1 structures is considerably larger than that of the LP one. 11 refs., 3 figs

  11. High pressure 129I Moessbauer studies of GeI4 molecular crystals

    International Nuclear Information System (INIS)

    Pasternak, M.P.; Los Alamos National Lab.; Taylor, R.D.

    1990-01-01

    The Moessbauer effect in 129 I in cunjunction with Diamond-Anvil-Cell high pressure techniques was applied to investigate the high pressure phase(s) of the molecular crystal GeI 4 . The 129 I Quadrupole Interaction was the main probe for characterizing the intermolecular structural transformation with pressure. With increasing pressure, at about 15 GPa, the onset of a partial molecular-association phase (HP1) is first observed. In HP1 two out of the four iodines strongly overlap to form linear chains of GeI 4 . The HP1 phase coexists with the low pressure (LP) molecular phase, but its population increases with increasing pressure. At P≅20 GPa a second high pressure phase (HP2) is identified where all four iodines strongly overlap to form a three dimensional, fully molecular-associated structure. With increasing pressure and at P>20 GPa, HP2 is the only phase up to P=34 GPa, the highest pressure used. A significant hysteresis of the relative abundances with pressure is observed. The isomer shift of the HP2 and HP1 structures is considerably larger than that of the LP one. (orig.)

  12. Studies on synthesis of diamond at high pressure and temperature

    Science.gov (United States)

    Kailath, Ansu J.

    Diamond is an essential material of modern industry and probably the most versatile abrasive available today. It also has many other industrial applications attributable to its unique mechanical, optical, thermal and electrical properties. Its usage has grown to the extent that there is hardly a production process in modern industry in which industrial diamond does not play a part. Bulk diamond production today is a major industry. Diamonds can be produced in its thermodynamically stable regions either by direct static conversion, or shock-wave conversion. The pressures and temperatures required for direct static conversion are very high. In the catalyst-solvent method, the material used establishes a reaction path with lower activation energy than for direct transformation. This helps in a quicker transformation under more benign conditions. Hence, catalyst-solvent synthesis is readily accomplished and is now a viable and successful industrial process. Diamonds produced by shock wave are very small (approximately 60mu). Therefore this diamond is limited to applications such as polishing compounds only. The quality, quantity, size and morphology of the crystals synthesized by catalyst-solvent process depend on different conditions employed for synthesis. These details, because of commercial reasons are not disclosed in published literature. Hence, systematic studies have been planned to investigate the effect of various growth parameters on the synthesized crystals. During the growth of synthetic diamond crystals, some catalyst-solvent is retained into the crystals in some form and behaves like an impurity. Several physico-mechanical properties of the crystals are found to depend on the total quantity and distribution of these inclusions. Thus, detailed investigation of the crystallization medium and inclusions in synthesized diamonds was also undertaken in the present work. The work incorporated in this thesis has been divided into seven chapters. The first

  13. High pressure studies of as grown WX2-x single crystals

    International Nuclear Information System (INIS)

    Solanki, G.K.; Agarwal, M.K.; Patel, Yogesh A.

    2011-01-01

    The structural optical and transport properties of tungsten metal dichalogenides having layered structure have been extensively studied in the last two decades. These materials shows highly anisotropic behaviour and have been receiving considerable interest for a variety of applications. Several of these layered semiconductors have attracted attention as a new class of solar cell material. We present here the results of simultaneous resistivity and thermoelectric power (TEP) measurements upto 7 GPa on single crystals of WS 2 , WS 1.9 , WSe 2 and WSe 1.9 grown using Direct Vapour Transport (DVT) technique. The observations clearly shows WS 2 and WS 1.9 are more resistive compared to other two crystals. In all samples an exponential fall of resistivity on increases in pressure upto 2.1 GPa but after 2.2 GPa the resistivity decreases substantially with increases pressure. The TEP of WSe 2 increases steadily and reaches maximum at 0.65 GPa, while for WSe 1.9 TEP increases upto pressure 0.5 GPa. In both the cases after attaining the maximum TEP, then decreases monotonically with increase in pressure. TEP of WS 2 and WS 1.9 increase upto pressure 1.1 GPa, beyond 1.1 GPa pressure in both the cases TEP decreases steadily with further increase in pressure. In all the samples, the sign of TEP is positive indicating that all of them are p-type and remain p-type with increase in pressure. The variation of thermoelectric power factor with pressure has been thoroughly studied. An analysis of the data point out that perfectly stoichiometric crystals of WSe 2 work as superior thermoelectric materials. The results have been presented and implications have been discussed. (author)

  14. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Parents / Hypertension (High Blood Pressure) What's ... High Blood Pressure) Treated? Print What Is Hypertension (High Blood Pressure)? Blood pressure is the pressure of blood against ...

  15. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  16. High pressure studies of ionic conductivity in solids

    International Nuclear Information System (INIS)

    Samara, G.A.

    1979-01-01

    The pressure dependence of the ionic conductivity provides information about the volume relaxation associated with the formation of lattice defects as well as with the diffusive motion of these defects, and thereby helps elucidate the conduction process. Pressure results on a variety of crystals will be discussed with emphasis on recent results on crystals with large lattice polarizabilities and soft phonon modes. Pressure is shown to be an important--sometimes essential, variable in the study of ionic transport processes

  17. High blood pressure at old age : The Leiden 85 plus study

    NARCIS (Netherlands)

    Bemmel, Thomas van

    2010-01-01

    The last decades have shown an increasing interest in treatment of high blood pressure. Copious amounts of data have been published on the mortality and morbidity risks of high blood pressure. Overall these data have resulted in an increasing awareness of the deleterious effects of only modest

  18. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  20. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  1. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  2. The association between cardiovascular risk factors and high blood pressure in adolescents: a school-based study.

    Science.gov (United States)

    Christofaro, Diego G D; Fernandes, Rômulo A; Oliveira, Arli R; Freitas Júnior, Ismael Forte; Barros, Mauro V G; Ritti-Dias, Raphael M

    2014-01-01

    Although previous studies have analyzed the association between cardiovascular risk factors and blood pressure in adolescents, few studies conducted in developing countries analyzed whether the aggregation of risk factors contributes to an increased risk of high blood pressure in adolescents. The objective of this study was to assess the association between cardiovascular risk factors (including general overweight, abdominal obesity, high consumption of foods rich in fats, and insufficient physical activity levels) and high blood pressure in adolescents. This study was carried out from 2007 to 2008 with 1021 adolescents (528 girls) from primary schools located in the city of Londrina- Brazil. Blood pressure was assessed using an oscillometric device. General overweight was obtained through body mass index, abdominal obesity was assessed using waist circumference, and the consumption of foods rich in fat and physical activity were assessed using a questionnaire. The sum of these risk factors was determined. Adolescents with three or four aggregated risk factors were more likely to have higher values of systolic and diastolic blood pressure when compared with adolescents who did not have any cardiovascular risk factors (P = 0.001 for both). Logistic regression indicated that groups of adolescents with 2 (OR= 2.46 [1.11-5.42]; P = 0.026), 3 (OR= 4.97 [2.07-11.92]; P = 0.001) or 4 risk factors (OR= 6.79 [2.24-19.9]; P = 0.001) presented an increased likelihood of high blood pressure. The number of cardiovascular risk factors was found to be related to high blood pressure in adolescents. Copyright © 2014 Wiley Periodicals, Inc.

  3. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  4. Determination of the partial pressure of thallium in high-pressure lamp arcs: A comparative study

    International Nuclear Information System (INIS)

    Karabourniotis, D.; Couris, S.; Damelincourt, J.J.; Aubes, M.

    1986-01-01

    The partial pressure of thallium in high-pressure Hg-TlI discharges with different mercury, thallium, and electron pressures has been measured by using the optically thin line Tl 655 nm and the self-reversed line Tl 535 nm. The partial pressure of the arc axis has been measured from the line Tl 655nm. The effective partial pressure has been measured from the self-reversed line Tl 535 nm on the basis of the multiparameter method, and it has been calculated from the known axis pressure of thallium and the calculation of its radial variation by taking into account the chemical reactions. The experimental results confirm the dispersion character of the blue wing of the line Tl 535 nm. The systematic difference obtained between the measured and calculated effective pressure, particularly at the moment of minimum electron density, may be interpreted by deviations from the local thermodynamic equilibrium (LTE) caused by overpopulation of the upper level of the line Tl 535 nm

  5. High-pressure phases of CuI studied by 129I-Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Kaindl, G.; Nowik, I.; Frank, K.H.

    1992-01-01

    The results of an 129 I-Moessbauer study of the high-pressure phases of CuI at 4.2 K and for external pressures up to 71 kbar are reported. The isomer shift S and the electric quadrupole interaction E q are found to undergo large discontinuities at the crystallographic phase-transition pressures of ≅18 kbar from zinc-blende to rhombohedral structure and at ≅46 kbar from rhombohedral to tetragonal. The pressure coefficients of these hyperfine parameters are significantly different for the three phases (zinc-blende; rhombohedral; tetragonal): dS/dP=-3.3; =+1.5; =+2.5x10 -3 mm/s/kbar. These results cannot be explained in terms of a simple molecular-orbital picture; instead, they reflect pressure-induced variations of the halogen-p/metal-d hybridization in the valence bands of the various phases of CuI. (orig.)

  6. Thermal neutron scattering studies of condensed matter under high pressures

    International Nuclear Information System (INIS)

    Carlile, C.J.; Salter, D.C.

    1978-01-01

    Although temperature has been used as a thermodynamic variable for samples in thermal neutron scattering experiments since the inception of the neutron technique, it is only in the last decade that high pressures have been utilised for this purpose. In the paper the problems particular to this field of work are outlined and a review is made of the types of high-pressure cells used and the scientific results obtained from the experiments. 103 references. (author)

  7. Studies of experimental hosiery in diabetic neuropathic patients with high foot pressures.

    Science.gov (United States)

    Veves, A; Masson, E A; Fernando, D J; Boulton, A J

    1990-05-01

    High plantar pressures and painless trauma are associated with the development of foot ulcers in diabetic patients. Padded hosiery has been reported to reduce plantar pressures in patients at risk of ulceration. Using the optical pedobarograph we have studied 10 patients who regularly wore experimental padded hosiery for 6 months. The hosiery continued to provide substantial and significant reduction in peak forefoot pressures at 3 months (mean reduction 15.5%, p less than 0.01) and 6 months (17.6%, p less than 0.01), although the level of reduction was less than that seen at baseline (31.3%, p less than 0.05). In addition, commercially available hosiery designed as sportswear has been tested, and compared with experimental hosiery. Although these socks (with high or medium density padding) provided significant pressure reduction versus barefoot (mean 17.4% and 10.4%, p less than 0.01), this was not as great as that seen with experimental hosiery (27%, p less than 0.05). Thus the use of socks designed to reduce pressure stress on diabetic neuropathic feet is effective, and continues to be so for a considerable period of time. Commercially available sports socks may also have a place in the management of the diabetic insensitive foot.

  8. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature

    Science.gov (United States)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2017-10-01

    In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.

  9. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  10. High-pressure high-temperature phase diagram of organic crystal paracetamol

    International Nuclear Information System (INIS)

    Smith, Spencer J; Montgomery, Jeffrey M; Vohra, Yogesh K

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol. (paper)

  11. Diamonds: powerful tools for high-pressure physics

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Diamond-anvil high-pressure studies have progressed to the point where they complement shock-wave studies. Because they operate at static high pressure, they permit time-consuming procedures, such as x-ray diffraction measurements for determining crystal structure. The sample material is completely recoverable and the method is adaptable to minute advantage when dealing with rare or hazardous materials. One of our goals in investigating the high-pressure behavior of iridium was to test the theoretical prediction that iridium would exhibit a phase transformation from the face-centered cubic crystal structure at about 9 GPa. Our finding that no such transformation takes place even at pressures up to 30 GPa will need to be taken into account by physicsts working to improve solid-state theory

  12. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    DEFF Research Database (Denmark)

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, while...... the wurtzite phase was retained up to 60 GPa in the case of nanocrystalline GaN. The bulk moduli for the wurtzite phases were determined to be 187 ( 7) and 319 ( 10) GPa for the bulk- and nanocrystalline phases, respectively, while the respective NaCl phases were found to have very similar bulk moduli [ 208...

  13. High-pressure differential scanning microcalorimeter.

    Science.gov (United States)

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  14. High-pressure structural study of yttrium monochalcogenides from experiment and theory

    DEFF Research Database (Denmark)

    Vaitheeswaran, G.; Kanchana, V.; Svane, A.

    2011-01-01

    High-pressure powder x-ray diffraction experiments using synchrotron radiation are performed on the yttrium monochalcogenides YS, YSe, and YTe up to a maximum pressure of 23 GPa. The ambient NaCl structure is stable throughout the pressure range covered. The bulk moduli are determined to be 93, 82...

  15. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  16. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  17. Study of Raman Spectroscopy on Phase Relations of CaCO3 at High Temperature and High Pressure

    Science.gov (United States)

    Li, M.; Zheng, H.; Duan, T.

    2006-05-01

    Laser Raman Spectroscopy was used to study phase relations between calcite I, calcite II and aragonite at high pressure and high temperature. The experiment was performed in an externally heated Basselt type diamond anvil cell (DAC). Natural calcite (calcite I) was used as starting mineral. The sample and a small chip of quartz were loaded in a cavity (300 μm in diameter and 250 μm in depth) in a rhenium gasket. The Na2CO3 aqueous solution of 1mol/L was also loaded as a pressure medium to yield hydrostatic pressure. The whole assembly was pressurized first and then heated stepwise to 400°C. Pressure and temperature in the chamber were determined by the shift of Raman band at 464 cm-1 of quartz and by NiCr-NiSi thermocouple, respectively. The Raman spectra were measured by a Renishaw 1000 spetrometer with 50 mW of 514.5nm argon-ion laser as the excitation light source. The slit width was 50 μm and the corresponding resolution was ±1 cm-1. From the experiments, we observed the phase transitions between calcite I and calcite II, calcite I and aragonite, calcite II and aragonite, respectively. Our data showed a negative slope for the boundary between calcite I and calcite II, which was similar to Bridgman's result, although Hess et al. gave a positive slope. The boundary with a negative slope for calcite II and aragonite was also defined, which had never been done before. And all these data can yield a more complete phase diagram of CaCO3 than the studies of Hess et al. and Suito et al.Reference:Bridgeman P. W.(1939) Journal: American Journal of Science, Vol. 237, p. 7-18Bassett W. A. et al. (1993) Journal: Review of Scientific Instruments, Vol. 64, p. 2340-2345Suito K. et al. (2001) Journal: American Mineralogist, Vol. 86, p. 997- 1002Hess N. J. et al. (1991) In A. K. Singh, Ed., Recent Trends in High Pressure Research; Proc. X IIIth AIRAPT International Conference on High Pressure Science and Technology, p. 236-241. Oxford & IBH Publishing Co. Pvt, Ltd., New

  18. Dynamic High Pressure Study of Chemistry and Physics of Molecular Materials

    Science.gov (United States)

    Jezowski, Sebastian Ryszard

    Both temperature and pressure control and influence the packing of molecules in crystalline phases. Our molecular simulations indicate that at ambient pressure, the cubic polymorph of tetracyanoethylene, TCNE, is the energetically stable form up to ˜ 160 K. The observed transition from the cubic to the monoclinic polymorph occurs however only at temperatures above ˜ 318 K due to the large transition barrier. The temperature-induced phase transition in TCNE studied with high-resolution IR spectroscopy is explained in terms of the increased vibrational entropy in the crystals of the monoclinic polymorph. Based upon the inverted design of the Merril-Bassett Diamond Anvil Cell, an improved, second generation dynamic Diamond Anvil Cell was developed. Based on the fluorescence of ruby crystals, we were able to demonstrate that the pressure variation range can be further increased at least up to 7 kbar and that the dynamic pressure compression of up to 1400 GPa/s can be achieved. A new class of mechanophoric system, bis-anthracene, BA, and its photoisomer, PI, is shown to respond reversibly to a mild, static pressure induced by a Diamond Anvil Cell as well as to shear deformation based on absorption spectroscopic measurements. The forward reaction occurs upon illumination with light while the back-reaction may be accelerated upon heating or mechanical stress, coupled to a rehybridization on four equivalent carbon atoms. It is an intriguing result as high pressure stabilizes the photodimerized species in related systems. Our molecular volume simulations ruled out significant differences in the volumes between bis-anthracene and its photoisomer. Kinetic absorption measurements at several different pressures reveal a negative volume of activation in the exothermic back-reaction at room temperature. Through a series of temperature-dependent kinetic measurements it is shown that the barrier of activation for the back-reaction is reduced by more than an order of magnitude at

  19. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  20. High pressure apparatus transport properties study in high magnetic field

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Sechovský, V.; Mikulina, O.; Kamarád, Jiří; Alsmadi, A. M.; Nakotte, H.; Lacerda, A. H.

    2002-01-01

    Roč. 16, 20, 21 & 22 (2002), s. 3330-3333 ISSN 0217-9792 R&D Projects: GA ČR GP202/01/D045; GA ČR GA202/00/1217; GA MŠk ME 165 Grant - others:NSF(XX) DMR-0094241 Institutional research plan: CEZ:AV0Z1010914 Keywords : high-pressure apparatus Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.604, year: 2002

  1. High blood pressure - children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  2. High blood pressure - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  3. High-pressure phase transitions of strontianite

    Science.gov (United States)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  4. Raman spectroscopic studies of the polymorphism in ZrO2 at high pressures

    International Nuclear Information System (INIS)

    Arashi, H.; Ishigame, M.

    1982-01-01

    The Raman spectra of ZrO 2 at high pressures are measured at room temperature using a diamondanvil pressure-cell. Two kinds of pressure transmitting medium, methanol and NaCl, are used to see the effect of stress components on the phase transformation. The pressure of phase transformation shows a considerable difference between the two media. In the case of methanol, a phase transformation is observed at 3.5 GPa, while in the case of NaCl, at 5.4 GPa. In the high-pressure phase, 19 Raman bands are observed. This number of bands far exceeds that which is expected for the tetragonal phase, D/sub 4h/ 15 in space group. From the relation between the number of Raman bands and the crystal structure, it is more reasonable to consider that the high-pressure phase belongs to a orthorhombic system. The space group of the high-pressure phase is discussed on the basis of the observed number of Raman bands. (author)

  5. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  6. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  7. X-ray diffraction study of WO3 at high pressure

    International Nuclear Information System (INIS)

    Bouvier, P.; Crichton, W.A.; Boulova, M.; Lucazeau, G.

    2002-01-01

    The high-pressure behaviour of microcrystalline tungsten oxide (WO 3 ) has been investigated with angle-dispersive synchrotron x-ray powder diffraction in a diamond anvil cell up to 40 GPa at room temperature. Up to 21 GPa, the pressure dependence of the volume of the monoclinic high-pressure (P2 1 /c) phase is described by a third-order Birch-Murnaghan equation of state with parameters V 0 =210.9(7)A 3 , K T =27(2)GP a and K'=9.4(5). At 24 GPa, a first-order phase transition occurs with an approximate Δ V of 7.4% to a monoclinic P2 1 /a unit cell with a=6.1669(8)A, b=4.5758(6)A, c=5.3159(6)A, β=101.440(9) deg. A second transition is observed at pressures higher than 31 GPa with an approximate Δ V of 12% to a phase described by a third monoclinic unit cell, with a=10.3633(22)A, b=3.9065(8)A, c=9.3459(18)A and β=98.539(14) deg. (author)

  8. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  9. Combined pressure and cosolvent effects on enzyme activity - a high-pressure stopped-flow kinetic study on α-chymotrypsin.

    Science.gov (United States)

    Luong, Trung Quan; Winter, Roland

    2015-09-21

    We investigated the combined effects of cosolvents and pressure on the hydrolysis of a model peptide catalysed by α-chymotrypsin. The enzymatic activity was measured in the pressure range from 0.1 to 200 MPa using a high-pressure stopped-flow systems with 10 ms time resolution. A kosmotropic (trimethalymine-N-oxide, TMAO) and chaotropic (urea) cosolvent and mixtures thereof were used as cosolvents. High pressure enhances the hydrolysis rate as a consequence of a negative activation volume, ΔV(#), which, depending on the cosolvent system, amounts to -2 to -4 mL mol(-1). A more negative activation volume can be explained by a smaller compression of the ES complex relative to the transition state. Kinetic constants, such as kcat and the Michaelis constant KM, were determined for all solution conditions as a function of pressure. With increasing pressure, kcat increases by about 35% and its pressure dependence by a factor of 1.9 upon addition of 2 M urea, whereas 1 M TMAO has no significant effect on kcat and its pressure dependence. Similarly, KM increases upon addition of urea 6-fold. Addition of TMAO compensates the urea-effect on kcat and KM to some extent. The maximum rate of the enzymatic reaction increases with increasing pressure in all solutions except in the TMAO : urea 1 : 2 mixture, where, remarkably, pressure is found to have no effect on the rate of the enzymatic reaction anymore. Our data clearly show that compatible solutes can easily override deleterious effects of harsh environmental conditions, such as high hydrostatic pressures in the 100 MPa range, which is the maximum pressure encountered in the deep biosphere on Earth.

  10. Proposed dedicated high pressure beam lines at CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Vohra, Y.K.; Bassett, W.A.; Batterman, B.W.; Bilderback, D.H.

    1988-01-01

    An instrumentation proposal for dedicated high pressure beam lines at CHESS is described. It is the purpose of this proposed program to provide researchers in high pressure science with beam lines for X-ray diffraction studies in the megabar regime. This will involve radiation from a bending magnet as well as from a wiggler. Examples of the high pressure results up to 2.16 Mbar are shown. Diffraction patterns from bending magnet and wiggler beams are shown and compared. The need for this facility by the high pressure community is discussed. (orig.)

  11. High-pressure torsion of hafnium

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Horita, Zenji; Mine, Yoji

    2010-01-01

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  12. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  13. Experimental study on capacitance void fraction meters for high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Watanabe, Hironori; Mitsutake, Toru; Shibata, Mitsuhiko; Takase, Kazuyuki

    2010-01-01

    The electro-void fraction meter (Capacitance type meter) was applied to higher pressure conditions of 18 MPa than BWR operating conditions of 7 MPa. The void fraction measurement system has been developed including the electrodes of void fraction measurement, instrumentation cables with mineral insulation and simplified electric circuit to provide good signal-to-noise ratio. It satisfied the performance of thermal and pressure resistance and electric insulating capacity. Calibration function for high temperature and high pressure conditions was confirmed through calibration test with 37-rod bundle against datum 19-rod bundle by the quick-shut valve method respectively under 2 MPa conditions. It was confirmed that the measured data were consistent with those measured by the quick-shut valve method. (author)

  14. Photo-preionization stabilized high-pressure glow-discharge lasers

    International Nuclear Information System (INIS)

    Von Bergmann, H.M.

    1980-07-01

    Simple nanosecond stabilization and pulsing techniques were developed to excite high-pressure gas-discharge lasers at high overvoltages and high specific power loadings. The techniques were applied to a variety of ultraviolet and visible laser systems employing fast transmission line pulsers and conventional LC generators. The stabilization procedures are evaluated and the parameters which control the geometry and uniformity of the high-pressure glow discharges are investigated. A detailed study of the formation, distribution and spectral characteristics of the fast surface corona discharges is provided. The stabilization and pulsing techniques were used for the corona and glow discharge excitation of high-pressure ultraviolet N 2 lasers. A detailed spectrally- and temporally-resolved study of the gain, fluorescence and energy extraction characteristics of the atmospheric pressure N 2 plasmas is provided

  15. High-pressure Raman and optical absorption studies on lead pyroniobate (Pb2Nb2O7) and pressure-induced phase transitions

    International Nuclear Information System (INIS)

    Jayaraman, A.; Kourouklis, G.A.; Cooper, A.S.; Espinosa, G.P.

    1990-01-01

    High-pressure Raman scattering and optical absorption studies have been carried out on lead pyroniobate (Pb 2 Nb 2 O 7 ) up to 33 GPa, using a gasketed diamond anvil cell. The Raman study reveals the occurrence of two, possibly three, pressure-induced phase changes; a rather subtle change is indicated near 4.5 GPa. The transition near 13 GPa is attributed to a structural transition from the rhombohedral to the cubic pyrochlore structure. The third phase change occurs near 20 GPa. From the broad Raman feature that is observed at about 800 cm -1 , it is concluded that the system turns amorphous at pressures above 20 GPa. The amorphous phase recrystallizes to the original rhombohedral phase, on release of pressure. The broad Raman peaks of the recrystallized phase indicate a high degree of disorder in the material. Lead pyroniobate turns deep red near 30 GPa, from light yellow at ambient pressure. Semi quantitative absorption measurements show that the energy gap shifts red at a rate of 30 meV/GPa. This shift is attributed to the downward motion of the 5d (es) conduction band of Pb

  16. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... other risk factors, like diabetes, you may need treatment. How does high blood pressure affect pregnant women? A few women will get ... HIV, Birth Control Heart Health for Women Pregnancy Menopause More Women's Health ... High Blood Pressure--Medicines to Help You Women and Diabetes Heart ...

  17. Optical study on metal-insulator change in PrFe4P12 under high pressure

    International Nuclear Information System (INIS)

    Irizawa, Akinori; Sato, Kazuyuki; Kobayashi, Masayo; Nanba, Takao; Matsunami, Masaharu; Sugawara, Hitoshi; Sato, Hideyuki

    2007-01-01

    The optical study has been performed on filled-skutterudite PrFe 4 P 12 applying pressure up to 16 GPa. The reflectivity at far-infrared (FIR) region showed that the metallic reflectivity looses its intensity and the weak phonon peaks at ambient pressure become prominent with pressures at lower temperature. It insists that the electronic states near Fermi level in this compound changes drastically from metallic properties to insulating ones at high pressures and low temperatures, and the insulating phase persists up to 16 GPa against the electrical resistivity data under pressure

  18. High Pressure Research on Materials

    Indian Academy of Sciences (India)

    example, represents the stress on the x plane in the y direction. There are three .... optical studies and studying compressibility of fluids. 3.2 Opposed ..... [4] G N Peggs, High Pressure Measurement Techniques, Applied Science. Publishers ...

  19. White-Beam X-ray Diffraction and Radiography Studies on High-Boron Containing Borosilicate Glass at High Pressures

    Science.gov (United States)

    Ham, Kathryn; Vohra, Yogesh; Kono, Yoshio; Wereszczak, Andrew; Patel, Parimal

    Multi-angle energy-dispersive x-ray diffraction studies and white-beam x-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron content borosilicate glass sample (17.6% B2O3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å-1, is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed an overall uniaxial compression of 22.5 % at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si-O, O-O, and Si-Si bond distances were measured as a function of pressure. Raman spectroscopy of pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and B3O6 boroxol rings. US Army Research Office under Grant No. W911NF-15-1-0614.

  20. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  1. Advances in high pressure research in condensed matter: proceedings of the international conference on condensed matter under high pressures

    International Nuclear Information System (INIS)

    Sikka, S.K.; Gupta, Satish C.; Godwal, B.K.

    1997-01-01

    The use of pressure as a thermodynamic variable for studying condensed matter has become very important in recent years. Its main effect is to reduce the volume of a substance. Thus, in some sense, it mimics the phenomena taking place during the cohesion of solids like pressure ionization, modifications in electronic properties and phase changes etc. Some of the phase changes under pressure lead to synthesis of new materials. The recent discovery of high T c superconductivity in YBa 2 Cu 3 O 7 may be indirectly attributed to the pressure effect. In applied fields like simulation of reactor accident, design of inertial confinement fusion schemes and for understanding the rock mechanical effects of shock propagation in earth due to underground nuclear explosions, the pressure versus volume relations of condensed matter are a vital input. This volume containing the proceedings of the International Conference on Condensed Matter Under High Pressure covers various aspects of high pressure pertaining to equations of state, phase transitions, electronic, optical and transport properties of solids, atomic and molecular studies, shock induced reactions, energetic materials, materials synthesis, mineral physics, geophysical and planetary sciences, biological applications and food processing and advances in experimental techniques and numerical simulations. Papers relevant to INIS are indexed separately

  2. X-ray diffraction at high pressure and high/low temperatures using synchrotron radiation. Applications in the study of spinel structures

    International Nuclear Information System (INIS)

    Gerward, L.; Jiang, J.Z.; Olsen, J.S.; Recio, J.M.; Wakowska, A.

    2004-01-01

    High-pressure x-ray diffraction made a quantum leap in the 1960's with the advent of the diamond-anvil cell. This ingenious device, where two opposing diamond faces apply pressure to a tiny sample, made it possible to replicate the pressure near the core of the Earth by turning a thumbscrew. Multianvil cells, such as the Japanese MAX80 press, were developed for combined high-pressure and high-temperature studies. The availability n at about the same time n of dedicated synchrotron radiation sources of hard x-rays was another big step forward. Since then, the white-beam energy-dispersive method has been the workhorse for high pressure, high-temperature x-ray diffraction, although it is now gradually being replaced by high-resolution monochromatic methods based on the image plate, the CCD camera or other electronic area detectors. The first part of the paper is a review of high-pressure x-ray diffraction (HPXRD), covering roughly the last three decades. Physical parameters, such as the bulk modulus, the compressibility and the equation of state, are defined. The diamond-anvil cell, the multianvil press and other high-pressure devices are described, as well as synchrotron radiation sources and recording techniques. Examples are drawn from current experimental and theoretical research on crystal structures of the spinel type. Accurate structural parameters have been determined at ambient conditions and at low temperatures using single-crystal diffraction and four-circle diffractometers. The uniform high-pressure behavior of the oxide spinels has been investigated in detail and compared with the corresponding behavior of selenium-based spinels. The synthesis of advanced novel materials is exemplified in the case of the cubic spinel Si 3 N 4 . This and other nitrogen spinels, which have a bulk modulus of about 300 GPa modulated by the actual cation, are opening a road towards superhard materials. The paper finishes off with an outlook into the future, where new

  3. High pressure study of high temperatures superconductors: Material base, universal Tc-behavior, and charge transfer

    International Nuclear Information System (INIS)

    Chu, C.W.; Hor, P.H.; Lin, J.G.; Xiong, Q.; Huang, Z.J.; Meng, R.L.; Xue, Y.Y.; Jean, Y.C.

    1991-01-01

    The superconducting transition temperature (T c ) has been measured in YBa 2 Cu 3 O 6.7 , YBa 2 Cu 3 O 7 , Y 2 Ba 4 Cu 7 O 15 , YBa 2 Cu 4 O 8 , Tl 2 Ba 2 Ca n-1 Cu n O n+4-δ , La 2-x Sr x CuO 4 , and La 2-x Ba x CuO 4 under high pressures. The pressure effect on the positron lifetime (τ) has also been determined in the first four compounds. Based on these and other high pressure data, the authors suggest that (1) all known cuprate high temperature superconductors (HTS's) may be no more than mere modifications of either 214-T, 214-T', 123, or a combination of 214-T' and 123, (2) a nonmonotonic T c -behavior may govern the T c -variation of all hole cuprate HTS's and (3) pressure can induce charge transfer leading to a T c -change. The implications of these suggestions will also be discussed

  4. Prevalence and control of high blood pressure in primary care: results from the German Metabolic and Cardiovascular Risk Study (GEMCAS).

    Science.gov (United States)

    Balijepalli, Chakrapani; Bramlage, Peter; Lösch, Christian; Zemmrich, Claudia; Humphries, Karin H; Moebus, Susanne

    2014-06-01

    Contemporary epidemiological data on blood pressure readings, hypertension prevalence and control in unselected patient populations covering a broad age range are scarce. The aim here is to report the prevalence of high blood pressure and to identify factors associated with blood pressure control in a large German primary care sample. We used data from the German Metabolic and Cardiovascular Risk Study including 35 869 patients aged 18-99 years. High blood pressure was defined as systolic blood pressure ≥140 mm Hg and/or diastolic blood pressure ≥90 mm Hg or using antihypertensive therapy. Factors associated with blood pressure control among patients receiving antihypertensive therapy were examined using multiple logistic regressions to estimate odds ratios and 95% confidence intervals. The prevalence of high blood pressure, uncontrolled high blood pressure and untreated high blood pressure was 54.8%, 21.3% and 17.6%, respectively. Age >50 years (1.52; 1.40-1.65), male sex (1.30; 1.20-1.41), elevated waist circumference (1.55; 1.45-1.65), high cholesterol (1.24; 1.16-1.33), high triglycerides (1.11; 1.04-1.19) and concomitant diabetes (1.29; 1.20-1.40) were independently associated with uncontrolled high blood pressure. In a majority of patients we observed hypertension despite treatment for high blood pressures. Studies examining the reasons for treatment failure are highly warranted.

  5. A preliminary high-pressure thermogravimetric study of combustion reactivity of a Collie coal char

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yii Leng; Zhang, Zhezi; Zhu, Mingming; Zhang, Dongke [Western Australia Univ., Crawley, WA (Australia). Centre for Energy (M473); Luan, Chao [Western Australia Univ., Crawley, WA (Australia). Centre for Energy (M473); Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering; You, Changfu [Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering

    2013-07-01

    The effect of pressure(up to 20 bar)on the reactivity of a char(150-160 {mu}m) produced from Western Australian Collie coal has been studied using a high-pressure thermogravimetric analyser (HP TGA). The pressure demonstrated a positive effect in enhancing char combustion reactivities.Kinetic parameters have been determined from the experimental data.The apparent reaction order was found to be approximately 0.7 and the apparent activation energies were 91.0 kJ/mol at atmospheric pressure and 1.5 kJ/mol at an elevated pressure(10 bar),indicating a shift in the control regimes of the reaction at elevated pressures.The lumped effect of the sample size, bulk diffusion,interparticle and intraparticle diffusion at the elevated pressures played an important role in reducing the mass transfer during the HP-TGA experimentation.Thus the activation energy calculated at elevated pressures may not represent the intrinsic activation energy of the char particles but the apparent values of the bulk of the samples.

  6. In Situ Raman Study of Liquid Water at High Pressure.

    Science.gov (United States)

    Romanenko, Alexandr V; Rashchenko, Sergey V; Goryainov, Sergey V; Likhacheva, Anna Yu; Korsakov, Andrey V

    2018-06-01

    A pressure shift of Raman band of liquid water (H 2 O) may be an important tool for measuring residual pressures in mineral inclusions, in situ barometry in high-pressure cells, and as an indicator of pressure-induced structural transitions in H 2 O. However, there was no consensus as to how the broad and asymmetric water Raman band should be quantitatively described, which has led to fundamental inconsistencies between reported data. In order to overcome this issue, we measured Raman spectra of H 2 O in situ up to 1.2 GPa using a diamond anvil cell, and use them to test different approaches proposed for the description of the water Raman band. We found that the most physically meaningful description of water Raman band is the decomposition into a linear background and three Gaussian components, associated with differently H-bonded H 2 O molecules. Two of these components demonstrate a pronounced anomaly in pressure shift near 0.4 GPa, supporting ideas of structural transition in H 2 O at this pressure. The most convenient approach for pressure calibration is the use of "a linear background + one Gaussian" decomposition (the pressure can be measured using the formula P (GPa) = -0.0317(3)·Δν G (cm -1 ), where Δν G represents the difference between the position of water Raman band, fitted as a single Gaussian, in measured spectrum and spectrum at ambient pressure).

  7. Study of the high pressure effect on nanoparticles GdVO4: Eu3+ optical properties

    Science.gov (United States)

    Jovanić, B. R.; Bettinelli, M.; Piccinelli, F.; Radenković, B.; Despotović-Zrakić, M.; Bogdanović, Z.

    2015-07-01

    This study considers the effects of hydrostatic pressure on the line position and fluorescence lifetime τ for 5D0 → 7F2 transitions in GdVO4: Eu3+ nanocrystals. The results indicate that the pressure induced the red shift toward longer wavelengths for all the considered lines with different rate. The fluorescence lifetime τ nonlinearly decreases with pressure in the considered pressure range. High pressure induced the fluorescence lifetime τ that can be explained with a simple theoretical model. The measured line position and τ are in a satisfactory agreement with the theoretical calculations.

  8. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  9. Automated high pressure cell for pressure jump x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  10. Automated high pressure cell for pressure jump x-ray diffraction

    International Nuclear Information System (INIS)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-01-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  11. African Americans and High Blood Pressure

    Science.gov (United States)

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? African Americans in the U.S. have a higher prevalence of high blood pressure (HBP) than ...

  12. High speed analysis of high pressure combustion in a constant volume cell

    NARCIS (Netherlands)

    Frijters, P.J.M.; Klein-Douwel, R.J.H.; Manski, S.S.; Somers, L.M.T.; Baert, R.S.G.; Dias, V.

    2005-01-01

    A combustion process with N2, O2 and C2H4 as fuel used in an opticallyaccessible, high pressure, high temperature, constant volume cell forresearch on diesel fuel spray formation, is studied. The flame frontspeed Vf,HS is determined using high speed imaging. The pressure traceof the combustion

  13. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  14. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon

    2013-03-25

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled, common rail injection system capable of injection pressures up to 200 MPa and a maximum of six injections per combustion event. Up to 100 MPa of the fuel injection pressure, the higher injection pressures create faster combustion rates that result in the higher in-cylinder gas temperatures as compared to conventional low-pressure fuel injection systems. When applying high-pressure injections, particulate emission reductions of up to 50% were observed with no change in hydrocarbon emissions, reductions of CO emissions and only slightly higher NOx emissions. Over 100 MPa, on the other hand, the higher injection pressures still reduced up to almost zero-level of particulate emission, at the same time that the NO emission is reduced greatly. Under these high-pressure injection conditions, strong correlations between soot and CO emissions were observed, which compete for the oxidizing OH species. Multiple or split high-pressure injections also investigated as a means to decrease particulate emissions. As a result, a four-split injection strategy resulted in a 55% reduction in particulates and with little or no penalty on NOx emissions. The high pressure split injection strategy with EGR was more effective in reducing particulate and CO emissions simultaneously. Copyright © 2013 SAE International and Copyright © 2013 TSAE.

  15. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  16. High-pressure phase transition in Ho2O3

    International Nuclear Information System (INIS)

    Lonappan, Dayana; Shekar, N.V. Chandra; Ravindran, T.R.; Sahu, P. Ch.

    2010-01-01

    High-pressure X-ray diffraction and Raman studies on holmium sesquioxide (Ho 2 O 3 ) have been carried out up to a pressure of ∼17 GPa in a diamond-anvil cell at room temperature. Holmium oxide, which has a cubic or bixbyite structure under ambient conditions, undergoes an irreversible structural phase transition at around 9.5 GPa. The high-pressure phase has been identified to be low symmetry monoclinic type. The two phases coexist to up to about 16 GPa, above which the parent phase disappears. The high-pressure laser-Raman studies have revealed that the prominent Raman band ∼370 cm -1 disappears around the similar transition pressure. The bulk modulus of the parent phase is reported.

  17. Radioresistance increase in polymers at high pressures

    International Nuclear Information System (INIS)

    Milinchuk, V.; Kirjukhin, V.; Klinshpont, E.

    1977-01-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibres were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures. (J.B.)

  18. A STUDY OF THE PRESSURE SOLUTION AND DEFORMATION OF QUARTZ CRYSTALS AT HIGH pH AND UNDER HIGH STRESS

    Directory of Open Access Journals (Sweden)

    JUNG-HAE CHOI

    2013-02-01

    Full Text Available Bentonite is generally used as a buffer material in high-level radioactive waste disposal facilities and consists of 50% quartz by weight. Quartz strongly affects the behavior of bentonite over very long periods. For this reason, quartz dissolution experiment was performed under high-pressure and high-alkalinity conditions based on the conditions found in a high-level radioactive waste disposal facility located deep underground. In this study, two quartz dissolution experiments were conducted on 1 quartz beads under low-pressure and high-alkalinity conditions and 2 a single quartz crystal under high-pressure and high-alkalinity conditions. Following the experiments, a confocal laser scanning microscope (CLSM was used to observe the surfaces of experimental samples. Numerical analyses using the finite element method (FEM were also performed to quantify the deformation of contact area. Quartz dissolution was observed in both experiments. This deformation was due to a concentrated compressive stress field, as indicated by the quartz deformation of the contact area through the FEM analysis. According to the numerical results, a high compressive stress field acted upon the neighboring contact area, which showed a rapid dissolution rate compared to other areas of the sample.

  19. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  20. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Feb 27,2018 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  1. High-pressure behavior of CaMo O4

    Science.gov (United States)

    Panchal, V.; Garg, N.; Poswal, H. K.; Errandonea, D.; Rodríguez-Hernández, P.; Muñoz, A.; Cavalli, E.

    2017-09-01

    We report a high-pressure study of tetragonal scheelite-type CaMo O4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMo O4 . We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active and infrared-active modes. In addition, based on calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMo O4 . The reported results are of interest for the many technological applications of this oxide.

  2. High pressure behaviour of TbN: an X-ray diffraction and computational study

    DEFF Research Database (Denmark)

    Jakobsen, J.M.; Madsen, G.K.H.; Jorgensen, J.E.

    2002-01-01

    In the present work, we report an X-ray powder diffraction study of TbN up to an applied hydrostatic pressure of 43 GPa. TbN was found to be stable in the 131 (NaCl structure) within the examined pressure interval, and the zero pressure bulk modulus was determined to be 176(7) GPa. The electronic...... is greatly improved by introducing an orbital dependent U term into the energy-functional. The 4f electrons in TbN-B1 are atomic like and highly correlated, and ferro-magnetic TbN-B1 is found to be a magnetic half-metal. Calculations find the spindown f-electrons in a hypothetical TbN-B2 (CsCl) structure...

  3. High-pressure test loop design and application

    International Nuclear Information System (INIS)

    Burnette, R.D.; Graves, J.N.; Blair, P.G.; Baldwin, N.L.

    1980-07-01

    A high-pressure test loop (HPTL) has been constructed for the purpose of performing a number of chemistry experiments at simulated HTGR conditions of temperature, pressure, flow, and impurity content. The HPTL can be used to develop, modify, and verify computer codes for a variety of chemical processes involving gas phase transport in the reactor. Processes such as graphite oxidation, fission product transport, fuel reactions, purification systems, and dust entrainment can be studied at high pressure, which would largely eliminate difficulties in correlating existing laboratory data and reactor conditions

  4. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  5. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  6. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan-Jiang; ZHENG Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC).The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa.With increasing temperature,the anhydrite (CaSO4) phase precipitates at 250 320℃ in the pressure range of 1.0 1.5 GPa,indicating that under a saturated water condition,both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite.A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) =0.0068T - 0.7126 (250℃≤T≤320℃).Anhydrite remained stable during rapid cooling of the sample chamber,showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.%An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 Mpa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320℃ in the pressure range of 1.0-1.5 Gpa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(Gpa) = 0.0068T - 0.7126 (250℃≤T≤320℃). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is

  7. High blood pressure - adults

    Science.gov (United States)

    ... pressure is found. This is called essential hypertension. High blood pressure that is caused by another medical condition or medicine you are taking is called secondary hypertension. Secondary hypertension may be due to: Chronic ...

  8. High blood pressure, overweight and obesity among rural scholars from the Vela Project: a population-based study from South America.

    Science.gov (United States)

    Tringler, Matías; Rodriguez, Edgardo M; Aguera, Darío; Molina, John D; Canziani, Gabriela A; Diaz, Alejandro

    2012-03-01

    Many studies have shown that high blood pressure and overweight begins in childhood. Consequently, it is useful to know blood pressure and body mass index (BMI) values from an early age. There are few data about blood pressure control in children and adolescents from rural populations in South America. The objective of this study was to determine the prevalence of high blood pressure and its association with sedentary habits and overweight/obesity in scholars from a rural population in Argentina. The study population for this cross-sectional study was composed of rural children and adolescent scholars from Maria Ignacia Vela. Pre-hypertension and hypertension were defined on the basis of percentiles from the average of three blood pressure measurements taken on a single occasion. In patients with three blood pressure measurements above the 90th percentile, ambulatory blood pressure monitoring was performed to confirm hypertension or pre-hypertension. BMI was categorized by using the 2000 Centers for Disease Control and Prevention growth charts. We studied 334 scholars (aged 5-18 years). Mean age was 11.4 years. In 70% of the subjects, blood pressure had never been measured. The prevalence of high blood pressure was 4.4%. Students with sedentary habits were 3.67-fold more likely to develop high blood pressure than their physically active counterparts (odds ratio [OR] 3.67; 95% CI 1.08, 12.46; p = 0.037). Obese students were more likely to develop hypertension than the students with normal weight (OR = 5.17; 95% CI 1.52, 17.60; p = 0.02). Male students had a 3.4-fold higher risk of developing high blood pressure than females. In our rural population, the evaluation of blood pressure in children and adolescents is not a routine measure. Our data indicate a low prevalence of high blood pressure. These data could argue differences between rural and urban scholars. Our data demonstrate a close relationship between increased overweight, obesity and sedentary lifestyle

  9. Experimental and theoretical studies on the high pressure vessel

    International Nuclear Information System (INIS)

    So, Dong Sup

    1992-02-01

    A High Pressure Melt Ejection (HPME) is one of the most important phenomena relevant to Direct Containment Heating(DCH) which could lead to an early containment failure in a several accident of PWRs. Dispersal of core debris following a postulated high pressure failure of PWR reactor vessel has been investigated by experimental works and one-dimensional computer modeling to find the relation between the fraction of melt simulant retained in the cavity and the reactor vessel initial conditions as well as to examine the hydrodynamic processes in a reactor cavity geometry. Simulated HPME experiments have been performed with two small-scale (1/25-th and 1/41-st) transparent reactor cavity models of the Young-Gwang unit 1 and 2. Wood's metal and water have been used as melt sumulants while high pressure nitrogen and carbon dioxide have been used as driver gases to simulate the blowdown steam and gas from the breach of the reactor pressure vessel. The high speed movies of the transient tests showed that no fraction of the melt simulant exits the cavity model via the vertical cavity tunnel under its own momentum, and that the discharged simulant from the pressure vessel exits the reactor cavity model during the gas blowdown. The principal removal mechanism seemed to be a combined mechanism of film entrainment and particle levitation due to the driving force of the blowdown gas. Experimental data for the fraction of melt simulant retained in the cavity model (Y f ) during a postulated scenario of the HPME from PWR pressure vessels have been obtained as a function of various test parameters. These data have been used to develop a correlation for Y f that fits all the data (a total of 313 data points) within the standard deviation of 0.054 by means of dimensional analysis and nonlinear least squares optimization technique. The basic effects of important parameters used to describe the HPME accident sequence on the Y f are determined based on the correlation obtained here and

  10. High blood pressure - medicine-related

    Science.gov (United States)

    Drug-induced hypertension is high blood pressure caused by using a chemical substance or medicine. ... of the arteries There are several types of high blood pressure : Essential hypertension has no cause that can be ...

  11. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  12. High-pressure microbiology

    National Research Council Canada - National Science Library

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  13. Microstructures define melting of molybdenum at high pressures

    Science.gov (United States)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  14. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  15. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  16. Experimental Spectroscopic Studies of Carbon Monoxide (CO) Fluorescence at High Temperatures and Pressures.

    Science.gov (United States)

    Carrivain, Olivier; Orain, Mikael; Dorval, Nelly; Morin, Celine; Legros, Guillaume

    2017-10-01

    Two-photon excitation laser-induced fluorescence of carbon monoxide (CO-LIF) is investigated experimentally in order to determine the applicability of this technique for imaging CO concentration in aeronautical combustors. Experiments are carried out in a high temperature, high-pressure test cell, and in a laminar premixed CH 4 /air flame. Influence of temperature and pressure on CO-LIF spectra intensity and shape is reported. The experimental results show that as pressure increases, the CO-LIF excitation spectrum becomes asymmetric. Additionally, the spectrum strongly shifts to the red with a quadratic dependence of the collisional shift upon pressure, which is different from the classical behavior where the collisional shift is proportional to pressure. Moreover, pressure line broadening cannot be reproduced by a Lorenztian profile in the temperature range investigated here (300-1750 K) and, therefore, an alternative line shape is suggested.

  17. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Guodong Zhang

    2018-03-01

    Full Text Available With the development of energetic materials (EMs and microelectromechanical systems (MEMS initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size.

  18. Experimental and Kinetic Modeling Study of Methanol Ignition and Oxidation at High Pressure

    DEFF Research Database (Denmark)

    Aranda, V.; Christensen, J. M.; Alzueta, Maria

    2013-01-01

    A detailed chemical kinetic model for oxidation of CH3OH at high pressure and intermediate temperatures has been developed and validated experimentally. Ab initio calculations and Rice–Ramsperger–Kassel–Marcus/transition state theory (RRKM/TST) analysis were used to obtain rate coefficients for CH...... the conditions studied, the onset temperature for methanol oxidation was not dependent on the stoichiometry, whereas increasing pressure shifted the ignition temperature toward lower values. Model predictions of the present experimental results, as well as rapid compression machine data from the literature, were...

  19. Common High Blood Pressure Myths

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:May 4,2018 Knowing the facts ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  20. Medications for High Blood Pressure

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  1. High blood pressure and diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  2. Dynamism or Disorder at High Pressures?

    Science.gov (United States)

    Angel, R. J.; Bismayer, U.; Marshall, W. G.

    2002-12-01

    Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.

  3. Study of elastic and thermodynamic properties of uranium dioxide under high temperature and pressure with density functional theory

    International Nuclear Information System (INIS)

    Zhou Mu; Wang Feng; Zheng Zhou; Liu Xiankun; Jiang Tao

    2013-01-01

    The elastic and thermodynamic properties of UO 2 under extreme physical condition are studied by using the density functional theory and quasi-harmonic Debye model. Results show that UO 2 is still stable ionic crystal under high temperatures, and pressures. Tetragonal shear constant is steady under high pressures and temperatures, while elastic constant C 44 is stable under high temperatures, but rises with pressure sharply. Bulk modulus, shear modulus and Young's modulus increase with pressure rapidly, but temperature would not cause evident debasement of the moduli, all of which indicate that UO 2 has excellent mechanical properties. Heat capacity of different pressures increases with temperature and is close to the Dulong-Petit limit near 1000 K. Debye temperature decreases with temperature, and increases with pressure. Under low pressure, thermal expansion coefficient raises with temperature rapidly, and then gets slow at higher pressure and temperature. Besides, the thermal expansion coefficient of UO 2 is much lower than that of other nuclear materials. (authors)

  4. High pressure orthorhombic structure of CuInSe2

    International Nuclear Information System (INIS)

    Bovornratanaraks, T; Saengsuwan, V; Yoodee, K; McMahon, M I; Hejny, C; Ruffolo, D

    2010-01-01

    The structural behaviour of CuInSe 2 under high pressure has been studied up to 53 GPa using angle-dispersive x-ray powder diffraction techniques. The previously reported structural phase transition from its ambient pressure tetragonal structure to a high pressure phase with a NaCl-like cubic structure at 7.6 GPa has been confirmed. On further compression, another structural phase transition is observed at 39 GPa. A full structural study of this high pressure phase has been carried out and the high pressure structure has been identified as orthorhombic with space group Cmcm and lattice parameters a = 4.867(8) A, b = 5.023(8) A and c = 4.980(3) A at 53.2(2) GPa. This phase transition behaviour is similar to those of analogous binary and trinary semiconductors, where the orthorhombic Cmcm structure can also be viewed as a distortion of the cubic NaCl-type structure.

  5. X-ray diffraction study of WO{sub 3} at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, P. [ESRF, Grenoble (France); Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces UMR 5631 CNRS-INPG, St. Martin d' Heres (France); Crichton, W.A. [ESRF, Grenoble (France); Boulova, M. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces UMR 5631 CNRS-INPG, St. Martin d' Heres (France); Chemistry Department, Moscow State University, Moscow (Russian Federation); Lucazeau, G. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces UMR 5631 CNRS-INPG, St. Martin d' Heres (France)

    2002-07-08

    The high-pressure behaviour of microcrystalline tungsten oxide (WO{sub 3}) has been investigated with angle-dispersive synchrotron x-ray powder diffraction in a diamond anvil cell up to 40 GPa at room temperature. Up to 21 GPa, the pressure dependence of the volume of the monoclinic high-pressure (P2{sub 1}/c) phase is described by a third-order Birch-Murnaghan equation of state with parameters V{sub 0}=210.9(7)A{sup 3}, K{sub T}=27(2)GP a and K'=9.4(5). At 24 GPa, a first-order phase transition occurs with an approximate {delta} V of 7.4% to a monoclinic P2{sub 1}/a unit cell with a=6.1669(8)A, b=4.5758(6)A, c=5.3159(6)A, {beta}=101.440(9) deg. A second transition is observed at pressures higher than 31 GPa with an approximate {delta} V of 12% to a phase described by a third monoclinic unit cell, with a=10.3633(22)A, b=3.9065(8)A, c=9.3459(18)A and {beta}=98.539(14) deg. (author)

  6. A DLTS study of the evolution of oxygen precipitates in Si at high temperature and high pressure

    International Nuclear Information System (INIS)

    Antonova, I.V.; Popov, V.P.; Fedina, L.I.; Shaimeev, S.S.; Misiuk, A.

    1996-01-01

    The effect of high hydrostatic pressure on the dissolution of oxygen precipitates introduced beforehand into Si at temperatures of 920-1000 K (over period of 96 h) is investigated by the DLTS method. A measurement procedure, based on the formation of electrically active complexes (interstitial oxygen atom-vacancy) during electron irradiation of the samples, is proposed. It is shown that the precipitates do not decompose when point defects are introduced at room temperature. As the treatment temperature increases (to 1220-1650 K), for the same values of the hydrostatic pressure (up to 1.3 GPa) the intensity of the decomposition of oxygen precipitates increases and at 1650 K they are completely dissolved. Study of the decomposition kinetics showed that hydrostatic pressure raises the limit of solubility of the oxygen atoms Oi and slows down their diffusion. It is determined that the diffusion activation energy Ea, just as the preexponential factor D0, in the expression for the diffusion decrease with increasing hydrostatic pressure, resulting in a lower diffusion. Possible mechanisms for the effect of hydrostatic pressure on oxygen diffusion near a precipitate are discussed

  7. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  8. High-pressure cell for luminescence studies of condensed phases at low temperatures

    International Nuclear Information System (INIS)

    Variano, B.F.; Brenner, H.C.; Daniels, W.B.

    1986-01-01

    A clamped optical cell for high-pressure low-temperature fluorescence and phosphorescence studies is described. A particular innovation is the use of a bifurcated fiber-optic lightguide to enable sample illumination and emission collection with a single optical window. This very simple type of cell is adaptable to a variety of optical setups and is easily assembled and disassembled for sample mounting

  9. High pressure in-situ X-ray diffraction study on Zn-doped magnetite nanoparticles

    Science.gov (United States)

    Ferrari, S.; Bilovol, V.; Pampillo, L. G.; Grinblat, F.; Errandonea, D.

    2018-03-01

    We have performed high pressure synchrotron X-ray powder diffraction experiments on two different samples of Zn-doped magnetite nanoparticles (formula Fe(3-x)ZnxO4; x = 0.2, 0.5). The structural behavior of then a noparticles was studied up to 13.5 GPa for x = 0.2, and up to 17.4 GPa for x = 0.5. We have found that both systems remain in the cubic spinel structure as expected for this range of applied pressures. The analysis of the unit cell volume vs. pressure results in bulk modulus values lower than in both end-members, magnetite (Fe3O4) and zinc ferrite (ZnFe2O4), suggesting that chemical disorder may favor compressibility, which is expected to improve the increase of the Neel temperature under compression.

  10. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and inter......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...... and intermolecular interactions on optical excitations, electron–phonon interaction, and changes in backbone conformations. This picture is connected to the optical high pressure studies of other π-conjugated systems and emerging x-ray scattering experiments from polyfluorenes which provides a structure-property map...

  11. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  12. Ultrasonic and metallographic studies on AISI 4140 steel exposed to hydrogen at high pressure and temperature

    Science.gov (United States)

    Oruganti, Malavika

    This thesis conducts an investigation to study the effects of hydrogen exposure at high temperature and pressure on the behavior of AISI 4140 steel. Piezoelectric ultrasonic technique was primarily used to evaluate surface longitudinal wave velocity and defect geometry variations, as related to time after exposure to hydrogen at high temperature and pressure. Critically refracted longitudinal wave technique was used for the former and pulse-echo technique for the latter. Optical microscopy and scanning electron microscopy were used to correlate the ultrasonic results with the microstructure of the steel and to provide better insight into the steel behavior. The results of the investigation indicate that frequency analysis of the defect echo, determined using the pulse-echo technique at regular intervals of time, appears to be a promising tool for monitoring defect growth induced by a high temperature and high pressure hydrogen-related attack.

  13. Note: A micro-perfusion system for use during real-time physiological studies under high pressure

    Science.gov (United States)

    Maltas, Jeff; Long, Zac; Huff, Alison; Maloney, Ryan; Ryan, Jordan; Urayama, Paul

    2014-10-01

    We construct a micro-perfusion system using piston screw pump generators for use during real-time, high-pressure physiological studies. Perfusion is achieved using two generators, with one generator being compressed while the other is retracted, thus maintaining pressurization while producing fluid flow. We demonstrate control over perfusion rates in the 10-μl/s range and the ability to change between fluid reservoirs at up to 50 MPa. We validate the screw-pump approach by monitoring the cyanide-induced response of UV-excited autofluorescence from Saccharomyces cerevisiae under pressurization.

  14. Synthesis and Structural Study of Sr2CuO3+δ Superconductor under High Pressure

    International Nuclear Information System (INIS)

    Qing-Qing, Liu; Fu-Ren, Wang; Feng-Ying, Li; Liang-Chen, Chen; Ri-Cheng, Yu; Chang-Qing, Jin; Yan-Chun, Li; Jing, Liu

    2008-01-01

    A single-phase Sr 2 CuO 3+δ superconductor is synthesized under high temperature and high pressure, in which oxygen atoms only partially occupy the apical sites next to the CuO 2 planes and act as hole-dopants. The superconducting transition temperature with T c max = 75 K is achieved in the material. Structure analysis from x-ray powder diffraction data show that this material crystallizes into a K 2 NiF 4 structure with tetragonal unit cell of a = 3. 795(3) Å and c = 12. 507(1) Å. Energy-dispersive synchrotron x-ray-diffraction studies at ambient are performed on powder samples of Sr 2 CuO 3+δ in a diamond-anvil cell at pressure up to 35 GPa. Anisotropic compressibility is found. Pressure-induced isostructural phase transition might exist as revealed by the discontinuous change of crystal cell volume V with pressure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. High-pressure studies on electronic and mechanical properties of FeBO3 (B = Ti, Mn, Cr) ceramics - a first-principles study

    Science.gov (United States)

    Kishore, N.; Nagarajan, V.; Chandiramouli, R.

    2018-04-01

    Using the density functional theory (DFT) method, the electronic and mechanical properties of perovskites FeBO3 (B = Ti, Mn, Cr) nanostructures were studied in the pressure range of 0-100 GPa. The band structure studies show the change in the band structure upon substitution of different B cation in FeBO3 perovskite structure. The density of states spectrum gives the perception of change in the electronic properties of FeBO3 with the substitution of B cation. The bulk, shear and Young's moduli were calculated and an increase in the moduli is noticed. Moreover, the hardness increases under high pressure. The high-pressure studies of FeBO3 perovskite nanostructures are explored at atomistic level. The findings show that ductility and hardness of FeBO3 get increased upon an increase in the applied pressure. The substitution of Ti, Mn and Cr on FeBO3 shows a significant change in the electronic and mechanical properties.

  16. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  17. High-pressure measuring cell for Raman spectroscopic studies of natural gas

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2001-01-01

    A system for obtaining Raman spectra of gases at high pressure has been constructed. In order to ensure that a natural gas sample is totally representative, a high-pressure gas-measuring cell has been developed, built up by stainless steel fittings and a sapphire tube. The design and construction...... of this cell are described. A perfect pressure seal has been demonstrated up to 15.0 MPaA (MPa absolute). The cell has been successfully used to obtain Raman spectra of natural gas samples. Some of these spectra are presented and assigned. The most remarkable observation in the spectra is that it is possible...... to detect hydrogen sulfide at concentrations of 1-3 mg H2S/Nm(3). An attempt to make a quantitative analysis of natural gas by the so-called "ratio method" is presented. In addition to this, the relative normalized differential Raman scattering cross sections for ethane and i-butane molecules at 8.0 MPa...

  18. High pressure effects on fruits and vegetables

    OpenAIRE

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  19. Structural and optical high-pressure study of spinel-type MnIn2S4

    International Nuclear Information System (INIS)

    Manjon, F.J.; Segura, A.; Pellicer-Porres, J.; Sanchez-Royo, J.F.; Amboage, M.; Itie, J.P.; Flank, A.M.; Lagarde, P.; Polian, A.; Ursaki, V.V.; Tiginyanu, I.M.

    2007-01-01

    We report a combined study of the structural and electronic properties of the spinel-type semiconductor MnIn 2 S 4 under high pressures by means of X-ray diffraction (ADXRD), X-ray absorption (XAS), and optical absorption measurements. The three techniques evidence a reversible structural phase transition near 7 GPa, that according to ADXRD measurements is to a double-NaCl structure. XAS measurements evidence predominant tetrahedral coordination for Mn in the spinel phase that does not noticeably change with increasing pressure up to the phase transition. XAS measurements indicate that the static disorder increases considerably when the sample reverts from the double-NaCl phase to the spinel phase. Optical absorption measurements show that the direct gap of MnIn 2 S 4 exhibits a nonlinear behaviour with a positive pressure coefficient at pressures below 2.5 GPa and a negative pressure coefficient between 2.5 and 7 GPa. The pressure behavior of the bandgap seems to be affected by the defect concentration. The double-NaCl phase also exhibits a bandgap with a negative pressure coefficient. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. High Blood Pressure - Multiple Languages

    Science.gov (United States)

    ... Being 8 - High Blood Pressure - Amarɨñña / አማርኛ (Amharic) MP3 Siloam Family Health Center Arabic (العربية) Expand Section ... Being 8 - High Blood Pressure - myanma bhasa (Burmese) MP3 Siloam Family Health Center Chinese, Simplified (Mandarin dialect) ( ...

  1. High-pressure X-ray diffraction studies on ThS up to 40 GPa using synchrotron radiation

    International Nuclear Information System (INIS)

    Benedict, U.; Spirlet, J.C.; Gerward, L.; Olsen, J.S.

    1983-12-01

    High-pressure X-ray diffraction studies have been performed on ThS up to 40 GPa using synchrotron radiation and a diamond anvil cell. The measured value of the bulk modulus B 0 =145 GPa is in disagreement with a previous measurement. The high-pressure behaviour indicates a phase transformation to ThS II starting at 15 to 20 GPa. The transformation is of second order nature, the resulting structure can be described as distorted fcc. (orig.)

  2. High pressure X-ray diffraction studies on ThS up to 40 GPa using synchrotron radiation

    International Nuclear Information System (INIS)

    Benedict, U.; Spirlet, J.C.; Gerward, L.; Olsen, J.S.

    1984-01-01

    High pressure X-ray diffraction studies (up to 40 GPa) were performed on ThS using synchrotron radiation and a diamond anvil cell. The measured value of 145 GPa for the bulk modulus B 0 disagrees with a previous measurement. The high pressure behaviour indicates a phase transformation to ThS II starting at 15 - 20 GPa. The transformation is of the second-order type, and the resulting structure can be described as distorted f.c.c. (Auth.)

  3. Anxiety: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... of high blood pressure? Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  4. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  5. High blood pressure in acute ischemic stroke and clinical outcome.

    Science.gov (United States)

    Manabe, Yasuhiro; Kono, Syoichiro; Tanaka, Tomotaka; Narai, Hisashi; Omori, Nobuhiko

    2009-11-16

    This study aimed to evaluate the prognostic value of acute phase blood pressure in patients with acute ischemic stroke by determining whether or not it contributes to clinical outcome. We studied 515 consecutive patients admitted within the first 48 hours after the onset of ischemic strokes, employing systolic and diastolic blood pressure measurements recorded within 36 hours after admission. High blood pressure was defined when the mean of at least 2 blood pressure measurements was ≥200 mmHg systolic and/or ≥110 mmHg diastolic at 6 to 24 hours after admission or ≥180 mmHg systolic and/or ≥105 mmHg diastolic at 24 to 36 hours after admission. The high blood pressure group was found to include 16% of the patients. Age, sex, diabetes mellitus, hypercholesterolemia, atrial fibrillation, ischemic heart disease, stroke history, carotid artery stenosis, leukoaraiosis, NIH Stroke Scale (NIHSS) on admission and mortality were not significantly correlated with either the high blood pressure or non-high blood pressure group. High blood pressure on admission was significantly associated with a past history of hypertension, kidney disease, the modified Rankin Scale (mRS) on discharge and the length of stay. On logistic regression analysis, with no previous history of hypertension, diabetes mellitus, atrial fibrillation, and kidney disease were independent risk factors associated with the presence of high blood pressure [odds ratio (OR), 1.85 (95% confidence interval (CI): 1.06-3.22), 1.89 (95% CI: 1.11-3.22), and 3.31 (95% CI: 1.36-8.04), respectively]. Multi-organ injury may be presented in acute stroke patients with high blood pressure. Patients with high blood pressure had a poor functional outcome after acute ischemic stroke.

  6. Femtosecond pump-probe studies of phonons and carriers in bismuth under high pressure

    International Nuclear Information System (INIS)

    Kasami, M.; Ogino, T.; Mishina, T.; Yamamoto, S.; Nakahara, J.

    2006-01-01

    We investigate the high-pressure phase of Bi under hydrostatic pressure using pump-probe spectroscopy at pressures up to 3.0 GPa, and we observe coherent phonons signal and relaxation signal of photo-excited carriers at Bi(II) and Bi(III) phases. The pressure dependence of the coherent phonons shows that the amplitude of coherent phonons is extremely small and the frequency of coherent phonons changes at high-pressure phases. As results from our experiment, we obtain its frequencies are 2.5 and 2.2 THz at Bi(II) and Bi(III), respectively. Furthermore, photo-excited carrier relaxation indicates drastic changes near 2.5 GPa. Bismuth transforms from semimetal to semiconductor near 2.5 GPa, and band-overlapping between at L-point and at T-point disappears. We consider that the drastic changes of the photo-excited carrier relaxation are strongly correlated with the band-overlapping disappearing

  7. High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure

    Directory of Open Access Journals (Sweden)

    Yancheng Meng

    2018-05-01

    Full Text Available To realize the practical applications of flexible pressure sensors, the high performance (sensitivity and response time as well as more functionalities are highly desired. In this work, we fabricated a piezoresistive pressure sensor based on the micro-structured composites films of multi-walled carbon nanotubes (MWCNTs and poly (dimethylsiloxane (PDMS. In addition, we establish efficient strategies to improve key performance of our pressure sensor. Its sensitivity is improved up to 474.13 kPa−1 by minimizing pressure independent resistance of sensor, and response time is shorten as small as 2 μs by enhancing the elastic modulus of polymer elastomer. Benefiting from the high performance, the functionalities of sensors are successfully extended to the accurate detection of high frequency mechanical vibration (~300 Hz and large range of air pressure (6–101 kPa, both of which are not achieved before.

  8. High pressure phase transition in Zr–Ni binary system: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Debojyoti, E-mail: debojyoti@barc.gov.in; Sahoo, B.D.; Joshi, K.D.; Gupta, Satish C.

    2015-11-05

    Total energy calculations have been performed on zirconium–nickel (with 50% nickel by atom) binary system to examine its structural stability under high pressure. The evolutionary structure search method in conjunction with density functional theory based projector augmented wave (PAW) method suggested that at zero pressure an orthorhombic phase with space group symmetry Cmcm is the lowest enthalpy structure, in agreement with the experiments. Further, it has been predicted that upon compression at ∼10 GPa, this structure will transform to a lower symmetry triclinic phase (space group P-1) which will remain stable up to ∼50 GPa, the maximum pressure of the present calculations. To support the results of our static lattice calculations, we performed lattice dynamic calculations also on Cmcm and P-1 structures. Lattice dynamic calculations correctly showed that at ambient condition the Cmcm phase is dynamically stable. Further, these calculations carried around the Cmcm to P-1 transition pressure predicted that the Cmcm phase will become unstable dynamically due to failure of acoustic zone boundary phonons, suggesting that the Cmcm to P-1 transition is phonon driven. For P-1 phase our calculations showed that this structure is dynamically stable not only at high pressures but also at ambient condition, indicating that at pressure lower than 10 GPa this phase could be a metastable structure. Further, we have calculated the elastic constants for both the phase at various pressures. - Highlights: • Pressure induced phonon driven orthorhombic to triclinic phase transformations in Zr–Ni binary system at ∼10 GPa. • Elastic and lattice dynamic stability of orthorhombic and triclinic phase. • Exploitation of evolutionary structure searching method to explore high pressure phase of Zr–Ni material.

  9. High Pressure X-Ray Diffraction Studies on Nanocrystalline Materials

    Science.gov (United States)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2003-01-01

    Application of in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2 to 30 nrn diameter in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (nanoparticles of different grain size.

  10. Occupational status moderates the association between current perceived stress and high blood pressure: evidence from the IPC cohort study

    Science.gov (United States)

    Wiernik, Emmanuel; Pannier, Bruno; Czernichow, Sébastien; Nabi, Hermann; Hanon, Olivier; Simon, Tabassome; Simon, Jean-Marc; Thomas, Frédérique; Bean, Kathy; Consoli, Silla; Danchin, Nicolas; Lemogne, Cédric

    2013-01-01

    Although lay beliefs commonly relate high blood pressure to psychological stress exposure, research findings are conflicting. This study examined the association between current perceived stress and high blood pressure and explored the potential impact of occupational status on this association. Resting blood pressure was measured in 122,816 adults (84,994 men), aged ≥30 years (mean age ± standard deviation: 46.8±9.9 years), without history of cardiovascular and renal disease and not on either psychotropic or antihypertensive drugs. High blood pressure was defined as systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg. Perceived stress in the past month was measured with the 4-item perceived stress scale. A total of 33,154 participants (27.0%) had high blood pressure (151±14/90±9 mmHg). After adjustment for all variables except occupational status, perceived stress was associated with high blood pressure (odds ratio for a 5-point increase: 1.06, 95% confidence interval: [1.03–1.09]). This association was no longer significant after additional adjustment for occupational status (odds ratio: 1.01 [0.99–1.04]). There was a significant interaction (phigh blood pressure among individuals of high occupational status (odds ratio: 0.91, [0.87–0.96]) but positively associated among those of low status (odds ratio: 1.10, [1.03–1.17]) or unemployed (odds ratio: 1.13, [1.03–1.24]). Sensitivity analyses yielded similar results. The association between current perceived stress and blood pressure depends upon occupational status. This interaction may account for previous conflicting results and warrants further studies to explore its underlying mechanisms. PMID:23319539

  11. High-pressure structural behaviour of nanocrystalline Ge

    International Nuclear Information System (INIS)

    Wang, H; Liu, J F; He, Y; Wang, Y; Chen, W; Jiang, J Z; Olsen, J Staun; Gerward, L

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition pressure and the bulk modulus

  12. Application and possible benefits of high hydrostatic pressure or high-pressure homogenization on beer processing: A review.

    Science.gov (United States)

    Santos, Lígia Mr; Oliveira, Fabiano A; Ferreira, Elisa Hr; Rosenthal, Amauri

    2017-10-01

    Beer is the most consumed beverage in the world, especially in countries such as USA, China and Brazil.It is an alcoholic beverage made from malted cereals, and the barley malt is the main ingredient, added with water, hops and yeast. High-pressure processing is a non-traditional method to preserve food and beverages. This technology has become more interesting compared to heat pasteurization, due to the minimal changes it brings to the original nutritional and sensory characteristics of the product, and it comprises two processes: high hydrostatic pressure, which is the most industrially used process, and high-pressure homogenization. The use of high pressure almost does not affect the molecules that are responsible for the aroma and taste, pigments and vitamins compared to the conventional thermal processes. Thus, the products processed by high-pressure processing have similar characteristics compared to fresh products, including beer. The aim of this paper was to review what has been investigated about beer processing using this technology regarding the effects on physicochemical, microbiology and sensory characteristics and related issues. It is organized by processing steps, since high pressure can be applied to malting, mashing, boiling, filtration and pasteurization. Therefore, the beer processed with high-pressure processing may have an extended shelf-life because this process can inactivate beer spoilage microorganisms and result in a superior sensory quality related to freshness and preservation of flavors as it does to juices that are already commercialized. However, beyond this application, high-pressure processing can modify protein structures, such as enzymes that are present in the malt, like α- and β-amylases. This process can activate enzymes to promote, for example, saccharification, or instead inactivate at the end of mashing, depending on the pressure the product is submitted, besides being capable of isomerizing hops to raise beer bitterness

  13. Stress distribution and pressure-bearing capacity of a high-pressure split-cylinder die with prism cavity

    Science.gov (United States)

    Zhao, Liang; Li, Mingzhe; Wang, Liyan; Qu, Erhu; Yi, Zhuo

    2018-03-01

    A novel high-pressure belt-type die with a split-type cylinder is investigated with respect to extending its lifetime and improving its pressure bearing capacity. Specifically, a tungsten carbide cylinder is split into several parts along the radial direction with a prism-type cavity. In this paper, the cylinders with different split numbers are chosen to study the stress distribution and compare them with the traditional belt-type die. The simulation results indicate that the split cylinder has much smaller stress than those in the belt-type cylinder, and the statistical analysis reveals that the split-pressure cylinder is able to bear higher pressure. Experimental tests also show that the high-pressure die with a split cylinder and prism cavity has a stronger pressure-bearing capacity than a belt-type die. The split cylinder has advantages of easy manufacturing, high pressure bearing capacity, and replaceable performance.

  14. High Blood Pressure: Medicines to Help You

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  15. Clonidine versus captopril for treatment of postpartum very high blood pressure: study protocol for a randomized controlled trial (CLONCAP).

    Science.gov (United States)

    Noronha-Neto, Carlos; Katz, Leila; Coutinho, Isabela C; Maia, Sabina B; Souza, Alex Sandro Rolland; Amorim, Melania Maria Ramos

    2013-07-30

    The behavior of arterial blood pressure in postpartum of women with hypertension and pregnancy and the best treatment for very high blood pressure in this period still need evidence. The Cochrane systematic review assessing prevention and treatment of postpartum hypertension found only two trials (120 patients) comparing hydralazine with nifedipine and labetalol for the treatment of severe hypertension and did not find enough evidence to know how best to treat women with hypertension after birth. Although studies have demonstrated the effectiveness of treatment with captopril, side effects were reported. Because of these findings, new classes of antihypertensive drugs began to be administered as an alternative therapy. Data on the role of clonidine in this particular group of patients, its effects in the short and long term are still scarce in the literature. To determine the effectiveness of clonidine, compared to captopril, for the treatment of postpartum very high blood pressure in women with hypertension in pregnancy. The study is a triple blind randomized controlled trial including postpartum women with diagnosis of hypertension in pregnancy presenting very high blood pressure, and exclusion criteria will be presence of heart disease, smoking, use of illicit drugs, any contraindication to the use of captopril or clonidine and inability to receive oral medications.Eligible patients will be invited to participate and those who agree will be included in the study and receive captopril or clonidine according to a random list of numbers. The subjects will receive the study medication every 20 minutes until blood pressure is over 170 mmHg of systolic blood pressure and 110 mmHg diastolic blood pressure. A maximum of six pills a day for very high blood pressure will be administered. In case of persistent high blood pressure levels, other antihypertensive agents will be used.During the study the women will be subject to strict control of blood pressure and urine

  16. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  17. Maintenance of breast milk Immunoglobulin A after high-pressure processing.

    Science.gov (United States)

    Permanyer, M; Castellote, C; Ramírez-Santana, C; Audí, C; Pérez-Cano, F J; Castell, M; López-Sabater, M C; Franch, A

    2010-03-01

    Human milk is considered the optimal nutritional source for infants. Banked human milk is processed using low-temperature, long-time pasteurization, which assures microbial safety but involves heat denaturation of some desirable milk components such as IgA. High-pressure processing technology, the subject of the current research, has shown minimal destruction of food macromolecules. The objective of this study was to investigate the influence of pressure treatments on IgA content. Moreover, bacterial load was evaluated after pressure treatments. The effects of high-pressure processing on milk IgA content were compared with those of low-temperature, long-time pasteurization. Mature human milk samples were heat treated at 62.5 degrees C for 30min or pressure processed at 400, 500, or 600MPa for 5min at 12 degrees C. An indirect ELISA was used to measure IgA in human milk whey obtained after centrifugation at 800xg for 10min at 4 degrees C. All 3 high-pressure treatments were as effective as low-temperature, long-time pasteurization in reducing the bacterial population of the human milk samples studied. After human milk pressure processing at 400MPa, 100% of IgA content was preserved in milk whey, whereas only 72% was retained in pasteurized milk whey. The higher pressure conditions of 500 and 600MPa produced IgA retention of 87.9 and 69.3%, respectively. These results indicate that high-pressure processing at 400MPa for 5min at 12 degrees C maintains the immunological protective capacity associated with IgA antibodies. This preliminary study suggests that high-pressure processing may be a promising alternative to pasteurization in human milk banking.

  18. High-pressure powder X-ray diffraction at the turn of the century

    International Nuclear Information System (INIS)

    Paszkowicz, W.

    2002-01-01

    Studies at extreme pressures and temperatures are helpful for understanding the physical properties of the solid state, including such classes of materials as semiconductors, superconductors or minerals. This is connected with the opportunity of tuning the pressure by many orders of magnitude. Diamond-anvil and large-anvil pressure cells installed at dedicated synchrotron beamlines are efficient tools for examination of crystal structure, equation of state, compressibility and phase transitions. One of basic methods in such studies is powder diffraction. This review is devoted to methods of powder X-ray diffraction at high-pressures generated by devices installed at synchrotron radiation sources, in particular to the principles of operation of high-pressure-high-temperature cells. General information on high-pressure diffraction facilities installed at 11 synchrotron storage rings in the world is provided. Measurement aspects are considered, including (i) pressure generation and calibration, (ii) strain in the sample, the pressure marker and the pressure-transmitting medium and (iii) pressure and temperature distributions within the cells. Sources of interest in high-pressure diffraction studies (design of new materials, observation of new phenomena, confrontation of theory with experiment) are briefly discussed. Recent developments of high-pressure methods make that pressure becomes a variable playing a key role in investigation of condensed matter. The paper ends with some remarks on the possible future developments of the technique

  19. Association between parity and breastfeeding with maternal high blood pressure.

    Science.gov (United States)

    Lupton, Samantha J; Chiu, Christine L; Lujic, Sanja; Hennessy, Annemarie; Lind, Joanne M

    2013-06-01

    The objective of this study was to determine how parity and breastfeeding were associated with maternal high blood pressure, and how age modifies this association. Baseline data for 74,785 women were sourced from the 45 and Up Study, Australia. These women were 45 years of age or older, had an intact uterus, and had not been diagnosed with high blood pressure before pregnancy. Odds ratios (ORs) and 99% confidence intervals (CIs) for the association between giving birth, breastfeeding, lifetime breastfeeding duration, and average breastfeeding per child with high blood pressure were estimated using logistic regression. The combination of parity and breastfeeding was associated with lower odds of having high blood pressure (adjusted OR, 0.89; 99% CI, 0.82-0.97; P high blood pressure when compared with parous women who never breastfed. The odds were lower with longer breastfeeding durations and were no longer significant in the majority of women over the age of 64 years. Women should be encouraged to breastfeed for as long as possible and a woman's breastfeeding history should be taken into account when assessing her likelihood of high blood pressure in later life. Copyright © 2013 Mosby, Inc. All rights reserved.

  20. Parametric studies on containment thermal hydraulic loads during high pressure melt ejection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Silde, A.; Lindholm, I. [VTT Energy, Espoo (Finland)

    1997-12-01

    The containment thermal hydraulic loads during high pressure melt ejection in a Nordic BWR are studied parametrically with the CONTAIN and the MELCOR codes. The work is part of the Nordic RAK-2 project. The containment analyses were divided into two categories according to composition of the discharged debris: metallic and oxidic debris cases. In the base case with highly metallic debris, all sources from the reactor coolant system to the containment were based on the MELCOR/BH calculation. In the base case with the oxidic debris, the source data was specified assuming that {approx} 15% of the whole core material inventory and 34,000 kg of saturated water was discharged from the reactor pressure vessel (RPV) during 30 seconds. In this case, the debris consisted mostly of oxides. The highest predicted containment pressure peaks were about 8.5 bar. In the scenarios with highly metallic debris source, very high gas temperature of about 1900 K was predicted in the pedestal, and about 1400 K in the upper drywell. The calculations with metallic debris were sensititive to model parameters, like the particle size and the parameters, which control the chemical reaction kinetics. In the scenarios with oxidic debris source, the predicted pressure peaks were comparable to the cases with the metallic debris source. The maximum gas temperatures (about 450-500 K) in the containment were, however, significantly lower than in the respective metallic debris case. The temperatures were also insensitive to parametric variations. In addition, one analysis was performed with the MELCOR code for benchmarking of the MELCOR capabilities against the more detailed CONTAIN code. The calculations showed that leak tightness of the containment penetrations could be jeopardized due to high temperature loads, if a high pressure melt ejection occurred during a severe accident. Another consequence would be an early containment venting. (au). 28 refs.

  1. High blood pressure in older subjects with cognitive impairment.

    Science.gov (United States)

    Mossello, Enrico; Simoni, David

    2016-06-22

    High blood pressure and cognitive impairment often coexist in old age, but their pathophysiological association is complex. Several longitudinal studies have shown that high blood pressure at midlife is a risk factor for cognitive impairment and dementia, although this association is much less clear in old age. The effect of blood pressure lowering in reducing the risk of dementia is only borderline significant in clinical trials of older subjects, partly due to the insufficient follow-up time. Conversely, dementia onset is associated with a decrease of blood pressure values, probably secondary to neurodegeneration. Prognostic effect of blood pressure values in cognitively impaired older subjects is still unclear, with aggressive blood pressure lowering being potentially harmful in this patients category. Brief cognitive screening, coupled with simple motor assessment, are warranted to identify frail older subjects who need a more cautious approach to antihypertensive treatment. Values obtained with ambulatory blood pressure monitoring seem more useful than clinical ones to predict the outcome of cognitively impaired older subjects. Future studies should identify the most appropriate blood pressure targets in older subjects with cognitive impairment.

  2. Advances in high pressure science and technology: proceedings of the fourth national conference on high pressure science and technology

    International Nuclear Information System (INIS)

    Yousuf, Mohammad; Subramanian, N.; Govinda Rajan, K.

    1997-09-01

    The proceedings of the fourth National Conference on High Pressure Science and Technology covers a wide area of research and development activities in the field of high pressure science and technology, broadly classified into the following themes: mechanical behaviour of materials; instrumentation and methods in high pressure research; pressure calibration, standards and safety aspects; phase transitions; shock induced reactions; mineral science, geophysics, geochemistry and planetary sciences; optical, electronic and transport properties; synthesis of materials; soft condensed matter physics and liquid crystals; computational methods in high pressure research. Papers relevant to INIS are indexed separately

  3. Small-angle neutron scattering study of high-pressure sintered detonation nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Kidalov, S. V.; Shakhov, F. M., E-mail: fedor.shakhov@mail.ioffe.ru [Ioffe Physical-Technical Institute of the Russian Academy of Sciences (Russian Federation); Lebedev, V. T.; Orlova, D. N.; Grushko, Yu. S. [Russian Academy of Sciences, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)

    2011-12-15

    The structure of detonation diamonds sintered at a high pressure (7 GPa) and temperatures of 1200-1700 Degree-Sign C has been investigated by small-angle neutron scattering. It is shown that sintering leads to an increase in the particle size from 6 to 30 nm and established that this increase is due to the chainlike oriented attachment of particles. This study supplements the oriented-attachment model, which was suggested based on the X-ray diffraction spectra of detonation nanodiamonds (DNDs) sintered under the same conditions.

  4. High-pressure EPR spectroscopy studies of the E. coli lipopolysaccharide transport proteins LptA and LptC.

    Science.gov (United States)

    Schultz, Kathryn M; Klug, Candice S

    2017-12-01

    The use of pressure is an advantageous approach to the study of protein structure and dynamics because it can shift the equilibrium populations of protein conformations toward higher energy states that are not of sufficient population to be observable at atmospheric pressure. Recently, the Hubbell group at the University of California, Los Angeles, reintroduced the application of high pressure to the study of proteins by electron paramagnetic resonance (EPR) spectroscopy. This methodology is possible using X-band EPR spectroscopy due to advances in pressure intensifiers, sample cells, and resonators. In addition to the commercial availability of the pressure generation and sample cells by Pressure Biosciences Inc., a five-loop-four-gap resonator required for the initial high pressure EPR spectroscopy experiments by the Hubbell group, and those reported here, was designed by James S. Hyde and built and modified at the National Biomedical EPR Center. With these technological advances, we determined the effect of pressure on the essential periplasmic lipopolysaccharide (LPS) transport protein from Escherichia coli , LptA, and one of its binding partners, LptC. LptA unfolds from the N-terminus to the C-terminus, binding of LPS does not appreciably stabilize the protein under pressure, and monomeric LptA unfolds somewhat more readily than oligomeric LptA upon pressurization to 2 kbar. LptC exhibits a fold and relative lack of stability upon LPS binding similar to LptA, yet adopts an altered, likely monomeric, folded conformation under pressure with only its C-terminus unraveling. The pressure-induced changes likely correlate with functional changes associated with binding and transport of LPS.

  5. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  6. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  7. System Study: High-Pressure Safety Injection 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the high-pressure safety injection system (HPSI) at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPSI results.

  8. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li

    2015-09-01

    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  9. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    Tang, David Chi-Wai

    2005-01-01

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4 o on Pt(111), and domains of c(4 x 2)-CO+C 2 H 3 , previously unobserved (4 x 2)-CO+3C 2 H 3 , and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely

  10. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    International Nuclear Information System (INIS)

    Liu Chuan-Jiang; Zheng Hai-Fei

    2012-01-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO 4 ) phase precipitates at 250–320°C in the pressure range of 1.0–1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO 4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T−0.7126 (250°C≤T≤320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature. (geophysics, astronomy, and astrophysics)

  11. High-pressure microscopy for tracking dynamic properties of molecular machines.

    Science.gov (United States)

    Nishiyama, Masayoshi

    2017-12-01

    High-pressure microscopy is one of the powerful techniques to visualize the effects of hydrostatic pressures on research targets. It could be used for monitoring the pressure-induced changes in the structure and function of molecular machines in vitro and in vivo. This review focuses on the dynamic properties of the assemblies and machines, analyzed by means of high-pressure microscopy measurement. We developed a high-pressure microscope that is optimized both for the best image formation and for the stability to hydrostatic pressure up to 150 MPa. Application of pressure could change polymerization and depolymerization processes of the microtubule cytoskeleton, suggesting a modulation of the intermolecular interaction between tubulin molecules. A novel motility assay demonstrated that high hydrostatic pressure induces counterclockwise (CCW) to clockwise (CW) reversals of the Escherichia coli flagellar motor. The present techniques could be extended to study how molecular machines in complicated systems respond to mechanical stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High Blood Pressure

    Science.gov (United States)

    ... factors Diabetes High blood pressure Family history Obesity Race/ethnicity Full list of causes and risk factors ... give Give monthly Memorials and tributes Donate a car Donate gently used items Stock donation Workplace giving ...

  13. High Blood Pressure

    Science.gov (United States)

    ... kidney disease, diabetes, or metabolic syndrome Read less Unhealthy lifestyle habits Unhealthy lifestyle habits can increase the risk of high blood pressure. These habits include: Unhealthy eating patterns, such as eating too much sodium ...

  14. Measuring bacterial activity and community composition at high hydrostatic pressure using a novel experimental approach: a pilot study.

    Science.gov (United States)

    Wannicke, Nicola; Frindte, Katharina; Gust, Giselher; Liskow, Iris; Wacker, Alexander; Meyer, Andreas; Grossart, Hans-Peter

    2015-05-01

    In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 ± 1.4 and 3.9 ± 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 ± 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 ± 1.5 and 2.9 ± 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Structural study of ball-milled sodium alanate under high pressure

    International Nuclear Information System (INIS)

    Selva Vennila, R.; Drozd, Vadym; George, Lyci; Saxena, Surendra K.; Liermann, Hanns-Peter; Liu, H.Z.; Stowe, Ashley C.; Berseth, Polly; Anton, Donald; Zidan, Ragaiy

    2009-01-01

    Ball-milled NaAlH 4 was studied up to 15 GPa in a diamond anvil cell (DAC) by X-ray diffraction using a synchrotron radiation source. Lattice parameters were determined from the X-ray diffraction data at various pressures up to 6.5 GPa. Intensity of the powder diffraction patterns decreased with increasing pressure. Amorphisation started at a pressure of ∼6.5 GPa and completed at 13.5 GPa. Reversible phase transformation from amorphous phase to the tetragonal phase was observed. A fit to the pressure-volume data equation of state was obtained using the Birch-Murnaghan equation of state and the bulk modulus was found to be 52.16 ± 0.9 GPa which is twice higher than the unmilled NaAlH 4

  16. Sounding experiments of high pressure gas discharge

    International Nuclear Information System (INIS)

    Biele, Joachim K.

    1998-01-01

    A high pressure discharge experiment (200 MPa, 5·10 21 molecules/cm 3 , 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm 3 ) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm 3 ) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved

  17. Ab initio study of properties of BaBiO3 at high pressure

    Science.gov (United States)

    Martoňák, Roman; Ceresoli, Davide; Kagayama, Tomoko; Tosatti, Erio

    BaBiO3 is a mixed-valence perovskite which escapes metallic state by creating a Bi-O bond disproportionation or CDW pattern, resulting in a Peierls semiconductor with gap of nearly 1 eV at zero pressure. Evolution of structural and electronic properties at high pressure is, however, largely unknown. Pressure, it might be natural to expect, could reduce the bond-disproportionation and bring the system closer to metalicity or even superconductivity. We address this question by ab initio DFT methods based on GGA and hybrid functionals in combination with crystal structure prediction techniques based on genetic algorithms. We analyze the pressure evolution of bond disproportionation as well as other order parameters related to octahedra rotation for various phases in connection with corresponding evolution of the electronic structure. Results indicate that BaBiO3 continues to resist metalization also under pressure, through structural phase transitions which sustain and in fact increase the diversity of length of Bi-O bonds for neighboring Bi ions, in agreement with preliminary high pressure resistivity data. R.M. Slovak Research and Development Agency Contract APVV-15-0496, VEGA project No. 1-0904-15; E.T. ERC MODPHYSFRICT Advanced Grant No. 320796.

  18. observed by high pressure NMR and NQR

    Indian Academy of Sciences (India)

    Akogun, Hyogo 678-1297, Japan. ∗. Email: kohara@sci.himeji tech.ac.jp. Abstract. NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si. NMR signals arising from the antiferromagnetic ...

  19. High-pressure Raman study of vibrational spectra in crystalline acetanilide

    Science.gov (United States)

    Sakai, Masamichi; Kuroda, Noritaka; Nishina, Yuichiro

    1993-01-01

    We have studied the effect of pressure on the low-frequency lattice modes and the amide-I (N-CO stretching) vibrational modes in crystalline acetanilide (C6H5NHCOCH3) in the temperature range 80-300 K by means of Raman spectroscopy. The Raman intensity of the 1650-cm-1 band, which appears upon cooling, is enhanced by applying pressure. The energy difference between the amide-I phonon (Ag mode) and the 1650-cm-1 bands does not change appreciably under pressure up to at least 4 GPa. These results are analyzed in terms of the self-trapped model in which a single lattice mode couples with the amide-I excitation by taking into account the effect of pressure on the low-frequency lattice modes and on the dipole-dipole interactions associated with the amide-I vibration. A band is observed at 30 cm-1 below the amide-I phonon band at low temperatures with a pressure above ~2 GPa.

  20. High pressure neutron and X-ray diffraction at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ridley, Christopher J.; Kamenev, Konstantin V. [Edinburgh Univ. (United Kingdom). School of Engineering and the Centre for Science at Extreme Conditions

    2014-04-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  1. High pressure neutron and X-ray diffraction at low temperatures

    International Nuclear Information System (INIS)

    Ridley, Christopher J.; Kamenev, Konstantin V.

    2014-01-01

    This paper presents a review of techniques and considerations in the design and construction of high pressure, low temperature diffraction experiments. Also intended as an introductory text to new high pressure users, the crucial aspects of pressure cell design are covered. The general classification of common designs, and a discussion into the key beam interaction, mechanical, and thermal properties of commonly used materials is given. The advantages of different materials and high pressure cell classifications are discussed, and examples of designs developed for low temperature diffraction studies are presented, and compared. (orig.)

  2. What Is High Blood Pressure Medicine?

    Science.gov (United States)

    ... a medicine calendar. • Set a reminder on your smartphone. What types of medicine may be prescribed? One ... High Blood Pressure Medicine? What are their side effects? For many people, high blood pressure medicine can ...

  3. High Blood Pressure in Pregnancy

    Science.gov (United States)

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  4. The Effect of High Hydrostatic Pressure on Microorganisms in Food Preservation

    OpenAIRE

    M. Arici

    2006-01-01

    High hydrostatic pressure is a new food preservation technology known for its capacity to inactivate spoilage and pathogenic microorganisms. High-pressure treatments are receiving a great deal of attention for the inactivation of microorganisms in food processing, pressure instead of temperature is used as stabilizing factor. High hydrostatic pressure treatment is the most studied alternative process, many works reported successful results in inactivating a wide range of microorganisms under ...

  5. On high-pressure melting of tantalum

    Science.gov (United States)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  6. Photoluminescence study of Congo red molecules under high pressure

    International Nuclear Information System (INIS)

    Wang, Z.P.; Zhang, Z.M.; Ding, Z.J.

    2007-01-01

    Pressure-induced changes on fluorescence spectra of Congo red molecules were examined up to 8.7 GPa using a diamond anvil cell at room temperature. The spectra changes are demonstrated to be sensitive to the pressure and solvent conditions. At hydrostatic pressure and with a solvent used as a pressure transmitting medium the fluorescence spectra show increase of intensity with elevated pressure up to about 2.3 GPa and then drop at higher pressures. For Congo red crystal under quasi-hydrostatic condition without solvent the fluorescence intensity decreases monotonically and the lower energy band becomes dominant with the pressure increasing. The three vibronic bands show red shifts with increase of pressure

  7. Family Adaptability and Cohesion and High Blood Pressure among Urban African American women

    Science.gov (United States)

    Brittain, Kelly; Taylor, Jacquelyn Y.; Wu, Chun Yi

    2010-01-01

    African American women are at greater risk for complications related to high blood pressure. This study examined relationships between high blood pressure, pulse pressure, body mass index, family adaptability, family cohesion and social support among 146 Urban African American women. Significant relationships were found between family adaptability and systolic blood pressure (p = .03) and between adaptability and pulse pressure (p ≤ .01). Based on study results, practitioners should routinely assess family functioning, specifically family adaptability, in African American women who are at risk for high blood pressure or diagnosed with high blood pressure to minimize complications associated with hypertension. PMID:21076625

  8. Practical conditions in the neutron diffraction under high pressure

    International Nuclear Information System (INIS)

    Kamigaki, Kazuo; Ohashi, Masayoshi

    1993-01-01

    Practical analysis is made on some conditions in utilizing neutrons for the study of atomistic structure of materials under high pressure. Investigation is made on the geometrical conditions; size of the specimen, width of slits, and the rate of extra-scattering. Experiments are performed on the effects of absorption by high pressure cell and the disturbance due to an overlapping of diffraction peaks. An observation is presented on the pressure-induced transformation in RbBr. (author)

  9. Inactivation of food-borne pathogens by combined high hydrostatic pressure and irradiation- a model study

    International Nuclear Information System (INIS)

    Kamat, Anu; Thomas, Paul; Kesavan, P.C.; Fotedar, R.

    1997-01-01

    Application of radiation or high pressure as a food processing method is comparatively recent development in food industry. To investigate the response to hydrostatic pressure, cells of pathogens at logarithmic phase were exposed to 200 MPa for various time intervals in saline as model system. The cells of Salmonella were observed to be most sensitive whereas Listeria monocytogenes were most resistant as revealed by 7 and 2 log cycle inactivation respectively in 10 min. The cells of Bacillus cereus and Yersinia enterocolitica showed 3 long cycles reduction by the same treatment. Bacterial spores because of their resistant nature, are inactivated only at high radiation doses, which are technologically unfeasible. Studies carried out to examine the effectiveness of combination of pressure and radiation clearly suggested that combination treatment given in either sequence reduces the bacterial spore load more effectively than the individual treatment per se. (author)

  10. Effect of high pressure hydrogen on low-cycle fatigue

    International Nuclear Information System (INIS)

    Rie, K.T.; Kohler, W.

    1979-01-01

    It has been shown that the fatigue life can be influenced in low-cycle range by high pressure hydrogen while the effect of high pressure hydrogen on high-cycle fatigue will not be as significant. The paper reports the details and the results of the investigations of the effect of high pressure hydrogen on the low-cycle endurance of commercially pure titanium. The results of this study indicate that: 1. The degradation of the fatigue life in low-cycle region for commercially pure titanium under high pressure hydrogen can be described by Nsub(cr)sup(α x Δepsilon)sub(pl)sup(=c) 2. The fatigue life decreases with decreasing strain rate. 3. The fatigue life decreases with increasing hydrogen pressure. It was found that the semilogarithmic plot of the fatigue life versus the hydrogen pressure gives a linear relationship. The Sievert's law does not hold in low-cycle fatigue region. 4. HAC in titanium in low-cycle fatigue region is the result of the disolution of hydrogen at the crack tip and of the strain-induced hybride formation. (orig.) 891 RW/orig. 892 RKD [de

  11. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  12. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  13. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  14. Structural study of ball-milled sodium alanate under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Selva Vennila, R. [Center for Study of Matter at Extreme Conditions, Florida International University, Miami, FL 33199 (United States)], E-mail: selva.raju@fiu.edu; Drozd, Vadym; George, Lyci; Saxena, Surendra K. [Center for Study of Matter at Extreme Conditions, Florida International University, Miami, FL 33199 (United States); Liermann, Hanns-Peter [High Pressure Collaboration Access Team (HPCAT) and Geophysical Laboratory, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Liu, H.Z. [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Building 434E, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Stowe, Ashley C.; Berseth, Polly; Anton, Donald; Zidan, Ragaiy [Savannah River National Laboratory, Energy Security Department, Aiken, SC 29808 (United States)

    2009-04-03

    Ball-milled NaAlH{sub 4} was studied up to 15 GPa in a diamond anvil cell (DAC) by X-ray diffraction using a synchrotron radiation source. Lattice parameters were determined from the X-ray diffraction data at various pressures up to 6.5 GPa. Intensity of the powder diffraction patterns decreased with increasing pressure. Amorphisation started at a pressure of {approx}6.5 GPa and completed at 13.5 GPa. Reversible phase transformation from amorphous phase to the tetragonal phase was observed. A fit to the pressure-volume data equation of state was obtained using the Birch-Murnaghan equation of state and the bulk modulus was found to be 52.16 {+-} 0.9 GPa which is twice higher than the unmilled NaAlH{sub 4}.

  15. High blood pressure and eye disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  16. High Pressure Scanning Tunneling Microscopy and High PressureX-ray Photoemission Spectroscopy Studies of Adsorbate Structure,Composition and Mobility during Catalytic Reactions on A Model SingleCrystal

    Energy Technology Data Exchange (ETDEWEB)

    Montano, Max O. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Our research focuses on taking advantage of the ability of scanning tunneling microscopy (STM) to operate at high-temperatures and high-pressures while still providing real-time atomic resolution images. We also utilize high-pressure x-ray photoelectron spectroscopy (HPXPS) to monitor systems under identical conditions thus giving us chemical information to compare and contrast with the structural and dynamic data provided by STM.

  17. In-situ Diffraction Study of Magnetite at Simultaneous High Pressure and High Temperature Using Synchrotron Radiation

    Science.gov (United States)

    Wang, L.; Zhang, J.; Wang, S.; Chen, H.; Zhao, Y.

    2014-12-01

    Magnetite intertwined with the evolution of human civilizations, and remains so today. It is technologically and scientifically important by virtue of its unique magnetic and electrical properties. Magnetite is a common mineral found in a variety of geologic environments, and plays an important role in deciphering the oxygen evolution in the Earth's atmosphere and its deep interiors. The latter application asks for the knowledge of the thermal and elastic properties of magnetite at high pressures and temperatures, which is currently not available in literature. We have carried out a few in-situ diffraction experiments on magnetite using white synchrotron radiation at beamline X17B2 of National Synchrotron Light Source (NSLS). A DIA module in an 1100-ton press and WC anvils were employed for compression, and diffraction spectra were collected at simultaneous high pressures (P) and temperatures (T) (up to 9 GPa and 900 oC). Mixture of amorphous boron and epoxy resin was used as pressure medium, and NaCl as pressure marker. Temperature was recorded by W-Re thermocouples. Commercially purchased magnetite powder and a mixture of the said powder and NaCl (1:1) were used as starting material in separate experiments. Preliminary data analyses have yielded following observations: (1) Charge disordering seen at ambient pressure remains active in current experiments, especially at lower pressures (reversibility and degree of cation disordering depend on the starting material and/or experimental P-T path; and (4) cation disordering notably reduces the apparent bulk moduli of magnetite.

  18. High Blood Pressure: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides ... Pressure Targets are Different for Very Old Adults High blood pressure (also called hypertension) increases your chance of having ...

  19. First-principles calculations of a high-pressure synthesized compound PtC

    International Nuclear Information System (INIS)

    Li Linyan; Yu Wen; Jin Changqing

    2005-01-01

    The first-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that platinum carbide has a zinc-blende ground-state phase at zero pressure and that the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt structure is determined to be 52 GPa. Furthermore, our calculation shows the possibility that the PtC experimentally synthesized under high pressure conditions might undergo a transition from rock-salt to zinc-blende structure after a pressure quench to ambient conditions

  20. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  1. Past oral contraceptive use and self-reported high blood pressure in postmenopausal women.

    Science.gov (United States)

    Chiu, Christine L; Lind, Joanne M

    2015-01-31

    Studies have reported current hormonal contraceptive use is associated with adverse cardiovascular outcomes, including high blood pressure. The aim of this study was to determine the association between past hormonal contraception use and high blood pressure in Australian postmenopausal women. Women were recruited from the 45 and Up Study, an observational cross-sectional study, conducted from February 2006 to December 2009, NSW Australia. All of the variables used in this study were derived from self-reported data. These women reported being postmenopausal, having an intact uterus, and had given birth to one or more children. Odds ratios and 99% confidence intervals for the association between past hormonal contraceptive use and current treatment for high blood pressure, stratified by current age (high blood pressure, menopausal hormone therapy use, number of children, whether they breastfed, and age of menopause. A total of 34,289 women were included in the study. No association between past hormonal contraception use and odds of having high blood pressure were seen in any of the age groups (high blood pressure was observed. Past hormonal contraception use and duration of use is not associated with high blood pressure in postmenopausal women.

  2. Synergistic effect of high pressure processing and Lactobacillus casei antimicrobial activity against pressure resistant Listeria monocytogenes.

    Science.gov (United States)

    Chung, Hyun-Jung; Yousef, Ahmed E

    2010-09-30

    The purpose of this study was to evaluate combinations of high pressure processing (HPP) and Lactobacillus casei antimicrobial activity against Listeria monocytogenes strains with variation in pressure resistance in culture and in a food model. In culture, combination of HPP (350 MPa, for 1-20 min) and Lb. casei cell extract (CE, 32 CEAU/ml) showed a significant synergistic bactericidal effect (P5 log(10)CFU/ml. Synergy between CE and HPP was most evident in the pressure-resistant strain, OSY-8578. Similar result was observed in meat products where high pressure (500 MPa for 1 min), and high-activity CE (100 CEAU/g) caused >5 log reduction in the viability of L. monocytogenes Scott A. The combination treatment resulted in the absence of peaks associated with cellular components in DSC thermogram suggesting that the presence of CE may have caused a considerable damage to cellular components during the high pressure treatment. Copyright 2010 Elsevier B.V. All rights reserved.

  3. A study of mechanical sealing methods using graphite powder for high pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H. Y.; Hong, J. T.; Ahn, S. H.; Joung, C. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The Fuel Test Loop (FTL) is a facility that can conduct fuel irradiation tests at the HANARO (High flux Advanced Neutron Application Reactor). The FTL simulates commercial NPP operating conditions such as pressure, temperature and neutron flux levels to conduct irradiation and thermo hydraulic tests. It is composed of an In Pile test Section (IPS) and an Out Pile System (OPS). The OPS contains a pressurizer, cooler, pump, heater and purification system, which are necessary to maintain the proper fluid conditions. In addition, the OPS contains engineered safety systems that can safely shutdown both HANARO and FTL if an accident occurs. The IPS accommodating fuel pins has a loaded IP 1 hole in HANARO, and a double pressure vessel for the design conditions of 350 .deg. C, 17.5MPa and is composed of an outer assembly and inner assembly. It has instruments such as a thermocouple, LVDT and SPND to measure the fuel performances during the test. FTL coolant is supplied to the IPS at the core of commercial nuclear power plants at the same temperature, pressure and flow conditions. Sensors are installed on the inside of the IPS to send signal transmission MI Cables to the outside for instrumentation through the pressure boundary. Therefore, the pressure boundary should be maintained in the sealing performance. Currently, the sealing of the IPS of the the FTL is maintained through a brazing method. However, A brazing method has disadvantages that can occur owing to thermal deformation or breakage in the instrumentation Mi cable. IPS inner assembly is a very long design length (approximately 5.29m), so it is difficult to perform in a vacuum chamber. Therefore, an easy and reliable way to assemble the instrumentation Mi cable mechanical sealing method has been studied. In this study, criteria tests at the pressure boundary were performed using universally applicable graphite powder for the instrumentation MI cable of various sizes.

  4. A study of mechanical sealing methods using graphite powder for high pressure vessel

    International Nuclear Information System (INIS)

    Jeong, H. Y.; Hong, J. T.; Ahn, S. H.; Joung, C. Y.

    2012-01-01

    The Fuel Test Loop (FTL) is a facility that can conduct fuel irradiation tests at the HANARO (High flux Advanced Neutron Application Reactor). The FTL simulates commercial NPP operating conditions such as pressure, temperature and neutron flux levels to conduct irradiation and thermo hydraulic tests. It is composed of an In Pile test Section (IPS) and an Out Pile System (OPS). The OPS contains a pressurizer, cooler, pump, heater and purification system, which are necessary to maintain the proper fluid conditions. In addition, the OPS contains engineered safety systems that can safely shutdown both HANARO and FTL if an accident occurs. The IPS accommodating fuel pins has a loaded IP 1 hole in HANARO, and a double pressure vessel for the design conditions of 350 .deg. C, 17.5MPa and is composed of an outer assembly and inner assembly. It has instruments such as a thermocouple, LVDT and SPND to measure the fuel performances during the test. FTL coolant is supplied to the IPS at the core of commercial nuclear power plants at the same temperature, pressure and flow conditions. Sensors are installed on the inside of the IPS to send signal transmission MI Cables to the outside for instrumentation through the pressure boundary. Therefore, the pressure boundary should be maintained in the sealing performance. Currently, the sealing of the IPS of the the FTL is maintained through a brazing method. However, A brazing method has disadvantages that can occur owing to thermal deformation or breakage in the instrumentation Mi cable. IPS inner assembly is a very long design length (approximately 5.29m), so it is difficult to perform in a vacuum chamber. Therefore, an easy and reliable way to assemble the instrumentation Mi cable mechanical sealing method has been studied. In this study, criteria tests at the pressure boundary were performed using universally applicable graphite powder for the instrumentation MI cable of various sizes

  5. Synthesis and high (pressure, temperature) stability of ZnTiO3 polymorphs studied by Raman spectroscopy

    Science.gov (United States)

    Bernert, T.; Ruiz-Fuertes, J.; Bayarjargal, L.; Winkler, B.

    2015-05-01

    The phase-purity of ilmenite-type ZnTiO3 prepared by the ceramic method was investigated in dependence of the conditions during ball milling. The previously proposed addition of 2 ml ethanol to the starting materials led to a significant contamination of the product phase after a subsequent sintering process at 1073 K. However, by omitting ethanol this synthesis route led to a phase-pure sample of ZnTiO3 as confirmed by X-ray powder diffraction and Raman spectroscopy. High-temperature high-pressure experiments gave an ilmenite-type to perovskite-type phase boundary with a slope of dT/dP∼-135 K GPa-1 crossing ambient temperature conditions at ∼ 24 GPa in good agreement with previous calculations. Room-temperature high-pressure Raman spectroscopy experiments have shown the stability of the ilmenite-type phase up to a pressure of at least 38.5 GPa, the highest pressure applied in this study, indicating the presence of a kinetic barrier in this phase transition. The synthesis of ferroelectric LiNbO3-type ZnTiO3 was confirmed by second harmonic generation.

  6. Evaluation of high-pressure containment buildings for LMFBR's

    International Nuclear Information System (INIS)

    Armstrong, G.R.

    1981-01-01

    A study was conducted on the use of High Pressure LMFBR Containment Buildings for 1000 MW(e) LMFBRs. Two principal aspects were investigated: accident consequence mitigation and cost. Two types of hypothetical accidents were analyzed to establish consequence mitigation: melt-through and energetic expulsion. Three Containment Building (CB) design pressures were investigated: 69 kPa (10 psig), 207 kPa (30 psig), and 414 kPa (60 psig). Four types of design structures were analyzed to establish cost: steel, steel with confinement building, reinforced concrete, and prestressed/post-tensioned concrete. Results show that: it is within reason that a high pressure containment for a 1000 MW(e) reactor can be fabricated that will retain its integrity during postulated severe hypothetical accidents, if available measures are taken to reduce or prevent hydrogen production and the cost differential between basic high (414 kPa) and low (69 kPa) pressure containments is $10 x 10 6 or less

  7. First-principles study on the electronic structure, phonons and optical properties of LaB_6 under high-pressure

    International Nuclear Information System (INIS)

    Chao, Luomeng; Bao, Lihong; Wei, Wei; O, Tegus; Zhang, Zhidong

    2016-01-01

    The electronic structure, phonons and optical properties of LaB_6 compound under different pressure have been studied by first-principles calculation. The electronic structure calculation shows that the d band along the M-Γ direction of the Brillouin zone moves up with increasing pressure and the band minimum is above the Fermi level at 45 GPa. The pressure-induced charge transfer from La to B atoms is reflected in the upshift of d band along the M-Γ direction with pressure. The calculated phonon dispersion curve at zero pressure is in good agreement with the experimental results. However, the phonon dispersion under high pressure does not show any information about the phase transition at 10 GPa, which was reported previously. The acoustic and optical phonon modes harden all the way with increasing pressure. In addition, the dielectric function is in accordance with the Drude model in the pressure range of 0 GPa–35 GPa and follows the Lorentz model at 45 GPa. The LaB_6 compound exhibits better visible light transmittance performance with the increasing pressure in the range of 0 GPa–35 GPa and visible light transmittance peak would be shifted towards ultraviolet region. - Highlights: • Physical properties of LaB_6 under high pressure have been theoretically studied. • Predict an electronic topological transition occurs at 45 GPa for LaB_6. • Predict a pressure-induced charge transfer from La to B atoms. • The phonon modes at Γ point show an increasing trend with increasing pressure. • The LaB_6 exhibits better heat-shielding performance with the increasing pressure.

  8. Risk Associated With The Decompression Of High Pressure High Temperature Fluids - Study On Black Oil

    DEFF Research Database (Denmark)

    Figueroa, D. C.; Fosbøl, P. L.; Thomsen, K.

    2015-01-01

    Fluids produced from deep underground reservoirs may result in exponential increase in temperature. It is a consequence of adiabatic fluid decompression from the inverse Joule Thomson Effect (JTE). The phenomenon requires analysis in order to avoid any operational risks. This study evaluates...... the JTE upon decompression of black oil in high pressure-high temperature reservoirs. Also the effect caused by the presence of water and brine on the black oil is studied. The final temperature is calculated from the corresponding energy balance at isenthalpic and non-isenthalpic conditions. It is found...... that the final temperature of black oil increases upon adiabatic decompression. In the case of the isenthalpic process at initial conditions of the reservoir, e.g. 150°C and 1000 bars, it is found that the final temperature can increase to 173.7°C. At non-isenthalpic conditions the final temperature increases...

  9. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch

    2005-01-01

    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  10. $\\mu$SR-Measurements under High Pressure and at Low Temperatures

    CERN Multimedia

    2002-01-01

    High pressure causes changes in the volume available to each atom in a solid and will therefore influence local properties like the electronic charge and spin densities and, in the case of magnetic materials, the spin ordering.\\\\ \\\\ The positive muon is known to be an interesting probe particle for the study of certain problems in magnetism. It has in fact been used for one high pressure experiment earlier in CERN, but the present experiments aim at more systematic studie For this purpose it is necessary to carry out pressure experiments at low temperatures. The new experiments use a helium gas pressure system, which covers the temperature range 10-300 K at pressures up to 14 Kbar.\\\\ \\\\ Experiments are in progress on \\item 1)~~~~Ferromagnetic metals like Fe, Co, Ni where the pressure dependence of the local magnetic field ~~~is studied at 77 K and at room temperature. \\item 2)~~~~Knight shifts in semimetals, where in the case of Sb strong variations with temperature and ~~~pressure are observed. \\end{enumerat...

  11. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  12. Radioresistance increase in polymers at high pressures. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Milinchuk, V; KIRJUKHIN, V; KLINSHPONT, E

    1977-06-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibers were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene, 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures.

  13. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  14. Raman studies of hexagonal MoO{sub 3} at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.C.; Zhang, Z.M.; Dai, R.C.; Zhang, J.W.; Ding, Z.J. [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, L. [Department of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Z.P. [The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-05-15

    The transition-metal oxide MoO{sub 3} is an important semiconductor and has various technological applications in catalysts, electrochromic and photochromic devices, gas sensors, and battery electrodes. In this study, the hexagonal MoO{sub 3} prepared by a hydrothermal method is in morphology of microrod with diameter of 0.8-1.2 {mu}m and length of 2.0-4.3 {mu}m. Its structural stability was investigated by an in situ Raman scattering method in a diamond anvil cell up to 28.7 GPa at room temperature. The new Raman peak around 1000 cm{sup -1} implies that a phase transition from hexagonal to amorphous starts at 5.6 GPa, and the evolution of the Raman spectra indicates that the structural transition is completed at about 13.2 GPa. After releasing pressure to ambient condition, the Raman spectrum pattern of the high pressure phase was retained, revealing that the phase transition is irreversible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. High Pressure Physics at Brigham Young University

    Science.gov (United States)

    Decker, Daniel

    2000-09-01

    I will discuss the high pressure research of Drs. J. Dean Barnett, Daniel L. Decker and Howard B. Vanfleet of the department of Physics and Astronomy at Brigham Young University and their many graduate students. I will begin by giving a brief history of the beginning of high pressure research at Brigham Young University when H. Tracy Hall came to the University from General Elecrtric Labs. and then follow the work as it progressed from high pressure x-ray diffraction experiments, melting curve measurements under pressure to pressure effects on tracer diffusion and Mossbauer effect spectra. This will be followed by showing the development of pressure calibration techniques from the Decker equation of state of NaCl to the ruby fluorescence spectroscopy and a short discussion of using a liquid cell for hydrostatic measurements and temperature control for precision high pressure measurements. Then I will conclude with a description of thermoelectric measuremnts, critical phenomena at the magnetic Curie point, and the tricritical point of BaTiO_3.

  16. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies.

    Science.gov (United States)

    Koziolek, M; Schneider, F; Grimm, M; Modeβ, Chr; Seekamp, A; Roustom, T; Siegmund, W; Weitschies, W

    2015-12-28

    The intraluminal conditions of the fed stomach are critical for drug release from solid oral dosage forms and thus, often associated with the occurrence of food effects on oral bioavailability. In this study, intragastric pH and pressure profiles present after the ingestion of the high-caloric, high-fat (964 kcal) FDA standard breakfast were investigated in 19 healthy human subjects by using the telemetric SmartPill® capsule system (26 × 13 mm). Since the gastric emptying of such large non-digestible objects is typically accomplished by the migrating motor complex phase III activity, the time required for recurrence of fasted state motility determined the gastric emptying time (GET). Following the diet recommendations of the FDA guidance on food effect studies, the mean GET of the telemetric motility capsule was 15.3 ± 4.7 h. Thus, the high caloric value of the standard breakfast impeded gastric emptying before lunch in 18 out of 19 subjects. During its gastric transit, the capsule was exposed to highly dynamic conditions in terms of pH and pressure, which were mainly dependent on further meal and liquid intake, as well as the intragastric capsule deposition behavior. Maximum pH values in the stomach were measured immediately after capsule intake. The median pH value of the 5 min period after capsule ingestion ranged between pH 3.3 and 5.3. Subsequently, the pH decreased relatively constantly and reached minimum values of pH 0-1 after approximately 4 h. The maximum pressure within the stomach amounted to 293 ± 109 mbar and was clearly higher than the maximum pressure measured at the ileocaecal junction (60 ± 35 mbar). The physiological data on the intraluminal conditions within the fed stomach generated in this study will hopefully contribute to a better understanding of food effects on oral drug product performance.

  17. T- P Phase Diagram of Nitrogen at High Pressures

    Science.gov (United States)

    Algul, G.; Enginer, Y.; Yurtseven, H.

    2018-05-01

    By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.

  18. Effect of high hydrostatic pressure on overall quality parameters of watermelon juice.

    Science.gov (United States)

    Liu, Y; Zhao, X Y; Zou, L; Hu, X S

    2013-06-01

    High hydrostatic pressure as a kind of non-thermal processing might maintain the quality of thermo-sensitive watermelon juice. So, the effect of high hydrostatic pressure treatment on enzymes and quality of watermelon juice was investigated. After high hydrostatic pressure treatment, the activities of polyphenol oxidase, peroxidase, and pectin methylesterase of juice decreased significantly with the pressure (P  0.05). No significant difference was observed in lycopene and total phenolics after high hydrostatic pressure treatment when compared to the control (P > 0.05). Cloudiness and viscosity increased with pressure (P  0.05). a*- and b*-value both unchanged after high hydrostatic pressure treatment (P > 0.05) while L*-value increased but the values had no significant difference among treated juices. Browning degree after high hydrostatic pressure treatment decreased with increase in pressure and treatment time (P hydrostatic pressure had little effect on color of juice. The results of this study demonstrated the efficacy of high hydrostatic pressure in inactivating enzymes and maintaining the quality of watermelon juice.

  19. Thermal versus high pressure processing of carrots: A comparative pilot-scale study on equivalent basis

    NARCIS (Netherlands)

    Vervoort, L.; Plancken, Van der L.; Grauwet, T.; Verlinde, P.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2012-01-01

    This report describes the first study comparing different high pressure (HP) and thermal treatments at intensities ranging from mild pasteurization to sterilization conditions. To allow a fair comparison, the processing conditions were selected based on the principles of equivalence. Moreover,

  20. Novel structures and superconductivities of calcium–lithium alloys at high pressures: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying, E-mail: xuying3270@cust.edu.cn; Chen, Changbo; Wang, Sihan; Sun, Xiuping

    2016-06-05

    Exposing a material to high pressures can fundamentally influence its crystal and electronic structure, leading to the formation of new materials with unique physical and chemical properties. Here, we have conducted a systematic search for Ca–Li alloys by using a global minima search based on particle-swarm optimization algorithm in combination with density functional theory calculations. We predict that Calcium and Lithium with a high Ca composition CaLi, Ca{sub 2}Li and Ca{sub 3}Li exist, and a strikingly decomposition-combination-decomposition oscillating behavior with pressure is revealed. All predicted Ca–Li compounds are metallic and good electron–phonon superconductors with transition temperatures (T{sub c}) of around 8–19 K. The superconductivity mainly originates from the low-energy Ca vibrations and the pressure dependence of T{sub c} is dominated by the phonon softening/hardening. - Highlights: • Three high Ca compositions of CaLi, Ca{sub 2}Li, and Ca{sub 3}Li alloys have been predicted. • High superconducting temperatures were predicted for Ca–Li alloys at high pressures. • The origin of the superconductivity is revealed. • The superconducting temperature increases with increasing pressures for Fd-3m CaLi. • The Fd-3m phase of CaLi is a potential high-temperature superconductor.

  1. Novel structures and superconductivities of calcium–lithium alloys at high pressures: A first-principles study

    International Nuclear Information System (INIS)

    Xu, Ying; Chen, Changbo; Wang, Sihan; Sun, Xiuping

    2016-01-01

    Exposing a material to high pressures can fundamentally influence its crystal and electronic structure, leading to the formation of new materials with unique physical and chemical properties. Here, we have conducted a systematic search for Ca–Li alloys by using a global minima search based on particle-swarm optimization algorithm in combination with density functional theory calculations. We predict that Calcium and Lithium with a high Ca composition CaLi, Ca_2Li and Ca_3Li exist, and a strikingly decomposition-combination-decomposition oscillating behavior with pressure is revealed. All predicted Ca–Li compounds are metallic and good electron–phonon superconductors with transition temperatures (T_c) of around 8–19 K. The superconductivity mainly originates from the low-energy Ca vibrations and the pressure dependence of T_c is dominated by the phonon softening/hardening. - Highlights: • Three high Ca compositions of CaLi, Ca_2Li, and Ca_3Li alloys have been predicted. • High superconducting temperatures were predicted for Ca–Li alloys at high pressures. • The origin of the superconductivity is revealed. • The superconducting temperature increases with increasing pressures for Fd-3m CaLi. • The Fd-3m phase of CaLi is a potential high-temperature superconductor.

  2. High-pressure structural behavior of the double perovskite Sr2CrReO6: an experimental and theoretical study

    DEFF Research Database (Denmark)

    Olsen, J.S.; Gerward, Leif; Vaitheeswaran, G.

    2009-01-01

    The high-pressure structural behavior of Sr2CrReO6 has been studied experimentally using synchrotron radiation and the diamond anvil cell and theoretically using density functional theory. The experimental zero-pressure bulk modulus is B0=1704GPa and the pressure derivative is B0'=4.71.0. These r...

  3. Study of high-pressure adsorption from supercritical fluids by the potential theory

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2009-01-01

    The multicomponent potential theory of adsorption (MPTA), which has been previously used to study low-pressure adsorption of subcritical fluids, is extended to adsorption equilibria from supercritical fluids up to high pressures. The MPTA describes an adsorbed phase as an inhomogeneous fluid...... the adsorbed and the gas phases. We have also evaluated the performance of the classical Soave-Redlich-Kwong (SRK) EoS. The fluid-solid interactions are described by simple Dubinin-Radushkevich-Astakhov (DRA) potentials. In addition, we test the performance of the 10-4-3 Steele potential. It is shown...... that application of sPC-SAFT slightly improves the performance of the MPTA and that in spite of its simplicity, the DRA model can be considered as an accurate potential, especially, for mixture adsorption. We show that, for the sets of experimental data considered in this work, the MPTA is capable of predicting...

  4. 30 CFR 57.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of 3/4-inch...

  5. [Unhealthy behavior associated with the development of high blood pressure in adolescents].

    Science.gov (United States)

    Sánchez-Zamorano, Luisa María; Burguete-García, Ana Isabel; Flores-Sánchez, Guillermo; Salmerón-Castro, Jorge; Lazcano-Ponce, Eduardo C; Diaz-Benitez, Cinthya E

    2017-04-03

    This article aims to evaluate the association between unhealthy behavior pattern and prevalence and incidence of high blood pressure in adolescents. Based on data from a cohort study with a baseline population of 2,813 adolescents enrolled in a public school system, the study measured the baseline prevalence and incidence of high blood pressure as a function of smoking, alcohol and illegal drug use, and physical activity. These variables were used to build a model called "unhealthy behavior pattern", and its relationship was evaluated in relation to high blood pressure in adolescents, using multiple logistic regression models. Prevalence of high blood pressure was 8.67%. Accumulated incidence of high blood pressure was 7.58%. In the multivariate analysis of high blood pressure adjusted by degree of adiposity, there was an association with the unhealthy behavior pattern in males (OR = 3.13; 95%CI: 1.67-5.84). The association between incidence of high blood pressure and unhealthy behavior pattern was observed in females (OR = 2.34; 95%CI: 1.11-4.95). In conclusion, high blood pressure is present in the adolescent population, associated with unhealthy behaviors like smoking, alcohol and illegal drug use, and physical inactivity, independently of the degree of adiposity.

  6. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  7. High-Pressure Synthesis and Study of NO+NO3− and NO2+NO3− Ionic Solids

    Directory of Open Access Journals (Sweden)

    A. Yu. Kuznetsov

    2009-01-01

    Full Text Available Nitrosonium-nitrate NO+NO3− and dinitrogen pentoxide NO2+NO3− ionic crystals were synthesized by laser heating of a condensed oxygen-rich O2-N2 mixture compressed to different pressures, up to 40 GPa, in a diamond anvil cell (DAC. High-pressure/high-temperature Raman and X-ray diffraction studies of synthesized samples disclosed a transformation of NO+NO3− compound to NO2+NO3− crystal at temperatures above ambient and pressures below 9 GPa. High-pressure experiments revealed previously unreported bands in Raman spectra of NO+NO3− and NO2+NO3− ionic crystals. Structural properties of both ionic compounds are analyzed. Obtained experimental results support a hypothesis of a rotational disorder of NO+ complexes in NO+NO3− and indicate a rotational disorder of ionic complexes in NO2+NO3− solid.

  8. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  9. High-pressure effects in hydrofullerene C60H36 studied by Raman spectroscopy

    International Nuclear Information System (INIS)

    Meletov, K.P.; Rossijskaya Akademiya Nauk, Chernogolovka; Tsilika, I.; Assimopoulos, S.; Kourouklis, G.A.; Ves, S.; Bashkin, I.O.; Kulakov, V.I.; Khasanov, S.S.

    2001-01-01

    The effect of hydrostatic pressure on the Raman spectrum of hydrofullerene C 60 H 36 , at room temperature has been investigated up to 12 GPa. The samples were synthesized by means of high-pressure hydrogenation. The pressure dependence of the phonon frequencies exhibits two reversible changes one at ∝0.6 GPa and another one at ∝6 GPa. The first may be probably related to a phase transition from the initial orientationally disordered bcc structure to an orientationally ordered one. The second one, at ∝6 GPa, is probably driven by pressure-induced bonding of hydrogen to a carbon atom of a neighboring hydrofullerene cage. (orig.)

  10. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate...

  11. Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Kurpiewska, Katarzyna, E-mail: kurpiews@chemia.uj.edu.pl [Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Protein Crystallography Group, Ingardena 3, 30-060 Kraków (Poland); Dziubek, Kamil; Katrusiak, Andrzej [Adam Mickiewicz University, Faculty of Chemistry, Department of Materials Chemistry, Umultowska 89b, 61-61 Poznań (Poland); Font, Josep [School of Medical Science, University of Sydney, NSW 2006 (Australia); Ribò, Marc; Vilanova, Maria [Universitat de Girona, Laboratorid’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Campus de Montilivi, 17071 Girona (Spain); Lewiński, Krzysztof [Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Protein Crystallography Group, Ingardena 3, 30-060 Kraków (Poland)

    2016-04-01

    Highlights: • A unique crystallographic studies of wild-type and mutated form of the same protein under high pressure. • Compressibility of RNase A molecule is significantly affected by a single amino acid substitution. • High pressure protein crystallography helps understanding protein flexibility and identify conformational substrates. - Abstract: Hydrostatic pressure in range 0.1–1.5 GPa is used to modify biological system behaviour mostly in biophysical studies of proteins in solution. Due to specific influence on the system equilibrium high pressure can act as a filter that enables to identify and investigate higher energy protein conformers. The idea of the presented experiments is to examine the behaviour of RNase A molecule under high pressure before and after introduction of destabilizing mutation. For the first time crystal structures of wild-type bovine pancreatic ribonuclease A and its markedly less stable variant modified at position Ile106 were determined at different pressures. X-ray diffraction experiments at high pressure showed that the secondary structure of RNase A is well preserved even beyond 0.67 GPa at room temperature. Detailed structural analysis of ribonuclease A conformation observed under high pressure revealed that pressure influences hydrogen bonds pattern, cavity size and packing of molecule.

  12. Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography

    International Nuclear Information System (INIS)

    Kurpiewska, Katarzyna; Dziubek, Kamil; Katrusiak, Andrzej; Font, Josep; Ribò, Marc; Vilanova, Maria; Lewiński, Krzysztof

    2016-01-01

    Highlights: • A unique crystallographic studies of wild-type and mutated form of the same protein under high pressure. • Compressibility of RNase A molecule is significantly affected by a single amino acid substitution. • High pressure protein crystallography helps understanding protein flexibility and identify conformational substrates. - Abstract: Hydrostatic pressure in range 0.1–1.5 GPa is used to modify biological system behaviour mostly in biophysical studies of proteins in solution. Due to specific influence on the system equilibrium high pressure can act as a filter that enables to identify and investigate higher energy protein conformers. The idea of the presented experiments is to examine the behaviour of RNase A molecule under high pressure before and after introduction of destabilizing mutation. For the first time crystal structures of wild-type bovine pancreatic ribonuclease A and its markedly less stable variant modified at position Ile106 were determined at different pressures. X-ray diffraction experiments at high pressure showed that the secondary structure of RNase A is well preserved even beyond 0.67 GPa at room temperature. Detailed structural analysis of ribonuclease A conformation observed under high pressure revealed that pressure influences hydrogen bonds pattern, cavity size and packing of molecule.

  13. Characterization of high-pressure, underexpanded hydrogen-jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Houf, W.G.; Williams, T.C. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Bourne, B.; Colton, J. [SRI International, 333 Ravenwood Ave., Menlo Park, CA 94025 (United States)

    2007-08-15

    Measurements were performed to characterize the dimensional and radiative properties of large-scale, vertical hydrogen-jet flames. This data is relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel and will provide a technological basis for determining hazardous length scales associated with unintended hydrogen releases at storage and distribution centers. Jet flames originating from high-pressure sources up to 413 bar (6000 psi) were studied to verify the application of correlations and scaling laws based on lower-pressure subsonic and choked-flow jet flames. These higher pressures are expected to be typical of the pressure ranges in future hydrogen storage vessels. At these pressures the flows exiting the jet nozzle are categorized as underexpanded jets in which the flow is choked at the jet exit. Additionally, the gas behavior departs from that of an ideal-gas and alternate formulations for non-ideal gas must be introduced. Visible flame emission was recorded on video to evaluate flame length and structure. Radiometer measurements allowed determination of the radiant heat flux characteristics. The flame length results show that lower-pressure engineering correlations, based on the Froude number and a non-dimensional flame length, also apply to releases up to 413 bar (6000 psi). Similarly, radiative heat flux characteristics of these high-pressure jet flames obey scaling laws developed for low-pressure, smaller-scale flames and a wide variety of fuels. The results verify that such correlations can be used to a priori predict dimensional characteristics and radiative heat flux from a wide variety of hydrogen-jet flames resulting from accidental releases. (author)

  14. High pressure synthesis of amorphous TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Quanjun; Liu, Ran; Wang, Tianyi; Xu, Ke; Dong, Qing; Liu, Bo; Liu, Bingbing, E-mail: liubb@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Liu, Jing [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-09-15

    Amorphous TiO{sub 2} nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO{sub 2} nanotubes. The structural phase transitions of anatase TiO{sub 2} nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD) method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA) form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO{sub 2} nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO{sub 2} phase was revealed by high-resolution transmission electron microscopy (HRTEM) study. In addition, the bulk modulus (B{sub 0} = 158 GPa) of the anatase TiO{sub 2} nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa). We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO{sub 2} nanotubes.

  15. The increase in Tc for MgB2 superconductor under high pressure

    International Nuclear Information System (INIS)

    Liu, Z-X; Jin, C-Q; You, J-Y; Li, S-C; Zhu, J-L; Yu, R-C; Li, F-Y; Su, S-K

    2002-01-01

    We report in situ high-pressure studies up to 1.0 GPa on MgB 2 superconductor which had been synthesized at high pressure. The as-prepared sample is of high quality as regards having a sharp superconducting transition (T c ) at 39 K. The in situ high-pressure measurements were carried out using a Be-Cu piston-cylinder-type instrument with a mixed oil as the pressure-transmitting medium, which provides a quasi-hydrostatic pressure environment at low temperature. The superconducting transitions were measured using the electrical conductance method. It is found that T c increases with pressure in the initial pressure range, leading to a parabolic-like T c -P evolution

  16. The use of strapping to increase local pressure: reporting of a sub-bandage pressure study

    OpenAIRE

    Alison Hopkins; Fran Worboys; Hugo Partsch

    2013-01-01

    High compression is the gold standard for venous ulcer management. This brief report presents the results of a sub-bandage pressure study that investigated the pressures received from compression therapy in the region of the retromalleolal fossa. The study tested the hypothesis that therapeutic compression is not achieved behind the malleolus. The results confirm this, showing that less that 5-mmHg sub-bandage pressure is achieved despite high compression at the B1 level. This report demonstr...

  17. High Pressure Combustion Experimental Facility(HPCEF) for Studies on Combustion in Reactive Flows

    Science.gov (United States)

    2017-12-13

    SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...Report: High Pressure Combustion Experimental Facility (HPCEF) for Studies on Combustion in Reactive Flows The views, opinions and/or findings... contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so

  18. Study of Electron Swarm in High Pressure Hydrogen Gas Filled RF Cavities

    International Nuclear Information System (INIS)

    Yonehara, K.; Chung, M.; Jansson, A.; Moretti, A.; Popovic, M.; Tollestrup, A.; Alsharo'a, M.; Johnson, R.P.; Notani, M.; Oka, T.; Wang, H.

    2010-01-01

    A high pressure hydrogen gas filled RF cavity has been proposed for use in the muon collection system for a muon collider. It allows for high electric field gradients in RF cavities located in strong magnetic fields, a condition frequently encountered in a muon cooling channel. In addition, an intense muon beam will generate an electron swarm via the ionization process in the cavity. A large amount of RF power will be consumed into the swarm. We show the results from our studies of the HV RF breakdown in a cavity without a beam and present some results on the resulting electron swarm dynamics. This is preliminary to actual beam tests which will take place late in 2010.

  19. A Synchrotron Mössbauer Spectroscopy Study of a Hydrated Iron-Sulfate at High Pressures

    Science.gov (United States)

    Perez, T. M.; Finkelstein, G. J.; Solomatova, N. V.; Jackson, J. M.

    2017-12-01

    Szomolnokite is a monohydrated ferrous iron sulfate mineral, FeSO4*H2O, where the ferrous iron atoms are in octahedral coordination with four corners shared with SO4 and two with H2O. While somewhat rare on Earth, szomolnokite has been detected on the surface of Mars along with several other hydrated sulfates and suggested to occur near the surface of Venus [1,2]. It is not clear if these sulfates are a result of reactions occurring at depth driven by changes in the behavior of iron in the sulfate. To date, only a few high-pressure studies have been conducted on hydrated iron sulfates using Mössbauer spectroscopy. Our study represents a first step towards understanding of the electronic environment of iron in a monohydrated sulfate at pressure. Using a hydrostatic helium pressure-transmitting medium, the pressure dependence of iron's site-specific behavior in a synthetic szomolnokite powdered sample was explored up to about 100 GPa with time-resolved synchrotron Mössbauer spectroscopy at the Advanced Photon Source of Argonne National Laboratory. At 1 bar, the Mössbauer spectrum is well described by three Fe2+-like sites, consistent with conventional Mössbauer spectra reported in Dyar et al. [3]. At pressures up to 20 GPa, changes in the hyperfine parameters are most likely due to a structural phase transition. Above this pressure, a fourth site is required to explain the time-spectra. Changes in the electronic configuration of iron, such as those due to a phase transition and/or a spin crossover, will affect the material's compressibility and transport properties. We will compare our high-pressure trends with those of other iron-bearing phases and discuss the relative influence on the dynamics of terrestrial planetary interiors. 1. Bishop et al. (2014) What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Spectral and thermal properties of perchlorate salts and implications for Mars. Am. Min. 99(8-9), 1580

  20. X-ray reflectivity measurements of liquid/solid interfaces under high hydrostatic pressure conditions.

    Science.gov (United States)

    Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin

    2014-01-01

    A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.

  1. Phytotherapy of High Blood Pressure in Three Phytogeographic Regions of Cameroon.

    Science.gov (United States)

    Tsabang, Nole; Yedjou, Clement G; Tchounwou, Paul B

    2017-01-01

    High blood pressure is a public health challenge worldwide. According to World Health Organization, 30% of men and 50% of women 65 to 75 years old are suffering from high blood pressure. The number of hypertensive patients in the world will attain 1.56 billion of people, with 60% increase in prevalence. The incidence of high blood pressure increases with age, but nowadays, is being noticed an increasing incidence in young people. The socio-cultural medicine may provide new solutions in the management of this pathology. Therefore this study was carried out to record and document plants used against high blood pressure in socio-cultural medicine for future drugs discovery worldwide. An ethno botanical survey was realized between 2002 and 2016 to identify manifold plants used to fight against high blood pressure. This survey was carried out in three phytogeographic regions of Cameroon. Amongst people living in those regions, 1131 randomly screened interviewees distributed in 58 socio-cultural groups were involved in this study. This survey reveals that about 70% of interviewees don't know high blood pressure which is a symptomless disease. A total of 28 species of plants were recorded. These plants belong to 25 genera and 24 families. They were used to prepare 28 herbal remedies for the treatment of high blood pressure. In the morphological point of view about 10/28 (36%) plants are herbs; 9/28 (32%) plants are trees and 9/28 (32%) plants are shrubs. Only 3/28 plants (11%) used including Allium sativum, Aloe barteri and Aloe buttneri) are cultivated. This means that the plants used in this study don't usually have some form of protection through cultivation which is encouraging in terms of their conservation. The uncontrolled use of a hypotensive plants can provoke a fatal hypotension in hypertensive patients. Therefore the use of hypotensive plants needs to be controlled by physician or by a patient verification using a blood pressure monitor. Recorded species which

  2. High pressure studies of configuration interaction and crystal field effects in Sm2+

    International Nuclear Information System (INIS)

    Shen, Y.; Bray, K.L.

    1998-01-01

    Full text: Divalent rare earth ions are interesting luminescence centres because of the low energy of the excited 4f n-1 5d 1 configuration relative to the 4f n ground configuration. The low energy difference between these two configurations leads to two principle effects which distinguish the luminescence properties of divalent rare earth ions from those of trivalent rare earth ions. First, a significant amount of 5d state mixing into the electronic states of the 4f n configuration occurs and second, the thermal activation barrier to 4f n → 4f n-1 5d 1 crossing is greatly reduced. The first effect introduces opposite parity character into the emitting levels of divalent rare earth ions and acts to shorten lifetimes and increase f-f luminescence intensity, while the second effect acts to enhance thermal quenching of 4f n excited electronic states closest in energy to the 4f n-1 5d 1 configuration. The interaction between the 4f n and 4f n-1 5d 1 configurations and crystal field properties are typically studied by considering the luminescence properties of divalent rare earth ions in a series of host crystals. We are currently developing a new approach, based on high pressure luminescence spectroscopy, for understanding con-figuration interaction and crystal field properties of divalent rare earth ions. The strategy of our approach is to use high pressure as a tool of structural perturbation. By applying hydrostatic pressure to solids, we have an opportunity to continuously vary the nearest neighbour coordination environment of divalent rare earth dopants. Our general goal is to correlate pressure-induced changes in local structure with pressure-induced changes in luminescence properties in an attempt to better understand structure-property-composition relations in solid state luminescent materials. In this paper we present recent results on Sm 2+ in a series of MFCl (M = Sr, Ba, Ca) host lattices. Luminescence spectra and decay properties as a function of

  3. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    Science.gov (United States)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  4. High blood pressure in school children and adolescents in Argentina over the past 25 years: A systematic review of observational studies.

    Science.gov (United States)

    Díaz, Alejandro; Calandra, Luciana

    2017-02-01

    Over the past years, hypertension has been recognized as an important health problem in the pediatric population. A systematic review of observational studies published between 1988 and 2014 was conducted to estimate the prevalence of high blood pressure and cardiovascular risk factors among children and adolescents in Argentina. A bibliographic search was done in MEDLINE, SciELO, and LILACS to look for studies on high blood pressure prevalence in school children and adolescents in Argentina. Studies and surveys that had included the measurement of blood pressure in children and adolescents (aged 5-20 years) according to the Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents by the American Academy of Pediatrics were included in this study. Fourteen publications were identified. The pooled prevalence in 11 706 subjects (random effects model) was 6.61% (95% confidence interval [CI]: 4.30-9.37). The crude prevalence was 7.35% (95% CI: 6.88-7.83). High blood pressure was more prevalent among adolescents than children ≤ 10 years old (7.4% versus 4.3%, P = 0.001), and among boys than girls (11.2% versus 6.8%, P = 0.001). The most common risk factors included a sedentary lifestyle (50%), overweight (15.4%), abdominal obesity (13.7%), obesity (11.5%), and smoking (6.5%). Our data show that the prevalence of high blood pressure and cardiovascular risk factors in school children and adolescents is high, and this accounts for a very important public health problem in Argentina. Sociedad Argentina de Pediatría

  5. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  6. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a silent threat to health. So come and get your blood pressure checked.

  7. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a stealth threat to health. So come and get your blood pressure checked.

  8. Equation of state of liquid Indium under high pressure

    Directory of Open Access Journals (Sweden)

    Huaming Li

    2015-09-01

    Full Text Available We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  9. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; Boekel, van Tiny; Fogliano, Vincenzo; Stieger, Markus

    2016-01-01

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were

  10. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  11. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  12. A system for incubations at high gas partial pressure

    Directory of Open Access Journals (Sweden)

    Patrick eSauer

    2012-02-01

    Full Text Available High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed one MPa at in-situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in-situ conditions, but the partial pressure of dissolved gasses has to be controlled as well.We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120° C and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. The system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g. fluid-gas-rock-interactions in relation to carbon dioxide sequestration.As an application of the system we extracted organic acids from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90°C and pressure (5 MPa. Subsamples were taken during the incubation and analysed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulphate reduction rate upon the addition of

  13. The high-pressure behavior of spherocobaltite (CoCO3): a single crystal Raman spectroscopy and XRD study

    Science.gov (United States)

    Chariton, Stella; Cerantola, Valerio; Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Kupenko, Ilya; McCammon, Catherine; Dubrovinsky, Leonid

    2018-01-01

    Magnesite (MgCO3), calcite (CaCO3), dolomite [(Ca, Mg)CO3], and siderite (FeCO3) are among the best-studied carbonate minerals at high pressures and temperatures. Although they all exhibit the calcite-type structure ({R}\\bar{3}{c}) at ambient conditions, they display very different behavior at mantle pressures. To broaden the knowledge of the high-pressure crystal chemistry of carbonates, we studied spherocobaltite (CoCO3), which contains Co2+ with cation radius in between those of Ca2+ and Mg2+ in calcite and magnesite, respectively. We synthesized single crystals of pure spherocobaltite and studied them using Raman spectroscopy and X-ray diffraction in diamond anvil cells at pressures to over 55 GPa. Based on single crystal diffraction data, we found that the bulk modulus of spherocobaltite is 128 (2) GPa and K' = 4.28 (17). CoCO3 is stable in the calcite-type structure up to at least 56 GPa and 1200 K. At 57 GPa and after laser heating above 2000 K, CoCO3 partially decomposes and forms CoO. In comparison to previously studied carbonates, our results suggest that at lower mantle conditions carbonates can be stable in the calcite-type structure if the radius of the incorporated cation(s) is equal or smaller than that of Co2+ (i.e., 0.745 Å).

  14. Friction and wear studies of nuclear power plant components in pressurized high temperature water environments

    International Nuclear Information System (INIS)

    Ko, P.L.; Zbinden, M.; Taponat, M.C.; Robertson, M.F.

    1997-01-01

    The present paper is part of a series of papers aiming to present the friction and wear results of a collaborative study on nuclear power plant components tested in pressurized high temperature water. The high temperature test facilities and the methodology in presenting the kinetics and wear results are described in detail. The results of the same material combinations obtained from two very different high temperature test facilities (NRCC and EDF) are presented and discussed. (K.A.)

  15. High-pressure phases of uranium monophosphide studied by synchrotron x-ray diffraction

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Gerward, Leif; Benedict, U.

    1988-01-01

    X-ray diffraction studies have been performed on UP powder for pressures up to 51 GPa using synchrotron radiation and a diamond-anvil cell. At ambient pressure UP has the rocksalt structure. The bulk modulus has been determined to B0=102(4) GPa and its pressure derivative to B0’=4.0(8). The cubic...

  16. Human norovirus inactivation in oysters by high hydrostatic pressure processing: A randomized double-blinded study

    Science.gov (United States)

    This randomized, double-blinded, clinical trial assessed the effect of high hydrostatic pressure processing (HPP) on genogroup I.1 human norovirus (HuNoV) inactivation in virus-seeded oysters when ingested by subjects. The safety and efficacy of HPP treatments were assessed in three study phases wi...

  17. 7 CFR 58.219 - High pressure pumps and lines.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The high...

  18. Microwave Wire Interrogation Method Mapping Pressure under High Temperatures

    Directory of Open Access Journals (Sweden)

    Xiaoyong Chen

    2017-12-01

    Full Text Available It is widely accepted that wireless reading for in-situ mapping of pressure under high-temperature environments is the most feasible method, because it is not subject to frequent heterogeneous jointing failures and electrical conduction deteriorating, or even disappearing, under heat load. However, in this article, we successfully demonstrate an in-situ pressure sensor with wire interrogation for high-temperature applications. In this proof-of-concept study of the pressure sensor, we used a microwave resonator as a pressure-sensing component and a microwave transmission line as a pressure characteristic interrogation tunnel. In the sensor, the line and resonator are processed into a monolith, avoiding a heterogeneous jointing failure; further, microwave signal transmission does not depend on electrical conduction, and consequently, the sensor does not suffer from the heat load. We achieve pressure monitoring under 400 °C when employing the sensor simultaneously. Our sensor avoids restrictions that exist in wireless pressure interrogations, such as environmental noise and interference, signal leakage and security, low transfer efficiency, and so on.

  19. Thermodynamic relations in high temperature and high pressure physics of solids

    International Nuclear Information System (INIS)

    Kumar, Munish

    1998-01-01

    Various possible simple relations based on the exact and approximate thermodynamic relations are derived. These relations can be used to investigate the variation of unit cell volume under the effect of pressure and temperature. Thermal expansivity and compressibility can be investigated directly at any pressure or temperature, or through the knowledge of equation of state (EOS). A relation to determine Anderson-Grueneisen parameter δ T under the effect of pressure is predicted. It is discussed that δ T is independent of pressure and thus Murnaghan equation of state works well in low pressure ranges, while the variation of δ T under high pressure should be taken into account. The product of coefficient of volume thermal expansion and bulk modulus remains constant, is correct at high pressure, provided that the pressure dependence of δ T is considered. (author)

  20. Modification of enzymes by use of high-pressure homogenization.

    Science.gov (United States)

    Dos Santos Aguilar, Jessika Gonçalves; Cristianini, Marcelo; Sato, Helia Harumi

    2018-07-01

    High-pressure is an emerging and relatively new technology that can modify various molecules. High-pressure homogenization (HPH) has been used in several studies on protein modification, especially in enzymes used or found in food, from animal, plant or microbial resources. According to the literature, the enzymatic activity can be modulated under pressure causing inactivation, stabilization or activation of the enzymes, which, depending on the point of view could be very useful. Homogenization can generate changes in the structure of the enzyme modifying various chemical bonds (mainly weak bonds) causing different denaturation levels and, consequently, affecting the catalytic activity. This review aims to describe the various alterations due to HPH treatment in enzymes, to show the influence of high-pressure on proteins and to report the HPH effects on the enzymatic activity of different enzymes employed in the food industry and research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Nb effect on Zr-alloy oxidation under high pressure steam at high temperatures

    International Nuclear Information System (INIS)

    Park, Kwangheon; Yang, Sungwoo; Kim, Kyutae

    2005-01-01

    The high-pressure steam effects on the oxidation of Zircaloy-4 (Zry-4) and Zirlo (Zry-1%Nb) claddings at high temperature have been analyzed. Test temperature range was 700-900degC, and pressures were 1-150 bars. High pressure-steam enhances oxidation of Zry-4, and the dependency of enhancement looks exponential to steam pressure. The origin of the oxidation enhancement turned out to be the formation of cracks in oxide. The loss of tetragonal phase by high-pressure steam seems related to the crack formation. Addition of Nb as an alloying element to Zr alloy reduces significantly the steam pressure effects on oxidation. The higher compressive stresses and the smaller fraction of tetragonal oxides in Zry-1%Nb seem to be the diminished effect of high-pressure steam on oxidation. (author)

  2. High-performance fiber/epoxy composite pressure vessels

    Science.gov (United States)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  3. High pressure cosmochemistry of major planetary interiors: Laboratory studies of the water-rich region of the system ammonia-water

    Science.gov (United States)

    Nicol, Malcolm; Johnson, Mary; Boone, Steven; Cynn, Hyunchee

    1987-01-01

    Several studies relative to high pressure cosmochemistry of major planetary interiors are summarized. The behavior of gas-ice mixtures at very high pressures, studies of the phase diagram of (NH3) sub x (H2O) sub 1-x at pressures to 5GPa and temperatures from 240 to 370 K, single crystal growth of ammonia dihydrate at room temperature in order to determine their structures by x-ray diffraction, spectroscopy of chemical reactions during shock compression in order to evaluate how the reactions affect the interpretation of equation of state data obtained by shock methods, and temperature and x-ray diffraction measurements made on resistively heated wire in diamond anvil cells in order to obtain phase and structural data relevant to the interiors of terrestrial planets are among the studies discussed.

  4. Investigation of a high pressure oxy-coal process

    Energy Technology Data Exchange (ETDEWEB)

    Renz, U. [RWTH Aachen Univ. (Germany). Inst. of Heat and Mass Transfer

    2013-07-01

    A study was conducted to investigate the feasibility of an oxy-coal process, which is pressurized to a combustion pressure of 80 bar. At that pressure the water-vapor can be separated economically from the CO{sub 2}/H{sub 2}O flue gases, either by nucleate condensation or by condensation on cooled surfaces in condenser heat exchangers at a temperature of about 300 C. The heat of condensation can be recaptured to preheat the boiler feed water. So the number of economizers is drastically reduced compared to a conventional steam cycle. Another interesting feature of the high pressure oxy-coal process is the fact, that low rank coal with high moisture content can be fired. Such a process at a pressure of about 80 bar is currently investigated by Babcock, USA, as the ThermoEnergy Integrated Power System (TIPS) and will be analyzed in the present paper. A known disadvantage of the oxy-coal processes is the large recirculating flue gas stream to control the combustion temperature, and which need large pipes and heavy recirculation fans. This disadvantage could be avoided if instead of flue gas a part of the condensed water from the condenser heat exchangers is recirculated. Within the present study both types of processes have been simulated and for an electric power output of about 220 MW. Furthermore, results of CFD simulations of a pressurized 250 MW combustor with a single swirl burner and flue gas recirculation will be presented.

  5. High Pressure Angle Gears: Comparison to Typical Gear Designs

    Science.gov (United States)

    Handschuh, Robert F.; Zabrajsek, Andrew J.

    2010-01-01

    A preliminary study has been completed to determine the feasibility of using high-pressure angle gears in aeronautic and space applications. Tests were conducted in the NASA Glenn Research Center (GRC) Spur Gear Test Facility at speeds up to 10,000 rpm and 73 N*m (648 in.*lb) for 3.18, 2.12, and 1.59 module gears (8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module (8-diametral pitch), 28 tooth, 20deg pressure angle gears are the GRC baseline test specimen. Also, 2.12 module (12-diametral pitch), 42 tooth, 25deg pressure angle gears were tested. Finally 1.59 module (16-diametral pitch), 56 tooth, 35deg pressure angle gears were tested. The high-pressure angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, lubricated with a synthetic turbine engine oil), and produced the lowest wear rates when tested with a perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.*lb).

  6. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. High-pressure structural and elastic properties of Tl₂O₃

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, O., E-mail: osgohi@fis.upv.es; Vilaplana, R. [Centro de Tecnologías Físicas, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Santamaría-Pérez, D. [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjassot (Spain); Earth Sciences Department, University College London, Gower Street, WC1E 6BT London (United Kingdom); Ruiz-Fuertes, J. [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjassot (Spain); Geowissenschaften, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main (Germany); Sans, J. A.; Manjón, F. J.; Mollar, M. [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); and others

    2014-10-07

    The structural properties of Thallium (III) oxide (Tl₂O₃) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been complemented with ab initio total-energy calculations. The equation of state of Tl₂O₃ has been determined and compared to related compounds. It has been found experimentally that Tl₂O₃ remains in its initial cubic bixbyite-type structure up to 22.0 GPa. At this pressure, the onset of amorphization is observed, being the sample fully amorphous at 25.2 GPa. The sample retains the amorphous state after pressure release. To understand the pressure-induced amorphization process, we have studied theoretically the possible high-pressure phases of Tl₂O₃. Although a phase transition is theoretically predicted at 5.8 GPa to the orthorhombic Rh₂O₂-II-type structure and at 24.2 GPa to the orthorhombic α-Gd₂S₃-type structure, neither of these phases were observed experimentally, probably due to the hindrance of the pressure-driven phase transitions at room temperature. The theoretical study of the elastic behavior of the cubic bixbyite-type structure at high-pressure shows that amorphization above 22 GPa at room temperature might be caused by the mechanical instability of the cubic bixbyite-type structure which is theoretically predicted above 23.5 GPa.

  8. 30 CFR 56.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of high-pressure...

  9. To the probe theory in a highly-ionized high-pressure plasma

    International Nuclear Information System (INIS)

    Baksht, F.G.; Rybakov, A.B.

    1997-01-01

    The probe theory in highly-ionized high-pressure plasma is presented. The situation typical for high-pressure plasma, when the plasma in the main part of the near-probe layer is in the state of local ionization equilibrium with general temperature for electrons and heavy particles. Possibility is discussed for determining the parameters of non-perturbed plasma through analysis of the probe characteristic at place of ion saturation, transition area and by the probe floating potential. The experiments were carried out by example of highly-ionized xenon plasma under atmospheric pressure

  10. Magnetization at high pressure in CeP

    Science.gov (United States)

    Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.

    1995-02-01

    We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.

  11. The effect of high pressure on nitrogen compounds of milk

    International Nuclear Information System (INIS)

    Kielczewska, Katarzyna; Czerniewicz, Maria; Michalak, Joanna; Brandt, Waldemar

    2004-01-01

    The effect of pressurization at different pressures (from 200 to 1000 MPa, at 200 MPa intervals, t const. = 15 min) and periods of time (from 15 to 35 min, at 10 min intervals, p const. = 800 MPa) on the changes of proteins and nitrogen compounds of skimmed milk was studied. The pressurization caused an increase in the amount of soluble casein and denaturation of whey proteins. The level of nonprotein nitrogen compounds and proteoso-peptone nitrogen compounds increased as a result of the high-pressure treatment. These changes increased with an increase in pressure and exposure time. High-pressure treatment considerably affected the changes in the conformation of milk proteins, which was reflected in the changes in the content of proteins sedimenting and an increase in their degree of hydration

  12. Trends in high pressure developments for new perspectives

    Science.gov (United States)

    Largeteau, Alain; Prakasam, Mythili

    2018-06-01

    Temperature and Pressure are two parameters in the universe, where pressure represents the largest scale in comparison to temperature. The design of high pressure equipment depends mainly on the media used which could be gas, liquid or solid and the objective could be synthesis of materials or in situ characterization. The development of new research fields requiring high pressure equipment which are currently in Bordeaux - France are based on the historical development of high pressure domain initiated by Professor Gerard DEMAZEAU and his team during the last half century, which is discussed here. The main concepts governing the effect of pressure on materials synthesis is by the combination of high pressure and high temperature which are described with apt examples. There is an upsurge in various technologies for strong development for the synthesis of materials to drive several possibilities, for example: to reach very high density to obtain optical ceramics (by conventional SPS), to diminish parameters (P, T, t) of synthesis (by HP-SPS), to sinter at low temperature thermal sensitive composition (by HyS), to consolidate porous materials (by FIP), to densify biocomposite with cold decontamination (by HHP) simultaneously, etc.

  13. First-principles study on the phase transition, elastic properties and electronic structure of Pt3Al alloys under high pressure

    International Nuclear Information System (INIS)

    Liu, Yanjun; Huang, Huawei; Pan, Yong; Zhao, Guanghui; Liang, Zheng

    2014-01-01

    Highlights: • The phase transition of Pt 3 Al alloys occurs at 60 GPa. • The elastic modulus of Pt 3 Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt 3 Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt 3 Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E F decrease. The cubic Pt 3 Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure

  14. Calculation of high-pressure argon plasma parameters produced by excimer laser

    International Nuclear Information System (INIS)

    Tsuda, Norio; Yamada, Jun

    2000-01-01

    When a XeCl excimer laser light was focused in a high-pressure argon gas up to 150 atm, a dense plasma developed not only backward but also forward. It is important to study on the electron density and temperature of the laser-induced plasma in the high-pressure gas. The electron density and temperature in high-pressure argon plasma produced by XeCl excimer laser has been calculated and compared with the experimental data. (author)

  15. A new phase of ThC at high pressure predicted from a first-principles study

    Science.gov (United States)

    Guo, Yongliang; Qiu, Wujie; Ke, Xuezhi; Huai, Ping; Cheng, Cheng; Han, Han; Ren, Cuilan; Zhu, Zhiyuan

    2015-08-01

    The phase transition of thorium monocarbide (ThC) at high pressure has been studied by means of density functional theory. Through structure search, a new phase with space group P 4 / nmm has been predicted. The calculated phonons demonstrate that this new phase and the previous B2 phase are dynamically stable as the external pressure is greater than 60 GPa and 120 GPa, respectively. The transformation from B1 to P 4 / nmm is predicted to be a first-order transition, while that from P 4 / nmm to B2 is found to be a second-order transition.

  16. Major depression as a risk factor for high blood pressure: epidemiologic evidence from a national longitudinal study.

    Science.gov (United States)

    Patten, Scott B; Williams, Jeanne V A; Lavorato, Dina H; Campbell, Norman R C; Eliasziw, Michael; Campbell, Tavis S

    2009-04-01

    To determine whether major depression (MD) leads to an increased risk of new-onset high blood pressure diagnoses. The data source was the Canadian National Population Health Survey (NPHS). The NPHS included a short-form version of the Composite International Diagnostic Interview (CIDI-SF) to assess MD and collected self-report data about professionally diagnosed high blood pressure and the use of antihypertensive medications. The analysis included 12,270 respondents who did not report high blood pressure or the use of antihypertensive medications at a baseline interview conducted in 1994. Proportional hazards models were used to compare the incidence of high blood pressure in respondents with and without MD during 10 years of subsequent follow-up. After adjustment for age, the risk of developing high blood pressure was elevated in those with MD. The hazard ratio was 1.6 (95% Confidence Interval = 1.2-2.1), p = .001, indicating a 60% increase in risk. Adjustment for additional covariates did not alter the association. MD may be a risk factor for new-onset high blood pressure. Epidemiologic data cannot definitely confirm a causal role, and the association may be due to shared etiologic factors. However, the increased risk may warrant closer monitoring of blood pressure in people with depressive disorders.

  17. In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS

    KAUST Repository

    Yang, Zhi

    2015-12-13

    The gelatinization of waxy (very low amylose) corn and potato starches by high hydrostatic pressure (HHP) (up to ∼1 GPa) was investigated in situ using synchrotron small-angle X-ray scattering (SAXS) on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio (by weight), were pressurized and measured at room temperature. During HHP, both SAXS peak areas (corresponding to the lamellar phase) of waxy corn and potato starches decreased suggesting the starch gelatinization increases with increasing pressure. As pressure increased, lamellar peak broadened and the power law exponent increased in low q region. 1D linear correlation function was further employed to analyse SAXS data. For both waxy potato and waxy corn starches, the long period length and the average thickness of amorphous layers decreased when the pressure increased. While for both of waxy starches, the thickness of the crystalline layer first increased, then decreased when the pressure increased. The former is probably due to the out-phasing of starch molecules, and the latter is due to the water penetrating into the crystalline region during gelatinization and to pressure induced compression.

  18. Neutron powder diffraction under high pressure at J-PARC

    International Nuclear Information System (INIS)

    Utsumi, Wataru; Kagi, Hiroyuki; Komatsu, Kazuki; Arima, Hiroshi; Nagai, Takaya; Okuchi, Takuo; Kamiyama, Takashi; Uwatoko, Yoshiya; Matsubayashi, Kazuyuki; Yagi, Takehiko

    2009-01-01

    It is expected that high-pressure material science and the investigation of the Earth's interior will progress greatly using the high-flux pulse neutrons of J-PARC. In this article, we introduce our plans for in situ neutron powder diffraction experiments under high pressure at J-PARC. The use of three different types of high-pressure devices is planned; a Paris-Edinburgh cell, a new opposed-anvil cell with a nano-polycrystalline diamond, and a cubic anvil high-pressure apparatus. These devices will be brought to the neutron powder diffraction beamlines to conduct a 'day-one' high-pressure experiment. For the next stage of research, we propose construction of a dedicated beamline for high-pressure material science. Its conceptual designs are also introduced here.

  19. DASH diet to lower high blood pressure

    Science.gov (United States)

    ... patientinstructions/000770.htm DASH diet to lower high blood pressure To use the sharing features on this page, ... Hypertension. The DASH diet can help lower high blood pressure and cholesterol and other fats in your blood. ...

  20. Occupational Noise Exposure, Bilateral High-Frequency Hearing Loss, and Blood Pressure.

    Science.gov (United States)

    Gan, Wen Qi; Mannino, David M

    2017-11-13

    The aim of this study was to investigate the relationships between occupational noise exposure and blood pressure using self-reported occupational exposure and bilateral high-frequency hearing loss. This study included 4548 participants aged 20 to 69 years from the National Health and Nutrition Examination Survey 1999 to 2004. On the basis of self-reported exposure status, participants were divided into the current, former, or never exposed groups. Bilateral high-frequency hearing loss was defined as the average high-frequency hearing threshold at least 25 dB in both ears. The currently exposed participants had slightly increased diastolic blood pressure compared with those never exposed. Among previously exposed participants, those with bilateral high-frequency hearing loss had increased systolic blood pressure, heart rate, and the prevalence of hypertension compared with those with normal high-frequency hearing. Although there were some significant results, the evidence was not consistent to support the associations between occupational noise exposure and blood pressure.

  1. Impact of condensed matter theories on material studies at high pressures

    International Nuclear Information System (INIS)

    Godwal, B.K.; Rao, R.S.; Sikka, S.K.; Chidambaram, R.

    1997-01-01

    We are vigorously pursuing a program to study the behaviour of materials under pressure for the last three decades. Theoretical component has been an important part of our activity. The initial phase of such efforts was devoted to the development of equation of state models at arbitrary temperature and matter density. With the advent of diamond anvil cell device and improvements of the diagnostic technique in dynamic methods, the focus of our studies switched over to the predictions and interpretations of phase transitions. Many times these have led to intense experimental studies and sometimes helped in resolving the controversies. The introduction of linear methods in electron band theory and availability of supercomputers and parallel processors have given boost to the computational physics, and the efforts are now being extended more and more to the ab-initio molecular dynamics simulations. These simulations have a promise to avoid the tedious search for structural stability by trail and error in phase transition studies under pressure or temperature. The current status of our efforts in this direction will be listed with an illustration on liquid sulphur. Our past work on electronic topological transition in zinc led to many experimental and theoretical investigations. The results of electronic structure changes in similar metal cadmium shall be compared with existing understanding in Zn under pressure. Our studies on other compounds (AuIn 2 , YNi 2 B 2 C), which have also been found to display electronic topological transition under pressure, will be discussed. (author)

  2. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    International Nuclear Information System (INIS)

    Nistor, L C; Nistor, S V; Dinca, G; Georgeoni, P; Landuyt, J van; Manfredotti, C; Vittone, E

    2002-01-01

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp 3 bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m -2 is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond

  3. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  4. First principles study of LiAlO2: new dense monoclinic phase under high pressure

    Science.gov (United States)

    Liu, Guangtao; Liu, Hanyu

    2018-03-01

    In this work, we have systematically explored the crystal structures of LiAlO2 at high pressures using crystal structure prediction method in combination with the density functional theory calculations. Besides the reported α, β, γ, δ and ɛ-phases, here we propose a new monoclinic ζ-LiAlO2 (C2/m) structure, which becomes thermodynamically and dynamically stable above 27 GPa. It is found that the cation coordination number increases from 4 to 6 under compression. Consisting of the compact {LiO6} and {AlO6} octahedrons, the newly-discovered ζ-phase possesses a very high density. Further electronic calculations show that LiAlO2 is still an insulator up to 60 GPa, and its bandgap increases upon compression. The present study advances our understanding on the crystal structures and high-pressure phase transitions of LiAlO2 that may trigger applications in multiple areas of industry and provoke more related basic science research.

  5. High pressure synthesis of zeolite/polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Julien; Thibaud, Jean-Marc; Rouquette, Jerome; Cambon, Olivier; Di Renzo, Francesco, E-mail: julien.haines@univ-montp2.fr [Institut Charles Gerhardt Montpellier (France); Lee, Arie van der [Institut Europeen des Membranes, Montpellier (France); Scelta, Demetrio; Ceppatelli, Matteo; Dziubek, Kamil; Gorelli, Federico; Bini, Roberto; Santoro, Mario [European Laboratory for Non Linear Spectroscopy, Firenze (Italy)

    2016-07-01

    Full text: Polymerization of simple organic molecules under high pressure in the subnanometric pores of pure SiO{sub 2} zeolites can be used to produce novel nanocomposite materials, which can be recovered at ambient P and have remarkable mechanical, electrical or optical properties. Polymerization of ethylene in silicalite was studied in situ at high pressure by IR and results in a nanocomposite with isolated chains of non-conducting polyethylene strongly confined in the pores based on single crystal x-ray diffraction data. The nanocomposite is much less compressible than silicalite and has a positive rather than a negative thermal expansion coefficient. In order to target novel electrical and optical properties, isolated chains of conducting polymers can also be prepared in the pores of zeolite hosts at high pressure, such as polyacetylene, which was polymerized under pressure in the pores of the 1-D zeolite TON. The structure of this nanocomposite was determined by synchrotron x-ray powder diffraction data with complete pore filling corresponding to one planar polymer chain confined in each pore with a zig-zag configuration in the yz plane. This very strong confinement can be expected to strongly modify the electrical properties of polyacetylene. In this nanocomposite, our theoretical calculations indicate that the electronic density of states of polyacetylene exhibit van Hove singularities related to quantum 1D confinement, which could lead to future technological applications. This new material is susceptible to have applications in nanoelectronics, nanophotonics and energy and light harvesting. Completely novel nanocomposites were prepared by the polymerization of carbon monoxide CO in silicalite and TON. In these materials, isolated, ideal polycarbonyl chains are obtained in contrast to the non-stoichiometric, branched bulk polymers obtained by high pressure polymerization of this simple system. These poly CO/zeolite composites could be interesting energetic

  6. Anomalous perovskite PbRuO3 stabilized under high pressure

    Science.gov (United States)

    Cheng, J.-G.; Kweon, K. E.; Zhou, J.-S.; Alonso, J. A.; Kong, P.-P.; Liu, Y.; Jin, Changqing; Wu, Junjie; Lin, Jung-Fu; Larregola, S. A.; Yang, Wenge; Shen, Guoyin; MacDonald, A. H.; Manthiram, Arumugam; Hwang, G. S.; Goodenough, John B.

    2013-01-01

    Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc. PMID:24277807

  7. High-pressure EXAFS study of vitreous GeO2 up to 44 GPa

    International Nuclear Information System (INIS)

    Baldini, M.; Aquilanti, G.; Mao, H-k.; Yang, W.; Shen, G.; Pascarelli, S.; Mao, W. L.

    2010-01-01

    High-pressure extended x-ray absorption fine-structure measurements were performed on amorphous GeO 2 over increasing and decreasing pressure cycles at pressures up to 44 GPa. Several structural models based on crystalline phases with fourfold, fivefold, and sixfold coordination were used to fit the Ge-O first shell. The Ge-O bond lengths gradually increased up to 30 GPa. Three different pressure regimes were identified in the pressure evolution of the Ge-O bond distances. Below 13 GPa, the local structure was well described by a fourfold 'quartzlike' model whereas a disordered region formed by a mixture of four- and five-coordinated germanium-centered polyhedra was observed in the intermediate pressure range between 13 and 30 GPa. Above 30 GPa the structural transition to the maximum coordination could be considered complete. The present results shed light on the GeO 2 densification process and on the nature of the amorphous-amorphous transition, suggesting that the transition is more gradual and continuous than what has been previously reported.

  8. Study of the earth's deep interior and crystallography. X-ray and neutron diffraction experiments under high pressures

    International Nuclear Information System (INIS)

    Yagi, Takehiko

    2014-01-01

    History of the study of the Earth's deep interior was reviewed. In order to understand Earth's deep interior from the view point of materials science, X-ray diffraction under high pressure and high temperature played very important role. Use of synchrotron radiation dramatically advanced this experimental technique and it is now possible to make precise X-ray study under the P-T conditions corresponding even to the center of the Earth. In order to clarify the behavior of light elements such as hydrogen, however, studies using neutron diffraction are also required. A new neutron beam line dedicated for high-pressure science is constructed at J-PARC and is now ready for use. (author)

  9. The use of on-line ion chromatography for high temperature and high pressure reaction studies

    International Nuclear Information System (INIS)

    Lynch, G.J.

    1993-10-01

    This paper describes the use of on-line ion chromatography as a tool for chemistry reaction studies in small volume systems. The technique was used to study chemistry behavior in a high temperature and high pressure autoclave system. A dual analyzer, multi-channel on-line ion chromatograph (IC) was configured to automate the sampling and analysis. Analytical channels were set up for analysis of inorganic anions, monovalent cations, conductivity, and pH. Conductivity and pH were measured using the IC as a flow injection analyzer. Use of the IC system provides significant advantages over conventional sampling and analysis techniques: Reduction in sample volume, a closed sampling system that protects air or light sensitive analytes from breakdown, around-the-clock test performance combined with automatic calibration and quality control checking, and detection and tracking of reaction products or unexpected contaminants. Methods used to correct measured concentrations for the effects of sampling and for calculation of control chemical loss half-lives are presented. A limited evaluation of the flow injection analysis methods for conductivity and pH is provided

  10. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen

    2014-01-01

    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  11. New Developments in Deformation Experiments at High Pressure

    International Nuclear Information System (INIS)

    Durham, W B; Weidner, D J; Karato, S; Wang, Y

    2004-01-01

    Although the importance of rheological properties in controlling the dynamics and evolution of the whole mantle of Earth is well-recognized, experimental studies of rheological properties and deformation-induced microstructures have mostly been limited to low-pressure conditions. This is mainly a result of technical limitations in conducting quantitative rheological experiments under high-pressure conditions. A combination of factors is changing this situation. Increased resolution of composition and configuration of Earth's interior has created a greater demand for well-resolved laboratory measurement of the effects of pressure on the behavior of materials. Higher-strength materials have become readily available for containing high-pressure research devices, and new analytical capabilities--in particular very bright synchrotron X-ray sources--are now readily available to high-pressure researchers. One of the biggest issues in global geodynamics is the style of mantle convection and the nature of chemical differentiation associated with convectional mass transport. Although evidence for deep mantle circulation has recently been found through seismic tomography (e.g., van der Hilst et al. (1997)), complications in convection style have also been noted. They include (1) significant modifications of flow geometry across the mantle transition zone as seen from high resolution tomographic studies (Fukao et al. 1992; Masters et al. 2000; van der Hilst et al. 1991) and (2) complicated patterns of flow in the deep lower mantle (∼1500-2500 km), perhaps caused by chemical heterogeneity (Kellogg et al. 1999; van der Hilst and Karason 1999). These studies indicate that while large-scale circulation involving the whole mantle no doubt occurs, significant deviations from simple flow geometry are also present. Two mineral properties have strong influence on convection: (1) density and (2) viscosity (rheology) contrasts. In the past, the effects of density contrast have been

  12. High temperature pressure water's blowdown into water. Experimental results

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  13. High-pressure phase transitions of deep earth materials

    International Nuclear Information System (INIS)

    Hirose, Kei

    2009-01-01

    Recent developments in synchrotron XRD measurements combined with laser-heated diamond-anvil cell (LHDAC) techniques have enabled us to search for a novel phase transition at extremely high pressure and temperature. A phase transition from MgSiO 3 perovskite to post-perovskite was discovered through a drastic change in XRD patterns above 120 GPa and 2500 K, corresponding to the condition in the lowermost mantle (Murakami et al., 2004; Oganov and Ono, 2004). A pressure-induced phase transformation from ABO 3 -type perovskite to any denser structures was not known at that time. This new MgSiO 3 polymorph called post-perovskite has an orthorhombic symmetry (space group: Cmcm) with a sheet-stacking structure. The Mg site in post-perovskite is smaller than that in perovskite, which results in a volume reduction by 1.0-1.5% from perovskite structure. The electrical conductivity of post-perovskite is higher by three orders of magnitude than that of perovskite at similar pressure range (Ohta et al., 2008). This is likely due to a shorter Fe-Fe distance in post-perovskite structure, while conduction mechanism is yet to be further examined. Phase transition boundary between perovskite and post-perovskite has been determined in a wide temperature range up to 4400 K at 170 GPa (Tateno et al., 2008). Phase relations of Fe alloys have been also studied at core pressures (>135 GPa), although the generation of high temperature is more difficult at higher pressures. A new high-pressure B2 phase of B2 phase of FeS was recently discovered above 180 GPa (Sata et al., 2008). The Fe-Ni alloys have a wide pressure-temperature stability field of fcc phase at the core pressure range, depending on the Ni content (Kuwayama et al., 2008). (author)

  14. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aortic Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 29,2018 The importance of stress ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  15. Weight Status and High Blood Pressure Among Low-Income African American Men

    Science.gov (United States)

    Bruce, Marino A.; Beech, Bettina M.; Edwards, Christopher L.; Sims, Mario; Scarinci, Isabel; Whitfield, Keith E.; Gilbert, Keon; Crook, Errol D.

    2016-01-01

    Obesity is a biological risk factor or comorbidity that has not received much attention from scientists studying hypertension among African American men. The purpose of this study was to examine the relationship between weight status and high blood pressure among African American men with few economic resources. The authors used surveillance data collected from low-income adults attending community- and faith-based primary care clinics in West Tennessee to estimate pooled and group-specific regression models of high blood pressure. The results from group-specific logistic regression models indicate that the factors associated with hypertension varied considerably by weight status. This study provides a glimpse into the complex relationship between weight status and high blood pressure status among African American men. Additional research is needed to identify mechanisms through which excess weight affects the development and progression of high blood pressure. PMID:20937738

  16. Computational study of a High Pressure Turbine Nozzle/Blade Interaction

    Science.gov (United States)

    Kopriva, James; Laskowski, Gregory; Sheikhi, Reza

    2015-11-01

    A downstream high pressure turbine blade has been designed for this study to be coupled with the upstream uncooled nozzle of Arts and Rouvroit [1992]. The computational domain is first held to a pitch-line section that includes no centrifugal forces (linear sliding-mesh). The stage geometry is intended to study the fundamental nozzle/blade interaction in a computationally cost efficient manner. Blade/Nozzle count of 2:1 is designed to maintain computational periodic boundary conditions for the coupled problem. Next the geometry is extended to a fully 3D domain with endwalls to understand the impact of secondary flow structures. A set of systematic computational studies are presented to understand the impact of turbulence on the nozzle and down-stream blade boundary layer development, resulting heat transfer, and downstream wake mixing in the absence of cooling. Doing so will provide a much better understanding of stage mixing losses and wall heat transfer which, in turn, can allow for improved engine performance. Computational studies are performed using WALE (Wale Adapted Local Eddy), IDDES (Improved Delayed Detached Eddy Simulation), SST (Shear Stress Transport) models in Fluent.

  17. High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline

    Science.gov (United States)

    Huang, Changbao; Wu, Haixin; Xiao, Ruichun; Chen, Shijing; Ma, Jiaren

    2018-06-01

    The pnictide and chalcogenide semiconductors are promising materials for the applications in the field of photoelectric. High-purity and high-volume polycrystalline required in the real-world applications is hard to be synthesized due to the high vapor pressure of phosphorus and sulfur components at high temperature. A new high-pressure-resisted method was used to investigate the synthesis of the nonlinear-optical semiconductor ZnGeP2. The high-purity ZnGeP2 polycrystalline material of approximately 500 g was synthesized in one run, which enables the preparation of nominally stoichiometric material. Since increasing internal pressure resistance of quartz crucible and reducing the reaction space, the high-pressure-resisted method can be used to rapidly synthesize other pnictide and chalcogenide semiconductors and control the components ratio.

  18. Pressure balanced type membrane covered polarographic oxygen detectors for use in high temperature-high pressure water, (1)

    International Nuclear Information System (INIS)

    Nakayama, Norio; Uchida, Shunsuke

    1984-01-01

    A pressure balanced type membrane covered polarographic oxygen detector was developed to determine directly oxygen concentrations in high temperature, high pressure water without cooling and pressure reducing procedures. The detector is characterized by the following features: (1) The detector body and the membrane for oxygen penetration are made of heat resistant resin. (2) The whole detector body is contained in a pressure chamber where interior and exterior pressures of the detector are balanced. (3) Thermal expansion of the electrolyte is absorbed by deformation of a diaphragm attached to the detector bottom. (4) The effect of dissolved Ag + on the signal current is eliminated by applying a guard electrode. As a result of performance tests at elevated temperature, it was demonstrated that a linear relationship between oxygen concentration and signal current was obtained up to 285 0 C, which was stabilized by the guard electrode. The minimum O 2 concentration detectable was 0.03ppm (9.4 x 10 -7 mol/kg). (author)

  19. High-pressure behavior of methylammonium lead iodide (MAPbI_3) hybrid perovskite

    International Nuclear Information System (INIS)

    Capitani, Francesco; Marini, Carlo; Caramazza, Simone; Postorino, Paolo; Garbarino, Gaston; Hanfland, Michael; Pisanu, Ambra; Quadrelli, Paolo; Malavasi, Lorenzo

    2016-01-01

    In this paper we provide an accurate high-pressure structural and optical study of the MAPbI_3 hybrid perovskite. Structural data show the presence of a phase transition toward an orthorhombic structure around 0.3 GPa followed by full amorphization of the system above 3 GPa. After releasing the pressure, the system keeps the high-pressure orthorhombic phase. The occurrence of these structural transitions is further confirmed by pressure induced variations of the photoluminescence signal at high pressure. These variations clearly indicate that the bandgap value and the electronic structure of MAPI change across the phase transition.

  20. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite

    Science.gov (United States)

    Capitani, Francesco; Marini, Carlo; Caramazza, Simone; Postorino, Paolo; Garbarino, Gaston; Hanfland, Michael; Pisanu, Ambra; Quadrelli, Paolo; Malavasi, Lorenzo

    2016-05-01

    In this paper we provide an accurate high-pressure structural and optical study of the MAPbI3 hybrid perovskite. Structural data show the presence of a phase transition toward an orthorhombic structure around 0.3 GPa followed by full amorphization of the system above 3 GPa. After releasing the pressure, the system keeps the high-pressure orthorhombic phase. The occurrence of these structural transitions is further confirmed by pressure induced variations of the photoluminescence signal at high pressure. These variations clearly indicate that the bandgap value and the electronic structure of MAPI change across the phase transition.

  1. Superconductivity under high pressure in the binary compound CaLi2

    Science.gov (United States)

    Debessai, M.; Matsuoka, T.; Hamlin, J. J.; Gangopadhyay, A. K.; Schilling, J. S.; Shimizu, K.; Ohishi, Y.

    2008-12-01

    Feng predicted for CaLi2 highly anomalous properties with possible superconductivity under very high pressures, including for the hcp polymorph a significant lattice bifurcation at pressures above 47 GPa. More recently, however, Feng suggested that for pressures exceeding 20 GPa CaLi2 may dissociate into elemental Ca and Li. Here we present for hcp CaLi2 measurements of the electrical resistivity and ac susceptibility to low temperatures under pressures as high as 81 GPa. Pressure-induced superconductivity is observed in the pressure range of 11-81 GPa, with Tc reaching values as high as 13 K. X-ray diffraction studies to 54 GPa at 150 K reveal that hcp CaLi2 undergoes a structural phase transition above 23 GPa to orthorhombic but does not dissociate into elemental Ca and Li. In the hcp phase a fit of the equation of state with the Murnaghan equation yields the bulk modulus Bo=15(2)GPa and dBo/dP=3.2(6) .

  2. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  3. Flow Field Measurements of Methane-Oxygen Turbulent Nonpremixed Flames at High Pressure

    Science.gov (United States)

    Iino, Kimio; Kikkawa, Hoshitaka; Akamatsu, Fumiteru; Katsuki, Masashi

    We carried out the flow field measurement of methane-oxygen turbulent nonpremixed flame in non-combusting and combusting situations at high pressures using LDV. The main objectives are to study the influences of combustion on the turbulence structure at high pressures and to provide detailed data on which numerical predictions on such flows can rely. Direct observation and CH* chemiluminescence detection are conducted at high pressures up to 1.0MPa. It was found that the flame length at elevated pressures became constant. From flow field measurements, the following features of flames at elevated pressure were found: (1) the existence of flame suppressed turbulence in the upstream region of the jet and enhanced it in the downstream region with increasing pressure; (2) Turbulence in the flame was more anisotropic than in the corresponding cold jet in all regions of the flow with increasing pressure; (3) Reynolds shear stresses did not change at elevated pressure; (4) Combustion processes had a marked influence on the turbulence macroscale under high pressures, however, the turbulence macroscale was not changed even with the increase in pressure.

  4. High pressure effects on a trimetallic Mn(II/III) SMM.

    Science.gov (United States)

    Prescimone, Alessandro; Sanchez-Benitez, Javier; Kamenev, Konstantin V; Moggach, Stephen A; Lennie, Alistair R; Warren, John E; Murrie, Mark; Parsons, Simon; Brechin, Euan K

    2009-09-28

    A combined study of the high pressure crystallography and high pressure magnetism of the complex [Mn3(Hcht)2(bpy)4](ClO4)3.Et2O.2MeCN (1.Et2O.2MeCN) (H3cht is cis,cis-1,3,5-cyclohexanetriol) is presented in an attempt to observe and correlate pressure induced changes in its structural and physical properties. At 0.16 GPa the complex 1.Et2O.2MeCN loses all associated solvent in the crystal lattice, becoming 1. At higher pressures structural distortions occur changing the distances between the metal centres and the bridging oxygen atoms making the magnetic exchange between the manganese ions weaker. No significant variations are observed in the Jahn-Teller axis of the only Mn(III) present in the structure. High pressure dc chiMT plots display a gradual decrease in both the low temperature value and slope. Simulations show a decrease in J with increasing pressure although the ground state is preserved. Magnetisation data do not show any change in |D|.

  5. High Temperature- and High Pressure-Processed Garlic Improves Lipid Profiles in Rats Fed High Cholesterol Diets

    Science.gov (United States)

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong

    2012-01-01

    Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (Pgarlic may be useful as a functional food to improve lipid profiles. PMID:22404600

  6. Condensation heat transfer on natural convection at the high pressure

    International Nuclear Information System (INIS)

    Jong-Won, Kim; Hyoung-Kyoun, Ahn; Goon-Cherl, Park

    2007-01-01

    The Regional Energy Research Institute for the Next Generation is to develop a small scale electric power system driven by an environment-friendly and stable small nuclear reactor. REX-10 has been developed to assure high system safety in order to be placed in densely populated region and island. REX-10 adopts the steam-gas pressurizer to assure the inherent safety. The thermal-hydraulic phenomena in the steam-gas pressurizer are very complex. Especially, the condensation heat transfer with noncondensable gas on the natural convection is important to evaluate the pressurizer behavior. However, there have been few investigations on the condensation in the presence of noncondensable gas at the high pressure. In this study, the theoretical model is developed to estimate the condensation heat transfer at the high pressure using heat and mass transfer analogy. The analysis results show good agreement with correlations and experimental data. It is found that the condensation heat transfer coefficient increases as the total pressure increases or the mass fraction of the non-condensable gas decreases. In addition, the heat transfer coefficient no more increases over the specific pressure

  7. Long-term follow-up of high-pressure injection injuries to the hand

    NARCIS (Netherlands)

    Wieder, Anat; Lapid, Oren; Plakht, Ygal; Sagi, Amiram

    2006-01-01

    High-pressure injection injury is an injury caused by accidental injection of substances by industrial equipment. This injury may have devastating sequelae. The goal of this study was to assess the long-term outcome of high-pressure injection injury to the hand. In this historical prospective study,

  8. High pressure study of viscosity and temperature effects on tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-12-01

    High pressure fluorescence studies from 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used: 2,2,4,4,6,8,8-heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14-tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 P was covered at two temperatures: 0 and 25 °C. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB yielded the two radiative rates (kEQ and kFC) as well as the rate of relaxation from FC to the EQ excited state (kRE). kRE was found to correlate well with viscosity and to be independent of temperature at constant viscosity, indicating that the relaxation process is diffusion controlled.

  9. Synthesis and stability of hydrogen selenide compounds at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Edward J.; Binns, Jack; Alvarez, Miriam Pena; Dalladay-Simpson, Philip; Gregoryanz, Eugene; Howie, Ross T. (Edinburgh); (CHPSTAR- China)

    2017-11-14

    The observation of high-temperature superconductivity in hydride sulfide (H2S) at high pressures has generated considerable interest in compressed hydrogen-rich compounds. High-pressure hydrogen selenide (H2Se) has also been predicted to be superconducting at high temperatures; however, its behaviour and stability upon compression remains unknown. In this study, we synthesize H2Se in situ from elemental Se and molecular H2 at pressures of 0.4 GPa and temperatures of 473 K. On compression at 300 K, we observe the high-pressure solid phase sequence (I-I'-IV) of H2Se through Raman spectroscopy and x-ray diffraction measurements, before dissociation into its constituent elements. Through the compression of H2Se in H2 media, we also observe the formation of a host-guest structure, (H2Se)2H2, which is stable at the same conditions as H2Se, with respect to decomposition. These measurements show that the behaviour of H2Se is remarkably similar to that of H2S and provides further understanding of the hydrogen chalcogenides under pressure.

  10. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  11. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53719 (United States)

    2015-10-15

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  12. Experimental and Kinetic Modeling Study of C2H2Oxidation at High Pressure

    DEFF Research Database (Denmark)

    Lopez, Jorge Gimenez; Rasmussen, Christian Tihic; Hashemi, Hamid

    2016-01-01

    diagram for C2H3 + O2 by Goldsmith et al. and on new ab initio calculations, respectively. The C2H2 + HO2 reaction involves nine pressure- and temperature-dependent product channels, with formation of triplet CHCHO being dominant under most conditions. The barrier to reaction for C2H2 + O2 was found......A detailed chemical kinetic model for oxidation of acetylene at intermediate temperatures and high pressure has been developed and evaluated experimentally. The rate coefficients for the reactions of C2H2 with HO2 and O2 were investigated, based on the recent analysis of the potential energy...... to be more than 50 kcal mol−1 and predictions of the initiation temperature were not sensitive to this reaction. Experiments were conducted with C2H2/O2 mixtures highly diluted in N2 in a high-pressure flow reactor at 600–900 K and 60 bar, varying the reaction stoichiometry from very lean to fuel...

  13. Structural phase transitions in Zn(CN)2 under high pressures

    International Nuclear Information System (INIS)

    Poswal, H.K.; Tyagi, A.K.; Lausi, Andrea; Deb, S.K.; Sharma, Surinder M.

    2009-01-01

    High pressure behavior of zinc cyanide (Zn(CN) 2 ) has been investigated with the help of synchrotron-based X-ray diffraction measurements. Our studies reveal that under pressure this compound undergoes phase transformations and the structures of the new phases depend on whether the pressure is hydrostatic or not. Under hydrostatic conditions, Zn(CN) 2 transforms from cubic to orthorhombic to cubic-II to amorphous phases. In contrast, the non-hydrostatic pressure conditions drive the ambient cubic phase to a partially disordered crystalline phase, which eventually evolves to a substantially disordered phase. The final disordered phase in the latter case is distinct from the amorphous phase observed under the hydrostatic pressures. - Graphical abstract: High pressure X-ray diffraction investigations on Zn(CN) 2 show three phase transformations i.e., cubic→orthorhombic→cubic-II→amorphous. However, the results strongly depend upon the nature of stress

  14. Systematic prediction of high-pressure melting curves of transition metals

    International Nuclear Information System (INIS)

    Hieu, Ho Khac

    2014-01-01

    The pressure effects on melting temperatures of transition metals have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed for five transition metals including Cu, Pd, Pt, Ni, and Mn up to pressure 100 GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure melting of materials.

  15. Effect of High-Pressure Treatment on Catalytic and Physicochemical Properties of Pepsin.

    Science.gov (United States)

    Wang, Jianan; Bai, Tenghui; Ma, Yaping; Ma, Hanjun

    2017-10-11

    For a long time, high-pressure treatment has been used to destroy the compact structures of natural proteins in order to promote subsequent enzymatic hydrolysis. However, there are few reports evaluating the feasibility of directly improving the catalytic capability of proteases by using high-pressure treatments. In this study, the effects of high-pressure treatment on the catalytic capacity and structure of pepsin were investigated, and the relationship between its catalytic properties and changes in its physicochemical properties was explored. It was found that high-pressure treatment could lead to changes of the sulfhydryl group/disulfide bond content, hydrophobicity, hydrodynamic radius, intrinsic viscosity, and subunit composition of pepsin, and the conformational change of pepsin resulted in improvement to its enzymatic activity and hydrolysis efficiency, which had an obvious relationship with the high-pressure treatment conditions.

  16. High-pressure mechanical instability in rocks.

    Science.gov (United States)

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  17. Thermodynamic properties of OsB under high temperature and high pressure

    Science.gov (United States)

    Chen, Hai-Hua; Li, Zuo; Cheng, Yan; Bi, Yan; Cai, Ling-Cang

    2011-09-01

    The energy-volume curves of OsB have been obtained using the first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT) within the generalized gradient approximation (GGA) and local density approximation (LDA). Using the quasi-harmonic Debye model we first analyze the specific heat, the coefficients of thermal expansion as well as the thermodynamic Grüneisen parameter of OsB in a wide temperature range at high pressure. At temperature 300 K, the coefficients of thermal expansion αV by LDA and GGA calculations are 1.67×10 -5 1/K and 2.01×10 -5 1/K, respectively. The specific heat of OsB at constant pressure (volume) is also calculated. Meanwhile, we find that the Debye temperature of OsB increases monotonically with increasing pressure. The present study leads to a better understanding of how the OsB materials respond to pressure and temperature.

  18. First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure

    International Nuclear Information System (INIS)

    Zhang Xiao-Lin; Wu Yuan-Yuan; Shao Xiao-Hong; Lu Yong; Zhang Ping

    2016-01-01

    The high pressure behaviors of Th 4 H 15 and ThH 2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy–volume relations, the bct phase of ThH 2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH 2 and bcc Th 4 H 15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH 2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th 4 H 15 and bct ThH 2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH 2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th 4 H 15 and ThH 2 . (paper)

  19. Ultra-high pressure water jet: Baseline report

    International Nuclear Information System (INIS)

    1997-01-01

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU's evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky trademark pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems

  20. High Pressure X-Ray Diffraction Studies of Bi2-xSbxTe3 (x = 0,1,2)

    Science.gov (United States)

    Jacobsen, M. K.; Kumar, R. S.; Cornelius, A. L.; Sinogeiken, S. V.; Nico, M. F.

    2007-12-01

    Recently, pressure tuning of the thermoelectric figure of merit has been reported for several materials Bi2Te3 based thermoelectric materials [2],[10],[12]. In order to investigate the bulk properties of Bi2Te3, Sb2Te3, and their solid solution in detail, we have performed structural studies up to 20 GPa. Our diffraction results show that all three compounds transform from the ambient pressure structure to a high pressure phase between 7 and 10 GPa. In addition, these diffraction results have been converted to Vinet and Holzapfel equations of state to test the claim of electronic topological transitions in these structures [3].

  1. The α → ω Transformation in Titanium-Cobalt Alloys under High-Pressure Torsion

    Directory of Open Access Journals (Sweden)

    Askar R. Kilmametov

    2017-12-01

    Full Text Available The pressure influence on the α → ω transformation in Ti–Co alloys has been studied during high pressure torsion (HPT. The α → ω allotropic transformation takes place at high pressures in titanium, zirconium and hafnium as well as in their alloys. The transition pressure, the ability of high pressure ω-phase to retain after pressure release, and the pressure interval where α and ω phases coexist depend on the conditions of high-pressure treatment. During HPT in Bridgeman anvils, the high pressure is combined with shear strain. The presence of shear strain as well as Co addition to Ti decreases the onset of the α → ω transition from 10.5 GPa (under quasi-hydrostatic conditions to about 3.5 GPa. The portion of ω-phase after HPT at 7 GPa increases in the following sequence: pure Ti → Ti–2 wt % Co → Ti–4 wt % Co → Ti–4 wt % Fe.

  2. Phase stability of TiH{sub 2} under high pressure and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Selva Vennila, R.; Durygin, A.; Saxena, S.K. [Center for Study of Matter at Extreme Conditions (CeSMEC), Florida International University, VH-150, University Park, Miami, FL 33199 (United States); Merlini, Marco [European Synchrotron Radiation Facility (ESRF), Grenoble 38043 (France); Wang, Zhongwu [Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, NY 14853 (United States)

    2008-11-15

    Phase stability of titanium hydride (TiH{sub 2}) was studied at high pressure-high temperature conditions using synchrotron radiation under non-hydrostatic conditions. Resistive heating method was used to heat the sample to a maximum temperature of 873 K in a diamond anvil cell (DAC) under pressure up to 12 GPa. Pressure-temperature behavior was studied by varying the temperature upto 823 K in steps of 50 K with pressure variations within 3 GPa. Structural phase transformation from tetragonal (I4/mmm) to cubic (Fm-3 m) was observed with increase in temperature. Tetragonal phase was found to be stabilized when the sample was subjected to pressure and temperature cycle. (author)

  3. High-pressure portable pneumatic drive unit.

    Science.gov (United States)

    Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

    1989-12-01

    The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

  4. Generation of high shock pressures by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P. (GRECO ILM, Laboratoire d' Energetique et Detonique, E.N.S.M.A., 86 - Poitiers (France))

    1984-11-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 ..mu..m wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined.

  5. Generation of high shock pressures by laser pulses

    International Nuclear Information System (INIS)

    Romain, J.P.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 μm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined

  6. Computer simulation at high pressure

    International Nuclear Information System (INIS)

    Alder, B.J.

    1977-11-01

    The use of either the Monte Carlo or molecular dynamics method to generate equations-of-state data for various materials at high pressure is discussed. Particular emphasis is given to phase diagrams, such as the generation of various types of critical lines for mixtures, melting, structural and electronic transitions in solids, two-phase ionic fluid systems of astrophysical interest, as well as a brief aside of possible eutectic behavior in the interior of the earth. Then the application of the molecular dynamics method to predict transport coefficients and the neutron scattering function is discussed with a view as to what special features high pressure brings out. Lastly, an analysis by these computational methods of the measured intensity and frequency spectrum of depolarized light and also of the deviation of the dielectric measurements from the constancy of the Clausius--Mosotti function is given that leads to predictions of how the electronic structure of an atom distorts with pressure

  7. Teaming Up Against High Blood Pressure PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    Nearly one-third of American adults have high blood pressure, and more than half of them don’t have it under control. Simply seeing a doctor and taking medications isn’t enough for many people who have high blood pressure. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.

  8. Analysis of different anthropometric indicators in the detection of high blood pressure in school adolescents: a cross-sectional study with 8295 adolescents.

    Science.gov (United States)

    Christofaro, Diego G D; Farah, Breno Q; Vanderlei, Luiz Carlos M; Delfino, Leandro D; Tebar, William R; Barros, Mauro Virgílio G de; Ritti-Dias, Raphael M

    High blood pressure is strongly associated with obesity in different populations. However, it is unclear whether different anthropometric indicators of obesity can satisfactorily predict high blood pressure in the school setting. This study evaluated the sensitivity and specificity of body mass index, waist circumference, and waist to height ratio in the detection of high blood pressure in adolescents. The sample consisted of 8295 adolescents aged 10-17 years. Weight was measured using a digital scale, height with a stadiometer, and waist circumference using a tape measure. Blood pressure was measured by an automatic blood pressure measuring device. ROC curves were used for the analysis of sensitivity and specificity of the three anthropometric indices in identifying high blood pressure. Binary Logistic Regression was used to assess the association of body mass index, waist circumference, and waist to height ratio with high blood pressure. Low values of sensitivity were observed for body mass index (0.35), waist circumference (0.37), and waist to height ratio (0.31) and high values of specificity for body mass index (0.86), waist circumference (0.82), and waist to height ratio (0.83) in the detection of high blood pressure. An association was observed between adolescents classified with high body mass index (OR=3.57 [95% CI=3.10-4.10]), waist cirumference (OR=3.24 [95% CI=2.83-3.72]), and waist to height ratio (OR=2.94 [95% CI=2.54-3.40]) with high blood pressure. Body mass index, waist circumference, and waist to height ratio presented low sensitivity to identify adolescents with high blood pressure. However, adolescents classified with high body mass index, waist circumference, and waist to height ratio demonstrated a high association of presenting high blood pressure. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  9. Effect of high hydrostatic pressure on cashew apple (Anacardium occidentale L.) juice preservation.

    Science.gov (United States)

    Lavinas, F C; Miguel, M A L; Lopes, M L M; Valente Mesquita, V L

    2008-08-01

    High hydrostatic pressure is an alternative to thermal processing to inactivate spoilage and pathogenic microorganisms. Cashew apple juice has a pleasant flavor and is rich in vitamin C. Studies to determine the effect of high pressure on microorganisms in cashew apple juice are still lacking. In this study, the inactivation of natural micropopulation and inoculated Escherichia coli by high pressure was evaluated in fresh cashew apple juice. The microbiological stability of pressure-treated juice was also evaluated. The applied high pressure levels ranged from 250 to 400 MPa for periods of 3 to 7 min. Treatments with 350 MPa for 7 min and 400 MPa for either 3 or 7 min reduced the aerobic mesophilic bacteria count to a level below the detection limit. Pressure treatments were also efficient in inactivating yeast and filamentous fungi. The inoculated E. coli (10(6) CFU/mL) was reduced to below 10 CFU/mL after a pressure treatment of 400 MPa for 3 min. The inactivation of this microorganism followed a 1st-order reaction kinetics. The decimal reduction time (D-value) ranged from 1.21 to 16.43 min, while pressure resistance value (z-value) was 123.46 MPa. Neither natural micropopulation growth nor E. coli repair was observed in postprocessed (400 MPa for 3 min) cashew apple juice kept under refrigerated storage (at 4 degrees C) during 8 wk. The results of this study demonstrated the efficacy of high-pressure treatment for preserving cashew apple juice.

  10. GENERATION OF HIGH SHOCK PRESSURES BY LASER PULSES

    OpenAIRE

    Romain , J.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 µm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of ...

  11. High Pressure Treatment in Foods

    OpenAIRE

    Edwin Fabian Torres Bello; Gerardo González Martínez; Bernadette F. Klotz Ceberio; Dolores Rodrigo; Antonio Martínez López

    2014-01-01

    Abstract: High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non...

  12. Blood pressure in childhood : epidemiological probes into the aetiology of high blood pressure

    NARCIS (Netherlands)

    A. Hofman (Albert)

    1983-01-01

    textabstractHigh arterial blood pressure takes a heavy toll in western populations (1 ). Its causes are still largely unknown, but its sequelae, a variety of cardiovascular and renal diseases, have been referred to as "a modern scourge" (2). High blood pressure of unknown cause, or

  13. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  14. Automatic torque magnetometer for vacuum-to-high-pressure hydrogen environments

    International Nuclear Information System (INIS)

    Larsen, J.W.; Livesay, B.R.

    1979-01-01

    An automatic torque magnetometer has been developed for use in high-pressure hydrogen. It will contain pressures ranging from vacuum to 200 atm of hydrogen gas at sample temperatures greater than 400 0 C. This magnetometer, which uses an optical lever postion sensor and a restoring force technique has an operating range of 2.0 x 10 3 dyn cm to l.6 x 10 -4 dyn cm. An accompanying digital data collection system extends the sensitivity to 1 x 10 -5 dyn cm as well as increasing the data handling capacity of the system. The magnetic properties of thin films in high-temperature and high-pressure hydrogen environments can be studied using this instruments

  15. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, L C [National Institute for Materials Physics, Bucharest (Romania); Nistor, S V [National Institute for Materials Physics, Bucharest (Romania); Dinca, G [Dacia Synthetic Diamonds Factory, Bucharest (Romania); Georgeoni, P [Dacia Synthetic Diamonds Factory, Bucharest (Romania); Landuyt, J van [University of Antwerpen - RUCA, EMAT, Antwerpen (Belgium); Manfredotti, C [Experimental Physics Department, University of Turin, Turin (Italy); Vittone, E [Experimental Physics Department, University of Turin, Turin (Italy)

    2002-11-11

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp{sup 3} bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m{sup -2} is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond.

  16. Designing high pressure containers for research- principles and applications

    International Nuclear Information System (INIS)

    Anandkumar, V.

    1997-01-01

    The high pressure scientist looks for a well engineered pressure apparatus for high pressure experiments for 1 kbar (0.1 GPa) and above. Often, a variety of difficulties including the choice of materials, design configuration, optimum utilisation of the strength of materials used in the design, are encountered. This article is intended to help the high pressure scientist to select the design approach for pressure retaining container. The limitations imposed by the strength of available materials and engineering standards in building high pressure containers are discussed. Engineering solutions to overcome these limitations with optimal utilisation of the strength of the materials are also discussed. Novel methods to boost up the pressure retaining capacity like multilayered design and autofrettaging are compared along with their relative advantages and disadvantages. Special methods by which it is possible to attain pressures which are several times the yield strength of the materials of construction are presented. In this aspects such as the basis of the codes and their relevance in the design of high pressure equipment will also be described. Discussions are centered around the methods to tackle situations where experimental constraints dictate requirements of pressures higher than those permitted by design codes. Safety features are also discussed. (author)

  17. Brillouin scattering at high pressures

    International Nuclear Information System (INIS)

    Grimsditch, M.; Polian, A.

    1988-02-01

    Technical advances which have made Brillouin scattering a useful tool in high pressure diamond anvil cell (DAC) studies, viz. multipassing and tandem operation of Fabry-Perot interferometers, are reviewed. Experimental aspects, such as allowed scattering geometries, are outlined and the data analysis required to transform Brillouin spectra into sound velocities and elastic constants is presented. Experimental results on H 2 , N 2 , Ar, and He are presented, and the close relationship between the Brillouin scattering results and equations of state is highlighted

  18. Oscillatory shear and high-pressure dielectric study of 5-methyl-3-heptanol

    DEFF Research Database (Denmark)

    Hecksher, Tina; Jakobsen, Bo; Dyre, J. C.

    2014-01-01

    The monohydroxy alcohol 5-methyl-3-heptanol is studied using rheology at ambient pressure and using dielectric spectroscopy at elevated pressures up to 1.03 GPa. Both experimental techniques reveal that the relaxational behavior of this liquid is intermediate between those that show a large Debye...

  19. Structural distortion and electronic properties of NiO under high pressure: an ab initio GGA+U study

    International Nuclear Information System (INIS)

    Zhang Weibing; Hu Yulin; Han Keli; Tang Biyu

    2006-01-01

    The structural distortion and electronic properties of NiO under high pressure are investigated by means of first-principles calculations within the density functional theory (DFT) in the generalized gradient approximation (GGA). The strong electronic correlations are also taken into account in the form of GGA+U. Recent experiments implied that previous local density approximation (LDA) calculations incorrectly predicted structural distortion under high pressure, especially above 60 GPa. The present results show that even GGA calculations do not give a proper description of structural distortion under high pressure, although much improved structural and bulk properties are obtained. When strong correlations are included, overall agreement of the structural distortions of NiO under high pressure is obtained. The lattice constants a and c as well as the axial ratio c/a are in good agreement with experiment over the entire experimental pressure range. The successful prediction of the structural distortion of GGA+U can be attributed to the reasonable description of nearest-neighbour magnetic exchange interactions. In addition, we also analyse the density of states under different pressures. Present results indicate that, with increasing pressure, the bandwidth increases and the bandgap transits from being a mixture of charge-transfer and Mott-Hubbard type towards solely Mott-Hubbard type

  20. A high pressure sample facility for neutron scattering

    International Nuclear Information System (INIS)

    Carlile, C.J.; Glossop, B.H.

    1981-06-01

    Commissioning tests involving deformation studies and tests to destruction as well as neutron diffraction measurements of a standard sample have been carried out on the SERC high pressure sample facility for neutron scattering studies. A detailed description of the pressurising equipment is given. (author)

  1. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  2. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon; Chung, Suk-Ho

    2013-01-01

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled

  3. Glassy selenium at high pressure: Le Chatelier's principle still works

    Science.gov (United States)

    Brazhkin, V. V.; Tsiok, O. B.

    2017-10-01

    Selenium is the only easily vitrified elementary substance. Numerous experimental studies of glassy Se (g -Se) at high pressures show a large spread in the data on the compressibility and electrical resistivity of g -Se. Furthermore, H. Liu et al. [Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] have arrived at the surprising conclusion that the volume of glass increases during pressure-induced crystallization. We have performed high-precision measurements of the specific volume and electrical resistivity of glassy selenium (g -Se) at high hydrostatic pressures up to 9 GPa. The measured bulk modulus at normal pressure is B =(9.0 5 ±0.15 ) GPa and its pressure derivative is BP'=6.4 ±0.2 . In the pressure range P <3 GPa, glassy selenium has an anomalously large negative second derivative of the bulk modulus. The electrical resistivity of g -Se decreases almost exponentially with increasing pressure and reaches 20 Ω cm at a pressure of 8.75 GPa. The inelastic behavior and weak relaxation of the volume for g -Se begin at pressures above 3.5 GPa; the volume and logarithm of the electrical resistivity relax significantly (logarithmically with the time) at pressures above 8 GPa. Bulk measurements certainly indicate that the volume of g -Se glass in the crystallization pressure range is larger than the volumes of both appearing crystalline phases (by 2% and 4%). Therefore, the "volume expansion phenomenon" suggested in [H. Liu et al., Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] is not observed, and the pressure-induced crystallization of glassy selenium is consistent with the laws of thermodynamics.

  4. High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)

    International Nuclear Information System (INIS)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora

    2016-01-01

    High pressure powder X-ray diffraction studies of several A 2 Mo 3 O 12 materials (A 2 =Al 2 , Fe 2 , FeAl, and AlGa) were conducted up to 6–7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga 2 Mo 3 O 12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations. - Graphical abstract: Overlay of variable pressure X-ray diffraction data of Al 2 Mo 3 O 12 collected in a diamond anvil cell. Both subtle and discontinuous phase transitions are clearly observed. - Highlights: • The high pressure behavior of A 2 Mo 3 O 12 (A=Al, Fe, (AlGa), (AlFe)) was studied. • All compounds undergo the same sequence of pressure-induced phase transitions. • The phase transition pressures correlate with the average size of the A-site cation. • All transitions were reversible with hysteresis. • Previously studied Ga 2 Mo 3 O 12 undergoes the same sequence of transitions.

  5. Dynamic calibration of piezoelectric transducers for ballistic high-pressure measurement

    Directory of Open Access Journals (Sweden)

    Elkarous Lamine

    2016-01-01

    Full Text Available The development of a dynamic calibration standard for high-amplitude pressure piezoelectric transducers implies the implementation of a system which can provide reference pressure values with known characteristics and uncertainty. The reference pressure must be issued by a sensor, as a part of a measuring chain, with a guaranteed traceability to an international standard. However, this operation has not been completely addressed yet until today and is still calling further investigations. In this paper, we introduce an experimental study carried out in order to contribute to current efforts for the establishment of a reference dynamic calibration method. A suitable practical calibration method based on the calculation of the reference pressure by measurement of the displacement of the piston in contact with an oil-filled cylindrical chamber is presented. This measurement was achieved thanks to a high speed camera and an accelerometer. Both measurements are then compared. In the first way, pressure was generated by impacting the piston with a free falling weight and, in the second way, with strikers of known weights and accelerated to the impact velocities with an air gun. The aim of the experimental setup is to work out a system which may generate known hydraulic pressure pulses with high-accuracy and known uncertainty. Moreover, physical models were also introduced to consolidate the experimental study. The change of striker’s velocities and masses allows tuning the reference pressure pulses with different shapes and, therefore, permits to sweep a wide range of magnitudes and frequencies.

  6. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  7. 76 FR 38697 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2011-07-01

    ... imports from China of high pressure steel cylinders, provided for in subheading 7311.00.00 of the... threatened with material injury by reason of LTFV and subsidized imports of high pressure steel cylinders... contained in USITC Publication 4241 (July 2011), entitled High Pressure Steel Cylinders from China...

  8. The use of strapping to increase local pressure: reporting of a sub-bandage pressure study

    Directory of Open Access Journals (Sweden)

    Alison Hopkins

    2013-04-01

    Full Text Available High compression is the gold standard for venous ulcer management. This brief report presents the results of a sub-bandage pressure study that investigated the pressures received from compression therapy in the region of the retromalleolal fossa. The study tested the hypothesis that therapeutic compression is not achieved behind the malleolus. The results confirm this, showing that less that 5-mmHg sub-bandage pressure is achieved despite high compression at the B1 level. This report demonstrates that the application of novel strapping below the malleolus substantially increases the compression at rest, standing and dorsiflexion. The clinical implications of this are discussed.

  9. High-pressure Raman spectroscopy of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Zalden, Peter [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen (Germany); JARA – Fundamentals of Future Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, PULSE Institute, Menlo Park, California 94025 (United States)

    2013-11-04

    We used high-pressure Raman spectroscopy to study the evolution of vibrational frequencies of the phase change materials (PCMs) Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 4}, and SnSb{sub 2}Te{sub 4}. We found that the critical pressure for triggering amorphization in the PCMs decreases with increasing vacancy concentration, demonstrating that the presence of vacancies, rather than differences in the atomic covalent radii, is crucial for pressure-induced amorphization in PCMs. Compared to the as-deposited amorphous phase, the pressure-induced amorphous phase has a similar vibrational spectrum but requires much lower laser power to transform into the crystalline phase, suggesting different kinetics of crystallization, which may have implications for applications of PCMs in non-volatile data storage.

  10. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis

    Directory of Open Access Journals (Sweden)

    R.F. Vogel

    2005-08-01

    Full Text Available Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK, while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.

  11. First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure

    Science.gov (United States)

    Xiao-Lin, Zhang; Yuan-Yuan, Wu; Xiao-Hong, Shao; Yong, Lu; Ping, Zhang

    2016-05-01

    The high pressure behaviors of Th4H15 and ThH2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy-volume relations, the bct phase of ThH2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH2 and bcc Th4H15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th4H15 and bct ThH2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th4H15 and ThH2. Project supported by the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China.

  12. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sano-Furukawa, A., E-mail: sano.asami@jaea.go.jp; Hattori, T. [Quantum Beam Science Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Arima, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yamada, A. [The University of Shiga Prefecture, Shiga 522-8533 (Japan); Tabata, S.; Kondo, M.; Nakamura, A. [Sumitomo Heavy Industries Co., Ltd., Ehime 792-0001 (Japan); Kagi, H.; Yagi, T. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2014-11-15

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  13. High pressure transport and micro-calorimetry studies on quantum phase transitions in Yb heavy fermion systems

    International Nuclear Information System (INIS)

    Colombier, E; Braithwaite, D; Lapertot, G; Salce, B; Knebel, G; Flouquet, J

    2008-01-01

    We present ac microcalorimetry and resistivity measurements under high pressure on new very pure single crystals of YbCu 2 Si 2 having residual resistivity ratios of up to 130 and residual resistivities of less than 1 μΩcm. The onset of magnetic order at high pressure has been detected by ac micro-calorimetry in a diamond anvil cell, and the phase diagram has been established showing magnetic order appearing at 7.6 GPa and 0.95K, and suggesting a possible quantum critical point at a pressure of about 6.5 GPa. The resistivity has been measured under pressure in hydrostatic conditions, but no sign of superconductivity is found close to the expected critical pressure down to T=0.05 K. We discuss these results in comparison with results on cerium based heavy fermion systems

  14. 77 FR 37712 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2012-06-22

    ...), that an industry in the United States is materially injured by reason of imports of high pressure steel... preliminary determinations by Commerce that imports of high pressure steel cylinders from China were... Publication 4328 (June 2012), entitled High Pressure Steel Cylinders from China: Investigation Nos. 701-TA-480...

  15. Pressure sensor for high-temperature liquids

    International Nuclear Information System (INIS)

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  16. High Pressure Reduction of Selenite by Shewanella oneidensis MR-1

    Science.gov (United States)

    Picard, A.; Daniel, I.; Testemale, D.; Letard, I.; Bleuet, P.; Cardon, H.; Oger, P.

    2007-12-01

    High-pressure biotopes comprise cold deep-sea environments, hydrothermal vents, and deep subsurface or deep-sea sediments. The latter are less studied, due to the technical difficulties to sample at great depths without contamination. Nevertheless, microbial sulfate reduction and methanogenesis have been found to be spatially distributed in deep deep-sea sediments (1), and sulfate reduction has been shown to be actually more efficient under high hydrostatic pressure (HHP) in some sediments (2). Sulfate-reducing bacteria obtained from the Japan Sea are characterized by an increased sulfide production under pressure (3,4). Unfortunately, investigations of microbial metabolic activity as a function of pressure are extremely scarce due to the experimental difficulty of such measurements at high hydrostatic pressure. We were able to measure the reduction of selenite Se(IV) by Shewanella oneidensis MR-1 as a function of pressure, to 150 MPa using two different high-pressure reactors that allow in situ X-ray spectroscopy measurements on a synchrotron source. A first series of measurements was carried out in a low-pressure Diamond Anvil Cell (DAC) of our own design (5) at ID22 beamline at ESRF (European Synchrotron Radiation Facility); a second one was performed in an autoclave (6) at the BM30B beamline at ESRF. Selenite reduction by strain MR-17 was monitored from ambient pressure to 150 MPa over 25 hours at 30 deg C by XANES spectroscopy (X-ray Analysis of Near Edge Structure). Spectra were recorded hourly in order to quantify the evolution of the oxidation state of selenium with time. Stationary-phase bacteria were inoculated at a high concentration into fresh growth medium containing 5 or 10 M of sodium selenite and 20 mM sodium lactate. Kinetic parameters of the Se (IV) reduction by Shewanella oneidensis strain MR-1 could be extracted from the data, as a function of pressure. They show 1) that the rate constant k of the reaction is decreased by a half at high pressure

  17. Hardness of high-pressure high-temperature treated single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kawasaki, S.; Nojima, Y.; Yokomae, T.; Okino, F.; Touhara, H.

    2007-01-01

    We have performed high-pressure high-temperature (HPHT) treatments of high quality single-walled carbon nanotubes (SWCNTs) over a wide pressure-temperature range up to 13 GPa-873 K and have investigated the hardness of the HPHT-treated SWCNTs using a nanoindentation technique. It was found that the hardness of the SWCNTs treated at pressures greater than 11 GPa and at temperatures higher than 773 K is about 10 times greater than that of the SWCNTs treated at low temperature. It was also found that the hardness change of the SWCNTs is related to the structural change by the HPHT treatments which was based on synchrotron X-ray diffraction measurements

  18. Extremely-high vacuum pressure measurement by laser ionization

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    Laser ionization method has the very high sensitivity for detecting atoms and molecules. Hurst et al. successfully detected a single Cs atom by means of resonance ionization spectroscopy developed by them. Noting this high sensitivity, the authors have attempted to apply the laser ionization method to measure gas pressure, particularly in the range down to extremely high vacuum. At present, hot cathode ionization gauges are used for measuring gas pressure down to ultrahigh vacuum, however, those have a number of disadvantages. The pressure measurement using lasers does not have such disadvantages. The pressure measurement utilizing the laser ionization method is based on the principle that when laser beam is focused through a lens, the amount of atom or molecule ions generated in the focused space region is proportional to gas pressure. In this paper, the experimental results are presented on the nonresonant multiphoton ionization characteristics of various kinds of gases, the ion detection system with high sensitivity and an extremely high vacuum system prepared for the laser ionization experiment. (K.I.)

  19. High-pressure cell for simultaneous dielectric and neutron spectroscopy

    DEFF Research Database (Denmark)

    Sanz, Alejandro; Hansen, Henriette Wase; Jakobsen, Bo

    2018-01-01

    In this article, we report on the design, manufacture, and testing of a high-pressure cell for simultaneous dielectric and neutron spectroscopy. This cell is a unique tool for studying dynamics on different time scales, from kilo- to picoseconds, covering universal features such as the α relaxation......, a cylindrical capacitor is positioned within the bore of the high-pressure container. The capacitor consists of two concentric electrodes separated by insulating spacers. The performance of this setup has been successfully verified by collecting simultaneous dielectric and neutron spectroscopy data...

  20. High pressure processing reaches the U.S. market

    International Nuclear Information System (INIS)

    Mermelstein, N.H.

    1997-01-01

    The first food product commercially produced by a U.S. company using high-pressure processing has had successful test market results. High-pressure processing permits food to be preserved by subjecting it to pressures in the range of 60,000-100,000 psi for a short time instead of exposing the food to heat, freezing, chemicals, or irradiation. To produce Classic Guacamole, Avomex of Keller, Texas, uses a batch isostatic press to deactivate the enzymes in the avocado and to kill bacteria, obtaining a refrigerated shelf life of over 30 days. The guacamole is then vacuum packed and processed again. The product undergoes no heat treatment and does not contain preservatives, and the high pressure does not affect its texture, color, or taste. Meanwhile, a continuous system for high-pressure processing of pumpable foods is currently being developed by Flow International of Kent, Washington, and will be used for testing and applications work at Oregon State University

  1. Effect of high-pressure homogenization on different matrices of food supplements.

    Science.gov (United States)

    Martínez-Sánchez, Ascensión; Tarazona-Díaz, Martha Patricia; García-González, Antonio; Gómez, Perla A; Aguayo, Encarna

    2016-12-01

    There is a growing demand for food supplements containing high amounts of vitamins, phenolic compounds and mineral content that provide health benefits. Those functional compounds have different solubility properties, and the maintenance of their compounds and the guarantee of their homogenic properties need the application of novel technologies. The quality of different drinkable functional foods after thermal processing (0.1 MPa) or high-pressure homogenization under two different conditions (80 MPa, 33 ℃ and 120 MPa, 43 ℃) was studied. Physicochemical characteristics and sensory qualities were evaluated throughout the six months of accelerated storage at 40 ℃ and 75% relative humidity (RH). Aroma and color were better maintained in high-pressure homogenization-treated samples than the thermally treated ones, which contributed significantly to extending their shelf life. The small particle size obtained after high-pressure homogenization treatments caused differences in turbidity and viscosity with respect to heat-treated samples. The use of high-pressure homogenization, more specifically, 120 MPa, provided active ingredient homogeneity to ensure uniform content in functional food supplements. Although the effect of high-pressure homogenization can be affected by the food matrix, high-pressure homogenization can be implemented as an alternative to conventional heat treatments in a commercial setting within the functional food supplement or pharmaceutical industry. © The Author(s) 2016.

  2. A novel SOI pressure sensor for high temperature application

    International Nuclear Information System (INIS)

    Li Sainan; Liang Ting; Wang Wei; Hong Yingping; Zheng Tingli; Xiong Jijun

    2015-01-01

    The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 °C in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors. (semiconductor devices)

  3. High-pressure synchrotron infrared spectroscopy at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hemley, R.J.; Goncharov, A.F.; Lu, R.; Struzhkin, V.V.; Li, M.; Mao, H.K.

    1998-01-01

    The paper describes a synchrotron infrared facility for high-pressure spectroscopy and microspectroscopy at the National Synchrotron Light-Source (NSLS). Located at beamline U2B on the VUV ring of the NSLS, the facility utilizes a commercial FT-IR together with custom-built microscope optics designed for a variety of diamond anvil cell experiments, including low- and high- temperature studies. The system contains an integrated laser optical/grating spectrometer for concurrent optical experiments. The facility has been used to characterize a growing number of materials to ultrahigh pressure and has been instrumental of new high-pressure phenomena. Experiments on dense hydrogen to >200 GPa have led to the discovery of numerous unexpected properties of this fundamental system. The theoretically predicted molecular-atomic transition of H 2 O ice to the symmetric hydrogen-bonded structure has been identified, and new classes of high-density clathrates and molecular compounds have been characterized. Experiments on natural and synthetic mineral samples have been performed to study hydrogen speciation, phase transformations, and microscopic inclusions in multiphase assemblages. Detailed information on the behavior of new materials, including novel high-pressure glasses and ceramics, has also been obtained

  4. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  5. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  6. Study for Relation of Pressure and Aging Degradation during LOCA Test

    International Nuclear Information System (INIS)

    Kim, Jong Seog

    2013-01-01

    As result of this test, it was found that low pressure effect in aging was not significant compared with that of temperature. If temperature profile in LOCA test can satisfy the plant LOCA profile, no further analysis of pressure profile for aging degradation is necessary. For environmental qualification of electric equipment in containment building of nuclear power plant, LOCA test should be applied. During the LOCA test, temperature and pressure of LOCA chamber shall be controlled to meet a requirement of plant specific LOCA profile. It is general to keep LOCA test temperature and pressure above the plant specific LOCA profile. If the test temperature is lower than required profile in some time zone while it is higher in other time zone, calculation of total cumulated test temperature is required to compare with that of plant profile. Arrhenius equation can be applied for calculation of total temperature accumulation. If there is a deviation of pressure between test profile and plant specific profile, can we still use the same rule of temperature? Since the Arrhenius equation can't be applied to pressure, analysis of pressure effect to aging degradation is not easy. Study for relation of pressure and aging degradation during LOCA condition is described herein. To Study an aging degradation effect of pressure during LOCA test, comparison of IR during high LOCA pressure and low LOCA pressure were implemented. We expected low IR in high pressure because it contained a high concentration of oxygen which induces high aging degradation. Contrary to our expectation, IR of low pressure was lower than that of high pressure. It is assumed that high vibration of temperature profile to maintain the low pressure at high temperature induced supply of high enthalpy steam into LOCA chamber

  7. Longitudinal assessment of high blood pressure in children with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Schwimmer, Jeffrey B; Zepeda, Anne; Newton, Kimberly P; Xanthakos, Stavra A; Behling, Cynthia; Hallinan, Erin K; Donithan, Michele; Tonascia, James

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) affects 9.6% of children and may put these children at elevated risk of high blood pressure and subsequent cardiovascular morbidity and mortality. Therefore, we sought to determine the prevalence of and risk factors for high blood pressure in children with NAFLD. Cohort study performed by the NIDDK NASH Clinical Research Network. There were 484 children with NAFLD ages 2 to 17 at enrollment; 382 children were assessed both at enrollment and 48 weeks afterwards. The main outcomes were high blood pressure at baseline and persistent high blood pressure at both baseline and 48 weeks. Prevalence of high blood pressure at baseline was 35.8% and prevalence of persistent high blood pressure was 21.4%. Children with high blood pressure were significantly more likely to have worse steatosis than children without high blood pressure (mild 19.8% vs. 34.2%, moderate 35.0% vs. 30.7%, severe 45.2% vs. 35.1%; P = 0.003). Higher body mass index, low-density lipoprotein, and uric acid were independent risk factors for high blood pressure (Odds Ratios: 1.10 per kg/m2, 1.09 per 10 mg/dL, 1.25 per mg/dL, respectively). Compared to boys, girls with NAFLD were significantly more likely to have persistent high blood pressure (28.4% vs.18.9%; P = 0.05). In conclusion, NAFLD is a common clinical problem that places children at substantial risk for high blood pressure, which may often go undiagnosed. Thus blood pressure evaluation, control, and monitoring should be an integral component of the clinical management of children with NAFLD.

  8. Longitudinal assessment of high blood pressure in children with nonalcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Schwimmer

    Full Text Available Nonalcoholic fatty liver disease (NAFLD affects 9.6% of children and may put these children at elevated risk of high blood pressure and subsequent cardiovascular morbidity and mortality. Therefore, we sought to determine the prevalence of and risk factors for high blood pressure in children with NAFLD.Cohort study performed by the NIDDK NASH Clinical Research Network. There were 484 children with NAFLD ages 2 to 17 at enrollment; 382 children were assessed both at enrollment and 48 weeks afterwards. The main outcomes were high blood pressure at baseline and persistent high blood pressure at both baseline and 48 weeks.Prevalence of high blood pressure at baseline was 35.8% and prevalence of persistent high blood pressure was 21.4%. Children with high blood pressure were significantly more likely to have worse steatosis than children without high blood pressure (mild 19.8% vs. 34.2%, moderate 35.0% vs. 30.7%, severe 45.2% vs. 35.1%; P = 0.003. Higher body mass index, low-density lipoprotein, and uric acid were independent risk factors for high blood pressure (Odds Ratios: 1.10 per kg/m2, 1.09 per 10 mg/dL, 1.25 per mg/dL, respectively. Compared to boys, girls with NAFLD were significantly more likely to have persistent high blood pressure (28.4% vs.18.9%; P = 0.05.In conclusion, NAFLD is a common clinical problem that places children at substantial risk for high blood pressure, which may often go undiagnosed. Thus blood pressure evaluation, control, and monitoring should be an integral component of the clinical management of children with NAFLD.

  9. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  10. Stress and High Blood Pressure: What's the Connection?

    Science.gov (United States)

    Stress and high blood pressure: What's the connection? Stress and long-term high blood pressure may not be linked, but taking steps to reduce your stress can improve your general health, including your blood ...

  11. High blood pressure - what to ask your doctor

    Science.gov (United States)

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  12. Prevalence of malnutrition and high blood pressure amongst ...

    African Journals Online (AJOL)

    Globally, underweight in children is projected to decline except in Sub-Sahara Africa. This study assessed the prevalence of malnutrition and its correlation with high blood pressure among adolescents in a semi-urban Nigerian setting. A descriptive cross sectional study was conducted among adolescent school children in ...

  13. Effect of high pressure on physicochemical properties of meat.

    Science.gov (United States)

    Buckow, Roman; Sikes, Anita; Tume, Ron

    2013-01-01

    The application of high pressure offers some interesting opportunities in the processing of muscle-based food products. It is well known that high-pressure processing can prolong the shelf life of meat products in addition to chilling but the pressure-labile nature of protein systems limits the commercial range of applications. High pressure can affect the texture and gel-forming properties of myofibrillar proteins and, hence, has been suggested as a physical and additive-free alternative to tenderize and soften or restructure meat and fish products. However, the rate and magnitude at which pressure and temperature effects take place in muscles are variable and depend on a number of circumstances and conditions that are still not precisely known. This review provides an overview of the current knowledge of the effects of high pressure on muscle tissue over a range of temperatures as it relates to meat texture, microstructure, color, enzymes, lipid oxidation, and pressure-induced gelation of myofibrillar proteins.

  14. High-pressure needle interface for thermoplastic microfluidics.

    Science.gov (United States)

    Chen, C F; Liu, J; Hromada, L P; Tsao, C W; Chang, C C; DeVoe, D L

    2009-01-07

    A robust and low dead volume world-to-chip interface for thermoplastic microfluidics has been developed. The high pressure fluidic port employs a stainless steel needle inserted into a mating hole aligned to an embedded microchannel, with an interference fit used to increase pressure resistance. Alternately, a self-tapping threaded needle screwed into a mating hole is also demonstrated. In both cases, the flat bottom needle ports seat directly against the microchannel substrate, ensuring low interfacial dead volumes. Low dispersion is observed for dye bands passing the interfaces. The needle ports offer sufficient pull-out forces for applications such as liquid chromatography that require high internal fluid pressures, with the epoxy-free interfaces compatible with internal microchannel pressures above 40 MPa.

  15. High Pressure Scanning Tunneling Microscopy Studies of AdsorbateStructure and Mobility during Catalytic Reactions: Novel Design of anUltra High Pressure, High Temperature Scanning Tunneling MicroscopeSystem for Probing Catalytic Conversions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, David Chi-Wai [Univ. of California, Berkeley, CA (United States)

    2005-05-16

    The aim of the work presented therein is to take advantage of scanning tunneling microscope’s (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 °C).

  16. First-principles study on the phase transition, elastic properties and electronic structure of Pt{sub 3}Al alloys under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanjun [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Huang, Huawei [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power of China, Chengdu, Sichuan 610041 (China); Pan, Yong, E-mail: yongpanyn@163.com [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106 (China); Zhao, Guanghui; Liang, Zheng [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2014-06-01

    Highlights: • The phase transition of Pt{sub 3}Al alloys occurs at 60 GPa. • The elastic modulus of Pt{sub 3}Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt{sub 3}Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt{sub 3}Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E{sub F} decrease. The cubic Pt{sub 3}Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure.

  17. Comparative effect of the sites of anterior cervical pressure on the geometry of the upper esophageal sphincter high-pressure zone.

    Science.gov (United States)

    Mei, Ling; Jiao, Hongmei; Sharma, Tarun; Dua, Arshish; Sanvanson, Patrick; Jadcherla, Sudarshan R; Shaker, Reza

    2017-11-01

    External cricoid pressure is increasingly used to augment the upper esophageal sphincter (UES). Our objective was to determine the effect of 1) pressures applied to cricoid, supracricoid, and subcricoid regions on the length and amplitude of the UES high-pressure zone (UESHPZ), and 2) the external cricoid pressure on lower esophageal sphincter (LES) tone. Case-control study. We studied 11 patients with supraesophageal reflux (mean age 58 ± 12 years) and 10 healthy volunteers (mean age 47 ± 19 years). We tested 20, 30, and 40 mm Hg pressures to cricoid, 1 cm proximal and 1 cm distal to the cricoid. In an additional 15 healthy volunteers (mean age 46 ± 23 years), we studied the effect of external cricoid pressure on LES tone. UES and LES pressures were determined using high-resolution manometry. There was significant increase of UESHPZ length with application of pressure at all sites. The increase of UESHPZ length was relatively symmetric, more orad, and more caudad when the pressure was applied at the cricoid, supracricoid, and subcricoid levels, respectively. The magnitude of pressure increase was greatest at the middle and orad part of the UESHPZ when the pressure was applied at the cricoid and supracricoid levels, respectively. The corresponding magnitude of increase in the caudad part of the UESHPZ was not observed with pressure at the subcricoid level. There was no change of the LES pressure with application of cricoid pressure. The effect of external pressure on the UESHPZ is site dependent. Subcricoid pressure has the least effect on UESHPZ. External cricoid pressure at 20 to 40 mm Hg has no effect on the LES pressure. 3b. Laryngoscope, 127:2466-2474, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Energy dispersive X-ray diffraction at high pressure in CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Baublitz, M.A. Jr.

    1981-01-01

    Energy dispersive X-ray techniques were used with a diamond anvil cell in the Cornell High Energy Synchrotron Source (CHESS). It was shown that quantitative relative intensity measurement could be made when the pressure was hydrostatic and the crystals were relatively defect free. The crystal structures of the high pressure polymorphs of Ge, GaAs, GaP, and AlSb were studied. Ge exhibits the β-tetragonal structure as found by Jamieson; however, the transition pressure is 80 +- 5 kbars. GaAs exhibits an orthorhombic structure above 172 +- 7 kbars, GaP the β-Sn structure above 215 +- 8 kbars, and AlSb an orthorhombic structure above 77 +- 5 kbars. (Auth.)

  19. Effective production of bioenergy from marine Chlorella sp. by high-pressure homogenization

    Directory of Open Access Journals (Sweden)

    Woon Yong Choi

    2016-01-01

    Full Text Available This study investigated the use of a high-pressure homogenization process for the production of high shear stress on Chlorella sp. cells in order to effectively degrade their cell walls. The high-pressure homogenization process was conducted by using various pressure conditions in the range of 68.94–275.78 MPa with different numbers of repeated cycles. The optimal high-pressure homogenization pretreatment conditions were found to be two cycles at a pressure of 206.84 MPa, which provided an extraction yield of 20.35% (w/w total cellular lipids. In addition, based on the confocal microscopic images of Chlorella sp. cells stained by using nile red, the walls of Chlorella sp. cells were disrupted more effectively using this process when compared with the disruption achieved by conventional lipid-extraction processes. By using the by-product of Chlorella sp., 47.3% ethanol was obtained from Saccharomyces cerevisiae cultures. These results showed that the high-pressure homogenization process efficiently hydrolysed this marine resource for subsequent bioethanol production by using only water.

  20. Pressure vessel failure at high internal pressure

    International Nuclear Information System (INIS)

    Laemmer, H.; Ritter, B.

    1995-01-01

    A RPV failure due to plastic instability was investigated using the ABAQUS finite element code together with a material model of thermal plasticity for large deformations. Not only rotational symmetric temperature distributions were studied, but also 'hot spots'. Calculations show that merely by the depletion of strength of the material - even at internal wall temperatures well below the melting point of the fuel elements of about 2000/2400 C - the critical internal pressure can decrease to values smaller than the operational pressure of 16 Mpa. (orig.)

  1. Thermodynamics of high-pressure ice polymorphs : ices III and V

    NARCIS (Netherlands)

    Tchijov, [No Value; Ayala, RB; Leon, GC; Nagornov, O

    Thermodynamic properties of high-pressure ice polymorphs, ices III and V, are studied theoretically. The results of TIP4P molecular dynamics simulations in the NPT ensemble are used to calculate the temperature dependence of the specific volume of ices III and V at pressures 0.25 and 0.5 GPa,

  2. Polarized Raman spectroscopic study of relaxed high density amorphous ices under pressure.

    Science.gov (United States)

    Suzuki, Yoshiharu; Tominaga, Yasunori

    2010-10-28

    We have made high density amorphous ice (HDA) by the pressure-induced amorphization of hexagonal ice at 77 K and measured the volume change on isobaric heating in a pressure range between 0.1 and 1.5 GPa. The volume of HDA on heating below ∼0.35 GPa increases, while the volume of HDA on heating above ∼0.35 GPa decreases. The polarized OH-stretching Raman spectra of the relaxed HDAs are compared with that of the unannealed HDA. The relaxed HDAs are prepared at 0.2 GPa at 130 K and 1.5 GPa at 160 K. It is found that the relatively strong totally symmetric OH-stretching vibration mode around 3100 cm(-1) exists in the depolarized reduced Raman spectrum χ(VH)(") of the unannealed HDA and that its intensity rapidly decreases by relaxation. The χ(VH)(") profiles of the relaxed HDA are similar to those of liquid water. These results indicate that the HDA reaches a nearly equilibrium state by annealing and the intrinsic state of HDA relates to a liquid state. The pressure-volume curve of the relaxed HDA at 140 K seems to be smooth in the pressure range below 1.5 GPa.

  3. The steam pressure effect on high temperature corrosion of zircaloy-4

    International Nuclear Information System (INIS)

    Kim, K. P.; Park, G. H.

    1998-01-01

    To find the effect of pressure on the high temperature oxidation of zircaloy-4, an autoclave capable of measuring the degree of oxidation at high temperatures and high pressure was manufactured. The degree of high temperature oxidation of zircaloy-4 was measured at three different conditions, high pressure steam, high pressure Ar gas with small amount of steam, and 1 atm steam. All the measurements were done at 750 deg C. The oxide thickness is much thicker in high pressure steam, comparing to that in the 1 atm steam. And, the higher is the steam pressure, the thicker becomes the oxide. No effect was observed in the case of high pressure Ar containing small amount of steam. Many cracks exist on the surface of specimens oxidized at high pressure steam, which come from the enhanced tetragonal to monoclinic phase transformation due to high pressure steam. The enhanced oxidation seems to oxide cracking

  4. High-pressure oxidation of methane

    NARCIS (Netherlands)

    Hashemi, Hamid; Christensen, Jakob M.; Gersen, Sander; Levinsky, Howard; Klippenstein, Stephen J.; Glarborg, Peter

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly

  5. High-pressure studies of superconductivity in BiO0. 75F0. 25BiS2

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 6. High-pressure studies of superconductivity in BiO 0.75 F 0.25 BiS 2. ZEBA HAQUE GOHIL S THAKUR GANESAN KALAI SELVAN SONACHALAM ARUMUGAM L C GUPTA A K GANGULI. Volume 40 Issue 6 October 2017 pp 1121-1125 ...

  6. Thermopower measurement under high pressure using 'seesaw heating method'

    International Nuclear Information System (INIS)

    Hedo, M; Nakamura, D; Takaesu, Y; Yagasaki, K; Nakama, T; Fujiwara, T; Uchima, K

    2010-01-01

    We have developed a set-up with modified 'seesaw heating method' for the thermopower measurement under pressures P up to 3 GPa at the temperature range between 2 K and 300 K. By using this set-up, the thermopower and electrical resistivity of the single crystalline YbMn 2 Ge 2 under high pressure were measured with enough accuracy. S(T) curve shows the characteristic feature at the magnetic transition in all pressure range, while no evidence of the magnetic phase transition is observed in ρ(T) at P > 1.25 GPa. The measurement results indicate that the simultaneous measurement of the thermopower and electrical resistivity is a useful tool to study the pressure-induced phase transitions.

  7. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    International Nuclear Information System (INIS)

    Meng, L; Zhang, S P; Zhou, L J; Wang, Z W

    2014-01-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency

  8. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  9. Experiments on aerosol removal by high-pressure water spray

    International Nuclear Information System (INIS)

    Corno, Ada del; Morandi, Sonia; Parozzi, Flavio; Araneo, Lucio; Casella, Francesco

    2017-01-01

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m"3. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m"3. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was detected with 1

  10. Ab Initio Study of the Structure and Stability of High-Pressure Iron-Bearing Dolomite

    Science.gov (United States)

    Solomatova, N. V.; Asimow, P. D.

    2016-12-01

    Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze, all of which often contain dolomite. End-member CaMg(CO3)2 dolomite typically breaks down upon compression into two carbonates at 5-6 GPa in the temperature range of 800-1200 K [1]. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize high-pressure dolomite over single-cation carbonates above 35 GPa [2,3]. The structure and equation of state of high-pressure dolomite phases have been debated, creating a need for theoretical calculations. Using density functional theory interfaced with a genetic algorithm that predicts crystal structures (USPEX), we have found a monoclinic phase with space group C2/c. The C2/c structure has a lower energy than previously reported dolomite structures at relevant pressures. It is possible that this phase is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. We calculate the equation of state of trigonal dolomite, dolomite III and monoclinic C2/c dolomite to 80 GPa with 0 and 50 mol% CaFe(CO3)2 and compare their enthalpies to single-carbonate assemblages. Although end-member C2/c CaMg(CO3)2 dolomite is not stable relative to single-cation carbonates, C2/c CaMg0.5Fe0.5(CO3)2 is preferred over single-cation carbonates at high pressures. Thus, iron-bearing C2/c dolomite may be an important host phase for carbon in slabs subducted into the lower mantle. [1] Shirasaka, M., et al. (2002) American Mineralogist, 87, 922-930. [2] Mao, Z. et al. (2011) Geophysical Research Letters, 38. [3] Merlini, M. et al. (2012) Proceedings of the National Academy of Sciences, 109, 13509-13514.

  11. Collisional and radiative processes in high-pressure discharge plasmas

    Science.gov (United States)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  12. How to Prevent High Blood Pressure: MedlinePlus Health Topic

    Science.gov (United States)

    ... Spanish Understanding Blood Pressure Readings (American Heart Association) Weightlifting: Bad for Your Blood Pressure? (Mayo Foundation for ... High Blood Pressure High Blood Pressure in Pregnancy Nutrition Quitting Smoking Stress National Institutes of Health The ...

  13. High-pressure water facility

    Science.gov (United States)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  14. Fascination at high pressures

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Research at high pressures has developed into an interdisciplinary area which has important implications for and applications in the areas of physics, chemistry, materials sciences, planetary sciences, biology, engineering sciences and technology. The state of-the-art in this field is reviewed and future directions are indicated. (M.G.B.)

  15. Radiation chemistry in high pressure paying attention to molecular motion and alignment

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo

    1978-01-01

    Effects of high pressure or radiation-induced cross-linking of synthetic rubbers and polymerization of methacrylates and acrylonitrile (AN) have been studied paying attention to molecular motion and alignment. The following were revealed from radiation-induced crosslinking reaction, pressure-volume-temperature (P-V-T) measurement and chemical relaxation of polymer crosslinked at high pressure: (1) The rate of crosslinking is increased in compression especially in polymers containing double bonds, due to chain reaction through double bonds. (2) Crosslinking points of the polymer with double bonds crosslinked at high pressure are dispersed as cluster. (3) Crosslinking reaction is intimately related with change of the molecular motion in a polymer under pressure. Van't Hoff plots of methacrylates and AN breaked at a pressure depending on the monomer. The pressure giving the breaks depends on length of methacrylate. P-V curves of the polymer-monomer coexistence system as-polymerized exhibit peculiar behavior at the pressure giving the breaks. AN exhibits complicated polymerization behavior at a pressure changing compressibility of the monomer. From above results etc. it is concluded that monomer molecules are aligned in short range at a pressure corresponding to geometrical structure of the monomer molecules. (auth.)

  16. Sizing of high-pressure restriction orifices

    International Nuclear Information System (INIS)

    Casado Flores, E.

    1995-01-01

    Constant up-grading of power plants sometimes requires the modification of components which form part of suppliers' packages. In order to protect technology they have developed, however, the suppliers do not supply their calculation criteria. In order to reduce the costs of such improvements, and so as to be able to undertake the modification without having to rely on the original supplier, this paper describes the basic criteria applicable to the study of high-pressure restriction orifices, which can be considered to be representative of the components in question. The restriction orifices discussed are: - Insert - Multiplates in series with one perforation in each plate - Multiplates in series with several perforations in each plate For each type, an explanation of their sizing is given, together with the equations relating the corresponding flow and pressure drop. (Author)

  17. SrWO4 at high pressures

    International Nuclear Information System (INIS)

    Grzechnik, A.; Crichton, W.A.; Hanfland, M.

    2005-01-01

    Room-temperature high-pressure behaviour of SrWO 4 scheelite (I4 1 /a, Z=4) has been studied to 20.7 GPa in a diamond anvil cell using synchrotron angle-dispersive X-ray powder diffraction. Above 10 GPa, it transforms to the fergusonite structure (I2/a, Z=4). Both scheelite and fergusonite types are ordered superstructures of fluorite (Fm anti 3m, Z=4). There is no significant volume collapse at the scheelite-fergusonite phase transition. However, the compression data including both phases of strontium tungstate cannot be fitted by a common Birch-Murnaghan equation of state. An onset of decomposition into component oxides occurs at about 15 GPa. The pressure-induced transformations are irreversible. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. High pressure water jet mining machine

    Science.gov (United States)

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  19. High pressure studies of YMn{sub 2} Laves phase and its deuterides

    Energy Technology Data Exchange (ETDEWEB)

    Sugiura, H.; Paul-Boncour, V.; Percheron-Guegan, A.; Marchuk, I.; Hirata, T.; Filipek, S.M.; Dorogova, M

    2004-03-24

    The C15 Laves phase intermetallic YMn{sub 2} and its deuterides containing 1.15, 2, 3.4 and 4 deuterium (D) atoms per formula unit (pfu) (the structure of YMn{sub 2}D{sub 4} is rhombohedral whereas other three deuterides preserve the cubic C15 structure) were compressed up to 31 GPa by using diamond anvil cell (DAC). Parameters of equation of state (EOS) were derived for all phases investigated. The discontinuous change of bulk modulus under high pressure has been revealed for all samples investigated. Two deuterides, YMn{sub 2}D{sub 1.15} and YMn{sub 2}D{sub 2}, decomposed reversibly under pressure into two phases: poor and enriched in deuterium.

  20. Moessbauer high pressure and magnetic field studies of the superconductor FeSe

    Energy Technology Data Exchange (ETDEWEB)

    Ksenofontov, Vadim; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg - University, Mainz (Germany); Wortmann, Gerhard [Department of Physics, University of Paderborn, Paderborn (Germany); Trojan, Ivan; Palasyuk, Taras; Medvedev, Sergey; Eremets, Michail [Max-Planck-Institute for Chemistry, Mainz (Germany); McQueen, Tyrel M.; Cava, Richard J. [Department of Chemistry, Princeton University, Princeton (United States)

    2010-07-01

    Superconducting FeSe has been investigated by Moessbauer spectroscopy applying high pressure and strong external magnetic fields. It was found that pressure-induced structural phase transition between tetragonal and hexagonal modifications is accompanied by increased distortion of local surrounding of Fe atoms. Appearance of the hexagonal phase above 7.2 GPa is accompanied by degradation of superconducting properties of FeSe. Low-temperature measurements demonstrated that the ground states in both orthorhombic and hexagonal phases of FeSe are nonmagnetic. Moessbauer measurements in the external magnetic field below transition to the superconducting state revealed zero electron spin density on Fe atoms. Interpretation of Moessbauer spectra of FeSe in the Shubnikov phase is discussed.

  1. Applications of high and ultra high pressure homogenization for food safety

    Directory of Open Access Journals (Sweden)

    Francesca Patrignani

    2016-08-01

    Full Text Available Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time (LTLT and high temperature short time (HTST treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure (HHP, pulsed electric field (PEF, ultrasound (US and high pressure homogenization (HPH. This last technique has been demonstrated to have a great potential to provide fresh-like products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350-400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of high pressure homogenization against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered

  2. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.

    Science.gov (United States)

    Yang, Lei; Guo, Yanjie; Diao, Dongfeng

    2017-05-31

    Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.

  3. Teaming Up Against High Blood Pressure PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2012-09-04

    Nearly one-third of American adults have high blood pressure, and more than half of them don’t have it under control. Simply seeing a doctor and taking medications isn’t enough for many people who have high blood pressure. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  4. How Potassium Can Help Control High Blood Pressure

    Science.gov (United States)

    ... Aneurysm More How Potassium Can Help Control High Blood Pressure Updated:Jan 29,2018 Understanding the heart-healthy ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  5. How High Blood Pressure Can Lead to Stroke

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More How High Blood Pressure Can Lead to Stroke Updated:Jan 29,2018 ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  6. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    properties like saturation pressures, densities at reservoir temperature and Stock TankviOil (STO) densities, while keeping the n-alkane limit of the correlations unchanged. Apart from applying this general approach to PC-SAFT, we have also shown that the approach can be applied to classical cubic models...... approach to characterizing reservoir fluids for any EoS. The approach consists in developing correlations of model parameters first with a database for well-defined components and then adjusting the correlations with a large PVT database. The adjustment is made to minimize the deviation in key PVT...... method to SRK and PR improved the saturation pressure calculation in comparisonto the original characterization method for SRK and PR. Using volume translationtogether with the new characterization approach for SRK and PR gives comparable results for density and STO density to that of original...

  7. High pressure injection of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.; Sorenson, S.C.; Abata, D.L.

    1997-08-01

    The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME (Dimenthyl Ether) using a standard diesel pump with pintle and hole nozzles. Fundamental spray behavior was characterized by determining fuel spray penetration and angle, atomization and evaporation. The influences of opening pressure, nozzle geometry and ambient pressure above and below the critical pressure of the fuel on the spray behavior were investigated. The influence of opening pressures on the spray characteristics for the hole nozzle was investigated. The results showed that for opening pressures of 120 bar and 180 bar the spray has a similar appearance. For the higher opening pressure (200 bar and 240 bar), the initial spray breaks up very rapidly giving a high initial spray angle. The opening pressure had little influence on spray penetration. The spray angle later in the injection increased as the opening pressure was decreased. Above the critical pressure, the spray from the hole nozzle had a more irregular shape. Penetration decreased and the spray angle increased above the critical pressure. Three pintle nozzles with different geometries and opening pressures were tested. The appearance of the three sprays were very similar. The sprays seemed to be more sharply pointed as the nozzle hole angle decreased. The nozzle with the 4 deg. hole nozzle angle and an opening pressure of 280 bar had the highest penetration and highest initial spray angle. The pintle nozzle with the 12 deg. hole nozzle angle and opening pressure of approx. 450 bar was tested above the critical ambient pressure. Penetration was very similar for injection above and below the critical ambient pressure, while the spray angle decreased for the spray above the critical ambient pressure. (au)

  8. Ab initio study of the elastic properties of sodium chloride at high pressure

    International Nuclear Information System (INIS)

    Liu Lei; Bi Yan; Xu Jian; Chen Xiangrong

    2010-01-01

    The equation of state and elastic properties for B1- and B2-NaCl up to 160 GPa have been studied by using the density functional simulation within the generalized gradient approximation (GGA). The calculated lattice constants of NaCl agree well with experimental values in a precision of 0.1% over the pressure range studied. It is found that the cell volume decreases 5.5% at the phase transition point. All three independent elastic stiffness coefficients, c 11 , c 12 and c 44 for B1- and B2-NaCl are evaluated by a calculated stress tensor which was generated by forcing small strain to the optimized unit cell. The calculated zero-pressure elastic moduli, wave velocities, and their initial pressure dependences of B1-NaCl are in excellent agreement with experiments. Systematic investigation on the elasticity of NaCl has been done through four parameters, the Zener anisotropy ratio (A Z ), the acoustic anisotropy factor (A a ), the Cauchy deviation (δ), and the normalized elastic constants (c ij '). With the pressure, the Zener anisotropy ratio A Z decreases in the B1-phase, but increases in the B2-phase and reaches 1 at about 174 GPa, it suggests that NaCl would become elastic isotropic at this pressure range. The acoustic anisotropy factor A a shows the similar pressure behavior as A Z . The Cauchy deviation (δ)) increases with pressures, it demonstrates that in the interatomic interaction, the many-body contribution becomes more important at higher pressures. A discussion on the normalized elastic constants is also presented.

  9. High-pressure transport properties of CrB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Regnat, Alexander; Becker, Julian; Spallek, Jan; Bauer, Andreas; Chacon, Alfonso; Ritz, Robert; Pfleiderer, Christian [Physik-Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Blum, Christian; Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research IFW, D-01171 Dresden (Germany)

    2015-07-01

    High quality single crystals of the itinerant antiferromagnet CrB{sub 2}, T{sub N} = 88 K, were grown by means of optical float zoning. Bulk, transport and de Haas-van Alphen measurements were carried out. Here, we present a comprehensive study of the high-pressure transport properties. Samples were investigated under hydrostatic, uniaxial and quasi-hydrostatic conditions. As a result we are able to attribute contradictory reports for the pressure dependence of T{sub N} to uniaxial strain. Perhaps most interestingly, we find a pronounced low temperature resistivity anomaly around 3 GPa in the quasi-hydrostatic case.

  10. High Accuracy, Miniature Pressure Sensor for Very High Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  11. Spectroscopic Study of the Effects of Pressure Media on High-Pressure Phase Transitions in Natrolite

    Energy Technology Data Exchange (ETDEWEB)

    D Liu; W Lei; Z Liu; Y Lee

    2011-12-31

    Structural phase transitions in natrolite have been investigated as a function of pressure and different hydrostatic media using micro-Raman scattering and synchrotron infrared (IR) spectroscopy. Natrolite undergoes two reversible phase transitions at 0.86 and 1.53 GPa under pure water pressure medium. These phase transitions are characterized by the changes in the vibrational frequencies of four- and eight-membered rings related to the variations in the bridging T-O-T angles and the geometry of the elliptical eight-ring channels under pressure. Concomitant to the changes in the framework vibrational modes, the number of the O-H stretching vibrational modes of natrolite changes as a result of the rearrangements of the hydrogen bonds in the channels caused by a successive increase in the hydration level under hydrostatic pressure. Similar phase transitions were also observed at relatively higher pressures (1.13 and 1.59 GPa) under alcohol-water pressure medium. Furthermore, no phase transition was found up to 2.52 GPa if a lower volume ratio of the alcohol-water to natrolite was employed. This indicates that the water content in the pressure media plays a crucial role in triggering the pressure-induced phase transitions in natrolite. In addition, the average of the mode Grueneisen parameters is calculated to be about 0.6, while the thermodynamic Grueneisen parameter is found to be 1.33. This might be attributed to the contrast in the rigidity between the TO{sub 4} tetrahedral primary building units and other flexible secondary building units in the natrolite framework upon compression and subsequent water insertion.

  12. Re-investigation of the crystal structure of enstatite under high-pressure conditions

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Balic Zunic, Tonci; Nestola, Fabrizio

    2012-01-01

    A synthetic single crystal of pure orthoenstatite (MgSiO3, space group Pbca) has been investigated at high pressure for structural determinations by in situ single-crystal X‑ray diffraction using a diamond-anvil cell. Ten complete intensity data collections were performed up to 9.36 GPa. This study...... with different compositions. The structural evolution determined in this work confirms the high-pressure evolution found previously for other orthopyroxenes and removes some ambiguities originating from the less accurate published data on the MgSiO3 structure at high pressure. The structural compression...

  13. High-Pressure X-ray Diffraction Study of Tungsten Diselenide

    International Nuclear Information System (INIS)

    Selvi, E.; Aksoy, R.; Knudson, R.; Ma, Y.

    2008-01-01

    Synchrotron X-ray diffraction was used in conjunction with a diamond anvil cell to investigate the properties of a tungsten diselenide (WSe2) sample to 35.8 GPa at room temperature. By fitting the pressure-volume data to the third-order Birch-Murnaghan equation of state, the bulk modulus, K0T, of WSe2 was determined to be 72±1 GPa with its pressure derivative, K(prime) 0T , being 4.1±0.1. It was also found that the c-direction of the hexagonal structure is significantly more compressible than the a-direction. No phase transformation was clearly observed in the pressure range of our measurements.

  14. A high pressure study of calmodulin-ligand interactions using small-angle X-ray and elastic incoherent neutron scattering.

    Science.gov (United States)

    Cinar, Süleyman; Al-Ayoubi, Samy; Sternemann, Christian; Peters, Judith; Winter, Roland; Czeslik, Claus

    2018-01-31

    Calmodulin (CaM) is a Ca 2+ sensor and mediates Ca 2+ signaling through binding of numerous target ligands. The binding of ligands by Ca 2+ -saturated CaM (holo-CaM) is governed by attractive hydrophobic and electrostatic interactions that are weakened under high pressure in aqueous solutions. Moreover, the potential formation of void volumes upon ligand binding creates a further source of pressure sensitivity. Hence, high pressure is a suitable thermodynamic variable to probe protein-ligand interactions. In this study, we compare the binding of two different ligands to holo-CaM as a function of pressure by using X-ray and neutron scattering techniques. The two ligands are the farnesylated hypervariable region (HVR) of the K-Ras4B protein, which is a natural binding partner of holo-CaM, and the antagonist trifluoperazine (TFP), which is known to inhibit holo-CaM activity. From small-angle X-ray scattering experiments performed up to 3000 bar, we observe a pressure-induced partial unfolding of the free holo-CaM in the absence of ligands, where the two lobes of the dumbbell-shaped protein are slightly swelled. In contrast, upon binding TFP, holo-CaM forms a closed globular conformation, which is pressure stable at least up to 3000 bar. The HVR of K-Ras4B shows a different binding behavior, and the data suggest the dissociation of the holo-CaM/HVR complex under high pressure, probably due to a less dense protein contact of the HVR as compared to TFP. The elastic incoherent neutron scattering experiments corroborate these findings. Below 2000 bar, pressure induces enhanced atomic fluctuations in both holo-CaM/ligand complexes, but those of the holo-CaM/HVR complex seem to be larger. Thus, the inhibition of holo-CaM by TFP is supported by a low-volume ligand binding, albeit this is not associated with a rigidification of the complex structure on the sub-ns Å-scale.

  15. High pressure study of viscosity effects on the luminescence of tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-03-01

    High pressure fluorescence studies fron 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used, 2,2,4,4,6,8,8 heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14 tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 poise was covered at constant temperature. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB as well as one mesitylene complex yielded the two radiative rates (kEQ and kFC) as well as the rate of internal conversion from FC to the EQ excited state to (kIC). The results are discussed in terms of the rate of relaxation of the solvent compared with the rate kFC. It was found that kIC correlated very well with the solvent viscosity.

  16. High pressure phases of terbium: Possibility of a thcp phase

    International Nuclear Information System (INIS)

    Staun Olsen, J.; Steenstrup, S.; Gerward, L.

    1985-01-01

    High pressure phases of trivalent Tb studied by energy dispersive X-ray diffraction with synchrotron radiation exhibits the closed packed sequence (hcp -> Sm -> dhcp -> fcc) typical of the trivalent rare earth metals. Furthermore, a phase consistent with a triple hexagonal closed packed (thcp) structure was observed in a narrow pressure range around 30 GPa. (orig.)

  17. Pressure-assisted sintering of high purity barium titanate

    NARCIS (Netherlands)

    van den Cruijsem, S.; Varst, van der P.G.T.; With, de G.; Bortzmeyer, D.; Boussuge, M.; Chartier, Th.; Hausonne, J.M.; Mocellin, A.; Rousset, A.; Thevenot, F.

    1997-01-01

    The dielectric behaviour of High Purity Barium titanate (HPB) ceramics is strongly dependent on the grain size and porosity. For applications, control of grain size and porosity is required. Pressure-assisted sintering techniques at relatively low temperatures meet these requirements. In this study,

  18. Temperature control for high pressure processes up to 1400 MPa

    International Nuclear Information System (INIS)

    Reineke, K; Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s -1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling

  19. High pressure metallization of Mott Insulators: Magnetic, structural and electronic properties

    International Nuclear Information System (INIS)

    Pasternak, M.P.; Hearne, G.; Sterer, E.; Taylor, R.D.; Jeanloz, R.

    1993-01-01

    High pressure studies of the insulator-metal transition in the (TM)I 2 (TM = V, Fe, Co and Ni) compounds are described. Those divalent transition-metal iodides are structurally isomorphous and classified as Mott Insulators. Resistivity, X-ray diffraction and Moessbauer Spectroscopy were employed to investigate the electronic, structural, and magnetic properties as a function of pressure both on the highly correlated and on the metallic regimes

  20. Pneumatic Performance Study of a High Pressure Ejection Device Based on Real Specific Energy and Specific Enthalpy

    Directory of Open Access Journals (Sweden)

    Jie Ren

    2014-09-01

    Full Text Available In high-pressure dynamic thermodynamic processes, the pressure is much higher than the air critical pressure, and the temperature can deviate significantly from the Boyle temperature. In such situations, the thermo-physical properties and pneumatic performance can’t be described accurately by the ideal gas law. This paper proposes an approach to evaluate the pneumatic performance of a high-pressure air catapult launch system, in which esidual functions are used to compensate the thermal physical property uncertainties of caused by real gas effects. Compared with the Nelson-Obert generalized compressibility charts, the precision of the improved virial equation of state is better than Soave-Redlich-Kwong (S-R-K and Peng-Robinson (P-R equations for high pressure air. In this paper, the improved virial equation of state is further used to establish a compressibility factor database which is applied to evaluate real gas effects. The specific residual thermodynamic energy and specific residual enthalpy of the high-pressure air are also derived using the modified corresponding state equation and improved virial equation of state which are truncated to the third virial coefficient. The pneumatic equations are established on the basis of the derived residual functions. The comparison of the numerical results shows that the real gas effects are strong, and the pneumatic performance analysis indicates that the real dynamic thermodynamic process is obviously different from the ideal one.

  1. An experimental study of the process of maturation of huminite organic matter using high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, Z.A.

    1983-01-01

    Two series of tests of artificial coalification in high pressure tanks were conducted. Lignite coals of the Pliocene in open and closed systems were studied in the first series in the following conditions: length, 1 week; pressure, 1.5 and 10 kilobars and temperatures of 90, 120, 160 and 200C. In the second series an attempt was made to model the behavior of humous detrite (in a large quantity) in sedimentary rock. For this purpose a mixture was prepared of four different types of coal with a different degree of conversion which was then subjected to testing in the same conditions as in the first series of tests. The degree of coalification was determined on the basis of individual measures of the vitrinite reflection indicator. The results of the experiment showed that the determining factors in increasing the degree of coalification are the temperature and length of effects, while the role of pressure is insignificant and is expressed only in maintaining the rise in coalification in closed systems (which follows from the Le Chatelier Brown principle).

  2. High-pressure sodium lamp

    NARCIS (Netherlands)

    1996-01-01

    A high pressure sodium lamp of the invention is provided with a discharge vessel (20) which is enclosed with intervening space (1) by an outer bulb (10), which space contains a gas-fill with at least 70 mol. % nitrogen gas. Electrodes (30a, 30b) are positioned in the discharge vessel (20) and are

  3. The study of two methods for high pressure injection in CT enhancement to display the aortic dissecting aneurysm

    International Nuclear Information System (INIS)

    Wang Yang; Zhu Bin; Zhang Zhen

    2008-01-01

    Objective: To discuss the consequences of two different methods of high pressure injection in CT contrast enhancement to display the aortic dissecting aneurysm. Methods: 100 patients underwent Lightspeed 16 MS CT with contrast enhancement of Stellant D high pressure injector (Medrad), injecting speed of 4.0 mL/s and 80 ml dosage of contrast medium. All patients were divided into A and B groups with 50 in each. The single high pressure injection was applied to A group without isotonic Na chloride flush. B group underwent the same high pressure injection and followed by isotonic Na chloride flush. The method of evaluation was carried out by double blind observation. Results: A group revealed radiologic artifact up to 40 cases with positive rate of 80%. B group demonstrated the same kind of radiologic artifact in 26 cases with positive rate of 52%. Conclusions: Using normal saline (sodium chloride solution)flush after high pressure injection of contrast medium during MSCT angiography is obviously better to demonstrate the internal structures of treatvessels. (authors)

  4. Structure of high-density amorphous ice under pressure

    International Nuclear Information System (INIS)

    Klotz, S.; Hamel, G.; Loveday, J.S.; Nelmes, R.J.; Guthrie, M.; Soper, A.K.

    2002-01-01

    We report in situ neutron diffraction studies of high-density amorphous ice (HDA) at 100 K at pressures up to 2.2 GPa. We find that the compression is achieved by a strong contraction (∼20%) of the second neighbor coordination shell, so that at 2.2 GPa it closely approaches the first coordination shell, which itself remains intact in both structure and size. The hydrogen bond orientations suggest an absence of hydrogen bonding between first and second shells and that HDA has increasingly interpenetrating hydrogen bond networks under pressure

  5. High-pressure stainless steel active membrane microvalves

    International Nuclear Information System (INIS)

    Sharma, G; Svensson, S; Ogden, S; Klintberg, L; Hjort, K

    2011-01-01

    In this work, high-pressure membrane microvalves have been designed, manufactured and evaluated. The valves were able to withstand back-pressures of 200 bar with a response time of less than 0.6 s. These stainless steel valves, manufactured with back-end batch production, utilize the large volume expansion coupled to the solid–liquid phase transition in paraffin wax. When membrane materials were evaluated, parylene coated stainless steel was found to be the best choice as compared to polydimethylsiloxane and polyimide. Also, the influence of the orifice placement and diameter is included in this work. If the orifice is placed too close to the rim of the membrane, the valve can stay sealed even after turning the power off, and the valve will not open until the pressure in the system is released. The developed steel valves, evaluated for both water and air, provide excellent properties in terms of mechanical stability, ease of fabrication, and low cost. Possible applications include sampling at high pressures, chemical microreactors, high performance liquid chromatography, pneumatics, and hydraulics

  6. High pressure synthesis of BiS2

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    crystal structures and electrical properties.1,2 Up until now, the most sulfur rich phase in the Bi-S phase diagram was Bi2S3.3 For BiS2 the Bi atoms have anisotropic charge distribution and more complex structures are expected when comparing the layered structures of transition metal dichalcogenides....... The possibilities of using high pressure synthesis to discover new phases in the Bi-S binary system were investigated as early as the 1960’s.4 The research led to discovery of a compound with BiS2 stoichiometry, but no structure solution of BiS2 was reported. A reason behind making this new phase is to study...... the physical properties since the related compound Bi2S3 is known to be a thermoelectric material.5 In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure...

  7. Germination of vegetable seeds exposed to very high pressure

    International Nuclear Information System (INIS)

    Mori, Y; Yokota, S; Ono, F

    2012-01-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  8. Germination of vegetable seeds exposed to very high pressure

    Science.gov (United States)

    Mori, Y.; Yokota, S.; Ono, F.

    2012-07-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  9. High pressure X-ray preionized TEMA-CO2 laser

    NARCIS (Netherlands)

    Bonnie, R.J.M.; Witteman, W.J.

    1987-01-01

    The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5–20

  10. High pressure inactivation of relevant target microorganisms in poultry meat products and the evaluation of pressure-induced protein denaturation of marinated poultry under different high pressure treatments

    Science.gov (United States)

    Schmidgall, Johanna; Hertel, Christian; Bindrich, Ute; Heinz, Volker; Toepfl, Stefan

    2011-03-01

    In this study, the possibility of extending shelf life of marinated poultry meat products by high pressure processing was evaluated. Relevant spoilage and pathogenic strains were selected and used as target microorganisms (MOs) for challenge experiments. Meat and brine were inoculated with MOs and treated at 450 MPa, 4 °C for 3 min. The results of inactivation show a decreasing pressure tolerance in the series Lactobacillus > Arcobacter > Carnobacterium > Bacillus cereus > Brochothrix thermosphacta > Listeria monocytogenes. Leuconostoc gelidum exhibited the highest pressure tolerance in meat. A protective effect of poultry meat was found for L. sakei and L. gelidum. In parallel, the influence of different marinade formulations (pH, carbonates, citrates) on protein structure changes during a pressure treatment was investigated. Addition of sodium carbonate shows a protection against denaturation of myofibrillar proteins and provides a maximum water-holding capacity. Caustic marinades allowed a higher retention of product characteristics than low-pH marinades.

  11. Solids, liquids, and gases under high pressure

    Science.gov (United States)

    Mao, Ho-Kwang; Chen, Xiao-Jia; Ding, Yang; Li, Bing; Wang, Lin

    2018-01-01

    Pressure has long been recognized as a fundamental thermodynamic variable but its application was previously limited by the available pressure vessels and probes. The development of megabar diamond anvil cells and a battery of associated in-laboratory and synchrotron techniques at the turn of the century have opened a vast new window of opportunities. With the addition of the pressure dimension, we are facing a new world with an order of magnitude more materials to be discovered than all that have been explored at ambient pressure. Pressure drastically and categorically alters all elastic, electronic, magnetic, structural, and chemical properties, and pushes materials across conventional barriers between insulators and superconductors, amorphous and crystalline solids, ionic and covalent compounds, vigorously reactive and inert chemicals, etc. In the process, it reveals surprising high-pressure physics and chemistry and creates novel materials. This review describes the principles and methodology used to reach ultrahigh static pressure: the in situ probes, the physical phenomena to be investigated, the long-pursued goals, the surprising discoveries, and the vast potential opportunities. Exciting examples include the quest for metallic hydrogen, the record-breaking superconducting temperature of 203 K in HnS , the complication of "free-electron gas" alkali metals, the magnetic collapse in 3 d transition elements, the pressure-induced superconductivity from topological insulators, the novel stoichiometry in simple compounds, the interaction of nanoscience, the accomplishment of 750 GPa pressure, etc. These highlights are the integral results of technological achievements, specific measurements, and theoretical advancement; therefore, the same highlights will appear in different sections corresponding to these different aspects. Overall, this review demonstrates that high-pressure research is a new dimension in condensed-matter physics.

  12. Five-dimensional visualization of phase transition in BiNiO3 under high pressure

    International Nuclear Information System (INIS)

    Liu, Yijin; Wang, Junyue; Yang, Wenge; Azuma, Masaki; Mao, Wendy L.

    2014-01-01

    Colossal negative thermal expansion was recently discovered in BiNiO 3 associated with a low density to high density phase transition under high pressure. The varying proportion of co-existing phases plays a key role in the macroscopic behavior of this material. Here, we utilize a recently developed X-ray Absorption Near Edge Spectroscopy Tomography method and resolve the mixture of high/low pressure phases as a function of pressure at tens of nanometer resolution taking advantage of the charge transfer during the transition. This five-dimensional (X, Y, Z, energy, and pressure) visualization of the phase boundary provides a high resolution method to study the interface dynamics of high/low pressure phase

  13. Visceral adiposity, not abdominal subcutaneous fat area, is associated with high blood pressure in Japanese men. The Ohtori study

    International Nuclear Information System (INIS)

    Koh, Hideo; Hayashi, Tomoshige; Kogawa Sato, Kyoko

    2011-01-01

    Visceral adiposity is considered to have a key role in cardiometabolic diseases. The purpose of this study is to investigate cross-sectionally the association between intra-abdominal fat area (IAFA) measured by computed tomography (CT) and high blood pressure independent of abdominal subcutaneous fat area (ASFA) and insulin resistance. Study participants included 624 Japanese men not taking oral hypoglycemic medications or insulin. Abdominal, thoracic and thigh fat areas were measured by CT. Total fat area (TFA) was calculated as the sum of abdominal, thoracic and thigh fat area. Total subcutaneous fat area (TSFA) was defined as TFA minus IAFA. Hypertension and high normal blood pressure were defined using the 1999 criteria of the World Health Organization. Multiple-adjusted odds ratios of hypertension for tertiles of IAFA were 2.64 (95% confidence interval, 1.35-5.16) for tertile 2, and 5.08 (2.48-10.39) for tertile 3, compared with tertile 1 after adjusting for age, fasting immunoreactive insulin, diabetes status, ASFA, alcohol consumption, regular physical exercise and smoking habit. IAFA remained significantly associated with hypertension even after adjustment for ASFA, TSFA, TFA, body mass index or waist circumference, and no other measure of regional or total adiposity was associated with the odds of hypertension in models, which included IAFA. Similar results were obtained for the association between IAFA and the prevalence of high normal blood pressure or hypertension. In conclusion, greater visceral adiposity was associated with a higher odds of high blood pressure in Japanese men. (author)

  14. High-pressure effects on cooking loss and histological structure of beef muscle

    Science.gov (United States)

    Liu, Anjun; Zhan, Hu; Zheng, Jie; Liu, Dongyue; Jia, Peiqi

    2010-12-01

    In this study, we investigate the effects of high pressures (up to 600 MPa) applied at room temperature for 10 min on beef cooking loss and structure. The data on cooking loss, pH and protein solubility, as well as the electron microscopy, illustrate the changes in cooking loss and structure with high pressure processing (HPP). There is a significant reduction in cooking loss of beef with HPP. When the beef sample is imposed upon by 300 or 400 MPa, the cooking loss reduction is about 12%. Further, the pH of beef is dramatically increased as the pressure increases, and the pH increases by about 5% when imposed upon by 500 MPa. When a high pressure was applied at room temperature, the structure of the beef tissue apparently changed. Muscle fiber fragments gradually became slender and sarcomeres became lengthened. Our data indicated that high-pressure treatment on beef leads to stretching of the muscle fiber and an increase in the water-holding capacity.

  15. High Blood Pressure and Women

    Science.gov (United States)

    ... is known as gestational hypertension, a form of secondary hypertension caused by the pregnancy that usually disappears after delivery. If the mother is not treated, high blood pressure can be dangerous to both the mother ...

  16. High Pressure Industrial Water Facility

    Science.gov (United States)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  17. Prevalence of sedentary lifestyle in individuals with high blood pressure.

    Science.gov (United States)

    Guedes, Nirla Gomes; Lopes, Marcos Venícios de Oliveira; Moreira, Rafaella Pessoa; Cavalcante, Tahissa Frota; de Araujo, Thelma Leite

    2010-01-01

    To identify the prevalence of a sedentary lifestyle in individuals with high blood pressure. This cross-sectional study was conducted among 310 individuals with high blood pressure. The prevalence of the diagnosis of sedentary lifestyle was 60%. The more common defining characteristics were "lack of physical conditioning" and "lack of practice for physical exercises." The nursing diagnosis was associated with age and presence of diabetes. Individuals who presented with a sedentary lifestyle related to lack of motivation were significantly younger. This study showed a high prevalence of "sedentary lifestyle" and its associations with age and the presence of diabetes. IMPLICATIONS TO NURSING PRACTICE: The acknowledgement of "sedentary lifestyle" contributes to the choice for nursing interventions that promote physical activity centered on the subject and the surroundings.

  18. A Study on the Fracture Control of Rock Bolts in High Ground Pressure Roadways of Deep Mines

    Directory of Open Access Journals (Sweden)

    Wen Jinglin

    2015-01-01

    Full Text Available According to the frequent fractures of rock bolts in high ground pressure roadways of deep mines, this paper analyzes the mechanism of fractures and concludes that high ground pressure and material de-fects are main reasons for the fracture of rock bolts. The basic idea of fracture control of rock bolts in high ground pressure roadways of deep mines is to increase the yield load and the limit load of rock bolt materials and reduce the actual load of rock bolts. There are four ways of controlling rock bolt fracture: increasing the rock bolt diameter, strengthening bolt materials, weakening support rigidity and the implementation of double supporting. With the roadway support of the 2302 working face of a coal mine as the project background, this paper carries out a study on the effect of two schemes, increasing the rock bolt diameter and the double supporting technique through methods of theoretical analysis, numerical simulation and so on. It determines the most reasonable diam-eter of rock bolts and the best delay distance of secondary support. Practices indicate that rock bolt fracture can be effectively controlled through the double supporting technique, which strengthens the roof and two sides through the first supporting technique and strengthens side angles through the secondary supporting technique.

  19. Announcement: National High Blood Pressure Education Month - May 2016.

    Science.gov (United States)

    2016-05-27

    May is National High Blood Pressure Education Month. High blood pressure (hypertension) is a major contributor to heart disease and stroke, two leading causes of death in the United States.* High blood pressure affects one third of U.S. adults, or approximately 75 million persons, yet approximately 11 million of these persons are not aware they have hypertension, and approximately 18 million are not being treated (unpublished data) (1,2).

  20. Association between general and abdominal obesity with high blood pressure: difference between genders.

    Science.gov (United States)

    Silva, Alison O; Silva, Micaelly V; Pereira, Lisley K N; Feitosa, Wallacy M N; Ritti-Dias, Raphael M; Diniz, Paula R B; Oliveira, Luciano M F T

    2016-01-01

    To assess the association between general and abdominal obesity with high blood pressure in adolescents of both genders from the public school system. This was an epidemiological, descriptive, exploratory study, with a quantitative approach and local scope whose sample consisted of 481 high school students (aged 14-19), selected by using a random cluster sampling strategy. Blood pressure was measured through the use of automated monitor and was considered high when the pressure values were at or above the 95th percentile. The analyses were performed using the chi-squared test and binary logistic regression. The prevalence of high blood pressure was 6.4%, and it was higher among boys (9.0% vs. 4.7%, phigh blood pressure was associated with general (OR=6.4; phigh blood pressure only in boys, regardless of age. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.