WorldWideScience

Sample records for high pressure cylinders

  1. 76 FR 38697 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2011-07-01

    ... imports from China of high pressure steel cylinders, provided for in subheading 7311.00.00 of the... threatened with material injury by reason of LTFV and subsidized imports of high pressure steel cylinders... contained in USITC Publication 4241 (July 2011), entitled High Pressure Steel Cylinders from China...

  2. 77 FR 37712 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2012-06-22

    ...), that an industry in the United States is materially injured by reason of imports of high pressure steel... preliminary determinations by Commerce that imports of high pressure steel cylinders from China were... Publication 4328 (June 2012), entitled High Pressure Steel Cylinders from China: Investigation Nos. 701-TA-480...

  3. Stress distribution and pressure-bearing capacity of a high-pressure split-cylinder die with prism cavity

    Science.gov (United States)

    Zhao, Liang; Li, Mingzhe; Wang, Liyan; Qu, Erhu; Yi, Zhuo

    2018-03-01

    A novel high-pressure belt-type die with a split-type cylinder is investigated with respect to extending its lifetime and improving its pressure bearing capacity. Specifically, a tungsten carbide cylinder is split into several parts along the radial direction with a prism-type cavity. In this paper, the cylinders with different split numbers are chosen to study the stress distribution and compare them with the traditional belt-type die. The simulation results indicate that the split cylinder has much smaller stress than those in the belt-type cylinder, and the statistical analysis reveals that the split-pressure cylinder is able to bear higher pressure. Experimental tests also show that the high-pressure die with a split cylinder and prism cavity has a stronger pressure-bearing capacity than a belt-type die. The split cylinder has advantages of easy manufacturing, high pressure bearing capacity, and replaceable performance.

  4. 76 FR 33239 - High Pressure Steel Cylinders From the People's Republic of China; Initiation of Countervailing...

    Science.gov (United States)

    2011-06-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-978] High Pressure Steel... countervailing duty (``CVD'') petition concerning imports of high pressure steel cylinders (``steel cylinders... of Antidumping Duties and Countervailing Duties on High Pressure Steel Cylinders from the People's...

  5. 76 FR 77964 - High Pressure Steel Cylinders From the People's Republic of China: Preliminary Determination of...

    Science.gov (United States)

    2011-12-15

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-977] High Pressure Steel... determines that high pressure steel cylinders (``steel cylinders'') from the People's Republic of China... Imposition of Antidumping and Countervailing Duties: High Pressure Steel Cylinders From the People's Republic...

  6. 77 FR 37384 - High Pressure Steel Cylinders From the People's Republic of China: Countervailing Duty Order

    Science.gov (United States)

    2012-06-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-978] High Pressure Steel...''), the Department is issuing a countervailing duty order on high pressure steel cylinders (``steel... investigation of steel cylinders from the PRC. See High Pressure Steel Cylinders From the People's Republic of...

  7. 78 FR 55059 - High Pressure Steel Cylinders from the People's Republic of China: Rescission of Countervailing...

    Science.gov (United States)

    2013-09-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-978] High Pressure Steel... duty order on high pressure steel cylinders (cylinders) from the People's Republic of China (PRC) for... High Pressure Steel Cylinders from the People's Republic of China.'' \\3\\ See BTIC's August 23, 2013...

  8. 77 FR 3281 - High Pressure Steel Cylinders From China; Scheduling of the Final Phase of Countervailing Duty...

    Science.gov (United States)

    2012-01-23

    ...)] High Pressure Steel Cylinders From China; Scheduling of the Final Phase of Countervailing Duty and... retarded, by reason of subsidized and less-than-fair-value imports from China of high pressure steel... (``high pressure steel cylinders''). High pressure steel cylinders are fabricated of chrome alloy steel...

  9. 76 FR 64301 - High Pressure Steel Cylinders From the People's Republic of China: Preliminary Affirmative...

    Science.gov (United States)

    2011-10-18

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-978] High Pressure Steel... producers and exporters of high pressure steel cylinders from the People's Republic of China. For... initiation in the Federal Register. See High Pressure Steel Cylinders From the People's Republic of China...

  10. 77 FR 26738 - High Pressure Steel Cylinders From the People's Republic of China: Final Affirmative...

    Science.gov (United States)

    2012-05-07

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-978] High Pressure Steel... producers and exporters of high pressure steel cylinders (steel cylinders) from the People's Republic of... The following events have occurred since the Preliminary Determination.\\1\\ \\1\\ See High Pressure Steel...

  11. Pressure cylinders under fire condition

    Directory of Open Access Journals (Sweden)

    Jan Hora

    2016-03-01

    Full Text Available The presence of pressure cylinders under fire conditions significantly increases the risk rate for the intervening persons. It is considerably problematic to predict the pressure cylinders behaviour during heat exposition, its destruction progress and possible following explosion of the produced air–gas mixture because pressure cylinders and its environment generate a highly complicated dynamic system during an uncontrolled destruction. The large scale tests carried out by the Pilsen Fire and Rescue Department and the Rapid Response Unit of the Czech Republic Police in October 2012 and in May 2014 in the Military area Brdy and in the area of the former Lachema factory in Kaznějov had several objectives, namely, to record, qualify and quantify some of the aspects of an uncontrolled heat destruction procedure of an exposed pressure cylinder in an enclosed space and to qualify and describe the process of a controlled destruction of a pressure cylinder by shooting through it including basic tactical concepts. The article describes the experiments that were carried out.

  12. 77 FR 37377 - High Pressure Steel Cylinders From the People's Republic of China: Antidumping Duty Order

    Science.gov (United States)

    2012-06-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-977] High Pressure Steel... Department is issuing an antidumping duty order on high pressure steel cylinders from the People's Republic... determination of material injury to a U.S. industry.\\1\\ \\1\\ See High Pressure Steel Cylinders from China...

  13. 76 FR 33213 - High Pressure Steel Cylinders from the People's Republic of China: Initiation of Antidumping Duty...

    Science.gov (United States)

    2011-06-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-977)] High Pressure Steel... (``Department'') received a petition concerning imports of high pressure steel cylinders (``steel cylinders...\\ (``Petitioner''). See Petitions for the Imposition of Antidumping and Countervailing Duties: High Pressure Steel...

  14. 78 FR 55679 - High Pressure Steel Cylinders From the People's Republic of China; Rescission of the 2011-2013...

    Science.gov (United States)

    2013-09-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-977] High Pressure Steel... antidumping duty order on high pressure steel cylinders from the People's Republic of China (``PRC'') for the... order on high pressure steel cylinders from the PRC.\\1\\ In response, on July 1, 2013, Beijing Tianhai...

  15. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    Science.gov (United States)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  16. Bursting pressure of autofrettaged cylinders with inclined external cracks

    International Nuclear Information System (INIS)

    Seifi, Rahman; Babalhavaeji, Majid

    2012-01-01

    Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn’t any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: ► Modified J-Integral can be used for study of autofrettaged cracked cylinders. ► External axial cracks reduce considerably the pressure capacity of cylinders. ► External circumferential cracks have not considerable effects on bursting pressure. ► Autofrettage has contrary effects on external crack in compared with internal crack.

  17. 76 FR 59658 - High Pressure Steel Cylinders From the People's Republic of China: Postponement of Preliminary...

    Science.gov (United States)

    2011-09-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-977] High Pressure Steel... (``Department'') initiated an antidumping duty investigation on high pressure steel cylinders from the People's... for this investigation is currently due no later than October 18, 2011. \\1\\ See High Pressure Steel...

  18. 77 FR 1060 - High Pressure Steel Cylinders From the People's Republic of China: Postponement of Final...

    Science.gov (United States)

    2012-01-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-977] High Pressure Steel... (``Department'') initiated an antidumping duty investigation on high pressure steel cylinders from the People's... investigation is currently due 75 days after the date of the Preliminary Determination.\\3\\ \\1\\ See High Pressure...

  19. Bursting pressure of autofrettaged cylinders with inclined external cracks

    Energy Technology Data Exchange (ETDEWEB)

    Seifi, Rahman, E-mail: rseifi@basu.ac.ir [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Babalhavaeji, Majid [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2012-01-15

    Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn't any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: Black-Right-Pointing-Pointer Modified J-Integral can be used for study of autofrettaged cracked cylinders. Black-Right-Pointing-Pointer External axial cracks reduce considerably the pressure capacity of cylinders. Black-Right-Pointing-Pointer External circumferential cracks have not considerable effects on bursting pressure. Black-Right-Pointing-Pointer Autofrettage has contrary effects on external crack in compared with internal crack.

  20. Robust cylinder pressure estimation in heavy-duty diesel engines

    NARCIS (Netherlands)

    Kulah, S.; Forrai, A.; Rentmeester, F.; Donkers, T.; Willems, F.P.T.

    2017-01-01

    The robustness of a new single-cylinder pressure sensor concept is experimentally demonstrated on a six-cylinder heavy-duty diesel engine. Using a single-cylinder pressure sensor and a crank angle sensor, this single-cylinder pressure sensor concept estimates the in-cylinder pressure traces in the

  1. 76 FR 28807 - High Pressure Steel Cylinders From China; Institution of Antidumping and Countervailing Duty...

    Science.gov (United States)

    2011-05-18

    ... the United States is materially retarded, by reason of imports from China of High Pressure Steel... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-480 and 731-TA-1188 (Preliminary)] High Pressure Steel Cylinders From China; Institution of Antidumping and Countervailing Duty Investigations and...

  2. A low-background piston-cylinder-type hybrid high pressure cell for muon-spin rotation/relaxation experiments

    Science.gov (United States)

    Shermadini, Z.; Khasanov, R.; Elender, M.; Simutis, G.; Guguchia, Z.; Kamenev, K. V.; Amato, A.

    2017-10-01

    A low background double-wall piston-cylinder-type pressure cell is developed at the Paul Scherrer Institute. The cell is made from BERYLCO-25 (beryllium copper) and MP35N nonmagnetic alloys with the design and dimensions which are specifically adapted to muon-spin rotation/relaxation (μSR) measurements. The mechanical design and performance of the pressure cell are evaluated using finite-element analysis (FEA). By including the measured stress-strain characteristics of the materials into the finite-element model, the cell dimensions are optimized with the aim to reach the highest possible pressure while maintaining the sample space large (6 mm in diameter and 12 mm high). The presented unconventional design of the double-wall piston-cylinder pressure cell with a harder outer MP35N sleeve and a softer inner CuBe cylinder enables pressures of up to 2.6 GPa to be reached at ambient temperature, corresponding to 2.2 GPa at low temperatures without any irreversible damage to the pressure cell. The nature of the muon stopping distribution, mainly in the sample and in the CuBe cylinder, results in a low-background μSR signal.

  3. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kepa, M. W., E-mail: mkepa@staffmail.ed.ac.uk; Huxley, A. D. [SUPA, Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Ridley, C. J.; Kamenev, K. V. [Centre for Science at Extreme Conditions and School of Engineering, University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)

    2016-08-15

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe{sub 2}.

  4. In-cylinder pressure resonance analysis for trapped mass estimation in automotive engines

    OpenAIRE

    Bares Moreno, Pau

    2017-01-01

    This thesis presents a new application for in-cylinder pressure sensors in internal combustion engines. The new method takes profit of the high-frequency content of the in-cylinder pressure signal to determine the speed of sound evolution during the expansion stroke and combines this estimation with the low-frequency content of the pressure signal and a volume estimation to obtain a measurement of the trapped mass. The new method is based on the studies of the resonance phenomenon in pent...

  5. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder

    Science.gov (United States)

    Jin, Xiaowei; Cheng, Peng; Chen, Wen-Li; Li, Hui

    2018-04-01

    A data-driven model is proposed for the prediction of the velocity field around a cylinder by fusion convolutional neural networks (CNNs) using measurements of the pressure field on the cylinder. The model is based on the close relationship between the Reynolds stresses in the wake, the wake formation length, and the base pressure. Numerical simulations of flow around a cylinder at various Reynolds numbers are carried out to establish a dataset capturing the effect of the Reynolds number on various flow properties. The time series of pressure fluctuations on the cylinder is converted into a grid-like spatial-temporal topology to be handled as the input of a CNN. A CNN architecture composed of a fusion of paths with and without a pooling layer is designed. This architecture can capture both accurate spatial-temporal information and the features that are invariant of small translations in the temporal dimension of pressure fluctuations on the cylinder. The CNN is trained using the computational fluid dynamics (CFD) dataset to establish the mapping relationship between the pressure fluctuations on the cylinder and the velocity field around the cylinder. Adam (adaptive moment estimation), an efficient method for processing large-scale and high-dimensional machine learning problems, is employed to implement the optimization algorithm. The trained model is then tested over various Reynolds numbers. The predictions of this model are found to agree well with the CFD results, and the data-driven model successfully learns the underlying flow regimes, i.e., the relationship between wake structure and pressure experienced on the surface of a cylinder is well established.

  6. Optimization of In-Cylinder Pressure Filter for Engine Research

    Science.gov (United States)

    2017-06-01

    ARL-TR-8034 ● JUN 2017 US Army Research Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth...Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth S Kim, Michael T Szedlmayer, Kurt M Kruger, and Chol-Bum M...

  7. UF{sub 6} pressure excursions during cylinder heating

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.G. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    As liquid UF{sub 6} inside a cylinder changes from a liquid to a solid, it forms a porous solid which occupies approximately the same volume as that of the liquid before cooling. Simultaneously as the liquid cools, UF{sub 6} vapor in the cylinder ullage above the liquid desublimes on the upper region of the inner cylinder wall. This solid is a dense, glass-like material which can accumulate to a significant thickness. The thickness of the solid coating on the upper cylinder wall and directly behind the cylinder valve area will vary depending on the conditions during the cooling stage. The amount of time lapsed between UF{sub 6} solidification and UF{sub 6} liquefaction can also affect the UF{sub 6} coating. This is due to the daily ambient heat cycle causing the coating to sublime from the cylinder wall to cooler areas, thus decreasing the thickness. Structural weakening of the dense UF{sub 6} layer also occurs due to cylinder transport vibration and thermal expansion. During cylinder heating, the UF{sub 6} nearest the cylinder wall will liquefy first. As the solid coating behind the cylinder valve begins to liquefy, it results in increased pressure depending upon the available volume for expansion. At the Paducah Gaseous Diffusion Plant (PGDP) during the liquefaction of the UF{sub 6} in cylinders in the UF{sub 6} feed and sampling autoclaves, this pressure increase has resulted in the activation of the systems rupture discs which are rated at 100 pounds per square inch differential.

  8. Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shehata, M.S. [Mechanical Engineering Technology Department, Higher Institute of Technology, Banha University, 4Zagalol Street, Benha, Galubia 1235 Z (Egypt)

    2010-12-15

    An experimental work were conducted for investigating cylinder pressure, performance parameters, heat release, specific heat ratio and duration of combustion for multi cylinder spark ignition engine (SIE). Ccylinder pressure was measured for gasoline, kerosene and Liquefied Petroleum Gases (LPG) separately as a fuel for SIE. Fast Fourier Transformations (FFT) was used to cylinder pressure data transform from time domain into frequency domain to develop empirical correlation for calculating cylinder pressures at different engine speeds and different fuels. In addition, Inverse Fast Fourier Transformations (IFFT) was used to cylinder pressure reconstruct into time domain. The results gave good agreement between the measured cylinder pressure and the reconstructed cylinder pressure in time domain with different engine speeds and different fuels. The measured cylinder pressure and hydraulic dynamotor were the source of data for calculating engine performance parameters. First law of thermodynamics and single zone heat release model with temperature dependant specific heat ratio {gamma}(T) were the main tools for calculating heat release and heat transfer to cylinder walls. Third order empirical correlation for calculating {gamma}(T) was one of the main gains of the present study. The correlation gave good agreement with other researchers with wide temperatures range. For kerosene, cylinder pressure is higher than for gasoline and LPG due to high volumetric efficiency where kerosene density (mass/volume ratio) is higher than gasoline and LPG. In addition, kerosene heating value is higher than gasoline that contributes in heat release rate and pressure increases. Duration of combustion for different engine speeds was determined using four different methods: (I) Mass fuel burnt, (II) Entropy change, (III) Temperature dependant specific heat ratio {gamma}(T), and (IV) Logarithmic scale of (P and V). The duration of combustion for kerosene is smaller than for gasoline and

  9. Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine

    International Nuclear Information System (INIS)

    Shehata, M.S.

    2010-01-01

    An experimental work were conducted for investigating cylinder pressure, performance parameters, heat release, specific heat ratio and duration of combustion for multi cylinder spark ignition engine (SIE). Ccylinder pressure was measured for gasoline, kerosene and Liquefied Petroleum Gases (LPG) separately as a fuel for SIE. Fast Fourier Transformations (FFT) was used to cylinder pressure data transform from time domain into frequency domain to develop empirical correlation for calculating cylinder pressures at different engine speeds and different fuels. In addition, Inverse Fast Fourier Transformations (IFFT) was used to cylinder pressure reconstruct into time domain. The results gave good agreement between the measured cylinder pressure and the reconstructed cylinder pressure in time domain with different engine speeds and different fuels. The measured cylinder pressure and hydraulic dynamotor were the sours of data for calculating engine performance parameters. First law of thermodynamics and single zone heat release model with temperature dependant specific heat ratio γ(T) were the main tools for calculating heat release and heat transfer to cylinder walls. Third order empirical correlation for calculating γ(T) was one of the main gains of the present study. The correlation gave good agreement with other researchers with wide temperatures range. For kerosene, cylinder pressure is higher than for gasoline and LPG due to high volumetric efficiency where kerosene density (mass/volume ratio) is higher than gasoline and LPG. In addition, kerosene heating value is higher than gasoline that contributes in heat release rate and pressure increases. Duration of combustion for different engine speeds was determined using four different methods: (I) Mass fuel burnt, (II) Entropy change, (III) Temperature dependant specific heat ratio γ(T), and (IV) Logarithmic scale of (P and V). The duration of combustion for kerosene is smaller than for gasoline and LPG due to high

  10. 77 FR 27079 - High Pressure Steel Cylinders From China Notice of Commission Determination To Conduct a Portion...

    Science.gov (United States)

    2012-05-08

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-480 and 731-TA-1188 (Final)] High Pressure Steel Cylinders From China Notice of Commission Determination To Conduct a Portion of the Hearing... Commission Rule 201.39 (19 CFR 201.39) that, in his opinion, a portion of the Commission's hearing in High...

  11. Experimental and finite element prediction of bursting pressure in compound cylinders

    International Nuclear Information System (INIS)

    Majzoobi, G.H.; Farrahi, G.H.; Pipelzadeh, M.K.; Akbari, A.

    2004-01-01

    Aluminium cylinders with a constant ratio of outer to inner radii, k=2.2, with different diametral interferences and various shrinkage radii were subjected to bursting and autofrettage pressures. Numerical simulations of the compound cylinders were also performed using the finite element code, NISA. The results can predict the optimum shrinkage radius to a reasonable accuracy with the use of finite element analysis. This radius corresponds to the situation when the maximum von-Mises stress at the internal radii of both the inner and outer cylinders become equal. It was shown that the maximum von-Mises stress across the wall of the cylinder is at the minimum at this shrinkage radius. The optimum diametral interference was found to be that which sufficiently brought the contact surface of the inner and outer cylinders to the point of yielding. Should the shrinkage pressure exceed the elastic limit, the pressure capacity of the cylinder will not be improved. The numerical and experimental results show that autofrettage had no effect on the bursting pressure of the thick-walled compound cylinder for the material tested

  12. Structural behaviour of a welded superalloy cylinder with internal pressure in a high temperature environment

    International Nuclear Information System (INIS)

    Udoguchi, T.; Nakanishi, T.

    1981-01-01

    Steady and cyclic creep tests with internal pressure were performed at temperatures of 800 to 1000 0 C on Hastelloy X cylinders with and without a circumferential Tungsten Inert Gas (TIG) welding technique. The creep rupture strength of the TIG welded cylinders was much lower than that of the non-welded cylinders whilst creep rupture strength reduction by the TIG technique was not observed in uniaxial creep tests. The reason for the low creep strength of welded cylinders is discussed and it is noted that the creep ductility of weld metal plays an essentially important role. In order to improve the creep strength of the TIG welded cylinder, various welding procedures with assorted weld metals were investigated. Some improvements were obtained by using welding techniques which had either Incoloy 800 or a modified Hastelloy X material as the filler metal. (U.K.)

  13. Method and apparatus for reconstructing in-cylinder pressure and correcting for signal decay

    Science.gov (United States)

    Huang, Jian

    2013-03-12

    A method comprises steps for reconstructing in-cylinder pressure data from a vibration signal collected from a vibration sensor mounted on an engine component where it can generate a signal with a high signal-to-noise ratio, and correcting the vibration signal for errors introduced by vibration signal charge decay and sensor sensitivity. The correction factors are determined as a function of estimated motoring pressure and the measured vibration signal itself with each of these being associated with the same engine cycle. Accordingly, the method corrects for charge decay and changes in sensor sensitivity responsive to different engine conditions to allow greater accuracy in the reconstructed in-cylinder pressure data. An apparatus is also disclosed for practicing the disclosed method, comprising a vibration sensor, a data acquisition unit for receiving the vibration signal, a computer processing unit for processing the acquired signal and a controller for controlling the engine operation based on the reconstructed in-cylinder pressure.

  14. Buckling behaviour of imperfect ring-stiffened cone-cylinder intersections under internal pressure

    International Nuclear Information System (INIS)

    Zhao, Y.

    2005-01-01

    Cone-cylinder intersections are used commonly in pressure vessels and piping. In the case of a cone large end-to-cylinder intersection under internal pressure, the intersection is subject to a large circumferential compressive force. While both the cone and the cylinder may be locally thickened to strengthen the intersection, it is often desirable and convenient to provide an annular plate ring at the cone-to-cylinder joint to supplement local thickening or as an alternative strengthening measure, leading to a ring-stiffened cone-cylinder intersection. Only limited work has been carried out specifically on ring-stiffened cone-cylinder intersections under internal pressure. This paper presents the first experimental study on such intersections. In addition to the presentation of test results including geometric imperfections, failure behaviour and the determination of buckling mode and load based on displacement measurements, results from nonlinear bifurcation analysis using the perfect shape and nonlinear analysis using the measured imperfect shape are presented and compared with the experimental results

  15. Development of an optical time-resolved measurement system under high-pressure and low-temperature with a piston-cylinder pressure cell

    Science.gov (United States)

    Tsuchiya, Satoshi; Kino, Yohei; Nakagawa, Koichi; Nakagawa, Daisuke; Yamada, Jun-ichi; Toda, Yasunori

    2016-04-01

    To perform the femtosecond pump-probe spectroscopy under high pressure and low temperature, we constructed a measurement system with a piston cylinder type pressure cell installing an optical fiber bundle. The applied pressure was achieved to 6 kbar and the cell was cooled down to 15 K. Several demonstrations revealed that broadening and change of polarization of pulse (duration of ˜120 fs) owing to the dispersions in the fiber bundle are much small indicating that those have little influence on the measurement of carrier relaxation dynamics. In the measurements of κ-(BEDT-TTF)2Cu(NCS)2 under 1.3 kbar at 43 K, we have successfully detected the polarization anisotropy of the carrier relaxation dynamics and estimated the decay time in the same way as the normal measurement.

  16. Effect of instantaneous rotational speed on the analysis of measured diesel engine cylinder pressure data

    International Nuclear Information System (INIS)

    Antonopoulos, Antonis K.; Hountalas, Dimitrios T.

    2012-01-01

    Highlights: ► The effect of in-cycle speed fluctuation on cylinder pressure measurement is investigated. ► A phasing error is introduced when sampling cylinder pressure at constant time intervals. ► The phasing error increases with the increase of engine load and decrease of engine speed. ► Measurement using constant sampling rate affects estimation of HRR, ignition angle etc. - Abstract: Diesel engine cylinder pressure measurements are widely used in field and lab applications to support among other control, monitoring and diagnostic applications. There are two methods to measure cylinder pressure, the use of a crank angle encoder, which guarantees pressure samples at fixed crank angles, and the use of constant time sampling rate. The last is frequently used due to its simplicity or because of practical restrictions. However, in order to perform thermodynamic calculations it is necessary to attribute a crank angle value to each measured pressure value. But if the in-cycle rotational speed fluctuates and this is neglected, an error will result in the values derived from the processing of the measured cylinder pressure. For this reason in the present work an experimental investigation is conducted on a single cylinder diesel test engine to identify the aforementioned problem. During the tests cylinder pressure and instantaneous speed were recorded using an accurate crank angle reference. These where then used to simulate the measurement of cylinder pressure digitized using a fixed time step. The comparison of the two cylinder pressure traces and the thermodynamic parameters derived from them, reveals the introduction of an error which depends on engine load and speed.

  17. Engine cylinder pressure reconstruction using crank kinematics and recurrently-trained neural networks

    Science.gov (United States)

    Bennett, C.; Dunne, J. F.; Trimby, S.; Richardson, D.

    2017-02-01

    A recurrent non-linear autoregressive with exogenous input (NARX) neural network is proposed, and a suitable fully-recurrent training methodology is adapted and tuned, for reconstructing cylinder pressure in multi-cylinder IC engines using measured crank kinematics. This type of indirect sensing is important for cost effective closed-loop combustion control and for On-Board Diagnostics. The challenge addressed is to accurately predict cylinder pressure traces within the cycle under generalisation conditions: i.e. using data not previously seen by the network during training. This involves direct construction and calibration of a suitable inverse crank dynamic model, which owing to singular behaviour at top-dead-centre (TDC), has proved difficult via physical model construction, calibration, and inversion. The NARX architecture is specialised and adapted to cylinder pressure reconstruction, using a fully-recurrent training methodology which is needed because the alternatives are too slow and unreliable for practical network training on production engines. The fully-recurrent Robust Adaptive Gradient Descent (RAGD) algorithm, is tuned initially using synthesised crank kinematics, and then tested on real engine data to assess the reconstruction capability. Real data is obtained from a 1.125 l, 3-cylinder, in-line, direct injection spark ignition (DISI) engine involving synchronised measurements of crank kinematics and cylinder pressure across a range of steady-state speed and load conditions. The paper shows that a RAGD-trained NARX network using both crank velocity and crank acceleration as input information, provides fast and robust training. By using the optimum epoch identified during RAGD training, acceptably accurate cylinder pressures, and especially accurate location-of-peak-pressure, can be reconstructed robustly under generalisation conditions, making it the most practical NARX configuration and recurrent training methodology for use on production engines.

  18. Using the adaptive SMA composite cylinder concept to reduce radial dilation in composite pressure vessels

    Science.gov (United States)

    Paine, Jeffrey S.; Rogers, Craig A.

    1995-05-01

    Composite materials are widely used in the design of pressurized gas and fluid vessels for applications ranging from underground gasoline storage tanks to rocket motors for the space shuttle. In the design of a high pressure composite vessel (Pi > 12 Ksi), thick-wall (R/h short term dilation and long term creep are not problematic for applications requiring only the containment of the pressurized fluid. In applications where metallic liners are required, however, substantial dilation and creep causes plastic yielding which leads to reduced fatigue life. To applications such as a hydraulic accumulator, where a piston is employed to fit and seal the fluid in the composite cylinder, the dilation and creep may allow leakage and pressure loss around the piston. A concept called the adaptive composite cylinder is experimentally presented. Shape memory alloy wire in epoxy resin is wrapped around or within polymer matrix composite cylinders to reduce radial dilation of the cylinder. Experimental results are presented that demonstrate the ability of the SMA wire layers to reduce radial dilation. Results from experimental testing of the recovery stress fatigue response of nitinol shape memory alloy wires is also presented.

  19. Creep strength of hastelloy X TIG-welded cylinder under internal pressure at elevated temperature

    International Nuclear Information System (INIS)

    Udoguchi, Teruyoshi; Indo, Hirosato; Isomura, Kazuyuki; Kobatake, Kiyokazu; Nakanishi, Tsuneo.

    1981-01-01

    Creep tests on circumferentially TIG-welded Hastelloy x cylinders were carried out under internal pressure for the investigation of structural behavior of welded components in high temperature environment. The creep rupture strength of TIG-welded cylinders was much lower than that of non-welded cylinders, while such reduction was not found in uniaxial creep tests on TIG-welded bars. It was deduced that the reduction was due to the low ductility (ranging from 1 to 5%) of the weld metal to which enhanced creep was induced by the adjacent base metal whose creep strain rate was much higher than that of the weld metal. Therefore, uniaxial creep tests on bar specimens is not sufficient for proper assessment of the creep rupture strength of welded components. Both creep strain rate and creep ductility should be concerned for the assessment. Creep tests by using components such as cylinder under internal pressure are recommendable for the confirmation of creep strength of welded structures and components. (author)

  20. Integrated approach for stress analysis of high performance diesel engine cylinder head

    Science.gov (United States)

    Chainov, N. D.; Myagkov, L. L.; Malastowski, N. S.; Blinov, A. S.

    2018-03-01

    Growing thermal and mechanical loads due to development of engines with high level of a mean effective pressure determine requirements to cylinder head durability. In this paper, computational schemes for thermal and mechanical stress analysis of a high performance diesel engine cylinder head were described. The most important aspects in this approach are the account of temperature fields of conjugated details (valves and saddles), heat transfer modeling in a cooling jacket of a cylinder head and topology optimization of the detail force scheme. Simulation results are shown and analyzed.

  1. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders

    Science.gov (United States)

    Wu, Bin; Su, Yipin; Liu, Dongying; Chen, Weiqiu; Zhang, Chuanzeng

    2018-05-01

    Soft materials can be designed with a functionally graded (FG) property for specific applications. Such material inhomogeneity can also be found in many soft biological tissues whose functionality is only partly understood to date. In this paper, we analyze the axisymmetric guided wave propagation in a pressurized FG elastomeric hollow cylinder. The cylinder is subjected to a combined action of axial pre-stretch and pressure difference applied to the inner and outer cylindrical surfaces. We consider both torsional waves and longitudinal waves propagating in the FG cylinder made of incompressible isotropic elastomer, which is characterized by the Mooney-Rivlin strain energy function but with the material parameters varying with the radial coordinate in an affine way. The pressure difference generates an inhomogeneous deformation field in the FG cylinder, which dramatically complicates the superimposed wave problem described by the small-on-large theory. A particularly efficient approach is hence employed which combines the state-space formalism for the incremental wave motion with the approximate laminate or multi-layer technique. Dispersion relations for the two types of axisymmetric guided waves are then derived analytically. The accuracy and convergence of the proposed approach is validated numerically. The effects of the pressure difference, material gradient, and axial pre-stretch on both the torsional and the longitudinal wave propagation characteristics are discussed in detail through numerical examples. It is found that the frequency of axisymmetric waves depends nonlinearly on the pressure difference and the material gradient, and an increase in the material gradient enhances the capability of the pressure difference to adjust the wave behavior in the FG cylinder. This work provides a theoretical guidance for characterizing FG soft materials by in-situ ultrasonic nondestructive evaluation and for designing tunable waveguides via material tailoring along

  2. A cylinder pressure based engine management system

    Energy Technology Data Exchange (ETDEWEB)

    Truscott, A.; Noble, A. [Ricardo Consulting Engineers Ltd. (United Kingdom); Mueller, R.; Hart, M.; Kroetz, G.; Eickhoff, M. [DaimlerChrysler AG (Germany); Cavalloni, C.; Gnielka, M. [Kistler Instrumente AG (Switzerland)

    2000-07-01

    Worldwide demands on fuel economy and lower emissions from automotive vehicles have led to stringent requirements in the development of Engine Management Systems (EMS). Cylinder Pressure based Engine Management Systems (CPEMS) provide a way forward in EMS technology by combining intelligent control algorithms with innovative sensing techniques. The full utilisation of model-based control and diagnostics to provide improvements in cost, efficiency, emissions and comfort requires the close monitoring of engine conditions. This is made possible with the advent of new inexpensive sensor materials that can withstand the harsh environment of the combustion chamber. AENEAS is a collaborative project undertaken by Ricardo, DaimlerChrysler and Kistler, with financial support from the European Commission and the Swiss Government, aimed at demonstrating the major benefits of CPEMS technology. This paper describes the application of CPEMS technology to a spark ignition (SI) engine. It describes how the combination of model based algorithms, incorporating physical principles, and cylinder pressure sensing can provide an effective means of engine control and diagnostics. Results are presented to demonstrate the benefits of this new technology. (author)

  3. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    Science.gov (United States)

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  4. Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines.

    Science.gov (United States)

    Bae, Taehan; Atkins, Robert A; Taylor, Henry F; Gibler, William N

    2003-02-20

    Pressure sensing in an internal combustion engine with an intrinsic fiber Fabry-Perot interferometer (FFPI) integrated with a spark plug is demonstrated for the first time. The spark plug was used for the ignition of the cylinder in which it was mounted. The FFPI element, protected with a copper/gold coating, was embedded in a groove in the spark-plug housing. Gas pressure inthe engine induced longitudinal strain in this housing, which was also experienced by the fiber-optic sensing element. The sensor was monitored with a signal conditioning unit containing a chirped distributed-feedback laser. Pressure sensitivities as high as 0.00339 radians round-trip phase shift per pounds per square inch of pressure were observed. Measured pressure versus time traces showed good agreement with those from a piezoelectric reference sensor mounted in the same engine cylinder.

  5. A low-background piston-cylinder type hybrid high pressure cell for muon-spin rotation/relaxation experiments

    OpenAIRE

    Shermadini, Z.; Khasanov, R.; Elender, M.; Simutis, G.; Guguchia, Z.; Kamenev, K. V.; Amato, A.

    2017-01-01

    A low background double-wall piston-cylinder-type pressure cell is developed at the Paul Scherrer Institute. The cell is made from BERLYCO-25 (beryllium copper) and MP35N nonmagnetic alloys with the design and dimensions which are specifically adapted to muon-spin rotation/relaxation (muSR) measurements. The mechanical design and performance of the pressure cell are evaluated using finite-element analysis (FEA). By including the measured stress-strain characteristics of the material into the ...

  6. Relationship of pressure to temperature rise in overfilled cylinders

    International Nuclear Information System (INIS)

    Barber, E.J.

    1979-01-01

    Mild steel pressure vessels containing uranium hexafluoride are heated in 96-inch diameter autoclaves to allow the feed material to enter the gaseous diffusion process equipment for enrichment in the uranium 235 isotope. For purposes of safety analysis it is necessary to establish the ability of the instrumentation to shut off the steam supply to the autoclave prior to cylinder rupture if the cylinder has been overfilled. To make this determination requires estimates of the rate of change of pressure with respect to change of temperature at constant volume as a function of the temperature at which the ullage disappears. The paper presents the calculations for the estimation of this rate of change for liquid uranium hexafluoride using the ratio of the coefficients of expansion and compressibility using empirical liquid density data and the Eyring equation of state for liquids. 5 figs. (MB)

  7. Adaptation of a zero-dimensional cylinder pressure model for diesel engines using the crankshaft rotational speed

    Science.gov (United States)

    Weißenborn, E.; Bossmeyer, T.; Bertram, T.

    2011-08-01

    Tighter emission regulations are driving the development of advanced engine control strategies relying on feedback information from the combustion chamber. In this context, it is especially seeked for alternatives to expensive in-cylinder pressure sensors. The present study addresses these issues by pursuing a simulation-based approach. It focuses on the extension of an empirical, zero-dimensional cylinder pressure model using the engine speed signal in order to detect cylinder-wise variations in combustion. As a special feature, only information available from the standard sensor configuration are utilized. Within the study, different methods for the model-based reconstruction of the combustion pressure including nonlinear Kalman filtering are compared. As a result, the accuracy of the cylinder pressure model can be enhanced. At the same time, the inevitable limitations of the proposed methods are outlined.

  8. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    Energy Technology Data Exchange (ETDEWEB)

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V. [CMT - Motores Termicos, Universidad Politecnica de Valencia (Spain)

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  9. Stresses from pressure, radial, and moment loads in cylinder-to-cylinder vessel by a finite plate method

    International Nuclear Information System (INIS)

    Brown, S.J.; Fox, M.E.

    1977-08-01

    A structural problem that has received continued interest and development over the last several decades is the determination of stresses in two normally intersecting cylindrical shells subjected to internal pressure and external loading. In nuclear pressure vessels the external loading of the vessel through the attachment is encountered in thermal interaction, seismic loading and various postulated rupture or failure mechanisms. A simple technique, the Finite Plate Method, (FPM) is presented to analyze stresses in cylinder-to-cylinder junctures. The approach uses shallow shell formulations and a three term series expansion plate formulation, which limits the range of applicability. It is felt that the value of the method is its accuracy, economy, and ease in modeling a structure which falls within the range of applicability. Another appealing feature of the method is that its simplistic approach of superposition of results permits an easy extension to include additional loads not treated. For those mechanical loadings not developed, it is felt that their effect can either be accounted for by the mechanisms discussed or by simple calculations. Generally, the stresses resulting from torsional or transverse shear are small compared to the loads discussed, however, these shear effects may be included. Finally, in the instance of thermal stress within the cylinder-to-cylinder structure, it has been shown in an unpublished study by Brown that the FPM yields very good results for the range of curvatures discussed

  10. Dual-fuel engine with cylinder pressure based control

    Energy Technology Data Exchange (ETDEWEB)

    Ritscher, Bert [Caterpillar Motoren GmbH und Co. KG, Kiel (Germany). Large Power Systems Div.

    2013-10-15

    Cylinder pressure sensors were initially used to detect knocking and misfiring on spark ignited gas engines. On its latest MaK brand dual-fuel engine, Caterpillar Motoren is harnessing the deep insights into combustion and engine condition that can be derived direct from the origin of engine power in sophisticated control, monitoring and diagnostic systems. (orig.)

  11. Reduction of Erosion Wear of Mean Pressure Cylinder of Steam Turbines Operating Beyond Critical Parameters

    Directory of Open Access Journals (Sweden)

    V. P. Kascheev

    2009-01-01

    Full Text Available The paper considers problems leading to erosion wear of flowing part of a mean pressure turbine cylinder operating beyond critical parameters. Explanation of erosion wear of flowing part of a mean pressure turbine cylinder which is proved in practice and recommendations for wear reduction are given in the paper

  12. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  13. 76 FR 55736 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders

    Science.gov (United States)

    2011-09-08

    ... certain of high- and low-pressure compressed gas cylinders, primarily fire extinguishers, by Atlas Fire...- pressure cylinders serviced by Atlas Fire Protection were marked and represented as requalified (visually... damage, serious personal injury, or death could result from the rupture of a cylinder. Cylinders not...

  14. Experimental study of the pressure discharge process for the hydraulic control rod drive system stepped cylinder

    International Nuclear Information System (INIS)

    Wang, Jinhua; Bo, Hanliang; Zheng, Wenxiang

    2002-01-01

    The pressure discharge process from the stepped cylinder of the Hydraulic Control Rod Drive System (HCRDS) was studied experimentally in the HCRDS experimental loop for the 200 MW Nuclear Heating Reactor (NHR-200). The results showed that the differential pressure between the outside and the inside of the stepped cylinder increased rapidly to the desired value so that the force induced by the differential pressure which pushes the out tube of stepped cylinder was large enough. Therefore, if the hydraulic control rod were jammed, the pressure could push the hydraulic control rod to overcome the frictional resistance to insert the control rod into the reactor core. The experimental results verified that this design would solve the problem of hydraulic control rod jamming during an accident. (author)

  15. Fabrication of 4-cylinder transparent engine and measurement of the flame propagation behavior with high speed camera at idle condition

    Energy Technology Data Exchange (ETDEWEB)

    Joo, S.H. [Yonsei University Graduate School, Seoul (Korea, Republic of); Chun, K.M. [Yonse University, Seoul (Korea, Republic of)

    1998-04-01

    A transparent engine for visualization study is made using a production 4 cylinder engine. Flame propagation results from individual combustion cycles with high-speed cinematography are presented and discussed for idle condition. The flame propagation image and the in-cylinder pressure were obtained simultaneously, and the image processing software which can calculate the flame area and the flame center was developed. The flame propagation behavior of each cycle shows high cyclic variations, and there are linear correlation between flame area and the in-cylinder pressure. (author). 4 refs., 6 figs., 1 tab.

  16. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  17. Stress concentration effects in high pressure components

    International Nuclear Information System (INIS)

    Aller, J.E.

    1990-01-01

    This paper examines the stress concentration effects of sideholes in thick walled, high pressure cylinders. It has been shown that the theoretical stress concentration factor at the intersection of a small crossbore in a closed end, thick walled cylinder varies between 3.0 and 4.0. Tests have shown that this effect can be greatly reduced in practice by carefully radiusing the bore intersection and autofrettaging the cylinder. It has also been shown that the minimum stress concentration factor occurs when the main bore and sidehole or crossbore have the same diameter, and the radius of the intersection is approximately equal to the sidehole radius. When the bore and sidehole intersection angle decreases from 90 degrees, the stress concentration factor increases significantly. Knowledge of these fundamental relationships can be used in maintaining, as well ad designing, high pressure equipment

  18. Controlling a negative loaded hydraulic cylinder using pressure feedback

    DEFF Research Database (Denmark)

    Hansen, M.R.; Andersen, T.O.

    2010-01-01

    This paper is concerned with the inherent oscillatory nature of pressure compensated velocity control of a hydraulic cylinder subjected to a negative load and suspended by means of an over-center valve. Initially, a linearized stability analysis of such a hydraulic circuit is carried out clearly ...... in a nonlinear time domain simulation model validating the linear stability analysis....

  19. Delamination of Composite Cylinders

    Science.gov (United States)

    Davies, Peter; Carlsson, Leif A.

    The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.

  20. Thermoelastic analysis of non-uniform pressurized functionally graded cylinder with variable thickness using first order shear deformation theory(FSDT) and perturbation method

    Science.gov (United States)

    Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.

    2015-11-01

    Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.

  1. Storage in pressurized cylinders of Kr adsorbed on activated carbon. Fundamental principles

    International Nuclear Information System (INIS)

    Henrion, P.N.; Greff, J.F. de; Claes, W.; Leurs, A.

    1979-01-01

    Pressure of a few kg/cm 2 cause considerable adsorption of krypton on charcoal. In presence of this adsorbent, the aspects of krypton storage in a pressurized cylinder are modified in such a way that, eventually, a simplified engineered storage can be based on this procedure. As fission krypton generates heat and since the amount adsorbed is a function of temperature and pressure, there is no easy way of assessing the value of this concept. The purpose of this study was therefore to review the types of charcoal commercially available to examine their properties as adsorbents, as well as the thermal conductivity and the packing efficiency obtainable in beds made of these materials. The ways in which data are measured or estimated are explained in some detail. Heat transfer was evaluated by a simple mathematical model and, by means of selected values from the above data, realistic examples were treated, leading to explicit relationships between wall temperature, pressure and useful krypton load. Influence of krypton specific activity ( 85 Kr dilution) was also examined. The pressure vessels diameter is however of fundamental importance. The authors strongly recommend the use of specially designed, light-weight, relatively narrow pressure cylinders

  2. AWWA C303-17 concrete pressure pipe, bar-wrapped, steel-cylinder type

    CERN Document Server

    2017-01-01

    This standard describes the manufacture of concrete pressure pipe, reinforced with a steel cylinder that is helically wrapped with mild steel bar reinforcement, in sizes ranging from 10 in. through 72 in. (250 mm through 1,830 mm), inclusive, and for working pressures up to 400 psi (2,760 kPa).

  3. Virtual cylinder pressure sensor for transient operation in heavy-duty engines

    NARCIS (Netherlands)

    Kulah, S.; Donkers, M.C.F.; Willems, F.P.T.

    2015-01-01

    Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size. In addition, it enables the

  4. Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

    NARCIS (Netherlands)

    Kulah, S.; Donkers, T.; Willems, F.

    2015-01-01

    Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size.In addition, it enables the

  5. Integrated pressure sensor systems in the cylinder-head gasket; Integrierte Drucksensorik in der Zylinderkopfdichtung

    Energy Technology Data Exchange (ETDEWEB)

    Diez, A.; Maier, U. [ElringKlinger AG (Germany); Eifler, G. [ElringKlinger Motortechnik GmbH (Germany); Schnepf, M. [Kistler Instrumente AG, Winterthur (Switzerland)

    2004-01-01

    The optimisation of engine management plays a major role in the development of modern engines. A significant contribution to this optimisation will be made by a cylinder-head gasket with integrated pressure sensors of the quality required to measure in-cylinder pressure, which ElringKlinger AG together with Kistler Instrumente AG are currently working on. The goal is to provide the automotive industry with a system that makes it possible to optimally control combustion in each individual cylinder. (orig.) [German] Die Optimierung des Motormanagements spielt bei der Entwicklung moderner Motoren eine zentrale Rolle. Eine Zylinderkopfdichtung mit integrierten Druckaufnehmern in Indizierqualitaet, an der die Elring-Klinger AG und die Kistler Instrumente AG derzeit gemeinsam arbeiten, soll hierzu einen entscheidenden Beitrag leisten. Ziel ist es, der Automobilindustrie ein System zur Verfuegung zu stellen, das eine optimierte und zylinderindividuelle Steuerung der Verbrennung ermoeglicht. (orig.)

  6. Numerical Study of Shock-Cylinder Banks Interactions

    International Nuclear Information System (INIS)

    Wang, S.P.; Anderson, M.H.; Oakley, J.G.; Bonazza, R.

    2003-01-01

    A numerical parametric study of shock-cylinder banks interactions is presented using a high resolution Euler solver. Staggered cylinder banks of five rows are chosen with the purpose of modeling IFE reactor cooling tube banks. The effect of the aspect ratio of the intercylinder pitch to the distance between successive cylinder rows on the vertical pressure forces acting on the cylinders with different geometries is investigated. Preliminary results show that the largest vertical force develops on the cylinders of the second or third row. This peak pressure force increases with decreasing values of the aspect ratio. It is shown that an increasing second force peak also appears on the successive rows, starting with the second one, with decreasing aspect ratio. It is also observed that the force on the last-row cylinders basically decreases to the level of that on the first row. The results are useful for the optimal design of the cooling tubes system of IFE reactors

  7. 48 CFR 52.247-66 - Returnable Cylinders.

    Science.gov (United States)

    2010-10-01

    ... Cylinders (MAY 1994) (a) Cylinder, referred to in this clause, is a pressure vessel designed for pressures... clause. (c) For each cylinder lost or damaged beyond repair while in the Government's possession, the... associated replacement values.] These cylinders shall become Government property. (d) If any lost cylinder is...

  8. High-pressure portable pneumatic drive unit.

    Science.gov (United States)

    Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

    1989-12-01

    The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

  9. Estimation of the in-cylinder air/fuel ratio of an internal combustion engine by the use of pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Tunestaal, Per

    2000-03-01

    This thesis investigates the use of cylinder pressure measurements for estimation of the in-cylinder air/fuel ratio in a spark ignited internal combustion engine. An estimation model which uses the net heat release profile for estimating the cylinder air/fuel ratio of a spark ignition engine is developed. The net heat release profile is computed from the cylinder pressure trace and quantifies the conversion of chemical energy of the reactants in the charge into thermal energy. The net heat release profile does not take heat- or mass transfer into account. Cycle-averaged air/fuel ratio estimates over a range of engine speeds and loads show an RMS error of 4.1% compared to measurements in the exhaust. A thermochemical model of the combustion process in an internal combustion engine is developed. It uses a simple chemical combustion reaction, polynominal fits of internal energy as function of temperature, and the first law of thermodynamics to derive a relationship between measured cylinder pressure and the progress of the combustion process. Simplifying assumptions are made to arrive at an equation which relates the net heat release to the cylinder pressure. Two methods for estimating the sensor offset of a cylinder pressure transducer are developed. Both methods fit the pressure data during the pre-combustion phase of the compression stroke to a polytropic curve. The first method assumes a known polytropic exponent, and the other estimates the polytropic exponent. The first method results in a linear least-squares problem, and the second method results in a nonlinear least-squares problem. The nonlinear least-squares problem is solved by separating out the nonlinear dependence and solving the single-variable minimization problem. For this, a finite difference Newton method is derived. Using this method, the cost of solving the nonlinear least-squares problem is only slightly higher than solving the linear least-squares problem. Both methods show good statistical

  10. Large-Eddy Simulation of a High Reynolds Number Flow Around a Cylinder Including Aeroacoustic Predictions

    Science.gov (United States)

    Spyropoulos, Evangelos T.; Holmes, Bayard S.

    1997-01-01

    The dynamic subgrid-scale model is employed in large-eddy simulations of flow over a cylinder at a Reynolds number, based on the diameter of the cylinder, of 90,000. The Centric SPECTRUM(trademark) finite element solver is used for the analysis. The far field sound pressure is calculated from Lighthill-Curle's equation using the computed fluctuating pressure at the surface of the cylinder. The sound pressure level at a location 35 diameters away from the cylinder and at an angle of 90 deg with respect to the wake's downstream axis was found to have a peak value of approximately 110 db. Slightly smaller peak values were predicted at the 60 deg and 120 deg locations. A grid refinement study suggests that the dynamic model demands mesh refinement beyond that used here.

  11. Photoelastic investigation of the stresses in a stepped cylinder under internal pressure

    International Nuclear Information System (INIS)

    Sawa, Yoshiaki; Nishida, Masataka

    1985-01-01

    The states of stress distribution of the stepped cylinder under inner-pressure are studied by means of stress freezing photoelastic method. The experimental results reveal that fiber stress concentration occurs on the circular arc and hoop stress concentration occurs at the jointing point of the straight line and the arc and that each maximum value of fiver stress and hoop stress depends very greatly on the diameter of a small cylinder and the radius of curvature. And the relationship between the stress concentration factors and these shape factors are given. Effects of wall thickness on the stress concentration factors are also determined. (author)

  12. Further studies on stress intensity factors of semi-elliptical cracks in pressurized cylinders

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Love, W.J.; Jain, A.

    1979-01-01

    The authors have used, in the past, the three-dimensional stress intensity magnification factor, Msub(KS), for a semi-elliptical surface crack in a flat plate with a curvature correction factor, Msub(C), to estimate the stress intensity magnification factor, Msub(K) = Msub(C) x Msub(KS), for unpressurized and pressurized inner semi-elliptical cracks and unpressurized outer semi-elliptical cracks in pressurized and thermally shocked cylinders. Recent papers by Atluri/Kathiresan, Welliot/Labbens/Pellissier-Tanon and McGowan/Raymund, however, showed that while this plate analogy with curvature correction provided reasonable estimates of the stress intensity factors at the deepest crack penetration, it underestimated the stress intensity factors at the cylindrical surface. The source of this discrepancy was traced to the curvature correction factor Msub(C), which was re-evaluated for various crack configurations and cylindrical geometries studied. Using the updated Msub(C) together with the previously derived Msub(KS), stress intensity factor magnification factor, Msub(K), was rederived for: (1) Pressurized and unpressurized inner semi-elliptical cracks of two crack aspects ratios of b/a = 0.2 and 0.98 at crack depth of b/(Rsub(o)-Rsub(i)) = 0.4, 0.6, and 0.8 in pressurized cylinders with outside-to-inside radius ratios of Rsub(o)/Rsub(i) = 3/2, 5/4, 7/6, and 10/9. (2) Unpressurized outer semi-elliptical cracks of two crack aspect ratios of b/a = 0.2 and 0.98 at crack depths of b/(Rsub(o)-Rsub(i)) = 0.4, 0.6, and 0.8 in pressurized cylinders with outside-to-inside radius ratio of Rsub(o)/Rsub(i) = 3/2, 5/4, 7/6, and 10/9. (orig.)

  13. 700 bar hydrogen cylinder design, testing and certification

    International Nuclear Information System (INIS)

    Duncan, M.

    2004-01-01

    'Full text:' Light weight and high pressure cylinders for compressed hydrogen storage are essential components for fuel cell vehicles. Storage volume and mass are two key considerations. Current on-board hydrogen storage systems are based on a maximum pressure of 350 bar. While 350 bar systems are excellent solutions for many applications, some situations required higher storage densities due to space restrictions. As a result significant research and development work has been expended by cylinder manufacturers, systems providers, testing agencies and automotive manufacturers to develop 700 bar systems to reduce storage volume. Dynetek Industries Ltd has proactively developed a range of 700 bar storage cylinders based on a seamless aluminum liner over wrapped with a carbon fiber composite. This paper presents the challenges and processes involved in the design, testing and certification of the Dynetek Industries Ltd 700 bar cylinder. The paper also provides reasoning for further volume and mass optimization of compressed hydrogen cylinders by incorporating realistic cylinder usage parameters into standards. In particular the overly conservative fill life requirement for cylinders will be examined. (author)

  14. Literature review and experimental results for a cylinder with perforations and protrusions at high Reynolds numbers

    Science.gov (United States)

    Jones, G. S.; Horvath, T. J.; Stainback, P. C.; Beasley, W. D.; Mcghee, R. J.

    1987-01-01

    The NASA Langley Low Turbulence Pressure Tunnel has been used to conduct an experimental study of the flow around a series of circular cylinders; the models used consisted of a baseline, smooth cylinder together with a cylinder that could be reconfigured with six different arrangements of two types of surface irregularity. Mean lift and drag forces were measured on all seven model configurations, and correlations were made between unsteady pressure in the wake region and fluctuating lift forces, in order to identify coherent structures.

  15. Self adaptive internal combustion engine control for hydrogen mixtures using piezoelectric transducers for dynamic cylinder pressure monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene

    2004-07-01

    Hydrogen internal combustion engine research at the Hydrogen Research Institute includes the following infrastructure: a 20 square metre test cell, an engine preparation room, a 150 hp dynamometer, exhaust gas analysers and a hydrogen supply. The goal of the research is to develop internal combustion engine technologies that can use hydrogen as a fuel without knocking, backfires, excessive engine wear, and with low emissions. As well as hydrogen, fuels such as biogas are also investigated. Technologies under investigation include adaptive control algorithms, as well as advanced sensors and actuators. The latter include piezolelectrics, optical fibres, nitrogen oxide detectors, and chemical composition detectors. Developments include microprocessor-controlled injection and ignition control systems for both single cylinder and multicylinder engines. Research on the influence of fuel composition on best ignition timing is presented. There is also dynamic cylinder pressure monitoring to prevent knocking make engine state assessments and perform engine calibration. Piezoelectric cylinder pressure sensors are employed, either integrated with the spark plugs, or stand-alone, inserted through separate holes through the cylinder head. tabs, figs.

  16. Development of multi-frequency ESR system for high-pressure measurements up to 2.5 GPa

    Science.gov (United States)

    Sakurai, T.; Fujimoto, K.; Matsui, R.; Kawasaki, K.; Okubo, S.; Ohta, H.; Matsubayashi, K.; Uwatoko, Y.; Tanaka, H.

    2015-10-01

    A new piston-cylinder pressure cell for electron spin resonance (ESR) has been developed. The pressure cell consists of a double-layer hybrid-type cylinder with internal components made of the ZrO2-based ceramics. It can generate a pressure of 2 GPa repeatedly and reaches a maximum pressure of around 2.5 GPa. A high-pressure ESR system using a cryogen-free superconducting magnet up 10 T has also been developed for this hybrid-type pressure cell. The frequency region is from 50 GHz to 400 GHz. This is the first time a pressure above 2 GPa has been achieved in multi-frequency ESR system using a piston-cylinder pressure cell. We demonstrate its potential by showing the results of the high-pressure ESR of the S = 1 system with the single ion anisotropy NiSnCl6 · 6H2O and the S = 1 / 2 quantum spin system CsCuCl3. We performed ESR measurements of these systems above 2 GPa successfully.

  17. Effect of Diesel Engine Converted to Sequential Port Injection Compressed Natural Gas Engine on the Cylinder Pressure vs Crank Angle in Variation Engine Speeds

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The diesel engine converted to compressed natural gas (CNG) engine effect is lower in performance. Problem statement: The hypothesis is that the lower performance of CNG engine is caused by the effect of lower in engine cylinder pressure. Are the CNG engine is lower cylinder pressure than diesel engine? This research is conducted to investigate the cylinder pressure of CNG engine as a new engine compared to diesel engine as a baseline engine. Approach: The research approach in this study is b...

  18. Experimental strength evaluation of cylinders with a flat head subjected to internal pressure at elevated temperature

    International Nuclear Information System (INIS)

    Suzuki, Mitsuru; Makino, Yutaka

    1978-01-01

    The experiments using component test models such as a cylinder with a flat head and F.E.M. elastic analyses to investigate the secondary stress, peak stress and creep-fatigue interaction effect are described. The comparison of uniaxial stress with multiaxial stress about deformation and strength at elevated temperatures are also described here. The results of experiments and analysis are summarized as follows: (1) The maximum stress as the equivalent stress is the most suitable for the prediction of the creep failure life of cylinders subjected to internal pressure using the uniaxial creep test results. And the Mises's equivalent stress is the suitable for this prediction using the data of the onset of the uniaxial tertiary creep. (2) In the creep characteristics of the cylinder there, is no tertiary creep stage, and the rupture elongation of the cylinder accords with the elongation of the onset of the uniaxial tertiary creep. (3) It was recognized that the secondary stress occurred at the corner of the cylinder with a flat head has a little effect on creep and creep-fatigue life. (4) The life reduction effect due to the creep-fatigue interaction around the corner was recognized by the linear damage rule and compared with the value of Code Case 1592. (5) A difference of failure modes by imposed conditions for vessel with the size-discontinuity section was recognized by the cyclic internal pressure tests with hold time. (author)

  19. Numerical simulation coupling with experimental study on the non-uniform of each cylinder gas exchange and working processes of a multi-cylinder gasoline engine under transient conditions

    International Nuclear Information System (INIS)

    Zhou, Feng; Fu, Jianqin; Shu, Jun; Liu, Jingping; Wang, Shuqian; Feng, Renhua

    2016-01-01

    Highlights: • An approach is presented to detect the CTCV of engine under transient conditions. • The range and influence factors of CTCV of engine performances were revealed. • The maximum relative deviation of IMEP in each cylinder is larger than ±30%. • There appears a symmetry relation between CTCV of RGF and excess air coefficient. - Abstract: Cylinder-to-cylinder variation is unavoidable in multi-cylinder engine and has a severe impact on engine performance. To explore the cylinder-to-cylinder variation of engine under transient conditions, a hybrid method of dynamic signal measurement coupling with gas dynamics and thermodynamics processes simulation is presented to detect the parameters of engine. Then, this method is applied to an automobile engine under road test conditions, and the continuous state and performance parameters of each cylinder were obtained from cycle to cycle. On this basis, the range and influence factors of non-uniform of engine performance parameters were analyzed. The results show that, under transient conditions, the relative deviation of excess air coefficient in each cylinder is within ±5%, which is mainly affected by intake average pressure in low to medium speed operating regions but influenced by exhaust pressure wave and residual gas fraction in high-speed and high-load operating regions. There appears a symmetry relation between the non-uniform of RGF and excess air coefficient. The relative deviation of indicated mean effective pressure in each cylinder depends largely on the gas exchange performance, including excess air coefficient and residual gas fraction, and the maximum is larger than ±30%.

  20. STRENGTH AND STIFFNESS OF A FLEXIBLE HIGH-PRESSURE SPIRAL HOSE

    NARCIS (Netherlands)

    BREGMAN, PC; KUIPERS, M; TEERLING, HLJ; VANDERVEEN, WA

    1993-01-01

    We consider a flexible high-pressure rubber hose with separate reinforcing cylinders which each consist of one family of spiralized fibres. The straight tube is radially and axially loaded by an internal pressure. This paper gives an approximative analysis of the stresses and strains occurring in

  1. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    International Nuclear Information System (INIS)

    Courteau, R.; Bose, T.K.

    2004-01-01

    Piezoelectric transducers offer an effective, non-intrusive way to monitor dynamic cylinder pressure in internal combustion engines. Devices dedicated to this purpose are appearing on the market, often in the form of spark plugs with embedded piezo elements. Dynamic cylinder pressure is typically used to provide diagnostic functions, or to help map an engine after it is designed. With the advent of powerful signal processor chips, it is now possible to embed enough computing power in the engine controller to perform auto tuning based on the signals provided by such transducers. Such functionality is very useful if the fuel characteristics vary between fill ups, as is often the case with alternative fuels. We propose here an algorithm for self-adaptive tuning based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. (author)

  2. Cylinder pressure sensing and model-based control in engine management systems

    Energy Technology Data Exchange (ETDEWEB)

    Truscott, A.; Noble, A.; Akoachere, A.; Beaumont, A. [Ricardo Consulting Engineers Ltd., Bridge Works (United Kingdom); Mueller, R.; Hart, M. [FT2/EA, HPC T721, DaimlerChrysler AG, Stuttgart (Germany); Kroetz, G. [FT2/M, DaimlerChrysler AG, Muenchen (Germany); Cavalloni, C.; Gnielka, M. [Kistler Instrumente AG, Winterthur (Switzerland)

    2000-07-01

    Global demands on fuel economy and lower emissions from automotive vehicles have had a large impact on the development of engine management systems (EMS) in recent years. However, despite the advances in system hardware, the software programmed into these systems has yet to utilise the full potential of modern control methodologies. Model based control and diagnostics is the next step forward in the development of EMS software with the potential of providing improvements in cost, efficiency, emissions and comfort. However, the full utilisation of such techniques requires very close monitoring of engine conditions. This is made possible with the advent of new inexpensive sensor technology that can withstand the harsh environment of the combustion chamber. To exploit the above advances, the AENEAS collaborative project is being carried out by Ricardo, DaimlerChrysler and Kistler, with financial support from the European Commission and Swiss government, and has the objective of realising the benefits of cylinder pressure based engine management system (CPEMS) technology. This paper describes the application of CPEMS technology to a spark ignition (SI) engine. It describes how the combination of model based algorithms, incorporating physical principles, and cylinder pressure sensing can provide an effective means of engine control and diagnostics. (orig.)

  3. Effect of Material Parameters on Steady State Creep in a Thick Composite Cylinder Subjected to Internal Pressure

    Directory of Open Access Journals (Sweden)

    Tejeet Singh

    2009-12-01

    Full Text Available The steady state creep in Al- SiCP composite cylinder subjected to internal pressure was investigated. The creep behavior of the material were described by threshold stress based creep law by assuming a stress exponent of 5. The effect of size and content of the reinforcement (SiCP , and operating temperature on the stresses and strain rates in the composite cylinder were investigated. The stresses in the cylinder did not have significant variation with varying size and content of the reinforcement, and operating temperature. However, the tangential as well as radial strain rates in the cylinder could be reduced to a significant extent by decreasing size of SiCP, increasing the content of SiCP and decreasing operating temperature.

  4. Engine Cylinder Temperature Control

    Science.gov (United States)

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  5. Fire exposure of empty 30B cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Ziehlke, K.T. [MJB Technical Associates, Inc., Knoxville, TN (United States)

    1991-12-31

    Cylinders for UF{sub 6} handling, transport, and storage are designed and built as unfired pressure vessels under ASME Boiler and Pressure Vessel Code criteria and standards. They are normally filled and emptied while UF{sub 6} is in its liquid phase. Transport cylinders such as the Model 30B are designed for service at 200 psi and 250{degrees}F, to sustain the process conditions which prevail during filling or emptying operations. While in transport, however, at ambient temperature the UF{sub 6} is solid, and the cylinder interior is well below atmospheric pressure. When the cylinders contain isotopically enriched product (above 1.0 percent U-235), they are transported in protective overpacks which function to guard the cylinders and their contents against thermal or mechanical damage in the event of possible transport accidents. Two bare Model 30B cylinders were accidentally exposed to a storage warehouse fire in which a considerable amount of damage was sustained by stored materials and the building structure, as well as by the cylinder valves and valve protectors. The cylinders were about six years old, and had been cleaned, inspected, hydrotested, and re-certified for service, but were still empty at the time of the fire. The privately-owned cylinders were transferred to DOE for testing and evaluation of the fire damage.

  6. Shakedown analysis of thick-walled cylinders subjected to internal pressure with the unified strength criterion

    International Nuclear Information System (INIS)

    Xu Shuanqiang; Yu Maohong

    2005-01-01

    Most previous studies on shakedown of thick-walled cylinders were based on the assumption that the compressive and tensile strengths of the materials were identical. In this paper the shakedown of an internally pressurized cylinder made of a material with a strength-difference and intermediate principal stress effects is dealt with by using a unified strength criterion which consists of a family of convex piecewise linear strength criteria. Through an elasto-plastic analysis the solutions for the loading stresses, residual stresses, elastic limit, plastic limit and shakedown limit of the cylinder are derived. It is shown that the present solutions include the classical plasticity solutions as special cases and have the ability to account for the strength-difference and intermediate principal stress effects. Finally, the influence of the two effects on the shakedown limit of the cylinder is investigated. The results show that the shakedown limit depends on the two effects and is underestimated if these effects are neglected as in the classical plasticity solution based on the Tresca criterion

  7. Vortex structure behind highly heated two cylinders in parallel arrangements

    International Nuclear Information System (INIS)

    Kurita, Eiichirou; Yahagi, Yuji

    2008-01-01

    Vortex structures behind twin, highly heated cylinders in parallel arrangements have been investigated experimentally. The experiments were conducted under the following conditions: cylinder diameter, D=4 mm; mean flow velocity, U ∞ =1.0 m/s; Reynolds number, Re=250; cylinder clearance, S/D=0.5 - 1.4; and cylinder heat flux, q=0 - 72.6 kW/m 2 . For S/D > 1.2, the Karman vortex street is formed alternately behind each cylinder divided on the slit flow. The slit flow velocity increases with a decrease in S/D and decreases with increasing heat flux. For S/D 2 ). As a result, the increased local kinematic viscosity and S/D play a key role for the vortex structure and formation behind arrangements of two parallel cylinders. (author)

  8. Conversion of low BMEP 4-cylinder to high BMEP 2-cylinder large bore natural gas engine

    Science.gov (United States)

    Ladd, John

    There are more than 6,000 integral compressor engines in use on US natural gas pipelines, operating 24 hours a day, 365 days a year. Many of these engines have operated continuously for more than 50 years, with little to no modifications. Due to recent emission regulations at the local, state and federal levels much of the aging infrastructure requires retrofit technology to remain within compliance. The Engines and Energy Conversion Laboratory was founded to test these retrofit technologies on its large bore engine testbed (LBET). The LBET is a low brake mean effective pressure (BMEP) Cooper Bessemer GMVTF-4. Newer GMV models, constructed in 1980's, utilize turbocharging to increase the output power, achieving BMEP's nearly double that of the LBET. To expand the lab's testing capability and to reduce the LBET's running cost: material testing, in-depth modeling, and on engine testing was completed to evaluate the feasibility of uprating the LBET to a high BMEP two cylinder engine. Due to the LBET's age, the crankcase material properties were not known. Material samples were removed from engine to conduct an in-depth material analysis. It was found that the crankcase was cast out of a specific grade of gray iron, class 25 meehanite. A complete three dimensional model of the LBET's crankcase and power cylinders was created. Using historical engine data, the force inputs were created for a finite element analysis model of the LBET, to determine the regions of high stress. The areas of high stress were instrumented with strain gauges to iterate and validate the model's findings. Several test cases were run at the high and intermediate BMEP engine conditions. The model found, at high BMEP conditions the LBET would operate at the fatigue limit of the class 25 meehanite, operating with no factor of safety but the intermediate case were deemed acceptable.

  9. Mechanical Integrity of Copper Canister Lid and Cylinder. Sensitivity study

    International Nuclear Information System (INIS)

    Karlsson, Marianne

    2002-08-01

    This report is part of a study of the mechanical integrity of canisters used for disposal of nuclear fuel waste. The overall objective is to determine and ensure the static and long-term strength of the copper canister lid and cylinder casing. The canisters used for disposal nuclear fuel waste of type BWR consists of an inner part (insert) of ductile cast iron and an outer part of copper. The copper canister is to provide a sealed barrier between the contents of the canister and the surroundings. The study in this report complements the finite element analyses performed in an earlier study. The analyses aim to evaluate the sensitivity of the canister to tolerances regarding the gap between the copper cylinder and the cast iron insert. Since great uncertainties regarding the material's long term creep properties prevail, analyses are also performed to evaluate the effect of different creep data on the resulting strain and stress state. The report analyses the mechanical response of the lid and flange of the copper canister when subjected to loads caused by pressure from swelling bentonite and from groundwater at a depth of 500 meter. The loads acting on the canister are somewhat uncertain and the cases investigated in this report are possible cases. Load cases analysed are: Pressure 15 MPa uniformly distributed on lid and 5 MPa uniformly distributed on cylinder; Pressure 5 MPa uniformly distributed on lid and 15 MPa uniformly distributed on cylinder; Pressure 20 MPa uniformly distributed on lid and cylinder; and Side pressures 10 MPa and 20 MPa uniformly distributed on part of the cylinder. Creep analyses are performed for two of the load cases. For all considered designs high principal stresses appear on the outside of the copper cylinder in the region from the weld down to the level of the lid lower edge. Altering the gap between lid and cylinder and/or between cylinder and insert only marginally affects the resulting stress state. Fitting the lid in the cylinder

  10. Analyses on interaction of internal and external surface cracks in a pressurized cylinder by hybrid boundary element method

    International Nuclear Information System (INIS)

    Chai Guozhong; Fang Zhimin; Jiang Xianfeng; Li Gan

    2004-01-01

    This paper presents a comprehensive range of analyses on the interaction of two identical semi-elliptical surface cracks at the internal and external surfaces of a pressurized cylinder. The considered ratios of the crack depth to crack length are b/a=0.25, 0.5, 0.75 and 1.0; the ratios of the crack depth to wall thickness of the cylinder are 2b/t=0.2, 0.4, 0.6, 0.7 and 0.8. Forty crack configurations are analyzed and the stress intensity factors along the crack front are presented. The numerical results show that for 2b/t<0.7, the interaction leads to a decrease in the stress intensity factors for both internal and external surface cracks, compared with a single internal or external surface crack. Thus for fracture analysis of a practical pressurized cylinder with two identical semi-elliptical surface cracks at its internal and external surfaces, a conservative result is obtained by ignoring the interaction

  11. 75 FR 12713 - Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinders as Installed on Various...

    Science.gov (United States)

    2010-03-17

    ... proposed AD was prompted by the reported rupture of a high-pressure gaseous oxygen cylinder, which had...) This AD was prompted by the reported rupture of a high- pressure gaseous oxygen cylinder, which had... necessary oxygen supply for the flightcrew, and injury to cabin occupants or other support personnel. DATES...

  12. Experimental analysis of the structure attenuation characteristics on engine noise by pseudo cylinder pressure excitation; Giji tonaiatsu kashin ni yoru engine kozo no soon tokusei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, H; Nakada, T [Isuzu Advanced Engineering Center, Tokyo (Japan)

    1997-10-01

    The engine structure attenuation has been experimentally analyzed by the newly developed in-cylinder excitation system. It can reproduce the complete cylinder pressure in non-running engine conditions by adopting the hydraulic and the piezoelectric actuator. The structure attenuation measured in this system has a good coincidence with the ones measured in actually engine operating conditions, meanwhile the current method, which applied only high frequency components as the excitation pressure, was shown to have the unsatisfied agreement. As a result, the proposed system has been concluded to be very useful to estimate the engine noise characteristics in non-running conditions. 4 refs., 11 figs., 1 tab.

  13. The Charging Process in a High-speed, Single-cylinder, Four-stroke Engine

    Science.gov (United States)

    Reynolds, Blake; Schecter, Harry; Taylor, E S

    1939-01-01

    Experimental measurements and theoretical calculations were made on an aircraft-type, single cylinder engine, in order to determine the physical nature of the inlet process, especially at high piston speeds. The engine was run at speeds from 1,500 to 2,600 r.p.m. (mean piston speeds of 1,370 to 2,380 feet per minute). Measurements were made of the cylinder pressure during the inlet stroke and of the power output and volumetric efficiency. Measurements were also made, with the engine not running, to determine the resistance and mass of air in the inlet valve port at various crank angles. Results of analysis indicate that mass has an appreciable effect, but friction plays the major part in restricting flow. The observed fact that the volumetric efficiency is considerably less than 100 percent is attributed to thermal effects. An estimate was made of the magnitude of these effects in the present case, and their general nature is discussed.

  14. Mechanical Integrity of Copper Canister Lid and Cylinder

    International Nuclear Information System (INIS)

    Karlsson, Marianne

    2002-01-01

    This report compiles finite element analyses performed to ensure the structural integrity of canisters used for storing of nuclear fuel waste of type BWR. The report comprises analyses performed on the canister lid and cylinder casing in order to determine static and long-term strength of the structure. The report analyses the mechanical response of the lid and flange of the copper canister when subjected to loads caused by pressure from swelling bentonite and from ground water at a depth of 500 meter. The loads acting on the canister are somewhat uncertain and the cases investigated in this report are possible cases. Load cases analysed are: Pressure 15 MPa uniformly distributed on lid and 5 MPa uniformly distributed on cylinder; Pressure 5 MPa uniformly distributed on lid and 15 MPa uniformly distributed on cylinder; Pressure 20 MPa uniformly distributed on lid and cylinder; Side pressures 10 MPa and 20 MPa uniformly distributed on part of the cylinder. Creep analyses are also performed in order to estimate the stresses that will arise when the canister is placed in the repository. The analyses in this report are recreated from the original analyses but the models differ in geometry. Also, there is no information in the original reports on material data, time-independent as well as creep data, and analysis procedure. The data used in the recreated analyses are based on information from References 2, 3, 6 and 7. The results presented in this report are based on the supplementary analyses. These results differ from the original results. Most likely this is due to differences in model geometry. The original results are appended to the report and are summarised for comparison with results from the supplementary analyses. Otherwise, these results are not further discussed. For all load cases, high tensile stresses are found in the lid fillet between the planar part and the flange. High tensile stresses are also found in the weld surface and on the outer side of the

  15. Natural Gas Vehicle Cylinder Safety, Training and Inspection Project

    Energy Technology Data Exchange (ETDEWEB)

    Hank Seiff

    2008-12-31

    Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

  16. The Present Status of Using Natural Gas Cylinders and Acoustic Emission in Thailand

    Science.gov (United States)

    Jomdecha, C.; Jirarungsatian, C.; Methong, W.; Poopat, B.

    This chapter presents the status of using natural gas cylinders (CNG/NGV) and acoustic emission (AE) in Thailand. During the period from 2006 to 2013, more than 600,000 CNG cylinder units for vehicles were installed and used for transportation, cars, and trucks in Thailand. The number of cylinder units will be tentatively increased in the future due to the increase in gasoline price. Due to the use of high-pressurization equipment in public, the issue of a risk to public safety has been raised. As of this writing, in 2013, the testing standard from the Thai Department of Energy Business recommends inspection every 5 years using effective inspection methods in order to guarantee safe usage of gas cylinders, including the AE method, following ISO 16148. Normally in Thailand, AE is used in research and petrochemical plants as a special technique. The main applications are testing of pressure vessels, aboveground storage tanks, and university research. Few companies are available to conduct AE for testing natural gas cylinders due to the limited safety of the high-pressure operation and AE equipment and a lack of qualified AE personnel. To develop AE techniques, equipment, procedures, and acceptance criteria of natural gas cylinders are the main focus of AE personnel in Thailand. A desired achievement for current development is for natural gas cylinder testing, which can be applied in field tests and supported by a national testing standard.

  17. The Friction of Vehicle Brake Tandem Master Cylinder

    International Nuclear Information System (INIS)

    Kao, M J; Chang, H; Tsung, T T; Lin, H M

    2006-01-01

    The behaviour of an elastomeric seal for vehicle brake Tandem master cylinder is measured and analyzed in temperature and brake fluids changed. Working conditions are simulated for different piston rod velocity and cylinder supply pressure, in temperature rising, brakefluid boundary and Nanoaluminum oxide brakefluid oxide brakefluid lubrication. The result shows that Nanoaluminum oxide brakefluid with its ball shape can highly reduce friction coefficient to avoid seal excessive wear and reduce slick slip in brake applications

  18. Analysis of composite hydrogen storage cylinders subjected to localized flame impingements

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Chen, J.; Sundararaman, S.; Chandrashekhara, K. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Chernicoff, William [US Department of Transportation, Washington, DC 20509 (United States)

    2008-06-15

    A comprehensive non-linear finite element model is developed for predicting the behavior of composite hydrogen storage cylinders subjected to high pressure and localized flame impingements. The model is formulated in an axi-symmetric coordinate system and incorporates with various sub-models to describe the behavior of the composite cylinder under extreme thermo-mechanical loadings. A heat transfer sub-model is employed to predict the temperature evolution of the composite cylinder wall and accounts for heat transport due to decomposition and mass loss. A composite decomposition sub-model described by Arrhenius's law is implemented to predict the residual resin content of thermal damaged area. A sub-model for material degradation is implemented to account for the loss of mechanical properties. A progressive failure model is adopted to detect various types of mechanical failure. These sub-models are implemented in ABAQUS commercial finite element code using user subroutines. Numerical results are presented for thermal damage, residual properties and profile of resin content in the cylinder. The developed model provides a useful tool for safe design and structural assessment of high pressure composite hydrogen storage cylinders. (author)

  19. IN-CYLINDER MASS FLOW ESTIMATION AND MANIFOLD PRESSURE DYNAMICS FOR STATE PREDICTION IN SI ENGINES

    Directory of Open Access Journals (Sweden)

    Wojnar Sławomir

    2014-06-01

    Full Text Available The aim of this paper is to present a simple model of the intake manifold dynamics of a spark ignition (SI engine and its possible application for estimation and control purposes. We focus on pressure dynamics, which may be regarded as the foundation for estimating future states and for designing model predictive control strategies suitable for maintaining the desired air fuel ratio (AFR. The flow rate measured at the inlet of the intake manifold and the in-cylinder flow estimation are considered as parts of the proposed model. In-cylinder flow estimation is crucial for engine control, where an accurate amount of aspired air forms the basis for computing the manipulated variables. The solutions presented here are based on the mean value engine model (MVEM approach, using the speed-density method. The proposed in-cylinder flow estimation method is compared to measured values in an experimental setting, while one-step-ahead prediction is illustrated using simulation results.

  20. The increase in Tc for MgB2 superconductor under high pressure

    International Nuclear Information System (INIS)

    Liu, Z-X; Jin, C-Q; You, J-Y; Li, S-C; Zhu, J-L; Yu, R-C; Li, F-Y; Su, S-K

    2002-01-01

    We report in situ high-pressure studies up to 1.0 GPa on MgB 2 superconductor which had been synthesized at high pressure. The as-prepared sample is of high quality as regards having a sharp superconducting transition (T c ) at 39 K. The in situ high-pressure measurements were carried out using a Be-Cu piston-cylinder-type instrument with a mixed oil as the pressure-transmitting medium, which provides a quasi-hydrostatic pressure environment at low temperature. The superconducting transitions were measured using the electrical conductance method. It is found that T c increases with pressure in the initial pressure range, leading to a parabolic-like T c -P evolution

  1. Force Control for a Pneumatic Cylinder Using Generalized Predictive Controller Approach

    OpenAIRE

    Mohd Faudzi, Ahmad ’Athif; Mustafa, Nu’man Din; Osman, Khairuddin

    2014-01-01

    Pneumatic cylinder is a well-known device because of its high power to weight ratio, easy use, and environmental safety. Pneumatic cylinder uses air as its power source and converts it to a possible movement such as linear and rotary movement. In order to control the pneumatic cylinder, controller algorithm is needed to control the on-off solenoid valve with encoder and pressure sensor as the feedback inputs. In this paper, generalized predictive controller (GPC) is proposed as the control st...

  2. Numerical simulation and optimization of Al alloy cylinder body by low pressure die casting

    Directory of Open Access Journals (Sweden)

    Mi Guofa

    2008-05-01

    Full Text Available Shrinkage defects can be formed easily at Critical location during low pressure die casting (LPDC of aluminum alloy cylinder body. It has harmful effect on the products. Mold fi lling and solidifi cation process of a cylinder body was simulated by using of Z-CAST software. The casting method was improved based on the simulation results. In order to create effective feeding passage, the structure of casting was modifi ed by changing the location of strengthening ribs at the bottom, without causing any adverse effect on the part’s performance. Inserting copper billet at suitable location of the die is a valid way to create suitable solidifi cation sequence that is benefi cial to the feeding. Using these methods, the shrinkage defect was completely eliminated at the critical location.

  3. Cylinder Position Servo Control Based on Fuzzy PID

    Directory of Open Access Journals (Sweden)

    Shibo Cai

    2013-01-01

    Full Text Available The arbitrary position control of cylinder has always been the hard challenge in pneumatic system. We try to develop a cylinder position servo control method by combining fuzzy PID with the theoretical model of the proportional valve-controlled cylinder system. The pressure differential equation of cylinder, pressure-flow equation of proportional valve, and moment equilibrium equation of cylinder are established. And the mathematical models of the cylinder driving system are linearized. Then fuzzy PID control algorithm is designed for the cylinder position control, including the detail analysis of fuzzy variables and domain, fuzzy logic rules, and defuzzification. The stability of the proposed fuzzy PID controller is theoretically proved according to the small gain theorem. Experiments for targets position of 250 mm, 300 mm, and 350 mm were done and the results showed that the absolute error of the position control is less than 0.25 mm. And comparative experiment between fuzzy PID and classical PID verified the advantage of the proposed algorithm.

  4. Effect of injection pressure on performance, emission, and combustion characteristics of diesel-acetylene-fuelled single cylinder stationary CI engine.

    Science.gov (United States)

    Srivastava, Anmesh Kumar; Soni, Shyam Lal; Sharma, Dilip; Jain, Narayan Lal

    2018-03-01

    In this paper, the effect of injection pressure on the performance, emission, and combustion characteristics of a diesel-acetylene fuelled single cylinder, four-stroke, direct injection (DI) diesel engine with a rated power of 3.5 kW at a rated speed of 1500 rpm was studied. Experiments were performed in dual-fuel mode at four different injection pressures of 180, 190, 200, and 210 bar with a flow rate of 120 LPH of acetylene and results were compared with that of baseline diesel operation. Experimental results showed that highest brake thermal efficiency of 27.57% was achieved at injection pressure of 200 bar for diesel-acetylene dual-fuel mode which was much higher than 23.32% obtained for baseline diesel. Carbon monoxide, hydrocarbon, and smoke emissions were also measured and found to be lower, while the NO x emissions were higher at 200 bar in dual fuel mode as compared to those in other injection pressures in dual fuel mode and also for baseline diesel mode. Peak cylinder pressure, net heat release rate, and rate of pressure rise were also calculated and were higher at 200 bar injection pressure in dual fuel mode.

  5. High-temperature, high-pressure bonding of nested tubular metallic components

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    This invention is a tool for effecting high-temperature, high compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hotpress evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity

  6. High-temperature, high-pressure bonding of nested tubular metallic components

    Science.gov (United States)

    Quinby, T.C.

    A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  7. Failure Analysis of a Modern High Performance Diesel Engine Cylinder Head

    Directory of Open Access Journals (Sweden)

    Bingbin Guo

    2014-05-01

    Full Text Available This paper presents a failure analysis on a modern high performance diesel engine cylinder head made of gray cast iron. Cracks appeared intensively at the intersection of two exhaust passages in the cylinder head. The metallurgical examination was conducted in the crack origin zone and other zones. Meanwhile, the load state of the failure part of the cylinder head was determined through the Finite Element Analysis. The results showed that both the point of the maximum temperature and the point of the maximum thermal-mechanical coupling stress were not in the crack position. The excessive load was not the main cause of the failure. The large cooling rate in the casting process created an abnormal graphite zone that existed below the surface of the exhaust passage (about 1.1 mm depth, which led to the fracture of the cylinder head. In the fractured area, there were a large number of casting defects (dip sand, voids, etc. and inferior graphite structure (type D, type E which caused stress concentration. Moreover, high temperature gas entered the cracks, which caused material corrosion, material oxidization, and crack propagation. Finally, premature fracture of the cylinder head took place.

  8. Effect of High Porosity Screen on the Near Wake of a Circular Cylinder

    Directory of Open Access Journals (Sweden)

    Sahin B.

    2013-04-01

    Full Text Available The change in flow characteristics downstream of a circular cylinder (inner cylinder surrounded by a permeable cylinder (outer cylinder made of a high porosity screen was investigated in shallow water using Particle Image Velocimetry (PIV technique. The diameter of the inner cylinder, outer cylinder and the water height were kept constant during the experiments as d = 50 mm, D = 100 mm and hw = 50 mm, respectively. The depth-averaged free stream velocity was also kept constant as U = 180 mm/s which corresponded to a Reynolds number of Red = 9000 based on the inner cylinder diameter. It was shown that the outer permeable cylinder had a substantialeffect on the vortex formation and consequent vortex shedding downstream of the circular cylinder, especially in the near wake. The time averaged vorticity layers, streamlines and velocity vector field depict that the location of the interaction of vortices considerably changed by the presence of the outer cylinder. Turbulent statistics clearly demonstrated that in comparison to the natural cylinder, turbulent kinetic energy and Reynolds stresses decreased remarkably downstream of the inner cylinder. Moreover, spectra of streamwise velocity fluctuations showed that the vortex shedding frequency significantly reduced compared to the natural cylinder case.

  9. Dynamic Measurement of Extra Long Stroke Cylinder in the Pneumatic System

    International Nuclear Information System (INIS)

    Chang Ho; Lan Chouwei; Chen, L-C

    2006-01-01

    This paper sets up the measure and control system of the dynamic characteristics of the extra long stroke cylinder. In the different types of the control conditions (e.g. different control law, operating pressure and direct control valves), using the measure and control system to measure the relation between the pressure and the velocity of the motion of the long stroke cylinder and to observe the stick slip phenomenon of the motion of the long stroke cylinder. In the innovate measurement system, two pressure sensors are set on the long stroke cylinder to measure the difference of the pressure between the inlet and the exhaust of the long stroke cylinder. In additions, a draw line encoder is set on the system to measure the position and the velocity of the motion of the long stroke cylinder. The measuring data of the measure system is transferred to the computer via A/D interface card and counter card, and Home-made program of Haptic Interface Device is used to control the system, saving the data of the motion of the long stroke cylinder. The system uses different types of direction control valve to control the motion of the long stroke cylinder and compares the difference of the motion of the long stroke cylinder. The results show that the motion of the cylinder that pauses in the middle of the cylinder stroke and causes the stick slip phenomenon is more violent than the stick slip phenomenon in other position. When the length of the pause time reaches the some range, the acceleration of the motion of the cylinder will be rised substantially. This paper not only focuses on the testing method of the dynamic characteristics of the motion of the long stroke cylinder, but also includes the analysis of the dynamic characteristics of the motion of the long stroke cylinder. It provides the data of the dynamic characteristics of the motion of the long stroke cylinder to improve and design the pneumatic system of the long stroke cylinder

  10. A study on the design of a low-friction, high-speed pneumatic cylinder

    International Nuclear Information System (INIS)

    Kim, Do Tae; Kim, Dong Soo; Ju, Min Jin

    2008-01-01

    Of all of pneumatic components utilized in the make up of pneumatic circuits on either automatic assembly machine or industrial equipment, the pneumatic cylinder is more oriented toward being a structural as well as a pneumatic member. The structural design must be based to a large degree on the end of application of the cylinder on the equipment it is operating. In this paper, design studies of a double-acting pneumatic cushion type cylinder with low-friction and high-speed driving have been developed. Of interest here is to investigate the structural analysis of cylinder tube, piston rod, end cover, and to analyze the buckling of piston rod. Also, a relief valve type cushion mechanism is considered. This cushion mechanism is found to be adequate under a high-speed driving of pneumatic cylinders

  11. Cracking investigation of Monju emergency generator C unit cylinder liner. Cylinder liner soundness confirmation by a fall cause of the materials strength of the cylinder liner and the supersonic wave speed

    International Nuclear Information System (INIS)

    Kobayashi, Takanori; Sakon, Miyoji; Takada, Osamu; Hatori, Masakazu; Sakamoto, Tsutomu; Sato, Toshiyuki; Kazama, Akihito; Ishizawa, Yoshihiro; Igawa, Katsuhisa; Nakae, Hideo

    2012-02-01

    I confirmed a leak of the effluent gas from cylinder part during a load examination after the check of the emergency generator C unit on December 28, 2010 of the facilities check average and confirmed crack in No.8 cylinder liner part. As a result, because it was not performed oil pressure management properly without attaching an oil pressure gauge when I removed cylinder liner about the cause, crack occurred by having been able to write excessive stress for the cylinder liner and reached damage. By a process of this investigation, a fall of the materials strength of some cylinder liner was confirmed, but because a lead ingredient got mixed with materials by a casting process at the time of the production of the cylinder liner, as for this, Widmannstaetten graphite occurred, and it became clear that materials strength fell. In addition, I performed inspection by the supersonic wave velocity measurement as technique to distinguish this Widmannstaetten graphite easily and confirmed that I was effective. Because this report was the knowledge that there were little inspection contents which modified soundness confirmation technique of the cylinder liner with the possibility of materials strength fall of the cylinder liner by the Widmannstaetten graphite outbreak and the mixture of lead for a report example in the field of cast iron, I gathered it in this report. (author)

  12. Advanced closed loop combustion control of a LTC diesel engine based on in-cylinder pressure signals

    International Nuclear Information System (INIS)

    Carlucci, A.P.; Laforgia, D.; Motz, S.; Saracino, R.; Wenzel, S.P.

    2014-01-01

    Highlights: • We have proposed an in-cylinder pressure-based closed loop combustion control. • We have tested the control on an engine at the test bench. • We have tested the control on the engine equipping a Euro 6-compliant vehicle. • The control is effective in increasing torque stability and reduce engine noise. - Abstract: The adoption of diesel LTC combustion concepts is widely recognised as a practical way to reduce simultaneously nitric oxides and particulate emission levels from diesel internal combustion engines. However, several challenges have to be faced up when implementing diesel LTC concepts in real application vehicles. In particular, achieving acceptable performance concerning the drivability comfort, in terms of output torque stability and combustion noise during engine dynamic transients, is generally a critical point. One of the most promising solutions to improve the LTC combustion operation lays in the exploitation of closed loop combustion control, based on in-cylinder pressure signals. In this work, the application of an in-cylinder pressure-based closed loop combustion control to a Euro 6-compliant demonstrator vehicle has been developed. The main challenges deriving from the control of the LTC combustion, directly affecting the engine/vehicle performance, have been analysed in detail. In order to overcome these drawbacks, a new control function, integrated into the base closed loop system, has been designed. The performance of the new function have been experimentally tested at the engine test bench. Results showed a significant enhancement of the LTC operation, in terms of both combustion stability and noise reduction during engine transients. The new function was also implemented on a real vehicle, thus proving the potential of the new control concept in realistic operating conditions

  13. Method and apparatus for filling cryogenic liquid cylinders

    International Nuclear Information System (INIS)

    Remes, S.

    1984-01-01

    A method and apparatus are disclosed for filling a portable cryogenic liquid cylinder from a large stand tank. The invention employs a regulator valve to perform an automatic throttling function whereby the pressure in the liquid cylinder is maintained at a value slightly lower than the upstream pressure in the stand tank. This significantly reduces filling losses due to flashing

  14. High temperature piezoresistive {beta}-SiC-on-SOI pressure sensor for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J. von; Ziermann, R.; Reichert, W.; Obermeier, E. [Tech. Univ. Berlin (Germany). Microsensor and Actuator Technol. Center; Eickhoff, M.; Kroetz, G. [Daimler Benz AG, Munich (Germany); Thoma, U.; Boltshauser, T.; Cavalloni, C. [Kistler Instrumente AG, Winterthur (Switzerland); Nendza, J.P. [TRW Deutschland GmbH, Barsinghausen (Germany)

    1998-08-01

    For measuring the cylinder pressure in combustion engines of automobiles a high temperature pressure sensor has been developed. The sensor is made of a membrane based piezoresistive {beta}-SiC-on-SOI (SiCOI) sensor chip and a specially designed housing. The SiCOI sensor was characterized under static pressures of up to 200 bar in the temperature range between room temperature and 300 C. The sensitivity of the sensor at room temperature is approximately 0.19 mV/bar and decreases to about 0.12 mV/bar at 300 C. For monitoring the dynamic cylinder pressure the sensor was placed into the combustion chamber of a gasoline engine. The measurements were performed at 1500 rpm under different loads, and for comparison a quartz pressure transducer from Kistler AG was used as a reference. The maximum pressure at partial load operation amounts to about 15 bar. The difference between the calibrated SiCOI sensor and the reference sensor is significantly less than 1 bar during the whole operation. (orig.) 8 refs.

  15. Periodic motions and chaos for a damped mobile piston system in a high pressure gas cylinder with P control

    International Nuclear Information System (INIS)

    Wang, Donghua; Huang, Jianzhe

    2017-01-01

    In this paper, the complex motions for a moving piston in a closed gas cylinder will be analyzed using the discrete implicit maps method. The strong nonlinearity of such system will be observed due to the large quadratic and cubic stiffness. Period-1 motions which contain high order of harmonic components will be presented. The periodic motions will be discretized into multiple continuous mappings, and such mapping can be analyzed via Newton–Raphson iteration. The stability analysis will be given and the analytic conditions for the saddle-node and period-doubling bifurcation will be determined. From the semi-analytic solution route, the possible motions without considering the impact of the piston with the end wall of the cylinder will be obtained analytically. The scheme to reduce the vibration of the piston can be obtained through the parameter studies.

  16. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T. K. [Universite du Quebec a Trois-Rivieres, Hydrogen Research Institute, Trois-Rivieres, PQ (Canada)

    2004-07-01

    An algorithm for self-adaptive tuning of an internal combustion engine is proposed, based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. Piezoelectric transducers are devices to monitor dynamic cylinder pressure; spark plugs with embedded piezo elements are now available to provide diagnostic engine functions. Such transducers are also capable of providing signals to the engine controller to perform auto tuning, a function that is considered very useful particularly in vehicles using alternative fuels whose characteristics frequently show variations between fill-ups. 2 refs., 2 figs.

  17. Unsteady cavity flow around a rectangular cylinder; Kakuchu mawari no hiteijo cavitation nagare

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T.; Kaga, T.; Ota, T. [Tohoku University, Sendai (Japan). Faculty of Engineering; Mori, T. [Hachinohe Institute of Technology, Aomori (Japan)

    1995-08-25

    Unsteady cavity flow around a rectangular cylinder was observed using a high-speed camera. To clarify the correlation between the cavity behavior and fluid dynamic characteristics in the transitional region and supercavitation, fluctuating forces and surface pressures on the cylinder surface were recorded simultaneously. The tested cylinder has a critical width-to-height ration 2.8, in which the shear layer separated from the leading edge intermittently reattaches near the trailing edge. Bubbly cloud originating from the separated region near the leading edge causes fluctuation of cavity termination and induces large oscillations of fluid forces and pressures. As the cavitation number decreases, the low-frequency fluctuation of the cavity developing downstream of the rear surface increases in the fluid dynamic behavior. 24 refs., 12 figs.

  18. In situ high-pressure measurement of crystal solubility by using neutron diffraction

    Science.gov (United States)

    Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun

    2018-05-01

    Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.

  19. High pressure gas driven liquid metal MHD homopolar generator

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki

    1988-01-01

    A liquid metal MHD homopolar generator is proposed to be used as a high repetition rate pulsed power supply. In the generator, the thermal energy stored in a high pressure gas (He) reservoir is rapidly converted into kinetic energy of a rotating liquid metal (NaK) cylinder which is contracted by a gas driven annular free piston. The rotational kinetic energy is converted into electrical energy by making use of the homopolar generator principle. The conversion efficiency is calculated to be 47% in generating electrical energy of 20 kJ/pulse (1.7 MW peak power) at a repetition rate of 7 Hz. From the viewpoint of energy storage, the high pressure gas reservoir with a charging pressure of 15 MPa is considered to ''electrically'' store the energy at a density of 10 MJ/m 3 . (author)

  20. The increase in T sub c for MgB sub 2 superconductor under high pressure

    CERN Document Server

    Liu, Z X; You, J Y; Li, S C; Zhu, J L; Yu, R C; Li, F Y; Su, S K

    2002-01-01

    We report in situ high-pressure studies up to 1.0 GPa on MgB sub 2 superconductor which had been synthesized at high pressure. The as-prepared sample is of high quality as regards having a sharp superconducting transition (T sub c) at 39 K. The in situ high-pressure measurements were carried out using a Be-Cu piston-cylinder-type instrument with a mixed oil as the pressure-transmitting medium, which provides a quasi-hydrostatic pressure environment at low temperature. The superconducting transitions were measured using the electrical conductance method. It is found that T sub c increases with pressure in the initial pressure range, leading to a parabolic-like T sub c -P evolution.

  1. A control-oriented approach to estimate the injected fuel mass on the basis of the measured in-cylinder pressure in multiple injection diesel engines

    International Nuclear Information System (INIS)

    Finesso, Roberto; Spessa, Ezio

    2015-01-01

    Highlights: • Control-oriented method to estimate injected quantities from in-cylinder pressure. • Able to calculate the injected quantities for multiple injection strategies. • Based on the inversion of a heat-release predictive model. • Low computational time demanding. - Abstract: A new control-oriented methodology has been developed to estimate the injected fuel quantities, in real-time, in multiple injection DI diesel engines on the basis of the measured in-cylinder pressure. The method is based on the inversion of a predictive combustion model that was previously developed by the authors, and that is capable of estimating the heat release rate and the in-cylinder pressure on the basis of the injection rate. The model equations have been rewritten in order to derive the injected mass as an output quantity, starting from use of the measured in-cylinder pressure as input. It has been verified that the proposed method is capable of estimating the injected mass of pilot pulses with an uncertainty of the order of ±0.15 mg/cyc, and the total injected mass with an uncertainty of the order of ±0.9 mg/cyc. The main sources of uncertainty are related to the estimation of the in-cylinder heat transfer and of the isentropic coefficient γ = c_p/c_v. The estimation of the actual injected quantities in the combustion chamber can represent a powerful means to diagnose the behavior of the injectors during engine operation, and offers the possibility of monitoring effects, such as injector ageing and injector coking, as well as of allowing an accurate control of the pilot injected quantities to be obtained; the latter are in fact usually characterized by a large dispersion, with negative consequences on the combustion quality and emission formation. The approach is characterized by a very low computational time, and is therefore suitable for control-oriented applications.

  2. In-cylinder pressure-based direct techniques and time frequency analysis for combustion diagnostics in IC engines

    International Nuclear Information System (INIS)

    D’Ambrosio, S.; Ferrari, A.; Galleani, L.

    2015-01-01

    Highlights: • Direct pressure-based techniques have been applied successfully to spark-ignition engines. • The burned mass fraction of pressure-based techniques has been compared with that of 2- and 3-zone combustion models. • The time frequency analysis has been employed to simulate complex diesel combustion events. - Abstract: In-cylinder pressure measurement and analysis has historically been a key tool for off-line combustion diagnosis in internal combustion engines, but online applications for real-time condition monitoring and combustion management have recently become popular. The present investigation presents and compares different low computing-cost in-cylinder pressure based methods for the analyses of the main features of combustion, that is, the start of combustion, the end of combustion and the crankshaft angle that responds to half of the overall burned mass. The instantaneous pressure in the combustion chamber has been used as an input datum for the described analytical procedures and it has been measured by means of a standard piezoelectric transducer. Traditional pressure-based techniques have been shown to be able to predict the burned mass fraction time history more accurately in spark ignition engines than in diesel engines. The most suitable pressure-based techniques for both spark ignition and compression ignition engines have been chosen on the basis of the available experimental data. Time–frequency analysis has also been applied to the analysis of diesel combustion, which is richer in events than spark ignited combustion. Time frequency algorithms for the calculation of the mean instantaneous frequency are computationally efficient, allow the main events of the diesel combustion to be identified and provide the greatest benefits in the presence of multiple injection events. These algorithms can be optimized and applied to onboard diagnostics tools designed for real control, but can also be used as an advanced validation tool for

  3. Optimized dose distribution of a high dose rate vaginal cylinder

    International Nuclear Information System (INIS)

    Li Zuofeng; Liu, Chihray; Palta, Jatinder R.

    1998-01-01

    Purpose: To present a comparison of optimized dose distributions for a set of high-dose-rate (HDR) vaginal cylinders calculated by a commercial treatment-planning system with benchmark calculations using Monte-Carlo-calculated dosimetry data. Methods and Materials: Optimized dose distributions using both an isotropic and an anisotropic dose calculation model were obtained for a set of HDR vaginal cylinders. Mathematical optimization techniques available in the computer treatment-planning system were used to calculate dwell times and positions. These dose distributions were compared with benchmark calculations with TG43 formalism and using Monte-Carlo-calculated data. The same dwell times and positions were used for a quantitative comparison of dose calculated with three dose models. Results: The isotropic dose calculation model can result in discrepancies as high as 50%. The anisotropic dose calculation model compared better with benchmark calculations. The differences were more significant at the apex of the vaginal cylinder, which is typically used as the prescription point. Conclusion: Dose calculation models available in a computer treatment-planning system must be evaluated carefully to ensure their correct application. It should also be noted that when optimized dose distribution at a distance from the cylinder surface is calculated using an accurate dose calculation model, the vaginal mucosa dose becomes significantly higher, and therefore should be carefully monitored

  4. Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates

    Directory of Open Access Journals (Sweden)

    Bilal S. Hamad

    2017-12-01

    Full Text Available The paper reports on a research program that was designed at the American University of Beirut (AUB to investigate the fresh and hardened mechanical properties of a high performance concrete mix produced with partial or full substitution of crushed natural lime-stone aggregates with recycled aggregates from crushed tested cylinders in batching plants. Choosing crushed cylinders as source of recycling would result in reusing portion of the waste products of the concrete production industry. An extensive concrete batching and testing program was conducted to achieve two optimum normal and high strength concrete mixes. The variables were the nominal concrete strength (28 or 60 MPa and the percentage replacement of natural coarse aggregates with recycled aggregates from crushed tested cylinders (0, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests on the trial batches included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength.

  5. The plastic work required to induce the limit pressure of a plain cylinder

    International Nuclear Information System (INIS)

    Lee, K.S.; Moreton, D.N.; Moffat, D.G.

    2005-01-01

    There has recently been a revival of interest in the definition of the limit and plastic loads of a structure, particularly piping components. Recent proposals have suggested definitions based upon plastic work. In order to normalise such quantities, the plastic work associated with the limit pressure of a plain cylinder may be required. Whilst no unique value for this quantity can be obtained through analysis, this article demonstrates that classical methods allow solutions to be obtained through an empirical route and through an analysis using several approximations. This latter analysis is shown to be adequate for the applications envisaged here

  6. Stress analysis of cylinder to cylinder intersections

    International Nuclear Information System (INIS)

    Revesz, Z.

    1983-01-01

    Cylinder to cylinder intersections have numerous applications in the power industry from different piping junctions to pressure vessel nozzles. A specific purpose computer program has been installed at the author's establishment for finite element analysis of such geometries. Some of the experiences are presented giving a short overview of the analysis of unreinforced man-holes, demonstrating how a more economical design has been verified by analysis. The program installed has linear-elastic and elasto-plastic capabilities. Further, it is prepared for heat transfer analysis with subsequent thermal stress computation. An efficient pre- and post-processor has also been installed and enhanced by the author. The software used is at its present stage capable for problem definition with input data such as outside/ inside diameters, length and number of subdivisions. Similarly simple is the load definition and the graphic representation of the full output. (author)

  7. Effects of Atwood number on shock focusing in shock-cylinder interaction

    Science.gov (United States)

    Ou, Junfeng; Ding, Juchun; Luo, Xisheng; Zhai, Zhigang

    2018-02-01

    The evolution of shock-accelerated heavy-gas cylinder surrounded by the air with different Atwood numbers (A_t=0.28, 0.50, 0.63) is investigated, concentrating on shock focusing and jet formation. Experimentally, a soap film technique is used to generate an ideal two-dimensional discontinuous gas cylinder with a clear surface, which can guarantee the observation of shock wave movements inside the cylinder. Different Atwood numbers are realized by different mixing ratios of SF_6 and air inside the cylinder. A high-speed schlieren system is adopted to capture the shock motions and jet morphology. Numerical simulations are also performed to provide more information. The results indicate that an inward jet is formed for low Atwood numbers, while an outward jet is generated for high Atwood numbers. Different Atwood numbers will lead to the differences in the relative velocities between the incident shock and the refraction shock, which ultimately results in the differences in shock competition near the downstream pole. The morphology and feature of the jet are closely associated with the position and intensity of shock focusing. The pressure and vorticity contours indicate that the jet formation should be attributed to the pressure pulsation caused by shock focusing, and the jet development is ascribed to the vorticity induction. Finally, a time ratio proposed in the previous work for determining the shock-focusing type is verified by experiments.

  8. Schlieren measurements in the round cylinder of an optically accessible internal combustion engine.

    Science.gov (United States)

    Kaiser, Sebastian Arnold; Salazar, Victor Manuel; Hoops, Alexandra A

    2013-05-10

    This paper describes the design and experimental application of an optical system to perform schlieren measurements in the curved geometry of the cylinder of an optically accessible internal combustion engine. Key features of the system are a pair of cylindrical positive meniscus lenses, which keep the beam collimated while passing through the unmodified, thick-walled optical cylinder, and a pulsed, high-power light-emitting diode with narrow spectral width. In combination with a high-speed CMOS camera, the system is used to visualize the fuel jet after injection of hydrogen fuel directly into the cylinder from a high-pressure injector. Residual aberrations, which limit the system's sensitivity, are characterized experimentally and are compared to the predictions of ray-tracing software.

  9. Transient flow analysis of the single cylinder for the control rod hydraulic driving system

    International Nuclear Information System (INIS)

    Sun, Xinming; Qin, Benke; Bo, Hanliang

    2017-01-01

    Highlights: • The control rod hydraulic driving system(CRHDS) is a new type of built-in control rod drive technology. The hydraulic cylinder is the main component of the CRHDS. • Transient flow phenomenon in the CRHDS is studied by experiments under different working conditions. • The working mechanism of the hydraulic cylinder step motion and the key characteristic parameters are analyzed based on the experimental results. - Abstract: The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology. In the CRHDS the pulse flow from the pump into the hydraulic cylinder of the control rod hydraulic drive mechanism (CRHDM) is regulated by the integrated valve to perform the step motion of the reactor control rod. Transient flow occurs in the CRHDS during control rod step motion process which is studied by experiments. The time-history curves of flow rate, pressure and inner cylinder displacement were analyzed, and the results show that the water hammer pressure peak during the step-up motion is high, while there are no obvious pressure fluctuations in the corresponding step-down motion. In the step-up process, the pressure fluctuation amplitude increases with the increase of CRHDS driving pressure. The step-up time and the pressure increasing time before step-up decreases with the driving pressure. The step-up pressure increases with the driving pressure. In the step-down process, the step-down time, the step-down pressure and the pressure decreasing time before step-down do not change with the increase of the driving pressure. The experimental results lay the base for the working principle and vibration reduction analysis of the CRHDS and it’s also helpful for improvement of the working performance of the key facilities and instruments of the CRHDS loop.

  10. Self-contained high-pressure chambers for study on the Moessbauer effect at low temperatures

    International Nuclear Information System (INIS)

    Stepanov, G.N.

    1980-01-01

    Designs of two high-pressure chambers intended for studying the Moessbauer effect at low temperatures are described. The high-pressure chamber of the Bridgman anvil type is made of non magnetic materials and intended for operation at helium temperatures. The chamber employs a superconducting pressure gage. A sample and superconducting pressure gage are surrounded with a liquid medium of a high pressure at a room temperature. Measurements of the pressure were taken during heating the chamber in the vapours of liquid helium according to the known dependence of the lead superconducting transition temperature on pressure. The other high-pressure chamber of the piston-to-cylinder type can be used to study the Moessbauer effect at temperatures ranging from 4 to 300 K. Pressure in the chamber is measured by means of the superconducting pressure gage. The maximum pressure obtained in the chamber constitutes 25 kbar

  11. Lift and Drag on Cylinder of Octagonal Cross-Section in a Turbulent Stream

    Directory of Open Access Journals (Sweden)

    Md. Jomir Hossain

    2013-12-01

    Full Text Available An experimental investigation of surface static pressure distributions on octagonal cylinder in uniform and turbulent flows was carried out. The study was performed on both the single cylinder and the group of two cylinders, two cylinders were used, one was at the upstream side, and the other was at the downstream side of the flow. They were placed centrally along the flow direction. The inter-spacing space between the two cylinders was varied at 1D, 2D, 3D, 4D, 5D, 6D, 7D and 8D, where D is the width of the cylinder across the flow direction. The pressure coefficients were calculated from the measured values of the surface static pressure distribution on the cylinder. Then the drag and lift coefficients were obtained from the pressure coefficients by the numerical integration method. It was observed that at various angles of attack, the values of the lift coefficients and drag coefficients were insignificant compared to those for a sharp-edged square cylinder. The strength of the vortex shedding was shown to be reduced as the intensity of the incident turbulence was increased. Measurements of drag at various angles of attack (0° to 40° showed that with increase in turbulence level the minimum drag occurred at smaller values of angle of attack.

  12. Relation between the Fluctuating Wall Pressure and the Turbulent Structure of a Boundary Layer on a Cylinder in Axial Flow

    Science.gov (United States)

    1993-08-12

    Rlain in . power spectral density of the fluctuating wall pressure on the cylinder, boldine . fractional contribution to the total wall pressure energy...or repeated sequences of events are responsible for the production of turbulence in the near- wall region and the desire to extract their...signals over a prespecified window centered about the event detection times to extract the individual events. I 3.) Ensemble average the individual

  13. Force Control for a Pneumatic Cylinder Using Generalized Predictive Controller Approach

    Directory of Open Access Journals (Sweden)

    Ahmad ’Athif Mohd Faudzi

    2014-01-01

    Full Text Available Pneumatic cylinder is a well-known device because of its high power to weight ratio, easy use, and environmental safety. Pneumatic cylinder uses air as its power source and converts it to a possible movement such as linear and rotary movement. In order to control the pneumatic cylinder, controller algorithm is needed to control the on-off solenoid valve with encoder and pressure sensor as the feedback inputs. In this paper, generalized predictive controller (GPC is proposed as the control strategy for the pneumatic cylinder force control. To validate and compare the performance, proportional-integral (PI controller is also presented. Both controllers algorithms GPC and PI are developed using existing linear model of the cylinder from previous research. Results are presented in simulation and experimental approach using MATLAB-Simulink as the platform. The results show that the GPC is capable of fast response with low steady state error and percentage overshoot compared to PI.

  14. Thermal characteristics during hydrogen fueling process of type IV cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Chan [Department of Fire and Disaster Prevention, Kyungil University, 33, Buhori, Hayang, Kyungsan 712-701 (Korea); Lee, Seung Hoon; Yoon, Kee Bong [Department of Mechanical Engineering, Chung Ang University, 221, Huksuk, Dongjak, Seoul 156-756 (Korea)

    2010-07-15

    Temperature increase during hydrogen fueling process is a significant safety concern of a high pressure hydrogen vessel. Hence, thermal characteristics of a Type IV cylinder during hydrogen filling process need to be understood. In this study, a series of experiments were conducted to quantify the temperature change of the cylinder during hydrogen filling to 35 MPa. Computational fluid dynamics (CFD) analysis was also conducted to simulate the conditions of the experiments. The results predicted by the CFD analysis show reasonable agreement with the experiments and the discrepancy between the CFD results and experimental results decrease with higher initial gas pressures. The upper and the lower parts of the vessel showed a temperature difference in the vertical direction. The upper gas temperature was higher than that of the lower part due to the buoyancy effect in the vessel. The maximum gas temperature was higher than the maximum temperature allowed in the ISO safety code (85 C) for the case in which the vessel was pressurized from 0 MPa to 35 MPa. This work contributes to the understanding of the thermal flow characteristics of the hydrogen filling process and notes that additional efforts should be made to guarantee the safety of a type IV cylinder during the hydrogen fueling process. (author)

  15. Effects of fire exposure on integrity of UF6 shipping cylinders

    International Nuclear Information System (INIS)

    Barlow, C.R.; Ziehlke, K.T.; Pryor, W.A.

    1985-01-01

    Two 2-1/2-ton steel cylinders for the transport of uranium hexafluoride within the United States nuclear fuel enrichment cycle were involved in a warehouse fire where portions of the cylinders were estimated to have reached a temperature of 1600 0 F (870 0 C). The cylinders were empty at the time of the fire and therefore were not in protective overpacks in which full product cylinders are handled while in transit. Hydrostatic tests to failure showed that the integrity of the cylinders was not degraded by exposure to the temperatures generated by the fire. They withstood test pressures in excess of 10 times the design pressure, and showed a volume expansion of 30% above the original capacity before rupture in a completely ductile fashion. Reference CAPE-323. 9 figs

  16. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines

    Science.gov (United States)

    Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.

    1999-01-01

    In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.

  17. An investigation of the fluid-structure interaction of piston/cylinder interface

    Science.gov (United States)

    Pelosi, Matteo

    The piston/cylinder lubricating interface represents one of the most critical design elements of axial piston machines. Being a pure hydrodynamic bearing, the piston/cylinder interface fulfills simultaneously a bearing and sealing function under oscillating load conditions. Operating in an elastohydrodynamic lubrication regime, it also represents one of the main sources of power loss due to viscous friction and leakage flow. An accurate prediction of the time changing tribological interface characteristics in terms of fluid film thickness, dynamic pressure field, load carrying ability and energy dissipation is necessary to create more efficient interface designs. The aim of this work is to deepen the understanding of the main physical phenomena defining the piston/cylinder fluid film and to discover the impact of surface elastic deformations and heat transfer on the interface behavior. For this purpose, a unique fully coupled multi-body dynamics model has been developed to capture the complex fluid-structure interaction phenomena affecting the non-isothermal fluid film conditions. The model considers the squeeze film effect due to the piston micro-motion and the change in fluid film thickness due to the solid boundaries elastic deformations caused by the fluid film pressure and by the thermal strain. The model has been verified comparing the numerical results with measurements taken on special designed test pumps. The fluid film calculated dynamic pressure and temperature fields have been compared. Further validation has been accomplished comparing piston/cylinder axial viscous friction forces with measured data. The model has been used to study the piston/cylinder interface behavior of an existing axial piston unit operating at high load conditions. Numerical results are presented in this thesis.

  18. Analytical Investigation of Elastic Thin-Walled Cylinder and Truncated Cone Shell Intersection Under Internal Pressure

    OpenAIRE

    Zamani, J.; Soltani, B.; Aghaei, M.

    2014-01-01

    An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the inter...

  19. Turbulence and heat transfer in condensate in drying cylinders at high g-forces. Phase 2; Turbulens och vaermeoeverfoering i kondensat i torkcylindrar vid hoega g-krafter. Fas 2

    Energy Technology Data Exchange (ETDEWEB)

    Stenstroem, Stig; Ingvarsson, David [Lund Inst. of Tech. (Sweden). Dept. of Chemical Engineering

    2006-02-15

    During paper drying a condensate layer is formed on the inside surface of the rotating cylinder which acts as resistance for heat transfer through the cylinder. The heat transfer resistance in the condensate layer is mainly dependant on the layer thickness and the turbulence in the layer. Consequently the resistance increases with higher cylinder speeds due to increased centrifugal forces and thus reduced turbulence in the layer. In order to minimize the influence of condensate on the heat transfer process the cylinder used in Phase 1 has been equipped with axial grooves. The aim of the project has been to study the water movement in the cylinder and to investigate how the drying capacity is influenced by condensate accumulating in the grooves rather than moving along the smooth surface of a paper dryer cylinder. This knowledge should be considered preferably before construction of cylinders for new machines. For existing machines with smooth cylinders the importance of axial vertical flanges for improved heat transfer has been investigated. In addition the capacity of stationary siphons has been evaluated. The results are of importance for the manufacturers of paper machines as well as the producing newsprint and printing paper companies. According to the results from the experiments the water flows mainly in the grooves, assuming that the number of grooves and that the dimensions of the grooves are adjusted to the water load. Then the surfaces between the grooves can be considered as completely dry unlike in a smooth cylinder where the surfaces more or less are covered with a thin layer of condensate. Furthermore the centrifugal force helps the water to flow down into the grooves. Consequently a high water flow will rely on a high cylinder speed in order to keep the water flowing into the axial grooves. The computer simulations show that the drying capacity increases with up to 46 % in dryer cylinders provided with axial grooves compared to smooth cylinders

  20. Pressure-Application Device for Testing Pressure Sensors

    Science.gov (United States)

    2002-01-01

    A portable pressure-application device has been designed and built for use in testing and calibrating piezoelectric pressure transducers in the field. The device generates pressure pulses of known amplitude. A pressure pulse (in contradistinction to a steady pressure) is needed because in the presence of a steady pressure, the electrical output of a piezoelectric pressure transducer decays rapidly with time. The device includes a stainless- steel compressed-air-storage cylinder of 500 cu cm volume. A manual hand pump with check valves and a pressure gauge are located at one end of the cylinder. A three-way solenoid valve that controls the release of pressurized air is located at the other end of the cylinder. Power for the device is provided by a 3.7-V cordless-telephone battery. The valve is controlled by means of a pushbutton switch, which activates a 5 V to +/-15 V DC-to-DC converter that powers the solenoid. The outlet of the solenoid valve is connected to the pressure transducer to be tested. Before the solenoid is energized, the transducer to be tested is at atmospheric pressure. When the solenoid is actuated by the push button, pressurized air from inside the cylinder is applied to the transducer. Once the pushbutton is released, the cylinder pressure is removed from the transducer and the pressurized air applied to the transducer is vented, bringing the transducer back to atmospheric pressure. Before this device was used for actual calibration, its accuracy was checked with a NIST (National Institute of Standards and Technology) traceable calibrator and commercially calibrated pressure transducers. This work was done by Wanda Solano of Stennis Space Center and Greg Richardson of Lockheed Martin Corp.

  1. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon

    2013-03-25

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled, common rail injection system capable of injection pressures up to 200 MPa and a maximum of six injections per combustion event. Up to 100 MPa of the fuel injection pressure, the higher injection pressures create faster combustion rates that result in the higher in-cylinder gas temperatures as compared to conventional low-pressure fuel injection systems. When applying high-pressure injections, particulate emission reductions of up to 50% were observed with no change in hydrocarbon emissions, reductions of CO emissions and only slightly higher NOx emissions. Over 100 MPa, on the other hand, the higher injection pressures still reduced up to almost zero-level of particulate emission, at the same time that the NO emission is reduced greatly. Under these high-pressure injection conditions, strong correlations between soot and CO emissions were observed, which compete for the oxidizing OH species. Multiple or split high-pressure injections also investigated as a means to decrease particulate emissions. As a result, a four-split injection strategy resulted in a 55% reduction in particulates and with little or no penalty on NOx emissions. The high pressure split injection strategy with EGR was more effective in reducing particulate and CO emissions simultaneously. Copyright © 2013 SAE International and Copyright © 2013 TSAE.

  2. 77 FR 26739 - High Pressure Steel Cylinders From the People's Republic of China: Final Determination of Sales...

    Science.gov (United States)

    2012-05-07

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-977] High Pressure Steel... LTFV are shown in the ``Final Determination Margins'' section of this notice. \\1\\ See High Pressure... affiliated producers, Langfang Tianhai High Pressure Contain Co., Ltd. (``Langfang Tianhai''), which produced...

  3. Experimental investigation of turbulent flow past four grooved and smooth cylinders in an in-line square arrangement

    Directory of Open Access Journals (Sweden)

    Ladjedel O.

    2015-01-01

    Full Text Available An experimental study of turbulent flow past four cylinders in square arrangement with a space ratio of (T/D = P/D = 2.88 is performed. The investigation focuses on effects of Reynolds number and the shape of cylinders on the force and pressure coefficients of the cylinders. Two cases are investigated: four smooth cylinders (case1 and four grooved cylinders (case2. The cylinders are equipped with two grooves placed on the external surface at 90° and 270° degrees. The pressure distributions along the tubes (22 circumferential pressure taping were determined for a variation of the azimuthal angle from 0 to 360deg. The drag and lift forces are measured using the TE 44 balance. The results show a bistable flow often exists behind the downstream cylinders is observed. By rising the Reynolds number the pressure coefficient increases in the absolute value.

  4. High Capacity cylinder roller bearing; High Capacity Zylinderrollenlager. Ein vollrolliges Lager mit Kaefig

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, J.; Baum, J. [SKF, Schweinfurt (Germany)

    2007-07-15

    The high capacity cylinder roller bearing is an example for continuous development of SKF products and does an effective contribution to increase operational safety and offers the possibility to reduce weight and compact design. (GL)

  5. NK-1 Removable Cryogenic Shroud (A Study of the Bimba Pneumatic Cylinder)

    International Nuclear Information System (INIS)

    Anderson, K.; Stefanescu, D.

    2003-01-01

    The Mark 1 Cryostat requires a cryogenic shroud that must be retracted immediately before firing the NIF laser. This paper evaluates a pneumatic cylinder that has been chosen to open and close the shroud. After a variety of motion control and vacuum compatibility experiments, we concluded that the Bimba feedback control cylinder may be used to retract the shroud with certain modifications to its control system and additional rod seals. The Mark I Cryostat is a system that allows fielding of a wide range of targets on the National Ignition Facility (NIF). The purpose is to have a system with the capability of controlling the target temperature between ∼10 and 300 K. While in the Target Chamber, a shroud must cover the cooled targets. This shroud allows the cold target to be shielded from condensable residual gasses in the target chamber. The removable shroud may be cooled to 80 K to provide a radiant shield for the target from the room temperature target chamber. The shroud must remain over the target until approximately one second before shot time, and then retract on command, without inducing vibration into the target. An actuation system design, which removes the shroud, is constrained by the size limitations of the MK-1, the need to build from low-activation materials, the need to operate in a vacuum, and the need for high reliability. The scheme for retracting the shroud that they investigated was a pressurized air cylinder. The pneumatic cylinder tested in our experiments was built by the Bimba Manufacturing Company. We thought it would be suitable for shroud retraction because its manufacturer claimed that its motion was smooth, highly accurate, controllable and the appropriate size for our needs. The pneumatic cylinder moves a piston by changing the gas pressure in the two sections of the cylinder on either side of the piston. The cylinder also uses the piston as a voltage potentiometer to determine the current position of the piston. This voltage is then

  6. Energy Loss, Velocity Distribution, and Temperature Distribution for a Baffled Cylinder Model, Special Report

    Science.gov (United States)

    Brevoort, Maurice J.

    1937-01-01

    In the design of a cowling a certain pressure drop across the cylinders of a radial air-cooled engine is made available. Baffles are designed to make use of this available pressure drop for cooling. The problem of cooling an air-cooled engine cylinder has been treated, for the most part, from considerations of a large heat-transfer coefficient. The knowledge of the precise cylinder characteristics that give a maximum heat-transfer coefficient should be the first consideration. The next problem is to distribute this ability to cool so that the cylinder cools uniformly. This report takes up the problem of the design of a baffle for a model cylinder. A study has been made of the important principles involved in the operation of a baffle for an engine cylinder and shows that the cooling can be improved 20% by using a correctly designed baffle. Such a gain is as effective in cooling the cylinder with the improved baffle as a 65% increase in pressure drop across the standard baffle and fin tips.

  7. Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming

    International Nuclear Information System (INIS)

    Poran, Arnon; Tartakovsky, Leonid

    2015-01-01

    This article discusses the concept of a direct-injection ICE (internal combustion engine) with thermo-chemical recuperation realized through SRM (steam reforming of methanol). It is shown that the energy required to compress the reformate gas prior to its injection into the cylinder is substantial and has to be accounted for. Results of the analysis prove that the method of reformate direct-injection is unviable when the reforming is carried-out under atmospheric pressure. To reduce the energy penalty resulted from the gas compression, it is suggested to implement a high-pressure reforming process. Effects of the injection timing and the injector's flow area on the ICE-SRM system's fuel conversion efficiency are studied. The significance of cooling the reforming products prior to their injection into the engine-cylinder is demonstrated. We show that a direct-injection ICE with high-pressure SRM is feasible and provides a potential for significant efficiency improvement. Development of injectors with greater flow area shall contribute to further efficiency improvements. - Highlights: • Energy needed to compress the reformate is substantial and has to be accounted for. • Reformate direct-injection is unviable if reforming is done at atmospheric pressure. • Direct-injection engine with high-pressure methanol reforming is feasible. • Efficiency improvement by 12–14% compared with a gasoline-fed engine was shown

  8. Influence of plane bed on the force exerted on a cylinder oscillating in still water

    Energy Technology Data Exchange (ETDEWEB)

    Naeeni, S.T.O. [Tehran Univ., Dept. of Civil Engineering, Tehran (Iran); Narayanan, R. [Universiti Teknologi Malaysia, Faculty of Civil Engineering, Johor Bahru (Malaysia)

    2005-12-01

    The wall pressure field on a cylinder oscillating over a plane bed in still water is reported in this paper. Two gaps between the cylinder and the bed were considered. Pressures on the periphery of the cylinder were measured by a transducer and were found to be essentially repeatable from one cycle to the next. The forces determined from the pressure profiles compare well with those measured directly by a force transducer except significantly at Keulegan-Carpenter number of 15.0. The importance of the plane bed when it is stationary or moving with the cylinder is examined. The significance of the roughness of the bed with respect to the oscillatory forces exerted on the cylinder is also assessed. (Author)

  9. Plane Wall Effect of Flow around Two Circular Cylinders in Tandem Arrangement

    Directory of Open Access Journals (Sweden)

    Triyogi Yuwono,

    2011-02-01

    Full Text Available The flow characteristic around two circular cylinders in tandem arrangement located near a plane wall were investigated experimentally in a uniform flow at a Reynolds Number of 5.3 x 104. The center to center spacing between the two cylinders relative to the cylinder diameter was constantly maintained at P/D = 1.5. The pressure distributions along the surface of the cylinder and the plane wall were measured by varying the gap-to-diameter of cylinder ratio (G/D in the range of 0 < G/D < 0.467. Surface oil-film techniques were used to investigate the flow patterns on the cylinder. The result showed that for upstream cylinder, in the gap-to-diameter ratio G/D < /D, there is no stagnation point at front side of the upstream cylinder; it is gradually raised as the gap increase. For the downstream cylinder, a peak on the lower side of the front side of the cylinder is apparent in each of the pressure distributions. This peak represents the reattachment of shear layer that separates from lower side of the upstream cylinder. The reattachment point tends to move forward close to the angular position of  = 0o as the gap ratio increase. The shear layer bifurcates into two shear layers. One shear layer continues in the downstream direction, and the other shear layer flows in the upstream direction.

  10. Development of accurate dimethyl sulphide primary standard gas mixtures at low nanomole per mole levels in high-pressure aluminium cylinders for ambient measurements

    Science.gov (United States)

    Eon Kim, Mi; Kang, Ji Hwan; Doo Kim, Yong; Lee, Dong Soo; Lee, Sangil

    2018-04-01

    Dimethyl sulphide (DMS) plays an important role in atmospheric chemistry and climate change. Ambient DMS is monitored in a global network and reported at sub-nanomole per mole (nmol/mol) levels. Developing traceable, accurate DMS standards at ambient levels is essential for tracking the long-term trends and understanding the role of DMS in the atmosphere. Gravimetrically prepared gas standards in cylinders are widely used for calibrating instruments. Therefore, a stable primary standard gas mixture (PSM) is required for traceable ambient DMS measurement at remote sites. In this study, to evaluate adsorption loss on the internal surface of the gas cylinder, 6 nmol mol-1 DMS gas mixtures were prepared in three types of aluminium cylinders: a cylinder without a special coating on its internal surface (AL), an Aculife IV  +  III-treated cylinder (AC), and an Experis-treated cylinder (EX). There was little adsorption loss on the EX cylinder, whereas there was substantial adsorption loss on the other two cylinders. The EX cylinder was used to prepare 0.5, 2, 5, and 7 nmol mol-1 DMS PSMs with relative expanded uncertainties of less than 0.4%. The DMS PSMs were analytically verified and consistent within a relative expanded uncertainty of less than 1.2%. The long-term stability of the 7 nmol mol-1 DMS PSM was assessed by tracking the ratio of the DMS to the internal standard, benzene. The results showed that the DMS was stable for about seven months and it was projected to be stable for more than 60 months within a relative expanded uncertainty of 3%.

  11. Mathematic modelling of circular cylinder deformation under inner grouwth

    Directory of Open Access Journals (Sweden)

    A. V. Siasiev

    2009-09-01

    Full Text Available A task on the intensive deformed state (IDS of a viscoelastic declivous cylinder, which is grown under the action of inner pressure, is considered. The process of continuous increase takes a place on an internal radius so, that a radius and pressure change on set to the given law. The special case of linear law of creeping is considered, and also numeral results are presented as the graphs of temporal dependence of tensions and moving for different points of cylinder.

  12. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 2

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-10-01

    Model 2 in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. Both the cylinder and the nozzle of model 2 had outside diameters of 10 in., giving a d 0 /D 0 ratio of 1.0, and both had outside diameter/thickness ratios of 100. Sixteen separate loading cases in which one end of the cylinder was rigidly held were analyzed. An internal pressure loading, three mutually perpendicular force components, and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. In addition to these 13 loadings, 3 additional loads were applied to the nozzle (in-plane bending moment, out-of-plane bending moment, and axial force) with the free end of the cylinder restrained. The experimental stress distributions for each of the 16 loadings were obtained using 152 three-gage strain rosettes located on the inner and outer surfaces. All the 16 loading cases were also analyzed theoretically using a finite-element shell analysis. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good general agreement, and it is felt that the analysis would be satisfactory for most engineering purposes. (auth)

  13. Multidimensional modeling of the effect of fuel injection pressure on temperature distribution in cylinder of a turbocharged DI diesel engine

    Directory of Open Access Journals (Sweden)

    Sajjad Emami

    2013-06-01

    Full Text Available In this study, maintaining a constant fuel rate, injection pressure of 275 bar to 1000 bar (275×102 kPa to 1000×102 kPa, has been changed. Effect of injection pressure, the pressure inside the cylinder on the free energy, power, engine indicators, particularly indicators of fuel consumption, pollutants and their effects on parameters affecting the output of the engine combustion chamber have been studied in droplet diameter. Finally, the effects of fuel mixture equivalence, Cantor temperature, soot and NOx due to the increase of injection pressure, engine efficiency and emissions have been examined.

  14. Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders

    International Nuclear Information System (INIS)

    Richardson, Susan; Palaniswaamy, Geethpriya; Grigsby, Perry W.

    2010-01-01

    Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction. The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm 3 (range, 0.01-1.32 cm 3 ). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.

  15. A Study of Gas Economizing Pneumatic Cylinder

    International Nuclear Information System (INIS)

    Li, T C; Wu, H W; Kuo, M J

    2006-01-01

    The pneumatic cylinder is the most typical actuator in the pneumatic equipment, and its mechanism is so simple that it is often used to operate point to point driving without the feedback loop in various automatic machines. But, the energy efficiency of pneumatic system is very poor compared with electrical systems and hydraulic systems. So, it is very important to discuss the energy saving for the pneumatic cylinder systems. In this thesis, we proposed three methods to apply the reduction in the air consumed for pneumatic cylinder systems. An air charge accumulator is used to absorb the exhausted compress air and a boost valve boosted the air to the higher pressure for used again. From the experiments, the direct used cylinder exhaust air may save about 40% of compress air

  16. A COMPUTATIONAL STUDY OF THE ACTUATION SPEED OF THE HYDRAULIC CYLINDER UNDER DIFFERENT PORTS’ SIZES AND CONFIGURATIONS

    Directory of Open Access Journals (Sweden)

    M. O. ABDALLA

    2015-02-01

    Full Text Available The discharged oil from hydraulic cylinder, during its operation, is highly restricted by the small sized outlets. As a result, a back pressure builds up and the piston motion, therefore, is slowed down; the system pump has to do additional work to overcome this hydraulic resistance so as to preserve the required speed. In this study the possibility of improvement of the actuation speed of the hydraulic cylinders was investigated and analysed. Both a four-port cylinder and a resized-ports cylinder were proposed as fast cylinders. FLUENT 6.3 was used for the simulation of the oil flow field of the hydraulic cylinders. Results showed that relation between discharge flow and the outlets diameters is best described by a power law having coefficients partially depending on the system pressure. It had also shown that for any given total outlet area, the actuation speed of the single outlet cylinders is always higher than that of the double outlets cylinders. In one case where the total outlet area is 3.93E-05m2, the actuation speed of the single outlet cylinder is 21% higher than that of the double outlets cylinder; whereas, when doubling the total outlet area the different is reduced to just 6% . Resizing the outlet for small ports was more efficient than using multi-outlets; while for a large ports it shows no significant difference to use either one outlet port or multi-outlets. Both the solutions of resizing or ports addition need special valve to be fit to the cylinder so that the cylinder could be effectively operated under the control of the proportional valve.

  17. Dynamical instability of a charged gaseous cylinder

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2017-10-01

    In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.

  18. High temperature radioisotope capsule

    International Nuclear Information System (INIS)

    Bradshaw, G.B.

    1976-01-01

    A high temperature radioisotope capsule made up of three concentric cylinders, with the isotope fuel located within the innermost cylinder is described. The innermost cylinder has hemispherical ends and is constructed of a tantalum alloy. The intermediate cylinder is made of a molybdenum alloy and is capable of withstanding the pressure generated by the alpha particle decay of the fuel. The outer cylinder is made of a platinum alloy of high resistance to corrosion. A gas separates the innermost cylinder from the intermediate cylinder and the intermediate cylinder from the outer cylinder

  19. The effect of valve strategy on in-cylinder flow and combustion

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, F

    1997-01-01

    This paper examines the effects of different valve strategies and their effect on in-cylinder flow and combustion. A conventional four valve per cylinder otto engine was modified to enable optical access. The flow measurements were made with a two-component laser Doppler velocimetry system. The combustion was monitored by running pressure data from a pressure transducer through a one-zone heat release model. The results show that when the valves operate normally a barrel flow is present and when one valve is closed a swirling flow occurs. No increase in turbulence was found with later phasing, except in the case of very late inlet valve opening and port deactivation. This resulted in a jet with high turbulence, making the combustion fast and stable, even with a very lean mixture ({lambda}=1.8). 6 refs, 44 figs, 4 tabs

  20. Magnetoresistance in CePtSn under high hydrostatic pressures

    International Nuclear Information System (INIS)

    Misek, M.; Prokleska, J.; Javorsky, P.; Sechovsky, V.

    2009-01-01

    We report the evolution of magnetic-history dependent antiferromagnetic phases in CePtSn. We concentrate on the magnetoresistance in magnetic fields up to 14 T applied along the crystallographic b-axis, measured on a CePtSn single crystal subjected to hydrostatic pressure (p ≤ 2.2 GPa) generated in a double-layered CuBe/NiCrAl piston cylinder cell. We observe a gradual increase of the critical field B c LF of the low field (LF) transition up to ∼1.2 GPa where only one transition is observed at ∼11.5 T. For pressures above 1.2 GPa we observe two transitions again and B c LF decreases with further increasing pressure to reach B c LF ∼7.5T at 2.5 GPa. The position of the high field (HF) transition remains almost unaffected by applied pressure. A scenario considering the spin-slip AF structure in CePtSn is briefly discussed.

  1. Ultimate strength analysis of ring-stiffened cylinders subjected to hydrostatic pressure

    International Nuclear Information System (INIS)

    Park, Chi Mo

    1990-01-01

    In this study, ultimate strength analysis of ring-stiffened cylinders have been performed, considering the elasto-plastic large deflection. In the elasto-plastic analysis, von Mises yield criteria, the plastic flow theory and the layered approach have been adopted. In order to take into account the follower force effect of the hydrostatic pressure, the incremental load components have been updated at every loading step. As collapse modes, axisymmetric yielding, interframe shell buckling and general buckling are considered, while local buckling of ring-stiffener is not considered. Initial shape imperfection is assumed to be the elastic buckling mode to obtain the lower bound of the ultimate strength. Results of numerical analysis are compared with the experimental results to show the validity of the present approach. It has been drawn that the present numerical results are closely correlated with the experimental results. On the other hand, the effects of initial shape imperfection and condition on the ultimate strength have been investigated. (Author)

  2. Analytical Investigation of Elastic Thin-Walled Cylinder and Truncated Cone Shell Intersection Under Internal Pressure.

    Science.gov (United States)

    Zamani, J; Soltani, B; Aghaei, M

    2014-10-01

    An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the intersection and boundary locations on the circumferential and longitudinal stresses is evaluated and it is shown that how quantitatively they are essential.

  3. An update on corrosion monitoring in cylinder storage yards

    Energy Technology Data Exchange (ETDEWEB)

    Henson, H.M.; Newman, V.S.; Frazier, J.L. [Oak Ridge K-25 Site, TN (United States)

    1991-12-31

    Depleted uranium, from US uranium isotope enrichment activities, is stored in the form of solid uranium hexafluoride (UF{sub 6}) in A285 and A516 steel cylinders designed and manufactured to ASME Boiler and Pressure Vessel Code criteria. In general, storage facilities are open areas adjacent to the enrichment plants where the cylinders are exposed to weather. This paper describes the Oak Ridge program to determine the general corrosion behavior of UF{sub 6} cylinders, to determine cylinder yard conditions which are likely to affect long term storage of this material, and to assess cylinder storage yards against these criteria. This program is targeted at conditions specific to the Oak Ridge cylinder yards. Based on (a) determination of the current cylinder yard conditions, (b) determination of rusting behavior in regions of the cylinders showing accelerated attack, (c) monitoring of corrosion rates through periodic measurement of test coupons placed within the cylinder yards, and (d) establishment of a computer base to incorporate and retain these data, the technical division is working with the enrichment sites to implement an upgraded system for storage of this material until such time as it is used or converted.

  4. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon; Chung, Suk-Ho

    2013-01-01

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled

  5. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    International Nuclear Information System (INIS)

    Prasad, D N; Ayyappan, R; Kamble, L P; Singh, J P; Muralikrishna, L V; Alex, M; Balagi, V; Mukhopadhyay, P K

    2008-01-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm 2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ∼1 x 10 -5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mmx160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face and diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6x10 -9 m bar ltr/sec in vacuum mode and 2x10 -7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5x10 -5 mbar, the new valve achieved vacuum 7.4x10 -6 mbar in the same time under the same conditions

  6. Superconductivity in the unconventional high pressure phase bismuth-III

    Energy Technology Data Exchange (ETDEWEB)

    Semeniuk, Konstantin; Brown, Philip; Vasiljkovic, Aleksandar; Grosche, Malte [University of Cambridge (United Kingdom)

    2015-07-01

    One of the most surprising developments in high pressure research was the realisation that many elements assume very unexpected high pressure structures, described in terms of extremely large or even infinite unit cells. Elemental bismuth, which has been known to undergo a series of pressure induced structural transitions between 25 kbar and 80 kbar, is an interesting example: the intermediate pressure Bi-III phase has a complex 'host-guest' structure consisting of two incommensurate sublattices. Since the unit cell is infinitely large, the description of electronic and lattice excitations is problematic. Apart from its metallic character and the observation of superconductivity at low temperature, little is known about the electronic structure in this phase. We investigate the electrical resistivity within the metallic Bi-III phase under high hydrostatic pressure and in applied magnetic field using a piston cylinder cell. Superconductivity is observed below 7.1 K, and we extract the temperature dependence of the upper critical field, which exceeds 2 T at low temperature. The normal state resistivity exhibits an approximately linear temperature dependence. This could be attributed to strong scattering from low-lying excitations, as caused by an unusually soft phonon spectrum. The results suggest that strong coupling superconductivity arises within the host-guest structure of Bi-III out of an unusual electronic state.

  7. Surface flaw in a thermally shocked hollow cylinder

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Polvanich, N.; Love, W.J.

    1975-01-01

    The objective of this paper is to illustrate a procedure for estimating the stress intensity factors of a semi-elliptical crack located in the inner or outer surface of a thermally shocked hollow cylinder. The first step in this procedure is to estimate the transient thermal elastic stresses induced by sudden cooling of an uncracked cylinder by numerically evaluating standard heat transfer and thermal stress formulae. The stresses at the location of the crack surface in the uncracked cylinder are eliminated by the method of superposition in order to obtain a stress free crack surface. The stress intensity factors are then determined by a judicious use of two sets of solutions, one set involving stress intensity factors for a semi-elliptical crack in a flat plate and subjected to a polynomial distribution of pressure loading, and another set involving single-edge notched plates with prescribed edge-displacements and single-edge internally or externally notched cylinders with thermal shock loading. The former solutions are determined by the alternating technique in three-dimensional fracture mechanics with a fourth order polynomial pressure distribution on the crack surface where both the front and back surface effects are accounted for. The latter solutions involve two-dimensional finite element solutions of single-edge notched plates with prescribed edge-displacements and single-edge notched cylinders with thermal shock loading. By comparing these two two-dimensional solutions, an estimate of the effect of the cylindrical curvature on an edge-cracked plate is obtained. The combination of these two sets of solutions thus yields an estimate of the stress intensity factor in an internal and external semi-elliptical crack in a thermally shocked cylinder

  8. Life Prediction on a T700 Carbon Fiber Reinforced Cylinder with Limited Accelerated Life Testing Data

    Directory of Open Access Journals (Sweden)

    Ma Xiaobing

    2015-01-01

    Full Text Available An accelerated life testing investigation was conducted on a composite cylinder that consists of aluminum alloy and T700 carbon fiber. The ultimate failure stress predictions of cylinders were obtained by the mixing rule and verified by the blasting static pressure method. Based on the stress prediction of cylinder under working conditions, the constant stress accelerated life test of the cylinder was designed. However, the failure data cannot be sufficiently obtained by the accelerated life test due to the time limitation. Therefore, most of the data presented to be high censored in high stress level and zero-failure data in low stress level. When using the traditional method for rupture life prediction, the results showed to be of lower confidence. In this study, the consistency of failure mechanism for carbon fiber and cylinder was analyzed firstly. According to the analysis result, the statistical test information of carbon fiber could be utilized for the accelerated model constitution. Then, rupture life prediction method for cylinder was proposed based on the accelerated life test data and carbon fiber test data. In this way, the life prediction accuracy of cylinder could be improved obviously, and the results showed that the accuracy of this method increased by 35%.

  9. Development of Hybrid Type Flexible Pneumatic Cylinder for Considering Less Air Consumption

    Directory of Open Access Journals (Sweden)

    Tamaki Hiroaki

    2016-01-01

    Full Text Available Inexpensive rehabilitation devices that can be used at home are required because of a lack of PT and welfare workers. In the previous study, the low-cost portable rehabilitation device using a flexible spherical actuator that consists of flexible pneumatic cylinder was proposed and tested. However, a compact and high power compressor that supplies air pressure to pneumatic actuator has not been developed yet. In particular, the heat generated by compressing air prevents to miniaturize it. To realize a home rehabilitation, the small-sized compressors or less air consuming flexible actuators are required. In this study, a hybrid type flexible pneumatic cylinder driven by electric motors and air pressure is proposed and tested. The concept, the construction and the operating principle of the proposed actuator were described. The position control using the tested actuator is also carried out.

  10. Sound insulation of composite cylindrical shells: a comparison between a laminated and a sandwich cylinder

    OpenAIRE

    Yuan, Chongxin; Roozen, Bert; Bergsma, Otto; Beukers, Adriaan

    2012-01-01

    The fuselages of aircraft are modeled as a cylinder in this paper, and the sound insulations of a sandwich cylinder and a laminated cylinder are studied both experimentally and numerically. The cylinders are excited by an acoustic pressure and a mechanical force respectively. Results show that under acoustic excitation, the sandwich cylinder and the laminated one have a similar sound insulation below 3000 Hz, but the sandwich cylinder has a much larger sound insulation at higher frequencies. ...

  11. Global limit load solutions for thick-walled cylinders with circumferential cracks under combined internal pressure, axial force and bending moment − Part II: Finite element validation

    International Nuclear Information System (INIS)

    Li, Yuebing; Lei, Yuebao; Gao, Zengliang

    2014-01-01

    Global limit load solutions for thick-walled cylinders with circumferential internal/external surface and through-wall defects under combined positive/negative axial force, positive/negative global bending moment and internal pressure have been developed in Part I of this paper. In this Part II, elastic-perfectly plastic 3-D finite element (FE) analyses are performed for selected cases, covering a wide range of geometries and load combinations, to validate the developed limit load solutions. The results show that these limit load solutions can predict the FE data very well for the cases with shallow or deep and short cracks and are conservative. For the cases with very long and deep cracks, the predictions are reasonably accurate and more conservative. -- Highlights: • Elastic-perfectly plastic 3D finite element limiting analyses of cylinders. • Thin/thick-walled cylinders with circumferential surface defects. • Combined loading for pressure, end-force and global bending moment. • Totally 1458 cases analysed and tabulated normalised results provided. • Results used to validate the developed limit load solutions in Part I of this paper

  12. Experimental Study of 3D Movement in Cushioning of Hydraulic Cylinder

    Directory of Open Access Journals (Sweden)

    Antonio Algar

    2017-05-01

    Full Text Available A double acting cylinder operation has been fully monitored in its key functional parameters, focused on characterization of end-of-stroke cushioning and starting phases. Being the cylinder performance reliant in the piston constructive geometry, the number and location of piston circumferential grooves is a significant parameter affecting the internal cushioning system performance. An eddy current displacement sensor assembled in the piston allows assessment of piston radial displacement inside the cylinder tube, which is directly related with the studied operating phases. Due to such 3D displacements, the piston becomes as an active and self-adjusting element along the functional cycle of the cylinder. Mechanical joints orientation and operating pressure are also relevant parameters affecting piston radial displacement and, thus, the cushioning and starting performance. Computational Fluid Dynamics (CFD results confirm the observed functional role of the perimeter grooves; the flow and pressure distributions, where develops a significant radial force, are also in accordance with the registered radial displacement.

  13. Radiation levels on empty cylinders containing heel material

    Energy Technology Data Exchange (ETDEWEB)

    Shockley, C.W. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.

  14. Mixture distribution in a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors

    International Nuclear Information System (INIS)

    Mitroglou, N; Arcoumanis, C; Mori, K; Motoyama, Y

    2006-01-01

    Laser-induced fluorescence has been mainly used to characterise the two-dimensional fuel vapour concentration inside the cylinder of a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors. The effects of injection timing, in-cylinder charge motion and injector tip layout have been quantified. The flexibility in nozzle design of the multi-hole injectors has proven to be a powerful tool in terms of matching overall spray cone angle and number of holes to specific engine configurations. Injection timing was found to control spray impingement on the piston and cylinder wall, thus contributing to quick and efficient fuel evaporation. It was confirmed that in-cylinder charge motion plays a major role in engine's stable operation by assisting in the transportation of the air-fuel mixture towards the ignition locations (i.e. spark-plugs) in the way of a uniformly distributed charge or by preserving stratification of the charge depending on operating mode of the engine

  15. Modeling a High Explosive Cylinder Experiment

    Science.gov (United States)

    Zocher, Marvin A.

    2017-06-01

    Cylindrical assemblies constructed from high explosives encased in an inert confining material are often used in experiments aimed at calibrating and validating continuum level models for the so-called equation of state (constitutive model for the spherical part of the Cauchy tensor). Such is the case in the work to be discussed here. In particular, work will be described involving the modeling of a series of experiments involving PBX-9501 encased in a copper cylinder. The objective of the work is to test and perhaps refine a set of phenomenological parameters for the Wescott-Stewart-Davis reactive burn model. The focus of this talk will be on modeling the experiments, which turned out to be non-trivial. The modeling is conducted using ALE methodology.

  16. Material properties of Ni-Cr-Al alloy and design of a 4 GPa class non-magnetic high-pressure cell

    CERN Document Server

    Uwatoko, Y; Ueda, K; Uchida, A; Kosaka, M; Mori, N; Matsumoto, T

    2002-01-01

    The Ni-Cr-Al Russian alloy was prepared. Its magnetic and mechanical properties were better than those of MP35N alloy. We fabricated the a piston-cylinder-type hybrid high-pressure cell using the Ni-Cr-Al alloy. It has been found that the maximum working pressure can be repeatedly raised to 3.5 GPa at T = 2 K without any difficulties.

  17. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 3

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Corum, J.M.; Bryson, J.W.

    1975-06-01

    The third in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: the experimental data provide design information directly applicable to nozzles in cylindrical vessels; and the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 3 had a 10 in. OD and the nozzle had a 1.29 in. OD, giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios for the cylinder and the nozzle were 50 and 7.68 respectively. Thirteen separate loading cases were analyzed. In each, one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for all the loadings were obtained using 158 three-gage strain rosettes located on the inner and outer surfaces. The loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  18. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 4

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-06-01

    The last in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models in the series are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: (1) the experimental data provide design information directly applicable to nozzles in cylindrical vessels, and (2) the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 4 had an outside diameter of 10 in., and the nozzle had an outside diameter of 1.29 in., giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios were 50 and 20.2 for the cylinder and nozzle respectively. Thirteen separate loading cases were analyzed. For each loading condition one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for each of the 13 loadings were obtained using 157 three-gage strain rosettes located on the inner and outer surfaces. Each of the 13 loading cases was also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  19. Determination of the theoretical feasibility for the transmutation of europium isotopes from high flux isotope reactor control cylinders

    International Nuclear Information System (INIS)

    Elam, K.R.; Reich, W.J.

    1995-09-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is a 100 MWth light-water research reactor designed and built in the 1960s primarily for the production of transuranic isotopes. The HFIR is equipped with two concentric cylindrical blade assemblies, known as control cylinders, that are used to control reactor power. These control cylinders, which become highly radioactive from neutron exposure, are periodically replaced as part of the normal operation of the reactor. The highly radioactive region of the control cylinders is composed of europium oxide in an aluminum matrix. The spent HFIR control cylinders have historically been emplaced in the ORNL Waste Area Grouping (WAG) 6. The control cylinders pose a potential radiological hazard due to the long lived radiotoxic europium isotopes 152 Eu, 154 Eu, and 155 Eu. In a 1991 health evaluation of WAG 6 (ERD 1991) it was shown that these cylinders were a major component of the total radioactivity in WAG 6 and posed a potential exposure hazard to the public in some of the postulated assessment scenarios. These health evaluations, though preliminary and conservative in nature, illustrate the incentive to investigate methods for permanent destruction of the europium radionuclides. When the cost of removing the control cylinders from WAG 6, performing chemical separations and irradiating the material in HFIR are factored in, the option of leaving the control cylinders in place for decay must be considered. Other options, such as construction of an engineered barrier around the disposal silos to reduce the chance of migration, should also be analyzed

  20. High Reynolds number oscillations of a circular cylinder

    OpenAIRE

    Hirata, Miguel H.; Pereira, Luiz Antonio A.; Recicar, Jan N.; Moura, Washington H. de

    2008-01-01

    This paper concerns the numerical simulation of the flow around an oscillating circular cylinder, which moves with constant velocity in a quiescent Newtonian fluid with constant properties. For each time step of the simulation a number of discrete Lamb vortices is placed close to the body surface; the intensity of each of these is determined such as to satisfy the no-slip boundary condition. The aerodynamic loads acting on the surface of cylinder are computed using the integral formulation de...

  1. Influence of CO{sup 2} on PVT properties of an oil crude at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nilo Ricardo; Bonet, Euclides Jose [Centro de Estudos de Petroleo (CEPETRO/UNICAMP), SP (Brazil); Elias Junior, Antonio; Trevisan, Osvair Vidal [Universidade Estadual de Campinas (DEP/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2012-07-01

    The current oil frontier in Brazil is in Santos and Campos Basins, where huge oil accumulations were identified recently. Well tests have shown high values of pressure and concentration of carbon dioxide in these reservoirs. The characterization of the fluids existing in the pores of the reservoir rocks is a task for the exploitation of the hydrocarbons. The objective of this work is to present the experimental set up that was assembled to perform PVT analysis for oils at high pressure, moderate temperature and high CO{sub 2} content, oils analogous to that found in the new Brazilian pre-salt discoveries. Samples of dead oil and synthetic gas were received at the laboratory, where the recombination was carried out to obtain live oil, with twelve mole percent CO{sub 2}. The fluids were maintained inside special cylinders, with a floating piston, separating two compartments, one with the test fluid and the other with hydraulic fluid. Pressure was provided by a positive displacement pump connected to the bottles. The experiments achieved pressures up to 70 MPa at constant temperature, conditions expected for the reservoir. Starting at the high pressure, the fluid volume was increased by withdrawing the hydraulic fluid from the cylinder. Pressure and volume were recorded to determine the bubble point and compressibility of the system. The pressure drop continued until the mixture was in the two phase region, finishing the constant composition expansion process. After that, the sample was re-pressurized and the PVT bottle was agitated to reach the thermodynamic equilibrium, when the live oil was at single phase again. An aliquot of this mixture was transferred, keeping their pressure and temperature conditions, to a high pressure viscometer and to a densimeter. Another portion of live oil was flashed to a test tube and to a gasometer, to render the gas oil ratio. Afterwards, successive additions of carbon dioxide increased its concentration in live oil to 15, 20 and 35

  2. Comparing in Cylinder Pressure Modelling of a DI Diesel Engine Fuelled on Alternative Fuel Using Two Tabulated Chemistry Approaches.

    Science.gov (United States)

    Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi

    2014-01-01

    The present work presents the comparative simulation of a diesel engine fuelled on diesel fuel and biodiesel fuel. Two models, based on tabulated chemistry, were implemented for the simulation purpose and results were compared with experimental data obtained from a single cylinder diesel engine. The first model is a single zone model based on the Krieger and Bormann combustion model while the second model is a two-zone model based on Olikara and Bormann combustion model. It was shown that both models can predict well the engine's in-cylinder pressure as well as its overall performances. The second model showed a better accuracy than the first, while the first model was easier to implement and faster to compute. It was found that the first method was better suited for real time engine control and monitoring while the second one was better suited for engine design and emission prediction.

  3. Experimental research of the yielding behavior of a graphite cylinder subjected to line loading

    International Nuclear Information System (INIS)

    Liu Hetong; Ma Qinwei; Ma Shaopeng; Wang Hongtao

    2014-01-01

    The graphite material cylinders are widely used in High-temperature gas-cooled reactor as connecting components. For engineering design, the deformation behavior, especially the yielding process of the graphite cylinder should be investigated in order to evaluate the carrying capacity of the cylinder. The yielding formation and propagation of a graphite cylinder subjected to line loading, which corresponds to the global behavior of the structure, was experimentally studied and evaluated by measuring the strain fields on the end of the cylinder using Digital Image Correlation. The global behavior of the structure is expressed by a relationship between the average stress (load divided by contact area) and the equivalent strain (ratio of half width of contact area to radius of the cylinder), the contact area was measured by identifying the color area of the pressure film in a new experiment which graphite component is loaded and unloaded continuously. A correspondence between the yielding state and the nonlinearity of the global behavior was constructed, as loading was increased, the cylinder was found to first yield at a specific point after which a yielding core formed and propagated. Before the yielding core propagated to the surface of the cylinder, the global behavior of the structure remained linear. After the yielding core propagated to the surface of the cylinder, the global behavior became nonlinear. The correspondence constructed in the paper will be helpful to understand the failure process and to evaluate the carrying capacity of a graphite cylinder subjected to line loading in reactors. (author)

  4. Calculation of radiation losses in cylinder symmetric high pressure discharges by means of a digital computer

    International Nuclear Information System (INIS)

    Andriessen, F.J.; Boerman, W.; Holtz, I.F.E.M.

    1973-08-01

    Computer calculations have been made of radiative energy losses in a cylindrically symmetric high pressure discharge. The calculations show that the radiation losses which occur in discharges at pressures of a few atmospheres and central temperatures of about 20000degK when compared with the electrical energy supplied, are only of importance in the neighbourhood of the centre of discharge

  5. A methodology to identify the intake charge cylinder-to-cylinder distribution in turbocharged direct injection Diesel engines

    Science.gov (United States)

    Luján, José M.; Galindo, José; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Exhaust gas recirculation (EGR) is currently the most important NOx emission control system. During the last few years the EGR rate has increased progressively as pollutant emission regulations have become more restrictive. High EGR rate levels have given the effect of the unsuitable EGR and air distribution between cylinders away, which causes undesirable engine behavior. In this sense, the study of the EGR distribution between cylinders achieves high importance. However, despite the fact that the EGR is continuously under study, not many studies have been undertaken to approach its distribution between cylinders. In concordance with the aspects outlined before, the aim of this paper is to propose a methodology that permits us to identify the EGR cylinder-to-cylinder dispersion in a commercial engine. In order to achieve this objective, experimental tests have been combined with both one-dimensional and three-dimensional fluid dynamic models.

  6. Research on a lubricating grease print process for cylindrical cylinder

    Science.gov (United States)

    Yang, Liu; Zhang, Xuan; Wang, XianYan; Tan, XiaoYan

    2017-09-01

    In vehicle braking system and clutch system of transmission, there is always a kind of cylindrical component dose reciprocating motion. The main working method is the reciprocating motion between the rubber sealing parts and cylindrical parts, the main factor affects the service life of the product is the lubricating performance of the moving parts. So the lubricating performance between cylinders and rubber sealing rings is particularly important, same as the quality of the grease applies on the surface of the surface of cylinder. Traditional method of manually applying grease has some defects such as applying unevenly, applying tools like brush and cloth easily falls off and affect the cleanness of products, contact skin easily cause allergy, waste grease due to the uncontrollable of grease quantity using in applying, low efficiency of manual operation. An automatic, quantitative and high pressure applying equipment is introduced in this document to replace the traditional manually applying method, which can guarantee the applying quality of the grease which are painted on the surface of cylinder and bring economic benefits to the company.

  7. Hydrostatic paradox: experimental verification of pressure equilibrium

    Science.gov (United States)

    Kodejška, Č.; Ganci, S.; Říha, J.; Sedláčková, H.

    2017-11-01

    This work is focused on the experimental verification of the balance between the atmospheric pressure acting on the sheet of paper, which encloses the cylinder completely or partially filled with water from below, where the hydrostatic pressure of the water column acts against the atmospheric pressure. First of all this paper solves a theoretical analysis of the problem, which is based, firstly, on the equation for isothermal process and, secondly, on the equality of pressures inside and outside the cylinder. From the measured values the confirmation of the theoretical quadratic dependence of the air pressure inside the cylinder on the level of the liquid in the cylinder is obtained, the maximum change in the volume of air within the cylinder occurs for the height of the water column L of one half of the total height of the vessel H. The measurements were made for different diameters of the cylinder and with plates made of different materials located at the bottom of the cylinder to prevent liquid from flowing out of the cylinder. The measured values were subjected to statistical analysis, which demonstrated the validity of the zero hypothesis, i.e. that the measured values are not statistically significantly different from the theoretically calculated ones at the statistical significance level α  =  0.05.

  8. Improvement of the Magnetic Shielding Effects by the Superposition of a Multi-Layered Ferromagnetic Cylinder over an HTS Cylinder: Relationship Between the Shielding Effects and the Layer Number of the Ferromagnetic Cylinder

    International Nuclear Information System (INIS)

    Yasui, K; Tarui, Y; Itoh, M

    2006-01-01

    The idealized magnetic shielded vessel can be realized by making use of a high-critical temperature superconductor (HTS). It is difficult for practical applications, however, to fabricate a shielding vessel that has a high value of the maximum shielded magnetic flux density B s0 . The present authors have improved the value of B s0 for the Bi-Pb-Sr-Ca-Cu-O (BPSCCO) cylinder used as the shielding vessel, by the superposition of a four-layered softiron cylinder over the BPSCCO cylinder, termed the four-layered superimposed cylinder. The B s4 value of 610 x 10 -4 T for the four-layered superimposed cylinder, is found to be about 4 times larger than that of a single-BPSCCO cylinder, and is theoretically analyzed by use of a new analysis method. The experimental values of the maximum shielded magnetic flux density B sn of n-layered superimposed cylinders are found to agree well with those of the theoretical analysis. Experimental results revealed several characteristics of the magnetic shielding within the n-layered superimposed cylinders. Also discussed is the new analysis method for the relationship between the n and B sn

  9. Investigation of the thermal behavior of 2 1/2 ton cylinder protective overpack

    International Nuclear Information System (INIS)

    Park, S.H.

    1988-01-01

    UF 6 cylinders containing reactor grade enriched uranium are transported in protective overpacks. Recently, the design of the 2 1/2 ton UF 6 cylinder overpack was modified to insure the safety of the cylinder inside the overpack. Modifications include a continuous stainless steel liner from the outer surface to the inner surface of the overpack and step joints between the upper and lower halves of the overpack. The effects of a continuous stainless steel liner and moisture in the insulation layer of a UF 6 cylinder protective overpack were investigated with a numerical code. Results were compared with limited available field data. The purpose of comparing the numerical results with field data is to insure the validity of the numerical analysis and the physical properties used in the analysis. The study indicates that the continuous stainless steel liner did not influence the heat transfer rate much from the outer surface of the overpack to the 30B cylinder inside. The effect of step joints was not modeled due to the difficulty of quantifying the leakage rate through the gap. With a continuous stainless steel liner from the outside of the overpack to the inside, the overpack satisfies the thermal design criteria of protecting the cylinder inside for a minimum of 30 minutes when the overpack is exposed to a fire. The effect of moisture inside the insulation layer in the overpack is to reduce the energy to the cylinder with its high thermal capacity. The high pressure steam generated from the moisture will be relieved externally through the vent holes on the outer surface of the overpack. Although these holes are sealed after the overpack is dried, the plug sealing the holes will melt when the overpack is exposed to a fire

  10. Multiple Cylinder Free-Piston Stirling Machinery

    Science.gov (United States)

    Berchowitz, David M.; Kwon, Yong-Rak

    In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.

  11. Flow around a cylinder surrounded by a permeable cylinder in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Gokturk M.; Akilli, Huseyin; Sahin, Besir [Cukurova University, Department of Mechanical Engineering, Faculty of Engineering and Architecture, Adana (Turkey); Oruc, Vedat [Dicle University, Department of Mechanical Engineering, Diyarbakir (Turkey)

    2012-12-15

    The change in flow characteristics downstream of a circular cylinder (inner cylinder) surrounded by an outer permeable cylinder was investigated in shallow water using particle image velocimetry technique. The diameter of the inner cylinder and the water height were kept constant during the experiments as d=50 mm and h{sub w}=25 mm, respectively. The depth-averaged free-stream velocity was also kept constant as U=170 mm/s which corresponded to a Reynolds number of Re{sub d}=8,500 based on the inner cylinder diameter. In order to examine the effect of diameter and porosity of the outer cylinder on flow characteristics of the inner cylinder, five different outer cylinder diameters (D=60, 70, 80, 90 and 100 mm) and four different porosities ({beta}=0.4, 0.5, 0.6 and 0.7) were used. It was shown that both porosity and outer cylinder diameter had a substantial effect on the flow characteristics downstream of the circular cylinder. Turbulent statistics clearly demonstrated that in comparison with the bare cylinder (natural case), turbulent kinetic energy and Reynolds stresses decreased remarkably when an outer cylinder was placed around the inner cylinder. Thereby, the interaction of shear layers of the inner cylinder has been successfully prevented by the presence of outer cylinder. It was suggested by referring to the results that the outer cylinder having 1.6{<=}D/d{<=}2.0 and 0.4{<=}D/d{<=}0.6 should be preferred to have a better flow control in the near wake since the peak magnitude of turbulent kinetic energy was considerably low in comparison with the natural case and it was nearly constant for these mentioned porosities {beta}, and outer cylinder to inner cylinder diameter ratios D/d. (orig.)

  12. Modeling of thermodynamic non-equilibrium flows around cylinders and in channels

    Science.gov (United States)

    Sinha, Avick; Gopalakrishnan, Shiva

    2017-11-01

    Numerical simulations for two different types of flash-boiling flows, namely shear flow (flow through a de-Laval nozzle) and free shear flow (flow past a cylinder) are carried out in the present study. The Homogenous Relaxation Model (HRM) is used to model the thermodynamic non-equilibrium process. It was observed that the vaporization of the fluid stream, which was initially maintained at a sub-cooled state, originates at the nozzle throat. This is because the fluid accelerates at the vena-contracta and subsequently the pressure falls below the saturation vapor pressure, generating a two-phase mixture in the diverging section of the nozzle. The mass flow rate at the nozzle was found to decrease with the increase in fluid inlet temperature. A similar phenomenon also occurs for the free shear case due to boundary layer separation, causing a drop in pressure behind the cylinder. The mass fraction of vapor is maximum at rear end of the cylinder, where the size of the wake is highest. As the back pressure is reduced, severe flashing behavior was observed. The numerical simulations were validated against available experimental data. The authors gratefully acknowledge funding from the public-private partnership between DST, Confederation of Indian Industry and General Electric Pvt. Ltd.

  13. Engine control system having pressure-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-10-04

    A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.

  14. Shear-induced autorotation of freely rotatable cylinder in a channel flow at moderate Reynolds number

    Science.gov (United States)

    Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung

    2018-04-01

    Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.

  15. A characteristic analysis of the fluidic muscle cylinder

    Science.gov (United States)

    Kim, Dong-Soo; Bae, Sang-Kyu; Hong, Sung-In

    2005-12-01

    The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.

  16. Sound velocity and equation-of-state measurements in high pressure fluid and solid helium

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1979-01-01

    A piston--cylinder apparatus was used to obtain P, V, T, and simultaneous values of longitudinal sound velocity in helium fluid throughout the ranges 75 to 300 0 K and 3 to 20 kbar. Some 670 data sets were obtained for the fluid and used in a double-process least-squares fit to an equation of state of the Benedict type. Additional measurements extended across the melting line into the solid phase at pressures up to 18 kbar. Measurements of the compressibility are compared with those obtained by Stewart along the 4 0 K isotherm up to 20 kbar. We discuss the use of helium as a pressure medium in high-pressure diamond anvil cells. Essentially no data are given

  17. A linear motor and compact cylinder-piston driver for left ventricular bypass.

    Science.gov (United States)

    Qian, K X

    1990-01-01

    A simple, portable, reliable and noise-free pneumatic driver has been developed. It consists of a linear motor attached to a cylinder piston, in one unit. The motor coil is directly wound on the cylinder, and the permanent magnet is fixed to the piston. As a continuous voltage square wave is applied to the coil, the cylinder reciprocates on the piston periodically, producing air pressure and vacuum alternately. In conjunction with a locally made diaphragm pump, the driver was tested in vitro and in vivo. Results demonstrated that the device could drive the diaphragm pump and so support the circulation of an experimental animal. The driver weighs 12 kg. For 200 mmHg air pressure and -80 mmHg vacuum the power consumed is 30 W. Its noise is about 30 dB, less than that of an artificial valve and pump.

  18. Life Prediction on a T700 Carbon Fiber Reinforced Cylinder with Limited Accelerated Life Testing Data

    OpenAIRE

    Ma Xiaobing; Zhang Yongbo

    2015-01-01

    An accelerated life testing investigation was conducted on a composite cylinder that consists of aluminum alloy and T700 carbon fiber. The ultimate failure stress predictions of cylinders were obtained by the mixing rule and verified by the blasting static pressure method. Based on the stress prediction of cylinder under working conditions, the constant stress accelerated life test of the cylinder was designed. However, the failure data cannot be sufficiently obtained by the accelerated life ...

  19. Performance and combustion analysis of Mahua biodiesel on a single cylinder compression ignition engine using electronic fuel injection system

    Directory of Open Access Journals (Sweden)

    Gunasekaran Anandkumar

    2016-01-01

    Full Text Available In this investigation, experiment is carried out on a 1500 rpm constant speed single cylinder Diesel engine. The test is carried out with Neat diesel, neat biodiesel, and blend B20. The engine considered was run with electronic fuel injection system supported by common rail direct injection to obtain high atomization and effective air utilization inside the combustion chamber. The performance of the engine in terms of break thermal efficiency and brake specific energy consumption was found and compared. The B20 blend shows 1.11% decrease in break thermal efficiency and 3.35% increase in brake specific energy consumption than diesel. The combustion characteristics found are in-cylinder pressure, rate of pressure rise, and heat release rate and compared for peak pressure load to understand the nature of combustion process. For each fuel test run, the maximum peak pressure is observed at part load condition. The rate of change of pressure and heat release rate of diesel is high compared to pure biodiesel and B20 blend. The diffusion combustion is observed to be predominant in case of B100 than B20 and Neat diesel.

  20. Estimation of Hydrodynamic Impact Loads and Pressure Distributions on Bodies Approximating Elliptical Cylinders with Special Reference to Water Landings of Helicopters

    Science.gov (United States)

    Schnitzer, Emanuel; Hathaway, Melvin E

    1953-01-01

    An approximate method for computing water loads and pressure distributions on lightly loaded elliptical cylinders during oblique water impacts is presented. The method is of special interest for the case of emergency water landings of helicopters. This method makes use of theory developed and checked for landing impacts of seaplanes having bottom cross sections of V and scalloped contours. An illustrative example is given to show typical results obtained from the use of the proposed method of computation. The accuracy of the approximate method was evaluated through comparison with limited experimental data for two-dimensional drops of a rigid circular cylinder at a trim of 0 degrees and a flight -path angle of 90 degrees. The applicability of the proposed formulas to the design of rigid hulls is indicated by the rough agreement obtained between the computed and experimental results. A detailed computational procedure is included as an appendix.

  1. Analysis of the cylinder block tilting inertia moment and its effect on the performance of high-speed electro-hydrostatic actuator pumps of aircraft

    Directory of Open Access Journals (Sweden)

    Junhui ZHANG

    2018-01-01

    Full Text Available Electro-hydrostatic actuator (EHA pumps are usually characterized as high speed and small displacement. The tilting inertia moment on the cylinder block produced by the inertia forces of piston/slipper assemblies cannot be ignored when analyzing the cylinder block balance. A large tilting inertia moment will make the cylinder block tilt away from the valve plate, resulting in severe wear and significantly increased leakage. This paper presents an analytical expression for the tilting inertia moment on the cylinder block by means of vector analysis. In addition, a high-speed test rig was built up, and experiments on an EHA pump prototype were carried out at high speeds of up to 10,000 r/min. The predicted nature of the cylinder block tilt at high speeds corresponds closely to the witness marks on the dismantled EHA pump prototype. It is suggested that more attention should be given to the tilting inertia moment acting on the cylinder block of an EHA pump since both wear and leakage flow between the cylinder block and the valve plate are very much dependent on this tilting moment.

  2. Cylinder monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    Alderson, J.H. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.

  3. Cylinder head seal for piston engines especially internal combustion engines. Zylinderkopfdichtung fuer Hubkolbenmaschinen, insbesondere Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, H.; Winter, J.

    1991-01-17

    The invention concerns a cylinder head seal for reciprocating piston engines especially internal combustion engines and preferentially those with cylinder sleeves. With performances of internal combustion engines encreasing all the time it is becoming more and more difficult to seal the cylinder heat. The invention proposes a ring seal whose sides are plastically deformed when the cylinder headed screws are tightened. The inner deformations of the cylinder head resulting from the pressure forces inside the cylinder are compensated by means of elastic spring action of the combustion chamber sealing ring. The dimension of land, groove and sides are matched in such a way as to prevent any seal squeezing during plastification which would result in a deformation of the cylinder sleeve. The ring can therefore be set directly into the centering of the cylinder sleeve. Separate centering devices are not required.

  4. 75 FR 30292 - Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinders as Installed on Various...

    Science.gov (United States)

    2010-06-01

    ... by the reported rupture of a high-pressure gaseous oxygen cylinder, which had insufficient strength... supply for the flightcrew, and injury to cabin occupants or other support personnel. DATES: This AD... incorporation by reference of certain publications listed in this AD. ADDRESSES: For service information...

  5. Long-term storage of compressed radioactive krypton in cylinders

    International Nuclear Information System (INIS)

    Niephaus, D.; Nommensen, O.; Bruecher, H.

    1982-01-01

    The recommendations of the German Radiation Protection Commission necessitate the separation of the radioactive noble gas krypton-85 (Kr-85) produced in large LWR reprocessing plants from the dissolver off-gas. A possible method of removal is a long-term storage of the compressed noble gas above ground in cylinders. The aim of the present study is to develop such a storage concept and evaluate its feasibility under the aspects of safety and cost. After having been filled, the gas cylinders are placed separately into transport racks serving to protect the cylinders. Following this, the cylinders are transferred out of the filling station in a transport cask, conveyed to the storage building and stored there. The storage building protects the gas cylinders against external impacts. The storage cells constitute a second barrier against the release of Kr-85. The heat produced during decay of the Kr-85 in the gas cylinders is carried off by natural convection of the air circulating in the storage cells. To study possible corrosion attack on special steels due to rubidium, experiments were conducted at 200 0 C during test periods up to 3500h. In order to compare properties at elevated temperatures, corrosion experiments were conducted at 500 0 C, which is far above the maximum licensed storage temperature of 200 0 C. Experiments were conducted concerning the adsorption of krypton on various adsorbents, thus reducing the pressure inside the gas cylinder during storage. A cost estimate based on 1980 prices

  6. Fatigue of non-welded pressure vessels made of high strength steel

    International Nuclear Information System (INIS)

    Rauscher, F.

    2003-01-01

    When using high strength steels for pressure vessels, cyclic fatigue requirements may become decisive for the design. Within a European research project, two typical non-welded types of vessels--gas cylinders as used for gas transportation and hydraulic accumulators with screwed in ends--were investigated. The results of the fatigue analyses and of the testing of these vessels are described here. Special attention is drawn to the evaluation of the stresses in the threads used for threaded in flat ends and rings, because the usual formulae for bolted connections cannot be used. In the case of sharp notches and of threads, the experiments showed that the fatigue calculation gave conservative results. The unexpected failure of the gas cylinders in the cylindrical part and at the onset of the end showed that the fatigue analyses according to prEN13445-3 clause 18 is non-conservative for these surfaces without mechanical preparation, and need special consideration. Based on the investigations, a stress concentration factor for small fabrication notches and a new surface finish factor is proposed

  7. Fatigue of non-welded pressure vessels made of high strength steel

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, F

    2003-03-01

    When using high strength steels for pressure vessels, cyclic fatigue requirements may become decisive for the design. Within a European research project, two typical non-welded types of vessels--gas cylinders as used for gas transportation and hydraulic accumulators with screwed in ends--were investigated. The results of the fatigue analyses and of the testing of these vessels are described here. Special attention is drawn to the evaluation of the stresses in the threads used for threaded in flat ends and rings, because the usual formulae for bolted connections cannot be used. In the case of sharp notches and of threads, the experiments showed that the fatigue calculation gave conservative results. The unexpected failure of the gas cylinders in the cylindrical part and at the onset of the end showed that the fatigue analyses according to prEN13445-3 clause 18 is non-conservative for these surfaces without mechanical preparation, and need special consideration. Based on the investigations, a stress concentration factor for small fabrication notches and a new surface finish factor is proposed.

  8. Hall effects on hydromagnetic flow of an Oldroyd 6-constant fluid between concentric cylinders

    International Nuclear Information System (INIS)

    Rana, M.A.; Siddiqui, A.M.; Qamar, Rashid

    2009-01-01

    The hydromagnetic flow of an electrically conducting, incompressible Oldroyd 6-constant fluid between two concentric cylinders is investigated. The flow is generated by moving inner cylinder and/or application of the constant pressure gradient. Two non-linear boundary value problems are solved numerically. The effects of material parameters, pressure gradient, magnetic field and Hall parameter on the velocity are studied. The graphical representation of velocity reveals that characteristics for shear thinning/shear thickening behaviour of a fluid is dependent upon the rheological properties

  9. Hall effects on hydromagnetic flow of an Oldroyd 6-constant fluid between concentric cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Rana, M.A. [Management Information System, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)], E-mail: mafzalrana@yahoo.com; Siddiqui, A.M. [Department of Mathematics, Pennsylvania State University, York Campus, York, PA 17403 (United States); Qamar, Rashid [Management Information System, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)

    2009-01-15

    The hydromagnetic flow of an electrically conducting, incompressible Oldroyd 6-constant fluid between two concentric cylinders is investigated. The flow is generated by moving inner cylinder and/or application of the constant pressure gradient. Two non-linear boundary value problems are solved numerically. The effects of material parameters, pressure gradient, magnetic field and Hall parameter on the velocity are studied. The graphical representation of velocity reveals that characteristics for shear thinning/shear thickening behaviour of a fluid is dependent upon the rheological properties.

  10. Boundary value problems of the circular cylinders in the strain-gradient theory of linear elasticity

    International Nuclear Information System (INIS)

    Kao, B.G.

    1979-11-01

    Three boundary value problems in the strain-gradient theory of linear elasticity are solved for circular cylinders. They are the twisting of circular cylinder, uniformly pressuring of concentric circular cylinder, and pure-bending of simply connected cylinder. The comparisons of these solutions with the solutions in classical elasticity and in couple-stress theory reveal the differences in the stress fields as well as the apparent stress fields due to the influences of the strain-gradient. These aspects of the strain-gradient theory could be important in modeling the failure behavior of structural materials

  11. Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime

    Science.gov (United States)

    Miau, J. J.; Tsai, H. W.; Lin, Y. J.; Tu, J. K.; Fang, C. H.; Chen, M. C.

    2011-10-01

    Experiments were conducted for 2D circular cylinders at Reynolds numbers in the range of 1.73 × 105-5.86 × 105. In the experiment, two circular cylinder models made of acrylic and stainless steel, respectively, were employed, which have similar dimensions but different surface roughness. Particular attention was paid to the unsteady flow behaviors inferred by the signals obtained from the pressure taps on the cylinder models and by a hot-wire probe in the near-wake region. At Reynolds numbers pertaining to the initial transition from the subcritical to the critical regimes, pronounced pressure fluctuations were measured on the surfaces of both cylinder models, which were attributed to the excursion of unsteady flow separation over a large circumferential region. At the Reynolds numbers almost reaching the one-bubble state, it was noted that the development of separation bubble might switch from one side to the other with time. Wavelet analysis of the pressure signals measured simultaneously at θ = ±90° further revealed that when no separation bubble was developed, the instantaneous vortex-shedding frequencies could be clearly resolved, about 0.2, in terms of the Strouhal number. The results of oil-film flow visualization on the stainless steel cylinder of the one-bubble and two-bubble states showed that the flow reattachment region downstream of a separation bubble appeared not uniform along the span of the model. Thus, the three dimensionality was quite evident.

  12. Baseline performance and emissions data for a single-cylinder, direct-injected diesel engine

    Science.gov (United States)

    Dezelick, R. A.; Mcfadden, J. J.; Ream, L. W.; Barrows, R. F.

    1983-01-01

    Comprehensive fuel consumption, mean effective cylinder pressure, and emission test results for a supercharged, single-cylinder, direct-injected, four-stroke-cycle, diesel test engine are documented. Inlet air-to-exhaust pressure ratios were varied from 1.25 to 3.35 in order to establish the potential effects of turbocharging techniques on engine performance. Inlet air temperatures and pressures were adjusted from 34 to 107 C and from 193 to 414 kPa to determine the effects on engine performance and emissions. Engine output ranged from 300 to 2100 kPa (brake mean effective pressure) in the speed range of 1000 to 3000 rpm. Gaseous and particulate emission rates were measured. Real-time values of engine friction and pumping loop losses were measured independently and compared with motored engine values.

  13. Large-scale thermal-shock experiments with clad and unclad steel cylinders

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1992-01-01

    Flaw behavior trends associated with pressurized-thermal-shock (PTS) loading of pressurized-water-reactor pressure vessels have been under investigation at the Oak Ridge National Laboratory for nearly 20 years. During that time, twelve thermal-shock experiments with thick-walled (152 mm) steel cylinders were conducted as a part of the investigations. The first eight experiments were conducted with unclad cylinders initially containing shallow (8--19 mm) two-dimensional and semicircular inner-surface flaws. These experiments demonstrated, in good agreement with linear elastic fracture mechanics, crack initiation and arrest, a series of initiation/arrest events with deep penetration of the wall, long crack jumps, arrest with the stress intensity factor (K I ) increasing with crack depth, extensive surface extension of an initially short and shallow (semicircular) flaw, and warm prestressing with K I ≤ 0. The remaining four experiments were conducted with clad cylinders containing initially shallow (19--24 mm) semielliptical subclad and surface flaws at the inner surface. In the first of these experiments one of six equally spaced (60 degrees) open-quotes identicalclose quotes subclad flaws extended nearly the length of the cylinder (1,220 mm) beneath the cladding (no crack extension into the cladding) and nearly 50% of the wall, radially. For the final experiment, four of the semielliptical subclad flaws that had not propagated previously were converted to surface flaws, and they experienced extensive extension beneath the cladding with no cracking of the cladding. Information from this series of thermal-shock experiments is being used in the evaluation of the PTS issue

  14. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    Science.gov (United States)

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  15. Load capacity of a thick-walled cylinder with a radial hole

    International Nuclear Information System (INIS)

    Laczek, S.; Rys, J.; Zielinski, A.P.

    2010-01-01

    The paper deals with elastic-plastic analysis of the stress-strain state in the vicinity of a hole in a thick-walled cylindrical pressure vessel. The investigations have been inspired by the phenomenon of ductile fracture observed in a high-pressure reactor. Using finite element calculations, different failure criteria are proposed to aid design and control of high-pressure vessels with piping attachments. They are compared with suggestions of American (ASME) and European (EN) standards. A simple shakedown analysis of the structure is also presented. The local stress distribution near the hole results in a specific failure of the vessel. A plastic zone appears in the vicinity of the internal cylinder surface and propagates along the hole side. The vessel unloading can cause local reverse plasticity, which leads to plastic shakedown in the small zone and then to progressive ductile fracture in this zone. This is dangerous for the whole structure.

  16. 46 CFR 197.462 - Pressure vessels and pressure piping.

    Science.gov (United States)

    2010-10-01

    ... that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure piping... tests conducted in accordance with this section shall be either hydrostatic tests or pneumatic tests. (1... times the maximum allowable working pressure. (2) When a pneumatic test is conducted on a pressure...

  17. Design and construction of a prestressed concrete pressure vessel for a working pressure of 69N/mm2 (10,000 p.s.i)

    International Nuclear Information System (INIS)

    Dawson, P.

    1977-01-01

    Construction is nearing completion of a pressure vessel with a chamber 9.15 m (30 ft.) high and 3.05 m (10 ft.) internal diameter for hydraulic tests on marine components up to 69 N/mm 2 (10,000 p.s.i.) working pressure. The chamber comprises a steel cylinder, with independent end plates contained within a prestressed concrete structure. The cylinder is constructed in two halves, each consisting of three forged rings, 170 mm thick, shrink-fitted onto a 90 mm thick liner. It rests on a 100 mm thick bottom plate, provided with a band of hard-facing overlay on which the cylinder slides in response to changes of test medium pressure. Models to be tested within the chamber are hung from a removeable 150 mm thick top plate. A central elliptical hatch provides access into the chamber. Special sealing assemblies are fitted at the junction of the cylinder sections and between the cylinder and end plates. These seals are capable of accepting radial expansion of the cylinder and corresponding vertical movements at the upper seal arising from elastic movements of the enclosing structure. The top plate is restrained by a wire-wound prestressed concrete closure plug, itself located by twelve bifurcated inclined steel struts which transfer the load on the top plate into the concrete structure. The struts are retractable to allow removal of the closure plug and top plate. The enclosing concrete structure is 25 m (82 ft.) high and 11 m (36 ft.) diameter. It is vertically prestressed by 180 no. 540 Tonne tendons and circumferentially prestressed by 5 mm wire laid under tension in pre-cast concrete channels by the Taylor Woodrow Wire-Winding System. The structure was analysed, using limit state principles, by computerised elastic and non-elastic dynamic relaxation techniques. The results were evaluated against triaxial stress criteria established from relevant research work and experience obtained from nuclear prestressed concrete pressure vessels

  18. Large-eddy simulation of flow over a grooved cylinder up to transcritical Reynolds numbers

    KAUST Repository

    Cheng, W.

    2017-11-27

    We report wall-resolved large-eddy simulation (LES) of flow over a grooved cylinder up to the transcritical regime. The stretched-vortex subgrid-scale model is embedded in a general fourth-order finite-difference code discretization on a curvilinear mesh. In the present study grooves are equally distributed around the circumference of the cylinder, each of sinusoidal shape with height , invariant in the spanwise direction. Based on the two parameters, and the Reynolds number where is the free-stream velocity, the diameter of the cylinder and the kinematic viscosity, two main sets of simulations are described. The first set varies from to while fixing . We study the flow deviation from the smooth-cylinder case, with emphasis on several important statistics such as the length of the mean-flow recirculation bubble , the pressure coefficient , the skin-friction coefficient and the non-dimensional pressure gradient parameter . It is found that, with increasing at fixed , some properties of the mean flow behave somewhat similarly to changes in the smooth-cylinder flow when is increased. This includes shrinking and nearly constant minimum pressure coefficient. In contrast, while the non-dimensional pressure gradient parameter remains nearly constant for the front part of the smooth cylinder flow, shows an oscillatory variation for the grooved-cylinder case. The second main set of LES varies from to with fixed . It is found that this range spans the subcritical and supercritical regimes and reaches the beginning of the transcritical flow regime. Mean-flow properties are diagnosed and compared with available experimental data including and the drag coefficient . The timewise variation of the lift and drag coefficients are also studied to elucidate the transition among three regimes. Instantaneous images of the surface, skin-friction vector field and also of the three-dimensional Q-criterion field are utilized to further understand the dynamics of the near-surface flow

  19. Pressure-induced weak ferromagnetism in uranium dioxide, UO2

    International Nuclear Information System (INIS)

    Sakai, H; Kato, H; Tokunaga, Y; Kambe, S; Walstedt, R E; Nakamura, A; Tateiwa, N; Kobayashi, T C

    2003-01-01

    The dc magnetization of insulating UO 2 under high pressure up to ∼1 GPa has been measured using a piston-cylinder cell. Pressure-induced weak ferromagnetism appeared at low pressure (∼0.2 GPa). Both the remanent magnetization and the coercive force increase as pressure increases. This weak ferromagnetism may come from spin canting or from uncompensated moments around grain boundaries

  20. Thermal diffusivity of Swedish meatballs, pork meat pate and tomato puree during high pressure processing

    Science.gov (United States)

    Landfeld, Ales; Strohalm, Jan; Stancl, Jaromir; Houska, Milan

    2011-06-01

    Our study is directed at the effects of high pressure on the thermal diffusivity of selected food samples - a fresh meat formulation for Swedish meatballs, pork meat pate and tomato puree. Preheated food samples were placed in a copper cell and tested at nominal pressures of 400 and 500 MPa in a high pressure chamber. The thermal diffusivity was estimated from the recorded time course of temperatures (at the center of the food sample, at the wall of the copper cell, and 7.5 mm from the wall) during the high pressure holding time. Measured time-temperature profiles were compared with predictions using the finite-element model to solve the problem of uneven heat conduction in an infinite, solid, linear cylinder using the linear temperature dependence of apparent thermal conductivity. Optimal parameters of the linear temperature dependence of apparent thermal conductivity were evaluated by comparing measured temperatures and temperatures calculated from the model. To minimize differences between measured and calculated temperatures, at the center of the sample, the Marquardt-Levenberg optimization method was used. The thermal diffusivity values of all food samples were linearly correlated with temperature for two levels of pressure. Thermal diffusivity values increased with increased pressure and temperature. † This paper was presented at the XLVIIIth European High Pressure Research Group (EHPRG 48) Meeting at Uppsala (Sweden), 25-29 July 2010.

  1. Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: A bond graph approach

    International Nuclear Information System (INIS)

    Creyx, M.; Delacourt, E.; Morin, C.; Desmet, B.

    2016-01-01

    A dynamic model using the bond graph formalism of the expansion cylinder of an open Joule cycle Ericsson engine intended for a biomass-fuelled micro-CHP system is presented. Dynamic phenomena, such as the thermodynamic evolution of air, the instantaneous air mass flow rates linked to pressure drops crossing the valves, the heat transferred through the expansion cylinder wall and the mechanical friction losses, are included in the model. The influence on the Ericsson engine performances of the main operating conditions (intake air pressure and temperature, timing of intake and exhaust valve closing, rotational speed, mechanical friction losses and heat transfer at expansion cylinder wall) is studied. The operating conditions maximizing the performances of the Ericsson engine used in the a biomass-fuelled micro-CHP unit are an intake air pressure between 6 and 8 bar, a maximized intake air temperature, an adjustment of the intake and exhaust valve closing corresponding to an expansion cycle close to the theoretical Joule cycle, a rotational speed close to 800 rpm. The heat transfer at the expansion cylinder wall reduces the engine performances. - Highlights: • A bond graph dynamic model of the Ericsson engine expansion cylinder is presented. • Dynamic aspects are modelled: pressure drops, friction losses, wall heat transfer. • Influent factors and phenomena on the engine performances are investigated. • Expansion cycles close to the theoretical Joule cycle maximize the performances. • The heat transfer at the expansion chamber wall reduces the performances.

  2. Efficacy and safety of cross-cylinder photorefractive keratectomy versus single method in medium-high astigmatism: a randomized clinical trial.

    Science.gov (United States)

    Sedghipour, Mohammad R; Lotfi, Afshin; Sadeghilar, Ayaz; Banan, Saeeid

    2012-09-07

    BACKGROUND: To compare efficacy and safety of photorefractive keratectomy (PRK) by cross-cylinder with single methods in medium-high astigmatism. DESIGN: Randomized clinical trial study PARTICIPANTS: Fifty patients with medium-high compound myopic astigmatism were enrolled between September 2007 and September 2008. METHODS: PRK was performed on 100 eyes of 50 patients with compound myopic astigmatism. Each patient underwent PRK by cross-cylinder approach in one eye and single method on the contralateral eye. Vector analysis was used to assess astigmatic results. MAIN OUTCOME MEASURES: Improvement of visual acuity (snelen chart), refraction, aberrometry. RESULTS: Uncorrected visual acuity (UCCA) equal to 20/40 or better after six months, was achieved in 98% of eyes in the cross-cylinder method versus 96% in single method.. Mean preoperative spherical equivalent(SE) was -5.2 ±2.1 D in the cross-cylinder method versus -5.1 ±0.5 D in the single method. At six months, the mean SE was - 0.5±0.4 D and -0.6±0.3 D, respectively. Mean IOS was 0.4±0.3 in the cross-cylinder group and 0.4±0.4 in the single group. Mean postoperative absolute change in total root-mean-square higher order aberrations in the cross-cylinder group and single group were 0.16 pm and 0.17 pm, respectively. Any of the mentioned differences didn't appear to be statistically significant. CONCLUSIONS: Both PRK methods appeared to be safe and effective in correcting medium-high astigmatism. © 2012 The Author. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  3. Experimental investigations of combustion and emission characteristics of rapeseed oil–diesel blends in a two cylinder agricultural diesel engine

    International Nuclear Information System (INIS)

    Qi, D.H.; Lee, C.F.; Jia, C.C.; Wang, P.P.; Wu, S.T.

    2014-01-01

    Highlights: • The main properties of rapeseed oil and diesel fuel were measure and analyzed. • The cylinder pressure of the rapeseed oil–diesel blends was measured and compared. • The heat release rate of the test fuels was calculated and the combustion process was analyzed. • The fuel consumption and emissions characteristics were measured and compared. - Abstract: The main objective of this paper was to study the performance, emissions and combustion characteristics of a diesel engine using rapeseed oil–diesel blends. The main fuel properties of rapeseed oil (RSO) were investigated and compared with that of diesel fuel. The experimental results showed that the viscosity and density of the blends were decreased and approached to that of diesel fuel when RSO volume fraction was less than 20%. At low engine loads, the start of combustion for the blends was almost similar to that for diesel fuel, but the peak cylinder pressure and heat release rate were higher. At high engine loads, the start of combustion for the blends was slightly earlier than that for diesel fuel, but the peak cylinder pressure and heat release rate were identical. For the blends, there was slightly higher brake specific fuel consumptions (BSFC) and brake specific energy consumptions (BSEC) at low engine loads. Smoke emission was higher at low engine loads, but lower at high engine loads. Nitrogen oxide (NO x ) emission was observed slightly lower at low engine loads and almost identical at high engine loads. Carbon monoxide (CO) and hydrocarbon (HC) emission were higher under all range of engine loads for the blends

  4. Reducing Fatigue Loading Due to Pressure Shift in Discrete Fluid Power Force Systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    power force system. The current paper investigates the correlation between pressure oscillations in the cylinder chambers and valve flow in the manifold. Furthermore, the correlation between the pressure shifting time and the pressure overshoot is investigated. The study therefore focus on how to shape......Discrete Fluid Power Force Systems is one of the topologies gaining focus in the pursuit of lowering energy losses in fluid power transmission systems. The cylinder based Fluid Power Force System considered in this article is constructed with a multi-chamber cylinder, a number of constant pressure...... oscillations in the cylinder chamber, especially for systems with long connections between the cylinder and the valve manifold. Hose pressure oscillations will induce oscillations in the produced piston force. Hence, pressure oscillations may increase the fatigue loading on systems employing a discrete fluid...

  5. Background-oriented schlieren imaging of flow around a circular cylinder at low Mach numbers

    Science.gov (United States)

    Stadler, Hannes; Bauknecht, André; Siegrist, Silvan; Flesch, Robert; Wolf, C. Christian; van Hinsberg, Nils; Jacobs, Markus

    2017-09-01

    The background-oriented schlieren (BOS) imaging method has, for the first time, been applied in the investigation of the flow around a circular cylinder at low Mach numbers (Msuccessive imaging at incremental angular positions around the cylinder. This density distribution has been found to agree well with the pressure measurements and with potential theory where appropriate.

  6. Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: Fabrication and testing

    Science.gov (United States)

    Wu, Hao; Lai, Changlian; Sun, Fangfang; Li, Ming; Ji, Bin; Wei, Weiyi; Liu, Debo; Zhang, Xi; Fan, Hualin

    2018-04-01

    To get strong, stiff and light cylindrical shell, carbon fiber reinforced hierarchical orthogrid stiffened cylinders are designed and fabricated. The cylinder is stiffened by two-scale orthogrid. The primary orthogrid has thick and high ribs and contains several sub-orthogrid cells whose rib is much thinner and lower. The primary orthogrid stiffens the bending rigidity of the cylinder to resist the global instability while the sub-orthogrid stiffens the bending rigidity of the skin enclosed by the primary orthogrid to resist local buckling. The cylinder is fabricated by filament winding method based on a silicone rubber mandrel with hierarchical grooves. Axial compression tests are performed to reveal the failure modes. With hierarchical stiffeners, the cylinder fails at skin fracture and has high specific strength. The cylinder will fail at end crushing if the end of the cylinder is not thickened. Global instability and local buckling are well restricted by the hierarchical stiffeners.

  7. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang [High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000 (China); Luo, Xisheng, E-mail: xluo@ustc.edu.cn [Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026 (China)

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into three branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.

  8. Pneumatic pressure wave generator provides economical, simple testing of pressure transducers

    Science.gov (United States)

    Gaal, A. E.; Weldon, T. P.

    1967-01-01

    Testing device utilizes the change in pressure about a bias or reference pressure level produced by displacement of a center-driven piston in a closed cylinder. Closely controlled pneumatic pressure waves allow testing under dynamic conditions.

  9. Safety of 5 MW district heating reactor (DHR) and hydraulic dynamic pressure drive control rods

    International Nuclear Information System (INIS)

    Wu Yuanqiang; Wang Dazhong

    1991-11-01

    The principles and movement characteristic of the hydraulic dynamic pressure drive for control rods in 5 MW district heating reactor are described with stress on analysis of its effects on reactor safety features. The drive is different from electric-magnetic drive for PWR or hydraulic drive for BWR. The drive cylinder is driven by dynamic pressure. In the new drive system, the reactor coolant (water) used as actuating medium is pressed by pump, then injected into a step cylinder which is set in the reactor core. The cylinder will move step by step by controlling flow, then the cylinder drives the neutron absorber and controls nuclear reaction. The drive is characterized by simplicity in structure, high reliability, inherent safety, reduction in reactor height, economy, etc

  10. SU-E-T-579: Impact of Cylinder Size in High-Dose Rate Brachytherapy (HDRBT) for Primary Cancer in the Vagina

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H; Gopalakrishnan, M; Lee, P; Sathiaseelan, V [Department of Radiation Oncology, Northwestern Memorial Hospital, Chicago, IL (United States)

    2014-06-01

    Purpose: To evaluate the dosimetric impact of cylinder size in high dose rate Brachytherapy for primary vaginal cancers. Methods: Patients treated with HDR vaginal vault radiation in a list of cylinders ranging from 2.5 to 4 cm in diameter at 0.5 cm increment were analyzed. All patients’ doses were prescribed at the 0.5 cm from the vaginal surface with different treatment lengths. A series of reference points were created to optimize the dose distribution. The fraction dose was 5.5 Gy, the treatment was repeated for 4 times in two weeks. A cylinder volume was contoured in each case according to the prescribed treatment length, and then expanded to 5 mm to get a volume Cylinder-5mm-exp. A volume of PTV-Eval was obtained by subtracting the cylinder volume from the Cylinder-5mm-exp. The shell volume, PTV-Eval serves as the target volume for dosimetric evaluation. Results: DVH curves and average doses of PTV-Eval were obtained. Our results indicated that the DVH curves shifted toward higher dose side when larger cylinder was used instead of smaller ones. When 3.0 cm cylinder was used instead of 2.5 cm, for 3.0 cm treatment length, the average dose only increased 1%, from 790 to 799 cGy. However, the average doses for 3.5 and 4 cm cylinders respectively are 932 and 1137 cGy at the same treatment length. For 5.0 cm treatment length, the average dose is 741 cGy for 2.5 cm cylinder, and 859 cGy for 3 cm cylinder. Conclusion: Our data analysis suggests that for the vaginal intracavitary HDRBT, the average dose is at least 35% larger than the prescribed dose in the studied cases; the size of the cylinder will impact the dose delivered to the target volume. The cylinder with bigger diameter tends to deliver larger average dose to the PTV-Eval.

  11. Influence of the stacking sequence of layers on the mechanical behavior of polymeric composite cylinders

    International Nuclear Information System (INIS)

    Carvalho, Osni de

    2006-01-01

    This work evaluated experimentally the influence of the stacking sequence of layers symmetrical and asymmetrical on the mechanical behavior of polymeric composite cylinders. For so much, two open-ended cylinders groups were manufactured by filament winding process, which had different stacking sequence related to the laminate midplane, characterizing symmetrical and asymmetrical laminates. The composite cylinders were made with epoxy matrix and carbon fiber as reinforcement. For evaluation of the mechanical strength, the cylinders were tested hydrostatically, which consisted of internal pressurization in a hydrostatic device through the utilization of a fluid until the cylinders burst. Additionally, were compared the strains and failure modes between the cylinders groups. The utilization of a finite element program allowed to conclude that this tool, very used in design, does not get to identify tensions in the fiber direction in each composite layer, as well as interlaminar shear stress, that appears in the cylinders with asymmetrical stacking sequence. The tests results showed that the stacking sequence had influence in the mechanical behavior of the composite cylinders, favoring the symmetrical construction. (author)

  12. Breached cylinder incident at the Portsmouth gaseous diffusion plant

    Energy Technology Data Exchange (ETDEWEB)

    Boelens, R.A. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    On June 16, 1990, during an inspection of valves on partially depleted product storage cylinders, a 14-ton partially depleted product cylinder was discovered breached. The cylinder had been placed in long-term storage in 1977 on the top row of Portsmouth`s (two rows high) storage area. The breach was observed when an inspector noticed a pile of green material along side of the cylinder. The breach was estimated to be approximately 8- inches wide and 16-inches long, and ran under the first stiffening ring of the cylinder. During the continuing inspection of the storage area, a second 14-ton product cylinder was discovered breached. This cylinder was stacked on the bottom row in the storage area in 1986. This breach was also located adjacent to a stiffening ring. This paper will discuss the contributing factors of the breaching of the cylinders, the immediate response, subsequent actions in support of the investigation, and corrective actions.

  13. Reducing pressure oscillations in discrete fluid power systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    Discrete fluid power systems featuring transmission lines inherently include pressure oscillations. Experimental verification of a discrete fluid power power take off system for wave energy converters has shown the cylinder pressure to oscillate as force shifts are performed. This article investi...... investigates how cylinder pressure oscillations may be reduced by shaping the valve opening trajectory without the need for closed loop pressure feedback. Furthermore the energy costs of reducing pressure oscillations are investigated....

  14. Design of a single cylinder optical access to the combustion engine Scania D12

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Juergen

    2000-11-01

    deformation of the glass-plate that has been solved with the Finite Element Method, are done analytically. A maximum pressure of 200 bar and a wall temperature of 300K are assumed. Such high loads require a heavy construction, which of course is wanted to be avoided here. So in order to handle these loads, high quality materials such as titanium for the piston-crown or high-quality steel have been used.

  15. Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder

    Science.gov (United States)

    Liang, Shen; Chaohui, Wang

    2018-03-01

    In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.

  16. Pressure indication during knocking conditions; Druckindizierung bei klopfender Verbrennung

    Energy Technology Data Exchange (ETDEWEB)

    Bertola, A.; Stadler, J.; Walter, T.; Wolfer, P. [Kistler Instrumente AG Winterthur (Switzerland); Gossweiler, C. [Fachhochschule Nordwestschweiz ITFE (Switzerland); Rothe, M. [Karlsruhe Univ. (Germany). Inst. fuer Kolbenmaschinen

    2006-07-01

    Depending on its frequency and intensity, knocking combustion can cause engine damage due to excessive thermal or mechanical stress on components. During knocking combustion, the cylinder pressure signal is overlaid with high-frequency pressure oscillations. Reliable detection of the knock timing and quantification of the knock intensity based on local measurement of the cylinder pressure demand for particular care, especially when it comes to selecting and adapting the sensor technology and also during the evaluation process using customary knock analysis methods. This publication examines various types of cylinder pressure sensors, how they are installed in the combustion chamber, the effect of sensor positioning and assesses them with regard to accuracy. Finally, on the basis of the test results, recommendations are given for selecting sensors and adapting them within the combustion chamber. A crucial factor for pressure measurement during knocking combustion is the sensor position within the combustion chamber. The sensor type is of secondary importance; at most, cavities between the combustion chamber and the sensor may influence the measuring signal. To assess the sensitivity of the knock evaluation algorithms to various mounting positions and sensor types, it is advisable to carry out comparative measurements between different sensor positions and the measuring spark plug. (orig.)

  17. SU-F-T-65: AutomaticTreatment Planning for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    International Nuclear Information System (INIS)

    Zhou, Y; Tan, J; Jiang, S; Albuquerque, K; Jia, X

    2016-01-01

    Purpose: High dose rate (HDR) brachytherapy treatment planning is conventionally performed in a manual fashion. Yet it is highly desirable to perform computerized automated planning to improve treatment planning efficiency, eliminate human errors, and reduce plan quality variation. The goal of this research is to develop an automatic treatment planning tool for HDR brachytherapy with a cylinder applicator for vaginal cancer. Methods: After inserting the cylinder applicator into the patient, a CT scan was acquired and was loaded to an in-house developed treatment planning software. The cylinder applicator was automatically segmented using image-processing techniques. CTV was generated based on user-specified treatment depth and length. Locations of relevant points (apex point, prescription point, and vaginal surface point), central applicator channel coordinates, and dwell positions were determined according to their geometric relations with the applicator. Dwell time was computed through an inverse optimization process. The planning information was written into DICOM-RT plan and structure files to transfer the automatically generated plan to a commercial treatment planning system for plan verification and delivery. Results: We have tested the system retrospectively in nine patients treated with vaginal cylinder applicator. These cases were selected with different treatment prescriptions, lengths, depths, and cylinder diameters to represent a large patient population. Our system was able to generate treatment plans for these cases with clinically acceptable quality. Computation time varied from 3–6 min. Conclusion: We have developed a system to perform automated treatment planning for HDR brachytherapy with a cylinder applicator. Such a novel system has greatly improved treatment planning efficiency and reduced plan quality variation. It also served as a testbed to demonstrate the feasibility of automatic HDR treatment planning for more complicated cases.

  18. SU-F-T-65: AutomaticTreatment Planning for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y; Tan, J; Jiang, S; Albuquerque, K; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: High dose rate (HDR) brachytherapy treatment planning is conventionally performed in a manual fashion. Yet it is highly desirable to perform computerized automated planning to improve treatment planning efficiency, eliminate human errors, and reduce plan quality variation. The goal of this research is to develop an automatic treatment planning tool for HDR brachytherapy with a cylinder applicator for vaginal cancer. Methods: After inserting the cylinder applicator into the patient, a CT scan was acquired and was loaded to an in-house developed treatment planning software. The cylinder applicator was automatically segmented using image-processing techniques. CTV was generated based on user-specified treatment depth and length. Locations of relevant points (apex point, prescription point, and vaginal surface point), central applicator channel coordinates, and dwell positions were determined according to their geometric relations with the applicator. Dwell time was computed through an inverse optimization process. The planning information was written into DICOM-RT plan and structure files to transfer the automatically generated plan to a commercial treatment planning system for plan verification and delivery. Results: We have tested the system retrospectively in nine patients treated with vaginal cylinder applicator. These cases were selected with different treatment prescriptions, lengths, depths, and cylinder diameters to represent a large patient population. Our system was able to generate treatment plans for these cases with clinically acceptable quality. Computation time varied from 3–6 min. Conclusion: We have developed a system to perform automated treatment planning for HDR brachytherapy with a cylinder applicator. Such a novel system has greatly improved treatment planning efficiency and reduced plan quality variation. It also served as a testbed to demonstrate the feasibility of automatic HDR treatment planning for more complicated cases.

  19. Large eddy simulation of the subcritical flow over a V grooved circular cylinder

    International Nuclear Information System (INIS)

    Alonzo-García, A.; Gutiérrez-Torres, C. del C.; Jiménez-Bernal, J.A.

    2015-01-01

    Highlights: • We compared numerically the turbulent flow over a smooth circular cylinder and a V grooved cylinder in the subcritical regime. • Turbulence intensities in both streamwise and normal direction suffered attenuations. • The swirls structures on grooves peaks seemed to have a cyclic behavior. • The evolution of the flow inside grooves showed that swirls structures located in peaks suffered elongations in the normal direction. • The secondary vortex structures formed in the grooved cylinder near wake were smaller in comparison of the smooth cylinder flow. - Abstract: In this paper, a comparative numerical study of the subcritical flow over a smooth cylinder and a cylinder with V grooves (Re = 140,000) is presented. The implemented technique was the Large Eddy Simulation (LES), which according to Kolmogorov's theory, resolves directly the most energetic largest eddies and models the smallest and considered universal high frequency ones. The Navier-Stokes (N-S) equations were solved using the commercial software ANSYS FLUENT V.12.1, which applied the finite volume method (FVM) to discretize these equations in their unsteady and incompressible forms. The grid densities were 2.6 million cells and 13.5 million cells for the smooth and V grooved cylinder, respectively. Both meshes were composed of structured hexahedral cells and close to the wall of the cylinders, additional refinements were employed in order to obtain y +<5 values. All cases were simulated during at least 15 vortex shedding cycles with the aim of obtaining significant statistical data. Results: showed that for both cases (smooth and V grooved cylinder flow), the numerical code was capable of reproducing the most important physical quantities of the subcritical regime. Velocity distribution and turbulence intensity in the flow direction suffered a slight attenuation along the wake, as a consequence of grooves perturbation, which also caused an increase in the pressure coefficient

  20. Optimized thick-wall cylinders by virtue of Poisson's ratio selection

    International Nuclear Information System (INIS)

    Whitty, J.P.M.; Henderson, B.; Francis, J.; Lloyd, N.

    2011-01-01

    The principal stress distributions in thick-wall cylinders due to variation in the Poisson's ratio are predicted using analytical and finite element methods. Analyses of appropriate brittle and ductile failure criteria show that under the isochoric pressure conditions investigated that auextic (i.e. those possessing a negative Poisson's ratio) materials act as stress concentrators; hence they are predicted to fail before their conventional (i.e. possessing a positive Poisson's ratio) material counterparts. The key finding of the work presented shows that for constrained thick-wall cylinders the maximum tensile principal stress can vanish at a particular Poisson's ratio and aspect ratio. This phenomenon is exploited in order to present an optimized design criterion for thick-wall cylinders. Moreover, via the use of a cogent finite element model, this criterion is also shown to be applicable for the design of micro-porous materials.

  1. Predicition of the first spinning cylinder test using continuum damage mechanics

    International Nuclear Information System (INIS)

    Lidbury, D.P.G.; Sherry, A.H.; Bilby, B.A.; Howard, I.C.; Li, Z.H.; Eripret, C.

    1993-01-01

    For many years large-scale experiments have been performed world-wide to validate aspects of fracture mechanics methodology. Special emphasis has been given to correlations between small- and large-scale specimen behaviour in quantifying the structural behaviour of pressure vessels, piping and closures. Within this context, the first three Spinning Cylinder Tests, performed by AEA Technology at its Risley Laboratory, addressed the phenomenon of stable crack growth by ductile tearing in contained yield and conditions simulating pressurized thermal shock loading in a PWR reactor pressure vessel. A notable feature of the test data was that the effective resistance to crack growth, as measured in terms of the J R-curve, was appreciably greater than that anticipated from small-scale testing, both at initiation and after small amounts (a few millimeters) of tearing. In the present paper, two independent finite element analyses of the First Spinning Cylinder Test (SC 1) are presented and compared. Both involved application of the Rousselier ductile damage theory in an attempt to better understand the transferability of test data from small specimens to structural validation tests. In each instance, the parameters associated with the theory's constitutive equation were calibrated in terms of data from notched-tensile and (or) fracture mechanics tests, metallographic observation and (or) chemical composition. The evolution of ductile damage local to the crack tip during SC 1 was thereby calculated and, together with a crack growth criterion based on the maximization of opening-mode stress, used as the basis for predicting cylinder R-Curves (angular velocity vs. Δa, J-integral vs. Δa). The results show the Rousselier model to be capable of correctly predicting the enhancement of tearing toughness of the cylinder relative to that of conventional test specimens, given an appropriate choice of finite element cell size in the region representing the crack tip

  2. Stresses in reinforced nozzle-cylinder attachments under internal pressure loading analyzed by the finite-element method: a parameter study

    International Nuclear Information System (INIS)

    Bryson, J.W.; Johnson, W.G.; Bass, B.R.

    1977-01-01

    A parameter study was conducted on stresses in reinforced nozzle-to-cylinder attachments under internal pressure loading as analyzed by the finite-element method. Twenty-five models with branch-to-run diameter ratios 0.08 less than or equal to d/D less than or equal to 0.50 and run diameter-to-thickness ratios 10 less than or equal to D/T less than or equal to 100 were investigated. A three-dimensional finite-element program, CORTES-SA, which was developed at the University of California at Berkeley specifically for analyzing tee-joint configurations, was used in the study. It was concluded from the study that both of the reinforcement designs investigated significantly reduce maximum stresses relative to configurations having little or no reinforcement. For internal pressure loading, neither of the reinforcement designs offered a significant advantage over the other in that both types of reinforcement gave very nearly the same maximum stresses

  3. Shaping the Microstructure of Cast Iron Automobile Cylinder Liners Aimed at Providing High Service Properties

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2015-06-01

    Full Text Available The paper presents an analysis of factors affecting the wear of cylinder liners. The effect of the graphite precipitation morphology on the cylinder liner wear mechanism is presented. Materials used to cast cylinder liners mounted in a number of engines have been examined for their conformity with requirements set out in applicable Polish industrial standard. A casting for a prototype cylinder liner has been made with a microstructure guaranteeing good service properties of the part.

  4. Stress intensity factors of corner cracks in two nozzle-cylinder intersections

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Polvanich, N.; Emery, A.F.; Love, W.J.

    1977-01-01

    In a recent paper, the authors presented the stress-intensity-magnification factors of a quarter-elliptical surface crack in a quarter-infinite solid and a circular crack approaching a reentry corner in a three-quarter infinite solid. These stress-intensity-magnification factors were used together with a curvature-correction factor to estimate the stress-intensity factor of a corner crack at a nozzle-cylinder intersection. Through appropriate superposition of the above stress-intensity-magnification factors, stress-intensity factors for hypothetical corner cracks at a nozzle-cylinder intersection subjected to internal pressure and transient thermal-stress loadings can be obtained. A description of a computer code based on this procedure as well as its applications in analyzing two corner-crack problems at a nozzle-cylinder intersection are discussed in this paper

  5. Stress intensity factors of corner cracks in two nozzle-cylinder interactions

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Polvanich, N.; Emery, A.F.; Love, W.J.

    1977-01-01

    In a recent paper, the authors presented the stress-intensity-magnification factors of a quarter-elliptical surface crack in a quarter-infinite solid and a circular crack approaching a reentry corner in a three-quarter infinite solid. These stress-intensity-magnification factors were used together with a curvature-correction factor to estimate the stress-intensity factor of a corner crack at a nozzle-cylinder interaction. Through appropriate superposition of the above stress-intensity-magnification factors, stress-intensity factors for hypothetical corner cracks at a nozzle-cylinder intersection subjected to internal pressure and transient thermal-stress loadings can be obtained. A description of a computer code based on this procedure as well as its applications in analyzing two corner-crack probems at a nozzle-cylinder intersection are discussed in this paper. (Auth.)

  6. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    Science.gov (United States)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  7. Numerical Simulation of Polymer Injection in Turbulent Flow Past a Circular Cylinder

    KAUST Repository

    Richter, David; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2011-01-01

    Using a code developed to compute high Reynolds number viscoelastic flows, polymer injection from the upstream stagnation point of a circular cylinder is modeled at Re = 3900. Polymer stresses are represented using the FENE-P constitutive equations. By increasing polymer injection rates within realistic ranges, significant near wake stabilization is observed. Rather than a turbulent detached shear layer giving way to a chaotic primary vortex (as seen in Newtonian flows at high Re), a much more coherent primary vortex is shed, which possesses an increased core pressure as well as a reduced level of turbulent energy. © 2011 American Society of Mechanical Engineers.

  8. Visualization by discharge illumination technique and modification by plasma actuator of rarefied Mach 2 airflow around a cylinder

    International Nuclear Information System (INIS)

    Leger, L; Depussay, E; Sellam, M; Barbosa, E

    2013-01-01

    The use of plasma actuators for flow control has received considerable attention in recent years. This kind of device seems to be an appropriate means of raising abilities in flow control thanks to total electric control, no moving parts and a fast response time. The experimental work presented here shows, firstly, the non-intrusive character of the visualization of the density field of an airflow around a cylinder obtained using a plasma luminescence technique. Experiments are made in a continuous supersonic wind tunnel. The static pressure in the flow is 8 Pa, the mean free path is about 0.3 mm and the airflow velocity is 510 m s −1 . Pressure measurements obtained by means of glass Pitot tube without the visualization discharge are proposed. Measured and simulated pressure profiles are in good agreement in the region near the cylinder. There is good correlation between numerical simulations of the supersonic flow field, analytical model predictions and experimental flow visualizations obtained by a plasma luminescence technique. Consequently, we show that the plasma luminescence technique is non-intrusive. Secondly, the effect of a dc discharge on a supersonic rarefied air flow around a cylinder is studied. An electrode is flush mounted on the cylinder. Stagnation pressure profiles are examined for different electrode positions on the cylinder. A shock wave modification depending on the electrode location is observed. The discharge placed at the upstream stagnation point induces an upstream shift of the bow shock, whereas a modification of the shock wave shape is observed when it is placed at 45° or 90°. (paper)

  9. Experimental investigations of a single cylinder genset engine with common rail fuel injection system

    Directory of Open Access Journals (Sweden)

    Gupta Paras

    2014-01-01

    Full Text Available Performance and emissions characteristics of compression ignition (CI engines are strongly dependent on quality of fuel injection. In an attempt to improve engine combustion, engine performance and reduce the exhaust emissions from a single cylinder constant speed genset engine, a common rail direct injection (CRDI fuel injection system was deployed and its injection timings were optimized. Results showed that 34°CA BTDC start of injection (SOI timings result in lowest brake specific fuel consumption (BSFC and smoke opacity. Advanced injection timings showed higher cylinder peak pressure, pressure rise rate, and heat release rate due to relatively longer ignition delay experienced.

  10. Fluid structural response of axially cracked cylinders

    International Nuclear Information System (INIS)

    Garnich, M.R.; Simonen, F.A.

    1985-03-01

    The fluid structural (FS) response of a cylindrical pressure vessel to a suddenly occurring longitudinal through-wall crack is predicted. The effects of vessel internals and depressurization of the compressed water on dynamic crack opening displacements are investigated. A three dimensional (3D) structural finite element model is used as a basis for the development of a two dimensional (2D) FS model. A slice of the vessel taken at the crack midspan and normal to the cylinder axis is modeled. Crack opening displacements are compared between the 2D and 3D models, between the different assumptions about fluid depressurization, and between the static and dynamic solutions. The results show that effects of dynamic amplification associated with the sudden opening of the crack in the cylinder are largely offset by the local depressurization of the fluid adjacent to the crack

  11. Energy harvesting from arterial blood pressure for powering embedded brain sensors

    Science.gov (United States)

    Nanda, Aditya; Karami, M. Amin

    2016-04-01

    This paper investigates energy harvesting from arterial blood pressure via the piezoelectric effect by using a novel streaked cylinder geometry for the purpose of powering embedded micro-sensors in the brain. Initially, we look at the energy harvested by a piezoelectric cylinder placed inside an artery acted upon by blood pressure. Such an arrangement would be tantamount to constructing a stent out of piezoelectric materials. A stent is a cylinder placed in veins and arteries to prevent obstruction in blood flow. The governing equations of a conductor coated piezoelectric cylinder are obtained using Hamilton's principle. Pressure acting in arteries is radially directed and this is used to simplify the modal analysis and obtain the transfer function relating pressure to the induced voltage across the surface of the harvester. The power harvested by the cylindrical harvester is obtained for different shunt resistances. Radially directed pressure occurs elsewhere and we also look at harvesting energy from oil flow in pipelines. Although the energy harvested by the cylindrical energy harvester is significant at resonance, the natural frequency of the system is found to be very high. To decrease the natural frequency, we propose a novel streaked stent design by cutting it along the length, transforming it to a curved plate and decreasing the natural frequency. The governing equations corresponding to the new geometry are derived using Hamilton's principle and modal analysis is used to obtain the transfer function.

  12. Pressurized gasification solves many problems. IVOSDIG process for peat, wood and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, O.; Repo, A.

    1996-11-01

    Research is now being done on one of the essential elements of pressurized gasification: the feeding of fuel into high pressure. At the IVOSDIG pilot plant in Jyvaeskylae, a pilot-scale piston feeder for peat, wood and sludge has been tested. A piston feeder achieves pressurization through the movement of the piston, not by inert pressurization gas. The feeder cylinder then turns 180 degrees to another position, and the piston forces the fuel contained in the cylinder into the pressure vessel, which is at the process pressure. The feeder has to cylinders; one is filled while the other is being emptied. In pilot-scale tests, the capacity of the feeder is ten cubic metres of fuel per hour. The commercial-scale feeder has been designed for a capacity of fifty cubic metres per hour. The feeder operates hydraulically, and the hydraulic system can be assembled from commercially available components. IVO began development work to devise a feeder based on the piston technique in 1992. During 1993, short tests were performed with the pilot-scale feeder. Tests under real conditions were begun during 1994 at the laboratory of VTT Energy in Jyvaeskylae, which houses the IVOSDIG pressurized gasification pilot plant for moist fuels developed by IVO

  13. Progress with the NESC spinning cylinder project and other NESC projects

    International Nuclear Information System (INIS)

    Wintle, J.B.; Hurst, R.C.; Hemsworth, B.

    1995-01-01

    The first international project (NESC I) of the Network of Evaluating Steel Components is a spinning cylinder, pressurized thermal shock (PTS) experiment. The main objective of the project is to validate the non-destructive evaluation and structural mechanics procedures for PWR reactor pressure vessels under PTS conditions. Contributing organizations world-wide will participate in this blind trial which embraces all aspects of structural integrity assessment. This paper describes the progress of the project to date, covering cylinder manufacture and inspection, materials evaluation, structural analysis and test instrumentation. It emphasizes the importance of networking global expertise in a managed framework and of the partnership, co-operation and teamwork developed by the contributing organizations through the five Task Groups constituting the NESC I. Finally, five new initiatives for projects managed by the Network are currently under review and described in this paper

  14. Modelling of the work processes high-pressure pump of common rail diesel injection system

    Directory of Open Access Journals (Sweden)

    Botwinska Katarzyna

    2016-01-01

    Full Text Available Common rail injection systems are becoming a more widely used solution in the fuel systems of modern diesel engines. The main component and the characteristic feature of the system is rail injection of the fuel under high pressure, which is passed to the injector and further to the combustion chamber. An important element in this process is the high-pressure pump, continuing adequate pressure in the rail injection system. Common rail (CR systems are being modified in order to optimise their work and virtual simulations are a useful tool in order to analyze the correctness of operation of the system while varying the parameters and settings, without any negative impact on the real object. In one particular study, a computer simulation of the pump high-pressure CR system was made in MatLab environment, based on the actual dimensions of the object – a one-cylinder diesel engine, the Farymann Diesel 18W. The resulting model consists of two parts – the first is responsible for simulating the operation of the high-pressure pump, and the second responsible for simulation of the remaining elements of the CR system. The results of this simulation produced waveforms of the following parameters: fluid flow from the manifold to the injector [m3/s], liquid flow from the manifold to the atmosphere [m3/s], and manifold pressure [Pa]. The simulation results allow for a positive verification of the model and the resulting system could become a useful element of simulation of the entire position and control algorithm.

  15. Modelling the effect of injection pressure on heat release parameters and nitrogen oxides in direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Yüksek Levent

    2014-01-01

    Full Text Available Investigation and modelling the effect of injection pressure on heat release parameters and engine-out nitrogen oxides are the main aim of this study. A zero-dimensional and multi-zone cylinder model was developed for estimation of the effect of injection pressure rise on performance parameters of diesel engine. Double-Wiebe rate of heat release global model was used to describe fuel combustion. extended Zeldovich mechanism and partial equilibrium approach were used for modelling the formation of nitrogen oxides. Single cylinder, high pressure direct injection, electronically controlled, research engine bench was used for model calibration. 1000 and 1200 bars of fuel injection pressure were investigated while injection advance, injected fuel quantity and engine speed kept constant. The ignition delay of injected fuel reduced 0.4 crank angle with 1200 bars of injection pressure and similar effect observed in premixed combustion phase duration which reduced 0.2 crank angle. Rate of heat release of premixed combustion phase increased 1.75 % with 1200 bar injection pressure. Multi-zone cylinder model showed good agreement with experimental in-cylinder pressure data. Also it was seen that the NOx formation model greatly predicted the engine-out NOx emissions for both of the operation modes.

  16. Assembly for electrical conductivity measurements in the piston cylinder device

    Science.gov (United States)

    Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  17. Gas Cylinder Safety, Course 9518

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-27

    This course, Gas Cylinder Safety (#9518), presents an overview of the hazards and controls associated with handling, storing, using, and transporting gas cylinders. Standard components and markings of gas cylinders are also presented, as well as the process for the procurement, delivery, and return of gas cylinders at Los Alamos National Laboratory (LANL).

  18. Cylinder with differential piston for mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bordeaşu, I.; Bălăşoiu, V. [Universitatea Politehnica din Timişoara, Timosoara (Romania); Hadă, A. [UniversitateaPolitehnicaBucureşti, Bucureşti (Romania); Popoviciu, M. [Academy of Romanian ScientistsTimişoara Branch (Romania)

    2007-07-01

    The paper presents a cylinder with differential piston, adapted for measuring the weight of fixed objects such as: fuel tanks (regardless of their capacity), bunkers and silos for all kind of materials, or mobile objects such as: automobiles, trucks, locomotives and railway cars. Although, the cylinder with differential piston is used on a large scale in hydraulic drive or hydraulic control circuits, till now it was not used as constituent part for weight measurements devices. The novelty of the present paper is precisely the use of the device for such purposes. Based on a computation algorithm, the paper presents the general design (assembly), of the device used for weighing important masses (1…. 100 tones). The fundamental idea consist in the fact that, a mass over 10 tones may be weighted with a helicoidally spring subjected to an axial force between 0 and 3000 N, with a deflection of about 30 mm. Simultaneously with the mechanical part, the electronic recording system is also described. The great advantage of the presented device consist in the fact that it can be used in heavy polluted atmosphere or difficult topographic conditions as a result of both the small dimensions and the protection systems adopted. Keywords: cylinder hydraulic with differential piston, hydrostatic pressure, measuring devices.

  19. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  20. Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines

    International Nuclear Information System (INIS)

    Zhu, Sipeng; Deng, Kangyao; Qu, Shuan

    2014-01-01

    In this paper, an in-cylinder waste heat recovery system especially for turbocharged engines is proposed to improve the thermal efficiencies of internal combustion engines. Simplified recovery processes can be described as follows: superheated steam generated by engine waste heat is injected into the pipe before the turbine to increase the boost pressure of the fresh air; intake valve close timing is adjusted to control the amount of fresh air as the original level, and thus the higher pressure charged air expands in the intake stroke and transfers the pressure energy directly to the crankshaft. In this way, the increased turbine output by the pre-turbine steam injection is finally recovered in the cylinder, which is different from the traditional Rankine cycle. The whole energy transfer processes are studied with thermodynamic analyses and numerical simulations. The results show that the mass flow rate of the injected steam has the biggest influence on the energy transfer processes followed by the temperature of the injected steam. With this in-cylinder waste heat recovery system, the fuel economy of a selected turbocharged diesel engine can be improved by 3.2% at the rated operating point when the injected mass flow ratio is set to be 0.1. - Highlights: • An in-cylinder waste heat recovery system is proposed. • Effects of injected parameters are studied with energy and exergy balance theories. • Variations of operating points on the compressor map are studied in detail. • The fuel economy is improved by 3.2% at the rated operating point

  1. Fiber Tracking Cylinder Nesting

    International Nuclear Information System (INIS)

    Stredde, H.

    1999-01-01

    The fiber tracker consists of 8 concentric carbon fiber cylinders of varying diameters, from 399mm to 1032.2mm and two different lengths. 1.66 and 2.52 meters. Each completed cylinder is covered over the entire o.d. with scintillating fiber ribbons with a connector on each ribbon. These ribbons are axial (parallel to the beam line) at one end and stereo (at 3 deg. to the beam line) at the other. The ribbon connectors have dowel pins which are used to match with the connectors on the wave guide ribbons. These dowel pins are also used during the nesting operation, locating and positioning measurements. The nesting operation is the insertion of one cylinder into another, aligning them with one another and fastening them together into a homogeneous assembly. For ease of assembly. the nesting operation is accomplished working from largest diameter to smallest. Although the completed assembly of all 8 cylinders glued and bolted together is very stiff. individual cylinders are relatively flexible. Therefore. during this operation, No.8 must be supported in a manner which maintains its integrity and yet allows the insertion of No.7. This is accomplished by essentially building a set of dummy end plates which replicate a No.9 cylinder. These end plates are mounted on a wheeled cart that becomes the nesting cart. Provisions for a protective cover fastened to these rings has been made and will be incorporated in finished product. These covers can be easily removed for access to No.8 and/or the connection of No.8 to No.9. Another wheeled cart, transfer cart, is used to push a completed cylinder into the cylinder(s) already mounted in the nesting cart.

  2. Cluster-based Reduced-order Modelling of Flow in the Wake of a Seal-vibrissa-shaped Cylinder

    Science.gov (United States)

    Wei, Zheng; Li, Qiliang; Yang, Zhigang; Xia, Chao; Shanghai Automotive Wind Tunnel Center Team

    2017-11-01

    The flow around a seal-vibrissa-shaped cylinder is numerically calculated using large eddy simulation (LES) at the Reynolds number of 20000, along with a smooth and a twisted cylinder for comparison. The mean drag coefficient of the seal-vibrissa-shaped cylinder is lower than that of the smooth and twisted cylinders, respectively. The fluctuating lift coefficient of the seal-vibrissa-shaped cylinder shows a substantial decrease compared with the smooth cylinder. The seal-vibrissa-shaped surface leads to more stable wake, longer vortex formation length, higher base pressure and three-dimensional separation. In addition, cluster-based reduced-order modelling (CROM) is performed to analyze phase-dependent variations of the wake flow, which discloses the complex unsteady behavior in different cross sections. Meanwhile, two flow regimes, anti-phased and in-phase-dominated vortex shedding, generated by the twisted cylinder and the seal-vibrissa-shaped cylinder are distinguished and extracted, their interrelationship are evaluated, and the question how forces are affected is answered. Supported by the National Key Research and Development Program of China (2016YFB1200503-04) and the Shanghai Automotive Wind Tunnel Technical Service Platform (16DZ2290400).

  3. Progress with the NESC spinning cylinder project and other NESC projects

    International Nuclear Information System (INIS)

    Wintle, J.B.; Hurst, R.C.; Hemsworth, B.

    1995-01-01

    The first international project (NESC I) of the Network for Evaluating Steel Components is a spinning cylinder, pressurized thermal shock (PTS) experiment. The main objective of the project is to validate the non-destructive evaluation and structural mechanics procedures for PWR reactor pressure vessels under PTS conditions. Contributing organizations world-wide will participate in this blind trial which embraces all aspects of structural integrity assessment. This paper describes the progress of the project to date, covering cylinder manufacture and inspection, materials evaluation, structural analysis and test instrumentation. It emphasises the importance of networking global expertise in a managed framework and of the partnership, co-operation and teamwork developed by the contributing organizations through the five Task Groups constituting NESC I. Finally, five new initiatives for projects managed by the Network are currently under review and described in this paper. (author). 2 refs, 6 figs

  4. Design and Analysis of an Experimental Setup for Determining the Burst Strength and Material Properties of Hollow Cylinders

    Science.gov (United States)

    2015-12-01

    pressure hydraulic pump or through application of a compressive force to a piston . These designs essentially cap the ends of the cylinder and require...spiral-wound line connected to a vacuum pump was then taped to the mold cylinder as shown in Figure 23. The entire mold cylinder was then removed...of perforated release ply and breather cloth to absorb excess epoxy. A spiral-wound line connected to a vacuum pump was routed along the edge of the

  5. Enrichment Assay Methods Development for the Integrated Cylinder Verification System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.

    2009-10-22

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.

  6. Enrichment Assay Methods Development for the Integrated Cylinder Verification System

    International Nuclear Information System (INIS)

    Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.

    2009-01-01

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.

  7. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  8. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  9. Wake flow behaviour behind a smaller cylinder oscillating in the wake of an upstream stationary cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yangyang; Sun, Zhilin [Ocean College, Zhejiang University, Hangzhou 310058 (China); Tan, Danielle S [Maritime Research Centre, Nanyang Technological University, Singapore 639798 (Singapore); Yu, Dingyong [College of Engineering, Ocean University of China, 266100 (China); Tan, Soon Keat, E-mail: yygao@zju.edu.cn [Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-04-01

    The flow patterns around a cylinder oscillating freely in the wake of a larger cylinder upstream were investigated using the particle image velocimetry technique. The upstream cylinder was fixed at both ends while the downstream smaller cylinder was held by springs such that it was free to oscillate in the transverse direction. The flow patterns, amplitudes of oscillation and vortex shedding frequencies were compared with those of a single cylinder. In the presence of the upstream cylinder, the three parameters characterizing the oscillation response of the smaller cylinder—amplitude of oscillation, vortex shedding frequency and Reynolds stresses—were greatly reduced. While their magnitude increased with gap ratio, these three parameters were still smaller than the corresponding magnitudes for a single oscillating cylinder. The peak values of turbulence statistics such as Reynolds shear stress and normal stress behind the oscillating downstream cylinder were similarly reduced, and increased with gap ratios. (paper)

  10. Banana regime pressure anisotropy in a bumpy cylinder magnetic field

    International Nuclear Information System (INIS)

    Garcia-Perciante, A.L.; Callen, J.D.; Shaing, K.C.; Hegna, C.C.

    2006-01-01

    The pressure anisotropy is calculated for a plasma in a bumpy cylindrical magnetic field in the low collisionality (banana) regime for small magnetic-field modulations (ε≡ΔB/2B parallel is then calculated and is shown to exceed the flux-surface-averaged parallel viscous force parallel > by a factor of O(1/ε). A high-frequency limit (ω>>ν) for the pressure anisotropy is also determined and the calculation is then extended to include the full frequency dependence by using an expansion in Cordey eigenfunctions

  11. Magnetic susceptibility in the edged topological disordered nanoscopic cylinder

    International Nuclear Information System (INIS)

    Faizabadi, Edris; Omidi, Mahboubeh

    2011-01-01

    The effects of edged topological disorder on magnetic susceptibility are investigated in a nanoscopic cylinder threaded by a magnetic flux. Persistent current versus even or odd number of electrons shows different signs in ordered and disordered cylinders and also in short or long ones. In addition, temperature-averaged susceptibility has only diamagnetic signs in strong regimes and it is associated with paramagnetic signs in ordered and weak disordered ones. Besides, in an edged topological disordered cylinder, the temperature-averaged susceptibility decreases by raising the temperature somewhat and then increasing initiates and finally at high temperature tends to zero as the ordered one. - Research highlights: → Magnetic susceptibility in one-dimensional topological disordered quantum ring. → Edged topological disorder effect on magnetic susceptibility in nanoscopic cylinder. → Edged topological disorder effect on temperature-averaged susceptibility in cylinder.

  12. Response of Buried Vertically Oriented Cylinders to Dynamic Loading,

    Science.gov (United States)

    1980-06-01

    BALSARA • , . / ,, _,-, -. 1i S ,LESPONSE OF BURIED VERTICALLY 9RIENTED CYLINDERS 𔃺 .-TO DINAMIC LOADING_ 9AYLE E. LRTOrwW&-N JIIMY P./BALSARA Nk...1.7, 2,8, and 4.0 inches). The end caps for the cylinders consisted of a steel shell filled with high- strength concrete; however, the end caps were...not designed to be test articles. The average concrete compressive strength of the cylinders on test day was 44.0 MPa (6,380 psi). The three DEOT

  13. Turbulence and heat transfer in condensate in drying cylinders at high g-forces. Phase 1; Turbulens och vaermeoeverfoering i kondensat i torkcylindrar vid hoega g-krafter. Fas 1

    Energy Technology Data Exchange (ETDEWEB)

    Stenstroem, Stig; Ingvarsson, David [Lund Inst. of Tech. (Sweden). Dept. of Chemical Engineering

    2005-09-01

    Drying of paper is performed by bringing the paper into contact with a hot cylinder surface so that the water in the web is evaporated. The energy needed to heat the drying cylinder is supplied with condensing steam creating a condensate layer on the inside surface of the cylinder. For fast paper machines, the condensate layer will be close to stagnant, thus constituting a significant resistance for the heat transfer process from the steam to the paper. The traditional technique to improve the heat transfer has been to install turbulence bars on the inside surface of the cylinder but at machine speeds of up to 2000 m/min this technique is not sufficiently efficient. The goal in the project has been to study the condensate behaviour in drying cylinders at high centrifugal forces and explore different methods to improve the heat transfer in the condensate for both new and existing fast paper machines so that the capacity in the dryer section can be maintained at a high level. The results are of importance for the manufacturers of paper machines as well as the producing newsprint and printing paper companies. The project has been divided in the following parts: - Literature survey of techniques to increase the heat transfer in condensate and the removal of condensate with siphons. - Develop knowledge about the condensate behaviour in rotating cylinders at high g-forces with and without spoiler bars. This has been accomplished by designing a new cylinder where the condensate velocity relative to the cylinder could be measured at centrifugal forces corresponding to the levels today reached at fast paper machines. Such data have previously not been reported in the literature. - Present solutions for the design of the inside surface of the drying cylinder so that high heat transfer rates can be accomplished in fast paper machines. Solutions should be presented both for existing as well as new paper machines. The results in the project show that at centrifugal forces of

  14. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  15. Large eddy simulation of turbulent flow for wall mounted cantilever cylinders of aspect ratio 6 and 10

    International Nuclear Information System (INIS)

    Afgan, Imran; Moulinec, Charles; Prosser, Robert; Laurence, Dominique

    2007-01-01

    The flow structure around wall mounted circular cylinders of finite heights is numerically investigated via large eddy simulation (LES). The cylinder aspect ratios (AR) are 6 and 10 and the Reynolds number (Re) based on cylinder diameter and free stream velocity is 20,000 for both cases. The cantilever cylinder mounted on a flat plate is chosen since it gives insight into two entirely different flow phenomena; the tip effects of the free end (which show strong three-dimensional wake structures) and the base or junction effects (due to interaction of flow between the cylinder and the flat plate). Regular vortex shedding is found in the wake of the higher aspect ratio case as was anticipated, along with a strong downwash originating from the flow over the free end of the cylinder, whereas irregular and intermittent vortex shedding occurs in the lower aspect ratio case. Pressure distributions are computed along the length of the cylinder and compared to experimental results. Lift and drag values are also computed, along with Strouhal numbers

  16. Numerical simulation of the heat transfer at cooling a high-temperature metal cylinder by a flow of a gas-liquid medium

    Science.gov (United States)

    Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.

    2017-10-01

    The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.

  17. A multidomain chebyshev pseudo-spectral method for fluid flow and heat transfer from square cylinders

    KAUST Repository

    Wang, Zhiheng

    2015-01-01

    A simple multidomain Chebyshev pseudo-spectral method is developed for two-dimensional fluid flow and heat transfer over square cylinders. The incompressible Navier-Stokes equations with primitive variables are discretized in several subdomains of the computational domain. The velocities and pressure are discretized with the same order of Chebyshev polynomials, i.e., the PN-PN method. The Projection method is applied in coupling the pressure with the velocity. The present method is first validated by benchmark problems of natural convection in a square cavity. Then the method based on multidomains is applied to simulate fluid flow and heat transfer from square cylinders. The numerical results agree well with the existing results. © Taylor & Francis Group, LLC.

  18. Control of a 420 KN Discrete Displacement Cylinder Drive for the Wavestar Wave Energy Converter

    DEFF Research Database (Denmark)

    Hansen, Rico H.; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    absorbers. The system is implemented using multi-chambered cylinders, where the different chambers may be switched between three pressure lines using a manifold with fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC) is obtained, where force control is implemented by shifting between...... different area/pressure combinations. Currently, a 420 kN DDC prototype has been implemented and tested at the newly commissioned full size wave energy testbench at Aalborg University. The initial design and control of the DDC had poorly damped switching transients. These issues treated in this paper....... This leads to a new control, which gives a smooth operating DDC, while meeting the requirements to the efficiency of the drive....

  19. A comparative analysis on the shed vortices from the wake of finned, foam-wrapped cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Khashehchi, Morteza [Department of Agro-Technology, College of Aburaihan, University of Tehran, Tehran (Iran, Islamic Republic of); Ashtiani Abdi, Iman; Hooman, Kamel, E-mail: m.khashehchi@ut.ac.ir [School of Mechanical and mining Engineering, University of Queensland, Brisbane (Australia)

    2017-08-15

    The wake characteristics behind a finned and a foam-wrapped circular cylinder has been compared in a study (Khashehchi et al 2014 Exp. Therm. Fluid Sci. 52 328–38) done by the Authors. In this paper, the shed vortices from the wake of the same cylinders have been studied. Shedding in a bluff body has an important effect on increasing the pressure drop downstream of the object. Here, we have used particle image velocimetry to investigate the detached vortices from the wake behind a foam-wrapped and a finned cylinder. The standard case of cross-flow over a bare cylinder, i.e. no surface extension, has also been tested as a benchmark. The experiments have been performed for Reynolds numbers 2000 based on the mean air velocity and the cylinder’s outer diameter. To identify the features of each aforementioned case, linear stochastic estimation has been applied to the velocity fields. Results show that unlike the fin, adding foam to the cylinder surface increases the size of detached vortices and amplifies the core strength. Moreover, foam-wrapped cylinder in contrast to the finned one produces strong three-dimensionality. Interestingly, finned cylinder’s results show less three-dimensionality compared to the bare cylinder. (paper)

  20. Analysis of Effect of Inlet Swirl In Four Stroke Single Cylinder Diesel Engine With Different Inlet Valve Geometries Using CFD

    Science.gov (United States)

    Gobinath, R.; Mathiselvan, G.; Kumarasubramanian, R.

    2017-05-01

    Flow patterns are essential to ensure that the engine can produce high performance with the presence of swirl and tumble effect inside the engine cylinder. This paper provides the simulation of air is simulated in the software to predict the flow pattern. The flow pattern is simulated by using the steady state pressure based solver. The domain used for the simulations predicated on the particular engine parameters. Mistreatment the CFD problem solver ANSYS FLUENT, the CFD simulation is earned for four totally different geometries of the valve. The geometries consist of Horizontal, Vertical, curve and arc springs. In this simulation, only the intake strokes are simulated. From this results show that the velocity of the air flow is high during the sweeps the intake stroke takes place. This situation is produced more swirls and tumble effect during the compression, hence enhancing the combustion rate in a whole region of the clearance volume of the engine cylinder. This will initiate to the production of tumble and swirl in the engine cylinder.

  1. Effect of longitudinal and transverse vibrations of an upstream square cylinder on vortex shedding behind two inline square cylinders

    International Nuclear Information System (INIS)

    Patil, Pratish P; Tiwari, Shaligram

    2009-01-01

    The characteristics of unsteady wakes behind a stationary square cylinder and another upstream vibrating square cylinder have been investigated numerically with the help of a developed computational code. The effect of longitudinal as well as transverse vibrations of the upstream cylinder is studied on the coupled wake between the two cylinders, which is found to control the vortex shedding behavior behind the downstream stationary cylinder. Computations are carried out for a fixed value of Reynolds number (Re = 200) and three different values of excitation frequencies of the upstream cylinder, namely less than, equal to and greater than the natural frequency of vortex shedding corresponding to flow past a stationary square cylinder. The vortex shedding characteristics of the unsteady wakes behind the vibrating and stationary cylinders are found to differ significantly for longitudinal and transverse modes of vibration of the upstream cylinder. The wake of the downstream stationary cylinder is found to depict a synchronization behavior with the upstream cylinder vibration. The spacing between the two cylinders has been identified to be the key parameter influencing the synchronization phenomenon. The effect of cylinder spacing on the wake synchronization and the hydrodynamic forces has been examined. In addition, a comparison of the drag forces for flow past transversely vibrating square and circular cylinders for similar amplitudes and frequencies of cylinder vibration has been presented while employing the tested computational code.

  2. Application of simple adaptive control to water hydraulic servo cylinder system

    Science.gov (United States)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  3. Modeling for Friction of Four Stroke Four Cylinder In-Line Petrol Engine

    Directory of Open Access Journals (Sweden)

    P.C. Mishra

    2013-09-01

    Full Text Available A four stroke four cylinder in-line petrol engine is modeled to estimate various performance parameters. The solution is based on tribology and dynamics principle. The detailed parameters relating to engine friction and lubrication are computed numerically for the engine firing order 1-3-4-2. The numerical method is based on finite difference method that solves coupled Reynolds Equation and Energy Equation. Output includes the movie thickness, friction force, friction power loss and temperature rise in the ring liner conjunction in all four cylinders. Transient regime of ring liner lubrication isaddressed while the same changes from hydrodynamic to mixed in an engine cycle. Momentary cessation near the top and bottom dead center that causes boundary interaction is analyzed through asperity contact. The non - Newtonian behavior of lubricant film due to pressure and temperature is addresses using viscosity -pressure- temperature inter relationship.

  4. Mechanical Cushion Design Influence on Cylinder Dynamics

    DEFF Research Database (Denmark)

    Borghi, Massimo; Milani, Massimo; Conrad, Finn

    2005-01-01

    The paper deals with the simulation and the experimental verification of the dynamic behaviour of a linear actuator equipped with different configurations of mechanical cushion. A numerical model, developed and tailored to describe the influence of different modulation of the discharged flow....... experimental comparison, involving the piston velocity and the cylinder chambers pressure. After, with the aim of highlighting the effect of mechanical cushions design on a two effect linear actuator dynamic performances, the characteristics modulation of four alternative cushioning systems are determined...

  5. The effects of axis ratio on laminar fluid flow around an elliptical cylinder

    International Nuclear Information System (INIS)

    Faruquee, Zakir; Ting, David S-K.; Fartaj, Amir; Barron, Ronald M.; Carriveau, Rupp

    2007-01-01

    An elliptical cylinder is a generic shape which represents a flat plate at its minor to major axis ratio (AR) limits of zero and infinity, and a circular cylinder at AR of unity. While incompressible flows over a streamwise flat plate (AR = 0), a cross-stream flat plate (AR = ∞), and a circular cylinder have been studied extensively, the role of AR on the detailed flow structure is still not well understood. Therefore, a numerical study was conducted to examine the flow field around an elliptical cylinder over a range of ARs from 0.3 to 1, with the major axis parallel to the free-stream, at a Reynolds number of 40 based on the hydraulic diameter. The control volume approach of FLUENT was used to solve the fluid flow equations, assuming the flow over the cylinder is unbounded, steady, incompressible and two-dimensional. It has been found that a pair of steady vortices forms when AR reaches a critical value of 0.34; below this value no vortices are formed behind the elliptical cylinder. Various wake parameters, drag coefficient, pressure and velocity distributions, have been characterized as functions of AR. The wake size and the drag coefficient are found to increase with the increase of AR. Quadratic correlations have been obtained to describe the relations of wake length and drag coefficient with axis ratio

  6. Effects of air jet duration and timing on the combustion characteristics of high-pressure air jet controlled compression ignition combustion mode in a hybrid pneumatic engine

    International Nuclear Information System (INIS)

    Long, Wuqiang; Meng, Xiangyu; Tian, Jiangping; Tian, Hua; Cui, Jingchen; Feng, Liyan

    2016-01-01

    Highlights: • A 3-D CFD model of the power cylinder in HPE was developed. • High-pressure air JCCI combustion mode includes two-stage high-temperature reaction. • The combustion phasing of the pre-mixture is controllable via the SOJ timing. • There exists an optimum SOJ timing for obtaining the highest combustion efficiency and shortest burning duration. - Abstract: The high-pressure air jet controlled compression ignition (JCCI) combustion mode was employed to control the premixed diesel compression ignition combustion phasing by using the compound thermodynamic cycle under all operating conditions, which is accomplished in a hybrid pneumatic engine (HPE). A three-dimensional computational fluid dynamics (CFD) numerical simulation coupled with reduced n-heptane chemical kinetics mechanism has been applied to investigate the effects of high-pressure air jet duration and the start of jet (SOJ) timing on the combustion characteristics in the power cylinder of HPE. By sweeping the high-pressure air jet durations from 6 to 14 °CA and SOJ timings from −12 °CA ATDC to the top dead center (TDC) under the air jet temperatures of 400 and 500 K, respectively, the low- and high-temperature reactions, combustion efficiency, as well as the combustion phasing and burning duration have been analyzed in detail. The results illustrated that a longer air jet duration results in a higher peak in the first-stage high-temperature reaction, and the short air jet duration of 6 °CA can lead to a higher combustion efficiency. The SOJ timing sweep results showed that there exists an optimum timing for obtaining the highest combustion efficiency and shortest burning duration.

  7. The calibration of a cylindrical pressure probe for recirculating flow measurements

    International Nuclear Information System (INIS)

    Lawn, C.J.

    1975-06-01

    The use of the pressure distribution around a cylinder in cross-flow to indicate the magnitude and direction of the velocity vector is discussed in the context of making measurements in highly turbulent recirculating flows. The intended application is the measurement of the flow between the ribs on the large-scale model of the AGR fuel-pin surface. Results from a number of calibration experiments in boundary layers are used to provide a correlation for the positions at which local static pressure is measured on the cylinder surface. After appropriate corrections, the dynamic pressure is deduced from the pressure at the stagnation point. Corrections are also necessary in deducing the direction of flow from the bisector of the static pressure positions, when the cylinder is in a shear flow or near a wall, and these too are evaluated from the results of the calibration experiments. Measurements in two recirculating flows are then presented as an illustration both of the validity and limitations of the technique. In the first case, comparison is made with the measurements of a pulsed-wire anemometer behind a surface-mounted cube and, in the second, the continuity is used to provide an overall check on measurements behind a transverse plate. It is concluded that useful results can be obtained in many turbulent flow situations. (author)

  8. Mechanism of drag reduction for circular cylinders with patterned surface

    International Nuclear Information System (INIS)

    Butt, U.; Jehring, L.; Egbers, C.

    2014-01-01

    Highlights: • Reduced drag of patterned cylinders over a wide range of Re numbers. • Hexagonal patterns cannot be characterized as roughness structures. • Hexagonal bumps affect the flow like spherical dimples of smaller k/d ratio do. • Main separation is delayed caused by a partial separation. • Angle of a separation line is not constant over the length of cylinder. -- Abstract: In this paper, the flow over cylinders with a patterned surface (k/d = 1.98 × 10 −2 ) is investigated in a subsonic wind tunnel over Reynolds numbers ranging from 3.14 × 10 4 to 2.77 × 10 5 by measuring drag, flow visualization and measuring velocity profiles above the surface of the cylinders, to observe the effect of hexagonal patterns on the flow of air. These patterns can also be referred as hexagonal dimples or bumps depending on their configuration. The investigations revealed that a patterned cylinder with patterns pressed outwards has a drag coefficient of about 0.65 times of a smooth one. Flow visualization techniques including surface oil-film technique and velocity profile measurement were employed to elucidate this effect, and hence present the mechanism of drag reduction. The measurement of velocity profiles using hot-wire anemometry above the surface reveal that a hexagonal bump cause local separation generating large turbulence intensity along the separating shear layer. Due to this increased turbulence, the flow reattaches to the surface with higher momentum and become able to withstand the pressure gradient delaying the main separation significantly. Besides that, the separation does not appear to occur in a straight line along the length of the cylinder as in case of most passive drag control methods, but follow exactly the hexagonal patterns forming a wave with its crest at 115° and trough at 110°, in contrast to the laminar separation line at 85° for a smooth cylinder

  9. Wave propagation in coated cylinders with reference to fretting fatigue

    Indian Academy of Sciences (India)

    is to study stress wave propagation in cylinders with reference to high frequency fretting. ... The motivation for studying of fretting fatigue at higher frequency is to investigate the ... Hence focus in this work is given to thin rods and cylinders. The.

  10. Control of the thermostressed state of low-pressure cylinder rotors for power steam turbines

    International Nuclear Information System (INIS)

    Lejzerovich, A.Sh.

    1980-01-01

    The principle arrangement of an analog device for operation control of the low pressure cylinder (LPC) heating at large steam turbine start-up has been developed. Different forms of representation of the thermal conductivity equation used for realization by means of analog models are analized. Presented are the results of calculating the heating indices for the welded rotor of LPC during the turbine start-up from a cold state and the curves of temperature distribution in the disc of the first sections of welded LPC rotor at start-up from a cold state and in a steady-state regime. The results obtained show that in the process of start-up the error of the temperature difference DELTAt determination according to the suggested scheme does not exceed 10 deg C. After achieving the maximum of DELTAt in the process of the rotor temperature field flattening, this error increases and constitutes 32 deg C in steady-state regime, mainly, due to the error of temperature determination on the rotation axis in controlled cross section. As far as the control for the LPC rotor heating is necessary only during start-up and the requirements for its accuracy are not equivalent, therefore, for all regimes, representativity and accuracy of control provided by the accepted calculation scheme is quite satisfactory

  11. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  12. Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.

    Science.gov (United States)

    Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian

    2015-11-01

    A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.

  13. An Analytic Approach to Cascade Control Design for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Hansen, Anders Hedegaard; Andersen, Torben O.

    2016-01-01

    , unfortunately not present in valve-operated hydraulic drives. This paper considers a cascade control approach for hydraulic valve-cylinder drives motivated by the fact that this may be applied to successfully suppress nonlinearities. The drive is pre-compensated utilizing a pressure updated inverse valve flow...

  14. Photoelastic Analysis of Cracked Thick Walled Cylinders

    Science.gov (United States)

    Pastramă, Ştefan Dan

    2017-12-01

    In this paper, the experimental determination of the stress intensity factor in thick walled cylinders subject to uniform internal pressure and having longitudinal non-penetrating cracks is presented. Photoelastic measurements were used together with the expressions of the stress field near the crack tip for Mode I crack extension and a specific methodology for stress intensity factor determination. Two types of longitudinal cracks - internal and external - were considered. Four plane models were manufactured and analyzed in a plane polariscope at different values of the applied internal pressure. The values of the normalized stress intensity factor were calculated and the results were compared to those reported by other authors. A good accuracy was noticed, showing the reliability of the experimental procedure.

  15. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  16. Assessment of Reusing 14-Ton, Thin-Wall, Depleted UF6 Cylinders as LLW Disposal Containers

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Poole, A.B.; Shelton, J.H.

    2000-01-01

    of 48 inches and nominally contain 14 tons (12.7 MT) of DUF 6 , were originally designed and fabricated for temporary storage of DUF 6 . They were fabricated from pressure-vessel-grade steels according to the provisions of the ASME Boiler and Pressure Vessel Code. Cylinders are stored in open yards at the three sites and, due to historical storage techniques, were subject to corrosion. Roughly 10,000 of the 14TTW cylinders are considered substandard due to corrosion and other structural anomalies caused by mishandling. This means that approximately 40,000 14TTW cylinders could be made available as containers for LLW disposal In order to demonstrate the use of 14TTW cylinders as LLW disposal containers, several qualifying tasks need to be performed. Two demonstrations are being considered using 14TTW cylinders--one demonstration using contaminated soil and one demonstration using U 3 O 8 . The objective of this report are to determine how much information is known that could be used to support the demonstrations, and how much additional work will need to be done in order to conduct the demonstrations. Information associated with the following four qualifying tasks are evaluated in this report

  17. Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure

    International Nuclear Information System (INIS)

    Hu, H.-T.; Lin, Y.-H.

    2006-01-01

    Numerical analyses are carried out by using the ABAQUS finite element program to predict the ultimate pressure capacity and the failure mode of the PWR prestressed concrete containment at Maanshan nuclear power plant. Material nonlinearity such as concrete cracking, tension stiffening, shear retention, concrete plasticity, yielding of prestressing tendon, yielding of steel reinforcing bar and degradation of material properties due to high temperature are all simulated with proper constitutive models. Geometric nonlinearity due to finite deformation has also been considered. The results of the analysis show that when the prestressed concrete containment fails, extensive cracks take place at the apex of the dome, the junction of the dome and cylinder, and the bottom of the cylinder connecting to the base slab. In addition, the ultimate pressure capacity of the containment is higher than the design pressure by 86%

  18. Consideration on evaluation of internal pressure creep rupture for tube with circumferential joint

    International Nuclear Information System (INIS)

    Nagato, Kotaro; Satoh, Keisuke

    1983-01-01

    The behavior of internal pressure creep rupture of the thin-walled cylinders with circumferential joints is affected by the combination of creep characteristics of parent materials and weld metals. In particular, the compatibility of the creep strain rate of parent materials and weld metals becomes an important controlling factor. The behavior of internal pressure creep of the welded parts in circumferential joint cylinders can be evaluated simply with the uniaxial creep data of parent materials and weld metals, considering it by approximately substituting with the creep behavior of a uniaxial longitudinal joint. The method of evaluation is, first, to analyze the breaking behavior of uniaxial longitudinal joints using the uniaxial creep characteristic values of parent materials and weld metals, and next, by combining the equation for the relation between the rupture times of uniaxial creep and internal pressure creep with the analyzed breaking behavior of uniaxial joints, the internal pressure creep rupture behavior of the cylinders with circumferential joints can be evaluated. The internal pressure creep behavior of the thin-walled cylinders with circumferential joints, their rupture life and the uniaxial creep rupture life of longitudinal joints, and the examination of Hastelloy X cylinders are reported. (Kako, I.)

  19. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  20. Estudio de la variación del acabado superficial del cilindro en función de la presión de diseño en los hidromotores de pistones radiales. // Cylinder superficial finish variation study in function of design pressure in radial pistons hydromotors.

    Directory of Open Access Journals (Sweden)

    G. Morejón Vizcaino

    2003-01-01

    Full Text Available En este artículo se realiza un estudio teórico de la tendencia del comportamiento de la rugosidad superficial en los cilindrosde los motores hidráulicos tipo estrella para mantener constante la eficiencia volumétrica ante un incremento de la presiónde trabajo. Con el objetivo de determinar la tendencia de como influye la presión de diseño en la tecnología de construccióndel motor. La tendencia moderna es construir hidromotores con presión de diseño elevada para alcanzar altas densidades depotencia, para este empeño se utiliza la ley de Poiseuille para establecer el modelo de fuga entre cilindro y pistón. Elmodelo de la holgura se establece a partir de suponer lineal el comportamiento descrito en la literatura consultada, seobtienen resultados de rugosidad del cilindro contra presión para mantener la eficiencia volumétrica constante. Quedademostrado que el ensayo, para inferir los valores necesarios para el cálculo a realizar, se realiza sobre un cilindro similar alcilindro del motor.Palabras claves: Eficiencia volumétrica, algoritmo, motores hidráulicos, acabado superficial, fugas.____________________________________________________________________________Abstract.In this article is carried out a theoretical study of the tendency of superficial ruggedness behavior in cylinders of hydraulicmotors (star type to maintain constant the volumetric efficiency when is applied an increment of working pressure withthe objective of determining the tendency of how the design pressure influences in the motor construction technology.Since the modern tendency is to build hydromotors with risen design pressure in order to reach high power densities, forthis engagement the law of Poiseuille is used to establish the fugue pattern between cylinder and piston.The looseness model is stated starting from supposing lineal the behavior described in the consulted literature, results of thecylinder ruggedness against pressure are obtained to maintain

  1. Flow over an inline oscillating circular cylinder in the wake of a stationary circular cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang; Zhu, Keqiang, E-mail: zhukeqiang@nbu.edu.cn [Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211 (China)

    2017-02-15

    Flow interference between an upstream stationary cylinder and an inline oscillating cylinder is studied with the lattice Boltzmann method. With a fixed Reynolds number Re  = 100 and pitch ratio L / D  = 4, the effects of oscillation amplitude A / D  = [0.25, 1] and frequency f {sub e}/ f {sub s} = [0.5, 2] are investigated. The wake response state is categorized into lock-in and non-lock-in. The lock-in zone in the bifurcation diagram of amplitude versus frequency is discontinuous. Response states of upstream and downstream wakes are similar under the conditions of small amplitude or low frequency. However, with large oscillating parameters, the two wakes are prone to be in different states as the flow field becomes irregular. Two distinct flow regimes have been identified, i.e., single-cylinder and two-cylinder shedding regimes. The presence of single-cylinder shedding regime is attributed to the low shedding frequency of the downstream cylinder at large amplitude. Hydrodynamic forces of the oscillating tandem system are discussed. The results reveal that forces on the two cylinders behave differently and that the absence of vortices in the gap flow significantly reduces the forces exerting on the tandem system. (paper)

  2. The use of thick-walled hollow cylinder creep tests for evaluating flow criteria for rock salt

    International Nuclear Information System (INIS)

    Morgan, H.S.; Wawersik, W.R.

    1990-01-01

    Finite element simulations of two laboratory creep tests on thick-walled hollow cylinders of rock salt are evaluated to determine if such bench-scale experiments can be used to establish applicability of either von Mises or Tresca stress measures and associated flow conditions. In the tests, the cylinders were loaded axially and pressurized both internally and externally to produce stress fields similar to those found around underground excavations in rock salt. Several different loading stages were used in each test. The simulations show that for each of two creep models studied, quite different deformations of the cylinders are predicted with the Mises and Tresca flow criteria, especially if friction between the cylinders and axial loading platens is ignored. When friction is included in the simulations, the differences in deformation are changed but are sill clearly distinguishable. 10 refs., 10 figs

  3. A continuous-flow, high-throughput, high-pressure parahydrogen converter for hyperpolarization in a clinical setting.

    Science.gov (United States)

    Hövener, Jan-Bernd; Bär, Sébastien; Leupold, Jochen; Jenne, Klaus; Leibfritz, Dieter; Hennig, Jürgen; Duckett, Simon B; von Elverfeldt, Dominik

    2013-02-01

    Pure parahydrogen (pH(2) ) is the prerequisite for optimal pH(2) -based hyperpolarization experiments, promising approaches to access the hidden orders of magnitude of MR signals. pH(2) production on-site in medical research centers is vital for the proliferation of these technologies in the life sciences. However, previously suggested designs do not meet our requirements for safety or production performance (flow rate, pressure or enrichment). In this article, we present the safety concept, design and installation of a pH(2) converter, operated in a clinical setting. The apparatus produces a continuous flow of four standard liters per minute of ≈98% enriched pH(2) at a pressure maximum of 50 bar. The entire production cycle, including cleaning and cooling to 25 K, takes less than 5 h, only ≈45 min of which are required for actual pH(2) conversion. A fast and simple quantification procedure is described. The lifetimes of pH(2) in a glass vial and aluminum storage cylinder are measured to be T(1C) (glass vial) =822 ± 29 min and T(1C) (Al cylinder) =129 ± 36 days, thus providing sufficiently long storage intervals and allowing the application of pH(2) on demand. A dependence of line width on pH(2) enrichment is observed. As examples, (1) H hyperpolarization of pyridine and (13) C hyperpolarization of hydroxyethylpropionate are presented. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Swap your propane cylinder with SWOP

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    A very successful propane cylinder exchange program operated by South Western Ontario Propane (SWOP) Inc., was described. The company specializes in propane cylinder exchange and in the refurbishing and marketing of top quality domestic and commercial propane cylinders. The company, currently operating out of Bradford, Ontario, was started in 1991. It employs a staff of 25 in peak season. It has some 200 exchange outlets throughout Ontario and has accepted outdated tanks from as far west as Manitoba and as far east as Quebec. A typical transaction involves bringing an empty cylinder to the nearest SWOP location and exchanging it for a full SWOP cylinder. SWOP does about 50,000 to 60,000 exchanges a year. For the consumer, the program is said to be cheaper, safer and more convenient than getting refills. As far as dealers are concerned operating a SWOP exchange outlet can add extra profits, attract new customers, and build additional consumer loyalty without the need for extra staff or additional indoor space. SWOP delivers full cylinders to exchange outlets on a weekly basis when it also picks up the empty cylinders. At dealer locations, the cylinders (full or empty) are stored in company -designed vandal-proof metal cages. Major expansion of the network of outlets and the cylinder refurbishing and refilling facilities are planned for 1998

  5. ROBUST CYLINDER FITTING IN THREE-DIMENSIONAL POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    A. Nurunnabi

    2017-05-01

    Full Text Available This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD. Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete data, as street poles for example are only scanned from the road. Moreover, existence of outliers is common. Outliers may occur as random or systematic errors, and may be scattered and/or clustered. In this paper, we present a statistically robust cylinder fitting algorithm for PCD that combines Robust Principal Component Analysis (RPCA with robust regression. Robust principal components as obtained by RPCA allow estimating cylinder directions more accurately, and an existing efficient circle fitting algorithm following robust regression principles, properly fit cylinder. We demonstrate the performance of the proposed method on artificial and real PCD. Results show that the proposed method provides more accurate and robust results: (i in the presence of noise and high percentage of outliers, (ii for incomplete as well as complete data, (iii for small and large number of points, and (iv for different sizes of radius. On 1000 simulated quarter cylinders of 1m radius with 10% outliers a PCA based method fit cylinders with a radius of on average 3.63 meter (m; the proposed method on the other hand fit cylinders of on average 1.02 m radius. The algorithm has potential in applications such as fitting cylindrical (e.g., light and traffic poles, diameter at breast height estimation for trees, and building and bridge information modelling.

  6. Experimental Compressibility of Molten Hedenbergite at High Pressure

    Science.gov (United States)

    Agee, C. B.; Barnett, R. G.; Guo, X.; Lange, R. A.; Waller, C.; Asimow, P. D.

    2010-12-01

    Experiments using the sink/float method have bracketed the density of molten hedenbergite (CaFeSi2O6) at high pressures and temperatures. The experiments are the first of their kind to determine the compressibility of molten hedenbergite at high pressure and are part of a collaborative effort to establish a new database for an array of silicate melt compositions, which will contribute to the development of an empirically based predictive model that will allow calculation of silicate liquid density and compressibility over a wide range of P-T-X conditions where melting could occur in the Earth. Each melt composition will be measured using: (i) double-bob Archimedean method for melt density and thermal expansion at ambient pressure, (ii) sound speed measurements on liquids to constrain melt compressibility at ambient pressure, (iii) sink/float technique to measure melt density to 15 GPa, and (iv) shock wave measurements of P-V-E equation of state and temperature between 10 and 150 GPa. Companion abstracts on molten fayalite (Waller et al., 2010) and liquid mixes of hedenbergite-diopside and anorthite-hedenbergite-diopside (Guo and Lange, 2010) are also presented at this meeting. In the present study, the hedenbergite starting material was synthesized at the Experimental Petrology Lab, University of Michigan, where melt density, thermal expansion, and sound speed measurements were also carried out. The starting material has also been loaded into targets at the Caltech Shockwave Lab, and experiments there are currently underway. We report here preliminary results from static compression measurement performed at the Department of Petrology, Vrije Universiteit, Amsterdam, and the High Pressure Lab, Institute of Meteoritics, University of New Mexico. Experiments were carried out in Quick Press piston-cylinder devices and a Walker-style multi-anvil device. Sink/float marker spheres implemented were gem quality synthetic forsterite (Fo100), San Carlos olivine (Fo90), and

  7. The Numerical Solution of the Navier-Stokes Equations for Laminar, Incompressible Flow past a Parabolic Cylinder

    NARCIS (Netherlands)

    Botta, E.F.F.; Dijkstra, D.; Veldman, A.E.P.

    1972-01-01

    The numerical method of solution for the semi-infinite flat plate has been extended to the case of the parabolic cylinder. Results are presented for the skin friction, the friction drag, the pressure and the pressure drag. The drag coefficients have been checked by means of an application of the

  8. High Blood Pressure Facts

    Science.gov (United States)

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  9. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  10. Thermodynamic consideration on self-regulating characteristics of cold neutron source with cylinder annulus type cold moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Yoshino, Hiroshi; Kawabata, Yuji; Hino, Masahiro

    2000-01-01

    Shapes of moderator baths of ORPHEE and NIST without bottom of inner cylinder, entering liquid from downward and push down the liquid by steam formed nuclear exotherm to fill inner part of the inner cylinder with steam, require to determine a number of parameters to be optimum to realize a state storing steam in inner cylinder and liquid in shell portion. Then, for a modulator bath with a structure shielding the inner cylinder from shell portion by preparing bottom without any pore and supplying steam into the cylinder through a steam return pipe mounted with pores at its upper portion. By such structure, a cold neutron source with self-balance-ability and capable of following output without time delaying. And, its liquid volume can also be controlled by system pressure. And that, as its structure is simple, it has another characteristic that its connection structure of transmission pipe portion with moderator bath portion. (G.K.)

  11. Cylinder-Pressure Based Injector Calibration for Diesel Engines

    OpenAIRE

    König, Johan

    2008-01-01

    One way of complying with future emission restrictions for diesel engines is to use pressure sensors for improved combustion control. Implementation of pressure sensors into production engines would lead to new possibilities for fuel injection monitoring where one potential use is injector calibration. The scope of this thesis is to investigate the possibility of using pressure sensors for finding the minimal energizing time necessary for fuel injection. This minimal energizing time varies ov...

  12. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  13. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  14. Effects of prescription depth, cylinder size, treatment length, tip space, and curved end on doses in high-dose-rate vaginal brachytherapy

    International Nuclear Information System (INIS)

    Li Shidong; Aref, Ibrahim; Walker, Eleanor; Movsas, Benjamin

    2007-01-01

    Purpose: To determine the effects of the prescription depth, cylinder size, treatment length, tip space, and curved end on high-dose-rate vaginal brachytherapy (HDR-VBT) of endometrial cancer. Methods and Materials: Treatment plans were prescribed and optimized based on points at the cylinder surface or at 0.5-cm depth. Cylinder sizes ranging from 2 to 4 cm in diameter, and treatment lengths ranging from 3 to 8 cm were used. Dose points in various depths were precisely defined along the cylinder dome. The given dose and dose uniformity to a depth of interest were measured by the mean dose (MD) and standard deviation (SD), respectively, among the dose points belonging to the depth. Dose fall-off beyond the 0.5 cm treatment depth was determined by the ratio of MD at 0.75-cm depth to MD at 0.5-cm depth. Results: Dose distribution varies significantly with different prescriptions. The surface prescription provides more uniform doses at all depths in the target volume, whereas the 0.5-cm depth prescription creates larger dose variations at the cylinder surface. Dosimetric uncertainty increases significantly (>30%) with shorter tip space. Extreme hot (>150%) and cold spots (<60%) occur if no optimization points were placed at the curved end. Conclusions: Instead of prescribing to a depth of 0.5 cm, increasing the dose per fraction and prescribing to the surface with the exact surface points around the cylinder dome appears to be the optimal approach

  15. Thin, X-ray-Transparent Windows for Imaging Applications with a Pneumatically Pressurized Enclosure

    International Nuclear Information System (INIS)

    Shu Deming; Wang Jin; Preissner, Curt

    2007-01-01

    We have developed a novel thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 10 bar. The windows allow for x-ray access to fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions. The design of the window system and its experimental test results are presented in this paper, as well as its further development for in situ x-ray imaging applications in a high-pressure and high-temperature environment

  16. Flow past a rotating cylinder

    Science.gov (United States)

    Mittal, Sanjay; Kumar, Bhaskar

    2003-02-01

    Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

  17. Low-cost, low-weight CNG cylinder development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Mark E.; Melford, K.; Wong, J.; Gambone, L.

    1999-09-01

    This program was established to develop and commercialize new high-strength steel-lined, composite hoop-wrapped compressed natural gas (CNG) cylinders for vehicular applications. As much as 70% of the cost of natural gas vehicles can be related to on-board natural gas storage costs. The cost and weight targets for this program represent significant savings in each characteristic when compared to comparable containers available at the initiation of the program. The program objectives were to optimize specific weight and cost goals, yielding CNG cylinders with dimensions that should, allowing for minor modifications, satisfy several vehicle market segments. The optimization process encompassed material, design, and process improvement. In optimizing the CNG cylinder design, due consideration was given to safety aspects relative to national, international, and vehicle manufacturer cylinder standards and requirements. The report details the design and development effort, encompassing plant modifications, material selection, design issues, tooling development, prototype development, and prototype testing. Extenuating circumstances prevented the immediate commercialization of the cylinder designs, though significant progress was made towards improving the cost and performance of CNG cylinders. A new low-cost fiber was successfully employed while the weight target was met and the cost target was missed by less than seven percent.

  18. An analytical study of the effects of transverse shear deformation and anisotropy on buckling loads of laminated cylinders. M.S. Thesis - George Washington Univ.

    Science.gov (United States)

    Jegley, Dawn C.

    1987-01-01

    Buckling loads of thick-walled orthotropic and anisotropic simply supported circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of buckling loads predicted by the conventional first-order transverse-shear deformation theory and the higher-order theory show that the additional allowance for transverse shear deformation has a negligible effect on the predicted buckling loads of medium-thick metallic isotropic cylinders. However, the higher-order theory predicts buckling loads which are significantly lower than those predicted by the first-order transverse-shear deformation theory for certain short, thick-walled cylinders which have low through-the-thickness shear moduli. A parametric study of the effects of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 45 degree plies are most sensitive to transverse-shear deformation effects. Interaction curves for buckling loads of cylinders subjected to axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are as sensitive to transverse-shear deformation effects as buckling loads due to axial compressive loadings. The effects of anisotropy are important over a much wider range of cylinder geometries than the effects of transverse shear deformation.

  19. An analysis of system pressure and temperature distribution in self-pressurizer of SMART and calculation of sizing of wet thermal insulator and pressurizer cooler

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Moon; Lee, Doo Jeong; Yoon, Ju Hyun; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    To evaluate the amount of heat transfer from coolant to gas in reactor vessel heat transfer through the structure of pressurizer and evaporation/condensation on surface of liquid pool should be considered. And, also the heat exchange by pressurizer cooler and heat transfer to upper plate of reactor vessel should be considered. Thus, overall examinations on design variables which affect the heat transfer from coolant to gas are needed to maintain the pressurizer conditions at designed value for normal operation through heatup process. The major design variables, which affect system pressure and gas temperature during heatup, and the sizes of wet thermal insulator and pressurizer cooler, and volume of gas cylinder connected to pressurizer. A computer program is developed for the prediction of system pressure and temperature of pressurizer gas region with considering volume expansion of coolant and heat transfer from coolant to gas during heatup. Using the program, this report suggests the optimized design values of wet thermal insulator, pressurizer cooler, and volume of gas cylinder to meet the target conditions for normal operation of SMART. (author). 6 refs., 17 figs., 5 tabs.

  20. Investigation of reciprocating conformal contact of piston skirt-to-surface modified cylinder liner in high performance engines

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, S.; Rahnejat, H. [Loughborough University (United Kingdom). Wolfson School of Mechanical and Manufacturing Engineering; Howell-Smith, S. [Perfect Bore Motorsport Ltd., Andover (United Kingdom)

    2005-11-15

    The article presents detailed analysis of the conforming contact between a piston and cylinder liner in a high-speed racing engine under extreme operating conditions owing to high loads and operating speeds in excess of 19 000 r/min, resulting in a high sliding velocity of 42 m/s. The analysis indicates contact forces generated in the order of 2.5 kN. The contribution due to fluid film lubrication is found to reside in iso-viscous rigid or elastic regimes of lubrication, which is insufficient to form a coherent lubricant film during some parts of the cycle, such as at top-dead-centre (TDC). The article shows that at combustion, 95 per cent of the contact can remain in boundary or mixed regimes of lubrication. Piston skirt surface modification features are used in conjunction with an electrolytically applied composite coating, Ni[SiC]p to produce advanced cylinder liners to remedy the situation. Detailed numerical analysis shows that significant improvement is achieved in the regime of lubrication condition. (author)

  1. Formation of ice XII at low temperatures and high pressures

    International Nuclear Information System (INIS)

    Schober, H.; Koza, M.; Toelle, A.; Fujara, F.

    1999-01-01

    Complete text of publication follows. Solid water features a large variety of crystalline as well as two amorphous phases. The versatility of water's behavior has been reinforced recently by the identification of still another form of crystalline ice [1]. Ice XII was obtained by cooling liquid water to 260 K at a pressure of 5.5 kbar. Ice XII could be produced in a completely different region of water's phase diagram [2]. Using a. piston-cylinder apparatus ice XII was formed during the production of high-density amorphous ice (HDA) at 77 K as described previously [3]. The amount of crystalline ice XII contamination within the HDA sample varies in a so far unpredictable way with both extremes, i.e. pure HDA as well as pure ice XII. realized. Our results indicate that water's phase diagram needs modification in the region assigned to HDA. Ice XII is characterized as well as its transition towards cubic ice by elastic and inelastic neutron scattering. (author)

  2. Three-dimensional turbulent swirling flow in a cylinder: Experiments and computations

    International Nuclear Information System (INIS)

    Gupta, Amit; Kumar, Ranganathan

    2007-01-01

    Dynamics of the three-dimensional flow in a cyclone with tangential inlet and tangential exit were studied using particle tracking velocimetry (PTV) and a three-dimensional computational model. The PTV technique is described in this paper and appears to be well suited for the current flow situation. The flow was helical in nature and a secondary recirculating flow was observed and well predicted by computations using the RNG k-ε turbulence model. The secondary flow was characterized by a single vortex which circulated around the axis and occupied a large fraction of the cylinder diameter. The locus of the vortex center meandered around the cylinder axis, making one complete revolution for a cylinder aspect ratio of 2. Tangential velocities from both experiments and computations were compared and found to be in good agreement. The general structure of the flow does not vary significantly as the Reynolds number is increased. However, slight changes in all components of velocity and pressure were seen as the inlet velocity is increased. By increasing the inlet aspect ratio it was observed that the vortex meandering changed significantly

  3. Three-dimensional turbulent swirling flow in a cylinder: Experiments and computations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amit [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Kumar, Ranganathan [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)]. E-mail: rnkumar@mail.ucf.edu

    2007-04-15

    Dynamics of the three-dimensional flow in a cyclone with tangential inlet and tangential exit were studied using particle tracking velocimetry (PTV) and a three-dimensional computational model. The PTV technique is described in this paper and appears to be well suited for the current flow situation. The flow was helical in nature and a secondary recirculating flow was observed and well predicted by computations using the RNG k-{epsilon} turbulence model. The secondary flow was characterized by a single vortex which circulated around the axis and occupied a large fraction of the cylinder diameter. The locus of the vortex center meandered around the cylinder axis, making one complete revolution for a cylinder aspect ratio of 2. Tangential velocities from both experiments and computations were compared and found to be in good agreement. The general structure of the flow does not vary significantly as the Reynolds number is increased. However, slight changes in all components of velocity and pressure were seen as the inlet velocity is increased. By increasing the inlet aspect ratio it was observed that the vortex meandering changed significantly.

  4. Cylinder-averaged histories of nitrogen oxide in a DI diesel with simulated turbocharging

    Science.gov (United States)

    Donahue, Ronald J.; Borman, Gary L.; Bower, Glenn R.

    1994-10-01

    An experimental study was conducted using the dumping technique (total cylinder sampling) to produce cylinder mass-averaged nitric oxide histories. Data were taken using a four stroke diesel research engine employing a quiescent chamber, high pressure direct injection fuel system, and simulated turbocharging. Two fuels were used to determine fuel cetane number effects. Two loads were run, one at an equivalence ratio of 0.5 and the other at a ratio of 0.3. The engine speed was held constant at 1500 rpm. Under the turbocharged and retarded timing conditions of this study, nitric oxide was produced up to the point of about 85% mass burned. Two different models were used to simulate the engine mn conditions: the phenomenological Hiroyasu spray-combustion model, and the three dimensional, U.W.-ERO modified KIVA-2 computational fluid dynamic code. Both of the models predicted the correct nitric oxide trend. Although the modified KIVA-2 combustion model using Zeldovich kinetics correctly predicted the shapes of the nitric oxide histories, it did not predict the exhaust concentrations without arbitrary adjustment based on experimental values.

  5. Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell

    International Nuclear Information System (INIS)

    Errandonea, D; Somayazulu, M; Haeusermann, D; Mao, H K

    2003-01-01

    The high-pressure and high-temperature phase diagram of Ta has been studied in a laser-heated diamond-anvil cell (DAC) using x-ray diffraction measurements up to 52 deg. GPa and 3800 deg. K. The melting was observed at nine different pressures, the melting temperature being in good agreement with previous laser-heated DAC experiments, but in contradiction with several theoretical calculations and previous piston-cylinder apparatus experiments. A small slope for the melting curve of Ta is estimated (dT m /dP ≅ 24 GPa -1 at 1 deg. bar) and a possible explanation for this behaviour is given. Finally, a P-V -T equation of states is obtained, the temperature dependence of the thermal expansion coefficient and the bulk modulus being estimated

  6. High pressure effect for high-Tc superconductors

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  7. Analysis of historical and recent PBX 9404 cylinder tests using FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von Howard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-31

    Cylinder test experiments using aged PBX-9404 were recently conducted. When compared to similar historical tests using the same materials, but different diagnostics, the data indicate that PBX 9404 imparts less energy to surrounding copper. The purpose of this work was to simulate historical and recent cylinder tests using the Lagrangian hydrodynamics code, FLAG, and identify any differences in the energetic behavior of the material. Nine experiments spanning approximately 4.5 decades were simulated, and radial wall expansions and velocities were compared. Equation-of-state parameters were adjusted to obtain reasonable matches with experimental data. Pressure-volume isentropes were integrated, and resultant energies at specific volume expansions were compared. FLAG simulations matched to experimental data indicate energetic changes of approximately -0.57% to -0.78% per decade.

  8. Engineering model for low-velocity impacts of multi-material cylinder on a rigid boundary

    Directory of Open Access Journals (Sweden)

    Delvare F.

    2012-08-01

    Full Text Available Modern ballistic problems involve the impact of multi-material projectiles. In order to model the impact phenomenon, different levels of analysis can be developed: empirical, engineering and simulation models. Engineering models are important because they allow the understanding of the physical phenomenon of the impact materials. However, some simplifications can be assumed to reduce the number of variables. For example, some engineering models have been developed to approximate the behavior of single cylinders when impacts a rigid surface. However, the cylinder deformation depends of its instantaneous velocity. At this work, an analytical model is proposed for modeling the behavior of a unique cylinder composed of two different metals cylinders over a rigid surface. Material models are assumed as rigid-perfectly plastic. Differential equation systems are solved using a numerical Runge-Kutta method. Results are compared with computational simulations using AUTODYN 2D hydrocode. It was found a good agreement between engineering model and simulation results. Model is limited by the impact velocity which is transition at the interface point given by the hydro dynamical pressure proposed by Tate.

  9. Sub-wavelength resonances in polygonal metamaterial cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2008-01-01

    It has been shown that the sub-wavelength resonances of circular MTM cylinders also occur for polygonal MTM cylinders. This is the case for lossless and non-dispersive cylinders as well as lossy and dispersive cylinders. The sub-wavelength resonances are thus not limited to structures of canonical...

  10. Attempt of lean burn of a 4 cycle gasoline engine by the aid of low pressure air assisted in-cylinder injection; Tonai kuki nenryo funsha ni yoru lean burn no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, S; Kondo, M; Sekiya, Y; Murayama, T [Hokkaido Automotive Engineering College, Hokkaido (Japan)

    1997-10-01

    Comparable performance and exhaust emission with conventional carburetor was obtained by a low Pressure air assisted in-cylinder injection system. And lean burn of idling and light load operation till A/F=70 was realized by installing a spark Plug and a reed type injection nozzle in a divided combustion chambaer of a 4 cycle gasoline engine. 2 refs., 10 figs.

  11. Experimental Evaluation of a Method for Turbocharging Four-Stroke, Single Cylinder, Internal Combustion Engines

    Science.gov (United States)

    Buchman, Michael; Winter, Amos

    2015-11-01

    Turbocharging an engine increases specific power, improves fuel economy, reduces emissions, and lowers cost compared to a naturally aspirated engine of the same power output. These advantages make turbocharging commonplace for multi-cylinder engines. Single cylinder engineers are not commonly turbocharged due to the phase lag between the exhaust stroke, which powers the turbocharger, and the intake stroke, when air is pumped into the engine. Our proposed method of turbocharging single cylinder engines is to add an ``air capacitor'' to the intake manifold, an additional volume that acts as a buffer to store compressed air between the exhaust and intake strokes, and smooth out the pressure pulses from the turbocharger. This talk presents experimental results from a single cylinder, turbocharged diesel engine fit with various sized air capacitors. Power output from the engine was measured using a dynamometer made from a generator, with the electrical power dissipated with resistive heating elements. We found that intake air density increases with capacitor size as theoretically predicted, ranging from 40 to 60 percent depending on heat transfer. Our experiment was able to produce 29 percent more power compared to using natural aspiration. These results validated that an air capacitor and turbocharger may be a simple, cost effective means of increasing the power density of single cylinder engines.

  12. UF{sub 6} cylinder inspections at PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, G.W.; Whinnery, W.N. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Routine inspections of all UF{sub 6} cylinders at the Paducah Gaseous Diffusion Plant have been mandated by the Department of Energy. A specific UF{sub 6} cylinder inspection procedure for what items to inspect and training for the operators prior to inspection duty are described. The layout of the cylinder yards and the forms used in the inspections are shown. The large number of cylinders (>30,000) to inspect and the schedule for completion on the mandated time table are discussed. Results of the inspections and the actions to correct the deficiencies are explained. Future inspections and movement of cylinders for relocation of certain cylinder yards are defined.

  13. Approximation by Cylinder Surfaces

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1997-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  14. Preliminary Concept of Operations for a Global Cylinder Identification and Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, J. M. [ORNL; White-Horton, J. L. [ORNL; Morgan, J. B. [InSolves Associates

    2013-08-01

    This report describes a preliminary concept of operations for a Global Cylinder Identification and Monitoring System that could improve the efficiency of the International Atomic Energy Agency (IAEA) in conducting its current inspection activities and could provide a capability to substantially increase its ability to detect credible diversion scenarios and undeclared production pathways involving UF6 cylinders. There exist concerns that a proliferant State with access to enrichment technology could obtain a cylinder containing natural or low-enriched uranium hexafluoride (UF6) and produce a significant quantity (SQ)1 of highly enriched uranium in as little as 30 days. The National Nuclear Security Administration (NNSA) through the Next Generation Safeguards Initiative sponsored a multi-laboratory team to develop an integrated system that provides for detecting scenarios involving 1) diverting an entire declared cylinder for enrichment at a clandestine facility, 2) misusing a declared cylinder at a safeguarded facility, and 3) using an undeclared cylinder at a safeguarded facility. An important objective in developing this integrated system was to improve the timeliness for detecting the cylinder diversion and undeclared production scenarios. Developing this preliminary concept required in-depth analyses of current operational and safeguards practices at conversion, enrichment, and fuel fabrication facilities. The analyses evaluated the processing, movement, and storage of cylinders at the facilities; the movement of cylinders between facilities (including cylinder fabrication); and the misuse of safeguarded facilities.

  15. Experimental study on an IC engine in-cylinder flow using different steady-state flow benches

    Directory of Open Access Journals (Sweden)

    M. El-Adawy

    2017-12-01

    Full Text Available In-cylinder air flow structures are known to strongly impact on the performance and combustion of internal combustion engines (ICE. Therefore the aim of this paper is to experimentally study an IC engine in-cylinder flow under steady-state conditions. Different methods can be used to characterize the in-cylinder flow which are optical engines and laser diagnostics, computational fluid dynamic and steady-state flow bench. Here we are concentrating on two different types of flow benches. The first (Ricardo uses the impulse torque meter method while the other (FEV uses the paddle wheel technique. The experiments were carried out on the same cylinder head and the same pressure difference across the inlet valves of 600 mmH2O in order to compare the results. The experimental results are presented in terms of the measured air flow rate, flow coefficient, discharge coefficient and non-dimensional rig tumble. Moreover, number of modifications were conducted on the FEV flow bench in order to apply particle image velocimetry measurements on the vertical tumble plane, which passing through the middle of the cylinder at different valve lifts. The results show that a reasonably good level of agreement can be achieved between both methods, providing the methods of calculations of the various parameters are consistent. Keywords: In-cylinder flow, Flow bench, Tumble motion, Flow coefficient, Particle image velocimetry

  16. Characterization of fluid forces exerted on a cylinder array oscillating laterally in axial flow

    International Nuclear Information System (INIS)

    Divaret, Lise

    2014-01-01

    This thesis presents an experimental and a numerical study of the fluid forces exerted on a cylinder or a cylinder array oscillating laterally in an axial flow. The parameters of the system are the amplitude, the oscillation frequency, the confinement and the length to diameter ratio of the cylinder. The objective is to determine the fluid damping created by the axial flow, i.e. the dissipative force. The industrial application of this thesis is the determination of the fluid damping of the fuel assemblies in the core of a nuclear power plant during an earthquake. The study focuses on the configurations where the oscillation velocity is small compared to the axial flow velocity. In a first part, we study the case of a cylinder with no confinement oscillating in axial flow. Two methods are used: a dynamical and a quasi-static approach. In dynamics, the damping rate is measured during free oscillations of the cylinder. In the quasi-static approach, the damping coefficient is calculated from the normal force measured on a yawed cylinder. The range of the small ratios between the oscillation and the axial flow velocities corresponds to a range of low yaw angle where the cylinder is in near-axial flow in statics. The case of a yawed cylinder has been studied both experimentally with experiments in a wind tunnel and numerically with CFD calculations. The analyses of the fluid forces shows that for yaw angles smaller than 5 degrees, a linear lift with the yaw angle creates the damping. The origin of the lift force is discussed from pressure and velocity measurements. The results of the quasi-static approach are compared to the results of the dynamical experiments. In a second part, an experimental study is performed on a rigid cylinder array made up of 40 cylinders oscillating in an axial flow. The normal force and the displacement of the cylinder array are measured simultaneously. The added mass and damping coefficient are calculated and their variation with the

  17. Active aerodynamic drag reduction on morphable cylinders

    Science.gov (United States)

    Guttag, M.; Reis, P. M.

    2017-12-01

    We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

  18. Experimental and regression analysis for multi cylinder diesel engine operated with hybrid fuel blends

    Directory of Open Access Journals (Sweden)

    Gopal Rajendiran

    2014-01-01

    Full Text Available The purpose of this research work is to build a multiple linear regression model for the characteristics of multicylinder diesel engine using multicomponent blends (diesel- pungamia methyl ester-ethanol as fuel. Nine blends were tested by varying diesel (100 to 10% by Vol., biodiesel (80 to 10% by vol. and keeping ethanol as 10% constant. The brake thermal efficiency, smoke, oxides of nitrogen, carbon dioxide, maximum cylinder pressure, angle of maximum pressure, angle of 5% and 90% mass burning were predicted based on load, speed, diesel and biodiesel percentage. To validate this regression model another multi component fuel comprising diesel-palm methyl ester-ethanol was used in same engine. Statistical analysis was carried out between predicted and experimental data for both fuel. The performance, emission and combustion characteristics of multi cylinder diesel engine using similar fuel blends can be predicted without any expenses for experimentation.

  19. Effects of moisture migration on shrinkage, pore pressure and other concrete properties

    International Nuclear Information System (INIS)

    Chapman, D.A.; England, G.L.

    1977-01-01

    This work investigates the uniaxial migration of moisture in long, upright, limestone concrete cylinders, sealed at the base and sides, and open at the top. The design represents a section through a concrete pressure vessel wall. The cylinders are subjected to a sustained temperature difference between their ends, with maximum temperatures between 105 0 C and 200 0 C. Readings of pore pressure, water content and temperature are taken at various positions along the axis of the cylinders. In one cylinder, transverse and longitudinal shrinkage readings are also recorded. The results for the cylinders show that moisture migration is away from the hot face of the specimens causing reduction in both pore pressure and water content values in this region. The moisture migration creates a drying front which moves slowly up the specimens. The rate at which this drying front, moves is influenced by the base temperature, the magnitude of temperature and pressure gradients and the coefficient of permeability of the concrete. Samples taken from the hot side of the drying front show a considerable increase in the coefficient of permeability, and Scanning Electron Microscope photographs of the microstructure show both a break-up and reduction in size of the hydration products. The experiments reported indicate that when the hot inner face temperature of a concrete pressure vessel is increased above 100 0 C, the drying rate inside the wall increases considerably, However, it is unlikely pressure vessels of the size currently in use will ever completely dry out. (Auth.)

  20. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  1. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Parents / Hypertension (High Blood Pressure) What's ... High Blood Pressure) Treated? Print What Is Hypertension (High Blood Pressure)? Blood pressure is the pressure of blood against ...

  2. The new 2,0-l high performance four-cylinder motor from Mercedes-AMG; Der neue 2,0-L-Hochleistungs-Vierzylindermotor von Mercedes-AMG

    Energy Technology Data Exchange (ETDEWEB)

    Gindele, Joerg; Ramsteiner, Thomas; Fischer, Juergen; Tschamon, Bertram [Mercedes-AMG GmbH, Affalterbach (Germany)

    2013-09-15

    To mark its entry into the compact class, Mercedes-AMG has developed a new 2.0-l four-cylinder gasoline engine based on the modular architecture of the Mercedes-Benz BlueDirect family of four-cylinder power units. Achieving the high power density of 133 kW/l required extensive modifications to be made, for example to the basic engine, air management, turbocharging and the exhaust system. (orig.)

  3. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  4. Natural convective heat transfer from square cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 1, 010 26 Žilina (Slovakia)

    2016-06-30

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.

  5. Investigation of breached depleted UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.

  6. The characteristics of void distribution in spalled high purity copper cylinder under sweeping detonation

    Science.gov (United States)

    Yang, Yang; Jiang, Zhi; Chen, Jixinog; Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo

    2018-03-01

    The effects of different peak compression stresses (2-5 GPa) on the spallation behaviour of high purity copper cylinder during sweeping detonation were examined by Electron Backscatter Diffraction Microscopy, Doppler Pins System and Optical Microscopy techniques. The velocity history of inner surface and the characteristics of void distributions in spalled copper cylinder were investigated. The results indicated that the spall strength of copper in these experiments was less than that revealed in previous reports concerning plate impact loading. The geometry of cylindrical copper and the obliquity of incident shock during sweeping detonation may be the main reasons. Different loading stresses seemed to be responsible for the characteristics of the resultant damage fields, and the maximum damage degree increased with increasing shock stress. Spall planes in different cross-sections of sample loaded with the same shock stress of 3.29 GPa were found, and the distance from the initiation end has little effect on the maximum damage degree (the maximum damage range from 12 to 14%), which means that the spallation behaviour was stable along the direction parallel to the detonation propagation direction under the same shock stress.

  7. A Method for Turbocharging Four-Stroke Single Cylinder Engines

    Science.gov (United States)

    Buchman, Michael; Winter, Amos

    2014-11-01

    Turbocharging is not conventionally used with single cylinder engines due to the timing mismatch between when the turbo is powered and when it can deliver air to the cylinder. The proposed solution involves a fixed, pressurized volume - which we call an air capacitor - on the intake side of the engine between the turbocharger and intake valves. The capacitor acts as a buffer and would be implemented as a new style of intake manifold with a larger volume than traditional systems. This talk will present the flow analysis used to determine the optimal size for the capacitor, which was found to be four to five times the engine capacity, as well as its anticipated contributions to engine performance. For a capacitor sized for a one-liter engine, the time to reach operating pressure was found to be approximately two seconds, which would be acceptable for slowly accelerating applications and steady state applications. The air density increase that could be achieved, compared to ambient air, was found to vary between fifty percent for adiabatic compression and no heat transfer from the capacitor, to eighty percent for perfect heat transfer. These increases in density are proportional to, to first order, the anticipated power increases that could be realized. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374.

  8. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  9. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  10. The analysis and compensation of errors of precise simple harmonic motion control under high speed and large load conditions based on servo electric cylinder

    Science.gov (United States)

    Ma, Chen-xi; Ding, Guo-qing

    2017-10-01

    Simple harmonic waves and synthesized simple harmonic waves are widely used in the test of instruments. However, because of the errors caused by clearance of gear and time-delay error of FPGA, it is difficult to control servo electric cylinder in precise simple harmonic motion under high speed, high frequency and large load conditions. To solve the problem, a method of error compensation is proposed in this paper. In the method, a displacement sensor is fitted on the piston rod of the electric cylinder. By using the displacement sensor, the real-time displacement of the piston rod is obtained and fed back to the input of servo motor, then a closed loop control is realized. There is compensation of pulses in the next period of the synthetic waves. This paper uses FPGA as the processing core. The software mainly comprises a waveform generator, an Ethernet module, a memory module, a pulse generator, a pulse selector, a protection module, an error compensation module. A durability of shock absorbers is used as the testing platform. The durability mainly comprises a single electric cylinder, a servo motor for driving the electric cylinder, and the servo motor driver.

  11. Analysis of knocking combustion with the aid of pressure sensors; Einsatz von Drucksensoren zur Beurteilung klopfender Verbrennung

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, J.; Walter, T. [Kistler AG, Winterthur (Switzerland); Bertola, A.; Wolfer, P.; Hoewing, J. [Kistler Instrumente GmbH, Ostfildern (Germany); Gossweiler, C. [Fachhochschule Nordwestschweiz (Switzerland). ITFE; Rothe, M.; Spicher, U. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Kolbenmaschinen

    2006-07-01

    Depending on its frequency and intensity, knocking combustion can cause engine damage due to excessive thermal or mechanical stress on components. During knocking combustion, the cylinder pressure signal is overlaid with high-frequency pressure oscillations. Reliable detection of the knock timing and quantification of the knock intensity based on local measurement of the cylinder pressure demand for particular care, especially when it comes to selecting and adapting the sensor technology and also during the evaluation process using customary knock analysis methods. This publication examines various types of cylinder pressure sensors, how they are installed in the combustion chamber, the effect of sensor positioning and assesses them with regard to accuracy. Finally, on the basis of the test results, recommendations are given for selecting sensors and adapting them within the combustion chamber. A crucial factor for pressure measurement during knocking combustion is the sensor position within the combustion chamber. The sensor type is of secondary importance; at most, cavities between the combustion chamber and the sensor may influence the measuring signal. To assess the sensitivity of the knock evaluation algorithms to various mounting positions and sensor types, it is advisable to carry out comparative measurements between different sensor positions and the measuring spark plug. (orig.)

  12. First spinning cylinder test analysis by using local approach to fracture

    International Nuclear Information System (INIS)

    Eripret, C.; Rousselier, G.

    1993-01-01

    In recent years, several experimental programs on large scale specimens were organized to evaluate capabilities of the fracture mechanics concepts employed in structural integrity assessment of PWR pressure vessels. During the first spinning cylinder test, a geometry effect was experimentally pointed out and exhibited the problem of transferability of toughness data from small scale to large scale specimens. An original analysis of this test, by means of local approach to fracture is presented in this paper. Both compact tension specimen and spinning cylinder fracture behaviour were computed by using a continuum damage mechanics model developed at EDF. The authors confirmed by numerical analysis that the cylinder's resistance to ductile tearing was considerably larger than in small scale fracture mechanics specimens tests, about 50 percent. The final crack growth predicted by the model was close to the experimental value. Discrepancies in J-R curves seemed to be due to an effect of stress triaxiality and plastic zone evolution. The geometry effect inducing differences in resistance to ductile tearing of the material involved in the specimens can be investigated and explained by using local approach to fracture methodology. 14 refs., 9 figs., 2 tabs

  13. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  14. Bubbly flows around a two-dimensional circular cylinder

    Science.gov (United States)

    Lee, Jubeom; Park, Hyungmin

    2016-11-01

    Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  15. Stabilization of flow past a rounded cylinder

    Science.gov (United States)

    Samtaney, Ravi; Zhang, Wei

    2016-11-01

    We perform global linear stability analysis on low-Re flow past a rounded cylinder. The cylinder corners are rounded with a radius R, normalized as R+ = R / D where D is the cylinder diameter, and its effect on the flow stability characteristics is investigated. We compute the critical Reynolds number (Recr) for the onset of first instability, and quantify the perturbation growth rate for the super-critical flows. It is found that the flow can be stabilized by partially rounding the cylinder. Compared with the square and circular cylinders, the partially rounded cylinder has a higher Recr , attaining a maximum at around R+ = 0 . 30 , and the perturbation growth rate of the super-critical flows is reduced for Re R+ -> 0 . 00), while only the near-wake backflow is crucial for circular-like cylinders (R+ -> 0 . 50). The stability analysis results are also verified with those of the direct simulations and very good agreement is achieved. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The supercomputer Shaheen at KAUST was utilized for the simulations.

  16. Acoustic emission from fiber reinforced plastic damaged hoop wrapped cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, A.; Kung, D.; Westbrook, D.R.

    2000-03-01

    Metal lined continuous fiber reinforced plastic (FRP) hoop wrapped cylinders with axial cuts to the FRP were modeled mathematically and tested experimentally. Steel lined and aluminum alloy lined glass FRP vessels were subjected to acoustic emission tests (AE) and hydraulic burst tests. The burst pressure decreased monotonically with the length of the axial cut. Acoustic emission increased initially with a decrease in burst pressure, and attained a maximum at an intermediate level of damage to the FRP. However, acoustic emission decreased when the level of damage was higher and the burst pressure was lower. Implications of the findings are discussed in the context of the search for an acoustic emission test method to inspect periodically the vessels used for the storage of compressed gaseous fuels on natural gas vehicles (NGV) and hydrogen vehicles.

  17. Krypton gas cylinders as a source of radiation.

    Science.gov (United States)

    Fischer, Helmut W; Bielefeld, Tom; Hettwig, Bernd

    2010-07-01

    A standard 40 foot shipping container with a cargo of pressurized krypton gas in 159 steel cylinders, which had triggered a radiation alarm, was investigated to address radiation safety and illicit nuclear trafficking concerns. The investigation included contamination and dose rate measurements as well as in situ high resolution gamma spectroscopy. The dose rate measurements gave a maximum value of 0.07 microSv h(-1) above background (0.08 to 0.11 microSv h(-1)) on the cylinder surface and no detectable increase above background at distances of 1 m and higher. Contamination monitor readings showed a similar relative increase (plus 8 cpm) above background (about 12 cpm) to the dose rate readings. Quantitative gamma spectroscopy revealed a contamination of the gas with 85Kr at a level of 3.5 x 10(5) Bq kg(-1). This value was found to be consistent with analytical and numerical estimates based on current data for atmospheric 85Kr, which is captured from ambient air together with stable krypton during the production process. This incident demonstrates an apparent lack of radiation-related knowledge by those who handle krypton gas, as well as by border control personnel and emergency responders. We therefore propose to improve labeling and documentation standards for such shipments. This effort may be facilitated by introducing the new category of "technically enhanced artificial radioactive material," or "TEARM" (similar to the existing "naturally occurring radioactive material" or "NORM" and "technically enhanced naturally occurring radioactive material" or "TENORM" categories).

  18. Overseas shipments of 48Y cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)

    1991-12-31

    This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

  19. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  20. New opportunities to measure pressures inside combustion engine without having separate drilling for the pressure-sensors; Neue Moeglichkeiten der Druckindizierung in Verbrennungsmotoren ohne separate Messbohrung

    Energy Technology Data Exchange (ETDEWEB)

    Brechbuehl, S.; Schnepf, M.; Sonntag, R.; Wolfer, P. [Kistler Instrumente AG, Winterthur (Switzerland)

    2000-07-01

    There has been increased interest in and demand, in the last few years, for cylinder-pressure measurements, to be carried out with pressure sensors, which can be easily installed in the machined openings, already provided to take a spark plug, in the case of a gasoline engine, or a glow plug, in the case of a diesel engine. Because of littel room being available in pressure-measuring spark plugs, as well as in glow-plug adapters, in which to fit the pressure sensors, current designs represent a compromise solution. The conflicting aims are: (a) High-quality of the signals (b) ease of installation (c) maintaining full functionality of, respectively, the spark plug and the glow plug. Obtaining pressure measurements in diesel engines with the aid of glow-plug adapters, therefore, resulted, until now, in having to do without the glow-plug function. In this paper a newly developed glow-plug adapter is presented, in which a glow-plug heater element with full heating performance is integrated alongside the piezoelectric pressure sensor. Cylinder-pressure measurements can now be undertaken with this type of pressure-measuring glow plug during real-life cold-start operations and during operation in the after-heating phases. Until now, an eccentric positioning of the centre electrode had to be accepted, in order to obtain a good signal quality when measuring cylinder-pressures in gasoline engines with the aid of pressure-measuring spark plugs. A newly-developed spark-plug adapter with a concentric centre electrode is presented in this paper. This operating-type pressure-measuring spark plug enables good-quality signals of actual cylinder pressures to be obtained with unaltered spark position. By having the insulator ceramic arranged concentrically, it considerably eases the pushing-on of the original-equipment high-tension connector rail. (orig.) [German] Die Zylinderdruckindizierung mit Hilfe von Drucksensoren, welche ohne grossen Aufwand in die Einbaubohrung von Zuendkerze

  1. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  2. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  3. Using Modelica to investigate the dynamic behaviour of the German national standard for high pressure natural gas flow metering

    International Nuclear Information System (INIS)

    Von der Heyde, M; Schmitz, G; Mickan, B

    2016-01-01

    This paper presents a computational model written in Modelica for the high pressure piston prover (HPPP) used as the national primary standard for high pressure natural gas flow metering in Germany. With a piston prover the gas flow rate is determined by measuring the time a piston needs to displace a certain volume of gas in a cylinder. Fluctuating piston velocity during measurement can be a significant source of uncertainty if not considered in an appropriate way. The model was built to investigate measures for the reduction of this uncertainty. Validation shows a good compliance of the piston velocity in the model with measured data for certain volume flow rates. Reduction of the piston weight, variation of the start valve switching time and integration of a flow straightener were found to reduce the piston velocity fluctuations in the model significantly. The fast and cost effective generation of those results shows the strength of the used modelling approach. (paper)

  4. Aerodynamic loading on a cylinder behind an airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.J.; Huang, L.; Zhou, Y. [Hong Kong Polytechnic University, Department of Mechanical Engineering, Kowloon (Hong Kong)

    2005-05-01

    The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Re{sub d}=2,100-20,000, and the airfoil chord-length-based Reynolds numbers of Re{sub c}=14,700-140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as Tincreases. For Re{sub c}<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Re{sub c}>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding. (orig.)

  5. On the development of lift and drag in a rotating and translating cylinder

    Science.gov (United States)

    Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon

    2014-11-01

    The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  6. High blood pressure - children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  7. High blood pressure - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  8. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    International Nuclear Information System (INIS)

    Fukuda, K.; Shiotsu, M.; Sakurai, A.

    1995-01-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q max , on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q o e t/T , with periods, τ, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q max . Two main mechanisms of q max exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q max for long period range belonging to the former mechanism becomes longer and the q max mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q max for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling

  9. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  10. Inner cylinder of the CMS vacuum tank.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The vacuum tank of the CMS magnet system consists of inner and outer stainless-steel cylinders and houses the superconducting coil. The inner cylinder contains all the barrel sub-detectors, which it supports via a system of horizontal rails. The cylinder is pictured here in the vertical position on a yellow platform mounted on the ferris-wheel support structure. This will allow it to be pivoted and inserted into the outer cylinder already attached to the innermost ring of the barrel yoke.

  11. Exhaust gas heat recovery through secondary expansion cylinder and water injection in an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Nassiri Toosi Ali

    2017-01-01

    Full Text Available To enhance thermal efficiency and increase performance of an internal combustion engine, a novel concept of coupling a conventional engine with a secondary 4-stroke cylinder and direct water injection process is proposed. The burned gases after working in a traditional 4-stroke combustion cylinder are transferred to a secondary cylinder and expanded even more. After re-compression of the exhaust gases, pre-heated water is injected at top dead center. The evaporation of injected water not only recovers heat from exhaust gases, but also increases the mass of working gas inside the cylinder, therefore improves the overall thermal efficiency. A 0-D/1-D model is used to numerically simulate the idea. The simulations outputs showed that the bottoming cycle will be more efficient at higher engines speeds, specifically in a supercharged/turbocharged engine, which have higher exhaust gas pressure that can reproduce more positive work. In the modeled supercharged engine, results showed that brake thermal efficiency can be improved by about 17%, and brake power by about 17.4%.

  12. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  13. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  14. An Improved Lubrication Model between Piston Rings and Cylinder Liners with Consideration of Liner Dynamic Deformations

    Directory of Open Access Journals (Sweden)

    Guoxing Li

    2017-12-01

    Full Text Available The friction pair of piston rings and cylinder liner is one of the most important friction couplings in an internal combustion engine. It influences engine efficiency and service life. Under the excitation of piston slaps, the dynamic deformation of cylinder liner is close to the surface roughness magnitudes, which can affect the friction and lubrication performance between the piston rings and cylinder assemblies. To investigate the potential influences of structural deformations to tribological behaviours of cylinder assemblies, the dynamic deformation of the inner surface due to pistons slaps is obtained by dynamic simulations, and then coupled into an improved lubrication model. Different from the traditional lubrication model which takes the pressure stress factor and shear stress factor to be constant, the model proposed in this paper calculated these factors in real time using numerical integration to achieve a more realistic simulation. Based on the improved piston rings and cylinder liner lubrication model, the minimum oil film thickness and friction force curves are obtained for an entire work cycle. It shows that the friction force obtained from the improved model manifests clear oscillations in each stoke, which is different from the smoothed profiles predicted traditionally. Moreover, the average amplitude of the friction forces also shows clear reduction.

  15. Lagrangian Visualization and Real-Time Identification of the Vortex Shedding Time in the Wake of a Circular Cylinder

    Science.gov (United States)

    Rockwood, Matthew P.

    on a circular cylinder in crossflow. The acceleration of the Lagrangian saddle occurs simultaneously with a maximum in lift in both numerical cases, and with a minimum in the static pressure at a location slightly upstream of the mean separation location in the numerical cases, as well as the experimental data at a Reynolds number of 19,000. This allows the von Karman vortex shedding time, determined objectively by the acceleration of the Lagrangian saddle away from the circular cylinder, to be detected by a minimum in the static pressure at one location on the cylinder, a quantity that can be measured in real-time using available pressure sensors. These results can be used to place sensors in optimal locations on bluff bodies to inform closed-loop flow control algorithms of the timing of von Karman vortex shedding.

  16. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  17. Psoriasis and high blood pressure.

    Science.gov (United States)

    Salihbegovic, Eldina Malkic; Hadzigrahic, Nermina; Suljagic, Edin; Kurtalic, Nermina; Sadic, Sena; Zejcirovic, Alema; Mujacic, Almina

    2015-02-01

    Psoriasis is a chronic skin ailment which can be connected with an increased occurrence of other illnesses, including high blood pressure. A prospective study has been conducted which included 70 patients affected by psoriasis, both genders, older than 18 years. Average age being 47,14 (SD= ±15,41) years, from that there were 36 men or 51,43 and 34 women or 48,57%. Average duration of psoriasis was 15,52 (SD=±12,54) years. Frequency of high blood pressure in those affected by psoriasis was 54,28%. Average age of the patients with psoriasis and high blood pressure was 53,79 year (SD=±14,15) and average duration of psoriasis was 17,19 years (SD=±13,51). Average values of PASI score were 16,65. Increase in values of PASI score and high blood pressure were statistically highly related (r=0,36, p=0,0001). Psoriasis was related to high blood pressure and there was a correlation between the severity of psoriasis and high blood pressure.

  18. Lectures on controlled topology: Mapping cylinder neighborhoods

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, F [Department of Mathematics, Virginia Tech, Blacksburg, VA (United States)

    2002-08-15

    The existence theorem for mapping cylinder neighborhoods is discussed as a prototypical example of controlled topology and its applications. The first of a projected series developed from lectures at the Summer School on High-Dimensional Topology, Trieste, Italy 2001. (author)

  19. Lectures on controlled topology: Mapping cylinder neighborhoods

    International Nuclear Information System (INIS)

    Quinn, F.

    2002-01-01

    The existence theorem for mapping cylinder neighborhoods is discussed as a prototypical example of controlled topology and its applications. The first of a projected series developed from lectures at the Summer School on High-Dimensional Topology, Trieste, Italy 2001. (author)

  20. High-pressure torsion of hafnium

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Horita, Zenji; Mine, Yoji

    2010-01-01

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  1. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  2. A Software Module for High-Accuracy Calibration of Rings and Cylinders on CMM using Multi-Orientation Techniques (Multi-Step and Reversal methods)

    DEFF Research Database (Denmark)

    Tosello, Guido; De Chiffre, Leonardo

    . The Centre for Geometrical Metrology (CGM) at the Technical University of Denmark takes care of free form measurements, in collaboration with DIMEG, University of Padova, Italy. The present report describes a software module, ROUNDCAL, to be used for high-accuracy calibration of rings and cylinders....... The purpose of the software is to calculate the form error and the least square circle of rings and cylinders by mean of average of pontwise measuring results becoming from so-called multi-orientation techniques (both reversal and multi-step methods) in order to eliminate systematic errors of CMM ....

  3. Effect of Cylinder Liner Oil Grooves Shape on Two-Stroke Marine Diesel Engine's Piston Ring Friction Force

    Directory of Open Access Journals (Sweden)

    Salaheldin A. Mohamad

    2015-02-01

    Full Text Available The dimensions, area densities, and geometry of macroscale surface textures may affect the performance of hydrodynamic lubrication interface. Reported in this paper are the investigations of the effect of surface textures bottom shapes on the friction forces between piston ring and cylinder liner for two-stroke marine diesel engine, using numerically generated textures and average Reynolds equation. These textures are on the cylinder liner surface in the form of circumferential oil grooves with different aspect ratios and different area densities. The hydrodynamic pressure distribution is also calculated using Reynolds boundary condition. The results revealed that the bottom shape could positively affect the friction between moving surfaces, as it could provide a microwedge or microstep bearing that tends to enhance the lubrication condition between piston ring and cylinder liner.

  4. Approximation of Surfaces by Cylinders

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1998-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  5. Buckling Experiment on Anisotropic Long and Short Cylinders

    Directory of Open Access Journals (Sweden)

    Atsushi Takano

    2016-07-01

    Full Text Available A buckling experiment was performed on anisotropic, long and short cylinders with various radius-to-thickness ratios. The 13 cylinders had symmetric and anti-symmetric layups, were between 2 and 6 in terms of the length-to-radius ratio, between 154 and 647 in radius-to-thickness ratio, and made of two kinds of carbon fiber reinforced plastic (CFRP prepreg with high or low fiber modulus. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length and compared with the test results. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length. The knockdown factor, defined as the ratio of the experimental value to the theoretical value, was found to be between 0.451 and 0.877. The test results indicated that a large length-to-radius ratio reduces the knockdown factor, but the radius-to-thickness ratio and other factors do not affect it.

  6. Effects of solvent evaporation conditions on solvent vapor annealed cylinder-forming block polymer thin films

    Science.gov (United States)

    Grant, Meagan; Jakubowski, William; Nelson, Gunnar; Drapes, Chloe; Baruth, A.

    Solvent vapor annealing is a less time and energy intensive method compared to thermal annealing, to direct the self-assembly of block polymer thin films. Periodic nanostructures have applications in ultrafiltration, magnetic arrays, or other structures with nanometer dimensions, driving its continued interest. Our goal is to create thin films with hexagonally packed, perpendicular aligned cylinders of poly(lactide) in a poly(styrene) matrix that span the thickness of the film with low anneal times and low defect densities, all with high reproducibility, where the latter is paramount. Through the use of our computer-controlled, pneumatically-actuated, purpose-built solvent vapor annealing chamber, we have the ability to monitor and control vapor pressure, solvent concentration within the film, and solvent evaporation rate with unprecedented precision and reliability. Focusing on evaporation, we report on two previously unexplored areas, chamber pressure during solvent evaporation and the flow rate of purging gas aiding the evaporation. We will report our exhaustive results following atomic force microscopy analysis of films exposed to a wide range of pressures and flow rates. Reliably achieving well-ordered films, while occurring within a large section of this parameter space, was correlated with high-flow evaporation rates and low chamber pressures. These results have significant implications on other methods of solvent annealing, including ``jar'' techniques.

  7. Exact solution for stresses/displacements in a multilayered hollow cylinder under thermo-mechanical loading

    International Nuclear Information System (INIS)

    Yeo, W.H.; Purbolaksono, J.; Aliabadi, M.H.; Ramesh, S.; Liew, H.L.

    2017-01-01

    In this study, a new analytical solution by the recursive method for evaluating stresses/displacements in multilayered hollow cylinder under thermo-mechanical loading was developed. The results for temperature distribution, displacements and stresses obtained by using the proposed solution were shown to be in good agreement with the FEM results. The proposed analytical solution was also found to produce more accurate results than those by the analytical solution reported in literature. - Highlights: • A new analytical solution for evaluating stresses in multilayered hollow cylinder under thermo-mechanical loading. • A simple computational procedure using a recursive method. • A promising technique for evaluating the operating axial and hoop stresses in pressurized composite vessels.

  8. UF{sub 6} cylinder fire test

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. [Oak Ridge K-25 Site, Oak Ridge, TN (United States)

    1991-12-31

    With the increasing number of nuclear reactors for power generation, there is a comparable increase in the amount of UF{sub 6} being transported. Likewise, the probability of having an accident involving UF{sub 6}-filled cylinders also increases. Accident scenarios which have been difficult to assess are those involving a filled UF{sub 6} cylinder subjected to fire. A study is underway at the Oak Ridge K-25 Site, as part of the US DOE Enrichment Program, to provide empirical data and a computer model that can be used to evaluate various cylinder-in-fire scenarios. It is expected that the results will provide information leading to better handling of possible fire accidents as well as show whether changes should be made to provide different physical protection during shipment. The computer model being developed will be capable of predicting the rupture of various cylinder sizes and designs as well as the amount of UF{sub 6}, its distribution in the cylinder, and the conditions of the fire.

  9. Energy Loss, Velocity Distribution, and Temperature Distribution for a Baffled Cylinder Model

    Science.gov (United States)

    Brevoort, Maurice J

    1937-01-01

    A study has been made of the important principles involved in the operation of a baffle for an engine cylinder and shows that cooling can be improved by 20 percent by using a correctly designed baffle. Such a gain is as effective as a 65 percent increase in pressure drop across the standard baffle, which had a 1/4 inch clearance between baffle and fin tips.

  10. Control of 12-Cylinder Camless Engine with Neural Networks

    Directory of Open Access Journals (Sweden)

    Ashhab Moh’d Sami

    2017-01-01

    Full Text Available The 12-cyliner camless engine breathing process is modeled with artificial neural networks (ANN’s. The inputs to the net are the intake valve lift (IVL and intake valve closing timing (IVC whereas the output of the net is the cylinder air charge (CAC. The ANN is trained with data collected from an engine simulation model which is based on thermodynamics principles and calibrated against real engine data. A method for adapting single-output feed-forward neural networks is proposed and applied to the camless engine ANN model. As a consequence the overall 12-cyliner camless engine feedback controller is upgraded and the necessary changes are implemented in order to contain the adaptive neural network with the objective of tracking the cylinder air charge (driver’s torque demand while minimizing the pumping losses (increasing engine efficiency. All the needed measurements are extracted only from the two conventional and inexpensive sensors, namely, the mass air flow through the throttle body (MAF and the intake manifold absolute pressure (MAP sensors. The feedback controller’s capability is demonstrated through computer simulation.

  11. Hydrostatic Paradox: Experimental Verification of Pressure Equilibrium

    Science.gov (United States)

    Kodejška, C.; Ganci, S.; Ríha, J.; Sedlácková, H.

    2017-01-01

    This work is focused on the experimental verification of the balance between the atmospheric pressure acting on the sheet of paper, which encloses the cylinder completely or partially filled with water from below, where the hydrostatic pressure of the water column acts against the atmospheric pressure. First of all this paper solves a theoretical…

  12. Energy balance during underwater implosion of ductile metallic cylinders.

    Science.gov (United States)

    Chamberlin, Ryan E; Guzas, Emily L; Ambrico, Joseph M

    2014-11-01

    Energy-based metrics are developed and applied to a numerical test case of implosion of an underwater pressure vessel. The energy metrics provide estimates of the initial energy in the system (potential energy), the energy released into the fluid as a pressure pulse, the energy absorbed by the imploding structure, and the energy absorbed by air trapped within the imploding structure. The primary test case considered is the implosion of an aluminum cylinder [diameter: 2.54 cm (1 in.), length: 27.46 cm (10.81 in.)] that collapses flat in a mode-2 shape with minimal fracture. The test case indicates that the structure absorbs the majority (92%) of the initial energy in the system. Consequently, the energy emitted as a pressure pulse into the fluid is a small fraction, approximately 5%, of the initial energy. The energy absorbed by the structure and the energy emitted into the fluid are calculated for additional simulations of underwater pressure vessel implosions. For all cases investigated, there is minimal fracture in the collapse, the structure absorbs more than 80% of the initial energy of the system, and the released pressure pulse carries away less than 6% of the initial energy.

  13. Three-dimensional vortex flow near the endwall of a short cylinder in crossflow: Uniform-diameter circular cylinder

    International Nuclear Information System (INIS)

    Chen, S.B.; Sanitjai, S.; Ghosh, K.; Goldstein, R.J.

    2012-01-01

    Flow characteristics, around a short uniform-diameter circular cylinder in crossflow, are investigated experimentally. Extensive flow visualization using oil-lampblack and smoke-wire methods have been performed. Near-wake velocity measurements have been performed using a hotwire anemometer. Complex secondary flows are observed on and around the cylinder in crossflow. Multiple vortices are observed in the horseshoe vortex system near the cylinder–endwall junction. Based on this flow visualization and local mass transfer measurement results, a six-vortex secondary flow model has been proposed. - Highlights: ► Flow visualizations and velocity measurements for a short circular cylinder. ► Six vortices in the horseshoe vortex system upstream of the base of the cylinder. ► Cross-stream turbulence intensity profiles show a similarity in their shape.

  14. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  15. Natural phenomena evaluations of the K-25 site UF6 cylinder storage yards

    International Nuclear Information System (INIS)

    Fricke, K.E.

    1996-01-01

    The K-25 Site UF 6 cylinder storage yards are used for the temporary storage of UF 6 normal assay cylinders and long-term storage of other UF 6 cylinders. The K-25 Site UF 6 cylinder storage yards consist of six on-site areas: K-1066-B, K-1066-E, K-1066-F, K-1066-J, K-1066-K and K-1066-L. There are no permanent structures erected on the cylinder yards, except for five portable buildings. The operating contractor for the K-25 Site is preparing a Safety Analysis Report (SAR) to examine the safety related aspects of the K-25 Site UF 6 cylinder storage yards. The SAR preparation encompasses many tasks terminating in consequence analysis for the release of gaseous and liquid UF 6 , one of which is the evaluation of natural phenomena threats, such as earthquakes, floods, and winds. In support of the SAR, the six active cylinder storage yards were evaluated for vulnerabilities to natural phenomena, earthquakes, high winds and tornados, tornado-generated missiles, floods (local and regional), and lightning. This report summarizes those studies. 30 refs

  16. Extreme control of impulse transmission by cylinder-based nonlinear phononic crystals

    Science.gov (United States)

    Chaunsali, Rajesh; Toles, Matthew; Yang, Jinkyu; Kim, Eunho

    2017-10-01

    We present a novel device that can offer two extremes of elastic wave propagation - nearly complete transmission and strong attenuation under impulse excitation. The mechanism of this highly tunable device relies on intermixing effects of dispersion and nonlinearity. The device consists of identical cylinders arranged in a chain, which interact with each other as per nonlinear Hertz contact law. For a 'dimer' configuration, i.e., two different contact angles alternating in the chain, we analytically, numerically, and experimentally show that impulse excitation can either propagate as a localized wave, or it can travel as a highly dispersive wave. Remarkably, these extremes can be achieved in this periodic arrangement simply by in-situ control of contact angles between cylinders. We close the discussion by highlighting the key characteristics of the mechanisms that facilitate strong attenuation of incident impulse. These include low-to-high frequency scattering, and turbulence-like cascading in a periodic system. We thus envision that these adaptive, cylinder-based nonlinear phononic crystals, in conjunction with conventional impact mitigation mechanisms, could be used to design highly tunable and efficient impact manipulation devices.

  17. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... other risk factors, like diabetes, you may need treatment. How does high blood pressure affect pregnant women? A few women will get ... HIV, Birth Control Heart Health for Women Pregnancy Menopause More Women's Health ... High Blood Pressure--Medicines to Help You Women and Diabetes Heart ...

  18. Prediction of External Corrosion for Steel Cylinders--2004 Report

    International Nuclear Information System (INIS)

    Schmoyer, RLS

    2004-01-01

    Depleted uranium hexafluoride (UF 6 ) is stored in over 60,000 steel cylinders at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The cylinders range in age from 4 to 53 years. Although when new the cylinders had wall thicknesses specified to within manufacturing tolerances, over the years corrosion has reduced their actual wall thicknesses. The UF 6 Cylinder Project is managed by the United States Department of Energy (DOE) to safely maintain the UF 6 and the cylinders containing it. This report documents activities that address UF 6 Cylinder Project requirements and actions involving forecasting cylinder wall thicknesses. These requirements are delineated in the System Requirements Document (LMES 1997a), and the actions needed to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). The report documents cylinder wall thickness projections based on models fit to ultrasonic thickness (UT) measurement data. UT data is collected at various locations on randomly sampled cylinders. For each cylinder sampled, the minimum UT measurement approximates the actual minimum thickness of the cylinder. Projections of numbers of cylinders expected to fail various thickness criteria are computed from corrosion models relating minimum wall thickness to cylinder age, initial thickness estimates, and cylinder subpopulations defined in terms of plant site, yard, top or bottom storage positions, nominal thickness, etc. In this report, UT data collected during FY03 is combined with UT data collected in earlier years (FY94-FY02), and all of the data is inventoried chronologically and by various subpopulations. The UT data is used to fit models of maximum pit depth and minimum thickness, and the fitted models are used to extrapolate minimum thickness estimates into the future and in turn to compute

  19. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  20. Induced charge electrophoresis of a conducting cylinder in a nonconducting cylindrical pore and its micromotoring application

    Science.gov (United States)

    Feng, Huicheng; Wong, Teck Neng; Che, Zhizhao

    2016-08-01

    Induced charge electrophoresis of a conducting cylinder suspended in a nonconducting cylindrical pore is theoretically analyzed and a micromotor is proposed that utilizes the cylinder rotation. The cylinder velocities are analytically obtained in the Dirichlet and the Neumann boundary conditions of the electric field on the cylindrical pore. The results show that the cylinder not only translates but also rotates when it is eccentric with respect to the cylindrical pore. The influences of a number of parameters on the cylinder velocities are characterized in detail. The cylinder trajectories show that the cylinder approaches and becomes stationary at certain positions within the cylindrical pore. The proposed micromotor is capable of working under a heavy load with a high rotational velocity when the eccentricity is large and the applied electric field is strong.

  1. Optimization and improvement of Halbach cylinder design

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2008-01-01

    possible volume of magnets with a given mean flux density in the cylinder bore. The volume of the cylinder bore could also be significantly increased by only slightly increasing the volume of the magnets, for a fixed mean flux density. Placing additional blocks of magnets on the end faces of the Halbach...... that this parameter was optimal for long Halbach cylinders with small rex. Using the previously mentioned additional blocks of magnets can improve the parameter by as much as 15% as well as improve the homogeneity of the field in the cylinder bore. ©2008 American Institute of Physics...

  2. Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments

    Directory of Open Access Journals (Sweden)

    Huihua Feng

    2015-01-01

    Full Text Available We present a novel design of a single-cylinder free piston engine linear generator (FPELG incorporating a linear motor as a rebound device. A systematic simulation model of this FPELG system was built containing a kinematic and dynamic model of the piston and mover, a magneto-electric model of the linear generator, a thermodynamic model of the single-cylinder engine, and a friction model between the piston ring and cylinder liner. Simulations were performed to understand the relationships between pre-set motor parameters and the running performance of the FPELG. From the simulation results, it was found that a motor rebound force with a parabolic profile had clear advantages over a force with a triangular profile, such as a higher running frequency and peak cylinder pressure, faster piston motion, etc. The rebound position and the amplitude of rebound force were also determined by simulations. The energy conversion characteristics of the generator were obtained from our FPELG test rig. The parameters of intake pressure, motor frequency, and load resistance were varied over certain ranges, and relationships among these three parameters were obtained. The electricity-generating characteristic parameters include output power and system efficiency, which can measure the quality of matching the controllable parameters. The output power can reach 25.9 W and the system efficiency can reach 13.7%. The results in terms of matching parameters and electricity-generating characteristics should be useful to future research in adapting these engines to various operating modes.

  3. Behavior of concrete cylinders confined by a ferro-geopolymer jacket in axial compression

    Directory of Open Access Journals (Sweden)

    Kothay Heng

    2017-06-01

    Full Text Available It is beneficial to utilize geopolymers for their potential properties to rehabilitate concrete structures. These properties include high adhesion to Ordinary Portland Cement (OPC concrete even at low degrees of interfacial roughness, high durability and good fire resistance. This paper introduces use of a ferro-geopolymer jacket to strengthen concrete columns. It is a kind of jacket constructed with a geopolymer mortar reinforced with a wire mesh. This study was conducted to investigate the behavior of concrete cylinders confined with a ferro-geopolymer jacket in axial compression. OPC concrete cylinders with 100 mm diameter and 200 mm height were fabricated. High calcium fly ash-based geopolymer mortar, activated with sodium hydroxide (NaOH and sodium silicate (Na2SiO3, cured at a temperature of 25 ºC was used. Ferro-geopolymer jackets with a25 mm thickness, were reinforced with 1, 2 and 3 layers of expanded metal mesh and cast around concrete cylinders. The study results revealed that the compressive load carrying capacity and axial stiffness of concrete cylinders were improved. A monolithic failure mode was obtained as a result of a strong adhesion between the geopolymer and the concrete core. Enhancement of compressive load carrying capacity of the jacketed concrete cylinders was caused by a combination of a confinement effect and the compressive load resistance of the jacket transferred from concrete core through bonding.

  4. Prediction of External Corrosion for Steel Cylinders--2007 Report

    Energy Technology Data Exchange (ETDEWEB)

    Schmoyer, Richard L [ORNL

    2008-01-01

    Depleted uranium hexafluoride (DUF{sub 6}) is stored in over 62,000 containment cylinders at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. Over 4,800 of the cylinders at Portsmouth were recently moved there from the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. The cylinders range in age up to 56 years and come in various models, but most are 48-inch diameter 'thin-wall'(312.5 mil) and 'thick-wall' (625 mil) cylinders and 30-inch diameter '30A' (including '30B') cylinders with 1/2-inch (500 mil) walls. Most of the cylinders are carbon steel, and they are subject to corrosion. The United States Department of Energy (DOE) manages the cylinders to maintain them and the DUF{sub 6} they contain. Cylinder management requirements are specified in the System Requirements Document (LMES 1997a), and the activities to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). This report documents activities that address DUF{sub 6} cylinder management requirements involving measuring and forecasting cylinder wall thicknesses. As part of these activities, ultrasonic thickness (UT) measurements are made on samples of cylinders. For each sampled cylinder, multiple measurements are made in an attempt to find, approximately, the minimum wall thickness. Some cylinders have a skirt, which is an extension of the cylinder wall to protect the head (end) and valve. The head/skirt interface crevice is thought to be particularly vulnerable to corrosion, and for some skirted cylinders, in addition to the main body UT measurements, a separate suite of measurements is also made at the head/skirt interface. The main-body and head/skirt minimum thickness data are used to fit models relating minimum thickness to cylinder age, nominal thicknesses, and cylinder functional groups defined in terms of plant site, storage yard

  5. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  6. Experimental investigation of a flow-induced oscillating cylinder with two degrees-of-freedom

    International Nuclear Information System (INIS)

    Someya, Satoshi; Kuwabara, Joji; Li, YanRong; Okamoto, Koji

    2010-01-01

    The phenomenon of flow-induced vibration of bluff bodies has been studied extensively. The vast majority of these studies have concentrated solely on one degree-of-freedom oscillation in the inline or cross-flow directions. Herein, experiments were carried out with a cylinder in a water channel with two degrees-of-freedom. The cylinder was cantilever mounted with a low natural frequency (typically 65 Hz) in the inline and cross-flow directions. The Reynolds number fell in the range 1.17 x 10 3 4 . The oscillating frequency of the cylinder and the surrounding flow were measured simultaneously using high temporal resolution particle image velocimetry (PIV), which is non-intrusive with respect to the flow and has high spatial and temporal resolutions. The vibration of the cylinder was found to be anisotropic. There was a discrepancy between the vibration frequencies in the inline and cross-flow directions, the difference being a function of reduced velocity.

  7. Modelling and numerical simulation of vortex induced vibrations of single cylinder or cylinder arrays

    International Nuclear Information System (INIS)

    Jus, Y.

    2011-01-01

    This research thesis fits into the frame of researches achieved in the nuclear field in order to optimize the predictive abilities of sizing models of nuclear plant components. It more precisely addresses the modelling of the action exerted by the flowing fluid and the induced feedback by the structure dynamics. The objective is herein to investigate the interaction between the turbulence at the wall vicinity and the effects of non-conservative and potentially destabilizing unsteady coupling. The peculiar case of a single cylinder in infinite environment, and submitted to a transverse flow, is studied statically and then dynamically. The influence of flow regimes on dynamic response is characterized, and the quantification of fluid-structure interaction energy is assessed. The author then addresses the case of an array of cylinders, and highlights the contribution of three-dimensional macro-simulations for the analysis of flow-induced structure vibrations in subcritical regime within a High Performance Calculation (HPC) framework, and the interest of a CFD/CSM (computational fluid dynamics/computational structure mechanics) coupling in the case of turbulent flows in an industrial environment

  8. Prediction of External Corrosion for Steel Cylinders--2004 Report

    Energy Technology Data Exchange (ETDEWEB)

    Schmoyer, RLS

    2004-07-07

    Depleted uranium hexafluoride (UF{sub 6}) is stored in over 60,000 steel cylinders at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The cylinders range in age from 4 to 53 years. Although when new the cylinders had wall thicknesses specified to within manufacturing tolerances, over the years corrosion has reduced their actual wall thicknesses. The UF{sub 6} Cylinder Project is managed by the United States Department of Energy (DOE) to safely maintain the UF{sub 6} and the cylinders containing it. This report documents activities that address UF{sub 6} Cylinder Project requirements and actions involving forecasting cylinder wall thicknesses. These requirements are delineated in the System Requirements Document (LMES 1997a), and the actions needed to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). The report documents cylinder wall thickness projections based on models fit to ultrasonic thickness (UT) measurement data. UT data is collected at various locations on randomly sampled cylinders. For each cylinder sampled, the minimum UT measurement approximates the actual minimum thickness of the cylinder. Projections of numbers of cylinders expected to fail various thickness criteria are computed from corrosion models relating minimum wall thickness to cylinder age, initial thickness estimates, and cylinder subpopulations defined in terms of plant site, yard, top or bottom storage positions, nominal thickness, etc. In this report, UT data collected during FY03 is combined with UT data collected in earlier years (FY94-FY02), and all of the data is inventoried chronologically and by various subpopulations. The UT data is used to fit models of maximum pit depth and minimum thickness, and the fitted models are used to extrapolate minimum thickness estimates into the future and in

  9. Development of High-Powered Steam Turbines by OAO NPO Central Research and Design Institute for Boilers and Turbines

    Science.gov (United States)

    Mikhailov, V. E.; Khomenok, L. A.; Kovalev, I. A.

    2018-01-01

    The article provides an overview of the developments by OAO NPO TsKTI aimed at improvement of components and assemblies of new-generation turbine plants for ultra-supercritical steam parameters to be installed at the power-generating facilities in service. The list of the assemblies under development includes cylinder shells, the cylinder's flow paths and rotors, seals, bearings, and rotor cooling systems. The authors consider variants of the shafting-cylinder configurations for which advanced high-pressure and intermediate-pressure cylinders with reactive blading and low-pressure cylinders of conventional design and with counter-current steam flows are proposed and high-pressure rotors, which can increase the economic efficiency and reduce the overall turbine plant dimensions. Materials intended for the equipment components that operate at high temperatures and a steam cooling technique that allows the use of cheaper steel grades owing to the reduction in the metal's working temperature are proposed. A new promising material for the bearing surfaces is described that enables the operation at higher unit pressures. The material was tested on a full-scale test bench at OAO NPO TsKTI and a turbine in operation. Ways of controlling the erosion of the blades in the moisture-steam turbine compartments by the steam heating of the hollow guide blades are considered. To ensure the dynamic stability of the shafting, shroud and diaphragm seals that prevent the development of the destabilizing circulatory forces of the steam flow were devised and trialed. Advanced instrumentation and software are proposed to monitor the condition of the blading and thermal stresses under transient conditions, to diagnose the vibration processes, and to archive the obtained data. Attention is paid to the normalization of the electromagnetic state of the plant in order to prevent the electrolytic erosion of the plant components. The instrumentation intended for monitoring the relevant electric

  10. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    International Nuclear Information System (INIS)

    Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M.

    2009-01-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome

  11. Directed Assembly of Janus Cylinders by Controlling the Solvent Polarity.

    Science.gov (United States)

    Kim, Jongmin; Choi, Chang-Hyung; Yeom, Su-Jin; Eom, Naye; Kang, Kyoung-Ku; Lee, Chang-Soo

    2017-08-01

    This study demonstrates the possibility of controlling the directed self-assembly of microsized Janus cylinders by changing the solvent polarity of the assembly media. Experimental results are analyzed and theoretical calculations of the free energy of adhesion (ΔG ad ) are performed to elucidate the underlying basic principles and investigate the effects of the solvent on the self-assembled structures. This approach will pave a predictive route for controlling the structures of assembly depending on the solvent polarity. In particular, we find that a binary solvent system with precisely controlled polarity induces directional assembly of the microsized Janus cylinders. Thus, the formation of two-dimensional (2D) and three-dimensional (3D) assembled clusters can be reliably tuned by controlling the numbers of constituent Janus cylinders in a binary solvent system. Finally, this approach is expanded to stepwise assembly, which forms unique microstructures via secondary growth of primary seed clusters formed by the Janus cylinders. We envision that this investigation is highly promising for the construction of desired superstructures using a wide variety of polymeric Janus microparticles with chemical and physical multicompartments.

  12. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  13. Automated high pressure cell for pressure jump x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  14. Automated high pressure cell for pressure jump x-ray diffraction

    International Nuclear Information System (INIS)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-01-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  15. African Americans and High Blood Pressure

    Science.gov (United States)

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? African Americans in the U.S. have a higher prevalence of high blood pressure (HBP) than ...

  16. Drag reduction and thrust generation by tangential surface motion in flow past a cylinder

    Science.gov (United States)

    Mao, Xuerui; Pearson, Emily

    2018-03-01

    Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At Re=100 , when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (partial r \\hat{ζ } ) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.

  17. Transient Vibrations of an Elastic Cylinder Inserted in the Elastic Medium

    Directory of Open Access Journals (Sweden)

    Sulym Heorgij

    2016-06-01

    Full Text Available Using method of Laguerre polynomials we have obtained the solution of the dynamic problem of the theory of elasticity for elastic cylinder inserted into massive body modeled as a space. The source of non-stationary processes in composite is high intensity force load of the inner surface of the cylinder. On the surface separation of materials of space and cylinder the conditions of ideal mechanical contact are satisfied. The solution is obtained as series of Laguerre polynomials, which coefficients are found from recurrent relations. The results of numerical analysis of transient stress-strain state in elastic space with cylindrical insertion might be used for the technological process of hydraulic fracturing during shale gas extraction.

  18. NGSI: Function Requirements for a Cylinder Tracking System

    International Nuclear Information System (INIS)

    Branney, S.

    2012-01-01

    While nuclear suppliers currently track uranium hexafluoride (UF 6 ) cylinders in various ways, for their own purposes, industry practices vary significantly. The NNSA Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a 5-year program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF 6 cylinders. As part of this effort, NGSI's multi-laboratory team has documented the 'life of a UF 6 cylinder' and reviewed IAEA practices related to UF 6 cylinders. Based on this foundation, this paper examines the functional requirements of a system that would uniquely identify and track UF 6 cylinders. There are many considerations for establishing a potential tracking system. Some of these factors include the environmental conditions a cylinder may be expected to be exposed to, where cylinders may be particularly vulnerable to diversion, how such a system may be integrated into the existing flow of commerce, how proprietary data generated in the process may be protected, what a system may require in terms of the existing standard for UF 6 cylinder manufacture or modifications to it and what the limiting technology factors may be. It is desirable that a tracking system should provide benefit to industry while imposing as few additional constraints as possible and still meeting IAEA safeguards objectives. This paper includes recommendations for this system and the analysis that generated them.

  19. Reduction of sound transmission across plenum windows by incorporating an array of rigid cylinders

    Science.gov (United States)

    Tang, S. K.

    2018-02-01

    The potential improvement of plenum window noise reduction by installing rigid circular cylinder arrays into the window cavity is investigated numerically using the finite-element method in this study. A two-dimensional approach is adopted. The sound transmission characteristics and propagation within the plenum window are also examined in detail. Results show that the installation of the cylinders in general gives rise to broadband improvement of noise reduction across a plenum window regardless of the direction of sound incidence. Such acoustical performance becomes better when more cylinder columns are installed, but it is suggested that the number of cylinder rows should not exceed two. Results also show that the cylinder positions relative to the nodal/anti-nodal planes of the acoustic modes are crucial in the noise reduction enhancement mechanisms. Noise reduction can further be enhanced by staggering the cylinder rows, such that each cylinder row supports the development of a different acoustic mode. For the simple cylinder arrangements considered in this study, the traffic noise reduction enhancement observed in this study can be as high as 4-5 dB, which is already comparable to or higher than the maximum achieved by installing sound absorption into a plenum window.

  20. Design of pressure vessels using shape optimization: An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Carbonari, R.C., E-mail: ronny@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Munoz-Rojas, P.A., E-mail: pablo@joinville.udesc.br [Department of Mechanical Engineering, Universidade do Estado de Santa Catarina, Bom Retiro, Joinville, SC 89223-100 (Brazil); Andrade, E.Q., E-mail: edmundoq@petrobras.com.br [CENPES, PDP/Metodos Cientificos, Petrobras (Brazil); Paulino, G.H., E-mail: paulino@uiuc.edu [Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Av., Urbana, IL 61801 (United States); Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 158 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801-2906 (United States); Nishimoto, K., E-mail: knishimo@usp.br [Department of Naval Architecture and Ocean Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Silva, E.C.N., E-mail: ecnsilva@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil)

    2011-05-15

    Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. - Highlights: > Shape optimization of entire pressure vessel considering an integrated approach. > By increasing the number of spline knots, the convergence stability is improved. > The null angle condition gives lower stress values resulting in a better design. > The cylinder stresses are very sensitive to the cylinder length. > The shape optimization of the entire vessel must be considered for cylinder length.

  1. Theory of interacting dislocations on cylinders.

    Science.gov (United States)

    Amir, Ariel; Paulose, Jayson; Nelson, David R

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  2. Higher efficiency with cylinder-bank comprehensive exhaust manifold; Effizienzsteigerung durch Zylinderbank-uebergreifenden Kruemmer

    Energy Technology Data Exchange (ETDEWEB)

    Diez, Rainer; Kornherr, Heinz; Pirntke, Frank; Schmidt, Juergen [Friedrich Boysen GmbH und Co. KG, Altensteig (Germany)

    2010-05-15

    In close interdisciplinary cooperation with BMW Group, Boysen has developed an air-gap-insulated exhaust manifold that encompasses both banks of the 4.4 l V8 spark-ignition twin turbo engine of the BMW X5 M and BMW X6 M. The manifold merges the exhaust gas flow from the cylinders of the left-hand and right-hand cylinder banks in opposing pairs, thus optimising gas exchange. Due to improvements in response, torque and power characteristics of the engine, the cylinder-bank comprehensive exhaust manifold helps achieve high fuel efficiency. (orig.)

  3. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Feb 27,2018 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  4. Low-Re flow past an isolated cylinder with rounded corners

    KAUST Repository

    Zhang, Wei

    2016-06-29

    Direct numerical simulation is performed for flow past an isolated cylinder at Re=1,000. The corners of the cylinder are rounded at different radii, with the non-dimensional radius of curvature varying from R+=R/D=0.000 (square cylinder with sharp corners) to 0.500 (circular cylinder), in which R is the corner radius and D is the cylinder diameter. Our objective is to investigate the effect of the rounded corners on the development of the separated and transitional flow past the cylinder in terms of time-averaged statistics, time-dependent behavior, turbulent statistics and three-dimensional flow patterns. Numerical results reveal that the rounding of the corners significantly reduces the time-averaged drag and the force fluctuations. The wake flow downstream of the square cylinder recovers the slowest and has the largest wake width. However, the statistical quantities do not monotonically vary with the corner radius, but exhibit drastic variations between the cases of square cylinder and partially rounded cylinders, and between the latter and the circular cylinder. The free shear layer separated from the R+=0.125 cylinder is the most stable in which the first roll up of the wake vortex occurs furthest from the cylinder and results in the largest recirculation bubble, whose size reduces as R+ further increases. The coherent and incoherent Reynolds stresses are most pronounced in the near-wake close to the reattachment point, while also being noticeable in the shear layer for the square and R+=0.125 cylinders. The wake vortices translate in the streamwise direction with a convection velocity that is almost constant at approximately 80% of the incoming flow velocity. These vortices exhibit nearly the same trajectory for the rounded cylinders and are furthest away from the wake centerline for the square one. The flow past the square cylinder is strongly three-dimensional as indicated by the significant primary and secondary enstrophy, while it is dominated by the

  5. Structural-acoustic coupling effects on the non-vacuum packaging vibratory cylinder gyroscope.

    Science.gov (United States)

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng; Tao, Yi; Zheng, Yu; Xiao, Dingbang

    2013-12-13

    The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE) model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm.

  6. A new method for fabrication of thin plates and thin-walled cylinder made of fiber reinforced metal (FRM) and its application for the rotating drum of the nuclear fuel centrifugal separator

    International Nuclear Information System (INIS)

    Okamura, Tatsuya

    1978-01-01

    The composite materials using resins as the base materials show the defect that the characteristics deteriorate rapidly at elevated temperature. Therefore the FRMs using relatively ductile metals as the base materials combined with reinforcing fibers have been considered. The result of study on the combination of base materials and fibers and the manufacturing method is rarely reported in Japan. In FRMs, direct contact of fibers mutually must be avoided, especially making nodes lowers the strength extremely. The fibers must be long monofilaments of 0.1 to 0.2 mm diameter. High precision wire winding machines are required for making uniform FRMs. For the diffusion joining of preformed materials, in which fibers are put in order on metallic foils, pressure and heat are applied. The author succeeded to develop the technique for making thin-walled cylinders of FRMs, including the method of winding brittle filaments and the method of pressurizing and heating based on the difference of thermal expansion of dies. The mechanical properties of thin plates and thin-walled cylinders made of monofilaments of B, SiC and SUS and aluminum alloy foils were obtained, and rotation test of the cylinders was carried out. It was clarified that the FRMs of B-Al and SiC-Al groups are very excellent materials, and most suitable for the rotary drums of super-high speed centrifuges. (Kako, I.)

  7. Self-accelerating parabolic cylinder waves in 1-D

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2016-11-25

    Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.

  8. Knock probability estimation through an in-cylinder temperature model with exogenous noise

    Science.gov (United States)

    Bares, P.; Selmanaj, D.; Guardiola, C.; Onder, C.

    2018-01-01

    This paper presents a new knock model which combines a deterministic knock model based on the in-cylinder temperature and an exogenous noise disturbing this temperature. The autoignition of the end-gas is modelled by an Arrhenius-like function and the knock probability is estimated by propagating a virtual error probability distribution. Results show that the random nature of knock can be explained by uncertainties at the in-cylinder temperature estimation. The model only has one parameter for calibration and thus can be easily adapted online. In order to reduce the measurement uncertainties associated with the air mass flow sensor, the trapped mass is derived from the in-cylinder pressure resonance, which improves the knock probability estimation and reduces the number of sensors needed for the model. A four stroke SI engine was used for model validation. By varying the intake temperature, the engine speed, the injected fuel mass, and the spark advance, specific tests were conducted, which furnished data with various knock intensities and probabilities. The new model is able to predict the knock probability within a sufficient range at various operating conditions. The trapped mass obtained by the acoustical model was compared in steady conditions by using a fuel balance and a lambda sensor and differences below 1 % were found.

  9. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    Science.gov (United States)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  10. Acoustic scattering by multiple elliptical cylinders using collocation multipole method

    International Nuclear Information System (INIS)

    Lee, Wei-Ming

    2012-01-01

    This paper presents the collocation multipole method for the acoustic scattering induced by multiple elliptical cylinders subjected to an incident plane sound wave. To satisfy the Helmholtz equation in the elliptical coordinate system, the scattered acoustic field is formulated in terms of angular and radial Mathieu functions which also satisfy the radiation condition at infinity. The sound-soft or sound-hard boundary condition is satisfied by uniformly collocating points on the boundaries. For the sound-hard or Neumann conditions, the normal derivative of the acoustic pressure is determined by using the appropriate directional derivative without requiring the addition theorem of Mathieu functions. By truncating the multipole expansion, a finite linear algebraic system is derived and the scattered field can then be determined according to the given incident acoustic wave. Once the total field is calculated as the sum of the incident field and the scattered field, the near field acoustic pressure along the scatterers and the far field scattering pattern can be determined. For the acoustic scattering of one elliptical cylinder, the proposed results match well with the analytical solutions. The proposed scattered fields induced by two and three elliptical–cylindrical scatterers are critically compared with those provided by the boundary element method to validate the present method. Finally, the effects of the convexity of an elliptical scatterer, the separation between scatterers and the incident wave number and angle on the acoustic scattering are investigated.

  11. HF DBD plasma actuators for reduction of cylinder noise in flow

    Science.gov (United States)

    Kopiev, V. F.; Kazansky, P. N.; Kopiev, V. A.; Moralev, I. A.; Zaytsev, M. Yu

    2017-11-01

    Surface high frequency dielectric barrier discharge (HF DBD) was used to reduce flow-induced noise, radiated by circular cylinder in cross flow. Effect of HF DBD actuators is studied for flow velocity up to 80 m s-1 (Reynolds numbers up to 2.18 · 105), corresponding to the typical aircraft landing approach speed. Noise measurements were performed by microphone array in anechoic chamber; averaged flow parameters were studied by particle image velocimetry (PIV). Actuator was powered by high-frequency voltage in hundreds kHz range in steady or modulated mode with the modulation frequency of 0.3-20 kHz (Strouhal number St of 0.4 to 20). It is demonstrated that upstream directed plasma actuators are able to reduce the vortex noise of a cylinder by 10 dB. Noise reduction is accompanied by significant reorganization of the wake behind a cylinder, decreasing both wake width and turbulence level. The physical mechanism related to broadband noise control by HF DBD actuator is also discussed.

  12. CFD and Thermo Mechanical Analysis on Effect of Curved vs Step Surface in IC Engine Cylinder Head

    Science.gov (United States)

    Balaji, S.; Ganesh, N.; Kumarasamy, A.

    2017-05-01

    Current research in IC engines mainly focus on various methods to achieve higher efficiency and high specific power. As a single design parameter, combustion chamber peak spring pressure has increased more than before. Apart from the structural aspects of withstanding these loads, designer faces challenges of resolving thermal aspects of cylinder head. Methods to enhance the heat transfer without compromising load withstanding capability are being constantly explored. Conventional cylinder heads have got sat inner surface. In this paper we have suggested a modification in inner surface to enhance the heat transfer capability. To increase the heat transfer rate, inner same deck surface is configured as a curved and stepped surface instead of sat. We have reported the effectiveness of extend of curvature in the inner same deck surface in a different technical paper. Here, we are making a direct comparison between stepped and curved surface only. From this analysis it has been observed that curved surface reduces the ame deck temperature considerably without compromising the structural strength factors compared to step and sat surface.

  13. Spark ignition engine control: estimation and prediction of the in-cylinder mass and chemical species; Controle moteur a allumage commande: estimation / prediction de la masse et de la composition du melange enferme dans le cylindre

    Energy Technology Data Exchange (ETDEWEB)

    Giansetti, P.

    2005-09-15

    Spark ignition engine control has become a major issue regarding compliance with emissions legislation while ensuring driving comfort. The objective of this thesis was to estimate the mass and composition of gases inside the cylinder of an engine based on physics in order to insure better control of transient phases taking into account residual gases as well as exhaust gas recirculation. Residual gas fraction has been characterized using two experiments and one CFD code. A model has been validated experimentally and integrated into an observer which predicts pressure and temperature inside the manifold. The predictions of the different gas flows and the chemical species inside the cylinder are deduced. A closed loop observer has been validated experimentally and in simulation. Moreover, an algorithm estimating the fresh and burned gas mass from the cylinder pressure has been proposed in order to obtain the information cycle by cycle and cylinder by cylinder. (author)

  14. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  15. Application of the exact solution for scattering by an infinite cylinder to the estimation of scattering by a finite cylinder.

    Science.gov (United States)

    Wang, R T; van de Hulst, H C

    1995-05-20

    A new algorithm for cylindrical Bessel functions that is similar to the one for spherical Bessel functions allows us to compute scattering functions for infinitely long cylinders covering sizes ka = 2πa/λ up to 8000 through the use of only an eight-digit single-precision machine computation. The scattering function and complex extinction coefficient of a finite cylinder that is seen near perpendicular incidence are derived from those of an infinitely long cylinder by the use of Huygens's principle. The result, which contains no arbitrary normalization factor, agrees quite well with analog microwave measurements of both extinction and scattering for such cylinders, even for an aspect ratio p = l/(2a) as low as 2. Rainbows produced by cylinders are similar to those for spherical drops but are brighter and have a lower contrast.

  16. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  17. High pressure phase transformations revisited.

    Science.gov (United States)

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  18. Integrated two-cylinder liquid piston Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd, E-mail: todd.sulchek@me.gatech.edu [George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  19. Integrated two-cylinder liquid piston Stirling engine

    International Nuclear Information System (INIS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-01-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  20. Integrated two-cylinder liquid piston Stirling engine

    Science.gov (United States)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  1. High blood pressure - adults

    Science.gov (United States)

    ... pressure is found. This is called essential hypertension. High blood pressure that is caused by another medical condition or medicine you are taking is called secondary hypertension. Secondary hypertension may be due to: Chronic ...

  2. Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine

    International Nuclear Information System (INIS)

    Dhamodaran, Gopinath; Esakkimuthu, Ganapathy Sundaram; Pochareddy, Yashwanth Kutti; Sivasubramanian, Harish

    2017-01-01

    Global concern over rising greenhouse gas emission levels and the availability of fossil fuels has led to the development of biofuels, and the use of gasoline formulations with oxygenated compounds has become common practice for improving fuel quality. This empirical study evaluated the effects of oxygenated gasoline fuel blends on air quality. Tests were conducted on a four-stroke, four-cylinder multi-point fuel injection (MPFI) spark ignition (SI) engine using an eddy current dynamometer to investigate the combustion and emissions behaviour of n-butanol blends. Blends comprising n-butanol (N10, N20, and N30) and unleaded gasoline were tested over a rotational speed range of 1400 rpm–2800 rpm under a constant load of 20 Nm. The results obtained indicate that use of n-butanol blends produced lower hydrocarbon (HC) and carbon monoxide (CO) levels than unleaded gasoline but nitrogen oxide (NO_x) emissions were found to be higher. When ignition timing was retarded, NOx emissions for all n-butanol blends decreased. The peak in-cylinder pressures and heat release rates for the blends were also found to be higher than for unleaded gasoline (UG). COV_I_M_E_P of gasoline was higher than that of n-butanol/gasoline blends. - Highlights: • Using oxygenated compound gasoline formulations is common for improving fuel quality. • Blends of n-butanol with unleaded gasoline were tested between 1400 rpm and 2800 rpm. • Blends increased brake thermal efficiency and produced lower HC and CO but higher NOx. • Lower NOx was observed when ignition timing was retarded. • Peak in-cylinder pressures and heat release rates for blends were higher.

  3. 46 CFR 58.30-30 - Fluid power cylinders.

    Science.gov (United States)

    2010-10-01

    ... all pneumatic power transmission systems. (b) Fluid power cylinders consisting of a container and a... 46 Shipping 2 2010-10-01 2010-10-01 false Fluid power cylinders. 58.30-30 Section 58.30-30... MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-30 Fluid power cylinders. (a) The...

  4. High blood pressure - medicine-related

    Science.gov (United States)

    Drug-induced hypertension is high blood pressure caused by using a chemical substance or medicine. ... of the arteries There are several types of high blood pressure : Essential hypertension has no cause that can be ...

  5. High-pressure microbiology

    National Research Council Canada - National Science Library

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  6. Nonlinear bending and collapse analysis of a poked cylinder and other point-loaded cylinders

    International Nuclear Information System (INIS)

    Sobel, L.H.

    1983-06-01

    This paper analyzes the geometrically nonlinear bending and collapse behavior of an elastic, simply supported cylindrical shell subjected to an inward-directed point load applied at midlength. The large displacement analysis results for this thin (R/t = 638) poked cylinder were obtained from the STAGSC-1 finite element computer program. STAGSC-1 results are also presented for two other point-loaded shell problems: a pinched cylinder (R/t = 100), and a venetian blind (R/t = 250)

  7. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  8. Stress and reliability analyses of multilayered composite cylinder under thermal and mechanical loads

    Science.gov (United States)

    Wang, Xiaohua

    The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).

  9. Experimental seismic test of fluid coupled co-axial cylinders

    International Nuclear Information System (INIS)

    Chu, M.L.; Brown, S.J.; Lestingi, J.F.

    1979-01-01

    The dynamic response of fluid coupled coaxial cylindrical shells is of interest to the nuclear industry with respect to the seismic design of the reactor vessel and thermal liner. The experiments described present a series of tests which investigate the effect of the annular clearance between the cylinders (gap) on natural frequency, damping, and seismic response of both the inner and outer cylinders. The seismic input is a time history base load to the flexible fluid filled coaxial cylinders. The outer cylinder is elastically supported at both ends while the inner cylinder is supported only at the base (lower) end

  10. A Phenomenological Model for Prediction Auto-Ignition and Soot Formation of Turbulent Diffusion Combustion in a High Pressure Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Qinghui Zhou

    2011-06-01

    Full Text Available A new phenomenological model, the TP (Temperature Phase model, is presented to carry out optimization calculations for turbulent diffusion combustion in a high-pressure common rail diesel engine. Temperature is the most important parameter in the TP model, which includes two parts: an auto-ignition and a soot model. In the auto-ignition phase, different reaction mechanisms are built for different zones. For the soot model, different methods are used for different temperatures. The TP model is then implemented in KIVA code instead of original model to carry out optimization. The results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP model, KIVA standard model and experimental data are analyzed. The results indicate that the TP model can carry out optimization and CFD (computational fluid dynamics and can be a useful tool to study turbulent diffusion combustion.

  11. Results of ultrasonic testing evaluations on UF6 storage cylinders

    International Nuclear Information System (INIS)

    Lykins, M.L.

    1997-02-01

    The three site cylinder management program is responsible for the safe storage of the DOE owned UF 6 storage cylinders at PORTS, PGDP and at the K-25 site. To ensure the safe storage of the UF 6 in the cylinders, the structural integrity of the cylinders must be evaluated. This report represents the latest cylinder integrity investigation that utilized wall thickness evaluations to identify thinning due to atmospheric exposure

  12. Oxygen fugacity control in piston-cylinder experiments: a re-evaluation

    Science.gov (United States)

    Jakobsson, Sigurdur; Blundy, Jon; Moore, Gordon

    2014-06-01

    Jakobsson (Contrib Miner Petrol 164(3):397-407, 2012) investigated a double capsule assembly for use in piston-cylinder experiments that would allow hydrous, high-temperature, and high-pressure experiments to be conducted under controlled oxygen fugacity conditions. Using a platinum outer capsule containing a metal oxide oxygen buffer (Ni-NiO or Co-CoO) and H2O, with an inner gold-palladium capsule containing hydrous melt, this study was able to compare the oxygen fugacity imposed by the outer capsule oxygen buffer with an oxygen fugacity estimated by the AuPdFe ternary system calibrated by Barr and Grove (Contrib Miner Petrol 160(5):631-643, 2010). H2O loss or gain, as well as iron loss to the capsule walls and carbon contamination, is often observed in piston-cylinder experiments and often go unexplained. Only a few have attempted to actually quantify various aspects of these changes (Brooker et al. in Am Miner 83(9-10):985-994, 1998; Truckenbrodt and Johannes in Am Miner 84:1333-1335, 1999). It was one of the goals of Jakobsson (Contrib Miner Petrol 164(3):397-407, 2012) to address these issues by using and testing the AuPdFe solution model of Barr and Grove (Contrib Miner Petrol 160(5):631-643, 2010), as well as to constrain the oxygen fugacity of the inner capsule. The oxygen fugacities of the analyzed melts were assumed to be equal to those of the solid Ni-NiO and Co-CoO buffers, which is incorrect since the melts are all undersaturated in H2O and the oxygen fugacities should therefore be lower than that of the buffer by 2 log.

  13. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    Science.gov (United States)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  14. Mechanical Cushion Design Influence on Cylinder Dynamics

    DEFF Research Database (Denmark)

    Borghi, Massimo; Milani, Massimo; Conrad, Finn

    2005-01-01

    . experimental comparison, involving the piston velocity and the cylinder chambers pressure. After, with the aim of highlighting the effect of mechanical cushions design on a two effect linear actuator dynamic performances, the characteristics modulation of four alternative cushioning systems are determined......The paper deals with the simulation and the experimental verification of the dynamic behaviour of a linear actuator equipped with different configurations of mechanical cushion. A numerical model, developed and tailored to describe the influence of different modulation of the discharged flow......-rate (and of the correspondent discharging orifice design) on the cushioning characteristics variation is firstly introduced. Then, with respect to the case of the cylindrical cushioning engagement, both the reliability and the limits of the numerical approach are highlighted through a numerical vs...

  15. Effects of Surface Irregularities on Piston Ring-Cylinder Tribo Pair of a Two Stroke Motor Engine in Hydrodynamic Lubrication

    Directory of Open Access Journals (Sweden)

    A. Zavos

    2015-03-01

    Full Text Available Tribological parameters such as friction, lubrication and wear influence strongly the engine component's life. In this study, a piston ring-cylinder system simulated taking into account the surface modifications under fully flooded lubrication and normal engine conditions. The hydrodynamic pressure field solved based on the Navier Stokes equations by Fluid Structure Interaction analysis. A real experimental data of piston ring-cylinder was used from a two stroke motor engine 50 cc. The surface irregularities are measured by 3D coordinate measurement machine while the engine has been worked about 4000 hours. The friction force, the hydrodynamic pressure, the oil film and the mechanical stresses were predicted for different engine conditions. Results show that the worn profile ring reduces the friction as well as the mechanical stresses increased. Surface condition of worn top ring was observed after a metallurgical profile analysis.

  16. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  17. Effects of moisture migration on shrinkage, pore pressure and other concrete properties

    International Nuclear Information System (INIS)

    Chapman, D.A.; England, G.L.

    1977-01-01

    This work investigates the uniaxial migration of moisture in long, upright, limestone concrete cylinders, sealed at the base and sides, and open at the top. The design represents a section through a concrete pressure vessel wall. The cylinders are subjected to a sustained temperature difference between their ends, with maximum temperatures between 105 0 C and 200 0 C. Readings of pore pressure, water content and temperature are taken at various positions along the axis of the cylinders. In one cylinder transverse and longitudinal shrinkage readings are also recorded. The results for the cylinders show that moisture migration is away from the hot face of the specimens, causing reduction in both pore pressure and water content values in this region. The moisture migration creates a drying front which moves slowly up the specimens. Evaporation drying takes place from the unsealed end of the specimen. A drying front moves into the concrete and considerable weight loss is recorded as moisture escapes to the atmosphere. The rate of movement of the drying front is slower than that of the hot front and is proportional to the temperature difference between the top of the specimen and the surrounding atmosphere. In the shrinkage specimen, values of transverse and longitudinal shrinkage reflect the water content results. The specimen indicates that shrinkage occurs in a concrete pressure vessel, in the regions where moisture is lost. The restraint of the mass of concrete surrounding these regions sets up a three dimensional state of internal tensile stress. The areas into which the moisture migrates tend to swell, creating an internal stress situation, which is this

  18. Low-Re flow past an isolated cylinder with rounded corners

    KAUST Repository

    Zhang, Wei; Samtaney, Ravi

    2016-01-01

    rounded cylinders, and between the latter and the circular cylinder. The free shear layer separated from the R+=0.125 cylinder is the most stable in which the first roll up of the wake vortex occurs furthest from the cylinder and results in the largest

  19. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    Science.gov (United States)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  20. Increasing the compression pressure in an engine by using a long intake pipe

    Science.gov (United States)

    Mathews, Robertson; Gardiner, Arthur W

    1924-01-01

    During some tests of a one-cylinder engine, using gas oil (diesel engine oil, specific gravity 0.86 at 60 F) with solid injection and compression ignition, it was found to be necessary to increase either the jacket water temperature or the compression pressure in order to start the engine. It was found that a sufficient increase in compression pressure could be obtained simply by attaching a long pipe to the inlet flange of the cylinder. However, since no data were available giving the values of the increase in compression pressure that might be expected from such a step-up, an investigation was made covering some engine speeds between 500 r.p.m. and 1800 r.p.m. The data obtained are included here in the form of curves. Although this data is not strictly applicable to another engine, it should give indications of what might be expected with such a set-up on an engine operating at similar speeds. The engine used was a single cylinder Liberty, 5-inch bore and 7-inch stroke, having standard cylinder, cams, valves, and valve timing and operating on a four-stroke cycle.

  1. Common High Blood Pressure Myths

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:May 4,2018 Knowing the facts ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  2. Medications for High Blood Pressure

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  3. High blood pressure and diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  4. Pressure Feedback in Fluid Power Systems--Active Damping Explained and Exemplified

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben O.

    2018-01-01

    Fluid power systems are inherently nonlinear and typically suffer from very poor damping. Despite these characteristics, it is not uncommon that traditional linear type controllers are applied. This typically results in conservative adjustment of the controllers, or when more advanced controllers...... a given system, and how to adjust the parameters of the pressure feedback to obtain the best results. This is done for both a traditional symmetric cylinder servo system and a system with a differential cylinder using both pressure and nonpressure compensated proportional valves. Based on the presented...

  5. PIV measurement of the complex and transient cross-flow over a circular cylinder

    International Nuclear Information System (INIS)

    Kuwabara, Joji; Someya, Satoshi; Okamoto, Koji

    2007-01-01

    This paper describe about measurement for the complex and transient cross-flow over a circular cylinder with the dynamic (time resolved) PIV (particle image velocimetry) techniques. The experiment was carried out water flow tunnel with a working section of 50x50 mm, at the Reynolds number 6.7 x 10 3 to 2.7 x 10 4 . This circular cylinder constructed with MEXFLON resin, the end of circular cylinder is rigidly supported and the other is free. The MEXFLON is fluorine resin; its refractive index is almost same as the water with high transparency. Very high speed water flow among the test section had been clearly visualized and captured by high speed camera. The fluctuations of the flow structure also are clearly obtained with high spatial and high temporal resolution, 512x512pixel with 10,000fps. It corresponds to set up number of thousands LDV array at the test section. Consequently, we found there are asynchronous vibration between parallel-ward and perpendicular-ward to main flow. (author)

  6. Influence of the stacking sequence of layers on the mechanical behavior of polymeric composite cylinders; Influencia da configuracao de bobinagem no comportamento mecanico de cilindros de composito polimerico

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Osni de

    2006-07-01

    This work evaluated experimentally the influence of the stacking sequence of layers symmetrical and asymmetrical on the mechanical behavior of polymeric composite cylinders. For so much, two open-ended cylinders groups were manufactured by filament winding process, which had different stacking sequence related to the laminate midplane, characterizing symmetrical and asymmetrical laminates. The composite cylinders were made with epoxy matrix and carbon fiber as reinforcement. For evaluation of the mechanical strength, the cylinders were tested hydrostatically, which consisted of internal pressurization in a hydrostatic device through the utilization of a fluid until the cylinders burst. Additionally, were compared the strains and failure modes between the cylinders groups. The utilization of a finite element program allowed to conclude that this tool, very used in design, does not get to identify tensions in the fiber direction in each composite layer, as well as interlaminar shear stress, that appears in the cylinders with asymmetrical stacking sequence. The tests results showed that the stacking sequence had influence in the mechanical behavior of the composite cylinders, favoring the symmetrical construction. (author)

  7. Label inspection of approximate cylinder based on adverse cylinder panorama

    Science.gov (United States)

    Lin, Jianping; Liao, Qingmin; He, Bei; Shi, Chenbo

    2013-12-01

    This paper presents a machine vision system for automated label inspection, with the goal to reduce labor cost and ensure consistent product quality. Firstly, the images captured from each single-camera are distorted, since the inspection object is approximate cylindrical. Therefore, this paper proposes an algorithm based on adverse cylinder projection, where label images are rectified by distortion compensation. Secondly, to overcome the limited field of viewing for each single-camera, our method novelly combines images of all single-cameras and build a panorama for label inspection. Thirdly, considering the shake of production lines and error of electronic signal, we design the real-time image registration to calculate offsets between the template and inspected images. Experimental results demonstrate that our system is accurate, real-time and can be applied for numerous real- time inspections of approximate cylinders.

  8. Elasticity of stishovite at high pressure

    Science.gov (United States)

    Li, Baosheng; Rigden, Sally M.; Liebermann, Robert C.

    1996-08-01

    The elastic-wave velocities of stishovite, the rutile-structured polymorph of SiO 2, were measured to 3 GPa at room temperature in a piston cylinder apparatus using ultrasonic interferometry on polycrystalline samples. These polycrystalline samples (2-3 mm in length and diameter) were hot-pressed at 14 GPa and 1050°C in a 2000 ton uniaxial split-sphere apparatus (USSA-2000) using fused silica rods as starting material. They were characterized as low porosity (less than 1%), single phase, fine grained, free of cracks and preferred orientation, and acoustically isotropic by using density measurement, X-ray diffraction, scanning electron microscopy, and bench-top velocity measurements. On the basis of subsequent in situ X-ray diffraction study at high P and T on peak broadening on similar specimens, it is evident that the single crystal grains within these polycrystalline aggregates are well equilibrated and that these specimens are free of residual strain. P- and S-wave velocities measured at 1 atm are within 1.5% of the Hashin-Shtrikman bounds calculated from single-crystal elastic moduli. Measured pressure derivatives of the bulk and shear moduli, K' 0 = 5.3 ± 0.1 and G' 0 = 1.8 ± 0.1, are not unusual compared with values measured for other transition zone phases such as silicate spinel and majorite garnet. Isothermal compression curves calculated with the measured values of K0 and K' 0 agree well with experimental P-V data to 16 GPa. The experimental value of dG /dP is in excellent agreement with predictions based on elasticity systematics. Theoretical models are not yet able to replicate the measured values of K' 0 and G' 0.

  9. Sub-wavelength metamaterial cylinders with multiple dipole resonances

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2009-01-01

    It has been shown that the sub-wavelength resonances of the individual MTM cylinders also occur for electrically small configurations combining 2 or 4 cylinders. For the 2-and 4-cylinder configurations the overall size is 1/20 and 1/12.5 of the smallest wavelength, respectively. These MTM...... configuration thus offer the possibility for multi-resonant electrically small configurations....

  10. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    NARCIS (Netherlands)

    De Kanter, J.L.C.G.

    2006-01-01

    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  11. Estimation of Individual Cylinder Air-Fuel Ratio in Gasoline Engine with Output Delay

    Directory of Open Access Journals (Sweden)

    Changhui Wang

    2016-01-01

    Full Text Available The estimation of the individual cylinder air-fuel ratio (AFR with a single universal exhaust gas oxygen (UEGO sensor installed in the exhaust pipe is an important issue for the cylinder-to-cylinder AFR balancing control, which can provide high-quality torque generation and reduce emissions in multicylinder engine. In this paper, the system dynamic for the gas in exhaust pipe including the gas mixing, gas transport, and sensor dynamics is described as an output delay system, and a new method using the output delay system observer is developed to estimate the individual cylinder AFR. With the AFR at confluence point augmented as a system state, an observer for the augmented discrete system with output delay is designed to estimate the AFR at confluence point. Using the gas mixing model, a method with the designed observer to estimate the individual cylinder AFR is presented. The validity of the proposed method is verified by the simulation results from a spark ignition gasoline engine from engine software enDYNA by Tesis.

  12. MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS.

    Science.gov (United States)

    Austin, Daniel; Dinwoodie, Ian H

    We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks.

  13. SU-G-201-01: An Automated Treatment Plan Quality Assurance Program for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y; Tan, J; Jiang, S; Albuquerque, K; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Plan specific quality assurance (QA) is an important step in high dose rate (HDR) brachytherapy to ensure the integrity of a treatment plan. The conventional approach is to assemble a set of plan screen-captures in a document and have an independent plan-checker to verify it. Not only is this approach cumbersome and time-consuming, using a document also limits the items that can be verified, hindering plan quality and patient safety. We have initiated efforts to develop a web-based HDR brachytherapy QA system called AutoBrachy QA, for comprehensive and efficient QA. This abstract reports a new plugin in this system for the QA of a cylinder HDR brachytherapy treatment. Methods: A cylinder plan QA module was developed using Python. It was plugged into our AutoBrachy QA system. This module extracted information from CT images and treatment plan. Image processing techniques were employed to obtain geometric parameters, e.g. cylinder diameter. A comprehensive set of eight geometrical and eight dosimetric features of the plan were validated against user specified planning parameter, such as prescription value, treatment depth and length, etc. A PDF document was generated, consisting of a summary QA sheet with all the QA results, as well as images showing plan details. Results: The cylinder QA program has been implemented in our clinic. To date, it has been used in 11 patient cases and was able to successfully perform QA tests in all of them. The QA program reduced the average plan QA time from 7 min using conventional manual approach to 0.5 min. Conclusion: Being a new module in our AutoBrachy QA system, an automated treatment plan QA module for cylinder HDR brachytherapy has been successfully developed and clinically implemented. This module improved clinical workflow and plan integrity compared to the conventional manual approach.

  14. SU-G-201-01: An Automated Treatment Plan Quality Assurance Program for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    International Nuclear Information System (INIS)

    Zhou, Y; Tan, J; Jiang, S; Albuquerque, K; Jia, X

    2016-01-01

    Purpose: Plan specific quality assurance (QA) is an important step in high dose rate (HDR) brachytherapy to ensure the integrity of a treatment plan. The conventional approach is to assemble a set of plan screen-captures in a document and have an independent plan-checker to verify it. Not only is this approach cumbersome and time-consuming, using a document also limits the items that can be verified, hindering plan quality and patient safety. We have initiated efforts to develop a web-based HDR brachytherapy QA system called AutoBrachy QA, for comprehensive and efficient QA. This abstract reports a new plugin in this system for the QA of a cylinder HDR brachytherapy treatment. Methods: A cylinder plan QA module was developed using Python. It was plugged into our AutoBrachy QA system. This module extracted information from CT images and treatment plan. Image processing techniques were employed to obtain geometric parameters, e.g. cylinder diameter. A comprehensive set of eight geometrical and eight dosimetric features of the plan were validated against user specified planning parameter, such as prescription value, treatment depth and length, etc. A PDF document was generated, consisting of a summary QA sheet with all the QA results, as well as images showing plan details. Results: The cylinder QA program has been implemented in our clinic. To date, it has been used in 11 patient cases and was able to successfully perform QA tests in all of them. The QA program reduced the average plan QA time from 7 min using conventional manual approach to 0.5 min. Conclusion: Being a new module in our AutoBrachy QA system, an automated treatment plan QA module for cylinder HDR brachytherapy has been successfully developed and clinically implemented. This module improved clinical workflow and plan integrity compared to the conventional manual approach.

  15. Two-phase cross-flow-induced forces acting on a circular cylinder

    International Nuclear Information System (INIS)

    Hara, F.

    1982-01-01

    This paper clarifies the characteristics of unsteady flow-induced lift and drag forces acting on a circular cylinder immersed perpendicular to a two-phase bubbly air-water flow, in conjunction with Karman vortex shedding and pressure fluctuations. Experimental results presented show that Karman vortex shedding disappears over a certain value of air concentration in the two-phase flow. Related to this disappearance, flow-induced forces are rather small and periodical in low air concentration but become very large and random in higher air concentration. 7 refs

  16. An Unattended Verification Station for UF6 Cylinders: Development Status

    International Nuclear Information System (INIS)

    Smith, E.; McDonald, B.; Miller, K.; Garner, J.; March-Leuba, J.; Poland, R.

    2015-01-01

    In recent years, the International Atomic Energy Agency (IAEA) has pursued innovative techniques and an integrated suite of safeguards measures to address the verification challenges posed by advanced centrifuge technologies and the growth in separative work unit capacity at modern centrifuge enrichment plants. These measures would include permanently installed, unattended instruments capable of performing the routine and repetitive measurements previously performed by inspectors. Among the unattended instruments currently being explored by the IAEA is an Unattended Cylinder Verification Stations (UCVS) that could provide independent verification of the declared relative enrichment, U-235 mass and total uranium mass of all declared cylinders moving through the plant, as well as the application and verification of a ''Non-destructive Assay Fingerprint'' to preserve verification knowledge on the contents of each cylinder throughout its life in the facility. As IAEA's vision for a UCVS has evolved, Pacific Northwest National Laboratory (PNNL) and Los Alamos National Laboratory have been developing and testing candidate non-destructive assay (NDA) methods for inclusion in a UCVS. Modeling and multiple field campaigns have indicated that these methods are capable of assaying relative cylinder enrichment with a precision comparable to or substantially better than today's high-resolution handheld devices, without the need for manual wall-thickness corrections. In addition, the methods interrogate the full volume of the cylinder, thereby offering the IAEA a new capability to assay the absolute U-235 mass in the cylinder, and much-improved sensitivity to substituted or removed material. Building on this prior work, and under the auspices of the United States Support Programme to the IAEA, a UCVS field prototype is being developed and tested. This paper provides an overview of: a) hardware and software design of the prototypes, b) preparation

  17. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  18. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. High-pressure high-temperature experiments: Windows to the Universe

    International Nuclear Information System (INIS)

    Santaria-Perez, D.

    2011-01-01

    From Earth compositional arguments suggested by indirect methods, such as the propagation of seismic waves, is possible to generate in the laboratory pressure and temperature conditions similar to those of the Earth or other planet interiors and to study how these conditions affect to a certain metal or mineral. These experiments are, therefore, windows to the Universe. The aim of this chapter is to illustrate the huge power of the experimental high-pressure high-temperature techniques and give a global overview of their application to different geophysical fields. Finally, we will introduce the MALTA Consolider Team, which gather most of the Spanish high-pressure community, and present their available high-pressure facilities. (Author) 28 refs.

  20. Imperfection effects on the buckling of hydrostatically loaded cylinders

    DEFF Research Database (Denmark)

    Pinna, Rodney; Madsen, Søren

    2015-01-01

    imperfection sensitivity. Work on cylinders with other loading conditions, such as hydrostatic loading, is more limited. Similarly, there is limited work on cylinders with boundary conditions other than simply-supported ends. This paper looks at the case of cylinders under hydrostatic load, which is often...

  1. Two dimensional numerical analysis of aerodynamic characteristics for rotating cylinder on concentrated air flow

    Science.gov (United States)

    Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.

    2017-12-01

    Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.

  2. Rapid expansion and fracture of metallic cylinders driven by explosive loads

    International Nuclear Information System (INIS)

    Hiroe, T.; Fujiwara, K.; Abe, T.; Yoshida, M.

    2004-01-01

    Smooth walled tubular specimens of stainless steel and low-carbon steels were explosively expanded to fragmentation. The driver was a column of the high explosive PETN inserted into the central bore and initiated by exploding a fine copper wire using a discharge current from a high-voltage capacitor bank. The variation of wall thickness and the effect of different explosive driver diameters are reported. A fully charged casing model was also exploded with initiation at the end surface for comparison. Streak and framing photos show both radially and axially symmetric expansion of cylinders at average strain rates of above 104 s-1 and a wall velocity of 417-1550 m/s. Some framing photos indicate the initiation and spacing of fractures during the bursting of the cylinders. Hydro codes have been applied to simulate the experimental behavior of the cylinders, examining numerical stresses, deformation and fracture criteria. Most of the fragments were successfully recovered inside a cushion-filled chamber, and the circumferential fracture spacing of measured fragments is investigated using a fragmentation model

  3. HF DBD plasma actuators for reduction of cylinder noise in flow

    International Nuclear Information System (INIS)

    Kopiev, V F; Kopiev, V A; Zaytsev, M Yu; Kazansky, P N; Moralev, I A

    2017-01-01

    Surface high frequency dielectric barrier discharge (HF DBD) was used to reduce flow-induced noise, radiated by circular cylinder in cross flow. Effect of HF DBD actuators is studied for flow velocity up to 80 m s −1 (Reynolds numbers up to 2.18 · 10 5 ), corresponding to the typical aircraft landing approach speed. Noise measurements were performed by microphone array in anechoic chamber; averaged flow parameters were studied by particle image velocimetry (PIV). Actuator was powered by high-frequency voltage in hundreds kHz range in steady or modulated mode with the modulation frequency of 0.3–20 kHz (Strouhal number St of 0.4 to 20). It is demonstrated that upstream directed plasma actuators are able to reduce the vortex noise of a cylinder by 10 dB. Noise reduction is accompanied by significant reorganization of the wake behind a cylinder, decreasing both wake width and turbulence level. The physical mechanism related to broadband noise control by HF DBD actuator is also discussed. (paper)

  4. Combustion pressure-based engine management system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R.; Hart, M. [DaimlerChrysler, Stuttart (Germany); Truscott, A.; Noble, A. [Ricardo, Shoreham-by-Sea (United Kingdom); Kroetz, G.; Richter, C. [DaimlerChrysler, Munchen (Germany); Cavalloni, C. [Kistler Instruments AG, Winterthur (Switzerland)

    2000-07-01

    In order to fulfill future emissions and OBD regulations, whilst meeting increasing demands for driveability and refinement, new technologies for SI engines have to be found in terms of sensors and algorithms for engine control units. One promising way, explored in the AENEAS collaborative project between DaimlerChrysler, Kistler, Ricardo and the European Commission, is to optimize the behavior of the system by using in-cylinder measurements and analysing them with modern control algorithms. In this paper a new engine management system based on combustion pressure sensing is presented. The pressure sensor is designed to give a reliable and accurate signal of the full pressure trace during a working cycle. With the application of new technologies low cost manufacturing appears to be achievable, so that an application in mass production can be considered. Furthermore, model-based algorithms were developed to allow optimal control of the engine based on the in-cylinder measurements. The algorithms incorporate physical principles to improve efficiency, emissions and to reduce the parameterisation effort. In the paper, applications of the combustion pressure signal for air mass estimation, knock detection, ignition control cam phase detection and diagnosis are discussed. (author)

  5. Inner and outer cylinders of the CMS vacuum tank.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The vacuum tank of the CMS magnet system consists of inner and outer stainless-steel cylinders and houses the superconducting coil. The inner cylinder contains all the barrel sub-detectors, which it supports via a system of horizontal rails. The cylinder is pictured here in the vertical position on a yellow platform mounted on the ferris-wheel support structure. This will allow it to be pivoted and inserted into the already installed outer cylinder, through which this photo was taken.

  6. Flow past two tandem square cylinders vibrating transversely in phase

    International Nuclear Information System (INIS)

    Mithun, M G; Tiwari, Shaligram

    2014-01-01

    Numerical investigations have been carried out to study the wake characteristics of flow past two tandem square cylinders vibrating in phase. Both the cylinders vibrate in a transverse direction, i.e., perpendicular to the incoming flow with the same frequency and amplitude. The frequency of vibration of the cylinders and the inter-cylinder spacing are varied for fixed values of the Reynolds number (Re = 100) and the amplitude ratio (A/D = 0.4). The synchronous or lock-in regime for the oscillatory wake of the vibrating cylinders has been identified by varying the frequency of the vibration from f e  = 0.4 f 0 to 1.6 f 0 (f 0 being the frequency of vortex shedding behind a stationary square cylinder). The characteristics of lift and drag and the mechanism of vortex shedding are studied by varying the excitation frequency within the lock-in range for each value of inter-cylinder spacing. The complex interaction of flow between the cylinders gives rise to a variety of characteristically different shedding patterns in their wake. For values of inter-cylinder spacing equal to 2D and 3D, periodic, as well as quasi-periodic, lock-in behaviors are observed in the synchronous range. (paper)

  7. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  8. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  9. Structural-Acoustic Coupling Effects on the Non-Vacuum Packaging Vibratory Cylinder Gyroscope

    Directory of Open Access Journals (Sweden)

    Xiang Xi

    2013-12-01

    Full Text Available The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm.

  10. Experiments of flow-induced in-line oscillation of a circular cylinder in a water tunnel. 2. Influence of the aspect ratio of a cantilevered circular cylinder

    International Nuclear Information System (INIS)

    Nakamura, Akira; Okajima, Atsushi; Kosugi, Takashi

    2001-01-01

    The flow-induced in-line oscillation of a cantilevered circular cylinder was experimentally studied through free-oscillation tests in a water tunnel. The response displacement amplitude at a circular cylinder tip was measured at reduced velocity from 1.0 to 4.0. A cantilevered cylinder was supported by a plate spring mounted on the water tunnel wall. The cylinder aspect ratio was varied from 5 to 21 to investigate the effect of aspect ratio on the response displacement. It is found that cylinders with aspect ratios of 5 and 10 have one excitation region, while cylinders with aspect ratios of 14 and 21 have two excitation regions. The aspect ratio, therefore, affects the amplitude of the excitation regions. The influence of end-effect was also investigated using cylinders with an end plate attached to the free end. Since the cylinders with an end plate show two excitation regions, even at an aspect ratio of 5, the flow around the free end of a cantilevered cylinder causes the end-effect. The mechanism of vibration was investigated using a cylinder with a splitter plate in wake to prevent alternate vortices. The amplitude is greater than those of a normal cylinder without a splitter plate, especially at V r =2.3 to 3.0, where a cylinder with an end plate shows the second excitation region. In order words, the alternate vortices suppress the amplitude in this range. The maximum amplitude of each excitation region decreases in proportion to C n and the amplitude of the first excitation is more sensitive to C n . (author)

  11. A Space Cam Mechanism for Power Transmission of an Opposite-cylinder Piston Engine

    Directory of Open Access Journals (Sweden)

    Zhang Haoyue

    2015-01-01

    Full Text Available For the purpose of improving the engine’s power density, we put forward a new type of power transmission mechanism which is used for opposed-cylinder engine. The gas pressure acts on the cam through the piston and push rod, and the spindle rotation of external is driven by the cam. The design of spatial cam work surface is completed by using the enveloping theory of a family of space curves, the force between roller and cam is analyzed using dynamic analysis software. Under the condition of equal number, size and stroke of piston, the new one with larger power density is more compact in structure than the traditional power transmission mechanism, and the reaction force on either side of the main shaft and the acting force between pistons and cylinders are smaller than those in traditional one, which prolongs the service life of the pistons.

  12. Benchmark calculations on fluid coupled co-axial cylinders typical to LMFBR structures

    International Nuclear Information System (INIS)

    Dostal, M.; Descleve, P.; Gantenbein, F.; Lazzeri, L.

    1983-01-01

    This paper describes a joint effort promoted and funded by the Commission of European Community under the umbrella of Fast Reactor Co-ordinating Committee and working group on Codes and Standards No. 2 with the purpose to test several programs currently used for dynamic analysis of fluid-coupled structures. The scope of the benchmark calculations is limited to beam type modes of vibration, small displacement of the structures and small pressure variation such as encountered in seismic or flow induced vibration problems. Five computer codes were used: ANSYS, AQUAMODE, NOVAX, MIAS/SAP4 and ZERO where each program employs a different structural-fluid formulation. The calculations were performed for four different geometrical configurations of concentric cylinders where the effect of gap size, water level, and support conditions were considered. The analytical work was accompanied by experiments carried out on a purpose-built rig. The test rig consisted of two concentric cylinders independently supported on flexible cantilevers. A geometrical simplicity and attention in the rig design to eliminate the structural coupling between the cylinders lead to unambiguous test results. Only the beam natural frequencies, in phase and out of phase were measured. The comparison of different analytical methods and experimental results is presented and discussed. The degree of agreement varied between very good and unacceptable. (orig./GL)

  13. High pressure effects on fruits and vegetables

    OpenAIRE

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  14. Modeling flow for modified concentric cylinder rheometer geometry

    Science.gov (United States)

    Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz

    2016-11-01

    Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.

  15. Sound velocities of the 23 Å phase at high pressure and implications for seismic velocities in subducted slabs

    Science.gov (United States)

    Cai, N.; Chen, T.; Qi, X.; Inoue, T.; Li, B.

    2017-12-01

    Dense hydrous phases are believed to play an important role in transporting water back into the deep interior of the Earth. Recently, a new Al-bearing hydrous Mg-silicate, named the 23 Å phase (ideal composition Mg12Al2Si4O16(OH)14), was reported (Cai et al., 2015), which could be a very important hydrous phase in subducting slabs. Here for the first time we report the measurements of the compressional and shear wave velocities of the 23 Å phase under applied pressures up to 14 GPa and room temperature, using a bulk sample with a grain size of less than 20 μm and density of 2.947 g/cm3. The acoustic measurements were conducted in a 1000-ton uniaxial split-cylinder multi-anvil apparatus using ultrasonic interferometry techniques (Li et al., 1996). The pressures were determined in situ by using an alumina buffer rod as the pressure marker (Wang et al., 2015). A dual-mode piezoelectric transducer enabled us to measure P and S wave travel times simultaneously, which in turn allowed a precise determination of the sound velocities and elastic bulk and shear moduli at high pressures. A fit to the acoustic data using finite strain analysis combined with a Hashin-Shtrikman (HS) bounds calculation yields: Ks0 = 113.3 GPa, G0 = 42.8 GPa, and K' = 3.8, G' = 1.9 for the bulk and shear moduli and their pressure derivatives. The velocities (especially for S wave) of this 23 Å phase (ambient Vp = 7.53 km/s, Vs = 3.72 km/s) are lower than those of phase A, olivine, pyrope, etc., while the Vp/Vs ratio (from 2.02 to 1.94, decreasing with increasing pressure) is quite high. These results suggest that a hydrous assemblage containing 23 Å phase should be distinguishable from a dry one at high pressure and temperature conditions relevant to Al-bearing subducted slabs.

  16. Slideline verification for multilayer pressure vessel and piping analysis including tangential motion

    International Nuclear Information System (INIS)

    Van Gulick, L.A.

    1984-01-01

    Nonlinear finite element method (FEM) computer codes with slideline algorithm implementations should be useful for the analysis of prestressed multilayer pressure vessels and piping. This paper presents closed form solutions including the effects of tangential motion useful for verifying slideline implementations for this purpose. The solutions describe stresses and displacements of a long internally pressurized elastic-plastic cylinder initially separated from an elastic outer cylinder by a uniform gap. Comparison of closed form and FEM results evaluates the usefulness of the closed form solution and the validity of the sideline implementation used

  17. High Blood Pressure - Multiple Languages

    Science.gov (United States)

    ... Being 8 - High Blood Pressure - Amarɨñña / አማርኛ (Amharic) MP3 Siloam Family Health Center Arabic (العربية) Expand Section ... Being 8 - High Blood Pressure - myanma bhasa (Burmese) MP3 Siloam Family Health Center Chinese, Simplified (Mandarin dialect) ( ...

  18. Natural convection heat transfer on two horizontal cylinders in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Hata, K.; Shiotsu, M.; Takeuchi, Y. [Institute of Atomic Energy, Kyoto Univ. (Japan)] [and others

    1995-09-01

    Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.

  19. Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.

    Science.gov (United States)

    Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C

    2010-05-01

    A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.

  20. Magnetic levitation using high temperature superconducting pancake coils as composite bulk cylinders

    International Nuclear Information System (INIS)

    Patel, A; Hopkins, S C; Baskys, A; Glowacki, B A; Kalitka, V; Molodyk, A

    2015-01-01

    Stacks of superconducting tape can be used as composite bulk superconductors for both trapped field magnets and for magnetic levitation. Little previous work has been done on quantifying the levitation force behavior between stacks of tape and permanent magnets. This paper reports the axial levitation force properties of superconducting tape wound into pancake coils to act as a composite bulk cylinder, showing that similar stable forces to those expected from a uniform bulk cylinder are possible. Force creep was also measured and simulated for the system. The geometry tested is a possible candidate for a rotary superconducting bearing. Detailed finite element modeling in COMSOL Multiphysics was also performed including a full critical state model for induced currents, with temperature and field dependent properties and 3D levitation force models. This work represents one of the most complete levitation force modeling frameworks yet reported using the H-formulation and helps explain why the coil-like stacks of tape are able to sustain levitation forces. The flexibility of geometry and consistency of superconducting properties offered by stacks of tapes, make them attractive for superconducting levitation applications. (paper)