WorldWideScience

Sample records for high pressure equation

  1. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  2. Equation of state of liquid Indium under high pressure

    Directory of Open Access Journals (Sweden)

    Huaming Li

    2015-09-01

    Full Text Available We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  3. Equation for the melting curve of solids under high pressure

    International Nuclear Information System (INIS)

    Boguslavskii, Yu.Ya.

    1982-01-01

    Simon's equation of the melting curve is obtained using the Clausius-Clapeyron equation in the linear approximation of the pressure dependence of the melting entropy and the volume change at the melting point. The constants in Simon's equation are calculated in this approximation for the alkali metals Li, Na, K, Rb, Cs and also for hydrogen, H 2 , and argon. It is shown that one can obtain the constants of Simon's equation in a pressure range which is wider than the region of the thermodynamical validity of Simon's equation by averaging the values of the constants determined in different points of the melting curves. The constants obtained by this manner agree well with the experimental data. (author)

  4. Thermodynamic inconsistency of the modified Saha equation at high pressures

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1978-01-01

    The inclusion of a pressure ionization term in the Saha equation violates the thermodynamic Maxwell identities if corresponding changes are not made to the expressions for entropy and pressure. It is demonstrated that the usual application of the Rouse and Stewart-Pyatt modesl suffers from this limitation. Negative values of the adiabatic gradient in the degenerate dwarf models of Boehm and Straka are explained in terms of this thermodynamic inconsistency

  5. Equations of states for an ionic liquid under high pressure: A molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Ribeiro, Mauro C.C.; Pádua, Agílio A.H.; Gomes, Margarida F.C.

    2014-01-01

    Highlights: • We compare different equation of states, EoS, for an ionic liquid under high pressure. • Molecular dynamics, MD, simulations have been used to evaluate the best EoS. • MD simulations show that a group contribution model can be extrapolated to P ∼ 1.0 GPa. • A perturbed hard-sphere EoS also fits the densities calculated by MD simulations. - Abstract: The high-pressure dependence of density given by empirical equation of states (EoS) for the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (or triflate), [C 4 C 1 im][TfO], is compared with results obtained by molecular dynamics (MD) simulations. Two EoS proposed for [C 4 C 1 im][TfO] in the pressure range of tens of MPa, which give very different densities when extrapolated to pressures beyond the original experiments, are compared with a group contribution model (GCM). The MD simulations provide support that one of the empirical EoS and the GCM is valid in the pressure range of hundreds of MPa. As an alternative to these EoS that are based on modified Tait equations, it is shown that a perturbed hard-sphere EoS based on the Carnahan–Starling–van der Waals equation also fits the densities calculated by MD simulations of [C 4 C 1 im][TfO] up to ∼1.0 GPa

  6. Application of high-power lasers to equation-of-state research at ultrahigh pressures

    International Nuclear Information System (INIS)

    Trainor, R.J.; Graboske, H.C.; Long, K.S.; Shaner, J.W.

    1978-01-01

    The application of high-power pulsed lasers to ultrahigh pressure equation-of-state (EOS) experiments is discussed. It is shown that pressures along the principal Hugoniot between 1 and 10 TPa can be produced with existing lasers used for inertial-confinement fusion research. The relevance of measurements in this pressure regime to improving our understanding of condensed matter physics is also discussed. New experimental techniques as well as potential experimental problems are described, and EOS experiments on the Janus and Argus laser systems are proposed

  7. Sound velocity and equation-of-state measurements in high pressure fluid and solid helium

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1979-01-01

    A piston--cylinder apparatus was used to obtain P, V, T, and simultaneous values of longitudinal sound velocity in helium fluid throughout the ranges 75 to 300 0 K and 3 to 20 kbar. Some 670 data sets were obtained for the fluid and used in a double-process least-squares fit to an equation of state of the Benedict type. Additional measurements extended across the melting line into the solid phase at pressures up to 18 kbar. Measurements of the compressibility are compared with those obtained by Stewart along the 4 0 K isotherm up to 20 kbar. We discuss the use of helium as a pressure medium in high-pressure diamond anvil cells. Essentially no data are given

  8. High Temperature, high pressure equation of state density correlations and viscosity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  9. The high pressure equation of state of the isotopes of solid hydrogen and helium

    International Nuclear Information System (INIS)

    Driessen, A.

    1982-01-01

    The initial aim of this thesis was to provide the high pressure equipment and the knowledge about the equation of state (EOS) necessary for a research program in a laboratory dealing with spectroscopy of solid hydrogen under high pressure. Once this first goal was reached, a logical step was to extend the work on the EOS to all three hydrogen isotopes and later also to the helium isotpes. During the experiments on the EOS of hydrogen, the effects of the concentration C 1 of the rotationally excited molecules provoked interest, resulting in an extensive experimental and theoretical study. Chapter I describes the results and experience with high pressure equipment for hydrogen up to 7 kbar and chapter II gives a short general introduction to the calculation of the EOS by introducing the Mie-Grueneisen picture and the Silvera-Goldman (SG) potential for hydrogen. Chapter III gives the results of the first EOS of H 2 and D 2 and chapter IV gives a prediction of the EOS of solid T 2 with aid of the SG potential and the experimental results of H 2 and D 2 . Chapter V presents calculations on the thermal expansion of the hydrogen isotopes, which are compared with direct experiments and chapter VI deals in detail with the influence of C 1 on the EOS of H 2 . Ortho-para conversion in hydrogen is considered in chapter VII, and chapter VIII describes experiments on 4 He. (Auth.)

  10. Equation of states and phonons at high pressure of intermediate valence compound TmTe

    International Nuclear Information System (INIS)

    Jha, Prafulla K.; Sanyal, Sankar P.

    1997-01-01

    The study of equation of states and pressure dependence of the phonon frequencies of the compound TmTe have been performed by using a simple interatomic potential approach in the frame work of rigid ion model. The compressibility study confirms that below 2 GPa the valence of the Tm is 2+ while there is a valence transition from Tm 2+ to Tm 3+ above 2 GPa. The phonon frequencies of TmTe increases as pressure is increased. (author)

  11. Electrolyte CPA equation of state for very high temperature and pressure reservoir and basin applications

    Science.gov (United States)

    Courtial, Xavier; Ferrando, Nicolas; de Hemptinne, Jean-Charles; Mougin, Pascal

    2014-10-01

    In this work, an electrolyte version of the Cubic Plus Association (eCPA) equation of state has been adapted to systems containing CH4, CO2, H2O and NaCl (up to 5 molal) at pressures up to 200 MPa and temperatures up to 773 K for salt-free systems and 573 K for salt-containing systems. Its purpose is to represent the phase behavior (including salting-out effect and critical point) and the phase densities in a range of temperature and pressure encountered in deep reservoirs and basins. The goal of the parameterization proposed is not to reach a very high accuracy for phase equilibrium and volumetric properties, but rather to develop a semi-predictive approach to model the phase and volumetric behavior of this system while allowing an easy extension to other compounds. Without salt, predictions for pure component vapor pressures and liquid molar volumes present an average absolute deviation (AAD) lower than 3% compared to experimental reference values. The pure component molar volumes out of saturation show an AAD lower than 4%. The highest deviations in densities are observed as expected in the vicinity of the critical coordinates of pure water and this effect increases when gases or salts are added to the system. For each binary system, CH4 + CO2, CH4 + H2O and CO2 + H2O, binary interaction parameters have been fitted to correctly represent the shape of the fluid phase envelopes (including all critical points) in the entire temperature and pressure range considered (219 K to 633 K and up to 250 MPa). The methane concentration in both phases of the CH4 + CO2 binary system is represented with an AAD lower than 9%. The methane solubility in water is represented within 16% and 8% for the methane content of the vapor. The CO2 solubility in water is within 26%, while the CO2 in the vapor phase shows an average deviation of 12%. All molar volumes are represented with an AAD lower than 3%. The few VLE experimental data for the CH4 + CO2 + H2O ternary system are fairly well

  12. Equations of state and melting curve of boron carbide in the high-pressure range of shock compression

    Energy Technology Data Exchange (ETDEWEB)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Shakhrai, D. V. [Russian Academy of Sciences, Institute for Problems in Chemical Physics (Russian Federation)

    2017-03-15

    We have constructed the equations of state for crystalline boron carbide B{sub 11}C (C–B–C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0–120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0–400 GPa.

  13. Phase diagram and equation of state of TiH2 at high pressures and high temperatures

    International Nuclear Information System (INIS)

    Endo, Naruki; Saitoh, Hiroyuki; Machida, Akihiko; Katayama, Yoshinori; Aoki, Katsutoshi

    2013-01-01

    Highlights: ► We determined the phase diagram of TiH 2 at high pressures and high temperatures. ► Compression induced stain inhibited the phase transition from the bct to fcc phase. ► The phase boundary was appropriately determined using a sample with heat treatment. ► The high temperature Birch–Murnaghan equation of state of fcc TiH 2 was firstly determined. - Abstract: We determined the phase diagram and the equation of state (EoS) of TiH 2 at high pressures up to 8.7 GPa and high temperatures up to 600 °C by in situ synchrotron radiation X-ray diffraction measurements. Compression induced strain inhibited the phase transition from the low-temperature bct phase to the high-temperature fcc phase, making the phase diagram difficult to determine. However, heating around 600 °C relieved the strain, and the phase boundary between the bct and fcc phases was elucidated. The phase transition temperature at ambient pressure increased from around room temperature to 200 °C at 8.7 GPa. The high temperature Birch–Murnaghan EoS was determined for the fcc phase. With the pressure derivative of the bulk modulus K′ 0 = 4.0, the following parameters were obtained: ambient bulk modulus K 0 = 97.7 ± 0.2 GPa, ambient unit cell of the fcc phase V 0 = 88.57 ± 0.02 Å 3 , temperature derivative of the bulk modulus at constant pressure (∂K/∂T) P = −0.01 ± 0.02, and volumetric thermal expansivity α = a + bT with a = 2.62 ± 1.4 × 10 −5 and b = 5.5 ± 4.5 × 10 −8 . K 0 of fcc TiH 2 was close to those for pure Ti and bct TiH 2 reported in previous studies.

  14. On the electronic structure and equation of state in high pressure ...

    Indian Academy of Sciences (India)

    We discuss the high pressure behaviour of zinc as an interesting example of controversy, and of extensive interplay between theory and experiment. We present its room temperature electronic structure calculations to study the temperature effect on the occurrence of its controversial axial ratio (/) anomaly under pressure ...

  15. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    Science.gov (United States)

    Appelo, C.A.J.; Parkhurst, David L.; Post, V.E.A.

    2014-01-01

    Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich–Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson–Kirkham–Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye–Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich–Rosenfeld equation were fitted by least-squares on measured solution densities.The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng–Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The

  16. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    Science.gov (United States)

    Appelo, C. A. J.; Parkhurst, D. L.; Post, V. E. A.

    2014-01-01

    Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich-Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson-Kirkham-Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye-Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich-Rosenfeld equation were fitted by least-squares on measured solution densities. The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng-Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The coefficients for the

  17. Application of the cubic-plus-association equation of state to mixtures with polar chemicals and high pressures

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    was given to low pressures and liquid-liquid equilibria. In this work, CPA is applied to two classes of mixtures containing polar chemicals for which high-pressure data are available: acetone-containing systems and dimethyl ether mixtures. They are of both scientific and industrial importance. Moreover, CPA......The cubic-plus-association (CPA) equation of state has been previously applied to vapor-liquid, liquid-liquid, and solid-liquid equilibria of mixtures containing associating compounds (water, alcohols, glycols, acids, amines). Although some high-pressure applications have been presented, emphasis...... to conventional models such as MHV2. Very good results are also obtained for multicomponent vapor-liquid-liquid equilibria for mixtures containing gases, water, and dimethyl ether. Finally, it is shown that high-pressure SLE can be predicted based on interaction parameters obtained from low-pressure SLE data....

  18. Correlation of phase equilibria for water + hydrocarbon systems at high temperatures and pressures by cubic equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Haruki, Masashi; Yahiro, Yukihito; Higashi, Hidenori; Iwai, Yoshio; Arai, Yasuhiko [Kyushu University, FUkuoka (Japan). Graduate School of Engineering

    1999-08-01

    A modified-Soave-Redlich-Kwong (MSRK) equation of state with an exponent-type mixing rule for the energy parameter and a conventional rule for the size parameter is applied to correlate the phase equilibria for four binary mixtures of water + hydrocarbon (benzene, hexane, decane, and dodecane) systems at high temperatures and pressures. It is noted that good correlation results are obtained by using the mixing rules with interaction parameters between unlike molecules. (author)

  19. Recent Advances in High-Pressure Equation-of-State Capabilities

    International Nuclear Information System (INIS)

    ASAY, James R.; HALL, CLINT A.; KNUDSON, MARCUS D.

    2000-01-01

    For many scientific and programmatic applications, it is necessary to determine the shock compression response of materials to several tens of Mbar. In addition, a complete EOS is often needed in these applications, which requires that shock data be supplemented with other information, such as temperature measurements or by EOS data off the principal Hugoniot. Recent developments in the use of fast pulsed power techniques for EOS studies have been useful in achieving these goals. In particular, the Z accelerator at Sandia National Laboratories, which develops over 20 million amperes of current in 100-200 ns, can be used to produce muM-Mbar shock pressures and to obtain continuous compression data to pressures exceeding 1 Mbar. With this technique, isentropic compression data have been obtained on several materials to pressures of several hundred kbar. The technique has also been used to launch ultra-high velocity flyer plates to a maximum velocity of 14 km/s, which can be used to produce impact pressures of several Mbar in low impedance materials and over 10 Mbar in high impedance materials. The paper will review developments in both of these areas

  20. Equation of state, phase stability, and phase transformations of uranium-6 wt. % niobium under high pressure and temperature

    Science.gov (United States)

    Zhang, Jianzhong; Vogel, Sven; Brown, Donald; Clausen, Bjorn; Hackenberg, Robert

    2018-05-01

    In-situ time-of-flight neutron diffraction experiments were conducted on the uranium-niobium alloy with 6 wt. % Nb (U-6Nb) at pressures up to 4.7 GPa and temperatures up to 1073 K. Upon static compression at room temperature, the monoclinic structure of U-6Nb (α″ U-6Nb) remains stable up to the highest experimental pressure. Based on the pressure-volume measurements at room temperature, the least-squares fit using the finite-strain equation of state (EOS) yields an isothermal bulk modulus of B0 = 127 ± 2 GPa for the α″-phase of U-6Nb. The calculated zero-pressure bulk sound speed from this EOS is 2.706 ± 0.022 km/s, which is in good agreement with the linear extrapolation of the previous Hugoniot data above 12 GPa for α″ U-6Nb, indicating that the dynamic response under those shock-loading conditions is consistent with the stabilization of the initial monoclinic phase of U-6Nb. Upon heating at ambient and high pressures, the metastable α″ U-6Nb exhibits complex transformation paths leading to the diffusional phase decomposition, which are sensitive to applied pressure, stress state, and temperature-time path. These findings provide new insight into the behavior of atypical systems such as U-Nb and suggest that the different U-Nb phases are separated by rather small energies and hence highly sensitive to compositional, thermal, and mechanical perturbations.

  1. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state

    Directory of Open Access Journals (Sweden)

    A. C. D. Freitas

    2013-03-01

    Full Text Available Ionic liquids (IL have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR and Soave-Redlich-Kwong (SRK equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (vdW-2. The experimental data were taken from the literature. The optimum binary interaction parameters were estimated by minimization of an objective function based on the average absolute relative deviation of liquid and vapor phases, using the modified Simplex algorithm. The solubilities of all gases studied in this work decrease as the temperature increases and increase with increasing pressure. The correlated results were highly satisfactory, with average absolute relative deviations of 2.10% and 2.25% for PR-vdW-2 and SRK-vdW-2, respectively.

  2. High Temperature, High Pressure Equation of State: Solidification of Hydrocarbons and Measurement of Krytox Oil Using Rolling-Ball Viscometer Validation

    Energy Technology Data Exchange (ETDEWEB)

    Gamwo, Isaac K. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Burgess, Ward [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Tapriyal, Deepak [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2014-10-03

    The global consumption of oil and gas continues to rise and has led to the search and recovery of petroleum sources from reservoirs exhibiting increasingly high-temperature, high-pressure conditions. For example, ultra-deep petroleum formations found at depths of approximately 5 km or more, can exhibit pressure and temperature values as high as 240 MPa (35,000 psi) and 533 K (260°C). The hydrocarbons produced from these ultra-deep formations experience significant decreases in temperature and pressure from reservoir to platform conditions. Hence, it is highly desirable to develop accurate equation of state models (EOS) and fluid properties databases that covers the entire temperature and pressure ranges associated with this process to promote the efficient, safe, and environmentally responsible production from these reservoirs at extreme conditions. Currently available databases and EOS models are generally limited to approximately 69 MPa and do not correlate accurately when extrapolated to the extreme environments associated with ultra-deep reservoirs where temperatures can reach as high as 533 K and pressures up to 240 MPa. Despite recent exploration and production of petroleum from ultra-deep formations, there are major gaps in the databases for pure and mixture density and viscosity of hydrocarbons. These are the most important fluid properties that enable accurate booking of reserves as well as the design of size and equipment to safely bring these fluids to the platform. The overall objective of this project is to develop methodologies to provide crude oil thermodynamic and transport properties—including density, viscosity, and phase composition— at extreme temperature and pressure conditions. The knowledge of these crude oil properties reduces uncertainties associated with deep drilling and promotes safer and reliable access to domestic energy resources. This report is an extension of work reported in our first Technical Report Series (TRS) released

  3. An equation of state for high pressure-temperature liquids (RTpress) with application to MgSiO3 melt

    Science.gov (United States)

    Wolf, Aaron S.; Bower, Dan J.

    2018-05-01

    The thermophysical properties of molten silicates at extreme conditions are crucial for understanding the early evolution of Earth and other massive rocky planets, which is marked by giant impacts capable of producing deep magma oceans. Cooling and crystallization of molten mantles are sensitive to the densities and adiabatic profiles of high-pressure molten silicates, demanding accurate Equation of State (EOS) models to predict the early evolution of planetary interiors. Unfortunately, EOS modeling for liquids at high P-T conditions is difficult due to constantly evolving liquid structure. The Rosenfeld-Tarazona (RT) model provides a physically sensible and accurate description of liquids but is limited to constant volume heating paths (Rosenfeld and Tarazona, 1998). We develop a high P-T EOS for liquids, called RTpress, which uses a generalized Rosenfeld-Tarazona model as a thermal perturbation to isothermal and adiabatic reference compression curves. This approach provides a thermodynamically consistent EOS which remains accurate over a large P-T range and depends on a limited number of physically meaningful parameters that can be determined empirically from either simulated or experimental datasets. As a first application, we model MgSiO3 melt representing a simplified rocky mantle chemistry. The model parameters are fitted to the MD simulations of both Spera et al. (2011) and de Koker and Stixrude (2009), recovering pressures, volumes, and internal energies to within 0.6 GPa, 0.1 Å3 , and 6 meV per atom on average (for the higher resolution data set), as well as accurately predicting liquid densities and temperatures from shock-wave experiments on MgSiO3 glass. The fitted EOS is used to determine adiabatic thermal profiles, revealing the approximate thermal structure of a fully molten magma ocean like that of the early Earth. These adiabats, which are in strong agreement for both fitted models, are shown to be sufficiently steep to produce either a center

  4. Quantum Monte Carlo Computations of Phase Stability, Equations of State, and Elasticity of High-Pressure Silica

    Science.gov (United States)

    Driver, K. P.; Cohen, R. E.; Wu, Z.; Militzer, B.; Ríos, P. L.; Towler, M. D.; Needs, R. J.; Wilkins, J. W.

    2011-12-01

    Silica (SiO2) is an abundant component of the Earth whose crystalline polymorphs play key roles in its structure and dynamics. First principle density functional theory (DFT) methods have often been used to accurately predict properties of silicates, but fundamental failures occur. Such failures occur even in silica, the simplest silicate, and understanding pure silica is a prerequisite to understanding the rocky part of the Earth. Here, we study silica with quantum Monte Carlo (QMC), which until now was not computationally possible for such complex materials, and find that QMC overcomes the failures of DFT. QMC is a benchmark method that does not rely on density functionals but rather explicitly treats the electrons and their interactions via a stochastic solution of Schrödinger's equation. Using ground-state QMC plus phonons within the quasiharmonic approximation of density functional perturbation theory, we obtain the thermal pressure and equations of state of silica phases up to Earth's core-mantle boundary. Our results provide the best constrained equations of state and phase boundaries available for silica. QMC indicates a transition to the dense α-PbO2 structure above the core-insulating D" layer, but the absence of a seismic signature suggests the transition does not contribute significantly to global seismic discontinuities in the lower mantle. However, the transition could still provide seismic signals from deeply subducted oceanic crust. We also find an accurate shear elastic constant for stishovite and its geophysically important softening with pressure.

  5. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

    Science.gov (United States)

    Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.

    2016-09-01

    We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.

  6. Equation of state and electronic properties of EuVO{sub 4}: A high-pressure experimental and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Paszkowicz, Wojciech, E-mail: paszk@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw (Poland); López-Solano, Javier [Departamento de Física, MALTA Consolider Team, and Instituto de Materiales y Nanotecnología, Universidad de La Laguna, Tenerife 38205 (Spain); Izaña Atmospheric Research Center, Agencia Estatal de Meteorología (AEMET), Tenerife 38071 (Spain); Piszora, Paweł [Department of Materials Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland); Bojanowski, Bohdan [Institute of Physics, Szczecin University of Technology, Aleja Piastów 48, 70-310 Szczecin (Poland); Mujica, Andrés; Muñoz, Alfonso [Departamento de Física, MALTA Consolider Team, and Instituto de Materiales y Nanotecnología, Universidad de La Laguna, Tenerife 38205 (Spain); Cerenius, Yngve; Carlson, Stefan [MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Dąbkowska, Hanna [Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

    2015-11-05

    Structural, elastic and electronic properties of zircon-type and scheelite-type EuVO{sub 4} are investigated experimentally, by in-situ X-ray diffraction using synchrotron radiation, and theoretically within the framework of the density functional theory (DFT) and using the PBE prescription of the exchange-correlation energy. This study was motivated by the fact that the previous knowledge of the equation of state (EOS) was inconclusive due to a large scatter of the experimental and theoretical data, and by the lack of information on the dependence of the electronic structure with pressure. Under the applied experimental conditions, the zircon-type structure transforms to a scheelite-type one at 7.4(2) GPa, whereas the calculations yield a lower zircon–scheelite-coexistence pressure of 4.8 GPa. The experimental part of the study shows that the bulk modulus of the zircon-type phase is 119(3) GPa, perfectly supported by the DFT-calculated value, 119.1 GPa. The bulk modulus for the scheelite-type polymorph is higher, with an experimental value of 135(7) GPa and a theoretical one of 137.4 GPa. Compared to those reported in previous experimental and DFT or semiempirical works, the present values for the zircon-type phase are comparable or slightly lower, whereas those for the scheelite-type phase are markedly lower. Discrepancies between the present results and earlier reported ones are attributed to differences in details of the experimental method such as the pressure transmitting medium and the pressure calibration method. The calculated band structure confirms that zircon-type EuVO{sub 4} is a direct-gap semiconductor, with a bandgap energy at zero pressure of 2.88 eV. Under compression, the bandgap of the zircon phase increases with a coefficient of 10.3 meV/GPa up to the transition pressure, at which point the present calculations show a small drop of the bandgap energy. Above the transition pressure, the bandgap energy of the scheelite phase becomes almost

  7. Equation of state and electronic properties of EuVO4: A high-pressure experimental and computational study

    International Nuclear Information System (INIS)

    Paszkowicz, Wojciech; López-Solano, Javier; Piszora, Paweł; Bojanowski, Bohdan; Mujica, Andrés; Muñoz, Alfonso; Cerenius, Yngve; Carlson, Stefan; Dąbkowska, Hanna

    2015-01-01

    Structural, elastic and electronic properties of zircon-type and scheelite-type EuVO 4 are investigated experimentally, by in-situ X-ray diffraction using synchrotron radiation, and theoretically within the framework of the density functional theory (DFT) and using the PBE prescription of the exchange-correlation energy. This study was motivated by the fact that the previous knowledge of the equation of state (EOS) was inconclusive due to a large scatter of the experimental and theoretical data, and by the lack of information on the dependence of the electronic structure with pressure. Under the applied experimental conditions, the zircon-type structure transforms to a scheelite-type one at 7.4(2) GPa, whereas the calculations yield a lower zircon–scheelite-coexistence pressure of 4.8 GPa. The experimental part of the study shows that the bulk modulus of the zircon-type phase is 119(3) GPa, perfectly supported by the DFT-calculated value, 119.1 GPa. The bulk modulus for the scheelite-type polymorph is higher, with an experimental value of 135(7) GPa and a theoretical one of 137.4 GPa. Compared to those reported in previous experimental and DFT or semiempirical works, the present values for the zircon-type phase are comparable or slightly lower, whereas those for the scheelite-type phase are markedly lower. Discrepancies between the present results and earlier reported ones are attributed to differences in details of the experimental method such as the pressure transmitting medium and the pressure calibration method. The calculated band structure confirms that zircon-type EuVO 4 is a direct-gap semiconductor, with a bandgap energy at zero pressure of 2.88 eV. Under compression, the bandgap of the zircon phase increases with a coefficient of 10.3 meV/GPa up to the transition pressure, at which point the present calculations show a small drop of the bandgap energy. Above the transition pressure, the bandgap energy of the scheelite phase becomes almost constant, with

  8. Phase transitions and equation of state of CsI under high pressure and the development of a focusing system for x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yan.

    1990-11-01

    The phase transitions and equation of state of ionic solid cesium iodide were studied under high pressure and room temperature in a diamond anvil cell. The studies were carried out using both energy dispersive and angular dispersive diffraction methods on synchrotron radiation sources over the pressure range from atmospheric pressure to over 300 gigapascals (3 million atmospheres). CsI undergoes a distinct phase transition at about 40 GPa, a pressure that is much lower than the reported insulator-metal transition at 110 GPa, from the atmospheric pressure B2(CsCl) structure to an orthorhombic structure. At higher pressures, a continuous distortion in the structure was observed with a final structure similar to a hcp lattice under ultra high pressure. No volume discontinuity was observed at the insulator-metal transition. The newly found transition sequence is different from the result of previous static compression studies. The current structure has a smaller unit cell volume than the previous assignment. This has resolved a long existing controversy among the previous static compression studies, the dynamic compression studies, and the theoretical studies. The current results also explain the apparent discrepancy between the present study and the previous static studies. We also present the development of a focusing system for high energy x-rays (> 12 keV) that is particularly suited for high pressure diffraction studies. This system uses a pair of multilayer coated spherical mirrors in a Kirkpatrick-Baez geometry. A focused beam size less than 10 micron in diameter can be readily achieved with sufficient intensity to perform diffraction studies. 93 refs., 46 figs., 15 tabs.

  9. Phase transitions and equation of state of CsI under high pressure and the development of a focusing system for x-rays

    International Nuclear Information System (INIS)

    Wu, Yan.

    1990-11-01

    The phase transitions and equation of state of ionic solid cesium iodide were studied under high pressure and room temperature in a diamond anvil cell. The studies were carried out using both energy dispersive and angular dispersive diffraction methods on synchrotron radiation sources over the pressure range from atmospheric pressure to over 300 gigapascals (3 million atmospheres). CsI undergoes a distinct phase transition at about 40 GPa, a pressure that is much lower than the reported insulator-metal transition at 110 GPa, from the atmospheric pressure B2(CsCl) structure to an orthorhombic structure. At higher pressures, a continuous distortion in the structure was observed with a final structure similar to a hcp lattice under ultra high pressure. No volume discontinuity was observed at the insulator-metal transition. The newly found transition sequence is different from the result of previous static compression studies. The current structure has a smaller unit cell volume than the previous assignment. This has resolved a long existing controversy among the previous static compression studies, the dynamic compression studies, and the theoretical studies. The current results also explain the apparent discrepancy between the present study and the previous static studies. We also present the development of a focusing system for high energy x-rays (> 12 keV) that is particularly suited for high pressure diffraction studies. This system uses a pair of multilayer coated spherical mirrors in a Kirkpatrick-Baez geometry. A focused beam size less than 10 micron in diameter can be readily achieved with sufficient intensity to perform diffraction studies. 93 refs., 46 figs., 15 tabs

  10. High pressure generation by laser driven shock waves: application to equation of state measurement; Generation de hautes pressions par choc laser: application a la mesure d'equations d'etat

    Energy Technology Data Exchange (ETDEWEB)

    Benuzzi, A

    1997-12-15

    This work is dedicated to shock waves and their applications to the study of the equation of state of compressed matter.This document is divided into 6 chapters: 1) laser-produced plasmas and abrasion processes, 2) shock waves and the equation of state, 3) relative measuring of the equation of state, 4) comparison between direct and indirect drive to compress the target, 5) the measurement of a new parameter: the shock temperature, and 6) control and measurement of the pre-heating phase. In this work we have reached relevant results, we have shown for the first time the possibility of generating shock waves of very high quality in terms of spatial distribution, time dependence and of negligible pre-heating phase with direct laser radiation. We have shown that the shock pressure stays unchanged as time passes for targets whose thickness is over 10 {mu}m. A relative measurement of the equation of state has been performed through the simultaneous measurement of the velocity of shock waves passing through 2 different media. The great efficiency of the direct drive has allowed us to produce pressures up to 40 Mbar. An absolute measurement of the equation of state requires the measurement of 2 parameters, we have then performed the measurement of the colour temperature of an aluminium target submitted to laser shocks. A simple model has been developed to infer the shock temperature from the colour temperature. The last important result is the assessment of the temperature of the pre-heating phase that is necessary to know the media in which the shock wave propagates. The comparison of the measured values of the reflectivity of the back side of the target with the computed values given by an adequate simulation has allowed us to deduce the evolution of the temperature of the pre-heating phase. (A.C.)

  11. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  12. High Blood Pressure Facts

    Science.gov (United States)

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  13. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  14. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  15. Some properties of matter at very HTGH temperatures and high pressures (equations of state, opacity); Quelques proprietes de la matiere aux tres hautes temperatures et fortes pressions (equation d'etat, opacite)

    Energy Technology Data Exchange (ETDEWEB)

    Gervat, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-15

    The Thomas-Fermi equations which' are zero-order approximations of the Hartree-Fock equations, make it possible to study some aspects of the behaviour of matter at high pressures. In the first chapter is considered the calculation of 1 values which do not require the Schroedinger equation to be solved. The values of the quantum and exchange corrections give the zone of validity of the theory. For each R and T pair it is possible to calculate the energy and the pressure. For the calculation of the energy 'it has been necessary, in the region close to the nucleus where the corrections diverge, to replace the density given by the Thomas-Fermi theory by that deduced from the wave-functions which, in the small region, are very similar to that of a hydrogen atom of charge z. The calculation of the degree of ionization is particularly simple and does not require the Saha equations to be solved. Besides the distribution of electrons in the r space it is simple to determine the distribution according to the quantum number I, and this for each value of the R, T pair. In the second chapter, the introduction of the, Thomas and Fermi potential into the Schroedinger equation makes it possible to obtain the energy spectrum of a perfect isolated atom supposed to represent an average atom of the hot, compressed matter. The changes in the levels with increasing temperature and pressure can be deduced from this. It is particular easy with this model to interpret the phenomenon of ionization caused by pressure. A knowledge of the wave functions makes it possible to calculate the transition probabilities which, coupled with the occupation probabilities, lead to the opacity coefficients. Only the bound-free and free-free transitions have been considered but these latter include, because of the properties of the model used, a large part of bound-bound or band-band transitions. Finally, the use of the Thomas-Fermi potential for the calculation of bands is particularly suitable for

  16. High blood pressure - children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  17. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  18. High blood pressure - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  19. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  20. High-pressure microbiology

    National Research Council Canada - National Science Library

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  1. The thermal equation of state of FeTiO3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures

    International Nuclear Information System (INIS)

    Tronche, E.J.; Van Kan Parker, M.; De Vries, J.; Wang, Y.; Sanehire, T.; Li, J.; Chen, B.; Gao, L.; Klemme, S.; McCammon, C.A.; Van Westerenen, W.

    2010-01-01

    We present in situ measurements of the unit-cell volume of a natural terrestrial ilmenite (Jagersfontein mine, South Africa) and a synthetic reduced ilmenite (FeTiO 3 ) at simultaneous high pressure and high temperature up to 16 GPa and 1273 K. Unit-cell volumes were determined using energy-dispersive synchrotron X-ray diffraction in a multi-anvil press. Moessbauer analyses show that the synthetic sample contained insignificant amounts of Fe 3+ both before and after the experiment. Results were fit to Birch-Murnaghan thermal equations of state, which reproduce the experimental data to within 0.5 and 0.7 GPa for the synthetic and natural samples, respectively. At ambient conditions, the unit-cell volume of the natural sample (V 0 = 314.75 ± 0.23 (1σ) (angstrom) 3 ) is significantly smaller than that of the synthetic sample (V 0 = 319.12 ± 0.26 (angstrom) 3 ). The difference can be attributed to the presence of impurities and Fe 3+ in the natural sample. The 1 bar isothermal bulk moduli K T0 for the reduced ilmenite is slightly larger than for the natural ilmenite (181 ± 7 and 165 ± 6 GPa, respectively), with pressure derivatives K(prime) 0 = 3 ± 1. Our results, combined with literature data, suggest that the unit-cell volume of reduced ilmenite is significantly larger than that of oxidized ilmenite, whereas their thermoelastic parameters are similar. Our data provide more appropriate input parameters for thermo-chemical models of lunar interior evolution, in which reduced ilmenite plays a critical role.

  2. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  3. High blood pressure - adults

    Science.gov (United States)

    ... pressure is found. This is called essential hypertension. High blood pressure that is caused by another medical condition or medicine you are taking is called secondary hypertension. Secondary hypertension may be due to: Chronic ...

  4. Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures

    Science.gov (United States)

    Mookherjee, Mainak; Tsuchiya, Jun; Hariharan, Anant

    2016-02-01

    We examined the equation of state and high-pressure elasticity of the hydrous aluminosilicate mineral topaz-OH (Al2SiO4(OH)2) using first principles simulation. Topaz-OH is a hydrous phase in the Al2O3-SiO2-H2O (ASH) ternary system, which is relevant for the mineral phase relations in the hydrated sedimentary layer of subducting slabs. Based on recent neutron diffraction experiments, it is known that the protons in the topaz-OH exhibit positional disorder with half occupancy over two distinct crystallographic sites. In order to adequately depict the proton environment in the topaz-OH, we examined five crystal structure models with distinct configuration for the protons in topaz-OH. Upon full geometry optimization we find two distinct space group, an orthorhombic Pbnm and a monoclinic P21/c for topaz-OH. The topaz-OH with the monoclinic P21/c space group has a lower energy compared to the orthorhombic Pbmn space group symmetry. The pressure-volume results for the monoclinic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0mon = 348.63 (±0.04) Å3, K0mon = 164.7 (±0.04) GPa, and K0mon = 4.24 (±0.05). The pressure-volume results for the orthorhombic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0orth = 352.47 (±0.04) Å3, K0orth = 166.4 (±0.06) GPa, and K0orth = 4.03 (±0.04). While the bulk moduli are very similar for both the monoclinic and orthorhombic topaz-OH, the shear elastic constants and the shear moduli are very sensitive to the position of the proton, orientation of the O-H dipole, and the space group symmetry. The S-wave anisotropy for the orthorhombic and monoclinic topaz-OH are also quite distinct. In the hydrated sedimentary layer of subducting slabs, transformation of a mineral assemblage consisting of coesite (SiO2) and diaspore (AlOOH) to topaz-OH (Al2SiO4(OH)2) is likely to be accompanied by an increase in density, compressional velocity, and shear wave velocity. However

  5. High pressure phase transformations revisited.

    Science.gov (United States)

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  6. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  7. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... other risk factors, like diabetes, you may need treatment. How does high blood pressure affect pregnant women? A few women will get ... HIV, Birth Control Heart Health for Women Pregnancy Menopause More Women's Health ... High Blood Pressure--Medicines to Help You Women and Diabetes Heart ...

  8. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  9. Brillouin scattering at high pressures

    International Nuclear Information System (INIS)

    Grimsditch, M.; Polian, A.

    1988-02-01

    Technical advances which have made Brillouin scattering a useful tool in high pressure diamond anvil cell (DAC) studies, viz. multipassing and tandem operation of Fabry-Perot interferometers, are reviewed. Experimental aspects, such as allowed scattering geometries, are outlined and the data analysis required to transform Brillouin spectra into sound velocities and elastic constants is presented. Experimental results on H 2 , N 2 , Ar, and He are presented, and the close relationship between the Brillouin scattering results and equations of state is highlighted

  10. Computer simulation at high pressure

    International Nuclear Information System (INIS)

    Alder, B.J.

    1977-11-01

    The use of either the Monte Carlo or molecular dynamics method to generate equations-of-state data for various materials at high pressure is discussed. Particular emphasis is given to phase diagrams, such as the generation of various types of critical lines for mixtures, melting, structural and electronic transitions in solids, two-phase ionic fluid systems of astrophysical interest, as well as a brief aside of possible eutectic behavior in the interior of the earth. Then the application of the molecular dynamics method to predict transport coefficients and the neutron scattering function is discussed with a view as to what special features high pressure brings out. Lastly, an analysis by these computational methods of the measured intensity and frequency spectrum of depolarized light and also of the deviation of the dielectric measurements from the constancy of the Clausius--Mosotti function is given that leads to predictions of how the electronic structure of an atom distorts with pressure

  11. High Blood Pressure

    Science.gov (United States)

    ... kidney disease, diabetes, or metabolic syndrome Read less Unhealthy lifestyle habits Unhealthy lifestyle habits can increase the risk of high blood pressure. These habits include: Unhealthy eating patterns, such as eating too much sodium ...

  12. High Blood Pressure

    Science.gov (United States)

    ... factors Diabetes High blood pressure Family history Obesity Race/ethnicity Full list of causes and risk factors ... give Give monthly Memorials and tributes Donate a car Donate gently used items Stock donation Workplace giving ...

  13. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  14. 'Second' Ehrenfest equation for second order phase transition under hydrostatic pressure

    Science.gov (United States)

    Moin, Ph. B.

    2018-02-01

    It is shown that the fundamental conditions for the second-order phase transitions ? and ?, from which the two Ehrenfest equations follow (the 'usual' and the 'second' ones), are realised only at zero hydrostatic pressure (?). At ? the volume jump ΔV at the transition is proportional to the pressure and to the jump of the compressibility ΔζV, whereas the entropy jump ΔS is proportional to the pressure and to the jump of the thermal expansion coefficient ΔαV. This means that at non-zero hydrostatic pressure the phase transition is of the first order and is described by the Clausius-Clapeyron equation. At small pressure this equation coincides with the 'second' Ehrenfest equation ?. At high P, the Clausius-Clapeyron equation describes qualitatively the caused by the crystal compression positive curvature of the ? dependence.

  15. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  16. Calculation of the Aqueous Thermodynamic Properties of Citric Acid Cycle Intermediates and Precursors and the Estimation of High Temperature and Pressure Equation of State Parameters

    Directory of Open Access Journals (Sweden)

    Mitchell Schulte

    2009-06-01

    Full Text Available The citric acid cycle (CAC is the central pathway of energy transfer for many organisms, and understanding the origin of this pathway may provide insight into the origins of metabolism. In order to assess the thermodynamics of this key pathway for microorganisms that inhabit a wide variety of environments, especially those found in high temperature environments, we have calculated the properties and parameters for the revised Helgeson-Kirkham-Flowers equation of state for the major components of the CAC. While a significant amount of data is not available for many of the constituents of this fundamental pathway, methods exist that allow estimation of these missing data.

  17. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent fi...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  18. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  19. Fascination at high pressures

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Research at high pressures has developed into an interdisciplinary area which has important implications for and applications in the areas of physics, chemistry, materials sciences, planetary sciences, biology, engineering sciences and technology. The state of-the-art in this field is reviewed and future directions are indicated. (M.G.B.)

  20. Development and validation of constitutive equation of HBS irradiation swelling considering hydrostatic pressure

    International Nuclear Information System (INIS)

    Gao Lijun; Jiang Shengyao; Yu Jiyang; Chen Bingde; Xiao Zhong

    2014-01-01

    The mechanism of hydrostatic pressure affecting the irradiation swelling of UO_2 high burnup structure was analyzed. Three basic assumptions used to develop the constitutive equation of irradiation swelling were made accordingly. It is concluded that hydrostatic pressure imposes an important impact on irradiation swelling mainly through compressing the UO_2 high burnup structure pores. Based on the already developed correlation of the irradiation swelling of UO_2 high burnup structure, pore shrinkage due to the application of hydrostatic pressure and thus the reduction of irradiation swelling of UO_2 high burnup structure were determined quantitatively, and the constitutive equation of irradiation swelling of UO_2 high burnup structure considering the hydrostatic pressure was constructed successfully. The constitutive equation is validated using available irradiation swelling data of UO_2 high burnup structure, which demonstrates its reasonability. (authors)

  1. EQUATIONS FOR GAS RELEASING PROCESS FROM PRESSURIZED VESSELS IN ODH EVALUATION

    International Nuclear Information System (INIS)

    JIA, L.X.; WANG, L.

    2001-01-01

    IN THE EVALUATION OF ODH, THE CALCULATION OF THE SPILL RATE FROM THE PRESSURIZED VESSEL IS THE CENTRAL TASK. THE ACCURACY OF THE ENGINEERING ESTIMATION BECOMES ONE OF THE SAFETY DESIGN ISSUES. THIS PAPER SUMMARIZES THE EQUATIONS FOR THE OXYGEN CONCENTRATION CALCULATION IN DIFFERENT CASES, AND DISCUSSES THE EQUATIONS FOR THE GAS RELEASE PROCESS CALCULATION BOTH FOR THE HIGH-PRESSURE GAS TANK AND THE LOW-TEMPERATURE LIQUID CONTAINER

  2. Newtonian hydrodynamic equations with relativistic pressure and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Fabris, Júlio; Piattella, Oliver F.; Zimdahl, Winfried, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: fabris@pq.cnpq.br, E-mail: oliver.piattella@pq.cnpq.br, E-mail: winfried.zimdahl@pq.cnpq.br [Departamento de Fisica, Universidade Federal do Espirito Santo, Vitória (Brazil)

    2016-07-01

    We present a new approximation to include fully general relativistic pressure and velocity in Newtonian hydrodynamics. The energy conservation, momentum conservation and two Poisson's equations are consistently derived from Einstein's gravity in the zero-shear gauge assuming weak gravity and action-at-a-distance limit. The equations show proper special relativity limit in the absence of gravity. Our approximation is complementary to the post-Newtonian approximation and the equations are valid in fully nonlinear situations.

  3. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  4. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  5. Comparison of various state equations for approximation and extrapolation of experimental hydrogen molar volumes in wide temperature and pressure intervals

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Altynov, V.A.; Wisniewski, R.

    2009-01-01

    The numerical analysis of practically all existing formulae such as expansion series, Tait, logarithm, Van der Waals and virial equations for interpolation of experimental molar volumes versus high pressure was carried out. One can conclude that extrapolating dependences of molar volumes versus pressure and temperature can be valid. It was shown that virial equations can be used for fitting experimental data at relatively low pressures P<3 kbar too in distinction to other equations. Direct solving of a linear equation of the third order relatively to volume using extrapolated virial coefficients allows us to obtain good agreement between existing experimental data for high pressure and calculated values

  6. High pressure measurement and CPA equation of state for solubility of carbon dioxide and hydrogen sulfide in 1-butyl-3-methylimidazolium acetate

    International Nuclear Information System (INIS)

    Haghtalab, Ali; Kheiri, Alireza

    2015-01-01

    Highlights: • Solubility of carbon dioxide in pure [bmim][acetate] is measured. • Simultaneous solubility of CO 2 + H 2 S in [bmim][acetate] is measured. • Both physical and chemical models are applied to modelling the (acid gas + IL) systems. • The CPA EoS is used for phase equilibrium calculation. • A reaction thermodynamic equilibrium model is used in liquid phase. - Abstract: Removal of acid gases such as CO 2 and H 2 S from natural gas is essential for commercial, safety and environmental protection that demonstrate the importance of gas sweetening process. Ionic liquids (IL) have been highly demanded as a green solvent to remove acid gases from sour natural gas and capturing of CO 2 from flue gases. In this work, the solubility of CO 2 in 1-butyl-3-methylimidazolium acetate ([bmim][Ac]) is measured at temperatures (303.15, 328.15, 343.15) K and pressure range of (0.1 to 3.9) MPa. Moreover, the experiments are carried out for simultaneous measurements of (CO 2 + H 2 S) (70% + 30% on a mole basis) solubility in the same ionic liquid at T = (303.15, 323.15, 343.15) K and a pressure range of (0.1 to 2.2) MPa. To model the solubility of acid gases in IL, both physical and chemical equilibria are applied so that the (vapour + liquid) equilibrium calculation is carried out through Cubic-Plus-Association (CPA) EoS. The reaction equilibrium thermodynamic model is used in liquid phase so that the chemical reaction is taking place between IL and acid gasses. The Henry’s and reaction equilibrium constants are obtained though optimization of the solubility data. Using CPA EOS, the pure parameters of [bmim][acetate] are optimised and consequently using these parameters, gas partial pressure calculation is performed for the (CO 2 + IL) and (CO 2 + H 2 S + IL) systems. For the (CO 2 + IL) system, the percent average absolute deviation (AAD%) of 4.83 is resulted and for the (H 2 S + CO 2 + IL) system the values of 18.8 and 13.7 are obtained for H 2 S and CO 2

  7. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  8. The effect of KZK pressure equation on the sonoluminescence in water and fat tissues

    International Nuclear Information System (INIS)

    Gheshlaghi, M.; Sadighi-Bonabi, R.; Ghadirifar, A.

    2015-01-01

    The effect of the produced light flashes from sonoluminescence (SL) on the fat tissue and water is studied. By using KZK equation as an essential equation for calculating the thermal source in bio-liquids, the effective bubble parameters in quasi-adiabatic model are calculated and compared in these systems. It is noticed that the temperature and the intensity for fat tissue are about 30% and 38% less than the ones for water respectively. These results are almost in good agreement with the only experimental measurement denoting less SL temperature in bio-liquids which present more suitable condition for using SL in such applications. - Highlights: • Coupling of acoustic pressure and the pressure's KZK equation for using Sonoluminescence equations. • The Sonoluminescence parameters (temperature, pressure and intensity) are calculated and Compared for water and fat tissue. • The high-intensity radiation of Sonoluminescence bubble is used in medical applications

  9. The effect of KZK pressure equation on the sonoluminescence in water and fat tissues

    Energy Technology Data Exchange (ETDEWEB)

    Gheshlaghi, M. [Payame Noor University, P.O.B. 19395-3697, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, 11365-91, Tehran (Iran, Islamic Republic of); Ghadirifar, A. [Islamic Azad University, Faculty of Mechanical Engineering, Mashhad (Iran, Islamic Republic of)

    2015-09-25

    The effect of the produced light flashes from sonoluminescence (SL) on the fat tissue and water is studied. By using KZK equation as an essential equation for calculating the thermal source in bio-liquids, the effective bubble parameters in quasi-adiabatic model are calculated and compared in these systems. It is noticed that the temperature and the intensity for fat tissue are about 30% and 38% less than the ones for water respectively. These results are almost in good agreement with the only experimental measurement denoting less SL temperature in bio-liquids which present more suitable condition for using SL in such applications. - Highlights: • Coupling of acoustic pressure and the pressure's KZK equation for using Sonoluminescence equations. • The Sonoluminescence parameters (temperature, pressure and intensity) are calculated and Compared for water and fat tissue. • The high-intensity radiation of Sonoluminescence bubble is used in medical applications.

  10. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state

    International Nuclear Information System (INIS)

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2014-01-01

    Highlights: • Validated CFD models for decompression and dispersion of CO 2 releases from pipelines. • Incorporation of real gas EOS into CFD code for source strength estimation. • Demonstration of better performance of SST k–ω turbulence model for jet flow. • Demonstration of better performance of real gas EOS compared to ideal gas EOS. • Demonstration of superiority of CFD models over a commercial risk assessment package. - Abstract: Transportation of CO 2 in high-pressure pipelines forms a crucial link in the ever-increasing application of Carbon Capture and Storage (CCS) technologies. An unplanned release of CO 2 from a pipeline presents a risk to human and animal populations and the environment. Therefore it is very important to develop a deeper understanding of the atmospheric dispersion of CO 2 before the deployment of CO 2 pipelines, to allow the appropriate safety precautions to be taken. This paper presents a two-stage Computational Fluid Dynamics (CFD) study developed (1) to estimate the source strength, and (2) to simulate the subsequent dispersion of CO 2 in the atmosphere, using the source strength estimated in stage (1). The Peng–Robinson (PR) EOS was incorporated into the CFD code. This enabled accurate modelling of the CO 2 jet to achieve more precise source strength estimates. The two-stage simulation approach also resulted in a reduction in the overall computing time. The CFD models were validated against experimental results from the British Petroleum (BP) CO 2 dispersion trials, and also against results produced by the risk management package Phast. Compared with the measurements, the CFD simulation results showed good agreement in both source strength and dispersion profile predictions. Furthermore, the effect of release direction on the dispersion was studied. The presented research provides a viable method for the assessment of risks associated with CCS

  11. High pressure mechanical seal

    Science.gov (United States)

    Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)

    1996-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.

  12. Common High Blood Pressure Myths

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:May 4,2018 Knowing the facts ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  13. Medications for High Blood Pressure

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  14. High blood pressure and diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  15. Radiation pressure and the Thomas-Fermi equation of state

    International Nuclear Information System (INIS)

    More, R.M.

    1976-01-01

    This paper studies the interaction of radiation with matter in a high-temperature environment. The radiation pressure is calculated carefully, including the coupling to the high density electron plasma. The calculation yields a correction to the expression for radiation pressure given by Inman (Astrophys. J.; 142: 201 (1965)). The results are applied to investigate whether radiation pressure can produce significant alterations of the electron density in atoms. (author)

  16. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  17. Opacity calculations and Saha's equation for high Z elements

    International Nuclear Information System (INIS)

    Godwal, B.K.; Sikka, S.K.

    1977-01-01

    Opacity calculations are needed for energy transport by radiation for high Z element plasmas as these have been suggested as temper materials in laser, electron beam and heavy ion fusion schemes. The pressure ionised modified form of Saha's ionisation equation has been used to obtain the free electron density, populations of various ionic species and the populations of various energy states for a given ion. Results are presented for two typical elements; tungsten and uranium. The ionisation potential have been evaluated using the Bohr's formula with suitable effective screened charges for ions. The results show that for uranium, even at a temperature of 10 kev, the K shell is intact. The reliability of the Saha's equation solution has been checked by comparing the equation of state (total pressure vs total energy curve) with that given by the Thomas-Fermi-Dirac equation of state. The agreement between the two is good from temperature upwards of 0.2 kev. (author)

  18. Superconductivity at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, N B; Ginzburg, N I

    1969-07-01

    Work published during the last 3 or 4 yrs concerning the effect of pressure on superconductivity is reviewed. Superconducting modifications of Si, Ge, Sb, Te, Se, P and Ce. Change of Fermi surface under pressure for nontransition metals. First experiments on the influence of pressure on the tunneling effect in superconductors provide new information on the nature of the change in phonon and electron energy spectra of metals under hydrostatic compression. 78 references.

  19. High Blood Pressure in Pregnancy

    Science.gov (United States)

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  20. Convective heat transport of high-pressure flows inside active, thick walled-tubes with isothermal outer surfaces: usage of Nusselt correlation equations for an inactive, thin walled-tube

    Energy Technology Data Exchange (ETDEWEB)

    Campo, Antonio [Idaho State Univ., Nuclear Engineering Dept., Pocatello, ID (United States); Sanchez, Alejo [Universidad de los Andes, Depto. de Ingenieria Mecanica, Merida (Venezuela)

    1998-03-01

    A semi-analytical analysis was conducted for the prediction of the mean bulk- and interface temperatures of gaseous and liquid fluids moving laminarly at high pressures inside thick-walled metallic tubes. The outer surfaces of the tubes are isothermal. The central goal of this article is to critically examine the thermal response of this kind of in-tube flows utilizing two versions of the 1-D lumped model: one is differential-numerical while the other is differential-algebraic. For the former, the local Nusselt number characterizing an inactive, isothermal tube was taken from correlation equations reported in the heat transfer literature. For the latter, a streamwise-mean Nusselt number associated with an active, isothermal tube was taken from standard correlation equations that appear in text-books on basic heat transfer. For the two different versions of the 1-D lumped model tested, the computed results consistently demonstrate that the differential-algebraic, provides accurate estimates of both the mean bulk- and the interface temperatures when compared with those temperature results computed with formal 2-D differential models. (author)

  1. Saha's ionization equation for high Z elements

    International Nuclear Information System (INIS)

    Godwal, B.K.; Sikka, S.K.

    1977-01-01

    Saha's ionization equation has been solved for high Z elements with the aim of providing input for opacity calculations. Results are presented for two elements, tungsten and uranium. The ionization potentials have been evaluated using the simple Bhor's formula with suitable effective charges for ions. The reliability of the free electron density, ion concentrations, etc., obtained from the Saha's equation solutions has been checked by comparing the P and E computed from them with those given by the Thomas-Fermi-Dirac equation of state. The agreement between the two is good from temperatures above 0.2 keV. (author)

  2. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Feb 27,2018 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  3. High pressure shaft seal

    International Nuclear Information System (INIS)

    Martinson, A.R.; Rogers, V.D.

    1980-01-01

    In relation to reactor primary coolant pumps, mechanical seal assembly for a pump shaft is disclosed which features a rotating seal ring mounting system which utilizes a rigid support ring loaded through narrow annular projections in combination with centering non-sealing O-rings which effectively isolate the rotating seal ring from temperature and pressure transients while securely positioning the ring to adjacent parts. A stationary seal ring mounting configuration allows the stationary seal ring freedom of motion to follow shaft axial movement up to 3/4 of an inch and shaft tilt about the pump axis without any change in the hydraulic or pressure loading on the stationary seal ring or its carrier. (author)

  4. High Blood Pressure - Multiple Languages

    Science.gov (United States)

    ... Being 8 - High Blood Pressure - Amarɨñña / አማርኛ (Amharic) MP3 Siloam Family Health Center Arabic (العربية) Expand Section ... Being 8 - High Blood Pressure - myanma bhasa (Burmese) MP3 Siloam Family Health Center Chinese, Simplified (Mandarin dialect) ( ...

  5. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  6. High Pressure Physics at Brigham Young University

    Science.gov (United States)

    Decker, Daniel

    2000-09-01

    I will discuss the high pressure research of Drs. J. Dean Barnett, Daniel L. Decker and Howard B. Vanfleet of the department of Physics and Astronomy at Brigham Young University and their many graduate students. I will begin by giving a brief history of the beginning of high pressure research at Brigham Young University when H. Tracy Hall came to the University from General Elecrtric Labs. and then follow the work as it progressed from high pressure x-ray diffraction experiments, melting curve measurements under pressure to pressure effects on tracer diffusion and Mossbauer effect spectra. This will be followed by showing the development of pressure calibration techniques from the Decker equation of state of NaCl to the ruby fluorescence spectroscopy and a short discussion of using a liquid cell for hydrostatic measurements and temperature control for precision high pressure measurements. Then I will conclude with a description of thermoelectric measuremnts, critical phenomena at the magnetic Curie point, and the tricritical point of BaTiO_3.

  7. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  8. Psoriasis and high blood pressure.

    Science.gov (United States)

    Salihbegovic, Eldina Malkic; Hadzigrahic, Nermina; Suljagic, Edin; Kurtalic, Nermina; Sadic, Sena; Zejcirovic, Alema; Mujacic, Almina

    2015-02-01

    Psoriasis is a chronic skin ailment which can be connected with an increased occurrence of other illnesses, including high blood pressure. A prospective study has been conducted which included 70 patients affected by psoriasis, both genders, older than 18 years. Average age being 47,14 (SD= ±15,41) years, from that there were 36 men or 51,43 and 34 women or 48,57%. Average duration of psoriasis was 15,52 (SD=±12,54) years. Frequency of high blood pressure in those affected by psoriasis was 54,28%. Average age of the patients with psoriasis and high blood pressure was 53,79 year (SD=±14,15) and average duration of psoriasis was 17,19 years (SD=±13,51). Average values of PASI score were 16,65. Increase in values of PASI score and high blood pressure were statistically highly related (r=0,36, p=0,0001). Psoriasis was related to high blood pressure and there was a correlation between the severity of psoriasis and high blood pressure.

  9. High Blood Pressure and Women

    Science.gov (United States)

    ... is known as gestational hypertension, a form of secondary hypertension caused by the pregnancy that usually disappears after delivery. If the mother is not treated, high blood pressure can be dangerous to both the mother ...

  10. High Pressure Industrial Water Facility

    Science.gov (United States)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  11. High Pressure Research on Materials

    Indian Academy of Sciences (India)

    example, represents the stress on the x plane in the y direction. There are three .... optical studies and studying compressibility of fluids. 3.2 Opposed ..... [4] G N Peggs, High Pressure Measurement Techniques, Applied Science. Publishers ...

  12. Engineering Model of High Pressure Moist Air

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2017-01-01

    Full Text Available The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept of an ideal mixture of real gases. The comparison of enthalpy end entropy based on the model of an ideal mixture of ideal gases and the model of an ideal mixture of real gases is performed. It is shown that the model of an ideal mixture of real gases deviates from the model of an ideal mixture of ideal gases only in the case of high pressure. An impossibility of the definition of partial pressure in the mixture of real gases is discussed, where the virial equation of state is used.

  13. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Parents / Hypertension (High Blood Pressure) What's ... High Blood Pressure) Treated? Print What Is Hypertension (High Blood Pressure)? Blood pressure is the pressure of blood against ...

  14. Terbium oxide at high pressures

    International Nuclear Information System (INIS)

    Dogra, Sugandha; Sharma, Nita Dilawar; Singh, Jasveer; Bandhyopadhyay, A.K.

    2011-01-01

    In this work we report the behaviour of terbium oxide at high pressures. The as received sample was characterized at ambient by X-ray diffraction and Raman spectroscopy. The X-ray diffraction showed the sample to be predominantly cubic Tb 4 O 7 , although a few peaks also match closely with Tb 2 O 3 . In fact in a recent study done on the same sample, the sample has been shown to be a mixture of Tb 4 O 7 and Tb 2 O 3 . The sample was subjected to high pressures using a Mao-Bell type diamond anvil cell upto a pressure of about 42 GPa with ruby as pressure monitor

  15. The high-pressure behavior of bloedite

    DEFF Research Database (Denmark)

    Comodi, Paola; Nazzareni, Sabrina; Balic Zunic, Tonci

    2014-01-01

    High-pressure single-crystal synchrotron X‑ray diffraction was carried out on a single crystal of bloedite [Na2Mg(SO4)24H2O] compressed in a diamond-anvil cell. The volume-pressure data, collected up to 11.2 GPa, were fitted by a second- and a third-order Birch-Murnaghan equation of state (EOS....... Pressure decreases significantly the distortion of Na coordination. Up to 10 GPa, the donor-acceptor oxygen distances decrease significantly and the difference between the two water molecules decreases with an increase in the strengths of hydrogen bonds. At the same time, the bond lengths from Na and Mg...... to O atoms of the water molecules decrease faster than other bonds to these cations suggesting that there is a coupling between the Na-Ow and Mg-Ow bond strengths and the “hydrogen transfer” to acceptor O atoms....

  16. High Pressure Treatment in Foods

    OpenAIRE

    Edwin Fabian Torres Bello; Gerardo González Martínez; Bernadette F. Klotz Ceberio; Dolores Rodrigo; Antonio Martínez López

    2014-01-01

    Abstract: High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non...

  17. Pressure vessel failure at high internal pressure

    International Nuclear Information System (INIS)

    Laemmer, H.; Ritter, B.

    1995-01-01

    A RPV failure due to plastic instability was investigated using the ABAQUS finite element code together with a material model of thermal plasticity for large deformations. Not only rotational symmetric temperature distributions were studied, but also 'hot spots'. Calculations show that merely by the depletion of strength of the material - even at internal wall temperatures well below the melting point of the fuel elements of about 2000/2400 C - the critical internal pressure can decrease to values smaller than the operational pressure of 16 Mpa. (orig.)

  18. Parallelization of pressure equation solver for incompressible N-S equations

    International Nuclear Information System (INIS)

    Ichihara, Kiyoshi; Yokokawa, Mitsuo; Kaburaki, Hideo.

    1996-03-01

    A pressure equation solver in a code for 3-dimensional incompressible flow analysis has been parallelized by using red-black SOR method and PCG method on Fujitsu VPP500, a vector parallel computer with distributed memory. For the comparison of scalability, the solver using the red-black SOR method has been also parallelized on the Intel Paragon, a scalar parallel computer with a distributed memory. The scalability of the red-black SOR method on both VPP500 and Paragon was lost, when number of processor elements was increased. The reason of non-scalability on both systems is increasing communication time between processor elements. In addition, the parallelization by DO-loop division makes the vectorizing efficiency lower on VPP500. For an effective implementation on VPP500, a large scale problem which holds very long vectorized DO-loops in the parallel program should be solved. PCG method with red-black SOR method applied to incomplete LU factorization (red-black PCG) has more iteration steps than normal PCG method with forward and backward substitution, in spite of same number of the floating point operations in a DO-loop of incomplete LU factorization. The parallelized red-black PCG method has less merits than the parallelized red-black SOR method when the computational region has fewer grids, because the low vectorization efficiency is obtained in red-black PCG method. (author)

  19. Anxiety: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... of high blood pressure? Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  20. African Americans and High Blood Pressure

    Science.gov (United States)

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? African Americans in the U.S. have a higher prevalence of high blood pressure (HBP) than ...

  1. High Blood Pressure: Medicines to Help You

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  2. Condensed matter at high shock pressures

    International Nuclear Information System (INIS)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-01-01

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N 2 , CO, SiO 2 -aerogel, H 2 O, and C 6 H 6 . The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab

  3. High-pressure sodium lamp

    NARCIS (Netherlands)

    1996-01-01

    A high pressure sodium lamp of the invention is provided with a discharge vessel (20) which is enclosed with intervening space (1) by an outer bulb (10), which space contains a gas-fill with at least 70 mol. % nitrogen gas. Electrodes (30a, 30b) are positioned in the discharge vessel (20) and are

  4. Intermolecular Interactions at high pressure

    DEFF Research Database (Denmark)

    Eikeland, Espen Zink

    2016-01-01

    In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together with their st...

  5. High-pressure water facility

    Science.gov (United States)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  6. Vital Signs - High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    2012-10-02

    In the U.S., nearly one third of the adult population have high blood pressure, the leading risk factor for heart disease and stroke - two of the nation's leading causes of death.  Created: 10/2/2012 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 10/17/2012.

  7. High Pressure Treatment in Foods

    Science.gov (United States)

    Torres Bello, Edwin Fabian; González Martínez, Gerardo; Klotz Ceberio, Bernadette F.; Rodrigo, Dolores; Martínez López, Antonio

    2014-01-01

    High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance. PMID:28234332

  8. High Pressure Treatment in Foods

    Directory of Open Access Journals (Sweden)

    Edwin Fabian Torres Bello

    2014-08-01

    Full Text Available High hydrostatic pressure (HHP, a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional. Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.

  9. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  10. Sizing of high-pressure restriction orifices

    International Nuclear Information System (INIS)

    Casado Flores, E.

    1995-01-01

    Constant up-grading of power plants sometimes requires the modification of components which form part of suppliers' packages. In order to protect technology they have developed, however, the suppliers do not supply their calculation criteria. In order to reduce the costs of such improvements, and so as to be able to undertake the modification without having to rely on the original supplier, this paper describes the basic criteria applicable to the study of high-pressure restriction orifices, which can be considered to be representative of the components in question. The restriction orifices discussed are: - Insert - Multiplates in series with one perforation in each plate - Multiplates in series with several perforations in each plate For each type, an explanation of their sizing is given, together with the equations relating the corresponding flow and pressure drop. (Author)

  11. SrWO4 at high pressures

    International Nuclear Information System (INIS)

    Grzechnik, A.; Crichton, W.A.; Hanfland, M.

    2005-01-01

    Room-temperature high-pressure behaviour of SrWO 4 scheelite (I4 1 /a, Z=4) has been studied to 20.7 GPa in a diamond anvil cell using synchrotron angle-dispersive X-ray powder diffraction. Above 10 GPa, it transforms to the fergusonite structure (I2/a, Z=4). Both scheelite and fergusonite types are ordered superstructures of fluorite (Fm anti 3m, Z=4). There is no significant volume collapse at the scheelite-fergusonite phase transition. However, the compression data including both phases of strontium tungstate cannot be fitted by a common Birch-Murnaghan equation of state. An onset of decomposition into component oxides occurs at about 15 GPa. The pressure-induced transformations are irreversible. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. High Blood Pressure: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides ... Pressure Targets are Different for Very Old Adults High blood pressure (also called hypertension) increases your chance of having ...

  13. High pressure effects on fruits and vegetables

    OpenAIRE

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  14. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  15. On the spurious pressures generated by certain GFEM solutions of the incompressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Sani, R.L.; Gresho, P.M.; Lee, R.L.

    1979-01-01

    The spurious pressures and acceptable velocities generated when using certain combinations of velocity and pressure approximations in a Galerkin finite element discretization of the primitive variable form of the incompressible Navier-Stokes equations are analyzed both theoretically and numerically for grids composed of quadrilateral finite elements. Schemes for obtaining usable pressure fields from the spurious numerical results are presented for certain cases

  16. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    -Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...

  17. Finite element discretization of Darcy's equations with pressure dependent porosity

    KAUST Repository

    Girault, Vivette; Murat, Franç ois; Salgado, Abner

    2010-01-01

    We consider the flow of a viscous incompressible fluid through a rigid homogeneous porous medium. The permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a finite element discretization of this problem and

  18. Thermodynamic properties by Equation of state of liquid sodium under pressure

    Science.gov (United States)

    Li, Huaming; Sun, Yongli; Zhang, Xiaoxiao; Li, Mo

    Isothermal bulk modulus, molar volume and speed of sound of molten sodium are calculated through an equation of state of a power law form within good precision as compared with the experimental data. The calculated internal energy data show the minimum along the isothermal lines as the previous result but with slightly larger values. The calculated values of isobaric heat capacity show the unexpected minimum in the isothermal compression. The temperature and pressure derivative of various thermodynamic quantities in liquid Sodium are derived. It is discussed about the contribution from entropy to the temperature and pressure derivative of isothermal bulk modulus. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid Sodium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. By comparison with the results from experimental measurements and quasi-thermodynamic theory, the calculated values are found to be very close at melting point at ambient condition. Furthermore, several other thermodynamic quantities are also presented. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 11204200.

  19. High Pressure Electrolyzer System Evaluation

    Science.gov (United States)

    Prokopius, Kevin; Coloza, Anthony

    2010-01-01

    This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system s present state and an estimate of the cost to bring it back to operational status was also produced.

  20. Thermodynamic relations in high temperature and high pressure physics of solids

    International Nuclear Information System (INIS)

    Kumar, Munish

    1998-01-01

    Various possible simple relations based on the exact and approximate thermodynamic relations are derived. These relations can be used to investigate the variation of unit cell volume under the effect of pressure and temperature. Thermal expansivity and compressibility can be investigated directly at any pressure or temperature, or through the knowledge of equation of state (EOS). A relation to determine Anderson-Grueneisen parameter δ T under the effect of pressure is predicted. It is discussed that δ T is independent of pressure and thus Murnaghan equation of state works well in low pressure ranges, while the variation of δ T under high pressure should be taken into account. The product of coefficient of volume thermal expansion and bulk modulus remains constant, is correct at high pressure, provided that the pressure dependence of δ T is considered. (author)

  1. Finite element discretization of Darcy's equations with pressure dependent porosity

    KAUST Repository

    Girault, Vivette

    2010-02-23

    We consider the flow of a viscous incompressible fluid through a rigid homogeneous porous medium. The permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a finite element discretization of this problem and, in the case where the dependence on the pressure is bounded from above and below, we prove its convergence to the solution and propose an algorithm to solve the discrete system. In the case where the dependence on the pressure is exponential, we propose a splitting scheme which involves solving two linear systems, but parts of the analysis of this method are still heuristic. Numerical tests are presented, which illustrate the introduced methods. © 2010 EDP Sciences, SMAI.

  2. High pressure research at CHESS

    International Nuclear Information System (INIS)

    Brister, K.

    1992-01-01

    Since February 1990 there has been a dedicated high pressure line at the Cornell High Energy Synchrotron Source (CHESS). This facility provides X-ray instrumentation for energy dispersive X-ray diffraction and Laue diffraction using diamond anvil cells. Both hard-bend magnet and wiggler radiation are available as well as focused monochromatic radiation. In addition, support instrumentation is also available; a ruby system, laser heating, sample loading, and data analysis software. Experienced users need only to bring their diamond anvil cells and samples and can leave with the initial data analysis finished. Research using diamond anvil cells will be introduced and the facility will be described. Some of the diamond anvil cell research done at CHESS will be reviewed, including crystalline to amorphous transitions (R.R. Winters et al., Chem. Phys, in press), properties of C 6 0 under stress (S.J. Duclos et al., Nature 351 (1991) 380), deep earthquakes (T.C. Wu et al., submitted to J. Geophys. Res.)l, and reaching pressures of the center of Earth (A.L. Ruoff et al., Rev. Sci. Instr. 61 (1990) 3830). (orig.)

  3. Using PIV to determine relative pressures in a stenotic phantom under steady flow based on the pressure-poisson equation.

    Science.gov (United States)

    Khodarahmi, Iman; Shakeri, Mostafa; Sharp, M; Amini, Amir A

    2010-01-01

    Pressure gradient across a Gaussian-shaped 87% area stenosis phantom was estimated by solving the pressure Poisson equation (PPE) for a steady flow mimicking the blood flow through the human iliac artery. The velocity field needed to solve the pressure equation was obtained using particle image velocimetry (PIV). A steady flow rate of 46.9 ml/s was used, which corresponds to a Reynolds number of 188 and 595 at the inlet and stenosis throat, respectively (in the range of mean Reynolds number encountered in-vivo). In addition, computational fluid dynamics (CFD) simulation of the same flow was performed. Pressure drops across the stenosis predicted by PPE/PIV and CFD were compared with those measured by a pressure catheter transducer. RMS errors relative to the measurements were 17% and 10% for PPE/PIV and CFD, respectively.

  4. High pressure structural studies on nanophase praseodymium oxide

    International Nuclear Information System (INIS)

    Saranya, L.; Chandra Shekar, N.V.; Amirthapandian, S.; Hussain, Shamima; Arulraj, A.; Sahu, P. Ch.

    2014-01-01

    The phase stability of nanocrystalline Pr 2 O 3 has been investigated under pressure by in-situ high pressure X-ray diffraction using Mao-Bell type diamond anvil cell. The ambient structure and phase of the praseodymium oxide have been resolved unambiguously using x-ray diffraction, SEM and TEM techniques. Under the action of pressure the cubic phase of the system is retained up to 15 GPa. This is unusual as other isostructural rare earth oxides show structural transformations even at lower pressures. From the best fit to the P–V data with the Murnaghan equation of state yields a bulk modulus of 171 GPa

  5. High-pressure structural behaviour of nanocrystalline Ge

    International Nuclear Information System (INIS)

    Wang, H; Liu, J F; He, Y; Wang, Y; Chen, W; Jiang, J Z; Olsen, J Staun; Gerward, L

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition pressure and the bulk modulus

  6. Travelling wave solutions for the Richards equation incorporating non-equilibrium effects in the capillarity pressure

    NARCIS (Netherlands)

    van Duijn, C. J.; Mitra, K.; Pop, I. S.

    2018-01-01

    The Richards equation is a mathematical model for unsaturated flow through porous media. This paper considers an extension of the Richards equation, where non-equilibrium effects like hysteresis and dynamic capillarity are incorporated in the relationship that relates the water pressure and the

  7. High-pressure microhydraulic actuator

    Science.gov (United States)

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  8. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  9. Condensed matter at high shock pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-07-12

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

  10. DASH diet to lower high blood pressure

    Science.gov (United States)

    ... patientinstructions/000770.htm DASH diet to lower high blood pressure To use the sharing features on this page, ... Hypertension. The DASH diet can help lower high blood pressure and cholesterol and other fats in your blood. ...

  11. What Is High Blood Pressure Medicine?

    Science.gov (United States)

    ... a medicine calendar. • Set a reminder on your smartphone. What types of medicine may be prescribed? One ... High Blood Pressure Medicine? What are their side effects? For many people, high blood pressure medicine can ...

  12. High blood pressure - medicine-related

    Science.gov (United States)

    Drug-induced hypertension is high blood pressure caused by using a chemical substance or medicine. ... of the arteries There are several types of high blood pressure : Essential hypertension has no cause that can be ...

  13. High blood pressure and eye disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  14. Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.

    Science.gov (United States)

    Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger

    2016-11-01

    In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.

  15. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  16. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    International Nuclear Information System (INIS)

    Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

    2015-01-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

  17. The pressure equation arising in reservoir simulation. Mathematical properties, numerical methods and upscaling

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Bjoern Fredrik

    1997-12-31

    The main purpose of this thesis has been to analyse self-adjoint second order elliptic partial differential equations arising in reservoir simulation. It studies several mathematical and numerical problems for the pressure equation arising in models of fluid flow in porous media. The theoretical results obtained have been illustrated by a series of numerical experiments. The influence of large variations in the mobility tensor upon the solution of the pressure equation is analysed. The performance of numerical methods applied to such problems have been studied. A new upscaling technique for one-phase flow in heterogeneous reservoirs is developed. The stability of the solution of the pressure equation with respect to small perturbations of the mobility tensor is studied. The results are used to develop a new numerical method for a model of fully nonlinear water waves. 158 refs, 39 figs., 12 tabs.

  18. The pressure equation arising in reservoir simulation. Mathematical properties, numerical methods and upscaling

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Bjoern Fredrik

    1998-12-31

    The main purpose of this thesis has been to analyse self-adjoint second order elliptic partial differential equations arising in reservoir simulation. It studies several mathematical and numerical problems for the pressure equation arising in models of fluid flow in porous media. The theoretical results obtained have been illustrated by a series of numerical experiments. The influence of large variations in the mobility tensor upon the solution of the pressure equation is analysed. The performance of numerical methods applied to such problems have been studied. A new upscaling technique for one-phase flow in heterogeneous reservoirs is developed. The stability of the solution of the pressure equation with respect to small perturbations of the mobility tensor is studied. The results are used to develop a new numerical method for a model of fully nonlinear water waves. 158 refs, 39 figs., 12 tabs.

  19. High-pressure polymorphs of anatase TiO2

    DEFF Research Database (Denmark)

    Arlt, T.; Bermejo, M.; Blanco, M. A.

    2000-01-01

    The equation of state of anatase TiO2 has been determined experimentally-using polycrystalline as well as single-crystal material-and compared with theoretical calculations using the ab initio perturbed ion model. The results are highly consistent, the zero-pressure bulk modulus being 179(2) GPa ...

  20. High-Pressure Lightweight Thrusters

    Science.gov (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  1. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  2. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a silent threat to health. So come and get your blood pressure checked.

  3. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a stealth threat to health. So come and get your blood pressure checked.

  4. Some thoughts on the pressure integration requirements of the Navier–Stokes equations

    International Nuclear Information System (INIS)

    Saad, Tony; Majdalani, Joseph

    2012-01-01

    The Navier–Stokes formulation represents a uniquely challenging system of partial differential equations that continues to influence modern applied science and engineering. In its simplest form, the system can be used to prescribe the motion of a viscous incompressible fluid with constant properties. It consists of four equations in three-dimensional space that account for both the kinematic and dynamic conditions that a fluid element senses. In this work, we investigate the pressure integration rules and restrictions that affect the resolution of the scalar pressure field. We begin our analysis by exploring the integration properties of Euler's equations in two dimensions while making use of Clairaut's theorem on the commutativity of mixed partial derivatives. We then extend our findings to three-dimensional space. This process gives rise to a theorem and four corollaries that help to clarify the conditions needed to obtain exact or asymptotic solutions for the pressure distribution. Consequently, we identify the fundamental conditions under which the Navier–Stokes equations can be properly integrated to arrive at an analytic expression for the pressure field, namely, one that is continuous and twice differentiable. In closing, several configurations are used to test the theorem and showcase its connection with the pressure formulation. These include potential flows for which the pressure can be obtained unconditionally, and inviscid rotational motions of the Taylor–Culick type with and without headwall injection. (paper)

  5. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr; Cohen, David; Vilmart, Gilles; Zygalakis, Konstantinos C.

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration

  6. The Pressure-Volume-Temperature Equation of State of Iron-Rich (Mg,Fe)O

    Science.gov (United States)

    Wicks, J. K.; Jackson, J. M.; Zhuravlev, K. K.; Prakapenka, V.

    2012-12-01

    Seismic observations near the base of the core-mantle boundary (CMB) have detected 5-20 km thick patches in which the seismic wave velocities are reduced by up to 30%. These ultra-low velocity zones (ULVZs) have been interpreted as aggregates of partially molten material (e.g. Williams and Garnero 1996, Hernlund and Jellinek, 2010) or as solid, iron-enriched residues (e.g. Knittle and Jeanloz, 1991; Mao et al., 2006; Wicks et al., 2010), typically based on proposed sources of velocity reduction. The stabilities of these structure types have been explored through dynamic models that have assembled a relationship between ULVZ stability and density (Hernlund and Tackley, 2007; Bower et al., 2010). Now, to constrain the chemistry of ULVZs, more information is needed on the relationship between density and sound velocity of candidate phases. Recently, we have shown that the characteristically low sound speeds of ULVZs can be produced by small amounts of iron-rich (Mg,Fe)O, which is likely to be found in iron-rich assemblages based on current partitioning studies (eg. Sakai et al., 2010; Tange et al., 2009). We determined the Debye velocity (VD) of (Mg.1657Fe.84)O using nuclear resonant inelastic x-ray scattering (NRIXS), and calculated the seismically relevant compressional (VP) and shear (VS) wave velocities up to 120 GPa using an equation of state of a similar composition (Wicks et al., 2010). These densities and sound velocities, in turn, are consistent with reasonable morphologies of modeled solid ULVZs (Bower et al., 2011). To increase the accuracy of density and sound velocity predictions, measurements must be made at elevated temperatures to correctly predict the properties of iron-rich (Mg,Fe)O at mantle conditions. In this study, we present the pressure-volume-temperature equation of state of (Mg.0657Fe.94)O measured up to pressures of 120 GPa and temperatures of 2000 K. Volume was measured with x-ray diffraction at beamline 13-ID-D of the Advanced Photon

  7. High pressure effect for high-Tc superconductors

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  8. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  9. A Poisson equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows

    Science.gov (United States)

    Sohn, J. L.; Heinrich, J. C.

    1990-01-01

    The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.

  10. High pressure gas reinjection unit

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    Nuovo Pignone has built for gas reinjection at Ekofisk the highest pressure injection unit to date: suction pressure 246 bar, discharge 647 bar, for 5.7 million cu m/day of natural gas, and driven by a GE MS 5001 gas turbine of 24,000 hp. The barrel-type compressor has been used already in Algeria at Hassi Messaoud. Full scale tests have shown that the unit is satisfactory; special attention being paid to the stability of the rotor. Air cooled heat exchangers were used in the test loop to cool the discharge gas; at Ekofisk, heat exchangers with sea water will be used. The valves in the test loop were of a special, low- noise type. Vibrations of the rotor system and changes in gas pressure monitored, showing that a pressure of 680 bars can be achieved without instability. Economic considerations lead to preference for rotary compressors driven by gas turbines for similar applications in the exploitation of oil fields. A graph of the characteristics of the unit is given.

  11. From Neutron Star Observables to the Equation of State. II. Bayesian Inference of Equation of State Pressures

    Science.gov (United States)

    Raithel, Carolyn A.; Özel, Feryal; Psaltis, Dimitrios

    2017-08-01

    One of the key goals of observing neutron stars is to infer the equation of state (EoS) of the cold, ultradense matter in their interiors. Here, we present a Bayesian statistical method of inferring the pressures at five fixed densities, from a sample of mock neutron star masses and radii. We show that while five polytropic segments are needed for maximum flexibility in the absence of any prior knowledge of the EoS, regularizers are also necessary to ensure that simple underlying EoS are not over-parameterized. For ideal data with small measurement uncertainties, we show that the pressure at roughly twice the nuclear saturation density, {ρ }{sat}, can be inferred to within 0.3 dex for many realizations of potential sources of uncertainties. The pressures of more complicated EoS with significant phase transitions can also be inferred to within ˜30%. We also find that marginalizing the multi-dimensional parameter space of pressure to infer a mass-radius relation can lead to biases of nearly 1 km in radius, toward larger radii. Using the full, five-dimensional posterior likelihoods avoids this bias.

  12. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  13. Resistive internal kink modes in a tokamak with high-pressure plasma

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhajlovskij, A.B.; Tatarinov, E.G.

    1988-01-01

    Theory of resistive internal kink modes in a tokamak with high-pressure plasma is developed. Equation for Fourie-image of disturbed displacment in a resistive layer ie derived with regard to effects of the fourth order by plasma pressure within the framework of single-liquid approach. In its structure this equation coincides with a similar equation for resistive balloon modes and has an exact solution expressed by degenerated hypergeometric function. A general dispersion equation for resistive kink modes is derived with regard to the effects indicated. It is shown that plasma pressure finiteness leads to the reduction of reconnection and tyring-mode increments

  14. Textbook Forum: The Nernst Equation in High School Textbooks.

    Science.gov (United States)

    Perrine, Daniel M.

    1984-01-01

    Presents a problem on nonstandard concentrations at nonstandard temperature modeled after an example problem on the Nernst equation found in a high school chemistry textbook. Discusses why the problem is incorrect, offering a second problem which is correctly solved. Implications for teaching the Nernst equation are considered. (JN)

  15. High-pressure torsion of hafnium

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Horita, Zenji; Mine, Yoji

    2010-01-01

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  16. Fast pressure-correction method for incompressible Navier-Stokes equations in curvilinear coordinates

    Science.gov (United States)

    Aithal, Abhiram; Ferrante, Antonino

    2017-11-01

    In order to perform direct numerical simulations (DNS) of turbulent flows over curved surfaces and axisymmetric bodies, we have developed the numerical methodology to solve the incompressible Navier-Stokes (NS) equations in curvilinear coordinates for orthogonal meshes. The orthogonal meshes are generated by solving a coupled system of non-linear Poisson equations. The NS equations in orthogonal curvilinear coordinates are discretized in space on a staggered mesh using second-order central-difference scheme and are solved with an FFT-based pressure-correction method. The momentum equation is integrated in time using the second-order Adams-Bashforth scheme. The velocity field is advanced in time by applying the pressure correction to the approximate velocity such that it satisfies the divergence free condition. The novelty of the method stands in solving the variable coefficient Poisson equation for pressure using an FFT-based Poisson solver rather than the slower multigrid methods. We present the verification and validation results of the new numerical method and the DNS results of transitional flow over a curved axisymmetric body.

  17. High temperature equation of state of metallic hydrogen

    International Nuclear Information System (INIS)

    Shvets, V. T.

    2007-01-01

    The equation of state of liquid metallic hydrogen is solved numerically. Investigations are carried out at temperatures from 3000 to 20 000 K and densities from 0.2 to 3 mol/cm 3 , which correspond both to the experimental conditions under which metallic hydrogen is produced on earth and the conditions in the cores of giant planets of the solar system such as Jupiter and Saturn. It is assumed that hydrogen is in an atomic state and all its electrons are collectivized. Perturbation theory in the electron-proton interaction is applied to determine the thermodynamic potentials of metallic hydrogen. The electron subsystem is considered in the randomphase approximation with regard to the exchange interaction and the correlation of electrons in the local-field approximation. The proton-proton interaction is taken into account in the hard-spheres approximation. The thermodynamic characteristics of metallic hydrogen are calculated with regard to the zero-, second-, and third-order perturbation theory terms. The third-order term proves to be rather essential at moderately high temperatures and densities, although it is much smaller than the second-order term. The thermodynamic potentials of metallic hydrogen are monotonically increasing functions of density and temperature. The values of pressure for the temperatures and pressures that are characteristic of the conditions under which metallic hydrogen is produced on earth coincide with the corresponding values reported by the discoverers of metallic hydrogen to a high degree of accuracy. The temperature and density ranges are found in which there exists a liquid phase of metallic hydrogen

  18. Effective like- and unlike-pair interactions at high pressure and high temperature

    International Nuclear Information System (INIS)

    Ree, F.H.; van Thiel, M.

    1991-05-01

    We describe how information on effective interactions of chemical species involving C, O, and N atoms at high pressure and high temperature may be inferred from available shock wave data of NO and CO. Our approach uses a modern statistical mechanical theory and a detailed equation of state (EOS) model for the condensed phases of carbon

  19. Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method

    KAUST Repository

    Louaked, Mohammed; Seloula, Nour; Trabelsi, Saber

    2017-01-01

    In this work, we propose and analyze the pressure stabilization method for the unsteady incompressible Brinkman-Forchheimer equations. We present a time discretization scheme which can be used with any consistent finite element space approximation. Second-order error estimate is proven. Some numerical results are also given.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2017

  20. Effect of disjoining pressure in a thin film equation with non-uniform forcing

    KAUST Repository

    MOULTON, D. E.; LEGA, J.

    2013-01-01

    We explore the effect of disjoining pressure on a thin film equation in the presence of a non-uniform body force, motivated by a model describing the reverse draining of a magnetic film. To this end, we use a combination of numerical investigations

  1. Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method

    KAUST Repository

    Louaked, Mohammed

    2017-07-20

    In this work, we propose and analyze the pressure stabilization method for the unsteady incompressible Brinkman-Forchheimer equations. We present a time discretization scheme which can be used with any consistent finite element space approximation. Second-order error estimate is proven. Some numerical results are also given.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2017

  2. Initial boundary-value problem for the spherically symmetric Einstein equations with fluids with tangential pressure.

    Science.gov (United States)

    Brito, Irene; Mena, Filipe C

    2017-08-01

    We prove that, for a given spherically symmetric fluid distribution with tangential pressure on an initial space-like hypersurface with a time-like boundary, there exists a unique, local in time solution to the Einstein equations in a neighbourhood of the boundary. As an application, we consider a particular elastic fluid interior matched to a vacuum exterior.

  3. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  4. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aortic Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 29,2018 The importance of stress ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  5. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  6. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  7. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  8. High-pressure behavior of CaMo O4

    Science.gov (United States)

    Panchal, V.; Garg, N.; Poswal, H. K.; Errandonea, D.; Rodríguez-Hernández, P.; Muñoz, A.; Cavalli, E.

    2017-09-01

    We report a high-pressure study of tetragonal scheelite-type CaMo O4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMo O4 . We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active and infrared-active modes. In addition, based on calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMo O4 . The reported results are of interest for the many technological applications of this oxide.

  9. High-pressure behavior and equations of state of the cobaltates YBaCo{sub 4}O{sub 7}, YBaCo{sub 4}O{sub 7+{delta}}, YBaCoZn{sub 3}O{sub 7} and BaCoO{sub 3-x}

    Energy Technology Data Exchange (ETDEWEB)

    Juarez-Arellano, Erick A., E-mail: eajuarez@unpa.edu.mx [Instituto de Quimica Aplicada, Universidad del Papaloapan, Circuito Central 200, Parque Industrial, 68301 Tuxtepec, Oaxaca (Mexico); Avdeev, Maxim; Yakovlev, Sergey [Bragg Institute, ANSTO, PMB 1, Menai, NSW 2234 (Australia); Lopez-de-la-Torre, Laura; Bayarjargal, Lkhamsuren; Winkler, Bjoern; Friedrich, Alexandra [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Kharton, Vladislav V. [Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

    2012-12-15

    The compressibilities of the cobaltates YBaCo{sub 4}O{sub 7}, YBaCo{sub 4}O{sub 7+{delta}}, YBaCoZn{sub 3}O{sub 7} and BaCoO{sub 3-x} were investigated by in situ powder X-ray diffraction experiments up to 30 GPa using diamond anvil cells. Pressure-induced phase transitions and amorphization were observed in all the samples. The onset of the pressure-induced phase transition and the onset of the amorphization were observed at {approx}11.7 and 12.2 GPa (YBaCo{sub 4}O{sub 7}), at {approx}14.2 and 16.1 GPa (YBaCo{sub 4}O{sub 7+{delta}}), and at {approx}16.7 and 18.7 GPa (YBaCoZn{sub 3}O{sub 7}), respectively. An attempt to laser anneal at high-pressure failed as it led to a decomposition of the YBaCo{sub 4}O{sub 7} phase into a mixture of phases. Fits of second- and third-order Birch-Murnaghan equations-of-state to the p-V data result in B{sub 0}=109(3) GPa for YBaCo{sub 4}O{sub 7}; B{sub 0}=186(4) GPa and B Prime =1.5 for YBaCo{sub 4}O{sub 7+{delta}}; and B{sub 0}=117(1) GPa for YBaCoZn{sub 3}O{sub 7}. The high-pressure behavior of the studied compounds was compared with isostructural compounds and it is shown that the oxygen-content has a very large effect on the high-pressure behavior of this class of materials. Highlights: Black-Right-Pointing-Pointer Compressibilities were investigated by in situ DAC powder X-ray diffraction experiments. Black-Right-Pointing-Pointer Pressure-induced phase transitions were observed in all the samples. Black-Right-Pointing-Pointer High-pressure phases were very sensitive to small amounts of stresses and strains. Black-Right-Pointing-Pointer Due to the metastability of the compounds, laser annealing leads to decomposition. Black-Right-Pointing-Pointer Oxygen-content has a very large effect on the high pressure behavior in these materials.

  10. High pressure injection of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.; Sorenson, S.C.; Abata, D.L.

    1997-08-01

    The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME (Dimenthyl Ether) using a standard diesel pump with pintle and hole nozzles. Fundamental spray behavior was characterized by determining fuel spray penetration and angle, atomization and evaporation. The influences of opening pressure, nozzle geometry and ambient pressure above and below the critical pressure of the fuel on the spray behavior were investigated. The influence of opening pressures on the spray characteristics for the hole nozzle was investigated. The results showed that for opening pressures of 120 bar and 180 bar the spray has a similar appearance. For the higher opening pressure (200 bar and 240 bar), the initial spray breaks up very rapidly giving a high initial spray angle. The opening pressure had little influence on spray penetration. The spray angle later in the injection increased as the opening pressure was decreased. Above the critical pressure, the spray from the hole nozzle had a more irregular shape. Penetration decreased and the spray angle increased above the critical pressure. Three pintle nozzles with different geometries and opening pressures were tested. The appearance of the three sprays were very similar. The sprays seemed to be more sharply pointed as the nozzle hole angle decreased. The nozzle with the 4 deg. hole nozzle angle and an opening pressure of 280 bar had the highest penetration and highest initial spray angle. The pintle nozzle with the 12 deg. hole nozzle angle and opening pressure of approx. 450 bar was tested above the critical ambient pressure. Penetration was very similar for injection above and below the critical ambient pressure, while the spray angle decreased for the spray above the critical ambient pressure. (au)

  11. High Pressure EVA Glove (HPEG), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Final Frontier Design's (FFD) High Pressure EVA Glove (HPEG) is a game changing technology enabling future exploration class space missions. The high operating...

  12. Effect of disjoining pressure in a thin film equation with non-uniform forcing

    KAUST Repository

    MOULTON, D. E.

    2013-08-02

    We explore the effect of disjoining pressure on a thin film equation in the presence of a non-uniform body force, motivated by a model describing the reverse draining of a magnetic film. To this end, we use a combination of numerical investigations and analytical considerations. The disjoining pressure has a regularizing influence on the evolution of the system and appears to select a single steady-state solution for fixed height boundary conditions; this is in contrast with the existence of a continuum of locally attracting solutions that exist in the absence of disjoining pressure for the same boundary conditions. We numerically implement matched asymptotic expansions to construct equilibrium solutions and also investigate how they behave as the disjoining pressure is sent to zero. Finally, we consider the effect of the competition between forcing and disjoining pressure on the coarsening dynamics of the thin film for fixed contact angle boundary conditions. Copyright © Cambridge University Press 2013.

  13. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  14. Properties of planetary fluids at high pressure and temperature

    International Nuclear Information System (INIS)

    Nellis, W.J.; Hamilton, D.C.; Holmes, N.C.; Radousky, H.B.; Ree, F.H.; Ross, M.; Young, D.A.; Nicol, M.

    1987-01-01

    In order to derive models of the interiors of Uranus, Neptune, Jupiter and Saturn, researchers studied equations of state and electrical conductivities of molecules at high dynamic pressures and temperatures. Results are given for shock temperature measurements of N 2 and CH 4 . Temperature data allowed demonstration of shock induced cooling in the the transition region and the existence of crossing isotherms in P-V space

  15. Magnetopause boundary structure deduced from the high-time resolution particle experiment on the Equator-S spacecraft

    Directory of Open Access Journals (Sweden)

    G. K. Parks

    1999-12-01

    Full Text Available An electrostatic analyser (ESA onboard the Equator-S spacecraft operating in coordination with a potential control device (PCD has obtained the first accurate electron energy spectrum with energies ≈7 eV–100 eV in the vicinity of the magnetopause. On 8 January, 1998, a solar wind pressure increase pushed the magnetopause inward, leaving the Equator-S spacecraft in the magnetosheath. On the return into the magnetosphere approximately 80 min later, the magnetopause was observed by the ESA and the solid state telescopes (the SSTs detected electrons and ions with energies ≈20–300 keV. The high time resolution (3 s data from ESA and SST show the boundary region contains of multiple plasma sources that appear to evolve in space and time. We show that electrons with energies ≈7 eV–100 eV permeate the outer regions of the magnetosphere, from the magnetopause to ≈6Re. Pitch-angle distributions of ≈20–300 keV electrons show the electrons travel in both directions along the magnetic field with a peak at 90° indicating a trapped configuration. The IMF during this interval was dominated by Bx and By components with a small Bz.Key words. Magnetospheric physics (magnetopause · cusp · and boundary layers; magnetospheric configuration and dynamics; solar wind · magnetosphere interactions

  16. Semi-empirical correlation for binary interaction parameters of the Peng–Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor–liquid equilibrium

    Directory of Open Access Journals (Sweden)

    Seif-Eddeen K. Fateen

    2013-03-01

    Full Text Available Peng–Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij. In this work, we developed a semi-empirical correlation for kij partly based on the Huron–Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  17. Semi-empirical correlation for binary interaction parameters of the Peng-Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium.

    Science.gov (United States)

    Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O

    2013-03-01

    Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  18. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2013-01-01

    . The method is extended to directly solve the derivatives of the solution to Poissonʼs equation. In this way differential operators such as the divergence or curl of the solution field can be solved to the same high order convergence without additional computational effort. The method, is applied......A high order converging Poisson solver is presented, based on the Greenʼs function solution to Poissonʼs equation subject to free-space boundary conditions. The high order convergence is achieved by formulating regularised integration kernels, analogous to a smoothing of the solution field...... and validated, however not restricted, to the equations of fluid mechanics, and can be used in many applications to solve Poissonʼs equation on a rectangular unbounded domain....

  19. High-pressure mechanical instability in rocks.

    Science.gov (United States)

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  20. High pressure structural studies on nanophase praseodymium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Saranya, L. [Jamal Mohamed College, Tiruchirapalli 620020, Tamil Nadu (India); Chandra Shekar, N.V., E-mail: chandru@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Hussain, Shamima [UGC-DAE-CSR node, Kokilamedu 603103, Tamil Nadu (India); Arulraj, A.; Sahu, P. Ch. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India)

    2014-09-15

    The phase stability of nanocrystalline Pr{sub 2}O{sub 3} has been investigated under pressure by in-situ high pressure X-ray diffraction using Mao-Bell type diamond anvil cell. The ambient structure and phase of the praseodymium oxide have been resolved unambiguously using x-ray diffraction, SEM and TEM techniques. Under the action of pressure the cubic phase of the system is retained up to 15 GPa. This is unusual as other isostructural rare earth oxides show structural transformations even at lower pressures. From the best fit to the P–V data with the Murnaghan equation of state yields a bulk modulus of 171 GPa.

  1. The high pressure PVT properties of deuterium oxide

    International Nuclear Information System (INIS)

    Fine, R.A.; Millero, F.J.

    1975-01-01

    The high pressure isothermal compressibilities of deuterium oxide from 5 to 100 degreeC and 0 to 1000 bars applied or gauge pressure were determined from sound speed data. These compressibilities were used to derive an equation of state of the form V 0 P/(V 0 - V/supP/) = B + A 1 P + A 2 P 2 , where V 0 and V/supP/ are the specific volumes at an applied pressure of zero and P; and B, A 1 , and A 2 are polynomial functions of temperature. The compressibilities derived from this equation of state are consistent with those derived from the sound speed data to plus-or-minus0.016times10 -6 bar -1 over the entire pressure and temperature range (this is equivalent to approx.0.2 m sec -1 in sound speed). The 1 atm sound-derived compressibilities agree on the average to plus-or-minus0.06times10 -6 bar -1 with the direct measurements of Millero and Lepple. The P--V--T data from the sound-derived equation are compared with the high pressure work of Bridgman, Kesselman, Juza et al., and Emmet and Millero. Good agreement (average deviation of plus-or-minus28times10 -6 cm 3 g -1 ) was found with the recent specific volume measurements of Emmet and Millero. The P--V--T properties of D 2 O are compared to pure water. D 2 O and H 2 O are shown to follow similar trends. Contrary to previous reports, the D 2 O/H 2 O ratios of the specific volumes and specific heats are shown to be functions of both temperature and pressure

  2. Computer simulation of the thermal pressure in solids and the equation of state

    International Nuclear Information System (INIS)

    Welch, D.O.; Dienes, G.J.; Paskin, A.

    1976-01-01

    The equation of state of solids was investigated with molecular dynamics techniques by obtaining the pressure as a function of temperature over a wide range of compressions. Data were obtained for fcc crystals with Lennard--Jones interactions and for bcc crystals with Morse interactions. The results were analyzed in terms of the Mie--Gruneisen equation of state. The Gruneisen constant at zero temperature is found to be essentially that obtained from the volume dependence of the mean-squared lattice vibration frequency, and its temperature dependence can be approximated well with a self-consistent cell model. Calculated results are compared with experimental data for argon along the melting line

  3. Nucleation at high pressure I: Theoretical considerations.

    NARCIS (Netherlands)

    Luijten, C.C.M.; Dongen, van M.E.H.

    1999-01-01

    A theoretical approach is presented that accounts for the influence of high pressure background gases on the vapor-to-liquid nucleation process. The key idea is to treat the carrier gas pressure as a perturbation parameter that modifies the properties of the nucleating substance. Two important

  4. High-pressure differential scanning microcalorimeter.

    Science.gov (United States)

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  5. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate...

  6. High-pressure phase transitions of strontianite

    Science.gov (United States)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  7. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrated with the constructions of new methods of weak order two, in particular, semi-implicit integrators well suited for stiff (meansquare stable) stochastic problems, and implicit integrators that exactly conserve all quadratic first integrals of a stochastic dynamical system. Numerical examples confirm the theoretical results and show the versatility of our methodology.

  8. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  9. Advances in high pressure research in condensed matter: proceedings of the international conference on condensed matter under high pressures

    International Nuclear Information System (INIS)

    Sikka, S.K.; Gupta, Satish C.; Godwal, B.K.

    1997-01-01

    The use of pressure as a thermodynamic variable for studying condensed matter has become very important in recent years. Its main effect is to reduce the volume of a substance. Thus, in some sense, it mimics the phenomena taking place during the cohesion of solids like pressure ionization, modifications in electronic properties and phase changes etc. Some of the phase changes under pressure lead to synthesis of new materials. The recent discovery of high T c superconductivity in YBa 2 Cu 3 O 7 may be indirectly attributed to the pressure effect. In applied fields like simulation of reactor accident, design of inertial confinement fusion schemes and for understanding the rock mechanical effects of shock propagation in earth due to underground nuclear explosions, the pressure versus volume relations of condensed matter are a vital input. This volume containing the proceedings of the International Conference on Condensed Matter Under High Pressure covers various aspects of high pressure pertaining to equations of state, phase transitions, electronic, optical and transport properties of solids, atomic and molecular studies, shock induced reactions, energetic materials, materials synthesis, mineral physics, geophysical and planetary sciences, biological applications and food processing and advances in experimental techniques and numerical simulations. Papers relevant to INIS are indexed separately

  10. Melting-pressure and density equations of 3He at temperatures from 0.001 to 30 K

    International Nuclear Information System (INIS)

    Huang Yonghua; Chen Guobang

    2005-01-01

    Nonsegmented equations for melting pressure and density at temperatures from 0.001 K to 30 K have been developed to fit the reference data. The maximum and average deviations between the melting pressure equation and the totaling 298 reference data are 2.17% and 0.218%, respectively. For the density equations, the average deviations are 0.236% for the liquid side and 0.218% for the solid side. Both the melting pressure curve and melting density curves predicted by the submitted equations approach their minimums at about 0.315 K

  11. High pressure processing of meat

    DEFF Research Database (Denmark)

    Grossi, Alberto; Christensen, Mette; Ertbjerg, Per

    the rheological properties of pork meat batters by inducing formation of protein gels. HP induced protein gels are suggested to be formed by high molecular weight myofibrillar protein aggregates and by peptides formed by lysosomal enzyme-induced cleavage of myofibrillar proteins. Perspectives: The data presented...

  12. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  13. High pressure semiconductor physics I

    CERN Document Server

    Willardson, R K; Paul, William; Suski, Tadeusz

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  14. T- P Phase Diagram of Nitrogen at High Pressures

    Science.gov (United States)

    Algul, G.; Enginer, Y.; Yurtseven, H.

    2018-05-01

    By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.

  15. Modeling High Pressure Micro Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Boeuf, Jean-Pierre; Pitchford, Leanne

    2004-01-01

    This report results from a contract tasking CPAT as follows: The Grantee will perform theoretical modeling of point, surface, and volume high-pressure plasmas created using Micro Hollow Cathode Discharge sources...

  16. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  17. Preeclampsia and High Blood Pressure During Pregnancy

    Science.gov (United States)

    ... Gynecologists f AQ FREQUENTLY ASKED QUESTIONS FAQ034 PREGNANCY Preeclampsia and High Blood Pressure During Pregnancy • What is ... is chronic hypertension during pregnancy managed? • What is preeclampsia? • When does preeclampsia occur? • What causes preeclampsia? • What ...

  18. Teaming Up Against High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    This podcast is based on the September 2012 CDC Vital Signs report. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.

  19. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  20. High-pressure portable pneumatic drive unit.

    Science.gov (United States)

    Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

    1989-12-01

    The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

  1. Elasticity of methane hydrate phases at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Beam, Jennifer; Yang, Jing; Liu, Jin [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Liu, Chujie [Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Lin, Jung-Fu, E-mail: afu@jsg.utexas.edu [Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Center for High Pressure Science and Advanced Technology Research (HPSTAR), Shanghai 201203 (China)

    2016-04-21

    Determination of the full elastic constants (c{sub ij}) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases′ compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  2. Holographic interferometry of high pressure

    International Nuclear Information System (INIS)

    McIlwain, M.E.

    1987-01-01

    Measurements in turbulent flows have been historically performed using various types of probes and optical diagnostic methods. In general, probes suffer from plasma perturbation effects and are single point determination methods. Optical methods appear to be better suited to determinations in turbulent flows, however interpretation of the resulting data can often be complex. Methods such as laser Doppler anemometry, which relies on entrained particles, suffers from the fact that particles small enough to be swept along by the plasma are usually melted or sublimed in the plasma. Light refraction or diffraction methods such as shadow photography, interferometry, and holography have also been used to observe plasma flows. These methods typically suffer from the difficulty of interpreting line of sight images and obtaining quantitative data. A new method based on multi-pass holographic interferometry will be discussed. This method has certain advantages which can significantly simplify the complexity of line of sight interferometry image deconvolution. When the method employs high speed cinematography, time resolved images of the plasma flow can be obtained. This method has been applied to both transferred and non-transferred arcs and various types of DC-plasma torch produced jets. These studies and conclusions as to the usefulness of the technique are presented

  3. Numerical Solution of Hamilton-Jacobi Equations in High Dimension

    Science.gov (United States)

    2012-11-23

    high dimension FA9550-10-1-0029 Maurizio Falcone Dipartimento di Matematica SAPIENZA-Universita di Roma P. Aldo Moro, 2 00185 ROMA AH930...solution of Hamilton-Jacobi equations in high dimension AFOSR contract n. FA9550-10-1-0029 Maurizio Falcone Dipartimento di Matematica SAPIENZA

  4. Prediction of pressure between packers of staged fracturing pipe strings in high-pressure deep wells and its application

    Directory of Open Access Journals (Sweden)

    Fuxiang Zhang

    2015-03-01

    Full Text Available Addressing to the deteriorated load conditions of working string and packers caused by annular pressure drop between packers during the staged stimulation of high-pressure deep well, one 2D temperature field transient prediction model for borehole under injecting conditions which considers such influences as friction heat, convection heat exchange was set up, based on energy conservation principle and borehole heat transfer theory. By means of analyzing the influences of borehole temperature and pressure changes on the annular volume between packers, and in combination with borehole temperature transient prediction model, annular fluid PVT equations of state, radial deformation model of tubing and formation transient seepage equation, a typical high-pressure deep well inter-packer annular pressure prediction model was established. Taking a high-pressure gas well in Tarim Oilfield for example, the inter-packer annular pressure prediction was conducted, on which, the mechanical analysis on packers and working strings was carried out. The analysis results show that although the pipe string is safe in the viewpoint of conventional design methods, it is still susceptible to failure after the annular pressure drop between packers was taken into consideration. Such factor should be fully considered in the design of staged stimulation pipe strings, and this prediction model provides new thoughts for the optimal design of high-pressure deep well staged stimulation pipe strings.

  5. Solvation-based vapour pressure model for (solvent + salt) systems in conjunction with the Antoine equation

    International Nuclear Information System (INIS)

    Senol, Aynur

    2013-01-01

    Highlights: • Vapour pressures of (solvent + salt) systems have been estimated through a solvation-based model. • Two structural forms of the generalized solvation model using the Antoine equation have been performed. • A simplified concentration-dependent vapour pressure model has been also processed. • The model reliability analysis has been performed in terms of a log-ratio objective function. • The reliability of the models has been interpreted in terms of the statistical design factors. -- Abstract: This study deals with modelling the vapour pressure of a (solvent + salt) system on the basis of the principles of LSER. The solvation model framework clarifies the simultaneous impact of several physical variables such as the vapour pressure of a pure solvent estimated by the Antoine equation, the solubility and solvatochromic parameters of the solvent and the physical properties of the ionic salt. It has been analyzed independently the performance of two structural forms of the generalized model, i.e., a relation depending on an integration of the properties of the solvent and the ionic salt and a relation on a reduced property-basis. A simplified concentration-dependent vapour pressure model has been also explored and implemented on the relevant systems. The vapour pressure data of sixteen (solvent + salt) systems have been processed to analyze statistically the reliability of existing models in terms of a log–ratio objective function. The proposed vapour pressure models match relatively well the observed performance, yielding the overall design factors of 1.066 and 1.073 for the solvation-based models with the integrated and reduced properties, and 1.008 for the concentration-based model, respectively

  6. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  7. On high-pressure melting of tantalum

    Science.gov (United States)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  8. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    In mesh-free particle methods a high order solution to the unbounded Poisson equation is usually achieved by constructing regularised integration kernels for the Biot-Savart law. Here the singular, point particles are regularised using smoothed particles to obtain an accurate solution with an order...... of convergence consistent with the moments conserved by the applied smoothing function. In the hybrid particle-mesh method of Hockney and Eastwood (HE) the particles are interpolated onto a regular mesh where the unbounded Poisson equation is solved by a discrete non-cyclic convolution of the mesh values...... and the integration kernel. In this work we show an implementation of high order regularised integration kernels in the HE algorithm for the unbounded Poisson equation to formally achieve an arbitrary high order convergence. We further present a quantitative study of the convergence rate to give further insight...

  9. Pressure sensor for high-temperature liquids

    International Nuclear Information System (INIS)

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  10. Solids, liquids, and gases under high pressure

    Science.gov (United States)

    Mao, Ho-Kwang; Chen, Xiao-Jia; Ding, Yang; Li, Bing; Wang, Lin

    2018-01-01

    Pressure has long been recognized as a fundamental thermodynamic variable but its application was previously limited by the available pressure vessels and probes. The development of megabar diamond anvil cells and a battery of associated in-laboratory and synchrotron techniques at the turn of the century have opened a vast new window of opportunities. With the addition of the pressure dimension, we are facing a new world with an order of magnitude more materials to be discovered than all that have been explored at ambient pressure. Pressure drastically and categorically alters all elastic, electronic, magnetic, structural, and chemical properties, and pushes materials across conventional barriers between insulators and superconductors, amorphous and crystalline solids, ionic and covalent compounds, vigorously reactive and inert chemicals, etc. In the process, it reveals surprising high-pressure physics and chemistry and creates novel materials. This review describes the principles and methodology used to reach ultrahigh static pressure: the in situ probes, the physical phenomena to be investigated, the long-pursued goals, the surprising discoveries, and the vast potential opportunities. Exciting examples include the quest for metallic hydrogen, the record-breaking superconducting temperature of 203 K in HnS , the complication of "free-electron gas" alkali metals, the magnetic collapse in 3 d transition elements, the pressure-induced superconductivity from topological insulators, the novel stoichiometry in simple compounds, the interaction of nanoscience, the accomplishment of 750 GPa pressure, etc. These highlights are the integral results of technological achievements, specific measurements, and theoretical advancement; therefore, the same highlights will appear in different sections corresponding to these different aspects. Overall, this review demonstrates that high-pressure research is a new dimension in condensed-matter physics.

  11. High-density equation of state for helium and its application to bubbles in solids

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1980-06-01

    Helium, produced by transmutations or injected, causes bubble formation in solids at elevated temperatures. For small bubbles, the gas pressure required to balance the surface tension reaches values which far exceed those obtainable in experiments to measure the equation of state for helium gas. Therefore, empirical gas laws cannot be considered applicable to the fluid-like densities existing in small bubbles. In order to remedy this situation, an equation of state for helium was developed from the theory of the liquid state. At very low densities, this theoretically derived equation of state agrees with experimental results. For high densities, however, gas pressures are predicted which are significantly higher than those derived from the ideal gas law, but also significantly lower than pressures obtained with the van der Waals law. When applied to equilibrium bubbles in solids, it is found that the high-density equation of state leads to less bubble swelling than the van der Waals law, but more than the ideal gas law. Furthermore, the number of helium atoms in equilibrium bubbles is nearly independent of temperature

  12. Radioresistance increase in polymers at high pressures

    International Nuclear Information System (INIS)

    Milinchuk, V.; Kirjukhin, V.; Klinshpont, E.

    1977-01-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibres were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures. (J.B.)

  13. High-order quantum algorithm for solving linear differential equations

    International Nuclear Information System (INIS)

    Berry, Dominic W

    2014-01-01

    Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Δt 2 in the evolution time Δt. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution. (paper)

  14. observed by high pressure NMR and NQR

    Indian Academy of Sciences (India)

    Akogun, Hyogo 678-1297, Japan. ∗. Email: kohara@sci.himeji tech.ac.jp. Abstract. NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si. NMR signals arising from the antiferromagnetic ...

  15. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  16. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  17. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  18. High-pressure oxidation of methane

    NARCIS (Netherlands)

    Hashemi, Hamid; Christensen, Jakob M.; Gersen, Sander; Levinsky, Howard; Klippenstein, Stephen J.; Glarborg, Peter

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly

  19. High pressure synthesis of bismuth disulfide

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure contains Bi atoms in distorted square-based pyramidal coordination to five surrounding...

  20. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  1. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2012-01-01

    This work improves upon Hockney and Eastwood's Fourier-based algorithm for the unbounded Poisson equation to formally achieve arbitrary high order of convergence without any additional computational cost. We assess the methodology on the kinematic relations between the velocity and vorticity fields....

  2. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  3. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  4. High-precision numerical integration of equations in dynamics

    Science.gov (United States)

    Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.

    2018-05-01

    An important requirement for the process of solving differential equations in Dynamics, such as the equations of the motion of celestial bodies and, in particular, the motion of cosmic robotic systems is high accuracy at large time intervals. One of effective tools for obtaining such solutions is the Taylor series method. In this connection, we note that it is very advantageous to reduce the given equations of Dynamics to systems with polynomial (in unknowns) right-hand sides. This allows us to obtain effective algorithms for finding the Taylor coefficients, a priori error estimates at each step of integration, and an optimal choice of the order of the approximation used. In the paper, these questions are discussed and appropriate algorithms are considered.

  5. High pressure freon decontamination of remote equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.

    1987-01-01

    A series of decontamination tests using high pressure FREON 113 was conducted in the 200 Area of the Hanford site. The intent of these tests was to evaluate the effectiveness of FREON 113 in decontamination of manipulator components, tools, and equipment items contaminated with mixed fission products. The test results indicated that high pressure FREON 113 is very effective in removing fissile material from a variety of objects and can reduce both the quantity and the volume of the radioactive waste material presently being buried

  6. High pressure water jet cutting and stripping

    Science.gov (United States)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  7. High pressure water jet mining machine

    Science.gov (United States)

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  8. Raman study of opal at high pressure

    Science.gov (United States)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  9. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  10. Dynamism or Disorder at High Pressures?

    Science.gov (United States)

    Angel, R. J.; Bismayer, U.; Marshall, W. G.

    2002-12-01

    Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.

  11. High pressure photoinduced ring opening of benzene

    International Nuclear Information System (INIS)

    Ciabini, Lucia; Santoro, Mario; Bini, Roberto; Schettino, Vincenzo

    2002-01-01

    The chemical transformation of crystalline benzene into an amorphous solid (a-C:H) was induced at high pressure by employing laser light of suitable wavelengths. The reaction was forced to occur at 16 GPa, well below the pressure value (23 GPa) where the reaction normally occurs. Different laser sources were used to tune the pumping wavelength into the red wing of the first excited singlet state S 1 ( 1 B 2u ) absorption edge. Here the benzene ring is distorted, presenting a greater flexibility which makes the molecule unstable at high pressure. The selective pumping of the S 1 level, in addition to structural considerations, was of paramount importance to clarify the mechanism of the reaction

  12. Laser driven shock wave experiments for equation of state studies at megabar pressures

    CERN Document Server

    Pant, H C; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 mu m wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments.

  13. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  14. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  15. X-ray diffraction study on pressure-induced phase transformations and the equation of state of ZnGa{sub 2}Te{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); Kumar, R. S. [High Pressure Science and Engineering Center, Department of Physics and Astronomy, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada 89154-4002 (United States); Gomis, O. [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Manjón, F. J. [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Ursaki, V. V.; Tiginyanu, I. M. [Institute of Applied Physics, Academy of Sciences of Moldova, 2028 Chisinau (Moldova, Republic of)

    2013-12-21

    We report on high-pressure x-ray diffraction measurements up to 19.8 GPa in zinc digallium telluride (ZnGa{sub 2}Te{sub 4}) at room temperature. An irreversible structural phase transition takes place at pressures above 12.1 GPa and upon decompression a third polymorph of ZnGa{sub 2}Te{sub 4} was recovered as a metastable phase at pressures below 2.9 GPa. Rietveld refinements were carried out for the three detected polymorphs, being their possible crystal structures reported. The axial compressibilities for the low-pressure phase of ZnGa{sub 2}Te{sub 4} have been determined as well as the equation of state of the low- and high-pressure phases. The reported results are compared with those available in the literature for related compounds. Pressure-induced coordination changes and transition mechanisms are also discussed.

  16. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    International Nuclear Information System (INIS)

    Rogers, F.J.; Young, D.A.

    1997-01-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter. copyright 1997 The American Physical Society

  17. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    Science.gov (United States)

    Rogers, Forrest J.; Young, David A.

    1997-11-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter.

  18. Validation of the activity expansion method with ultrahigh pressure shock equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, F.J.; Young, D.A. [Physics Department, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    1997-11-01

    Laser shock experiments have recently been used to measure the equation of state (EOS) of matter in the ultrahigh pressure region between condensed matter and a weakly coupled plasma. Some ultrahigh pressure data from nuclear-generated shocks are also available. Matter at these conditions has proven very difficult to treat theoretically. The many-body activity expansion method (ACTEX) has been used for some time to calculate EOS and opacity data in this region, for use in modeling inertial confinement fusion and stellar interior plasmas. In the present work, we carry out a detailed comparison with the available experimental data in order to validate the method. The agreement is good, showing that ACTEX adequately describes strongly shocked matter. {copyright} {ital 1997} {ital The American Physical Society}

  19. Effect of cavitation in high-pressure direct injection

    Science.gov (United States)

    Aboulhasanzadeh, Bahman; Johnsen, Eric

    2015-11-01

    As we move toward higher pressures for Gasoline Direct Injection and Diesel Direct Injection, cavitation has become an important issue. To better understand the effect of cavitation on the nozzle flow and primary atomization, we use a high-order accurate Discontinuous Galerkin approach using multi-GPU parallelism to simulate the compressible flow inside and outside the nozzle. Phase change is included using the six-equations model. We investigate the effect of nozzle geometry on cavitation inside the injector and on primary atomization outside the nozzle.

  20. Sounding experiments of high pressure gas discharge

    International Nuclear Information System (INIS)

    Biele, Joachim K.

    1998-01-01

    A high pressure discharge experiment (200 MPa, 5·10 21 molecules/cm 3 , 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm 3 ) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm 3 ) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved

  1. High Pressure Inactivation of HAV within Mussels

    Science.gov (United States)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  2. Teaming Up Against High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    2012-09-04

    This podcast is based on the September 2012 CDC Vital Signs report. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  3. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  4. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  5. Analysis of high-pressure safety valves

    NARCIS (Netherlands)

    Beune, A.

    2009-01-01

    In presently used safety valve sizing standards the gas discharge capacity is based on a nozzle flow derived from ideal gas theory. At high pressures or low temperatures real gas effects can no longer be neglected, so the discharge coefficient corrected for flow losses cannot be assumed constant

  6. High pressure studies of planetary matter

    International Nuclear Information System (INIS)

    Ross, M.

    1989-06-01

    Those materials which are of greatest interest to the physics of the deep planetary interiors are Fe, H 2 , He and the Ices. These are sufficiently diverse and intensively studied to offer an overview of present day high pressure research. 13 refs., 1 fig

  7. High pressure and synchrotron radiation satellite workshop

    International Nuclear Information System (INIS)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A.

    2006-01-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  8. The linearized pressure Poisson equation for global instability analysis of incompressible flows

    Science.gov (United States)

    Theofilis, Vassilis

    2017-12-01

    The linearized pressure Poisson equation (LPPE) is used in two and three spatial dimensions in the respective matrix-forming solution of the BiGlobal and TriGlobal eigenvalue problem in primitive variables on collocated grids. It provides a disturbance pressure boundary condition which is compatible with the recovery of perturbation velocity components that satisfy exactly the linearized continuity equation. The LPPE is employed to analyze instability in wall-bounded flows and in the prototype open Blasius boundary layer flow. In the closed flows, excellent agreement is shown between results of the LPPE and those of global linear instability analyses based on the time-stepping nektar++, Semtex and nek5000 codes, as well as with those obtained from the FreeFEM++ matrix-forming code. In the flat plate boundary layer, solutions extracted from the two-dimensional LPPE eigenvector at constant streamwise locations are found to be in very good agreement with profiles delivered by the NOLOT/PSE space marching code. Benchmark eigenvalue data are provided in all flows analyzed. The performance of the LPPE is seen to be superior to that of the commonly used pressure compatibility (PC) boundary condition: at any given resolution, the discrete part of the LPPE eigenspectrum contains converged and not converged, but physically correct, eigenvalues. By contrast, the PC boundary closure delivers some of the LPPE eigenvalues and, in addition, physically wrong eigenmodes. It is concluded that the LPPE should be used in place of the PC pressure boundary closure, when BiGlobal or TriGlobal eigenvalue problems are solved in primitive variables by the matrix-forming approach on collocated grids.

  9. Thermodynamic properties by equation of state and from Ab initio molecular dynamics of liquid potassium under pressure

    Science.gov (United States)

    Li, Huaming; Tian, Yanting; Sun, Yongli; Li, Mo; Nonequilibrium materials; physics Team; Computational materials science Team

    In this work, we apply a general equation of state of liquid and Ab initio molecular-dynamics method to study thermodynamic properties in liquid potassium under high pressure. Isothermal bulk modulus and molar volume of molten sodium are calculated within good precision as compared with the experimental data. The calculated internal energy data and the calculated values of isobaric heat capacity of molten potassium show the minimum along the isothermal lines as the previous result obtained in liquid sodium. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid potassium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. Furthermore, Ab initio molecular-dynamics simulations are used to calculate some thermodynamic properties of liquid potassium along the isothermal lines. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 51602213.

  10. A fast, high-order solver for the Grad–Shafranov equation

    International Nuclear Information System (INIS)

    Pataki, Andras; Cerfon, Antoine J.; Freidberg, Jeffrey P.; Greengard, Leslie; O’Neil, Michael

    2013-01-01

    We present a new fast solver to calculate fixed-boundary plasma equilibria in toroidally axisymmetric geometries. By combining conformal mapping with Fourier and integral equation methods on the unit disk, we show that high-order accuracy can be achieved for the solution of the equilibrium equation and its first and second derivatives. Smooth arbitrary plasma cross-sections as well as arbitrary pressure and poloidal current profiles are used as initial data for the solver. Equilibria with large Shafranov shifts can be computed without difficulty. Spectral convergence is demonstrated by comparing the numerical solution with a known exact analytic solution. A fusion-relevant example of an equilibrium with a pressure pedestal is also presented

  11. [A Structural Equation Model of Pressure Ulcer Prevention Action in Clinical Nurses].

    Science.gov (United States)

    Lee, Sook Ja; Park, Ok Kyoung; Park, Mi Yeon

    2016-08-01

    The purpose of this study was to construct and test a structural equation model for pressure ulcer prevention action by clinical nurses. The Health Belief Model and the Theory of Planned Behavior were used as the basis for the study. A structured questionnaire was completed by 251 clinical nurses to analyze the relationships between concepts of perceived benefits, perceived barriers, attitude, subjective norm, perceived control, intention to perform action and behavior. SPSS 22.0 and AMOS 22.0 programs were used to analyze the efficiency of the hypothesized model and calculate the direct and indirect effects of factors affecting pressure ulcer prevention action among clinical nurses. The model fitness statistics of the hypothetical model fitted to the recommended levels. Attitude, subjective norm and perceived control on pressure ulcer prevention action explained 64.2% for intention to perform prevention action. The major findings of this study indicate that it is essential to recognize improvement in positive attitude for pressure ulcer prevention action and a need for systematic education programs to increase perceived control for prevention action.

  12. High hydrostatic pressure processing of tropical fruits.

    Science.gov (United States)

    Lopes, Maria Lúcia M; Valente Mesquita, Vera L; Chiaradia, Ana Cristina N; Fernandes, Antônio Alberto R; Fernandes, Patricia M B

    2010-02-01

    Interest in the nonthermal method of high hydrostatic pressure (HHP) for food preservation has increased recently due to the possibility of inactivating microorganisms and enzymes while maintaining product sensorial and nutritional properties. This work deals with HHP use for the preservation of tropical fruit products. HHP is shown to be a practical approach to obtaining high-quality tropical fruit products that are both nutritive and safe.

  13. High pressure neutron powder diffraction at LANSCE

    International Nuclear Information System (INIS)

    Von Dreele, R.B.

    1994-01-01

    By making use of the recently developed ''Paris-Edinburgh'' high pressure cell, the author has successfully performed neutron powder experiments to 10GPa at ambient temperature. Results for the structural compression of the high Tc 1223-Hg superconductor to 9.2 GPa, the compression and possible hydrogen bond formation in brucite, Mg(OD) 2 , to 9.3 GPa, and the molecular reorientation in nitromethane to 5.5 GPa will be presented

  14. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and inter......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...... and intermolecular interactions on optical excitations, electron–phonon interaction, and changes in backbone conformations. This picture is connected to the optical high pressure studies of other π-conjugated systems and emerging x-ray scattering experiments from polyfluorenes which provides a structure-property map...

  15. Network Reconstruction From High-Dimensional Ordinary Differential Equations.

    Science.gov (United States)

    Chen, Shizhe; Shojaie, Ali; Witten, Daniela M

    2017-01-01

    We consider the task of learning a dynamical system from high-dimensional time-course data. For instance, we might wish to estimate a gene regulatory network from gene expression data measured at discrete time points. We model the dynamical system nonparametrically as a system of additive ordinary differential equations. Most existing methods for parameter estimation in ordinary differential equations estimate the derivatives from noisy observations. This is known to be challenging and inefficient. We propose a novel approach that does not involve derivative estimation. We show that the proposed method can consistently recover the true network structure even in high dimensions, and we demonstrate empirical improvement over competing approaches. Supplementary materials for this article are available online.

  16. Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations

    Science.gov (United States)

    Gilligan, Patrick; Tomsik, Thomas

    2016-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  17. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    Science.gov (United States)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  18. A compatible high-order meshless method for the Stokes equations with applications to suspension flows

    Science.gov (United States)

    Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe

    2018-02-01

    A stable numerical solution of the steady Stokes problem requires compatibility between the choice of velocity and pressure approximation that has traditionally proven problematic for meshless methods. In this work, we present a discretization that couples a staggered scheme for pressure approximation with a divergence-free velocity reconstruction to obtain an adaptive, high-order, finite difference-like discretization that can be efficiently solved with conventional algebraic multigrid techniques. We use analytic benchmarks to demonstrate equal-order convergence for both velocity and pressure when solving problems with curvilinear geometries. In order to study problems in dense suspensions, we couple the solution for the flow to the equations of motion for freely suspended particles in an implicit monolithic scheme. The combination of high-order accuracy with fully-implicit schemes allows the accurate resolution of stiff lubrication forces directly from the solution of the Stokes problem without the need to introduce sub-grid lubrication models.

  19. SrWO{sub 4} at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Grzechnik, A. [Departamento de Fisica de la Materia Condensada, Universidad del Pais Vasco, Apdo. 644, Bilbao 48080 (Spain); European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble cedex (France); Crichton, W.A.; Hanfland, M. [European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble cedex (France)

    2005-11-01

    Room-temperature high-pressure behaviour of SrWO{sub 4} scheelite (I4{sub 1}/a, Z=4) has been studied to 20.7 GPa in a diamond anvil cell using synchrotron angle-dispersive X-ray powder diffraction. Above 10 GPa, it transforms to the fergusonite structure (I2/a, Z=4). Both scheelite and fergusonite types are ordered superstructures of fluorite (Fm anti 3m, Z=4). There is no significant volume collapse at the scheelite-fergusonite phase transition. However, the compression data including both phases of strontium tungstate cannot be fitted by a common Birch-Murnaghan equation of state. An onset of decomposition into component oxides occurs at about 15 GPa. The pressure-induced transformations are irreversible. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Volatility of coal liquids at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G M; Johnston, R H; Hwang, S C; Tsonopoulos, C

    1981-01-01

    The volatility of coal liquids has been experimentally determined at 700-880 F and about 2000 psia. These measurements were made in a flow apparatus to minimize thermal decomposition effects at high temperatures. Three coal liquids in mixture with Hat2, methane, and Hat2S were investigated. Measurements were also made up to 900 F on the vapor pressure of pure compounds found in coal liquids and on the equilibrium pressure of narrow coal liquid cuts. These data were used to develop a new method for the prediction of the critical point and the superatmospheric vapour pressures of aromatic fractions that is superior to the Maxwell-Bonnell correlation. The VLE data on coal liquids and some recent high-temperature VLE data on binaries of aromatics with Hat2 or methane were analyzed with a modified Chao-Seader correlation and a modified Redlich-Kwong equation of state. Both VLE correlations are shown to be equivalent in the prediction of the volatility of coal liquids, when the new vapour pressure procedure is used.

  1. High pressure behaviour of heavy rare earth antimonides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Soni, Pooja; Srivastava, Vipul; Sanyal, S.P.

    2008-01-01

    We have investigated theoretically the high-pressure structural phase transition and cohesive properties of two heavy rare earth mono anyimonides (LnSb; Ln = Dy and Lu) by using two body interionic potential with necessary modifications to include the effect of Coulomb screening by the delocalized 4f electrons of the RE ion. The peculiar properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band. The calculated compression curves and the values of high-pressure behaviour have been discussed and compared with the experimental results. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to CsCl (B 2 ) phase at 23.6 GPa and 25.4 GPa respectively. At phase transition the % volume collapse for both the compounds are little higher than the measured ones. The NaCl phase possesses lower energy than CsCl phase and stable at ambient pressure. The bulk moduli of LnSb compounds are obtained from the P-V curve fitted by the Birch equation of state. We also calculated the Ln-Ln distance as a function of pressure. (author)

  2. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  3. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  4. 7 CFR 58.219 - High pressure pumps and lines.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The high...

  5. Thermal equation of state of synthetic orthoferrosilite at lunar pressures and temperatures

    NARCIS (Netherlands)

    de Vries, J.; Jacobs, J.M.G.; van den Berg, A.P.; Wehber, M.; Lathe, C.; McCammon, C.A.; van Westrenen, W.

    2013-01-01

    Iron-rich orthopyroxene plays an important role in models of the thermal and magmatic evolution of the Moon, but its density at high pressure and high temperature is not well-constrained. We present in situ measurements of the unit-cell volume of a synthetic polycrystalline end-member

  6. The numerical dynamic for highly nonlinear partial differential equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  7. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  8. High pressure injection injuries: an overview.

    Science.gov (United States)

    Fialkov, J A; Freiberg, A

    1991-01-01

    Injuries resulting from the use of high pressure injectors and spray guns are relatively rare; however, the potential tissue damage caused by the injury as well as the extent of the injury itself may go unrecognized by the primary physician. The purpose of this paper is to inform the emergency physician of the nature and standard management of this type of injury. A basic understanding of the pathophysiology of the high pressure injection injury (HPII) is essential in avoiding the mistakes in management that have been reported in the literature. The emergency management of the HPII includes: evaluation and immobilization, tetanus and antimicrobial prophylaxis, supportive and resuscitative measures, analgesia, and minimizing the time to definitive surgical treatment.

  9. Stress concentration effects in high pressure components

    International Nuclear Information System (INIS)

    Aller, J.E.

    1990-01-01

    This paper examines the stress concentration effects of sideholes in thick walled, high pressure cylinders. It has been shown that the theoretical stress concentration factor at the intersection of a small crossbore in a closed end, thick walled cylinder varies between 3.0 and 4.0. Tests have shown that this effect can be greatly reduced in practice by carefully radiusing the bore intersection and autofrettaging the cylinder. It has also been shown that the minimum stress concentration factor occurs when the main bore and sidehole or crossbore have the same diameter, and the radius of the intersection is approximately equal to the sidehole radius. When the bore and sidehole intersection angle decreases from 90 degrees, the stress concentration factor increases significantly. Knowledge of these fundamental relationships can be used in maintaining, as well ad designing, high pressure equipment

  10. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    International Nuclear Information System (INIS)

    Kraloua, B.; Hennad, A.

    2008-01-01

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  11. Path Dependency of High Pressure Phase Transformations

    Science.gov (United States)

    Cerreta, Ellen

    2017-06-01

    At high pressures titanium and zirconium are known to undergo a phase transformation from the hexagonal close packed (HCP), alpha-phase to the simple-hexagonal, omega-phase. Under conditions of shock loading, the high-pressure omega-phase can be retained upon release. It has been shown that temperature, peak shock stress, and texture can influence the transformation. Moreover, under these same loading conditions, plastic processes of slip and twinning are also affected by similar differences in the loading path. To understand this path dependency, in-situ velocimetry measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to qualitatively understand the kinetics of transformation, quantify volume fraction of retained omega-phase and characterize the shocked alpha and omega-phases. Together the work described here can be utilized to map the non-equilibrium phase diagram for these metals and lend insight into the partitioning of plastic processes between phases during high pressure transformation. In collaboration with: Frank Addesssio, Curt Bronkhorst, Donald Brown, David Jones, Turab Lookman, Benjamin Morrow, Carl Trujillo, Los Alamos National Lab.; Juan Pablo Escobedo-Diaz, University of New South Wales; Paulo Rigg, Washington State University.

  12. High pressure phase transitions in Europous oxide

    International Nuclear Information System (INIS)

    Kremser, D.T.

    1982-01-01

    The pressure-volume relationship for EuO was investigated to 630 kilobars at room temperature with a diamond-anvil, high-pressure cell. Volumes were determined by x-ray diffraction; pressures were determined by the ruby R 1 fluorescence method. The preferred interpretation involves normal compression behavior for EuO, initially in the B1 (NaCl-type) structure, to about 280 kilobars. Between approx. =280 and approx. =350 kilobars a region of anomalous compressibility in which the volume drops continuously by approximately 2% is observed. A second-order electronic transition is proposed with the 6s band overlapping with the 4f levels, thereby reducing the volume of EuO without changing the structure. This is not a semiconductor-to-metal transition. In reflected light, this transition is correlated with a subtle and continuous change in color from brown-black to a light brown. The collapsed B1 phase (postelectronic transition) is stable between approx. =350 and approx. =400 kilobars. At about 400 kilobars the collapsed B1 structure transforms to the B2 (CsCl-type) structure, with a zero pressure-volume change of approximately 12 +/- 1.5%

  13. High-pressure powder X-ray diffraction at the turn of the century

    International Nuclear Information System (INIS)

    Paszkowicz, W.

    2002-01-01

    Studies at extreme pressures and temperatures are helpful for understanding the physical properties of the solid state, including such classes of materials as semiconductors, superconductors or minerals. This is connected with the opportunity of tuning the pressure by many orders of magnitude. Diamond-anvil and large-anvil pressure cells installed at dedicated synchrotron beamlines are efficient tools for examination of crystal structure, equation of state, compressibility and phase transitions. One of basic methods in such studies is powder diffraction. This review is devoted to methods of powder X-ray diffraction at high-pressures generated by devices installed at synchrotron radiation sources, in particular to the principles of operation of high-pressure-high-temperature cells. General information on high-pressure diffraction facilities installed at 11 synchrotron storage rings in the world is provided. Measurement aspects are considered, including (i) pressure generation and calibration, (ii) strain in the sample, the pressure marker and the pressure-transmitting medium and (iii) pressure and temperature distributions within the cells. Sources of interest in high-pressure diffraction studies (design of new materials, observation of new phenomena, confrontation of theory with experiment) are briefly discussed. Recent developments of high-pressure methods make that pressure becomes a variable playing a key role in investigation of condensed matter. The paper ends with some remarks on the possible future developments of the technique

  14. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  15. Hydrogen high pressure proportional drift detector

    International Nuclear Information System (INIS)

    Arefiev, A.; Balaev, A.

    1983-01-01

    The design and operation performances of a proportional drift detector PDD are described. High sensitivity of the applied PAD makes it possible to detect the neutron-proton elastic scattering in the energy range of recoil protons as low as 1 keV. The PDD is filled with hydrogen up to the pressure at 40 bars. High purity of the gas is maintained by a continuously operating purification system. The detector has been operating for several years in a neutron beam at the North Area of the CERN SPS

  16. Laser driven shock wave experiments for equation of state studies at megabar pressures

    International Nuclear Information System (INIS)

    Pant, H C; Shukla, M; Senecha, V K; Bandyopadhyay, S; Rai, V N; Khare, P; Bhat, R K; Gupta, N K; Godwal, B K

    2002-01-01

    We present the results from laser driven shock wave experiments for equation of state (EOS) studies of gold metal. An Nd:YAG laser chain (2 J, 1.06 μm wavelength, 200 ps pulse FWHM) is used to generate shocks in planar Al foils and Al + Au layered targets. The EOS of gold in the pressure range of 9-13 Mbar is obtained using the impedance matching technique. The numerical simulations performed using the one-dimensional radiation hydrodynamic code support the experimental results. The present experimental data show remarkable agreement with the existing standard EOS models and with other experimental data obtained independently using laser driven shock wave experiments

  17. Superconductivity from magnetic elements under high pressure

    International Nuclear Information System (INIS)

    Shimizu, Katsuya; Amaya, Kiichi; Suzuki, Naoshi; Onuki, Yoshichika

    2006-01-01

    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors

  18. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures...

  19. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  20. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  1. High-pressure structural behavior of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, H.; Liu, J. F.; Yan, H.

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transi...

  2. High-pressure structural stability of the ductile intermetallic ...

    Indian Academy of Sciences (India)

    Administrator

    Murnaghan equation of state fit to the pressure, volume data yielded a bulk modulus of 67∙6 GPa with the pressure derivative of bulk modulus fixed at 4. Keywords. Intermetallics; X-ray ... ners of the unit cell cube occupied by the 'M' element and cube centre occupied by the 'R' element. Although some ductility has been ...

  3. 30 CFR 57.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of 3/4-inch...

  4. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  5. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan

    2014-01-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  6. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.

    2014-03-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  7. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  8. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  9. Commentary on differential-pressure measurements at high reference pressures

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.; Noyes, R.P.

    1981-01-01

    Some practical approaches to the difficult problems in calibrating and implementing differential-pressure measurements are discussed. The data presented were gathered several years ago in separate investigations. An attempt is made to compare the results of these investigations to the common mode concept as described by Peter K. Stein in his publication, The Measurement of Differential Quantities - Problems and Approaches. Although one of these investigations involed a 10,000- to 20,000-psi reference-pressure gas measured at an ambient temperature and the other a classic /sup Δ/P flow measurement of cryogenic temperature, the problems encountered were the same

  10. Conformable pressure vessel for high pressure gas storage

    Science.gov (United States)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  11. In situ high-pressure measurement of crystal solubility by using neutron diffraction

    Science.gov (United States)

    Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun

    2018-05-01

    Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.

  12. High blood pressure and visual sensitivity

    Science.gov (United States)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  13. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Solving nonlinear, High-order partial differential equations using a high-performance isogeometric analysis framework

    KAUST Repository

    Cortes, Adriano Mauricio; Vignal, Philippe; Sarmiento, Adel; Garcí a, Daniel O.; Collier, Nathan; Dalcin, Lisandro; Calo, Victor M.

    2014-01-01

    In this paper we present PetIGA, a high-performance implementation of Isogeometric Analysis built on top of PETSc. We show its use in solving nonlinear and time-dependent problems, such as phase-field models, by taking advantage of the high-continuity of the basis functions granted by the isogeometric framework. In this work, we focus on the Cahn-Hilliard equation and the phase-field crystal equation.

  15. Food processing by high hydrostatic pressure.

    Science.gov (United States)

    Yamamoto, Kazutaka

    2017-04-01

    High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm 2 ) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.

  16. X-ray Diffraction Study of Arsenopyrite at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    D Fan; M Ma; W Zhou; S Wei; Z Chen; H Xie

    2011-12-31

    The high-pressure X-ray diffraction study of a natural arsenopyrite was investigated up to 28.2 GPa using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at National Synchrotron Light Source, Brookhaven National Laboratory. The 16:3:1 methanol-ethanol-water mixture was used as a pressure-transmitting medium. Pressures were measured using the ruby-fluorescence method. No phase change has been observed up to 28.2 GPa. The isothermal equation of state (EOS) was determined. The values of K{sub 0}, and K'{sub 0} refined with a third-order Birch-Murnaghan EOS are K{sub 0} = 123(9) GPa, and K'{sub 0} = 5.2(8). Furthermore, we confirm that the linear compressibilities ({beta}) along a, b and c directions of arsenopyrite is elastically isotropic ({beta}{sub a} = 6.82 x 10{sup -4}, {beta}{sub b} = 6.17 x 10{sup -4} and {beta}{sub c} = 6.57 x 10{sup -4} GPa{sup -1}).

  17. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  18. The Role of the Pressure in the Partial Regularity Theory for Weak Solutions of the Navier-Stokes Equations

    Science.gov (United States)

    Chamorro, Diego; Lemarié-Rieusset, Pierre-Gilles; Mayoufi, Kawther

    2018-04-01

    We study the role of the pressure in the partial regularity theory for weak solutions of the Navier-Stokes equations. By introducing the notion of dissipative solutions, due to D uchon and R obert (Nonlinearity 13:249-255, 2000), we will provide a generalization of the Caffarelli, Kohn and Nirenberg theory. Our approach sheels new light on the role of the pressure in this theory in connection to Serrin's local regularity criterion.

  19. [High blood pressure and physical exercise].

    Science.gov (United States)

    Sosner, P; Gremeaux, V; Bosquet, L; Herpin, D

    2014-06-01

    High blood pressure is a frequent pathology with many cardiovascular complications. As highlighted in guidelines, the therapeutic management of hypertension relies on non-pharmacological measures, which are diet and regular physical activity, but both patients and physicians are reluctant to physical activity prescription. To acquire the conviction that physical activity is beneficial, necessary and possible, we can take into account some fundamental and clinical studies, as well as the feedback of our clinical practice. Physical inactivity is a major risk factor for cardiovascular morbidity and mortality, and hypertension contributes to increase this risk. Conversely, regular practice of physical activity decreases very significantly the risk by up to 60%. The acute blood pressure changes during exercise and post-exercise hypotension differs according to the dynamic component (endurance or aerobic and/or strength exercises), but the repetition of the sessions leads to the chronic hypotensive benefit of physical activity. Moreover, physical activity prescription must take into account the assessment of global cardiovascular risk, the control of the hypertension, and the opportunities and desires of the patient in order to promote good adherence and beneficial lifestyle change. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  1. Experimental Compressibility of Molten Hedenbergite at High Pressure

    Science.gov (United States)

    Agee, C. B.; Barnett, R. G.; Guo, X.; Lange, R. A.; Waller, C.; Asimow, P. D.

    2010-12-01

    Experiments using the sink/float method have bracketed the density of molten hedenbergite (CaFeSi2O6) at high pressures and temperatures. The experiments are the first of their kind to determine the compressibility of molten hedenbergite at high pressure and are part of a collaborative effort to establish a new database for an array of silicate melt compositions, which will contribute to the development of an empirically based predictive model that will allow calculation of silicate liquid density and compressibility over a wide range of P-T-X conditions where melting could occur in the Earth. Each melt composition will be measured using: (i) double-bob Archimedean method for melt density and thermal expansion at ambient pressure, (ii) sound speed measurements on liquids to constrain melt compressibility at ambient pressure, (iii) sink/float technique to measure melt density to 15 GPa, and (iv) shock wave measurements of P-V-E equation of state and temperature between 10 and 150 GPa. Companion abstracts on molten fayalite (Waller et al., 2010) and liquid mixes of hedenbergite-diopside and anorthite-hedenbergite-diopside (Guo and Lange, 2010) are also presented at this meeting. In the present study, the hedenbergite starting material was synthesized at the Experimental Petrology Lab, University of Michigan, where melt density, thermal expansion, and sound speed measurements were also carried out. The starting material has also been loaded into targets at the Caltech Shockwave Lab, and experiments there are currently underway. We report here preliminary results from static compression measurement performed at the Department of Petrology, Vrije Universiteit, Amsterdam, and the High Pressure Lab, Institute of Meteoritics, University of New Mexico. Experiments were carried out in Quick Press piston-cylinder devices and a Walker-style multi-anvil device. Sink/float marker spheres implemented were gem quality synthetic forsterite (Fo100), San Carlos olivine (Fo90), and

  2. Computer simulations of high pressure systems

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1977-01-01

    Numerical methods are capable of solving very difficult problems in solid mechanics and gas dynamics. In the design of engineering structures, critical decisions are possible if the behavior of materials is correctly described in the calculation. Problems of current interest require accurate analysis of stress-strain fields that range from very small elastic displacement to very large plastic deformation. A finite difference program is described that solves problems over this range and in two and three space-dimensions and time. A series of experiments and calculations serve to establish confidence in the plasticity formulation. The program can be used to design high pressure systems where plastic flow occurs. The purpose is to identify material properties, strength and elongation, that meet the operating requirements. An objective is to be able to perform destructive testing on a computer rather than on the engineering structure. Examples of topical interest are given

  3. Urea and deuterium mixtures at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, M., E-mail: m.donnelly-2@sms.ed.ac.uk; Husband, R. J.; Frantzana, A. D.; Loveday, J. S. [Centre for Science at Extreme Conditions and School of Physics and Astronomy, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Bull, C. L. [ISIS, Rutherford Appleton Laboratory, Oxford Harwell, Didcot OX11 0QX (United Kingdom); Klotz, S. [IMPMC, CNRS UMR 7590, Université P and M Curie, 4 Place Jussieu, 75252 Paris (France)

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  4. Recent developments in high pressure water technology

    International Nuclear Information System (INIS)

    Johnson, N.A.; Johnson, T.

    1992-01-01

    High Pressure Water Jetting has advanced rapidly in the last decade to a point where the field is splitting into specialised areas. This has left the end user or client in the dark as to whether water jetting will work and if so what equipment is best suited to their particular application. The aim of this paper is to give an overview of:-1. The way water is delivered to the surface and the parameters which control the concentration of energy available on impact. 2. The factors governing application driven selection of equipment. 3. The effects to technical advances in pumps and delivery systems on equipment selection with reference to their to their application to concrete removal and nuclear decontamination. (Author)

  5. High-pressure structures of methane hydrate

    International Nuclear Information System (INIS)

    Hirai, H; Uchihara, Y; Fujihisa, H; Sakashita, M; Katoh, E; Aoki, K; Yamamoto, Y; Nagashima, K; Yagi, T

    2002-01-01

    Three high-pressure structures of methane hydrate, a hexagonal structure (str. A) and two orthorhombic structures (str. B and str. C), were found by in situ x-ray diffractometry and Raman spectroscopy. The well-known structure I (str. I) decomposed into str. A and fluid at 0.8 GPa. Str. A transformed into str. B at 1.6 GPa, and str. B further transformed into str. C at 2.1 GPa which survived above 7.8 GPa. The fluid solidified as ice VI at 1.4 GPa, and the ice VI transformed to ice VII at 2.1 GPa. The bulk moduli, K 0 , for str. I, str. A, and str. C were calculated to be 7.4, 9.8, and 25.0 GPa, respectively

  6. High Pressure Quick Disconnect Particle Impact Tests

    Science.gov (United States)

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel

  7. A Nutritional Strategy for the Treatment of High Blood Pressure.

    Science.gov (United States)

    Podell, Richard N.

    1984-01-01

    Some physicians wonder if high blood pressure can be controlled without the use of drugs and their potential side effects. Current findings concerning nutrition and high blood pressure are presented. (RM)

  8. Stress and High Blood Pressure: What's the Connection?

    Science.gov (United States)

    Stress and high blood pressure: What's the connection? Stress and long-term high blood pressure may not be linked, but taking steps to reduce your stress can improve your general health, including your blood ...

  9. High blood pressure - what to ask your doctor

    Science.gov (United States)

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  10. High Blood Pressure, Afib and Your Risk of Stroke

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More High Blood Pressure, AFib and Your Risk of Stroke Updated:Aug ... have a stroke for the first time have high blood pressure . And an irregular atrial heart rhythm — a condition ...

  11. Modeling of high-pressure generation using the laser colliding foil technique

    Energy Technology Data Exchange (ETDEWEB)

    Fabbro, R.; Faral, B.; Virmont, J.; Cottet, F.; Romain, J.P.

    1989-03-01

    An analytical model describing the collision of two foils is presented and applied to the collision of laser-accelerated foils. Numerical simulations have been made to verify this model and to compare its results in the case of laser-accelerated foils. Scaling laws relating the different parameters (shock pressure, laser intensity, target material, etc.) have been established. The application of this technique to high-pressure equation of state experiments is then discussed.

  12. Modeling of high-pressure generation using the laser colliding foil technique

    International Nuclear Information System (INIS)

    Fabbro, R.; Faral, B.; Virmont, J.; Cottet, F.; Romain, J.P.

    1989-01-01

    An analytical model describing the collision of two foils is presented and applied to the collision of laser-accelerated foils. Numerical simulations have been made to verify this model and to compare its results in the case of laser-accelerated foils. Scaling laws relating the different parameters (shock pressure, laser intensity, target material, etc.) have been established. The application of this technique to high-pressure equation of state experiments is then discussed

  13. Solubility of Methane in the Mixture of Ethanol+Hexane at High Pressures

    Institute of Scientific and Technical Information of China (English)

    华超; 马沛生; 夏淑倩; 白鹏

    2005-01-01

    Solubility data were first presented for methane in the mixture of ethanol-hexane at temperatures from 291.15K to 318.15K and pressures up to 12.00MPa. The experimental data were correlated by PR and PRSV equations of state with rms errors of about 0.051. The A-K and Y-W-A-K models were both used to estimate liquid molar volume under high pressure. The results were satisfactory.

  14. Optimal level of continuous positive airway pressure: auto-adjusting titration versus titration with a predictive equation.

    Science.gov (United States)

    Choi, Ji Ho; Jun, Young Joon; Oh, Jeong In; Jung, Jong Yoon; Hwang, Gyu Ho; Kwon, Soon Young; Lee, Heung Man; Kim, Tae Hoon; Lee, Sang Hag; Lee, Seung Hoon

    2013-05-01

    The aims of the present study were twofold. We sought to compare two methods of titrating the level of continuous positive airway pressure (CPAP) - auto-adjusting titration and titration using a predictive equation - with full-night manual titration used as the benchmark. We also investigated the reliability of the two methods in patients with obstructive sleep apnea syndrome (OSAS). Twenty consecutive adult patients with OSAS who had successful, full-night manual and auto-adjusting CPAP titration participated in this study. The titration pressure level was calculated with a previously developed predictive equation based on body mass index and apnea-hypopnea index. The mean titration pressure levels obtained with the manual, auto-adjusting, and predictive equation methods were 9.0 +/- 3.6, 9.4 +/- 3.0, and 8.1 +/- 1.6 cm H2O,respectively. There was a significant difference in the concordance within the range of +/- 2 cm H2O (p = 0.019) between both the auto-adjusting titration and the titration using the predictive equation compared to the full-night manual titration. However, there was no significant difference in the concordance within the range of +/- 1 cm H2O (p > 0.999). When compared to full-night manual titration as the standard method, auto-adjusting titration appears to be more reliable than using a predictive equation for determining the optimal CPAP level in patients with OSAS.

  15. Effect of high pressure on mesophilic lactic fermentation streptococci

    Energy Technology Data Exchange (ETDEWEB)

    Reps, A; Kuzmicka, M; Wisniewska, K [Chair of Food Biotechnology, University of Warmia and Mazury, ul. Heweliusza 1, 10-724 Olsztyn (Poland)], E-mail: arnold.reps@uwm.edu.pl

    2008-07-15

    The research concerned the effect of high pressure on mesophilic lactic fermentation streptococci, present in two cheese-making commercial inocula produced by Christian-Hansen. Water solutions of inocula were pressurized at 50-800 MPa, at room temperature, for 30-120 min. Pressurization at 50-100 MPa slightly increased or reduced the number of lactic streptococci, depending on the inoculum and pressurization time. Pressurization at 200 MPa caused a reduction in the number of streptococci by over 99.9%, whereas the pressure of 400 MPa and above almost completely inactivated streptococci. Pressurization also reduced the dynamics of microorganism growth and acidification, to the degree depending on the pressure.

  16. QCD evolution equations for high energy partons in nuclear matter

    CERN Document Server

    Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt

    1994-01-01

    We derive a generalized form of Altarelli-Parisi equations to decribe the time evolution of parton distributions in a nuclear medium. In the framework of the leading logarithmic approximation, we obtain a set of coupled integro- differential equations for the parton distribution functions and equations for the virtuality (``age'') distribution of partons. In addition to parton branching processes, we take into account fusion and scattering processes that are specific to QCD in medium. Detailed balance between gain and loss terms in the resulting evolution equations correctly accounts for both real and virtual contributions which yields a natural cancellation of infrared divergences.

  17. Subnanosecond breakdown in high-pressure gases

    Science.gov (United States)

    Naidis, George V.; Tarasenko, Victor F.; Babaeva, Natalia Yu; Lomaev, Mikhail I.

    2018-01-01

    Pulsed discharges in high-pressure gases are of considerable interest as sources of nonequilibrium plasma for various technological applications: pollution control, pumping of laser media, plasma-assisted combustion, etc. Recently, attention has been attracted to the use of subnanosecond voltage fronts, producing diffuse discharges with radii of several millimeters. Such plasma structures, similar to pulsed glow discharges, are of special interest for applications due to quasi-uniformity of plasma parameters in relatively large gas volumes. This review presents the results of experimental and computational study of subnanosecond diffuse discharge formation. A description of generators of short high-voltage pulses with subnanosecond fronts and of discharge setups is given. Diagnostic methods for the measurement of various discharge parameters with high temporal and spatial resolution are described. Obtained experimental data on plasma properties for a wide range of governing factors are discussed. A review of various theoretical approaches used for computational study of the dynamics and structure of fast ionization waves is given; the applicability of conventional fluid streamer models for simulation of subnanosecond ionization waves is discussed. Calculated spatial-temporal profiles of plasma parameters during streamer propagation are presented. The efficiency of subnanosecond discharges for the production of reactive species is evaluated. On the basis of the comparison of simulation results and experimental data the effects of various factors (voltage rise time, polarity, etc.) on discharge characteristics are revealed. The major physical phenomena governing the properties of subnanosecond breakdown are analyzed.

  18. Solitary traveling wave solutions of pressure equation of bubbly liquids with examination for viscosity and heat transfer

    Science.gov (United States)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-03-01

    In this research, we investigate one of the most popular model in nature and also industrial which is the pressure equation of bubbly liquids with examination for viscosity and heat transfer which has many application in nature and engineering. Understanding the physical meaning of exact and solitary traveling wave solutions for this equation gives the researchers in this field a great clear vision of the pressure waves in a mixture liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer and also dynamics of contrast agents in the blood flow at ultrasonic researches. To achieve our goal, we apply three different methods which are extended tanh-function method, extended simple equation method and a new auxiliary equation method on this equation. We obtained exact and solitary traveling wave solutions and we also discuss the similarity and difference between these three method and make a comparison between results that we obtained with another results that obtained with the different researchers using different methods. All of these results and discussion explained the fact that our new auxiliary equation method is considered to be the most general, powerful and the most result-oriented. These kinds of solutions and discussion allow for the understanding of the phenomenon and its intrinsic properties as well as the ease of way of application and its applicability to other phenomena.

  19. High pressure apparatus transport properties study in high magnetic field

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Sechovský, V.; Mikulina, O.; Kamarád, Jiří; Alsmadi, A. M.; Nakotte, H.; Lacerda, A. H.

    2002-01-01

    Roč. 16, 20, 21 & 22 (2002), s. 3330-3333 ISSN 0217-9792 R&D Projects: GA ČR GP202/01/D045; GA ČR GA202/00/1217; GA MŠk ME 165 Grant - others:NSF(XX) DMR-0094241 Institutional research plan: CEZ:AV0Z1010914 Keywords : high-pressure apparatus Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.604, year: 2002

  20. Engineering Model of High Pressure Moist Air

    OpenAIRE

    Hyhlík Tomáš

    2017-01-01

    The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept ...

  1. 30 CFR 56.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of high-pressure...

  2. 76 FR 38697 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2011-07-01

    ... imports from China of high pressure steel cylinders, provided for in subheading 7311.00.00 of the... threatened with material injury by reason of LTFV and subsidized imports of high pressure steel cylinders... contained in USITC Publication 4241 (July 2011), entitled High Pressure Steel Cylinders from China...

  3. 77 FR 37712 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2012-06-22

    ...), that an industry in the United States is materially injured by reason of imports of high pressure steel... preliminary determinations by Commerce that imports of high pressure steel cylinders from China were... Publication 4328 (June 2012), entitled High Pressure Steel Cylinders from China: Investigation Nos. 701-TA-480...

  4. High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide

    Energy Technology Data Exchange (ETDEWEB)

    Laniel, Dominique; Desgreniers, Serge [Laboratoire de physique des solides denses, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Downie, Laura E. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Smith, Jesse S. [High Pressure Collaborative Access Team, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Savard, Didier; Murugesu, Muralee [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2014-12-21

    Cyanuric triazide (CTA), a nitrogen-rich energetic material, was compressed in a diamond anvil cell up to 63.2 GPa. Samples were characterized by x-ray diffraction, Raman, and infrared spectroscopy. A phase transition occurring between 29.8 and 30.7 GPa was found by all three techniques. The bulk modulus and its pressure derivative of the low pressure phase were determined by fitting the 300 K isothermal compression data to the Birch-Murnaghan equation of state. Due to the strong photosensitivity of CTA, synchrotron generated x-rays and visible laser radiation both lead to the progressive conversion of CTA into a two dimensional amorphous C=N network, starting from 9.2 GPa. As a result of the conversion, increasingly weak and broad x-ray diffraction lines were recorded from crystalline CTA as a function of pressure. Hence, a definite structure could not be obtained for the high pressure phase of CTA. Results from infrared spectroscopy carried out to 40.5 GPa suggest the high pressure formation of a lattice built of tri-tetrazole molecular units. The decompression study showed stability of the high pressure phase down to 13.9 GPa. Finally, two CTA samples, one loaded with neon and the other with nitrogen, used as pressure transmitting media, were laser-heated to approximately 1100 K and 1500 K while compressed at 37.7 GPa and 42.0 GPa, respectively. In both cases CTA decomposed resulting in amorphous compounds, as recovered at ambient conditions.

  5. Pneumatic Performance Study of a High Pressure Ejection Device Based on Real Specific Energy and Specific Enthalpy

    Directory of Open Access Journals (Sweden)

    Jie Ren

    2014-09-01

    Full Text Available In high-pressure dynamic thermodynamic processes, the pressure is much higher than the air critical pressure, and the temperature can deviate significantly from the Boyle temperature. In such situations, the thermo-physical properties and pneumatic performance can’t be described accurately by the ideal gas law. This paper proposes an approach to evaluate the pneumatic performance of a high-pressure air catapult launch system, in which esidual functions are used to compensate the thermal physical property uncertainties of caused by real gas effects. Compared with the Nelson-Obert generalized compressibility charts, the precision of the improved virial equation of state is better than Soave-Redlich-Kwong (S-R-K and Peng-Robinson (P-R equations for high pressure air. In this paper, the improved virial equation of state is further used to establish a compressibility factor database which is applied to evaluate real gas effects. The specific residual thermodynamic energy and specific residual enthalpy of the high-pressure air are also derived using the modified corresponding state equation and improved virial equation of state which are truncated to the third virial coefficient. The pneumatic equations are established on the basis of the derived residual functions. The comparison of the numerical results shows that the real gas effects are strong, and the pneumatic performance analysis indicates that the real dynamic thermodynamic process is obviously different from the ideal one.

  6. Equation-of-state for fluids at high densities-hydrogen isotope measurements and thermodynamic derivations

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1977-01-01

    Hydrogen isotopes play an important role in energy technologies, in particular, the compression to high densities for initiation of controlled thermonuclear fusion energy. At high densities the properties of the compressed hydrogen isotopes depart drastically from ideal thermodynamic predictions. The measurement of accurate data including the author's own recent measurements of n-H 2 and n-D 2 in the range 75 to 300 K and 0.2 to 2.0 GPa (2 to 20 kbar) is reviewed. An equation-of-state of the Benedict type is fit to these data with a double-process least-squares computer program. The results are reviewed and compared with existing data and with a variety of theoretical work reported for fluid hydrogens. A new heuristic correlation is presented for simplicity in predicting volumes and sound velocity at high pressures. 9 figures, 1 table

  7. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    Science.gov (United States)

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  8. Changes in permittivity and density of molecular liquids under high pressure.

    Science.gov (United States)

    Kiselev, Vladimir D; Kornilov, Dmitry A; Konovalov, Alexander I

    2014-04-03

    We collected and analyzed the density and permittivity of 57 nonpolar and dipolar molecular liquids at different temperatures (143 sets) and pressures (555 sets). No equation was found that could accurately predict the change to polar liquid permittivity by the change of its density in the range of the pressures and temperatures tested. Consequently, the influence of high hydrostatic pressure and temperature on liquid permittivity may be a more complicated process compared to density changes. The pressure and temperature coefficients of permittivity can be drastically larger than the pressure and temperature coefficients of density, indicating that pressure and particularly temperature significantly affect the structure of molecular liquids. These changes have less influence on the density change but can strongly affect the permittivity change. The clear relationship between the tangent and secant moduli of the permittivity curvatures under pressure for various molecular liquids at different temperatures was obtained, from which one can calculate the Tait equation coefficients from the experimental values of the pressure influence on the permittivity at ambient pressure.

  9. Single stage high pressure centrifugal slurry pump

    Science.gov (United States)

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  10. Recombination times in germanium under high pressure

    International Nuclear Information System (INIS)

    Kuyt, J.H.

    1975-01-01

    The influence of pressure on a well defined recombination process was studied. The centres were introduced by γirradiation and the lifetime determined by the decay time of photoconductivity. An optical pressure vessel is described which allows for a hydrostatic variation of 3000 bars. The diffusion constant and lifetime measurements are presented and analysed. (V.J.C.)

  11. Existence of high-energy solutions for supercritical fractional Schrodinger equations in R^N

    Directory of Open Access Journals (Sweden)

    Lu Gan

    2016-12-01

    Full Text Available In this article, we study supercritical fractional Schr\\"odinger equations. Applying the finite-dimensional reduction method and the penalization method, we obtain the high-energy solutions for this equation.

  12. High order backward discretization of the neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Ginestar, D.; Bru, R.; Marin, J. [Universidad Politecnica de Valencia (Spain). Departamento de Matematica Aplicada; Verdu, G.; Munoz-Cobo, J.L. [Universidad Politecnica de Valencia (Spain). Departamento de Ingenieria Quimica y Nuclear; Vidal, V. [Universidad Politecnica de Valencia (Spain). Departamento de Sistemas Informaticos y Computacion

    1997-11-21

    Fast codes capable of dealing with three-dimensional geometries, are needed to be able to simulate spatially complicated transients in a nuclear reactor. We propose a new discretization technique for the time integration of the neutron diffusion equation, based on the backward difference formulas for systems of stiff ordinary differential equations. This method needs to solve a system of linear equations for each integration step, and for this purpose, we have developed an iterative block algorithm combined with a variational acceleration technique. We tested the algorithm with two benchmark problems, and compared the results with those provided by other codes, concluding that the performance and overall agreement are very good. (author).

  13. Developments in time-resolved high pressure x-ray diffraction using rapid compression and decompression

    International Nuclear Information System (INIS)

    Smith, Jesse S.; Sinogeikin, Stanislav V.; Lin, Chuanlong; Rod, Eric; Bai, Ligang; Shen, Guoyin

    2015-01-01

    Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell

  14. High Pressure Laminates with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Sandra Magina

    2016-02-01

    Full Text Available High-pressure laminates (HPLs are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB was incorporated for the first time into melamine-formaldehyde resin (MF matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR. Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms, whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms. The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.

  15. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  16. Automated high pressure cell for pressure jump x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  17. Automated high pressure cell for pressure jump x-ray diffraction

    International Nuclear Information System (INIS)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-01-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  18. Modeling High Frequency Semiconductor Devices Using Maxwell's Equations

    National Research Council Canada - National Science Library

    El-Ghazaly, Samier

    1999-01-01

    .... In this research, we first replaced the conventional semiconductor device models, which are based on Poisson's Equation as a semiconductor model, with a new one that uses the full-wave electro...

  19. High cost of stage IV pressure ulcers.

    Science.gov (United States)

    Brem, Harold; Maggi, Jason; Nierman, David; Rolnitzky, Linda; Bell, David; Rennert, Robert; Golinko, Michael; Yan, Alan; Lyder, Courtney; Vladeck, Bruce

    2010-10-01

    The aim of this study was to calculate and analyze the cost of treatment for stage IV pressure ulcers. A retrospective chart analysis of patients with stage IV pressure ulcers was conducted. Hospital records and treatment outcomes of these patients were followed up for a maximum of 29 months and analyzed. Costs directly related to the treatment of pressure ulcers and their associated complications were calculated. Nineteen patients with stage IV pressure ulcers (11 hospital-acquired and 8 community-acquired) were identified and their charts were reviewed. The average hospital treatment cost associated with stage IV pressure ulcers and related complications was $129,248 for hospital-acquired ulcers during 1 admission, and $124,327 for community-acquired ulcers over an average of 4 admissions. The costs incurred from stage IV pressure ulcers are much greater than previously estimated. Halting the progression of early stage pressure ulcers has the potential to eradicate enormous pain and suffering, save thousands of lives, and reduce health care expenditures by millions of dollars. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Sleep Deprivation: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... it true that sleep deprivation can cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Possibly. It's thought that ... hours a night could be linked to increased blood pressure. People who sleep five hours or less a ...

  1. High Pressure Electrochemical Oxygen Generation for ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Giner, Inc. has developed an advanced high pressure electrochemical oxygen concentrator (EOC) that offers a simple alternative to the use of pressure swing...

  2. Development of GPU Based Parallel Computing Module for Solving Pressure Equation in the CUPID Component Thermo-Fluid Analysis Code

    International Nuclear Information System (INIS)

    Lee, Jin Pyo; Joo, Han Gyu

    2010-01-01

    In the thermo-fluid analysis code named CUPID, the linear system of pressure equations must be solved in each iteration step. The time for repeatedly solving the linear system can be quite significant because large sparse matrices of Rank more than 50,000 are involved and the diagonal dominance of the system is hardly hold. Therefore parallelization of the linear system solver is essential to reduce the computing time. Meanwhile, Graphics Processing Units (GPU) have been developed as highly parallel, multi-core processors for the global demand of high quality 3D graphics. If a suitable interface is provided, parallelization using GPU can be available to engineering computing. NVIDIA provides a Software Development Kit(SDK) named CUDA(Compute Unified Device Architecture) to code developers so that they can manage GPUs for parallelization using the C language. In this research, we implement parallel routines for the linear system solver using CUDA, and examine the performance of the parallelization. In the next section, we will describe the method of CUDA parallelization for the CUPID code, and then the performance of the CUDA parallelization will be discussed

  3. High-temperature fiber optic pressure sensor

    Science.gov (United States)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  4. GENERATION OF HIGH SHOCK PRESSURES BY LASER PULSES

    OpenAIRE

    Romain , J.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 µm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of ...

  5. High Temperature Characterization of Ceramic Pressure Sensors

    National Research Council Canada - National Science Library

    Fonseca, Michael A; English, Jennifer M; Von Arx, Martin; Allen, Mark G

    2001-01-01

    This work reports functional wireless ceramic micromachined pressure sensors operating at 450 C, with demonstrated materials and readout capability indicating potential extension to temperatures in excess of 600 C...

  6. Phase transition and water incorporation into Eu2Sn2O7 pyrochlore at high pressure

    Science.gov (United States)

    Zhang, F. X.; Lang, M.; Ewing, R. C.

    2016-04-01

    Structural changes of europium stannate pyrochlore, Eu2Sn2O7, have been investigated at high pressures with in situ Raman spectroscopy, photoluminescence (PL), and synchrotron X-ray diffraction (XRD) techniques. The XRD measurements suggest that a pressure-induced phase transition starts at 34.4 GPa. The PL spectrum from Eu3+ cations also suggests a phase transition above 36 GPa. XRD analysis shows that the unit cell of the cubic phase deviates from the equation of state at pressures above 23.8 GPa. This is due to the incorporation of water from the pressure medium in the structure at high pressures, which is confirmed by optical spectroscopy measurements.

  7. Densities at high pressures and derived properties of thiophenes

    International Nuclear Information System (INIS)

    Antón, V.; Lomba, L.; Cea, P.; Giner, B.; Lafuente, C.

    2017-01-01

    Highlights: • The pρT behaviour of four members of the thiophene family has been studied. • The experimental results have been correlated with the TRIDEN equation. • Isobaric expansibilities, isothermal compressibilities and internal pressures have been calculated. • The results were discussed in terms of structural differences among thiophenes. - Abstract: This contribution reports the densities in wide temperature (from 283.15 to 338.15 K) and pressure (from 0.1 to 65.0 MPa) ranges of four members of the thiophene family (thiophene, 2-methylthiophene, 3-methylthiophene and 2,5-dimethylthiophene). These densities have been satisfactorily correlated by means of the TRIDEN equation. From these data, several derived properties as isobaric expansibility, isothermal compressibility, and internal pressure have been estimated. Using all these properties, interesting information about molecular organization can be deduced.

  8. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  9. Elasticity of stishovite at high pressure

    Science.gov (United States)

    Li, Baosheng; Rigden, Sally M.; Liebermann, Robert C.

    1996-08-01

    The elastic-wave velocities of stishovite, the rutile-structured polymorph of SiO 2, were measured to 3 GPa at room temperature in a piston cylinder apparatus using ultrasonic interferometry on polycrystalline samples. These polycrystalline samples (2-3 mm in length and diameter) were hot-pressed at 14 GPa and 1050°C in a 2000 ton uniaxial split-sphere apparatus (USSA-2000) using fused silica rods as starting material. They were characterized as low porosity (less than 1%), single phase, fine grained, free of cracks and preferred orientation, and acoustically isotropic by using density measurement, X-ray diffraction, scanning electron microscopy, and bench-top velocity measurements. On the basis of subsequent in situ X-ray diffraction study at high P and T on peak broadening on similar specimens, it is evident that the single crystal grains within these polycrystalline aggregates are well equilibrated and that these specimens are free of residual strain. P- and S-wave velocities measured at 1 atm are within 1.5% of the Hashin-Shtrikman bounds calculated from single-crystal elastic moduli. Measured pressure derivatives of the bulk and shear moduli, K' 0 = 5.3 ± 0.1 and G' 0 = 1.8 ± 0.1, are not unusual compared with values measured for other transition zone phases such as silicate spinel and majorite garnet. Isothermal compression curves calculated with the measured values of K0 and K' 0 agree well with experimental P-V data to 16 GPa. The experimental value of dG /dP is in excellent agreement with predictions based on elasticity systematics. Theoretical models are not yet able to replicate the measured values of K' 0 and G' 0.

  10. High-pressure system for Compton scattering experiments

    International Nuclear Information System (INIS)

    Oomi, G.; Honda, F.; Kagayama, T.; Itoh, F.; Sakurai, H.; Kawata, H.; Shimomura, O.

    1998-01-01

    High-pressure apparatus for Compton scattering experiments has been developed to study the momentum distribution of conduction electrons in metals and alloys at high pressure. This apparatus was applied to observe the Compton profile of metallic Li under pressure. It was found that the Compton profile at high pressure could be obtained within several hours by using this apparatus and synchrotron radiation. The result on the pressure dependence of the Fermi momentum of Li obtained here is in good agreement with that predicted from the free-electron model

  11. Advances in high pressure science and technology: proceedings of the fourth national conference on high pressure science and technology

    International Nuclear Information System (INIS)

    Yousuf, Mohammad; Subramanian, N.; Govinda Rajan, K.

    1997-09-01

    The proceedings of the fourth National Conference on High Pressure Science and Technology covers a wide area of research and development activities in the field of high pressure science and technology, broadly classified into the following themes: mechanical behaviour of materials; instrumentation and methods in high pressure research; pressure calibration, standards and safety aspects; phase transitions; shock induced reactions; mineral science, geophysics, geochemistry and planetary sciences; optical, electronic and transport properties; synthesis of materials; soft condensed matter physics and liquid crystals; computational methods in high pressure research. Papers relevant to INIS are indexed separately

  12. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen

    2014-01-01

    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  13. Superconductivity under high pressure in the binary compound CaLi2

    Science.gov (United States)

    Debessai, M.; Matsuoka, T.; Hamlin, J. J.; Gangopadhyay, A. K.; Schilling, J. S.; Shimizu, K.; Ohishi, Y.

    2008-12-01

    Feng predicted for CaLi2 highly anomalous properties with possible superconductivity under very high pressures, including for the hcp polymorph a significant lattice bifurcation at pressures above 47 GPa. More recently, however, Feng suggested that for pressures exceeding 20 GPa CaLi2 may dissociate into elemental Ca and Li. Here we present for hcp CaLi2 measurements of the electrical resistivity and ac susceptibility to low temperatures under pressures as high as 81 GPa. Pressure-induced superconductivity is observed in the pressure range of 11-81 GPa, with Tc reaching values as high as 13 K. X-ray diffraction studies to 54 GPa at 150 K reveal that hcp CaLi2 undergoes a structural phase transition above 23 GPa to orthorhombic but does not dissociate into elemental Ca and Li. In the hcp phase a fit of the equation of state with the Murnaghan equation yields the bulk modulus Bo=15(2)GPa and dBo/dP=3.2(6) .

  14. Neutron powder diffraction under high pressure at J-PARC

    International Nuclear Information System (INIS)

    Utsumi, Wataru; Kagi, Hiroyuki; Komatsu, Kazuki; Arima, Hiroshi; Nagai, Takaya; Okuchi, Takuo; Kamiyama, Takashi; Uwatoko, Yoshiya; Matsubayashi, Kazuyuki; Yagi, Takehiko

    2009-01-01

    It is expected that high-pressure material science and the investigation of the Earth's interior will progress greatly using the high-flux pulse neutrons of J-PARC. In this article, we introduce our plans for in situ neutron powder diffraction experiments under high pressure at J-PARC. The use of three different types of high-pressure devices is planned; a Paris-Edinburgh cell, a new opposed-anvil cell with a nano-polycrystalline diamond, and a cubic anvil high-pressure apparatus. These devices will be brought to the neutron powder diffraction beamlines to conduct a 'day-one' high-pressure experiment. For the next stage of research, we propose construction of a dedicated beamline for high-pressure material science. Its conceptual designs are also introduced here.

  15. High Pressure, High Gradient RF Cavities for Muon Beam Cooling

    CERN Document Server

    Johnson, R P

    2004-01-01

    High intensity, low emittance muon beams are needed for new applications such as muon colliders and neutrino factories based on muon storage rings. Ionization cooling, where muon energy is lost in a low-Z absorber and only the longitudinal component is regenerated using RF cavities, is presently the only known cooling technique that is fast enough to be effective in the short muon lifetime. RF cavities filled with high-pressure hydrogen gas bring two advantages to the ionization technique: the energy absorption and energy regeneration happen simultaneously rather than sequentially, and higher RF gradients and better cavity breakdown behavior are possible than in vacuum due to the Paschen effect. These advantages and some disadvantages and risks will be discussed along with a description of the present and desired RF R&D efforts needed to make accelerators and colliders based on muon beams less futuristic.

  16. High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, JungMin; Kim, Hwayong [Seoul National University, Seoul (Korea, Republic of); Shin, Hun Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Soo Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-04-15

    The high-pressure phase behavior of a polycaprolactone (Mw=56,145 g/mol, polydispersity 1.2), dichloromethane, and carbon dioxide ternary system was measured using a variable-volume view cell. The experimental temperatures and pressures ranged from 313.15 K to 353.15 K and up to 300 bar as functions of the CO{sub 2}/dichloromethane mass ratio and temperature, at poly(D-lactic acid) weight fractions of 1.0, 2.0, and 3.0%. The correlation results were obtained from the hybrid equation of state (Peng-Robinson equation of state + SAFT equation of state) for the CO{sub 2}-polymer system using the van der Waals one-fluid mixing rule. The three binary interaction parameters were optimized by the simplex method algorithm.

  17. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    Science.gov (United States)

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  18. Pressure effects on high temperature steam oxidation of Zircaloy-4

    International Nuclear Information System (INIS)

    Park, Kwangheon; Kim, Kwangpyo; Ryu, Taegeun

    2000-01-01

    The pressure effects on Zircaloy-4 (Zry-4) cladding in high temperature steam have been analyzed. A double layer autoclave was made for the high pressure, high temperature oxidation tests. The experimental test temperature range was 700 - 900 deg C, and pressures were 0.1 - 15 MPa. Steam partial pressure turns out to be an important one rather than total pressure. Steam pressure enhances the oxidation rate of Zry-4 exponentially. The enhancement depends on the temperature, and the maximum exists between 750 - 800 deg C. Pre-existing oxide layer decreases the enhancement about 40 - 60%. The acceleration of oxidation rate by high pressure team seems to be originated from the formation of cracks by abrupt transformation of tetragonal phase in oxide, where the un-stability of tetragonal phase comes from the reduction of surface energy by steam. (author)

  19. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  20. Cavitation-induced reactions in high-pressure carbon dioxide

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; van Eck, D.; Kemmere, M.F.; Keurentjes, J.T.F.

    2002-01-01

    The feasibility of ultrasound-induced in situ radical formation in liquid carbon dioxide was demonstrated. The required threshold pressure for cavitation could be exceeded at a relatively low acoustic intensity, as the high vapor pressure of CO2 counteracts the hydrostatic pressure. With the use of

  1. Viscosity of liquid sulfur under high pressure

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S

    2004-01-01

    The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry

  2. On the exact solutions of high order wave equations of KdV type (I)

    Science.gov (United States)

    Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet

    2014-12-01

    In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.

  3. Diffuse interfacelets in transcritical flows of propellants into high-pressure combustors

    Science.gov (United States)

    Urzay, Javier; Jofre, Lluis

    2017-11-01

    Rocket engines and new generations of high-power jet engines and diesel engines oftentimes involve the injection of one or more reactants at subcritical temperatures into combustor environments at high pressures, and more particularly, at pressures higher than those corresponding to the critical points of the individual components of the mixture, which typically range from 13 to 50 bars for most propellants. This class of trajectories in the thermodynamic space has been traditionally referred to as transcritical. Under particular conditions often found in hydrocarbon-fueled chemical propulsion systems, and despite the prevailing high pressures, the flow in the combustor may contain regions close to the injector where a diffuse interface is formed in between the fuel and oxidizer streams that is sustained by surface-tension forces as a result of the elevation of the critical pressure of the mixture. This talk describes progress towards modeling these effects in the conservation equations. Funded by the US Department of Energy.

  4. A highly accurate method to solve Fisher's equation

    Indian Academy of Sciences (India)

    The solution of the Helmholtz equation was approximated by a sixth-order compact finite difference. (CFD6) method in [29]. In [30], a CFD6 scheme has been presented to ... efficiency of the proposed method are reported in §3. Finally .... our discussion, one can apply the proposed method to solve the more general problem.

  5. High-order finite-difference methods for Poisson's equation

    NARCIS (Netherlands)

    van Linde, Hendrik Jan

    1971-01-01

    In this thesis finite-difference approximations to the three boundary value problems for Poisson’s equation are given, with discretization errors of O(H^3) for the mixed boundary value problem, O(H^3 |ln(h)| for the Neumann problem and O(H^4)for the Dirichlet problem respectively . First an operator

  6. Announcement: National High Blood Pressure Education Month - May 2016.

    Science.gov (United States)

    2016-05-27

    May is National High Blood Pressure Education Month. High blood pressure (hypertension) is a major contributor to heart disease and stroke, two leading causes of death in the United States.* High blood pressure affects one third of U.S. adults, or approximately 75 million persons, yet approximately 11 million of these persons are not aware they have hypertension, and approximately 18 million are not being treated (unpublished data) (1,2).

  7. Safety regulation on high-pressure gas and gas business

    International Nuclear Information System (INIS)

    Kim, Du Yeoung; An, Dae Jun

    1978-09-01

    This book is divided into two parts. The first part introduces safety regulation on high-pressure gas, enforcement ordinance on safety regulation about high-pressure gas and enforcement regulation on safety regulation about high-pressure gas. The second part indicates regulations on gas business such as general rules, gas business gas supplies, using land, supervision, supple mentary rules and penalty. It has two appendixes on expected questions and questions during last years.

  8. Teaming Up Against High Blood Pressure PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    Nearly one-third of American adults have high blood pressure, and more than half of them don’t have it under control. Simply seeing a doctor and taking medications isn’t enough for many people who have high blood pressure. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.

  9. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  10. Magnetic structures of erbium under high pressure

    DEFF Research Database (Denmark)

    Kawano, S.; Lebech, B.; Achiwa, N.

    1993-01-01

    Neutron diffraction studies of the magnetic structures of erbium metal at 4.5 K and 11.5 kbar hydrostatic pressure have revealed that the transition to a conical structure at low temperatures is suppressed and that the cycloidal structure, with modulation vector Q congruent-to (2/7 2pi/c)c persists...

  11. Generation of high shock pressures by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P. (GRECO ILM, Laboratoire d' Energetique et Detonique, E.N.S.M.A., 86 - Poitiers (France))

    1984-11-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 ..mu..m wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined.

  12. Generation of high shock pressures by laser pulses

    International Nuclear Information System (INIS)

    Romain, J.P.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 μm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined

  13. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  14. Magnetization at high pressure in CeP

    Science.gov (United States)

    Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.

    1995-02-01

    We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.

  15. High pressure studies of fluorenone emission in plastic media

    International Nuclear Information System (INIS)

    Mitchell, D.J.; Schuster, G.B.; Drickamer, H.G.

    1977-01-01

    The energy and the quantum efficiency for fluorenone fluorescence in the crystalline state and in polymeric matrices was measured as a function of external pressure over the range 0--140 kbar. The application of high pressure induces changes in the quantum yield, which ranges from 0.001 at low pressure to a maximum of approx.0.1 at high pressure in hydrocarbon plastics. These results are interpreted as arising from the decrease in the energy of the lowest ππ excited singlet state relative to other relevant states as the external pressure is increased

  16. Enthalpy-based equation of state for highly porous materials employing modified soft sphere fluid model

    Science.gov (United States)

    Nayak, Bishnupriya; Menon, S. V. G.

    2018-01-01

    Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.

  17. Proposed dedicated high pressure beam lines at CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Vohra, Y.K.; Bassett, W.A.; Batterman, B.W.; Bilderback, D.H.

    1988-01-01

    An instrumentation proposal for dedicated high pressure beam lines at CHESS is described. It is the purpose of this proposed program to provide researchers in high pressure science with beam lines for X-ray diffraction studies in the megabar regime. This will involve radiation from a bending magnet as well as from a wiggler. Examples of the high pressure results up to 2.16 Mbar are shown. Diffraction patterns from bending magnet and wiggler beams are shown and compared. The need for this facility by the high pressure community is discussed. (orig.)

  18. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  19. Chain-length-dependent intermolecular packing in polyphenylenes: a high pressure study

    CERN Document Server

    Heimel, G; Oehzelt, M; Hummer, K; Koppelhuber-Bitschnau, B; Porsch, F; Ambrosch-Draxl, C; Resel, R

    2003-01-01

    We report on pressure-induced structural changes in crystalline oligo(para-phenylenes) containing two to six phenyl rings. The results are discussed with particular emphasis put on the implications these changes in intermolecular distances and molecular arrangement have on important bulk properties of this class of materials, such as optical response and charge transport. We performed energy dispersive x-ray diffraction in a systematic study on polycrystalline powders of biphenyl, para-terphenyl, p-quaterphenyl, p-quinquephenyl and p-sexiphenyl under hydrostatic pressure up to 60 kbar. Revisiting the crystal structures at ambient conditions reveals details in the packing principle. A linear relationship between the density at ambient conditions and the number of phenyl rings is found. High pressure data not only yields pressure-dependent lattice parameters and hints towards pressure-induced changes in the molecular arrangement but also allows for an analysis of the equations of state of these substances as a ...

  20. High pressure argon detector of high energy neutrinos

    International Nuclear Information System (INIS)

    Vishnevskii, A.V.; Golutvin, I.A.; Sarantsev, V.L.; Sviridov, V.A.; Dolgoshein, B.A.; Kalinovskii, A.N.; Sosnovtsev, V.V.; Chernyatin, V.K.; Kaftanov, V.S.; Khovanskii, V.D.; Shevchenko, V.G.

    1979-01-01

    In the present paper, we suggest an electron neutrino detector of a new type where track information is available for all charged particles. As a working medium we use Argon compressed up to a pressure of 100 to 150 atm (approximately 0.2-0.3 g/cm 3 ). The spatial reconstruction of tracks are accomplished with an accuracy not inferior to that of bubble chambers. The detector has a high sensitivity in ionization measurements. An assembly with a working medium mass of approximately 100 tons seem to be realisable. This makes it possible to perform tasks with cross-sections of (10 -5 + 10 -3 ) x delty tot at an intensity of the neutrino beam which is available in present-day accelerators. (orig.)

  1. High pressure structural behavior of YGa2: A combined experimental and theoretical study

    International Nuclear Information System (INIS)

    Sekar, M.; Shekar, N.V. Chandra; Babu, R.; Sahu, P. Ch.; Sinha, A.K.; Upadhyay, Anuj; Singh, M.N.; Babu, K. Ramesh; Appalakondaiah, S.; Vaitheeswaran, G.; Kanchana, V.

    2015-01-01

    High pressure structural stability studies were carried out on YGa 2 (AlB 2 type structure at NTP, space group P6/mmm) up to a pressure of ~35 GPa using both laboratory based rotating anode and synchrotron X-ray sources. An isostructural transition with reduced c/a ratio, was observed at ~6 GPa and above ~17.5 GPa, the compound transformed to orthorhombic structure. Bulk modulus B 0 for the parent and high pressure phases were estimated using Birch–Murnaghan and modified Birch–Murnaghan equation of state. Electronic structure calculations based on projector augmented wave method confirms the experimentally observed two high pressure structural transitions. The calculations also reveal that the ‘Ga’ networks remains as two dimensional in the high pressure isostructural phase, whereas the orthorhombic phase involves three dimensional networks of ‘Ga’ atoms interconnected by strong covalent bonds. - Graphical abstract: High pressure X-ray diffraction patterns of YGa 2 up to ~35 GPa shows an isostructural phase transition at ~5 GPa and transition to an orthorhombic structure ~14 GPa. - Highlights: • High pressure structural stability studies were carried out on YGa 2 up to 35 GPa. • An isostructural transition with reduced c/a ratio was observed above 6 GPa. • Above 17.5 GPa, the compound transformed to orthorhombic structure. • PAW based electronic structure calculations have been carried out. • Calculations confirm the experimentally observed structural transitions

  2. Derivation of Elastic Stress Concentration Factor Equations for Debris Fretting Flaws in Pressure Tubes of Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Oh, Young Jin

    2014-01-01

    If volumetric flaws such as bearing pad fretting flaws and debris fretting flaws are detected in the pressure tubes of pressurized heavy water reactors during in-service inspection, the initiation of fatigue cracks and delayed hydrogen cracking from the detected volumetric flaws shall be assessed by using elastic stress concentration factors in accordance with CSA N285.8-05. The CSA N285.8-05 presents only an approximate formula based on linear elastic fracture mechanics for the debris fretting flaw. In this study, an engineering formula considering the geometric characteristics of the debris fretting flaw in detail was derived using two-dimensional finite element analysis and Kinectrics, Inc.'s engineering procedure with slight modifications. Comparing the application results obtained using the derived formula with the three-dimensional finite element analysis results, it is found that the results obtained using the derived formula agree well with the results of the finite element analysis

  3. Blood pressure in childhood : epidemiological probes into the aetiology of high blood pressure

    NARCIS (Netherlands)

    A. Hofman (Albert)

    1983-01-01

    textabstractHigh arterial blood pressure takes a heavy toll in western populations (1 ). Its causes are still largely unknown, but its sequelae, a variety of cardiovascular and renal diseases, have been referred to as "a modern scourge" (2). High blood pressure of unknown cause, or

  4. A high pressure x-ray diffraction study of titanium disulfide

    International Nuclear Information System (INIS)

    Aksoy, Resul; Selvi, Emre; Knudson, Russell; Ma Yanzhang

    2009-01-01

    A high pressure angle dispersive synchrotron x-ray diffraction study of titanium disulfide (TiS 2 ) was carried out to pressures of 45.5 GPa in a diamond-anvil cell. We observed a phase transformation of TiS 2 beginning at about 20.7 GPa. The structure of the high pressure phase needs further identification. By fitting the pressure-volume data to the third-order Birch-Murnaghan equation of state, the bulk modulus, K 0T , was determined to be 45.9 ± 0.7 GPa with its pressure derivative, K' 0T , being 9.5 ± 0.3 at pressures lower than 17.8 GPa. It was found that the compression behavior of TiS 2 is anisotropic along the different axes. The compression ratio of the c-axis is about nine times larger than the a-axis when pressures are lower than 1 GPa. It suddenly decreases to three times larger at pressures of about 3 GPa. This ratio shows a linear decrease with a slope of negative 0.048 at pressures below phase transformation.

  5. High pressure behaviour of uranium mono pnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Ojha, Poonam; Sanyal, S.P.; Aynyas, Mahendra

    2006-01-01

    The pressure induced structural phase transition of three actinide mono pnictides AX (A=U and X=As, Sb, Bi), have been studied theoretically using two body interionic potential with necessary modifications to include the effect of Coulomb screening by the delocalized 5f electrons of the actinide (uranium) ion. The peculiar properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band. The calculated compression curves are compared with the experimental results. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to CsCl (B 2 ) phase at 17GPa, 9.5GPa and 5.3 GPa respectively. The NaCl phase possesses lower energy than CsCl phase and stable at ambient pressure. (author)

  6. High pressure multiple shock response of aluminum

    International Nuclear Information System (INIS)

    Lawrence, R.J.; Asay, J.R.

    1977-01-01

    It is well known that both dynamic yield strength and rate-dependent material response exert direct influence on the development of surface and interface instabilities under conditions of strong shock loading. A detailed understanding of these phenomena is therefore an important aspect of the analysis of dynamic inertial confinement techniques which are being used in such applications as the generation of controlled thermonuclear fusion. In these types of applications the surfaces and interfaces under consideration can be subjected to cyclic loading characterized by shock pressures on the order of 100 GPa or more. It thus becomes important to understand how rate effects and material strength differ from the values observed in the low pressure regime where they are usually measured, as well as how they are altered by the loading history

  7. Study of pressure-volume relationships and higher derivatives of bulk modulus based on generalized equations of state

    International Nuclear Information System (INIS)

    Kushwah, S.S.; Shrivastava, H.C.; Singh, K.S.

    2007-01-01

    We have generalized the pressure-volume (P-V) relationships using simple polynomial and logarithmic expansions so as to make them consistent with the infinite pressure extrapolation according to the model of Stacey. The formulations are used to evaluate P-V relationships and pressure derivatives of bulk modulus upto third order (K', K'' and K''') for the earth core material taking input parameters based on the seismological data. The results based on the equations of state (EOS) generalized in the present study are found to yield good agreement with the Stacey EOS. The generalized logarithmic EOS due to Poirier and Tarantola deviates substantially from the seismic values for P, K and K'. The generalized Rydberg EOS gives almost identical results with the Birch-Murnaghan third-order EOS. Both of them yield deviations from the seismic data, which are in opposite direction as compared to those found from the generalized Poirier-Tarantola logarithmic EOS

  8. Designing high pressure containers for research- principles and applications

    International Nuclear Information System (INIS)

    Anandkumar, V.

    1997-01-01

    The high pressure scientist looks for a well engineered pressure apparatus for high pressure experiments for 1 kbar (0.1 GPa) and above. Often, a variety of difficulties including the choice of materials, design configuration, optimum utilisation of the strength of materials used in the design, are encountered. This article is intended to help the high pressure scientist to select the design approach for pressure retaining container. The limitations imposed by the strength of available materials and engineering standards in building high pressure containers are discussed. Engineering solutions to overcome these limitations with optimal utilisation of the strength of the materials are also discussed. Novel methods to boost up the pressure retaining capacity like multilayered design and autofrettaging are compared along with their relative advantages and disadvantages. Special methods by which it is possible to attain pressures which are several times the yield strength of the materials of construction are presented. In this aspects such as the basis of the codes and their relevance in the design of high pressure equipment will also be described. Discussions are centered around the methods to tackle situations where experimental constraints dictate requirements of pressures higher than those permitted by design codes. Safety features are also discussed. (author)

  9. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  10. Practical conditions in the neutron diffraction under high pressure

    International Nuclear Information System (INIS)

    Kamigaki, Kazuo; Ohashi, Masayoshi

    1993-01-01

    Practical analysis is made on some conditions in utilizing neutrons for the study of atomistic structure of materials under high pressure. Investigation is made on the geometrical conditions; size of the specimen, width of slits, and the rate of extra-scattering. Experiments are performed on the effects of absorption by high pressure cell and the disturbance due to an overlapping of diffraction peaks. An observation is presented on the pressure-induced transformation in RbBr. (author)

  11. An experimental device for accurate ultrasounds measurements in liquid foods at high pressure

    International Nuclear Information System (INIS)

    Hidalgo-Baltasar, E; Taravillo, M; Baonza, V G; Sanz, P D; Guignon, B

    2012-01-01

    The use of high hydrostatic pressure to ensure safe and high-quality product has markedly increased in the food industry during the last decade. Ultrasonic sensors can be employed to control such processes in an equivalent way as they are currently used in processes carried out at room pressure. However, their installation, calibration and use are particularly challenging in the context of a high pressure environment. Besides, data about acoustic properties of food under pressure and even for water are quite scarce in the pressure range of interest for food treatment (namely, above 200 MPa). The objective of this work was to establish a methodology to determine the speed of sound in foods under pressure. An ultrasonic sensor using the multiple reflections method was adapted to a lab-scale HHP equipment to determine the speed of sound in water between 253.15 and 348.15 K, and at pressures up to 700 MPa. The experimental speed-of-sound data were compared to the data calculated from the equation of state of water (IAPWS-95 formulation). From this analysis, the way to calibrate cell path was validated. After this calibration procedure, the speed of sound could be determined in liquid foods by using this sensor with a relative uncertainty between (0.22 and 0.32) % at a confidence level of 95 % over the whole pressure domain.

  12. Generalized enthalpy model of a high-pressure shift freezing process

    KAUST Repository

    Smith, N. A. S.

    2012-05-02

    High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work, we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition, the significant heat-transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature. © 2012 The Royal Society.

  13. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    Science.gov (United States)

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  14. Pressurizer pump reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    During a prolonged outage from November 1986 to May 1990, numerous changes were made at the High Flux Isotope Reactor (HFIR). Some of these changes involved the pressurizer pumps. An analysis was performed to calculate the impact of these changes on the pressurizer system availability. The analysis showed that the availability of the pressurizer system dropped from essentially 100% to approximately 96%. The primary reason for the decrease in availability comes because off-site power grid disturbances sometimes result in a reactor trip with the present pressurizer pump configuration. Changes are being made to the present pressurizer pump configuration to regain some of the lost availability

  15. The effect of KZK1 pressure equation on the sonoluminescence in water and fat tissues

    Science.gov (United States)

    Gheshlaghi, M.; Sadighi-Bonabi, R.; Ghadirifar, A.

    2015-09-01

    The effect of the produced light flashes from sonoluminescence (SL) on the fat tissue and water is studied. By using KZK equation as an essential equation for calculating the thermal source in bio-liquids, the effective bubble parameters in quasi-adiabatic model are calculated and compared in these systems. It is noticed that the temperature and the intensity for fat tissue are about 30% and 38% less than the ones for water respectively. These results are almost in good agreement with the only experimental measurement denoting less SL temperature in bio-liquids which present more suitable condition for using SL in such applications.

  16. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    against conventional technologies for hydrogen production, such as natural gas reforming, the production and investment costs have to be reduced. A reduction of the investment costs may be achieved by increasing the operational pressure and temperature of the electrolyzer, as this will result in: 1.......3 A cm-2 combined with relatively small production costs may lead to both reduced investment and operating costs for hydrogen and oxygen production. One of the produced electrolysis cells was operated for 350 h. Based on the successful results a patent application covering this novel cell was filed...

  17. High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure

    Directory of Open Access Journals (Sweden)

    Yancheng Meng

    2018-05-01

    Full Text Available To realize the practical applications of flexible pressure sensors, the high performance (sensitivity and response time as well as more functionalities are highly desired. In this work, we fabricated a piezoresistive pressure sensor based on the micro-structured composites films of multi-walled carbon nanotubes (MWCNTs and poly (dimethylsiloxane (PDMS. In addition, we establish efficient strategies to improve key performance of our pressure sensor. Its sensitivity is improved up to 474.13 kPa−1 by minimizing pressure independent resistance of sensor, and response time is shorten as small as 2 μs by enhancing the elastic modulus of polymer elastomer. Benefiting from the high performance, the functionalities of sensors are successfully extended to the accurate detection of high frequency mechanical vibration (~300 Hz and large range of air pressure (6–101 kPa, both of which are not achieved before.

  18. What You Should Know About High Blood Pressure and Medications

    Science.gov (United States)

    ... Aortic Aneurysm More What You Should Know About High Blood Pressure and Medications Updated:Jan 18,2017 Is medication ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  19. How Potassium Can Help Control High Blood Pressure

    Science.gov (United States)

    ... Aneurysm More How Potassium Can Help Control High Blood Pressure Updated:Jan 29,2018 Understanding the heart-healthy ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  20. How High Blood Pressure Can Lead to Stroke

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More How High Blood Pressure Can Lead to Stroke Updated:Jan 29,2018 ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  1. High Blood Pressure and Cold Remedies: Which Are Safe?

    Science.gov (United States)

    ... counter cold remedies safe for people who have high blood pressure? Answers from Sheldon G. Sheps, M.D. Over- ... remedies aren't off-limits if you have high blood pressure, but it's important to make careful choices. Among ...

  2. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  3. Impurity trapped excitons under high hydrostatic pressure

    Science.gov (United States)

    Grinberg, Marek

    2013-09-01

    Paper summarizes the results on pressure effect on energies of the 4fn → 4fn and 4fn-15d1 → 4fn transitions as well as influence of pressure on anomalous luminescence in Lnα+ doped oxides and fluorides. A model of impurity trapped exciton (ITE) was developed. Two types of ITE were considered. The first where a hole is localized at the Lnα+ ion (creation of Ln(α+1)+) and an electron is attracted by Coulomb potential at Rydberg-like states and the second where an electron captured at the Lnα+ ion (creation of Ln(α-1)+) and a hole is attracted by Coulomb potential at Rydberg-like states. Paper presents detailed analysis of nonlinear changes of energy of anomalous luminescence of BaxSr1-xF2:Eu2+ (x > 0.3) and LiBaF3:Eu2+, and relate them to ITE-4f65d1 states mixing.

  4. Phase transition of intermetallic TbPt at high temperature and high pressure

    Science.gov (United States)

    Qin, Fei; Wu, Xiang; Yang, Ke; Qin, Shan

    2018-04-01

    Here we present synchrotron-based x-ray diffraction experiments combined with diamond anvil cell and laser heating techniques on the intermetallic rare earth compound TbPt (Pnma and Z  =  4) up to 32.5 GPa and ~1800 K. The lattice parameters of TbPt exhibit continuous compression behavior up to 18.2 GPa without any evidence of phase transformation. Pressure-volume data were fitted to a third-order Birch-Murnaghan equation of state with V 0  =  175.5(2) Å3, {{K}{{T0}}}   =  110(5) GPa and K{{T0}}\\prime   =  3.8(7). TbPt exhibits anisotropic compression with β a   >  β b   >  β c and the ratio of axial compressibility is 2.50:1.26:1.00. A new monoclinic phase of TbPt assigned to the Pc or P2/c space group was observed at 32.5 GPa after laser heating at ~1800 K. This new phase is stable at high pressure and presented a quenchable property on decompression to ambient conditions. The pressure-volume relationship is well described by the second-order Birch-Murnaghan equation of state, which yields V 0  =  672(4) Å3, {{K}{{T0}}}   =  123(6) GPa, which is about ~14% more compressible than the orthorhombic TbPt. Our results provide more information on the structure and elastic property view, and thus a better understanding of the physical properties related to magnetic structure in some intermetallic rare earth alloys.

  5. Microstructures define melting of molybdenum at high pressures

    Science.gov (United States)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  6. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  7. High blood pressure in acute ischemic stroke and clinical outcome.

    Science.gov (United States)

    Manabe, Yasuhiro; Kono, Syoichiro; Tanaka, Tomotaka; Narai, Hisashi; Omori, Nobuhiko

    2009-11-16

    This study aimed to evaluate the prognostic value of acute phase blood pressure in patients with acute ischemic stroke by determining whether or not it contributes to clinical outcome. We studied 515 consecutive patients admitted within the first 48 hours after the onset of ischemic strokes, employing systolic and diastolic blood pressure measurements recorded within 36 hours after admission. High blood pressure was defined when the mean of at least 2 blood pressure measurements was ≥200 mmHg systolic and/or ≥110 mmHg diastolic at 6 to 24 hours after admission or ≥180 mmHg systolic and/or ≥105 mmHg diastolic at 24 to 36 hours after admission. The high blood pressure group was found to include 16% of the patients. Age, sex, diabetes mellitus, hypercholesterolemia, atrial fibrillation, ischemic heart disease, stroke history, carotid artery stenosis, leukoaraiosis, NIH Stroke Scale (NIHSS) on admission and mortality were not significantly correlated with either the high blood pressure or non-high blood pressure group. High blood pressure on admission was significantly associated with a past history of hypertension, kidney disease, the modified Rankin Scale (mRS) on discharge and the length of stay. On logistic regression analysis, with no previous history of hypertension, diabetes mellitus, atrial fibrillation, and kidney disease were independent risk factors associated with the presence of high blood pressure [odds ratio (OR), 1.85 (95% confidence interval (CI): 1.06-3.22), 1.89 (95% CI: 1.11-3.22), and 3.31 (95% CI: 1.36-8.04), respectively]. Multi-organ injury may be presented in acute stroke patients with high blood pressure. Patients with high blood pressure had a poor functional outcome after acute ischemic stroke.

  8. Prediction of high pressure vapor-liquid equilibria with mixing rule using ASOG group contribution method

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Kojima, K.; Kurihara, K.

    1985-02-01

    To develop a widely applicable method for predicting high-pressure vapor-liquid equilibria by the equation of state, a mixing rule is proposed in which mixture energy parameter ''..cap alpha..'' of theSoave-RedlichKwong, Peng-Robinson, and Martin cubic equations of state is expressed by using the ASOG group contribution method. The group pair parameters are then determined for 14 group pairs constituted by six groups, i.e. CH/sub 4/, CH/sub 3/, CH/sub 2/, N/sub 2/, H/sub 2/, and CO/sub 2/ groups. By using the group pair parameters determined, high-pressure vapor-liquid equilibria are predicted with good accuracy for binary and ternary systems constituted by n-paraffins, nitrogen, hydrogen, and carbon dioxide in the temperature range of 100 - 450K.

  9. Radioresistance increase in polymers at high pressures. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Milinchuk, V; KIRJUKHIN, V; KLINSHPONT, E

    1977-06-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibers were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene, 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures.

  10. Protection against high intravascular pressure in giraffe legs

    DEFF Research Database (Denmark)

    Petersen, Karin K; Hørlyck, Arne; Østergaard, Kristine Hovkjær

    2013-01-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination....... All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure....... revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along...

  11. Foundations of High-Pressure Thermal Plasmas

    Science.gov (United States)

    Murphy, Anthony B.; Uhrlandt, Dirk

    2018-06-01

    An introduction to the main methods used to produce, model and measure thermal plasmas is provided, with emphasis on the differences between thermal plasmas and other types of processing plasmas. The critical properties of thermal plasmas are explained in physical terms and their importance in different applications is considered. The characteristics, and advantages and disadvantages, of the different main types of thermal plasmas (transferred and non-transferred arcs, radio-frequency inductively-coupled plasmas and microwave plasmas) are discussed. The methods by which flow is stabilized in arc plasmas are considered. The important concept of local thermodynamic equilibrium (LTE) is explained, leading into a discussion of the importance of thermophysical properties, and their calculation in LTE and two-temperature plasmas. The standard equations for modelling thermal plasmas are presented and contrasted with those used for non-equilibrium plasmas. Treatments of mixed-gas and non-LTE plasmas are considered, as well as the sheath regions adjacent to electrodes. Finally, the main methods used for electrical, optical, spectroscopic and laser diagnostics of thermal plasmas are briefly introduced, with an emphasis on the required assumptions for their reliable implementation, and the specific requirements of thermal plasmas.

  12. CARS diagnostics of high pressure discharges

    International Nuclear Information System (INIS)

    Uhlenbusch, J.

    2001-01-01

    After a short description of the principles of the CARS, RECARS and POLCARS techniques and a discussion of setups for CARS experiments some experimental results are summarized. The results concern mainly plasma under atmospheric pressure, in particular the determination of temperature in a CO 2 laser-induced pyrolysis flame burning in a silane-acetylene gas mixture, the measurements of N 2 vibrational and rotational temperatures as well as the electron density by CARS and of an NO minority by POLCARS in an atmospheric microwave discharge, and finally RECARS experiments on indium iodide, Which is present in metal halide discharge lamps. Guided by these examples some problems and difficulties arising when performing CARS measurements are discussed

  13. Development of high pressure pipe scanners

    International Nuclear Information System (INIS)

    Kim, Jae H.; Lee, Jae C.; Moon, Soon S.; Eom, Heung S.; Choi, Yu R.

    1998-12-01

    This report describes an automatic ultrasonic scanning system for pressure pipe welds, which was developed in this project using recent advanced technologies on mobile robot and computer. The system consists of two modules: a robot scanner module which navigates and manipulates scanning devices, and a data acquisition module which generates ultrasonic signal and processes the data from the scanner. The robot has 4 magnetic wheels and 2 -axis manipulator on which ultrasonic transducer attached. The wheeled robot can navigate curved surface such as outer wall of circular pipes. Magnetic wheels were optimally designed through magnetic field analysis. Free surface sensing and line tracking control algorithm were developed and implemented, and the control devices and software can be used in practical inspection works. We expect our system can contribute to reduction of inspection time, performance enhancement, and effective management of inspection results

  14. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    Science.gov (United States)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2018-01-01

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.

  15. Penetration of hydrogen isotopes through EhI 698 alloy at high pressure and temperature

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Voznyak, Ya.; Granovskij, V.B.

    1986-01-01

    The paper deals with investigations of the process of hydrogen and deuterium penetration through the high-temperature alloy EhI-698 at a pressure up to 1 kbar and temperature up to 1050 K. Parameters of the process obey Sieverts's law and can be described by Arrenius's and Vant-Goff's equations. The obtained results lead to a conclusion that the alloy EhI-698 is good for vessels to be employed in hydrogen media

  16. Thermodynamically Controlled High-Pressure High-Temperature Synthesis of Crystalline Fluorinated sp 3 -Carbon Networks

    Energy Technology Data Exchange (ETDEWEB)

    Klier, Kamil; Landskron, Kai

    2015-11-19

    We report the feasibility of the thermodynamically controlled synthesis of crystalline sp3-carbon networks. We show that there is a critical pressure below which decomposition of the carbon network is favored and above which the carbon network is stable. Based on advanced, highly accurate quantum mechanical calculations using the all-electron full-potential linearized augmented plane-wave method (FP-LAPW) and the Birch–Murnaghan equation of state, this critical pressure is 26.5 GPa (viz. table of contents graphic). Such pressures are experimentally readily accessible and afford thermodynamic control for suppression of decomposition reactions. The present results further suggest that a general pattern of pressure-directed control exists for many isolobal conversions of sp2 to sp3 allotropes, relating not only to fluorocarbon chemistry but also extending to inorganic and solid-state materials science.

  17. Various high precision measurements of pressure in atomic energy industry

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Inoue, Akira; Hosoma, Takashi; Tanaka, Izumi; Gabane, Tsunemichi.

    1987-01-01

    As for the pressure measurement in atomic energy industry, it is mostly the measurement using differential pressure transmitters and pressure transmitters for process measurement with the general accuracy of measurement of 0.2 - 0.5 % FS/year. However, recently for the development of nuclear fusion reactors and the establishment of nuclear fuel cycle accompanying new atomic energy technology, there are the needs of the pressure measurement having higher accuracy of 0.01 % FS/year and high resolution, and quartz vibration type pressure sensors appeared. New high accuracy pressure measurement techniques were developed by the advance of data processing and the rationalization of data transmission. As the results, the measurement of the differential pressure of helium-lithium two-phase flow in the cooling system of nuclear fusion reactors, the high accuracy measuring system for the level of plutonium nitrate and other fuel substance in tanks in fuel reprocessing and conversion, the high accuracy measurement of atmospheric pressure and wind velocity in ducts, chimneys and tunnels in nuclear facilities and so on became feasible. The principle and the measured data of quartz vibration type pressure sensors are shown. (Kako, I.)

  18. High-pressure applications in medicine and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C [Centro Nacional de Ressonancia Magnetica Nuclear, Departamento de Bioquimica Medica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 (Brazil)

    2004-04-14

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  19. High-pressure applications in medicine and pharmacology

    International Nuclear Information System (INIS)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C

    2004-01-01

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic

  20. Temperature control for high pressure processes up to 1400 MPa

    International Nuclear Information System (INIS)

    Reineke, K; Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s -1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling

  1. Future pulsed magnetic field applications in dynamic high pressure research

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Hawke, R.S.; Burgess, T.J.

    1977-01-01

    The generation of large pressures by magnetic fields to obtain equation of state information is of fairly recent origin. Magnetic fields used in compression experiments produce an almost isentropic sample compression. Axial magnetic field compression is discussed together with a few results chosen to show both advantages and limitations of the method. Magnetic compression with azimuthal fields is then considered. Although there are several potential pitfalls, the possibilities are encouraging for obtaining very large pressures. Next, improved diagnostic techniques are considered. An x-ray ''streaking camera'' is proposed for volume measurements and a more detailed discussion is given on the use of the shift of the ruby fluorescence lines for pressure measurements. Finally, some additional flux compression magnetic field sources are discussed briefly. 5 figures, 2 tables

  2. A novel SOI pressure sensor for high temperature application

    International Nuclear Information System (INIS)

    Li Sainan; Liang Ting; Wang Wei; Hong Yingping; Zheng Tingli; Xiong Jijun

    2015-01-01

    The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 °C in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors. (semiconductor devices)

  3. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  4. High pressure processing reaches the U.S. market

    International Nuclear Information System (INIS)

    Mermelstein, N.H.

    1997-01-01

    The first food product commercially produced by a U.S. company using high-pressure processing has had successful test market results. High-pressure processing permits food to be preserved by subjecting it to pressures in the range of 60,000-100,000 psi for a short time instead of exposing the food to heat, freezing, chemicals, or irradiation. To produce Classic Guacamole, Avomex of Keller, Texas, uses a batch isostatic press to deactivate the enzymes in the avocado and to kill bacteria, obtaining a refrigerated shelf life of over 30 days. The guacamole is then vacuum packed and processed again. The product undergoes no heat treatment and does not contain preservatives, and the high pressure does not affect its texture, color, or taste. Meanwhile, a continuous system for high-pressure processing of pumpable foods is currently being developed by Flow International of Kent, Washington, and will be used for testing and applications work at Oregon State University

  5. High pressure orthorhombic structure of CuInSe2

    International Nuclear Information System (INIS)

    Bovornratanaraks, T; Saengsuwan, V; Yoodee, K; McMahon, M I; Hejny, C; Ruffolo, D

    2010-01-01

    The structural behaviour of CuInSe 2 under high pressure has been studied up to 53 GPa using angle-dispersive x-ray powder diffraction techniques. The previously reported structural phase transition from its ambient pressure tetragonal structure to a high pressure phase with a NaCl-like cubic structure at 7.6 GPa has been confirmed. On further compression, another structural phase transition is observed at 39 GPa. A full structural study of this high pressure phase has been carried out and the high pressure structure has been identified as orthorhombic with space group Cmcm and lattice parameters a = 4.867(8) A, b = 5.023(8) A and c = 4.980(3) A at 53.2(2) GPa. This phase transition behaviour is similar to those of analogous binary and trinary semiconductors, where the orthorhombic Cmcm structure can also be viewed as a distortion of the cubic NaCl-type structure.

  6. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  7. Fluorinert as a pressure-transmitting medium for high-pressure diffraction studies

    International Nuclear Information System (INIS)

    Varga, Tamas; Wilkinson, Angus P.; Angel, Ross J.

    2003-01-01

    Fluorinert is a liquid pressure-transmitting medium that is widely used in high-pressure diffraction work. A systematic study of five different fluorinerts was carried out using single-crystal x-ray diffraction in a diamond-anvil cell in order to determine the pressure range over which they provide a hydrostatic stress state to the sample. It was found that none of the fluorinerts studied can be considered hydrostatic above 1.2 GPa, a lower pressure than reported previously

  8. Moessbauer study of phase transitions under high hydrostatic pressures. 1

    International Nuclear Information System (INIS)

    Kapitanov, E.V.; Yakovlev, E.N.

    1979-01-01

    Experimental results of the hydrostatic pressure influence on Moessbauer spectrum parameters are obtained over the pressure range including the area of structural phase transition. A linear increase of the Moessbauer effect probability (recoilless fraction) is accompanied by a linear decrease of the electron density at tin nuclei within the pressure range foregoing the phase transition. The electric resistance and the recoilless fraction of the new phase of Mg 2 Sn are lower, but the electron density at tin nuclei is greater than the initial phase ones. Hydrostatic conditions allow to fix clearly the diphasic transition area and to determine the influence of the pressure on the Moessbauer line position and on the recoilless fraction of the high pressure phase. The phase transition heat Q = 415 cal mol -1 is calculated using recoilless fractions of the high and low pressure phases at 25 kbar. The present results are qualitatively and quantitatively different from the results, obtained at nonhydrostatic conditions. (author)

  9. The effect of high pressure on nitrogen compounds of milk

    International Nuclear Information System (INIS)

    Kielczewska, Katarzyna; Czerniewicz, Maria; Michalak, Joanna; Brandt, Waldemar

    2004-01-01

    The effect of pressurization at different pressures (from 200 to 1000 MPa, at 200 MPa intervals, t const. = 15 min) and periods of time (from 15 to 35 min, at 10 min intervals, p const. = 800 MPa) on the changes of proteins and nitrogen compounds of skimmed milk was studied. The pressurization caused an increase in the amount of soluble casein and denaturation of whey proteins. The level of nonprotein nitrogen compounds and proteoso-peptone nitrogen compounds increased as a result of the high-pressure treatment. These changes increased with an increase in pressure and exposure time. High-pressure treatment considerably affected the changes in the conformation of milk proteins, which was reflected in the changes in the content of proteins sedimenting and an increase in their degree of hydration

  10. Determining the equation of state of highly plasticised metals from boundary velocimetry

    KAUST Repository

    Hinch, E. J.

    2010-01-01

    This is a follow-up paper to that of Ockendon et al. (J.Eng.Math., this issue). A more detailed derivation is provided, along with a numerical method which determines directly the full equation of state relating pressure to density. The issue

  11. High resolution solutions of the Euler equations for vortex flows

    International Nuclear Information System (INIS)

    Murman, E.M.; Powell, K.G.; Rizzi, A.; Tel Aviv Univ., Israel)

    1985-01-01

    Solutions of the Euler equations are presented for M = 1.5 flow past a 70-degree-swept delta wing. At an angle of attack of 10 degrees, strong leading-edge vortices are produced. Two computational approaches are taken, based upon fully three-dimensional and conical flow theory. Both methods utilize a finite-volume discretization solved by a pseudounsteady multistage scheme. Results from the two approaches are in good agreement. Computations have been done on a 16-million-word CYBER 205 using 196 x 56 x 96 and 128 x 128 cells for the two methods. A sizable data base is generated, and some of the practical aspects of manipulating it are mentioned. The results reveal many interesting physical features of the compressible vortical flow field and also suggest new areas needing research. 16 references

  12. Low Power and High Sensitivity MOSFET-Based Pressure Sensor

    International Nuclear Information System (INIS)

    Zhang Zhao-Hua; Ren Tian-Ling; Zhang Yan-Hong; Han Rui-Rui; Liu Li-Tian

    2012-01-01

    Based on the metal-oxide-semiconductor field effect transistor (MOSFET) stress sensitive phenomenon, a low power MOSFET pressure sensor is proposed. Compared with the traditional piezoresistive pressure sensor, the present pressure sensor displays high performances on sensitivity and power consumption. The sensitivity of the MOSFET sensor is raised by 87%, meanwhile the power consumption is decreased by 20%. (cross-disciplinary physics and related areas of science and technology)

  13. High temperature pressure water's blowdown into water. Experimental results

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  14. On calculation of difference in specific heats at constant pressure and constant volume using an empiric Nernst-Lindeman equation

    International Nuclear Information System (INIS)

    Leont'ev, K.L.

    1981-01-01

    Known theoretical and empirical formulae are considered for the difference in specific heats at constant pressure and volume. On the basis of the Grunaiser law on the ratio of specific heat to thermal expansion and on the basis of the correlation proposed by the author, between this ratio and average velocity of elastic waves obtained in a new expression for the difference in specific heats and determined are conditions at which empiric Nernst-Lindeman equation can be considered to be strict. Results of calculations for metals with fcc lattice are presented

  15. Study of the high-pressure helium phase diagram using molecular dynamics

    International Nuclear Information System (INIS)

    Koci, L; Ahuja, R; Belonoshko, A B; Johansson, B

    2007-01-01

    The rich occurrence of helium and hydrogen in space makes their properties highly interesting. By means of molecular dynamics (MD), we have examined two interatomic potentials for 4 He. Both potentials are demonstrated to reproduce high-pressure solid and liquid equation of state (EOS) data. The EOS, solid-solid transitions and melting at high pressures (P) were studied using a two-phase method. The Buckingham potential shows a good agreement with theoretical and experimental EOS, but does not reproduce experimental melting data. The Aziz potential shows a perfect match with theoretical melting data. We conclude that there is a stable body-centred-cubic (bcc) phase for 4 He at temperatures (T) above 340 K and pressures above 22 GPa for the Buckingham potential, whereas no bcc phase is found for the Aziz potential in the applied PT range

  16. Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects

    International Nuclear Information System (INIS)

    Schmalz, R.

    1980-11-01

    The resistive MHD equations for toroidal plasma configurations are reduced by expanding to the second order in epsilon, the inverse aspect ratio, allowing for high β = μsub(o)p/B 2 of order epsilon. The result is a closed system of nonlinear, three-dimensional equations where the fast magnetohydrodynamic time scale is eliminated. In particular, the equation for the toroidal velocity remains decoupled. (orig.)

  17. A high-order q-difference equation for q-Hahn multiple orthogonal polynomials

    DEFF Research Database (Denmark)

    Arvesú, J.; Esposito, Chiara

    2012-01-01

    A high-order linear q-difference equation with polynomial coefficients having q-Hahn multiple orthogonal polynomials as eigenfunctions is given. The order of the equation coincides with the number of orthogonality conditions that these polynomials satisfy. Some limiting situations when are studie....... Indeed, the difference equation for Hahn multiple orthogonal polynomials given in Lee [J. Approx. Theory (2007), ), doi: 10.1016/j.jat.2007.06.002] is obtained as a limiting case....

  18. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  19. High-pressure phase transition in Ho2O3

    International Nuclear Information System (INIS)

    Lonappan, Dayana; Shekar, N.V. Chandra; Ravindran, T.R.; Sahu, P. Ch.

    2010-01-01

    High-pressure X-ray diffraction and Raman studies on holmium sesquioxide (Ho 2 O 3 ) have been carried out up to a pressure of ∼17 GPa in a diamond-anvil cell at room temperature. Holmium oxide, which has a cubic or bixbyite structure under ambient conditions, undergoes an irreversible structural phase transition at around 9.5 GPa. The high-pressure phase has been identified to be low symmetry monoclinic type. The two phases coexist to up to about 16 GPa, above which the parent phase disappears. The high-pressure laser-Raman studies have revealed that the prominent Raman band ∼370 cm -1 disappears around the similar transition pressure. The bulk modulus of the parent phase is reported.

  20. Mechanically recovered poultry meat sausages manufactured with high hydrostatic pressure.

    Science.gov (United States)

    Yuste, J; Mor-Mur, M; Capellas, M; Guamis, B; Pla, R

    1999-06-01

    The effect of high pressure processing at high temperature on texture and color of frankfurter-type sausages made with different contents of mechanically recovered poultry meat (MRPM) was evaluated and compared with that of a standard cooking process. Five types of sausages containing 100, 75, 50, 25, and 0% MRPM and 0, 25, 50, 75, and 100% of minced pork meat (MPM), respectively, were manufactured. They were pressurized at 500 MPa for 30 min at 50, 60, 70, and 75 C or cooked at 75 C for 30 min. Pressure-treated sausages were less springy and firm, but more cohesive. Moreover, color of pressurized sausages was lighter and more yellow than that of conventionally cooked sausages. Addition of MPM increased cohesiveness, hardness, and force at 80% compression. Minced pork meat also caused the appearance of sausages to be lighter, less red, and less yellow. Cooked sausages made with MRPM can have an attractive appearance and texture via high pressure processing.

  1. Germination of vegetable seeds exposed to very high pressure

    Science.gov (United States)

    Mori, Y.; Yokota, S.; Ono, F.

    2012-07-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  2. Germination of vegetable seeds exposed to very high pressure

    International Nuclear Information System (INIS)

    Mori, Y; Yokota, S; Ono, F

    2012-01-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  3. HIGH HYDROSTATIC PRESSURE SYSTEMS USE IN FOOD INDUSTRY

    OpenAIRE

    Yahya TÜLEK; Gökçe FİLİZAY

    2006-01-01

    Food preservation is a continuous fight against microorganisms spoiling the food or making it unsafe. The last decade, non-thermal inactivation techniques have been a major research issue, driven by an increased consumer demand for nutritious, fresh like food products with a high organoleptical quality and an acceptable shelf life. Investigated inactivation technologies are ionisation radiation, high hydrostatic pressure (HHP), pulsed electrical fields, high pressure homogenisation, UV decont...

  4. Glassy selenium at high pressure: Le Chatelier's principle still works

    Science.gov (United States)

    Brazhkin, V. V.; Tsiok, O. B.

    2017-10-01

    Selenium is the only easily vitrified elementary substance. Numerous experimental studies of glassy Se (g -Se) at high pressures show a large spread in the data on the compressibility and electrical resistivity of g -Se. Furthermore, H. Liu et al. [Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] have arrived at the surprising conclusion that the volume of glass increases during pressure-induced crystallization. We have performed high-precision measurements of the specific volume and electrical resistivity of glassy selenium (g -Se) at high hydrostatic pressures up to 9 GPa. The measured bulk modulus at normal pressure is B =(9.0 5 ±0.15 ) GPa and its pressure derivative is BP'=6.4 ±0.2 . In the pressure range P <3 GPa, glassy selenium has an anomalously large negative second derivative of the bulk modulus. The electrical resistivity of g -Se decreases almost exponentially with increasing pressure and reaches 20 Ω cm at a pressure of 8.75 GPa. The inelastic behavior and weak relaxation of the volume for g -Se begin at pressures above 3.5 GPa; the volume and logarithm of the electrical resistivity relax significantly (logarithmically with the time) at pressures above 8 GPa. Bulk measurements certainly indicate that the volume of g -Se glass in the crystallization pressure range is larger than the volumes of both appearing crystalline phases (by 2% and 4%). Therefore, the "volume expansion phenomenon" suggested in [H. Liu et al., Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] is not observed, and the pressure-induced crystallization of glassy selenium is consistent with the laws of thermodynamics.

  5. Assessment of Clostridium perfringens spore response to high hydrostatic pressure and heat with nisin.

    Science.gov (United States)

    Gao, Yulong; Qiu, Weifen; Wu, Ding; Fu, Qiang

    2011-08-01

    The elimination of spores from low-acid foods presents food-processing and food-safety challenges to high-pressure processing (HPP) developers as bacterial spores are extremely resistant to pressure. Therefore, the effects of pressure (400-800 MPa), temperature (35-95 °C), and nisin (0-496 IU/mL) on the inactivation of Clostridium perfringens AS 64701 spores at various pressure-holding times (7.5-17.5 min) were explored. A second-order polynomal equation for HPP- and nisin-induced inactivation of C. perfringens spores was constructed with response surface methodology. Experiment results showed that the experimental values were shown to be significantly in agreement with the predicted values because the adjusted determination coefficient (R (Adj)²) was 0.9708 and the level of significance was P pressure of 654 Mpa, temperature of 74 °C, pressure-holding time of 13.6 min, and nisin concentration of 328 IU/mL. The validation of the model equation for predicting the optimum response values was verified effectively by ten test points that were not used in the establishment of the model. Compared with conventional HPP techniques, the main process advantages of HPP-nisin combination sterilization in the UHT milk are, lower pressure, temperature, natural preservative (nisin), and in a shorter treatment time. The synergistic inactivation of bacteria by HPP-nisin combination is a promising and natural method to increase the efficiency and safety of high-pressure pasteurization.

  6. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  7. High hydrostatic pressure extraction of phenolic compounds from ...

    African Journals Online (AJOL)

    High hydrostatic pressure processing (HHPP) is a food processing method, in which food is subjected to the elevated pressure which is mostly between 100 to 800 MPa. HHPP is seen not only in food engineering, but also have other application areas, such as extraction of active ingredients from natural biomaterials.

  8. Growth and high pressure studies of zirconium sulphoselenide ...

    Indian Academy of Sciences (India)

    Growth and high pressure studies of zirconium sulphoselenide single ... tance was monitored in a Bridgman opposed anvil set-up up to 8 GPa pressure to identify .... The optical band gaps of the as-grown crystals were obtained by optical ab-.

  9. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction

    DEFF Research Database (Denmark)

    Marshall, William G.; Urquhart, Andrew; Oswald, Iain D. H.

    2015-01-01

    This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low...

  10. High pressure phases of terbium: Possibility of a thcp phase

    International Nuclear Information System (INIS)

    Staun Olsen, J.; Steenstrup, S.; Gerward, L.

    1985-01-01

    High pressure phases of trivalent Tb studied by energy dispersive X-ray diffraction with synchrotron radiation exhibits the closed packed sequence (hcp -> Sm -> dhcp -> fcc) typical of the trivalent rare earth metals. Furthermore, a phase consistent with a triple hexagonal closed packed (thcp) structure was observed in a narrow pressure range around 30 GPa. (orig.)

  11. Safety analysis of high pressure gasous fuel container punctures

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R. [Univ. of Miami, Coral Gables, FL (United States)

    1995-09-01

    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.

  12. Teaming Up Against High Blood Pressure PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2012-09-04

    Nearly one-third of American adults have high blood pressure, and more than half of them don’t have it under control. Simply seeing a doctor and taking medications isn’t enough for many people who have high blood pressure. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  13. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  14. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  15. A phenomenological one-parameter equation of state for osmotic pressures of PEG and other neutral flexible polymers in good solvents

    DEFF Research Database (Denmark)

    Cohen, J.A.; Podgornik, R; Hansen, Per Lyngs

    2009-01-01

    We present a phenomenological one-parameter scaling equation of state that accurately represents osmotic pressures of neutral flexible polymers in good solvents from the dilute through the semidilute regime. The equation comprises a sum of scaled van't Hoff and des Cloizeaux terms including a fit...

  16. Trends in high pressure developments for new perspectives

    Science.gov (United States)

    Largeteau, Alain; Prakasam, Mythili

    2018-06-01

    Temperature and Pressure are two parameters in the universe, where pressure represents the largest scale in comparison to temperature. The design of high pressure equipment depends mainly on the media used which could be gas, liquid or solid and the objective could be synthesis of materials or in situ characterization. The development of new research fields requiring high pressure equipment which are currently in Bordeaux - France are based on the historical development of high pressure domain initiated by Professor Gerard DEMAZEAU and his team during the last half century, which is discussed here. The main concepts governing the effect of pressure on materials synthesis is by the combination of high pressure and high temperature which are described with apt examples. There is an upsurge in various technologies for strong development for the synthesis of materials to drive several possibilities, for example: to reach very high density to obtain optical ceramics (by conventional SPS), to diminish parameters (P, T, t) of synthesis (by HP-SPS), to sinter at low temperature thermal sensitive composition (by HyS), to consolidate porous materials (by FIP), to densify biocomposite with cold decontamination (by HHP) simultaneously, etc.

  17. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch

    2005-01-01

    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  18. Coherent Raman scattering in high-pressure/high-temperature fluids: An overview

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.

    1990-01-01

    The present understanding of high-pressure/high-temperature dense-fluid behavior is derived almost exclusively from hydrodynamic and thermodynamic measurements. Such results average over the microscopic aspects of the materials and are, therefore, insufficient for a complete understanding of fluid behavior. At the present, dense-fluid models can be verified only to the extend that they agree with the macroscopic measurements. Recently, using stimulated Raman scattering, Raman induced Kerr effect scattering, and coherent anti-Stokes Raman scattering, we have been able to probe some of the microscopic phenomenology of these dense fluids. In this paper, we discuss primarily the use of CARS in conjunction with a two-stage light-gas gun to obtain vibrational spectra of shock-compressed liquid N 2 , O 2 , CO, their mixtures, CH 3 NO 2 , and N 2 O. These experimental spectra are compared to synthetic spectra calculated using a semiclassical model for CARS intensities and best fit vibrational frequencies, peak Raman susceptibilities, and Raman linewidths. For O 2 , the possibility of resonance enhancement from collision-induced absorption is addressed. Shifts in the vibrational frequencies reflect the influence of increased density and temperature on the intramolecular motion. The derived parameters suggest thermal equilibrium of the vibrational levels is established less than a few nanoseconds after shock passage. Vibrational temperatures are obtained that agree with those derived from equation-of-state calculations. Measured linewidths suggest that vibrational dephasing times have decreased to subpicosecond values at the highest shock pressures

  19. Properties of molecular solids and fluids at high pressures and temperatures. [Final report

    International Nuclear Information System (INIS)

    Etters, R.D.

    1985-01-01

    Equilibrium structures and orientations, lattice vibrational and librational model frequencies, intramolecular vibron mode frequencies, sound velocities, equations of state, compressibilities, and structural and orientational phase transitions in molecular solids are determined over a wide range of pressures and temperatures. In the high temperature fluid phase the equations of state, vibron frequencies, the melting transition, specific heats, compressibilities, second virial coefficients, viscosities and other transport properties, and the nature of orientational and magnetic correlations are determined. The techniques used include several strategies to optimize multi-dimensional functions as a means to determine equilibrium structures and orientations, self consistent phonon lattice dynamics methods, constant pressure and constant volume Monte-Carlo strategies with continuously deformable boundary conditions, mean field approximations, and classical perturbation methods. Systems studied include N 2 , O 2 , CO, CO 2 , F 2 , N 2 O, benzine, nitromethane, HCL, HBr, and H 2 . 50 refs., 4 figs

  20. Density and Viscosity Measurement of Diesel Fuels at Combined High Pressure and Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2013-07-01

    Full Text Available We report the measurement of the viscosity and density of various diesel fuels, obtained from British refineries, at elevated pressures up to 500 MPa and temperatures in the range 298 K to 373 K. The measurement and prediction procedures of fluid properties under high pressure conditions is of increasing interest in many processes and systems including enhanced oil recovery, automotive engine fuel injection, braking, and hydraulic systems. Accurate data and understanding of the fluid characteristic in terms of pressure, volume and temperature is required particularly where the fluid is composed of a complex mixture or blend of aliphatic or aromatic hydrocarbons. In this study, high pressure viscosity data was obtained using a thermostatically-controlled falling sinker-type high pressure viscometer to provide reproducible and reliable viscosity data based on terminal velocity sinker fall times. This was supported with density measurements using a micro-pVT device. Both high-pressure devices were additionally capable of illustrating the freezing points of the hydrocarbon mixtures. This work has, thus, provided data that can extend the application of mixtures of commercially available fuels and to test the validity of available predictive density and viscosity models. This included a Tait-style equation for fluid compressibility prediction. For complex diesel fuel compositions, which have many unidentified components, the approach illustrates the need to apply appropriate correlations, which require accurate knowledge or prediction of thermodynamic properties.

  1. Impact of a Diagnostic Pressure Equation Constraint on Tornadic Supercell Thunderstorm Forecasts Initialized Using 3DVAR Radar Data Assimilation

    Directory of Open Access Journals (Sweden)

    Guoqing Ge

    2013-01-01

    Full Text Available A diagnostic pressure equation constraint has been incorporated into a storm-scale three-dimensional variational (3DVAR data assimilation system. This diagnostic pressure equation constraint (DPEC is aimed to improve dynamic consistency among different model variables so as to produce better data assimilation results and improve the subsequent forecasts. Ge et al. (2012 described the development of DPEC and testing of it with idealized experiments. DPEC was also applied to a real supercell case, but only radial velocity was assimilated. In this paper, DPEC is further applied to two real tornadic supercell thunderstorm cases, where both radial velocity and radar reflectivity data are assimilated. The impact of DPEC on radar data assimilation is examined mainly based on the storm forecasts. It is found that the experiments using DPEC generally predict higher low-level vertical vorticity than the experiments not using DPEC near the time of observed tornadoes. Therefore, it is concluded that the use of DPEC improves the forecast of mesocyclone rotation within supercell thunderstorms. The experiments using different weighting coefficients generate similar results. This suggests that DPEC is not very sensitive to the weighting coefficients.

  2. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  3. Experiments on aerosol removal by high-pressure water spray

    International Nuclear Information System (INIS)

    Corno, Ada del; Morandi, Sonia; Parozzi, Flavio; Araneo, Lucio; Casella, Francesco

    2017-01-01

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m"3. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m"3. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was detected with 1

  4. Study of the melting of simple substances under high pressures

    International Nuclear Information System (INIS)

    Stishov, S.M.

    Results of studies on the thermodynamic properties of Ar, Na, and Cs are reported. The main laws governing the thermodynamics of melting of these elements were established. Experimental P-V-T data were obtained characterizing the equations of state for the liquid and solid phases of argon, sodium, and cesium at pressures up to 17 x 10 3 kg/cm 2 (Ar), 22 x 10 3 kg/cm 2 (Na,Cs), and temperatures up to 75 0 C (Ar), 220 0 C (Na), and 200 0 C (Cs). Thermodynamic functions and their derivatives were calculated for the liquid and solid phases of these elements using empirical equations of state approximating the experimental P-V-T data with good accuracy

  5. Multigrid for high dimensional elliptic partial differential equations on non-equidistant grids

    NARCIS (Netherlands)

    bin Zubair, H.; Oosterlee, C.E.; Wienands, R.

    2006-01-01

    This work presents techniques, theory and numbers for multigrid in a general d-dimensional setting. The main focus is the multigrid convergence for high-dimensional partial differential equations (PDEs). As a model problem we have chosen the anisotropic diffusion equation, on a unit hypercube. We

  6. Technological pedagogical content knowledge of junior high school mathematics teachers in teaching linear equation

    Science.gov (United States)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-04-01

    Linear equation is one of the topics in mathematics that are considered difficult. Student difficulties of understanding linear equation can be caused by lack of understanding this concept and the way of teachers teach. TPACK is a way to understand the complex relationships between teaching and content taught through the use of specific teaching approaches and supported by the right technology tools. This study aims to identify TPACK of junior high school mathematics teachers in teaching linear equation. The method used in the study was descriptive. In the first phase, a survey using a questionnaire was carried out on 45 junior high school mathematics teachers in teaching linear equation. While in the second phase, the interview involved three teachers. The analysis of data used were quantitative and qualitative technique. The result PCK revealed teachers emphasized developing procedural and conceptual knowledge through reliance on traditional in teaching linear equation. The result of TPK revealed teachers’ lower capacity to deal with the general information and communications technologies goals across the curriculum in teaching linear equation. The result indicated that PowerPoint constitutes TCK modal technological capability in teaching linear equation. The result of TPACK seems to suggest a low standard in teachers’ technological skills across a variety of mathematics education goals in teaching linear equation. This means that the ability of teachers’ TPACK in teaching linear equation still needs to be improved.

  7. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  8. High-pressure Raman investigation of the semiconductor antimony oxide

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Aihui; Cao, Lihua [State Key Lab on High Power Semiconductor Laser, Changchun University of Science and Technology, 130022 Changchun (China); Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130012 Changchun (China); Wan, Chunming [State Key Lab on High Power Semiconductor Laser, Changchun University of Science and Technology, 130022 Changchun (China); Ma, Yanmei [Department of Agronomy, Jilin University, 130062 Changchun (China)

    2011-05-15

    The in situ high-pressure behavior of the semiconductor antimony trioxide (Sb{sub 2}O{sub 3}) has been investigated by Raman spectroscopy techniques in a diamond anvil cell up to 20 GPa at room temperature. New peaks in the external lattice mode range emerged at a pressure above 8.6-15 GPa, suggesting that the structural phase transition occurred. The pressure dependence of Raman frequencies was obtained. The band at 139 cm{sup -1} (assigned to group mode) has a pressure dependence of -0.475 cm{sup -1}/GPa and reveals significant softening at high pressure. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  10. Baking and coking properties of hard coal under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, H.D.

    1981-09-01

    For a better assessment of the baking and coking properties of hard coal under high pressure as in modern coal beneficiation processes, the determination of the swelling index and the dilatation curve are investigated.

  11. The high pressure gas Cerenkov counter at the Omega Facility.

    CERN Multimedia

    1975-01-01

    The high-pressure gas Cerenkov was used to measure reactions as pion (or kaon)- hydrogen --> forward proton - X. It was built by the Ecole Polytechnique (Palaiseu). Here Peter Sonderegger and Patrick Fleury,

  12. Use of genetic algorithms for high hydrostatic pressure inactivation ...

    African Journals Online (AJOL)

    ) for high hydrostatic pressure (HHP) inactivation of Bacillus cereus spores, Bacillus subtilis spores and cells, Staphylococcus aureus and Listeria monocytogenes, all in milk buffer, were used to demonstrate the utility of genetic algorithms ...

  13. Bio-Hemostat-Acute Treatment Modality for High Pressure Hemorrhage

    National Research Council Canada - National Science Library

    Carr, Marcus

    2002-01-01

    Bleeding from an artery is difficult to control due to the high pressures found in the arterial system Hemorrhage is especially problematic in penetrating wounds where the bleeding source may not be...

  14. Applicable technical method for freeze-substitution of high pressure ...

    African Journals Online (AJOL)

    bmshsj

    2011-11-02

    Quintana, 1994) are available for the microscopic visualization of intracellular organelles. Cryo- fixation, plunge freezing, propane jet freezing, cold metal block freezing, and high pressure freezing provide advantages over chemical ...

  15. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  16. Electronic structure and optical properties of AIN under high pressure

    International Nuclear Information System (INIS)

    Li Zetao; Dang Suihu; Li Chunxia

    2011-01-01

    We have calculated the electronic structure and optical properties of Wurtzite structure AIN under different high pressure with generalized gradient approximation (GGA) in this paper. The total energy, density of state, energy band structure and optical absorption and reflection properties under high pressure are calculated. By comparing the changes of the energy band structure, we obtained AIN phase transition pressure for 16.7 GPa, which is a direct band structure transforming to an indirect band structure. Meanwhile, according to the density of states distribution and energy band structure, we analyzed the optical properties of AIN under high-pressure, the results showed that the absorption spectra moved from low-energy to high-energy. (authors)

  17. The compact mirrors with high pressure plasmas

    International Nuclear Information System (INIS)

    Anikeev, A.V.; Bagryansky, P.A.; Ivanov, A.A.; Lizunov, A.A.; Murakhtin, S.V.; Prikhodko, V.V.; Collatz, S.; Noack, K.

    2004-01-01

    The gas dynamic trap (GDP) experimental facility at the Budker Institute Novosibirsk is a long axial-symmetric mirror system with a high mirror ratio variable in the range of 12.5 - 100 for the confinement of a two-component plasma. One component is a collisional plasma with ion and electron temperatures up to 100 eV and density up to 10 14 cm -3 . The second component is the population of high-energetic fast ions with energies of 2-18 keV and a density up to 10 13 cm -3 which is produced by neutral beam injection (NBI). GDP is currently undergoing an upgrade whose first stage is the achievement of the synthesized hot ion plasmoid experiment (SHIP). This experiment aims at the investigation of plasmas and at the knowledge of plasma parameters that have never been achieved before in magnetic mirrors. The paper presents the physical concept of the SHIP experiment, the results of numerical pre-calculations and draws conclusions regarding possible scenarios of experiments. The simulation of a maximal NBI power regime with hydrogen injection gave a fast ion density of 1.2*10 14 cm -3 with a mean energy of 14 keV. The calculation of the deuterium injection regime with 2 MW NBI power gave a maximal fast ion density of 1.9*10 14 cm -3 with a beam energy of 9 keV. The calculation of an experimental scenario with reduced magnetic field resulted in a maximal β-value of 62%, so this regime is recommended for the study of high-β effects in plasmas confined in axial-symmetric mirrors

  18. Model of Structural Fragmentation Induced by High Pressure Torsion

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, J.; Kružík, Martin; Sedláček, R.

    2010-01-01

    Roč. 25, č. 1 (2010), s. 88-98 ISSN 1606-5131 Institutional research plan: CEZ:AV0Z10750506 Keywords : High-pressure torsion * intergranular glide * homogeneous deformation mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.649, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/kruzik-model of structural fragmentation induced by high pressure torsion.pdf

  19. Thermal neutron scattering studies of condensed matter under high pressures

    International Nuclear Information System (INIS)

    Carlile, C.J.; Salter, D.C.

    1978-01-01

    Although temperature has been used as a thermodynamic variable for samples in thermal neutron scattering experiments since the inception of the neutron technique, it is only in the last decade that high pressures have been utilised for this purpose. In the paper the problems particular to this field of work are outlined and a review is made of the types of high-pressure cells used and the scientific results obtained from the experiments. 103 references. (author)

  20. Signal processing in urodynamics: towards high definition urethral pressure profilometry.

    Science.gov (United States)

    Klünder, Mario; Sawodny, Oliver; Amend, Bastian; Ederer, Michael; Kelp, Alexandra; Sievert, Karl-Dietrich; Stenzl, Arnulf; Feuer, Ronny

    2016-03-22

    Urethral pressure profilometry (UPP) is used in the diagnosis of stress urinary incontinence (SUI) which is a significant medical, social, and economic problem. Low spatial pressure resolution, common occurrence of artifacts, and uncertainties in data location limit the diagnostic value of UPP. To overcome these limitations, high definition urethral pressure profilometry (HD-UPP) combining enhanced UPP hardware and signal processing algorithms has been developed. In this work, we present the different signal processing steps in HD-UPP and show experimental results from female minipigs. We use a special microtip catheter with high angular pressure resolution and an integrated inclination sensor. Signals from the catheter are filtered and time-correlated artifacts removed. A signal reconstruction algorithm processes pressure data into a detailed pressure image on the urethra's inside. Finally, the pressure distribution on the urethra's outside is calculated through deconvolution. A mathematical model of the urethra is contained in a point-spread-function (PSF) which is identified depending on geometric and material properties of the urethra. We additionally investigate the PSF's frequency response to determine the relevant frequency band for pressure information on the urinary sphincter. Experimental pressure data are spatially located and processed into high resolution pressure images. Artifacts are successfully removed from data without blurring other details. The pressure distribution on the urethra's outside is reconstructed and compared to the one on the inside. Finally, the pressure images are mapped onto the urethral geometry calculated from inclination and position data to provide an integrated image of pressure distribution, anatomical shape, and location. With its advanced sensing capabilities, the novel microtip catheter collects an unprecedented amount of urethral pressure data. Through sequential signal processing steps, physicians are provided with

  1. Effect of high pressure on physicochemical properties of meat.

    Science.gov (United States)

    Buckow, Roman; Sikes, Anita; Tume, Ron

    2013-01-01

    The application of high pressure offers some interesting opportunities in the processing of muscle-based food products. It is well known that high-pressure processing can prolong the shelf life of meat products in addition to chilling but the pressure-labile nature of protein systems limits the commercial range of applications. High pressure can affect the texture and gel-forming properties of myofibrillar proteins and, hence, has been suggested as a physical and additive-free alternative to tenderize and soften or restructure meat and fish products. However, the rate and magnitude at which pressure and temperature effects take place in muscles are variable and depend on a number of circumstances and conditions that are still not precisely known. This review provides an overview of the current knowledge of the effects of high pressure on muscle tissue over a range of temperatures as it relates to meat texture, microstructure, color, enzymes, lipid oxidation, and pressure-induced gelation of myofibrillar proteins.

  2. High-pressure test loop design and application

    International Nuclear Information System (INIS)

    Burnette, R.D.; Graves, J.N.; Blair, P.G.; Baldwin, N.L.

    1980-07-01

    A high-pressure test loop (HPTL) has been constructed for the purpose of performing a number of chemistry experiments at simulated HTGR conditions of temperature, pressure, flow, and impurity content. The HPTL can be used to develop, modify, and verify computer codes for a variety of chemical processes involving gas phase transport in the reactor. Processes such as graphite oxidation, fission product transport, fuel reactions, purification systems, and dust entrainment can be studied at high pressure, which would largely eliminate difficulties in correlating existing laboratory data and reactor conditions

  3. Very high pressure Moessbauer spectroscopy using diamond anvil cells

    International Nuclear Information System (INIS)

    Pasternak, M.P.; Taylor, R.D.

    1988-01-01

    The technique of generating very high pressure by means of Diamond Anvil Cells (DAC) for Mossbauer Effect applications is outlined. A comprehensive description is presented of the principles of DAC, modification for the use in M/umlt o/ssbauer Spectroscopy (MS), the Merrill--Bassett and Bassett cells, of pressure measurements, of gasketing and collimation, and of hydrostatic media. Examples of 151 Eu, 119 Sn and 129 I are given showing the feasibility of DAC applications in MS. Other isotopes with potential use for high pressure MS using DAC are suggested. 27 refs., 9 figs

  4. Blackbody Emission from Laser Breakdown in High-Pressure Gases

    Science.gov (United States)

    Bataller, A.; Plateau, G. R.; Kappus, B.; Putterman, S.

    2014-08-01

    Laser induced breakdown of pressurized gases is used to generate plasmas under conditions where the atomic density and temperature are similar to those found in sonoluminescing bubbles. Calibrated streak spectroscopy reveals that a blackbody persists well after the exciting femtosecond laser pulse has turned off. Deviation from Saha's equation of state and an accompanying large reduction in ionization potential are observed at unexpectedly low atomic densities—in parallel with sonoluminescence. In laser breakdown, energy input proceeds via excitation of electrons whereas in sonoluminescence it is initiated via the atoms. The similar responses indicate that these systems are revealing the thermodynamics and transport of a strongly coupled plasma.

  5. High pressure processing's potential to inactivate norovirus and other fooodborne viruses

    Science.gov (United States)

    High pressure processing (HPP) can inactivate human norovirus. However, all viruses are not equally susceptible to HPP. Pressure treatment parameters such as required pressure levels, initial pressurization temperatures, and pressurization times substantially affect inactivation. How food matrix ...

  6. In Situ Raman Study of Liquid Water at High Pressure.

    Science.gov (United States)

    Romanenko, Alexandr V; Rashchenko, Sergey V; Goryainov, Sergey V; Likhacheva, Anna Yu; Korsakov, Andrey V

    2018-06-01

    A pressure shift of Raman band of liquid water (H 2 O) may be an important tool for measuring residual pressures in mineral inclusions, in situ barometry in high-pressure cells, and as an indicator of pressure-induced structural transitions in H 2 O. However, there was no consensus as to how the broad and asymmetric water Raman band should be quantitatively described, which has led to fundamental inconsistencies between reported data. In order to overcome this issue, we measured Raman spectra of H 2 O in situ up to 1.2 GPa using a diamond anvil cell, and use them to test different approaches proposed for the description of the water Raman band. We found that the most physically meaningful description of water Raman band is the decomposition into a linear background and three Gaussian components, associated with differently H-bonded H 2 O molecules. Two of these components demonstrate a pronounced anomaly in pressure shift near 0.4 GPa, supporting ideas of structural transition in H 2 O at this pressure. The most convenient approach for pressure calibration is the use of "a linear background + one Gaussian" decomposition (the pressure can be measured using the formula P (GPa) = -0.0317(3)·Δν G (cm -1 ), where Δν G represents the difference between the position of water Raman band, fitted as a single Gaussian, in measured spectrum and spectrum at ambient pressure).

  7. Association between parity and breastfeeding with maternal high blood pressure.

    Science.gov (United States)

    Lupton, Samantha J; Chiu, Christine L; Lujic, Sanja; Hennessy, Annemarie; Lind, Joanne M

    2013-06-01

    The objective of this study was to determine how parity and breastfeeding were associated with maternal high blood pressure, and how age modifies this association. Baseline data for 74,785 women were sourced from the 45 and Up Study, Australia. These women were 45 years of age or older, had an intact uterus, and had not been diagnosed with high blood pressure before pregnancy. Odds ratios (ORs) and 99% confidence intervals (CIs) for the association between giving birth, breastfeeding, lifetime breastfeeding duration, and average breastfeeding per child with high blood pressure were estimated using logistic regression. The combination of parity and breastfeeding was associated with lower odds of having high blood pressure (adjusted OR, 0.89; 99% CI, 0.82-0.97; P high blood pressure when compared with parous women who never breastfed. The odds were lower with longer breastfeeding durations and were no longer significant in the majority of women over the age of 64 years. Women should be encouraged to breastfeed for as long as possible and a woman's breastfeeding history should be taken into account when assessing her likelihood of high blood pressure in later life. Copyright © 2013 Mosby, Inc. All rights reserved.

  8. Advances and synergy of high pressure sciences at synchrotron sources

    International Nuclear Information System (INIS)

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  9. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li

    2015-09-01

    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  10. High blood pressure in older subjects with cognitive impairment.

    Science.gov (United States)

    Mossello, Enrico; Simoni, David

    2016-06-22

    High blood pressure and cognitive impairment often coexist in old age, but their pathophysiological association is complex. Several longitudinal studies have shown that high blood pressure at midlife is a risk factor for cognitive impairment and dementia, although this association is much less clear in old age. The effect of blood pressure lowering in reducing the risk of dementia is only borderline significant in clinical trials of older subjects, partly due to the insufficient follow-up time. Conversely, dementia onset is associated with a decrease of blood pressure values, probably secondary to neurodegeneration. Prognostic effect of blood pressure values in cognitively impaired older subjects is still unclear, with aggressive blood pressure lowering being potentially harmful in this patients category. Brief cognitive screening, coupled with simple motor assessment, are warranted to identify frail older subjects who need a more cautious approach to antihypertensive treatment. Values obtained with ambulatory blood pressure monitoring seem more useful than clinical ones to predict the outcome of cognitively impaired older subjects. Future studies should identify the most appropriate blood pressure targets in older subjects with cognitive impairment.

  11. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis

    Directory of Open Access Journals (Sweden)

    R.F. Vogel

    2005-08-01

    Full Text Available Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK, while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.

  12. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    International Nuclear Information System (INIS)

    Hammond, L A; Halliday, I; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 5 . In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow

  13. Pressure-based high-order TVD methodology for dynamic stall control

    Science.gov (United States)

    Yang, H. Q.; Przekwas, A. J.

    1992-01-01

    The quantitative prediction of the dynamics of separating unsteady flows, such as dynamic stall, is of crucial importance. This six-month SBIR Phase 1 study has developed several new pressure-based methodologies for solving 3D Navier-Stokes equations in both stationary and moving (body-comforting) coordinates. The present pressure-based algorithm is equally efficient for low speed incompressible flows and high speed compressible flows. The discretization of convective terms by the presently developed high-order TVD schemes requires no artificial dissipation and can properly resolve the concentrated vortices in the wing-body with minimum numerical diffusion. It is demonstrated that the proposed Newton's iteration technique not only increases the convergence rate but also strongly couples the iteration between pressure and velocities. The proposed hyperbolization of the pressure correction equation is shown to increase the solver's efficiency. The above proposed methodologies were implemented in an existing CFD code, REFLEQS. The modified code was used to simulate both static and dynamic stalls on two- and three-dimensional wing-body configurations. Three-dimensional effect and flow physics are discussed.

  14. Experimental density and viscosity measurements of di(2ethylhexyl)sebacate at high pressure

    International Nuclear Information System (INIS)

    Paredes, Xavier; Fandino, Olivia; Pensado, Alfonso S.; Comunas, Maria J.P.; Fernandez, Josefa

    2012-01-01

    Highlights: → We measure viscosities for di(2-ethylhexyl)sebacate from (298.15 to 398.15) K and up to 60 MPa. → We measure densities for DEHS from (298.15 to 373.15) K and from (0.1 to 60) MPa. → The reported and lit. data were used in a viscosity correlation from (273 to 491) K and up to 1.1 GPa. → This correlation could be used in industrial equipment that operate at high pressures. - Abstract: Experimental densities and dynamic viscosities of di(2-ethylhexyl)sebacate (DEHS) are the object of study in this work. DEHS could be a useful industrial reference fluid for moderately high viscosity at high pressures as it is often used as a pressure transmitting fluid. At atmospheric pressure the density and viscosity measurements have been performed in a rotational SVM 3000 Stabinger viscometer from (273.15 to 373.15) K, whereas from (0.1 to 60) MPa and from (298.15 to 398.15) K an automated Anton Paar DMA HPM vibrating-tube densimeter, and a high-pressure rolling-ball viscometer were used. Several Vogel-Fulcher-Tammann type equations were used to fit the experimental values of viscosity to the pressure and temperature. The measured viscosity data have been used together with previous data found in the literature to establish a correlation of the viscosity surface η(T, p) of DEHS, covering a temperature range from (273 to 491) K and pressure up to 1.1 GPa. This correlation could be used in industrial equipment like viscometers and other devices that operate at high pressures. Our viscosity data have also been fitted as a function of temperature and volume to the thermodynamic scaling model of Roland et al. [C.M. Roland, S. Bair, R. Casalini, J. Chem. Phys. 125 (2006) 124508].

  15. Diamonds: powerful tools for high-pressure physics

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Diamond-anvil high-pressure studies have progressed to the point where they complement shock-wave studies. Because they operate at static high pressure, they permit time-consuming procedures, such as x-ray diffraction measurements for determining crystal structure. The sample material is completely recoverable and the method is adaptable to minute advantage when dealing with rare or hazardous materials. One of our goals in investigating the high-pressure behavior of iridium was to test the theoretical prediction that iridium would exhibit a phase transformation from the face-centered cubic crystal structure at about 9 GPa. Our finding that no such transformation takes place even at pressures up to 30 GPa will need to be taken into account by physicsts working to improve solid-state theory

  16. Confinement of hydrogen at high pressure in carbon nanotubes

    Science.gov (United States)

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  17. Modification of enzymes by use of high-pressure homogenization.

    Science.gov (United States)

    Dos Santos Aguilar, Jessika Gonçalves; Cristianini, Marcelo; Sato, Helia Harumi

    2018-07-01

    High-pressure is an emerging and relatively new technology that can modify various molecules. High-pressure homogenization (HPH) has been used in several studies on protein modification, especially in enzymes used or found in food, from animal, plant or microbial resources. According to the literature, the enzymatic activity can be modulated under pressure causing inactivation, stabilization or activation of the enzymes, which, depending on the point of view could be very useful. Homogenization can generate changes in the structure of the enzyme modifying various chemical bonds (mainly weak bonds) causing different denaturation levels and, consequently, affecting the catalytic activity. This review aims to describe the various alterations due to HPH treatment in enzymes, to show the influence of high-pressure on proteins and to report the HPH effects on the enzymatic activity of different enzymes employed in the food industry and research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Security of bottle to fill in a high pressure air

    Science.gov (United States)

    Todic, M.; Latinovic, T.; Golubovic-Bugarski, V.; Majstorovic, A.

    2018-01-01

    Charging the bottle of high pressure air isolation devices is performed by a high-pressure compressor. The charging time is in function of the compressor capacity and the intensity of the nominal pressure of the air in the bottle. However, in accident situations this time is long and therefore high-pressure accumulators are used where the filling time of the bottle of isolation apparatus has been drastically reduced. Due to the short filling time of the bottle through the air flow, there is a thermodynamic load of bottle material that could endanger the safety of users and other participants in the area. It is therefore necessary to determine the critical parameters of the rapid charge and their intensity.

  19. High pressure common rail injection system modeling and control.

    Science.gov (United States)

    Wang, H P; Zheng, D; Tian, Y

    2016-07-01

    In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Performance characterization of solid oxide cells under high pressure

    DEFF Research Database (Denmark)

    Sun, Xiufu; Bonaccorso, Alfredo Damiano; Graves, Christopher R.

    2014-01-01

    in both fuel cell mode and electrolysis mode. In electrolysis mode at low current density, the performance improvement was counteracted by the increase in open circuit voltage, but it has to be born in mind that the pressurised gas contains higher molar free energy. Operating at high current density...... hydrocarbon fuels, which is normally performed at high pressure to achieve a high yield. Operation of SOECs at elevated pressure will therefore facilitate integration with the downstream fuel synthesis and is furthermore advantageous as it increases the cell performance. In this work, recent pressurised test...... results of a planar Ni-YSZ (YSZ: Yttria stabilized Zirconia) supported solid oxide cell are presented. The test was performed at 800 °C at pressures up to 15 bar. A comparison of the electrochemical performance of the cell at 1 and 3 bar shows a significant and equal performance gain at higher pressure...